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Abstract. We motivate our study by simulating the particle transport
of a thin film deposition process done by PVD (physical vapor deposition)
processes. In this paper we present a new model taken into account a
self-consistent electrostatic-particle in cell model with low density Argon
plasma.

We propose a collision models for projectile and target collisions in order
to compute the mean free path and include the virial coefficients that
considered interacting and overlapping gas particles.

The collision model are based of Monte Carlo simulations is discussed
for DC sputtering in lower pressure regimes.

We derive an equation for the mean free path for arbitrary interactions
(cross sections) which (most important) includes the relative velocity be-
tween the projectiles and targets based on physical first principles and
extend with higher order Virial terms. In order to simulate transport phe-
nomena within sputtering processes realistically, a spatial and temporal
knowledge of the plasma density and electrostatic field configuration is
needed. Due to relatively low plasma densities, continuum fluid equa-
tions are not applicable. We propose instead a particle-tracking method.
Particle-in-cell (PIC) methods allow the study of plasma behavior by
computing the trajectories of finite-size particles under the action of an
external and self-consistent electric field defined in a grid of points.

Additionally, we apply the electric and magnetic field in the Lorentz
forces to obtain a self-consistent electrostatic particle in cell model.

At the target we simulate the deposition rates of the particles Ti and C
based on the Monte Carlo simulations, see idea in [10] and [1].

Keywords: High power pulsed magnetron sputtering, DC sputtering, MAX-
phases, mean free path, scattering angle probability distribution, moving targets,
Particle-In-Cell-Monte-Carlo-Collisions (PIC-MCC), Maxwell equation, Lorentz
force.
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1 Introduction

We motivate our studying on simulating a thin film deposition process that can
be done with PVD (physical vapor deposition) processes or sputtering processes.

In the last years, due to the research in producing high temperature films
by depositing of low pressure processes have increased. The interest on standard
applications to TiN and TiC are immense but recently also deposition with
new material classes known as MAX-phases are important. The MAX-phase are
nanolayered terniar metal-carbides or -nitrids, where M is a transition metal,
A is an A-group element (e.g. Al, Ga, In, Si, etc.) and X is C (carbon) or N
(nitride).

We present a model for low temperature and low pressure plasma. The model
is derived as a pathway model, see [2], to achieve the deposition rates of the
stoichiometry Ti and C.

We taken into account the drift of the ions in the reactor and the less retar-
dation of molecules, which are not treated by the plasma.

The model is discussed as a mass conserved transport problem, modeled with
convection-diffusion and reaction equations.

Additionally, we have modeled the electric and magnetic field for the parti-
cles, which are controlled by the BIAS voltage of the electrostatic field.

We compare with physical experiments, which measure the different ions and
molecule rates in the reactor.

The paper is outlined as follows. In section 2 we present our mathematical
model and a possible reduced model for the further approximations. The methods
are given in Section 3. Numerical experiments experiments are given in Section
4. In the contents, that are given in Section 5, we summarize our results.

2 Mathematical Model

In the following, we discuss the model of the particle transport in the apparatus
between substrate and target. In a next subsection, we describe the electro-
magnetic field that influences the transport of the ionized particles.

2.1 Collision Model: Mean free path

The mean free path or average distance between collisions for a gas molecule
may be estimated from kinetic theory. If one assumes the gas be consisted of
hard spheres (non overlapping spheres), then the effective collision area is given
by

σ = π (d1 + d2)
2 = πD2 (1)

In time δt, the area sweep out the volume Vinteraction and the number of collisions
can be estimated from the number of target molecules (nV ) that are in that
volume.

Vinteraction = σvδt (2)
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λ =
|vproj |δt

VinteractionnV
=

|vproj |δt
πD2vδtnV

=
1

πD2nV
(3)

This expression for the mean free path is a good approximation, but it suffers
from a significant flaw - it assumes the target objects being at rest, which is of
course physically nonsense. By introducing an relative velocity between the gas
objects

vrel =
√

2v (4)

Whereby the
√

2 results from the molecular speed distribution of a mono atomic
ideal gas (Maxwell Boltzmann distribution). We therefore have the expression

λ =
1√

2πD2nV

(5)

The number of molecules per unit volume can be determined from the state
equation of the gas

pV = (1 + B1 + B2 + ...) RT (6)

If one assumes an ideal gas (non interaction and non overlapping gas particles)
one can neglect the so called higher Virial coefficients (B1 + B2 + ...). Inserting
the state equation for an ideal gas into ..., one gets

λ =
(1)RT√
2πD2NAp

(7)

Whereby R is the gas constant and NA is Avogadro’s number. This is an ap-
proximation for mean free path for an atom/molecule of an ideal gas. In our
problem however, we have to calculate the mean free path of an external parti-
cle (projectile) which is not a member of the background gas (ideal gas). This
can be done by modifying the average relative velocity between projectile and
target. This is done in the next part.

2.2 The Mean Relative Velocity between projectiles and targets

The background gas is assumed to be Maxwell distributed in velocity (this is
motivated by the assumption of an ideal gas). Because of the fact that the
background particles being a particle ensemble (with statistically distributed
velocities) one can just speak of a mean relative velocity < |vrel| >=< |vproj −
vtarget| >, which can be calculated via:

< |vrel| >=
∫ ∫ ∫

V

|vproj − vtarget|Z(vtarget)dvtarget (8)

Where Z is the three-dimensional Maxwell distribution given by

Z(vtarget) = (A/π)3/2 1
2
√

2
exp

(
−Avtarget

2
)

(9)
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With the abbreviation A = Mtarget/2kBT . A complete derivation of the solution
can be found in the appendix. The result is

|vrel| =

[(
s + 1

2s

)
erf(s) + 1√

π
exp

(
−s2

)]
3s

× |vproj | (10)

With s = a
√

A (scalar) and a = |vproj |. We now want to discuss a few special
cases.
If the velocity of the projectile is very small |vproj | ≈ 0, then s ≈ 0 and therefore
the following approximation holds

vrel ≈ vtarget (11)

Which gives equation number 3 as expected.
If the targets objects are identical the projectile objects (same mass and same
mean velocity), then the following limit holds

|vrel| ≈ 1.41|vtarget| (12)

Which gives the factor
√

2 ≈ 1.41 and leads to the mean free path of an element
of an mono atomic ideal gas (as expected). However, the general expression for
the mean free path of a projectile probing into an ideal gas with pressure Pgas

and temperature T is given by

λproj =
3
4π

s[(
s + 1

2s

)
erf(s) + 1√

π
exp (−s2)

] kBT

(Rion + Rtarget)
2
Pgas

(13)

There are a few things to say about this expression. First, the main assumption
that the background gas (ensemble of target particles) is an ideal gas, is just valid
within the high vacuum regime, i.e. small target density. Second, the interaction
between the the projectile and target atoms are assumed of hard sphere type,
i.e. purely geometric interaction. If the projectile is a free particle between the
interactions, its Hamilton function reads

H =
p2

2Mproj
= E (14)

In this case one can easily compute a = |vproj | =
√

2E
Mproj.

. It follows immedi-
ately

s = a
√

A =
√

E

kBT

√
Mtarget

Mproj
(15)

In appropriate units (atomic units) the scalar s reads:

s = 107.7242

√
E[eV ]
T [K]

√
Mtarget

Mproj
(16)
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And therefore the mean free path in units of cm is given by:

λproj [cm] =
s[(

s + 1
2s

)
erf(s) + 1√

π
exp (−s2)

]
× 3.297cm · T [K]

(Rion[pm] + Rtarget[pm])2 Pgas[mbar]
(17)

Eklund ([4]) used a formula for the mean free path of ions surrounded by an
ideal gas of pressure par given by

λ[cm] =
4.39cm · T [K]√(

1 + Mion

Mtarget

)
(rion[pm] + rtarget[pm])2 ptarget[mbar]

(18)

The following table shows the mean free path for ions at E = 3eV and T = 300K
and gas pressure p = 4 ∗ 10−3 mbar.

Ion eqn. 17 eqn. 18
carbon (12) 12.96cm 15.18cm
silicium (28) 7.52cm 7.71cm
titanium (48) 5.03cm 4.55cm

In a sputtering process, the the ions obey a kinetic-energy distribution as well
as an angular-distribution at the target. Because of different transport mecha-
nism, the ion looses some extend of their initial kinetic energy. An individual ion
within a sputter process can therefore be classified into three groups. First, the
ballistic group, which is excelled in the way that any member of the ballistic
group travels from the target to the substrate in a straight line, because no colli-
sions occur. The transition group is characterized by the observation that the
path of the ion is not a straight line and therefore the ions of this group undergo
some collisions but still retain some of their initial energy. The last group is the
thermalized or diffusive group, whereby any member of this group is charac-
terized by an complete loss of their initial kinetic energy. The motion of such an
ion is therefore described by a random walk. The typical distances between the
target and the substrate are of the order of 5− 15cm. Hence, at low argon pres-
sures we can classify carbon as more or less ballistic, and silicium and titanium
as transition or thermalized. One can also see that the formula used by Eklund
(2007) ([4]) is quite a good approximation, although it lacks from an energy de-
pendency of the mean free path with respect to the ion energy. There are several
attempts to achieve an energy dependency in the mean free path. But most of
them are more or less physical consistent. For example, Mahieu et al. (2006) [11]
use a formula, whereby the energy dependency is arrived by modifying the naive
mean free path by multiplying the naive formula with the ion energy. This is
of course unphysical because it implies an infinite mean free path at very high
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ion energies (more precise the associate cross section cannot be normalized, i.e.
unitarity violation of the cross section). Our mean free path equation is always
finite and therefore no violation of unitarity is expected. We hope that our for-
mula for the mean free path will positively accepted within the community and
might help to implement a realistic description of the interactions between par-
ticles. In figure 1 one can see the results from eqn. 16 and 17 with respect to
the ion energy E (kinetic energy) at an argon pressure of p = 4 · 10−3mbar and
a constant temperature of T = 700K, whereby the following constants were used.

element atomic mass [u] atomic radius [pm]
Ar 39.948 71
C 12.0107 67
Si 28.0855 110
Ti 47.867 150
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Fig. 1. mean free path of projectiles @ argon targets (p = 4∗10−3mbar and T = 300K).

2.3 Electro-magnetic Field

For the electro-magnetic field, we have the following assumptions:

Assumptions 1 – We decouple between ions and electrons
(electrons behave like perfect fluid, due to lower mass)

– We apply Monte Carlo Particle-in-Cell simulations for the transport of the
particles
(of the order of 10 mio. particles)

– We apply optimized iterative solver for the Maxwell equations.
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We deal with the following equations:
The Lorentz force for the particles is given as

F = q ·E + q · v ×B, (19)

where F is the Lorentz force on each particle, E the electric field (in volts per
meter) and B the magnetic flux density (in teslas). Further q is the electric
charge of the particle (in coulombs) and v is the instantaneous velocity of the
particle (in metres per second).

We denote × is the vector cross product.
Further we have B = µH, where µ is the magnetic permeability and H the

magnetic field.
Further, we have:

E = −∇Φ , with ∇2Φ = −ρ/ε0 (20)
and ∇ ·B = 0 (21)

where Φ(x, y) is the scalar field representing the electric potential at a given
point. ρ charge density in space and ε0 the permittivity of free space (electric
constant).

Further we denote

∇×B = µ0ε0
∂E

∂t
+ µj (22)

and

∇×E = −∂B

∂t
(23)

while the ion charge is given in the following equations:

ρ = e(Zini − ne) = ρ(x, y, t) (24)

with Zi is the charge of ion i and density n,
The Electrons as fluid is given as

ne = n0 exp
(

Φ− Φ0

KBTe

)
, (25)

where KB is the Boltzmann’s constant, n0 is the mean concentration of charges
of the electrons. Te is the temperatures of the electrons. Further, Φ0 is the mean
charge of the electrons.

For we have the following parameters for the computations of the discretized
schemes:

– Debey Length: λ =
√

ε0Te/n0e

– Thermal velocity of ions: vth =
√

KBTe/Mion

– Drift velocity of ions: vdrift: was varied between 5000 and 9000 m/s
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– Operator discretization via finite difference scheme
(spatial: in units of Debey Length, temporal: 0.1λ/vdrift)

We solve the equation of Motion Solver with the Leap Frog method (simplest
symplectic integrator).

Further we assume:

– Sputter Particles are Boltzmann distributed with a mean energy of 2 eV
– Angular distribution of sputtered particles is assumed to be Gaussian with

mean value of 0 degree and a variance of 10 degrees.

3 Monte Carlo simulations

In the following we apply the Monte Carlo simulation, that is based on the
collision model for the DC sputtering and the Coloumb model for the HIPIMS
sputtering, see [7].

3.1 Angular distribution

The angular distribution of out-coming particles from the sputter material is
modeled by a sine distribution, i.e. the relative amount of particles leaving the
sputter material perpendicular to its surface (θ0 = 90) is 1. Differences in the
angular distribution between the different species are not modeled but can not
experimentally excluded.

3.2 Ionization rates and ion energy distribution

The ionization rate of sputtered particles are very low, and thus no influence
on the particle distribution is assumed. But in contrast, the particle’s energy
seems to be of high importance. Unfortunately, until now no energy distribution
for our compound target (TiC) is available. In figure 2 one can see the ion
energy distribution, which is modeled with reference to a Ti-target. One can see
that most of the ions are at energies close to 3eV. In order to simulate the ion
transport it is necessary to calculate the velocity of the ions.With

E = H =
p2

2M
=

1
2
Mv2

it follows that

v =

√
2E

M
(26)

The energy of the ions is given in units of electron volts (eV) and the mass of
the ions is given in atomic units (u). Therefore one can compute the velocity in
units of cm per second by using

v =

√
2E[eV ]
m[u]

· 9.824 · 105 = v[cm/s] (27)
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In two spatial dimensions, one has two velocity components. φ0 is the direction
angle of the ion (see angular distribution of the ions) the velocity components
can be calculated by

vx = v · cos (φ0) (28)
vy = v · sin (φ0) (29)
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Fig. 2. energy distribution and angular distribution of the sputtered species at the
target.

Now, we want to apply our two interaction models to DC and high power
pulsed sputtering for TiC. In general if several independent interaction mecha-
nism can occur, the mean free path is not an additive quantity, but in contrast
the total cross section is an additive quantity. In order to reduce the computa-
tional effort, we decided to use an event-driven Monte Carlo method in contrast
to the usually used time-driven Monte Carlo method. It is therefore necessary to
determine, when the next interaction will occur. If the velocity (v) and the mean
free path (λ) of the particle is known, one can compute the collision frequency
τ by using

τ =
v

λ
=

√
v2

x + v2
y

λ
(30)

With the help of the collision frequency one is able to compute the time interval
until the interaction occurs

δt = − log(r)
τ

(31)

Whereby r is a random number from a uniform distribution between zero and
one. Instead of simulating the trajectory of all particles in a Monte Carlo run
with a fixed time step, one can use the above mentioned formula to adjust the
time step. the strategy is as follows, one calculates the time interval δt for every
particle (except the background particles) within a Monte Carlo run (trial),
and finds the minimum value. The particle related to the minimum value of
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δt will first undergo an interaction. The Monte Carlo time step is set to this
minimum value (event driven MC). After the time step, the specific particle
will undergo the interaction, and all other particles are just move along they’re
specific trajectory. i.e. in the absence of any external forces the trajectory is
just a straight line (this is motivated by the fact the even if external fields are
set up, inside the plasma the particles will behave as if they were free, due to
the electric conductance of the plasma). If an interaction with the background
gas (argon) occurs, we assume a uniform impact parameter distribution in the
center-of-mass-system (CMS) between the ion and the background gas. We first
describe the simulations of DC sputtering thereafter the simulations concerning
high power pulsed magnetron sputtering. The several interaction processes can
be put into an abstract interaction model (Pathway model, see [2]) that binds
the interaction parameter together. A schematic drawing can bee seen in fig. 3.
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Fig. 3. left: Single (Christie 2005) and right: Multiple (2 species) Pathway model
(Geiser 2008).

4 Numerical Experiments

In the following, we discuss the numerical experiments, based on the influence
of the particle flow via the BIAS voltage.

Here the idea is to control the deposition rate with the BIAS voltage.

4.1 First Numerical Experiment: Delicate Geometry

In the first experiment we study the influence of a delicate geometry to the
DC-sputter process.

We apply an efficient Particle-in-Cell Monte Carlo Simulation of an argon
plasma in C++ (Multiprocessor implementation via OpenMP). The simulations
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of arbitrary substrate geometries are performed, ion sources and electrostatic
boundary conditions are possible to implement.

We compute the spatial ion distribution between target and substrate (elec-
trostatic biased) as well as spatial self-consistent electrostatic field configuration
at equilibrium time (macroscopic time scale).

Next, we have the general setup in the reactor:

For the computations we studied the following objects as target:

Object A&B Object C

The parameters for the electric-field equations are given as:
Quantity Value

Electron Density n0 1012m−3

Electron Temperature Te 1eV

The experiment A, we choose the Ubias = −100V and vdrift = 5000m/s.
The results are given in Figure 4.
The experiment B, we choose the Ubias = −50V and vdrift = 5000m/s.
The results are given in Figure 5.
The experiment C, we choose the Ubias = −150V and vdrift = 5000m/s.
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t = 1 t = 1000 t = 3000

Fig. 4. Target experiment with Ubias = −100V and vdrift = 5000m/s

The results are given in Figure 6.
A Phenomenological Study: Deposition-Rate (Object A)
We measured the equilibrium deposition rate with respect to the BIAS volt-

age at the substrate. In order to estimate the deposition rate we used the first
1500 time steps for coming to equilibrium and the following 1500 time steps for
our measurement.

Particle Deposition Bias Deposition Rate Deposition Rate
for vdrift = 9000m/s [V] [103particles/timestep] [103particles/timestep]

vdrift = 9000m/s vdrift = 500m/s
1 4.89± 0.07 4.89± 0.09
11 4.89± 0.07 4.90± 0.06
21 4.90± 0.07 4.89± 0.05
31 4.90± 0.07 4.89± 0.05
100 4.89± 0.07 4.89± 0.05
200 4.89± 0.07 4.90± 0.05

Remark 1. In the experiments, we show the influence of the deposition rates at
macroscopic time scales seems with respect to the underlying BIAS voltage.

In this experiments, we neglect the magnetic field in the Lorentz forces and
it seems that the deposition rates are independent of the BIAS voltage.
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t = 1 t = 1000 t = 3000

Fig. 5. Target experiment with Ubias = −50V ,vdrift = 5000m/s

4.2 Second Numerical Experiment: Delicate Geometry (concerning
the magnetic field in the Lorentz force on each particle)

In the second experiments, we taken into account the full Lorentz force on each
particle.

We simulate the paths of the sputtered atoms Ti and C and obtain at least
a clue of the stoichiometric decomposition at the substrate.

We apply the full model (full Lorentz force) of an interaction between the
sputtered particles and the background gas (Ar).

Due to relatively low plasma densities we consider our particle-in-cell (PIC)
methods and study the plasma behavior by computing the trajectories of finite-
size particles under the action of an external and self-consistent electric field
defined in a grid (200×200) of points. For the shown results, we use a computer
cluster of 4 × 8 Intel(R) Xeon(R) CPU X5472 @ 3.00GHz and a total memory
of 64 GByte (due to large electrostatic and magnetostatic grids).

We solve the ion-electrostatic field feedback mechanism (self-regulating dy-
namic mechanism) and complex fields due to biased complex substrate geome-
tries (mixed electrostatic boundary conditions) with the discussed methods..

By decoupling the ions and electrons (electrons behave like perfect fluid, due
to lower mass) we could save computational time.

The Monte Carlo Particle-in-Cell simulations are only done for the transport
of the ions, we use the order of 10 mio. particles.

Based on the electric field, we have a transition from event-related MC to
time-related MC (while computing the electrical influence to the ions).

Here, we study the influence of a delicate geometry with respect to the
Lorentz forces of a DC-sputter process.

We have the general setup in the reactor:
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t = 300 t = 1000 t = 3000

Fig. 6. Target experiment with Ubias = −150V ,vdrift = 5000m/s

For the computations we studied the following objects as target:

Object A&B Object C
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The parameters for the electric-field equations are given as:
Quantity Value

Electron Density n0 1012m−3

Electron Temperature Te 1eV

The experiment A, we choose the Ar-Density= 4 · 103 mbar, (Ti, C) =
(0.7, 0.1).

The results are given in Figure 7.

d = 2 cm d = 5 cm d = 8 cm

Fig. 7. Target experiment with Ar-Density= 4 · 103 mbar, (Ti, C) = (0.7, 0.1).

The experiment B, we choose the Ar-Density= 4 · 103 mbar, (Ti, C) =
(0.5, 0.05).

The results are given in Figure 8.
The experiment C, we choose a realistic test geometry by cooperation part-

ner M. Balzer (FEM, Schwäbisch Gmünd, Germany) with the parameters: Ar-
Density= 4 · 103 mbar, (Ti, C) = (0.5, 0.05), Distance= 60 mm.

The results are given in Figure 9.
The experiment D, we test the influence of a non planar substrates with the

parameters: Ar-Density= 4 · 103 mbar and different distances.
The results are given in Figure 10.

Remark 2. In the experiments, we show the influence of the deposition rates at
macroscopic time scales seems with respect to the underlying BIAS voltage. For
the full model (with magnetic field in the Lorentz force), we obtain a dependency
of the BIAS voltage to the deposition rate. In the arbitrary substrate geometries,
we obtain the best stoichiometric composition at BIAS voltage of about −30
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d = 2 cm d = 5 cm d = 8 cm

Fig. 8. Target experiment with Ar-Density= 4 · 103 mbar, (Ti, C) = (0.5, 0.05).

V and moderate Target-Substrate-Distances around 8 cm and a moderate Ar-
Density of about 4·10−3 mbar. Further, we found out, that an important quantity
for non planar substrates is the ratio of the width and the depth of an inlet. So
it makes sense to have at least small inlets to obtain a homogeneous deposition
on the target.

5 Conclusions and Discussions

We present a novel model to consider DC and HIPIMS sputter processes in real
gas regimes. We extend the underlying transport model by a Maxwell equation
to model the electro-magnetic field. The electrostatic field based on an additional
BIAS voltage allows control the ionized particles. We can improve the deposition
rate in delicate geometrical zones. Mathematically we solve coupled transport
and Maxwell equations, while we apply the optimal solvers for each separate
equations. Numerical results are presented and compared to real life applications,
that allows to estimate an optimal BIAS voltage about −5 [V ] to −30 [V ].
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