
COUPLING METHODS FOR HEAT-TRANSFER AND HEAT-FLOW:
OPERATOR SPLITTING AND PARAREAL.

JÜRGEN GEISER ∗ AND STEFAN GÜTTEL †

Abstract.

In this paper, we propose an operator splitting method for coupling heat-transfer and heat-flow
equations. The motivation arose of industrial software packages, which have developed independently
heat-transfer solvers (e.g. Aura-Fluid software package) and heat-flow solvers (e.g. Openfoam). Such
packages are often simple coupled by A-B splitting and they simulate the influence of solar heat in car
bodies. One of the main problems is to accelerate the code by iterative operator splitting methods
and with a parallel interfaces.

We propose Parareal as well applicable for parallel method for parabolic problems and also a
speedup to mixed parabolic and hyperbolic problems is possible and delicate. Our idea is to combine
the splitting schemes as a time-splitting method to adapt the time steps with Parareal as a time-
parallelization method. Our analysis of these new splitting techniques provides error estimates which
are validated at certain benchmark problems.

Keywords: Heat transfer, Heat flux, operator splitting, iterative operator splitting,
higher order time-discretization schemes, Parareal.
AMS subject classifications. 65M15, 65L05, 65M71.

1. Mathematical Model. In the following, we have a delicate model of coupled
heat transfer and radiation. While the heat transfer and radiation is solved with the
Aura software package, the flow field of the temperature is computed with a flow-field
solver, e.g. Openfoam or Vectis, see [14]. The idea is to obtain a speedup with fast
coupling schemes and parallel time schemes.

We deal with the following equations.

1. Heat-transfer equation:

∂t T = ∇ · (K∇T) −∇ · vT, (1.1)

T (x, t0) = T0(x),

where the unknown temperature is T , A is the diffusion operator and B the convection
operator.

2. Heat-Flow equation:

∂tv = −(v · ∇)v −∇p(T), (1.2)

v(x, t0) = v0(x),

where the unknown flux is v, A is nonlinear flow operator and B is the pressure
operator.

Both equations are solved simultaneously together with an iterative scheme.
Remark 1.1. For simplifications we assume p is not dependent of T , and we

solve equation 1.2 first and use the result for equation 1.1. Further, we decouple
equation 1.1 with operator splitting schemes.

Remark 1.2.

∗Humboldt University of Berlin, Unter den Linden 6, D-10099 Berlin, Germany, E-mail:
geiser@mathematik.hu-berlin.de

†University of Geneva, Switzerland, E-mail: guettel@gmail.com

1

2 2. SPLITTING METHODS

The more delicate case is to couple the two equations, if they are strong coupled
and nonlinear, means ∇p(T). Here we apply an iterative splitting scheme, that couples
the two equations via relaxation.

2. Splitting Methods. In the following we briefly discuss the coupling methods
that are used for the heat transfer equation.

2.1. Lie-Trotter or A-B Splitting method. The standard implemented scheme
is the well-known A − B splitting method.

A-B splitting:

∂tv = −(v · ∇)v, (2.1)

with tn ≤ t ≤ tn+1, v(x, tn) = vn(x),

∂T

∂t
= ∇ · (K∇T) −∇ · ṽT, (2.2)

with tn ≤ t ≤ tn+1, ṽ(x, tn) = vn+1(x) , T (x, tn) = T (x, tn)

where T n is the known initial value of the previous solution and T (tn+1) = T2(x, tn+1)
is the approximated solution of the full equation.

We have a global splitting error of O(∆t), where ∆t is the time step.

2.2. Strang-Splitting Method. Strang Splitting:

∂T1(x, t)

∂t
= ∇ · (K∇T1) −∇ · v1T1, (2.3)

with tn ≤ t ≤ tn+1/2, v1(x, tn) = vn(x) , T1(x, tn) = T (x, tn)

∂tv2 = −(v2 · ∇)v2, (2.4)

with tn ≤ t ≤ tn+1, v2(x, tn) = vn(x),

∂T3(x, t)

∂t
= ∇ · (K∇T3) −∇ · v3T3, (2.5)

with tn+1/2 ≤ t ≤ tn+1, v3(x, tn+1/2) = vn+1
2 (x) , T3(x, tn+1/2) = T1(x, tn+1/2) ,

where T n is the known initial value of the previous solution and T (tn+1) = T3(x, tn+1)
is the approximated solution of the full equation.

Here we obtain a coupling method of one order higher than the previous one, i.e.,
of order O(∆t2).

Remark 2.1. With such improved methods, we obtain higher accuracy and faster
computations.

2.3. Iterative splitting method.

2.3.1. Linear Case. The following algorithm is based on the iteration with
fixed splitting discretization step-size τ . On the time interval [tn, tn+1] we solve the
following subproblems consecutively for i = 0, 2, . . . , 2m.

The iterative method is given as, see also [3],

∂tvi = −(vi · ∇)vi, (2.6)

with tn ≤ t ≤ tn+1, vi(x, tn) = vn(x),

∂Ti

∂t
= ∇ · (K∇Ti) −∇ · vi−1Ti, (2.7)

with tn ≤ t ≤ tn+1, vi−1(x, tn) = vn(x) , T (x, tn) = T (x, tn)

2.3 Iterative splitting method 3

where T n,vn is the well-known split approximation at time level t = tn [3].

Here we solve the time-discretization with a BDF4 method.

The higher order is obtained by applying recursively the fixed-point iteration to
reconstruct the analytical solution of the coupled operators, see [5].

Generalization to vectorial schemes (systems of ODEs)

We deal with a vectorial iterative scheme, given as an inner and outer iterative
scheme.

While the outer iterative scheme is a Waveform-relaxation scheme and could be
seen as a coarse iterative scheme, while we iterate over the full system in one step.
The inner iterative scheme is a multi-iterative Waveform-relaxation scheme, while it
iterates over each ODE in m-steps.

Outer Iteration (Waveform-Relaxation, iteration over the full system):

dUi

dt
= AUi + BUi−1 + F, (2.8)

Ui(t
n) = U(tn), (2.9)

i = 1, . . . , I, (2.10)

where Ui = (u1,i, . . . , um,i) and m is the number of ODE’s, further

A =























A1,1 A1,2 . . . A1,m

A2,1 A2,2 . . . A2,m

...

Am,1 Am,2 . . . Am,m























, (2.11)

and

B =























B1,1 B1,2 . . . B1,m

B2,1 B2,2 . . . B2,m

...

Bm,1 Bm,2 . . . Bm,m























, (2.12)

are matrices of the ODE system, for example the diagonal and outer-diagonal matrices
and F is a right hand side (e.g. source term).

4 2. SPLITTING METHODS

Inner Iteration (iterative splitting, relaxation over each sub-equation):

dU1,j1

dt
= A1,1U1,j1 + A1,2U1,j1−1 + . . . + A1,mUm,j1−1

+B1,1U1,j1−1 + B1,2U1,j1−1 + . . . + B1,mUm,j1−1 + f, (2.13)

U1,j1(t
n) = U1(t

n), j1 = 1, . . . , J1,

dU2,j2

dt
= A2,1U1,j2−1 + A2,2U1,j2 + . . . + A2,mUm,j2−1 (2.14)

+B2,1U1,j2−1 + B2,2U1,j2−1 + . . . + B2,mUm,j2−1 + f, (2.15)

U2,j2(t
n) = U2(t

n), j2 = 1, . . . , J2,

. . .
dUm,jm

dt
= Am,1U1,jm−1 + Am,2U1,jm−1 + . . . + +Am,mUm,jm

(2.16)

+Bm,1U1,jm−1 + Bm,2U1,jm−1 + . . . + Bm,mUm,jm−1 + f,

Um,jm
(tn) = Um(tn), jm = 1, . . . , Jm,

where Ui(t
n+1) = (U1,J1

(tn+1), . . . , Um,Jm
(tn+1)) is the result to the next iterated

step i
and Uj(t

n) = (U1(t
n), . . . , Um(tn) is the initial solution.

(U1,j1−1(t
n+1), . . . , Um,jm−1(t)) = Ui−1(t) is the approximated starting solution to

i − 1 of the outer iterative step.
We can also iterate much more finer, if we also include operator B into the iterative

scheme.
Unifying Analysis:
Application of an alternative waveform-relaxation scheme.
1.) Convergence of the inner iterations
2.) Convergence of the outer iterations
The analysis is based on the convergence results of each inner iteration scheme,

that is equal or one order higher than the outer iteration scheme.
If all inner schemes converge and are at least of the same order than the outer

schemes, then the full iterative scheme is convergent.
Theorem 2.1. Let us consider the abstract Cauchy problem in a Banach space

X

dU

dt
= AU + BU + F, (2.17)

U(tn) = Un, (2.18)

where U(tn+1) = (u1(t
n+1), . . . , um(tn+1)) is the solution at time tn+1 and m is the

number of ODE’s, further the matrices are given in (2.11) and (2.12) and F is a right
hand side (e.g. source term).

Then the iteration process (2.8) is convergent and the and the rate of the conver-
gence is of higher order, depending of the iterative step i.

Proof.
The outer iterative process is given with the convergence:

‖Ei(t)‖ ≤ Kτn‖Ei−1(t)‖, (2.19)

while Ei is i-th error Ei(t) := U(t)−Ui(t) and U(t) is the given exact solution of the
ODE.

2.4 Application to the Heat-transfer and Heat-flow equations 5

The proof is given in [5].
Further the inner iterative process is given with the convergence:

‖Ei(t)‖ ≤ Kτn‖Ej̃(t)‖, (2.20)

while Ei is i-th error Ei(t) := U(t)−Ui(t) and U(t) is the given exact solution of the
ODE. j̃ = min{J1, . . . , Jm}.

So we need at least the minimum of 1 iterative steps over each single equation to
gain at least one order of accuracy for the full system.

2.4. Application to the Heat-transfer and Heat-flow equations. We have
the following equation schemes:

∂t Ti = ∇ · (K∇Ti) −∇ · vi−1Ti−1, (2.21)

∂tvi = −(vi−1 · ∇)vi −∇p(Ti−1), (2.22)

Ti(x, tn) = T (x, tn),

vi(x, tn) = v(x, tn),

for t ∈ [tn, tn+1], n = 0, 1, 2, . . . , N, with i = 1, 2, . . . , I,

where the initialization (starting condition for i = 0) is T0(x, t) = T (x, tn) and
v0(x, t) = v(x, tn) with t ∈ [tn, tn+1], means the solution at the last time-point.

2.4.1. Nonlinear Case: Modified Jacobian-Newton Methods and Fixpoint-
iteration Methods. We describe the modified Jacobian-Newton methods and Fixpoint-
iteration methods.

We propose for weak nonlinearities, e.g. quadratic nonlinearity, the fixpoint it-
eration method, where our iterative operator splitting method is one, see [7]. For
stronger nonlinearities, e.g. cubic or higher order polynomial nonlinearities, the mod-
ified Jacobian method with embedded iterative-splitting methods is suggested.

The point of embedding the splitting methods into the Newton methods is to
decouple the equation systems into simpler equations. Such simple equation systems
can be solved with scalar Newton methods.

The altered Jacobian-Newton iterative methods with embedded se-
quential splitting methods

We confine our attention to time-dependent partial differential equations of the
form

dc

dt
= A(c(t))c(t) + B(c(t))c(t), with c(tn) = cn, (2.23)

where A(c), B(c) : X → X are linear and densely defined in the real Banach space X,
involving only spatial derivatives of c, see [15]. We assume also that we have a weak
nonlinear operator with A(c)c = λ1c and B(c)c = λ2c, where λ1 and λ2 are constant
factors.

In the following we discuss the embedding of a sequential splitting method into
the Newton method.

The altered Jacobian-Newton iterative method with an embedded iterative split-
ting method is given as:

Newton’s method:

6 2. SPLITTING METHODS

F (c) = dc
dt − A(c(t))c(t) − B(c(t))c(t) and we can compute c(k+1) = c(k) −

D(F (c(k)))−1F (c(k)), where D(F (c)) is the Jacobian matrix and k = 0, 1,
We stop the iterations when we obtain : |c(k+1) − c(k)| ≤ err, where err is an

error bound, e.g. err = 10−4.
We assume the spatial discretization, with spatial grid points, i = 1, . . . , m and

obtain the differential equation system:

F (c) =











F (c1)
F (c2)

...
F (cm)











, (2.24)

where c = (c1, . . . , cm)T and m is the number of spatial grid points.
The Jacobian matrix for the equation system is given as :

DF (c) =

























∂F (c1)
c1

∂F (c1)
c2

. . . ∂F (c1)
cm

∂F (c2)
c1

∂F (c2)
c2

. . . ∂F (c2)
cm

...

∂F (cm)
c1

∂F (cm)
c2

. . . ∂F (cm)
cm

























,

where c = (c1, . . . , cm).
The modified Jacobian is given as:

DF (c) =

























∂F (c1)
c1

+ F (c1)
∂F (c1)

c2
. . . ∂F (c1)

cm

∂F (c2)
c1

∂F (c2)
c2

F (c2) . . . ∂F (c2)
cm

...

∂F (cm)
c1

∂F (cm)
c2

. . . ∂F (cm)
cm

+ F (cm)

























,

where c = (c1, . . . , cn).
By embedding the sequential splitting method we obtain the following algorithm.

We decouple into two equation systems:

F1(u1) = ∂tu1 − A(u1)u1 = 0 with u1(t
n) = cn, (2.25)

F2(u2) = ∂tu2 − B(u2)u2 = 0 with u2(t
n) = u1(t

n+1), (2.26)

where the results of the methods are c(tn+1) = u2(t
n+1). and u1 = (u11, . . . , u1n),

u2 = (u21, . . . , u2n).
Thus we have to solve two Newton methods, each in one equations system. The
contribution is to reduce the Jacobian matrix into a diagonal entry, e.g. with a
weighted Newton method, see [9]. The splitting method with embedded Newton
method is given as:

Algorithm 2.1. We assume the spatial operators A and B are discretized, e.g.
finite difference or finite element methods; further all initial conditions and boundary

2.4 Application to the Heat-transfer and Heat-flow equations 7

conditions are discrete given. Then we can apply the Newton’s method in its discrete
form as:

u
(k+1)
1 = u

(k)
1 − D(F1(u

(k)
1))−1(∂tu

(k)
1 − A(u

(k)
1)u

(k)
1), (2.27)

with D(F1(u
(k)
1)) =

∂

∂u
(k)
1

(∂tu
(k)
1 − A(u

(k)
1) − ∂A(u

(k)
1)

∂u
(k)
1

u
(k)
1), (2.28)

u
(k)
1 (tn) = cn and k = 0, 1, 2, . . . , K, (2.29)

u
(l+1)
2 = u

(l)
2 − D(F2(u

(l)
2))−1(∂tu

(l)
2 − B(u

(l)
2)u

(l)
2), (2.30)

with D(F2(u
(l)
2)) =

∂

∂u
(k)
1

(∂tu
(k)
2 − B(u

(l)
2) − ∂B(u

(l)
2)

∂u
(l)
2

u
(l)
2), (2.31)

u
(l)
2 (tn) = uK

1 (tn+1) and l = 0, 1, 2, . . . , L. (2.32)

where k and l are the iteration indices, K and L the maximal iterative steps for each
part of the Newton’s method. The maximal iterative steps allow us to have at least an

error of: |u(K)(tn+1)
1 − u

(K−1)(tn+1)
1 | ≤ err,

and
|u(L)(tn+1)

2 − u
(L−1)(tn+1)
2 | ≤ err,

where err is the error bound, e.g. err = 10−6.
The approximated solution is given as :

u(tn+1) = u
(L)(tn+1)
2 .

For the improvement method, we can apply the weighted Newton method. We
try to skip the delicate outer diagonals in the Jacobian matrix and apply:

u
(k+1)
1 = u

(k)
1 − (D(F1(u

(k)
1)) + δ1(u

(k)
1))−1(F1(u

(k)
1) + ǫ u

(k)
1), (2.33)

where the function δ can be applied as a scalar, e.g. δ = 10−6, and the same with ǫ.
It is important to ensure that δ is small enough to preserve the convergence.

Remark 2.2. If we assume that we discretize the equation (2.25) and (2.26) with
the backward-Euler method, e.g.:

F1(u1(t
n+1)) = u1(t

n+1) − u1(t
n) − ∆tA(u1(t

n+1))u1(t
n+1) = 0 with u1(t

n) = cn,

F2(u2) = u2(t
n+1) − u2(t

n) − ∆tB(u2(t
n+1))u2(t

n+1) = 0 with u2(t
n) = u1(t

n+1),

then we obtain the derivations D(F1(u1(t
n+1))) and D(F2(u2(t

n+1)))

D(F1(u1(t
n+1))) = 1 − ∆t(A(u1(t

n+1)) +
∂A(u1(t

n+1))

∂u1(tn+1)
u1(t

n+1)),

D(F2(u2)) = 1 − ∆t(B(u2(t
n+1)) +

∂B(u2(t
n+1))

∂u2(tn+1)
u2(t

n+1)).

We can apply the equation (2.33) analogously u
(l+1)
2 .

Iterative operator-splitting method as a fixpoint scheme
The iterative operator-splitting method is used as a fixpoint scheme to linearize

the nonlinear operators, see [4] and [7].
We confine our attention to time-dependent partial differential equations of the

form:

du

dt
= A(u(t))u(t) + B(u(t))u(t), with u(tn) = cn, (2.34)

8 2. SPLITTING METHODS

where A(u), B(u) : X → X are linear and densely defined in the real Banach space X,
involving only spatial derivatives of c, see [15]. In the following we discuss the stan-
dard iterative operator-splitting methods as a fixpoint iteration method to linearize
the operators.

We split our nonlinear differential equation (2.23) by applying:

dui(t)

dt
= A(ui−1(t))ui(t) + B(ui−1(t))ui−1(t), with ui(t

n) = cn, (2.35)

dui+1(t)

dt
= A(ui−1(t))ui(t) + B(ui−1(t))ui+1, with ui+1(t

n) = cn, (2.36)

where the time-step is τ = tn+1−tn. The iterations are i = 1, 3, . . . , 2m+1. u0(t) = cn

is the starting solution, where we assume the solution cn+1 is near cn, or u0(t) = 0.
So we have to solve the local fixpoint problem. cn is the known split approximation
at the time level t = tn.

The split approximation at time level t = tn+1 is defined as cn+1 = u2m+2(t
n+1). We

assume the operators A(ui−1), B(ui−1) :X → X to be linear and densely defined on
the real Banach space X, for i = 1, 3, . . . , 2m + 1.

Here the linearization is done with respect to the iterations, such that A(ui−1), B(ui−1)
are at least non-dependent operators in the iterative equations, and we can apply the
linear theory.

The linearization is at least in the first equation A(ui−1) ≈ A(ui), and in the second
equation B(ui−1) ≈ B(ui+1)

We have

||A(ui−1(t
n+1))ui(t

n+1) − A(un+1)u(tn+1)|| ≤ ǫ,

with sufficient iterations i = {1, 3, . . . , 2m + 1}.
Remark 2.3. The linearization with the fixpoint scheme can be used for smooth

or weak nonlinear operators, otherwise we lose the convergence behavior, while we did
not converge to the local fixpoint, see [7].

The second idea is based on the Newton method.

Jacobian-Newton iterative method with embedded operator-splitting
method

The Newton method is used to solve the nonlinear parts of the iterative operator-
splitting method (see the linearization techniques in [7],[8]).

Newton method:
The function is given as:
F (c) = ∂c

∂t − A(c(t))c(t) − B(c(t))c(t) = 0,

The iteration can be computed as:
c(k+1) = c(k) − D(F (c(k)))−1F (c(k)),
where D(F (c)) is the Jacobian matrix and k = 0, 1, and c = (c1, . . . , cm) is the
solution vector of the spatial discretized nonlinear equation.

We then have to apply the iterative operator-splitting method and obtain:

F1(ui) = ∂tui − A(ui)ui − B(ui−1)ui−1 = 0, (2.37)

with ui(t
n) = cn, (2.38)

F2(ui+2) = ∂tui+1 − A(ui)ui − B(ui+1)ui+1 = 0, (2.39)

with ui+1(t
n) = cn, (2.40)

9

where the time-step is τ = tn+1− tn. The iterations are i = 1, 3, . . . , 2m+1. c0(t) = 0
is the starting solution and cn is the known split approximation at the time-level
t = tn. The results of the methods are c(tn+1) = u2m+2(t

n+1).

Thus we have to solve two Newton methods and the contribution will be to reduce
the Jacobian matrix, e.g. skip the diagonal entries. The splitting method with the
embedded Newton method is given as:

u
(k+1)
i = u

(k)
i − D(F1(u

(k)
i))−1(∂tu

(k)
i − A(u

(k)
i)u

(k)
i − B(u

(k)
i−1)u

(k)
i−1),

with D(F1(u
(k)
i)) = −(A(u

(k)
i) +

∂A(u
(k)
i)

∂u
(k)
i

u
(k)
i),

and k = 0, 1, 2, . . . , K,

with ui(t
n) = cn,

u
(l+1)
i+1 = u

(l)
i+1 − D(F2(u

(l)
i+1))

−1(∂tu
(l)
i+1 − A(u

(k)
i)u

(k)
i − B(u

(k)
i+1)u

(k)
i+1)c

(l)
2),

with D(F2(u
(l)
i+1)) = −(B(u

(l)
i+1) +

∂B(u
(l)
i+1)

∂u
(l)
i+1

u
(l)
i+1),

and l = 0, 1, 2, . . . , L,

with ui+1(t
n) = cn,

where the time-step is τ = tn+1 − tn. The iterations are: i = 1, 3, . . . , 2m + 1.
c0(t) = 0 is the starting solution and cn is the known split approximation at the
time-level t = tn. The results of the methods are c(tn+1) = u2m+2(t

n+1).

For the improvement by skipping the delicate outer diagonals in the Jacobian

matrix, we apply u
(k+1)
i = u

(k)
i − (D(F1(u

(k)
i)) + δ1(u

(k)
i))−1(F1(u

(k)
i) + ǫ u

(k)
i), and

analogously u
(l+1)
i+1 .

Remark 2.4. For the iterative operator-splitting method with the Newton iter-
ation we have two iteration procedures. The first iteration is the Newton method to
compute the solution of the nonlinear equations, and the second iteration is the iter-
ative splitting method, which computes the resulting solution of the coupled equation
systems. The embedded method is used for strong nonlinearities.

3. Parallelization : Parareal. To improve the parallel scaling properties of
our algorithm, we employ the so-called parareal algorithm invented by Lions, Maday
& Turincini [10]. This algorithm is a means of time-parallelization and can be viewed
as a multiple shooting method.

We assume to have a partitioning of the time interval Ω = [0, T] divided into N
subdomains:

Ωn = [Tn−1, Tn], n = 1, 2, . . . , N. (3.1)

In parareal one makes use of two solvers, a coarse propagator G(Tn, Tn−1, x) and a
fine propagator F (Tn, Tn−1, x), each of which compute coarse and fine approximations
of the solution Un of the equation

dU

dt
= f(t, U(t)), with U(Tn−1) = x. (3.2)

10 4. BENCHMARK PROBLEMS

tn

Processor 1 Processor 2 Processor 3

t t tt t tn+4 n+7 n+11 n+15 n+19

Window 1
Window 2

Fig. 3.1. Parallelization with Parareal, windowing of the parallel process.

It is crucial that the coarse integrator is computationally much faster than the fine
integrator, the latter of which is more accurate. The first iteration of parareal uses
the coarse integrator in a serial fashion to provide initial conditions to each time slice
Ωn:

U1
n = G(Tn, Tn−1, U

1
n−1), n = 1, 2, . . . , N.

After this initialization the fine propagator can be used to integrate independently
(i.e., in parallel) N initial-value problems F (Tn, Tn−1, U

k
n−1) (n = 1, 2, . . . , N), yield-

ing new approximations for the initial conditions on the following time slices. In
each iteration k the corrections are then again quickly propagated using the coarse
integrator:

Uk+1
n = F (Tn, Tn−1, U

k
n−1) + G(Tn, Tn−1, U

k+1
n−1) − G(Tn, Tn−1, U

k
n−1), (3.3)

Example 3.1. We assume to have F as the iterative splitting propagator and G
as the A-B splitting propagator.

Further the iterative splitting scheme include additionally a fixpoint scheme for
nonlinear problems.

So we step by each window to the next time interval, see Figure 3.1.

4. Benchmark Problems. In the following, we deal with simple examples to
test the convergence of parareal with embedded higher order splitting schemes.

4.1. Test 1: One-directional coupling. We start with a scalar test problem
for the coupling between a heat equation with convection term and a fluid flow given
by a convection equation:

∂tT = ∇ · (K∇T) −∇ · vT, (4.1)

∂tv = −(v · ∇)v −∇p, (4.2)

T (x, t0) = T0(x), (4.3)

v(x, t0) = v0(x), (4.4)

where the unknown temperature is T , v is the flow field of the temperature and p is a
given pressure. The spacial domain of this problem is the interval [0, 1] with thermal
conductivity K = 0.01, which we discretize by finite differences at n + 1, equidistant
nodes xj = j/n (j = 0, 1, . . . , n, n = 100). We assume to have homogeneous Neumann
conditions at the interval endpoints. This results in the following system

∂tT = D2T − D1(T ◦ v) + b (4.5)

∂tv = −v ◦ D1v − D1p, (4.6)

4.1 Test 1: One-directional coupling 11

where the matrices D1, D2 discretize first and second order differential operators and
b is a vector representing the boundary data. In a real-world problem the pressure p
will depend on the temperature vector T , but in this test we assume that the pressure
is given by the function

p(t, x) = 1[0,1/3](t) · 3e3 · tx6(1 − x)6,

where 1[0,1/3](t) is an indicator function for the time-interval [0, 1/3]. This function
creates a transport wave (a flow field) traveling in both directions from the midpoint to
the interval towards the interval endpoints. The initial flow field is taken as v0(x) = 0
and for the initial temperature we have taken T0(x) = 16x2(1 − x)2. The whole
problem is integrated over the time domain ΩT = [0, 1], which we have divided into
10 subdomains of equal length.

In order to evaluate the accuracy and performance of the coarse and fine integrator
over one time slice [0, 0.1], we compare 3 different integrators for a general initial-value
problem u′ = f(t, u), u(0) = u0, namely

• the implicit Euler method of order 1 (Euler1),
• a classical explicit Runge–Kutta method of order 2 (RK2 or midpoint method),
• the backward differentiation formula of order 4 (BDF4).

Note that the equation for the temperature is semi-linear. For semi-linear initial-value
problems u′ = Au + f(t, u), u(0) = u0 we also test

• an exponential Runge–Kutta method of stiff order 2 (expRK2 or exponential
midpoint method),

which treats the stiff linear term Au exactly and hence the stability condition is only
possed by the mildly stiff nonlinear term. This method requires the evaluation of
matrix exponentials exp(tA), or more precisely, the action of these exponentials onto
vectors exp(tA)v. We have used a rational Chebyshev method for these evaluations.

We apply the above integrators to each of the two differential equations for T and
v, where we have used three different coupling techniques:

• A-B coupling, which is of order 1 and hence will only be tested in combination
with Euler1,

• Strang coupling, which is of order 2 and hence will be tested in combination
with the Runge–Kutta methods (RK2 and expRK2),

• iterative coupling in combination with the BDF4 integrator (note that in
this example the coupling is only one-directional and hence there is need for
exactly one splitting iteration).

In Figure 4.1 we show the accuracy of the tested combinations as a function
of the number of time steps (top) and the number of function evaluations (below),
respectively. In the number of function evaluations we have included for the implicit
solvers (Euler1 and BDF4) the evaluations required by the Newton solver. We have
used the m-file nsoli.m, a globally convergent Newton-Krylov solver given in [9],
with an absolute and relative error tolerance tol proportional to tsteps−q, written
tol ∼ tsteps−q, where tsteps is the number of time steps and q is the order of the
integrator. For BDF4 (q = 4) we have also included the function evaluations for the
higher-accuracy initialization of the 4 initial time steps by expRK2 with a refined
step-size h. Since expRK2 is only of order 2 we have chosen h ∼

√
tol. Note that the

number of function evaluations for the second equation (velocity) with the explicit
methods and Strang-splitting is twice as large as the number of function evaluations for
the first equation (temperature), because in each time step we make 2 half-steps with
v and 1 full-step with T . Note also that the convergence of RK2 for the temperature

12 4. BENCHMARK PROBLEMS

10
1

10
2

10
3

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

nr of time steps

ab
so

lu
te

 e
rr

or

Euler1+AB temp
Euler1+AB velo
RK2+Strang temp
RK2+Strang velo
expRK2+Strang temp
RK2+Strang velo
BDF4+iterate temp
BDF4+iterate velo

10
1

10
2

10
3

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

nr of function evaluations

ab
so

lu
te

 e
rr

or

Euler1+AB temp
Euler1+AB velo
RK2+Strang temp
RK2+Strang velo
expRK2+Strang temp
RK2+Strang velo
BDF4+iterate temp
BDF4+iterate velo

Fig. 4.1. Convergence of combinations of different time-stepping schemes with various coupling
techniques for integration of the model problem over a single time slice [0, 0.1]. The coupling of the
two equations is one-directional here. The dashed lines on the left indicate convergence of orders 1,
2, and 4.

equation is subject to stringent stability constraints and the convergence curve comes
reasonable low only for a large number of time steps (or function evaluations). The
expRK2 method does not have this stability constraints and shows order 2 convergence
already for very small numbers of time steps (functions evaluations).

The fact that the favorable stability properties of expRK2 allow for larger step
sizes makes this method in conjunction with Strang-coupling predestined as a coarse
integrator for parareal. In order to achieve a high accuracy with few function evalu-
ations we will use BDF4 with iterative coupling as the fine integrator.

The convergence of parareal is depicted in Figure 4.2. Each convergence curve
corresponds to the error of the computed temperature T (left) and velocity v (right)
measure at each of the 11 coarse time points T0, T1, . . . , TN , where the abscissae
indicate the parareal iteration index k. Note that after k = 11 iterations the algorithm
reaches the accuracy of the fine propagator, the result of which was also used as the
reference solution for computing the error. We also note that the convergence for the

4.2 Test 2: Bidirectional coupling 13

0 5 10

10
−15

10
−10

10
−5

10
0

error in temperature T

parareal iteration k
0 5 10

10
−15

10
−10

10
−5

10
0

error in velocity v

parareal iteration k

Fig. 4.2. Convergence of parareal applied to the model problem. The left picture shows the
error of the temperature variable at each of the 11 points of the time grid (the lowest constant curve
corresponds to time t = 0, where the initial value is given) after k = 1, 2, . . . parareal iterations. On
the right we show the error of the velocity variable.

velocity field is much more rapid than for the temperature, see Figure 4.2.

4.2. Test 2: Bidirectional coupling. We consider the previous test problem
but now with a pressure function depending on the temperature T ,

p(T) = 0.2 · T + 0.2.

Therefore we now have a bidirectional coupling between the equations (4.1) and (4.2).
For the iterative splitting method this results in the system

∂tTi = D2Ti − D1(Ti ◦ vi−1) + b ,Tit
n = T(tn) , t ∈ [tn, tn+1], (4.7)

∂tvi = −vi−1 ◦ D1vi − D1p(Ti) ,vit
n = v(tn) , t ∈ [tn, tn+1], (4.8)

where i = 1, 2, . . . , I and I ∈ N
+ is a fixed number. Further we assume the starting

value v0(t) = v(tn) or an initial guess v0(t) = vinitial(t). The approximated solutions
are given as T(tn+1) = TI t

n+1, v(tn+1) = vIt
n+1 with I iterative steps.

As in the previous test, we have used a Newton iteration nsoli for the implicit
time-stepping methods and we have chosen the stopping tolerance tol depending the
number of time-steps tsteps as tol ∼ tsteps−q, as before. The achieved accuracy as a
function of the number of time-steps is shown in the right plot of Figure 4.3.

It turns out that for every time-step only 2–3 iterative splitting-scheme iterations
are required to satisfy the imposed error criterion. However, each call to the Newton
solver nsoli requires 3–7 function calls for solving the implicit equation for the new
temperature or velocity iterate to prescribed error tolerance. The average number of
function calls per time-step for the temperature equation is therefore above 4, which
results in a worse work-precision curve for the iterative splitting method when the

14 5. CONCLUSION

10
1

10
2

10
3

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

nr of time steps

ab
so

lu
te

 e
rr

or

Euler1+AB temp
Euler1+AB velo
RK2+Strang temp
RK2+Strang velo
expRK2+Strang temp
RK2+Strang velo
BDF4+iterate temp
BDF4+iterate velo

10
1

10
2

10
3

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

nr of function evaluations

ab
so

lu
te

 e
rr

or

Euler1+AB temp
Euler1+AB velo
RK2+Strang temp
RK2+Strang velo
expRK2+Strang temp
RK2+Strang velo
BDF4+iterate temp
BDF4+iterate velo

Fig. 4.3. Convergence of combinations of different time-stepping schemes with various coupling
techniques for integration of the model problem over a single time slice [0, 0.1]. The coupling of the
two equations is bidirectional here. The dashed lines on the left indicate convergence of orders 1, 2,
and 4.

number of function evaluations is taken as measure (see the right plot of Figure 4.3). In
this example, only for very high accuracies (below 10−7, which is far below our spacial
discretization error) we can expect that the iterative splitting approach outperforms
the expRK2 scheme with Strang coupling.

The convergence of parareal for the temperature and velocity components is il-
lustrated in Figure 4.4. As before we have partitioned the time interval [0, 1] into 10
time-slices of equal length. Note that after about 8 iterations of parareal we reach the
final stagnation level of the error, which means that we can expect a parallel speedup
of 10/8, provided that the cost for the coarse integrator is neglectable. As coarse
integrator we have used 1 time-step per time-slice of the expRK2 method with Strang
coupling. The fine integrator is 200 time-steps of BDF4 with iterative coupling.

5. Conclusion. We have presented a model for the heat transport and flow field
of a technical application in car body heating. We discuss an improvement of existing
coupling methods with higher order splitting schemes. Numerical accerlerations are

15

0 5 10

10
−15

10
−10

10
−5

10
0

error in temperature T

parareal iteration k
0 5 10

10
−15

10
−10

10
−5

10
0

error in velocity v

parareal iteration k

Fig. 4.4. Convergence of parareal applied to the model problem. The left picture shows the
error of the temperature variable at each of the 11 points of the time grid (the lowest constant curve
corresponds to time t = 0, where the initial value is given) after k = 1, 2, . . . parareal iterations. On
the right we show the error of the velocity variable.

obtained with the time-parallelization with Parareal.
In numerical examples, we could show the efficiency of the higher order schemes

embedded into Parareal, while producing more accurate solutions with larger time
steps. Such accelerations helps to achieve realistic computational times.

6. Appendix. In the following, we present the construction of the BDF (Back-
ward Differentiation Formula) and SBDF (Stiff Backward Differentiation Formula)
methods.

6.1. Construction of the BDF methods. The BDF methods are one class
of very effective methods for solving stiff problem. These methods are refereed to as
Gear’s methods since one of the first software packages for stiff problem is written by
him although Curtis and Hirschfelder [?] first introduced the methods. These methods
are of the form

k+1
∑

r=1

αru
n−r+2 = τβf(un+1). (6.1)

where the coefficients αr and β are obtained based on the Taylor expansion and
difference operator. For example, for k = 0, α1 = 1, α1 = −1, β = 1, this corresponds
to the classical implicit Euler method of order 1. For k = 2, the coefficients are
α1 = 3, α2 = −4, α3 = 1, β = 2. This method is of order 3. We reconstruct the BDF
for iterative splitting method as follows,

k+1
∑

r=1

αru
n−r+2 = τβA1u

n+1 + τβA2u
n+1, (6.2)

16 6. APPENDIX

and the following conditions must satisfy:
• k < 7, otherwise the method is not zero stable,
• ∑k+1

r=1 αr = 0, otherwise the method is not consistent.
In the next section, we will construct stiff backward differentiation formulas

(SBDF) with order k.

6.2. Construction of the SBDF methods. The implicit-explicit (IMEx) schemes
have been widely for time integration of spatial discretization of the partial differential
equations of diffusion-convection type. We propose SBDF methods as the one class
of IMEx methods for iterative splitting. These methods are applied to decouple the
implicit and explicit terms. So for example the convection-diffusion equation, one use
the explicit part for the convection term and the implicit part for the diffusion. In
our application we divide between the stiff and nonstiff term, so we apply the implicit
part for the stiff operators and the explicit part for the nonstiff operators. We would
like to design k+1-th order SBDF method as follows: We would like to design k-th
order SBDF method as follows:

k+1
∑

r=1

αru
n−r+2 = τβ1A2u

n+1 + τ

k+1
∑

r=2

βrA1u
n−r+2, (6.3)

the following conditions must be satisfy:
1. k < 7, otherwise the method is not zero stable,
2.

∑k+1
r=1 αr = 0, otherwise the method is not consistent,

3. β1 =
∑k+1

r=2 βr, otherwise the method is not consistent.
In the Eq. (6.3), the parameters αr, where r = 1...., k + 1, are the same as

BDFk method. One can rescale the the Eq. (6.3) by taking β1 = 1, then unknown
parameters βr, where r = 2...., k+1, can be found by solving linear system of equation,
obtained by the Taylor expansions of un−r+2 around un.
For each k (order of SBDF method), we have the following k × k equation systems:

For k = 2, after solving the system









k

(

k
k − 2

)

0 −
(

k
k − 2

)









(

t1
t2

)

=

(

1
1

)

(6.4)

we have β2 = t1

(

k
k − 1

)

and β3 = t2

(

k
k − 2

)

.

For k = 3, after solving the system

















k

(

k
k − 2

)

1

0 −
(

k
k − 2

)

−(k − 1)

0

(

k
k − 2

)

(k − 1)2





















t1
t2
t3



 =





1
1
1



 . (6.5)

we have β2 = t1

(

k
k − 1

)

, β3 = t2

(

k
k − 2

)

and β4 = t3

(

k
k − 3

)

. We can solve

for k = 4, 5, 6 in the same way.

REFERENCES 17

These linear systems can be written in a closed form as follows:

k
∑

s=1

(

k
s

)

(−1)r+1ts = 1 for r = 1 (6.6)

k
∑

s=2

(

k
s

)

(−1)r+1ts(s − 1)r−1 = 1 for r = 2, . . . , k (6.7)

where βr = tr−1

(

k
r − 1

)

.

As a result we have general form of SBDFk methods as follows:
For k is even:

k+1
∑

r=1

αru
n−r+2 = τA2u

n+1 + τ
k+1
∑

r=2

(−1)k+r−1

(

k
r − 1

)

A1u
n−r+2 (6.8)

For k is odd:

k+1
∑

r=1

αru
n−r+2 = τA2u

n+1 + τ

k+1
∑

r=2

(−1)k+r−2

(

k
r − 1

)

A1u
n−r+2 (6.9)

where k is the order of the SBDF method. The coefficients for SBDF method is
presented in Table 1.

order α7 α6 α5 α4 α3 α2 α1 β1 β2 β3 β4 β5 β6 β7

1 -1 1 1 1
2 1/2 -2 3/2 1 2 -1
3 -1/3 3/2 -3 11/6 1 3 -3 1
4 1/4 -4/3 3 -4 25/12 1 4 -6 4 -1
5 -1/5 5/4 -10/3 5 -5 137/60 1 5 -10 10 -5 1
6 1/6 -6/5 15/4 -20/3 15/2 -6 49/20 1 6 -15 20 -15 6 1

Table 6.1

SBDF coefficients

For example, 2nd order SBDF (SBDF2) reads as

(3un+1 − 4un + un−1) = 4τA1u
n − 2τA1u

n−1 + 2τA2u
n+1, (6.10)

and 3rd order SBDF (SBDF3) reads as

(11un+1 − 18un + 9un−1 − 2un−2) = 18τA1u
n − 18τA1u

n−1 (6.11)

+6τA1u
n−2 + 6τA2u

n+1.

REFERENCES

[1] Z. Chen, G. Ji. Sharp L1 a posteriori error analysis for nonlinear convection-diffusion prob-
lems. to appear, 2004.

18 REFERENCES

[2] S. Descombes. Convergence of a splitting method of high order for reaction-diffusion systems.
Mathematics of Computations, vol. 70, 1481–1501, 2001.

[3] I. Farago and J. Geiser. Iterative operator-splitting methods for linear problems. International
Journal of Computational Science and Engineering , 3(4): 255–263, 2007.

[4] J. Geiser. Iterative Operator-Splitting Methods with higher order Time-Integration Methods
and Applications for Parabolic Partial Differential Equations. Journal of Computational
and Applied Mathematics, Elsevier, accepted, June 2007.

[5] J. Geiser. Iterative Operator-Splitting Methods with higher order Time-Integration Methods
and Applications for Parabolic Partial Differential Equations. Journal of Computational
and Applied Mathematics, Elsevier, Amsterdam, The Netherlands, 217, 227–242, 2008.

[6] R. Herbin, M. Ohlberger. A posteriori error estimate for finite volume approximations of con-
vection diffusion problems. Proceedings of the Third International Symposium on: FINITE
VOLUMES FOR COMPLEX APPLICATIONS - PROBLEMS AND PERSPECTIVES,
Porquerolles (2002), 753–760. Hermes Penton Ltd, London, 2002.

[7] J. Kanney, C. Miller, and C.T. Kelley, Convergence of iterative split-operator approaches for
approximating nonlinear reactive transport problems, Advances in Water Resources 26
(2003) 247-261.

[8] K.H. Karlsen and N. Risebro. An Operator Splitting method for nonlinear convection-diffusion
equation. Numer. Math., 77, 3 , 365–382, 1997.

[9] C.T. Kelly. Iterative Methods for Linear and Nonlinear Equations. Frontiers in Applied Math-
ematics, SIAM, Philadelphia, PA, 1995.

[10] J. L. Lions, Y. Maday, G. Turincini. A “parareal” in time discretization of PDEs. C. R. Acad.
Sci. Paris Sér. I Math., 332, 661–668, 2001.

[11] M. Ohlberger. A posteriori error estimates for vertex centered finite volume approximations
of convection-diffusion-reaction equations. M2AN Math. Model. Numer. Anal. 35 (2001)
2, 355–387.

[12] J. Salcedo Rulz and F.J. Sanchez Bernabe. A Numerical Study of Stiffness Effects on some
Higher Order Splitting Methods. Revista Mexicana de Fisica, vol. 52, no. 2, 129–134, 2006.

[13] G. Strang. On the construction and comparision of difference schemes. SIAM J. Numer. Anal.,
5:506–517, 1968.

[14] Ricardo Software. VECTIS, three-dimensional fluid dynamics program.
http://www.ricardo.com/What-we-do/Software/Products/VECTIS/

[15] E. Zeidler. Nonlinear Functional Analysis and its Applications. II/B Nonlinear montone oper-
ators Springer-Verlag, Berlin-Heidelberg-New York, 1990.

