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Abstract

In this article a new approach is considered for implementing operator splitting methods
for transport problems, influenced by electric fields. Our motivation came to model PE-CVD
(plasma-enhanced chemical vapor deposition) processes, means the flow of species to a gas-
phase, which are influenced by an electric field. Such a field we can model by wave equations.
The main contributions are to improve the standard discretization schemes of each part of the
coupling equation. So we discuss an improvement with implicit Runge-Kutta methods instead of
the Yee’s algorithm. Further we balance the solver method between the Maxwell and Transport
equation.
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1. Introduction

In the field of numerical modeling and simulation of electrical fields, several methods
to solve them are of interest.

One method for a stationary case of the electric field is a propagation method (BPM).
This is a powerful tool to analyze linear and nonlinear light propagation in axially vary-
ing waveguides like directional couplers, tapered waveguides, S-shaped bent waveguides,
and optical fibers [1–4]. The method has its origin in the field of propagation of elec-
tromagnetic beams in atmosphere, where the multi-physics modeling was done on the
assumption that “the continuous gain medium may be approximated by a series of gain
sheets with free propagation between the sheets” [5,6]. As it will be shown later on, this
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method is in fact a Strang-Marchuk operator splitting method [7,8]. Here we first describe
the BPM [9]. We introduce the iterative splitting idea to couple Maxwell and Transport
equations. Further a splitting analysis is presented. Numerical experiments are presented
with respect to decoupled and coupled differential equations.

2. Discretization method of the Maxwell equation

In the following we discuss the discretization methods for the Maxwell equation.

2.1. FDTD method: Yee’s scheme

Yee’s scheme is the standard finite difference time-domain (FDTD) discretization of
the following time dependent Maxwell curl equations

−µ0µr

∂H

∂t
= ∇× E, (1)

ǫ0ǫr

∂E

∂t
= ∇× H, (2)

where E = (Ex, Ey, Ez)(x, y, t) is the electric field, H = (Hx, Hy, Hz)(x, y, t) is the
magnetic field, ǫr = ǫ(x, y) is the relative permittivity (given data), µr = 1 (non-magnetic
material) is the magnetic permeability. Here ǫ0, µ0 are constants. It can be shown that
if the divergence free conditions ∇ · (ǫrE) = 0 and ∇ · (H) = 0 are satisfied at t = 0,
then they are satisfied for all time. This is the case for our setting. Therefore it is enough
to consider only the above curl equation. Rewriting them component-wise, we get in our
case

−µ0
∂Hx

∂t
=

∂Ez

∂y
− ∂Ey

∂z
(3)

−µ0
∂Hy

∂t
=

∂Ex

∂z
− ∂Ez

∂x
(4)

ǫ0ǫr

∂Ez

∂t
=

∂Hy

∂x
− ∂Hx

∂y
(5)

Let ∆x, ∆y are spatial discretizations, and ∆t is a time step. We use the following
notation

Fn(i, j) = F (i∆x, j∆y, n∆t). (6)

Let α represents a spatial coordinate such as x, y. The goal of Yee’s scheme is to
compute the approximations for the various components Eα of E and Hα of H at the
following spatial locations and temporal instants:

Eα =







spatial coordinate α : half integer

other spatial coordinate: integer

time: integer

(7)

Hα =







spatial coordinate α : integer

other spatial coordinate: half integer

time: half integer

(8)
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Thus the distributions/grid of various components are staggered in space and in time.
This is one of the two unique characteristics of the Yee’s scheme. The second unique
characteristic is that the various spatial derivatives in Eq. (3)-(5) are computed across
the one spatial cell, i.e. the difference center for the central difference approximation of
the spatial derivative is the mid point of one cell length in the corresponding direction of
the derivative. Thus the Yee’s scheme approximates Eq. (3)-(5) at the following points:

Eq.(3) 7→ (i∆x, (j + 1/2)∆y, n∆t) (9)

Eq.(4) 7→ ((i + 1/2)∆x, j∆y, n∆t) (10)

Eq.(5) 7→ (i∆x, j∆y, (n + 1/2)∆t) (11)

Such a staggered uncollocated arrangement gives the Yee’s scheme several nice numer-
ical and physical properties 1 . Then we get finite-difference approximations as:

H
n+ 1

2
x (i, j +

1

2
) = H

n− 1
2

x (i, j +
1

2
) − 1

µ0

∆t

∆y

[

En
z (i, j + 1) − En

z (i, j)

]

, (12)

H
n+ 1

2
y (i +

1

2
, j) = H

n− 1
2

y (i +
1

2
, j) +

1

µ0

∆t

∆x

[

En
z (i + 1, j) − En

z (i, j)

]

, (13)

En+1
z (i, j) = En

z (i, j)

+
1

ǫ0ǫr

∆t

∆x

[

H
n+ 1

2
y (i +

1

2
, j) − H

n+ 1
2

y (i − 1

2
, j)

]

− 1

ǫ0ǫr

∆t

∆y

[

H
n+ 1

2
x (i, j +

1

2
) − H

n+ 1
2

x (i, j − 1

2
)

]

. (14)

In Eq.(14) the relative permittivity ǫr is computed at the corresponding difference
center as given by Eq. (11). At the interface between two media, ǫr is approximated by
the average value.

Conditions for the Yee’s algorithm:
– The CFL stability condition for the Yee’s FDTD method is

∆t ≤ 1

c

√

1

(∆x)2
+

1

(∆y)2
(15)

where c is the speed of light in vacuum 2 .
– To restrict the unbounded domain to finite domain, one uses absorbing boundary

condition like the perfectly matched layers 3 .
Remark 1 Often for more accurate problems a Yee’s algorithm which is second order
in time and second order in space is often to low. For higher order methods in time and
space can be constructed but are often to delicate and expensive to implement, see [10]

1 A. Taflove, Computational Electrodynamics: The Finite Difference Time Domain Method, Arctech
House Inc., 1995
2 For proof, see: A. Taflove, Computational Electrodynamics: The Finite Difference Time Domain

Method, Arctech House Inc., 1995
3 [1] J. P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, J. Comp.
Phys. vol. 111, 185-220, 1994; [2] S. D. Gedney, An anisotropic perfectly matched layer-absorbing medium

for the truncation of FDTD lattices, IEEE Tran. Ant. Prop., vol 44(12), 1630-1639, 1996.
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and [11]. We propose to improve with higher order implicit Runge-Kutta methods with
an idea to sparse matrices schemes, which saves additional memory.

2.2. Improved Time Discretization Methods for Maxwell equation

Based on the problem of reconstructing a higher order Yee’s algorithm, we deal with
separate improvement of the discretization schemes.

While the spatial discretization of the Yee’s algorithm is a second order difference
scheme, the time discretization is also only a second order scheme.

Here we see the deficits of only improving the spatial scheme with higher order schemes
and leave the time-discretization with a second order scheme.

We propose an improved time-discretization scheme of higher order and apply fine
spatial grids, while the time error is at least larger, see [12].

We deal with higher order time-discretization methods. Therefore we propose the
Runge-Kutta as adapted time-discretization methods to reach higher order results. For
the time-discretization we use the following higher order discretization methods.

We deal with the following semi-discretized partial differential equations, such equa-
tions are used in each iterative splitting step:

∂u

∂t
= Au + f(t), (16)

un = u(tn), (17)

where A is the operator that we implicit solve in the equation and f(t) = Bũ(t) is the
explicit operator, with a previous solution ũ, e.g. last iterative solution.

2.2.1. Higher order time-discretization methods with Runge-Kutta Methods
We deal with the following Maxwell equation, given as:

∂Ez

∂t
=

1

ε

[
∂Hy

∂x
− ∂Hx

∂y

]

− J = I(Hx, Hy, J) =
1

ε
[B1Hy − B2Hx] − J (18)

∂Hx

∂t
=− 1

µ

∂Ez

∂y
= II(Ez) = − 1

µ
C1Ez (19)

∂Hy

∂t
=

1

µ

∂Ez

∂x
= III(Ez) =

1

µ
C2Ez (20)

For the boundary conditions we assume periodic boundary conditions. That means we
use the identification

Ez(N, i) = Ez(1, i) (21)

Ez(i, N) = Ez(i, 1) ∀i = 1, . . . , N. (22)

Remark 2 For the stationary field, we apply a periodic boundary condition, which is
sufficient. the Mur absorbing boundary condition, see [2], is used for the in-stationary
field, while respecting the influence of the changes at the boundaries.
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To get a first realization of an open boundary in the case of the line-source we use
symmetry and a combination of PBC and Mur’s first order ABC. For the boundarys
orthogonal to the propagation direction of the field (left-right) it is useful to work with
Mur’s ABC.

2.2.2. Mur’s ABC
We can interpret the electromagnetical field as a wave that has to fulfill the homoge-

neous wave equation.

�Φ = 0 ⇔
(

∆ − 1

c2

∂2

∂t2

)

Φ = 0

[
1

c2
= µε = µ0µrε0εr

]

(23)

⇔
(

∂2

∂x2
+

∂2

∂y2
− 1

c2

∂2

∂t2

)

Φ = 0 (24)

⇔
(

D2
x + D2

y − 1

c2
D2

t

)

Φ = 0 (25)

⇔



Dx − 1

c
Dt

√

1 −
D2

y · c2

D2
t







Dx +
1

c
Dt

√

1 −
D2

y · c2

D2
t



Φ = 0 (26)

⇔




Dx − 1

c
Dt

√

1 − V 2

︸ ︷︷ ︸

(∗)






(

Dx +
1

c
Dt

√

1 − V 2

)

Φ = 0 (27)

⇔�
−
x �

+
x Φ = 0 (28)

Waves that satisfy �
−
x Φ = 0 only propagate in −x-direction and those that satisfy

�
+
x Φ = 0 only propagate in +x-direction. An analogous formulation can be given for the

−y and y direction.

To handle (∗) it is comfortable to do a Taylor expansion around 0.

√

1 − V 2 = 1 − V√
1 − V 2

(0) · V − 1

2(1 − V 2)
3
2

(0) · V 2 − V

(1 − V 2)
5
2

(0) · V 3 + O(V 4)(29)

= 1 − 1

2
V 2 + O(V 4) (30)

= 1 + O(V 2) (31)

Considering (31) equation (27) turns to

(
∂

∂x
− 1

c

∂

∂t

)(
∂

∂x
+

1

c

∂

∂t

)

Φ = 0, (32)

which is Mur’s ABC with first order accuracy. As a first attempt to model an open
boundary we will use this.
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Left boundary (x = x0)
For the left boundary we have do discretize the following equation:

∂Φ

∂x
=

1

c

∂Φ

∂t
. (33)

This can be done with a FDM-scheme as follows.

∂Φ

∂x

∣
∣
∣
∣
x=x0+

1
2
∆x

=
1

∆x

(

Φn+ 1
2 (j, 2) − Φn+ 1

2 (j, 1)
)

;
∂Φ

∂t

∣
∣
∣
∣
t=t

n+1
2

=
1

∆t

(

Φn+1(j,
3

2
) − Φn(j,

3

2
)

)

(34)
with

Φn+ 1
2 (j, 2) =

1

2

(
Φn+1(j, 2) + Φn(j, 2)

)
; Φn+ 1

2 (j, 1) =
1

2

(
Φn+1(j, 1) + Φn(j, 1)

)
(35)

and

Φn+1(j,
3

2
) =

1

2

(
Φn+1(j, 2) + Φn+1(j, 1)

)
; Φn(j,

3

2
) =

1

2
(Φn(j, 2) + Φn(j, 1)) (36)

this leads to

Φn+1(j, 1) = Φn(j, 2) +
c∆t − ∆x

c∆t + ∆x

(
Φn+1(j, 2) − Φn(j, 1)

)
(37)

It is easy to see that this tool does not satisfy completely because it only has first order
accuracy and even more important it only absorbs the part of the wave that propagates
orthogonal to the boundary.
But there are also a few advantages. Mur’s ABC has to be applied only to the Ez field
because Hx and Hy are dealt with automatically through the ordinary update-step. The
second advantage of Mur’s ABC is the low numeric expense.

For the boundaries parallel to the propagation direction (top and bottom) we use the
PBC. The symmetry of our setting garanties that the inflow and the outflow of the field
equalize each other.
But with the eye on the next simulations with less symmetry it seams to be necessary
to use perfectly matched layers.

These 3 equations above mark the starting point. The spatial part of each equation is
discretised and is calculated with the help of the matrix-operators B1, B2, C1, C2 (cen-
tered differences corresponding to the 2 dimensional Yee-lattrice).

In the following we are using the general Butcher-table for (3-stage) Runge-Kutta-
methods to get a clear notation.

c1 a11 a12 a13

c2 a21 a22 a23

c3 a31 a32 a33

b1 b2 b3

=
c A

bT
(38)
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Let ∆t denote the stepping time and t
(i)
j = t(i) + ∆tcj . The step from t(i) to t(i+1) in

(18)-(20) can now be written in the following way.

E(i+1)
z = E(i)

z + ∆t(b1k
I
1 + b2k

I
2 + b3k

I
3) (39)

H(i+1)
x = H(i)

x + ∆t(b1k
II
1 + b2k

II
2 + b3k

II
3 ) (40)

H(i+1)
y = H(i)

y + ∆t(b1k
III
1 + b2k

III
2 + b3k

III
3 ) (41)

Where kM
j = M(H

(i)
xj , H

(i)
yj , E

(i)
zj , J

(i)
j ) for M ∈ {I, II, III} and j ∈ {1, 2, 3}.

With

E(i)
zj

= Ez(t
(i)
j ) = E(i)

z + ∆t

(
3∑

l=1

ajlk
I
l

)

(42)

H(i)
xj

= Hx(t
(i)
j ) = H(i)

x + ∆t

(
3∑

l=1

ajlk
II
l

)

(43)

H(i)
yj

= Hy(t
(i)
j ) = H(i)

y + ∆t

(
3∑

l=1

ajlk
III
l

)

(44)

J
(i)
j = J(t

(i)
j ) which is known (in our case) (45)

For a better legibility and because the focused point of time does not change, we write
(
Ej

z , Hj
x, Hj

y , Jj
)

instead of
(

E
(i)
zj , H

(i)
xj , H

(i)
yj , J

(i)
j

)

.

Combining (18)-(20) and (42)-(45) gives 9 equations

Ej
z = Ez + ∆t

{
3∑

l=1

aj l

[
1

ε

(
B1H

l
y − B2H

l
x

)
− J l

]}

(46)

Hj
x = Hx − ∆t

(
3∑

l=1

aj l
1

µ
C1E

l
z

)

(47)

Hj
y = Hy + ∆t

(
3∑

l=1

ajl
1

µ
C2E

l
z

)

j ∈ {1, 2, 3} (48)

Remark 3 1
ε

and 1
µ

are also realized as matrices, such that 1
ε

= 1
ε
(x, y) and 1

µ
= 1

µ
(x, y).

Remark 4 The scheme above is only correct for isotropic media because in the not
isotropic case it is necessary to consider µ = (µx, µy).
Taking the 6 equations of (47) and (48) and puting them together with the 3 equations
of (46) leads to the following linear equation system which needs to be solved.







Q1 − Ez

Q2 − Ez

Q3 − Ez








=








〈
RA

1 , CA
1

〉
S − I

〈
RA

1 , CA
2

〉
S

〈
RA

1 , CA
3

〉
S

〈
RA

2 , CA
1

〉
S

〈
RA

2 , CA
2

〉
S − I

〈
RA

2 , CA
3

〉
S

〈
RA

3 , CA
1

〉
S

〈
RA

3 , CA
2

〉
S

〈
RA

3 , CA
3

〉
S − I








·








E1
z

E2
z

E3
z








(49)
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Q1 − Ez

Q2 − Ez

Q3 − Ez








=








a2
11S − I a2

12S a2
13S

a2
21S a2

22S − I a2
23S

a2
31S a2

32S a2
33S − I








·








E1
z

E2
z

E3
z








(50)








Q1 − Ez

Q2 − Ez

Q3 − Ez








=







A2 ·








S 0 0

0 S 0

0 0 S








−








I 0 0

0 I 0

0 0 I






















E1
z

E2
z

E3
z








(51)

Qj := ∆t

[
〈
RA

j ,1
〉 1

ε
(B1Hy − B2Hx) +

〈
RA

j ,J
〉
]

(52)

RA
j := j-th row of A (53)

CA
j := j-th column of A (54)

1 := (1, 1, 1) (55)

J := (J1, J2, J3) (56)

S := ∆t2
1

ε

1

µ
(B1C2 − B2C1) (57)

a2
ij := (A2)ij =

〈
RA

i , CA
j

〉
(58)

A2 :=








a2
11 a2

12 a2
13

a2
21 a2

22 a2
23

a2
31 a2

32 a2
33








(59)

a2
ij =








a2
ij 0

. . .

0 a2
ij














︸ ︷︷ ︸

n·m times

n · m times (60)

I := Identity(n · m) (61)

where aij , bi and cj are the Runge-Kutta coefficients.
To be more precisely: If we have n×m points in our region, there are 3 ·n ·m equations

to solve.
With this result we are able to calculate (47) and (48). So that it is finally possible to
do the step ((39) - (41)).

Remark 5 For an optimisation of the time-discretisation scheme, we can neglect some
of the outerdiagonals of the RK methods, which leads to SDIRK methods. We have the
benefit in faster computations, without reducing the accuracy. For higher time-discretisations
we have to taken into account also higher spatial discretisation scheme.
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2.2.3. Stability analysis of the implicit discretisations
We deal with the following discretised equation systems:

En+1
z,i = (I − Ã)−1(En

z + C̃1H
n
y + C̃2H

n
x − J(un) − J(un+1

i−1 )) (62)

where i is the iteration index of the coupling scheme.
Definition 1 We have a positive definit matrix M (n × n real symmetric matrix), if
zT Az > 0 for all non-zero vectors z with real entries (z ∈ R

n), where zT denotes the
transpose of z.
Example 1 For finite difference discretistion, e.g. 1

∆x
[−1 2 −1], it is sufficient to show,

that the sum of the outer-diagonals are equal or less than the diagonal.
∑n

j=1 ai,j ≤ aii for i = 1, . . . , n and n is the number of discretization points.
We have the following assumptions:

Assumption 1 1.) We assume Ã is positive definit, and therefore we have

||(I − Ã)−1|| ≤ 1 (63)

see [13].
2.)
We assume

||(En
z + C̃1H

n
y + C̃2H

n
x − J(un) − J(un+1

i−1 ))|| ≤ ||En
z || (64)

The stability is given with in the following Theorem:
Theorem 1 Given is the numerical scheme (65) and we have the assumptions 1.

The scheme is stable for all iterative steps i.
Proof 1 Based on the assumptions we can bound the inverse matrix, also the previous
solution is bounded. Then scheme is stable.

We have the following proof idea:
Based on the assumption 1, Ã is positiv definit and the estimation of the remaining

term, we have :

En+1
z,i ≤ ||(En

z ||. (65)

So we have an upper bound of the iterative results, given by the previous solution at time
tn.

2.3. Discretization methods of the Convection-Diffusion equation

For the 3 dimensional convection-diffusion equation we apply a second order finite
difference scheme in space and a higher order discretization scheme in time.

∂u

∂t
=−v∇u + D∆u,

=−vx

∂u

∂x
− vy

∂u

∂y
− vz

∂u

∂z
+ D

∂2u

∂x2
+ D

∂2u

∂y2
+ D

∂2u

∂z2
,

u(x, t0) = u0(x),

We apply dimensional splitting to our problem

9



∂u

∂t
= Axu + Ayu + Azu

where

Ax =−vx

∂u

∂x
+ D

∂2u

∂x2
.

We use a 1st order upwind scheme for ∂
∂x

and a 2nd order central difference scheme for
∂2

∂x2 . By introducing the artificial diffusion constant Dx = D − vx∆x
2 we achieve a 2nd

order finite difference scheme

Lxu(x) =−vx

u(x) − u(x − ∆x)

∆x
+ Dx

u(x + ∆x) − 2u(x) + u(x − ∆x)

∆x2
.

because the new diffusion constant eliminates the first order error (i.e. the numerical
viscosity) of the Taylor expansion of the upwind scheme. Lyu and Lzu are derived in the
same way.
For the discretization in time we use several explicit Runge-Kutta and Adam-Bashforth
methods, this leads to restrictions of the step-size in time but on the other hand the cost
of implicit methods is much to high in this 3-dimensional case.

2.3.1. Adam-Bashforth methods

yn+1 = yn + h
s∑

j=0

bj f(tn−j , yn−j) (66)

bj =
(−1)j

j!(s − j)!

∫ 1

0

s∏

i=0,i6=j

(u + i) du, j = 0, . . . , s. (67)

We consider here
s = 1 (first order)

yn+1 = yn + h

(
3

2
f(tn, yn) − 1

2
f(tn−1, yn−1)

)

(68)

and s = 2 (second order)

yn+1 = yn + h

(
23

12
f(tn, yn) − 16

12
f(tn−1, yn−1) +

5

12
f(tn−2, yn−2)

)

(69)

2.3.2. Explicit Runge-Kutta methods
In general a s-stage Runge-Kutta method can be written in the following way:

yn+1 = yn + h

s∑

j=1

bjkj (70)

10



where

kj = f

(

tn + hcj , yn + h

s∑

l=1

ajlkl

)

(71)

We will take into account the following two:
Heun’s third-order

0 0 0 0

1

3

1

3
0 0

2

3
0

2

3
0

1

4
0

3

4

=
c A

bT
(72)

and
Kutta’s classical fourth-order

0 0 0 0 0

1

2

1

2
0 0 0

1

2
0

1

2
0 0

1 0 0 1 0

1

6

1

3

1

3

1

3

=
c A

bT
(73)

3. Splitting methods to couple Maxwell and Convection Diffusion equation

We concentrate on the splitting methods, which can be classified as classical and iter-
ative splitting methods.

We propose iterative splitting methods by discussing the additive iterative splitting
methods, see [14] and [15].

We consider the following the linear problem

∂tc(t) = Ac(t) + Bc(t), (74)

where the initial conditions are cn = c(tn). The operators A and B are spatially dis-
cretized operators, e.g. they correspond in space to the discretized convection and diffu-
sion operators (matrices). Hence, they can be considered as bounded operators.

3.1. Iterative splitting methods

The following algorithm is based on the iteration with fixed splitting discretization step
size τ . On the time interval [tn, tn+1] we solve the following subproblems consecutively
for i = 1, 3, . . . 2m + 1, cf. [14] and [15].
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∂ci(t)

∂t
= Aci(t) + Bci−1(t), with ci(t

n) = cn, (75)

∂ci+1(t)

∂t
= Aci(t) + Bci+1(t), with ci+1(t

n) = cn, (76)

where c0 ≡ 0 and cn is the known split approximation at time level t = tn. The split
approximation at time level t = tn+1 is defined as cn+1 = c2m+2(t

n+1). (Clearly, the
function ci+1(t) depends on the interval [tn, tn+1], too, but for the sake of simplicity, in
our notation we omit the dependence on n.)

In the following we analyze the convergence and the rate of the convergence of the
method (75)–(76) for m tending to infinity for the linear operators A, B :X → X, where
we assume that these operators and their sum are generators of the C0 semigroups.
We emphasize that these operators aren’t necessarily bounded, thus the convergence is
examined in a general Banach space setting.

Theorem 2 Let us consider the abstract Cauchy problem in a Banach space X

∂tc(t) = Ac(t) + Bc(t), 0 < t ≤ T,

c(0) = c0,
(77)

where A, B, A + B :X → X are given linear operators being generators of the C0 semi-
group and c0 ∈ X is a given element. Then the iteration process (75)–(76) is convergent
and the rate of the convergence is of higher order.
The proof can be found in [16].
Remark 6 When A and B are matrices (i.e. (75)–(76) is a system of ordinary differential
equations), for the growth estimation we can use the concept of the logarithmic norm,
see e.g. [17]. Hence, for many important classes of matrices we can prove the validity.
Remark 7 We note that a huge class of important differential operators generate a
contractive semigroup. This means that for such problems -assuming the exact solvability
of the split subproblems- the iterative splitting method converges in higher order to the
exact solution.
In the next subsection we present the used time-discretization methods.

4. Error Analysis: Coupling Methods

For the coupling methods we deal with nonlinear differential equations of the following
type:

dc

dt
= A(c(t))c(t) + B(c(t))c(t), with c(tn) = cn, (78)

where c = (Hx, Hy, Ez , u), with Hx, Hy is the magnetic field, Ez is the electric field and
u is the concentration of the species.

The main idea is to bound the operators A(c(t)) and B(c(t)) in the discretized equation
to satisfy a stable method.

A first idea is the fix-point scheme, that is discussed in the following subsection.
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4.1. Iterative operator-splitting method as a fix-point scheme

The iterative operator-splitting method is used as a fix-point scheme to linearize the
nonlinear operators, see [?] and [15].

We restrict our attention to time-dependent partial differential equations of the form:

du

dt
= A(u(t))u(t) + B(u(t))u(t), with u(tn) = cn, (79)

where A(u), B(u) : X → X are linear and densely defined in the real Banach space X,
involving only spatial derivatives of c, see [?]. In the following we discuss the standard
iterative operator-splitting methods as a fix-point iteration method to linearize the op-
erators.

We split our nonlinear differential equation (79) by applying:

dui(t)

dt
= A(ui−1(t))ui(t) + B(ui−1(t))ui−1(t), with ui(t

n) = cn, (80)

dui+1(t)

dt
= A(ui−1(t))ui(t) + B(ui−1(t))ui+1, with ui+1(t

n) = cn, (81)

where the time step is τ = tn+1 − tn. The iterations are i = 1, 3, . . . , 2m + 1. u0(t) = cn

is the starting solution, where we assume the solution cn+1 is near cn, or u0(t) = 0. So
we have to solve the local fix-point problem. cn is the known split approximation at the
time level t = tn.
The split approximation at time level t = tn+1 is defined as cn+1 = u2m+2(t

n+1). We
assume the operators A(ui−1), B(ui−1) :X → X to be linear and densely defined on the
real Banach space X, for i = 1, 3, . . . , 2m + 1.
Here the linearization is done with respect to the iterations, such that A(ui−1), B(ui−1)
are at least non-dependent operators in the iterative equations, and we can apply the
linear theory.
The linearization is at least in the first equation A(ui−1) ≈ A(ui), and in the second
equation B(ui−1) ≈ B(ui+1)
We have

||A(ui−1(t
n+1))ui(t

n+1) − A(un+1)u(tn+1)|| ≤ ǫ,
with sufficient iterations i = {1, 3, . . . , 2m + 1}.
Remark 8 The linearization with the fix-point scheme can be used for smooth or weak
nonlinear operators, otherwise we loose the convergence behavior, while we did not con-
verge to the local fix-point, see [15].

5. Experiments

5.1. Maxwell Equation

The time-dependent Maxwell equations in 2D is given as:
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∂Hx(x, y)

∂t
= −∂Ez

∂y
, (x, y, t) ∈ Ω × (0, T ), (82)

∂Hy(x, y)

∂t
=

∂Ez

∂x
, (x, y, t) ∈ Ω × (0, T ), (83)

∂Ez(x, y)

∂t
=

1

ǫ
(
∂Hy

∂x
− ∂Hx

∂y
) − Jsource, (x, y, t) ∈ Ω × (0, T ), (84)

where Jsource(x, y) = sin(t).

We have to implement the outflow condition, via the underlying discretization method
(we assume finite difference methods), means how many concentration is flowing via the
time-step ∆t to the cell with the spatial step ∆x:

The relative spatial step is given as
√

1/ǫ∆t = ∆xrelativ

The percentage of the outflow is given as:
∆xrelativ

∆x
= rel

Ez,out = relEz, (x, y) ∈ ∂Ω
The same is also given for the Hx, Hy.
Here we apply the FDTD method of Yee’s algorithm.
For spatial and time discretization it is important to balance such schemes.
We assume to have finite difference schemes in time and space.
Therefore the CFL (Courant Friedrichs Levy) condition is important to balance the

schemes:
While we are dealing with wave-equations:√

ǫ∆x ≥ ∆t
where ∆x, ∆t are the spatial and time steps.
To control the electric field Ez(x, y), we have the following line source:
Jsource(x, y) = sin(t) where x = 0, y ∈ (0, 100).
The control of the particle transport is given by the electric field in Figure 1 The electric

and transport situation is given with cut of the three dimensional model in Figure 2
In the following we have the line sources with the results given in Figure 3:

5.2. Test experiment 2: Convection-Diffusion Equation

We deal with the 2-dimensional advection-diffusion equation and periodic boundary
conditions

∂tu =−v∇u + D∆u,

=−vx

∂u

∂x
− vy

∂u

∂y
+ D

∂2u

∂x2
+ D

∂2u

∂y2
,

u(x, t0) = u0(x),

with the parameters
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vx = vy = 1

D = 0.01

t0 = 0.25.

The given advection-diffusion problem has an analytical solution

ua(x, t) =
1

t
exp

(−(x − vt)2

4Dt

)

which we will use as a convenient initial function:

u(x, t0) = ua(x, t0)

We apply dimensional splitting to our problem

∂u

∂t
= Axu + Ayu

where

Ax =−vx

∂u

∂x
+ D

∂2u

∂x2
.

We use a 1st order upwind scheme for ∂
∂x

and a 2nd order central difference scheme

for ∂2

∂x2 . By introducing the artificial diffusion constant Dx = D− vx∆x
2 we achieve a 2nd

order finite difference scheme

Lxu(x) =−vx

u(x) − u(x − ∆x)

∆x

+ Dx

u(x + ∆x) − 2u(x) + u(x − ∆x)

∆x2
.

because the new diffusion constant eliminates the first order error (i.e. the numerical
viscosity) of the Taylor expansion of the upwind scheme. Lyu is derived in the same way.

We apply a BDF5 method to gain 5th order accuracy in time: 4

Ltu(t) =
1

∆t

(
137

60
u(t + ∆t) − 5u(t) + 5u(t− ∆t)

−10

3
u(t − 2∆t) +

5

4
u(t − 3∆t) − 1

5
u(t − 4∆t)

)

. (85)

To compare the four methods we have the following general setting. Let Ω = [0, 1] ×
[0, 1]× [0, 1], the unit cube. There we set up the initial concentration

4 Please note that the dependencies of u(x, t) are suppressed for the sake of simplicity.
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ut0(x) = 2 exp

(−(x − a)2)

0.02

)

∀x ∈ Ω (86)

with a = (0.5, 0.5, 0.5)T (87)

which is just the analytical solution

ua(x, t) =
1

t
exp

(−(x − vt)2

4Dt

)

(88)

with v = 1 and D = 0.01 at t = t0 = 0.5 on Ω.

During the following experiments we will set v = 0 and consider an equidistant lat-
tice of N3 points (∆x = ∆y = ∆z = 1

N−1 ).

The result is shown within the following figures 4 and 5:

5.3. Test experiment 3: Coupling Convection-Diffusion and Electric Field Equations
(weak coupling)

We deal with the 2-dimensional advection-diffusion equation and electric field equation:

∂tu = −vx(Ez(x, y))
∂u

∂x
− vy

∂u

∂y
+ D

∂2u

∂x2
+ D

∂2u

∂y2
,

u(x, y, t0) = u0(x, y),

∂Hx(x, y)

∂t
= −∂Ez

∂y
, (x, y, t) ∈ Ω × (0, T ),

∂Hy(x, y)

∂t
=

∂Ez

∂x
, (x, y, t) ∈ Ω × (0, T ),

∂Ez(x, y)

∂t
=

1

ǫ
(
∂Hy

∂x
− ∂Hx

∂y
) − Jsource, (x, y, t) ∈ Ω × (0, T ),

The advection-diffusion problem has an analytical solution at the beginning for t0 ∈
(0, tstart)

ua(x, t) =
1

t
exp

(−(x − vt)2

4Dt

)

which we will use as a convenient initial function:

u(x, t0) = ua(x, t0)

Further the function:
vx(Ez(x, y)) = 1 for t ∈ (0, tstart)
vx(Ez(x, y)) = αEz(x, y) for t ≥ tstart

where α = 0.001, tstart = 10.0.
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Both equations have the same domain Ω = [0, 1] × [0, 1].
Numerically we solve the equation, as in the following algorithm 5.3:

The following figures show the developing of the concentration under the influence of
the electric field:
(where α = 0.07, tstart = 0.5 and vy = 0 for t ≥ tstart)

The results are given in Figure 6-11.

6. Conclusion

We present a coupled model based on Maxwell and Transport equations. Based the
different scale models, we have included the optimal discretization methods for each
separate equation. Splitting methods are used to couple the separate equations together.
Further, we discussed the splitting analysis. Numerical examples are presented to discuss
the influence of decoupled and coupled systems. In future, we will analyze the validity of
the models with physical experiments.
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Fig. 1. Electric field in the apparatus.
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Fig. 2. Electric field in the apparatus.

Algorithm 4.4
1.) Initialize Convection-Diffusion equation, till tstart.
2.) Solve Electric Field equation with tstart, we obtain Ez(x, y) for tstart

3.) Solve Convection Diffusion equation with tstart + ∆t and use Ez(x, y) for tstart for
the unknown.
4.) Do tstart = tstart + ∆t and go to 2.) till tstart = tend
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Fig. 3. Line source of the Electric field in the apparatus.

Fig. 4. Initial concentration.
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Fig. 5.

Fig. 6.
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Fig. 7.

Fig. 8.
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Fig. 9.

Fig. 10.
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Fig. 11.
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