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Abstract. We introduce a solver method for spatial-dependent and non-
linear fluid transport. The motivation is driven by transport processes
in porous medias (e.g. waste disposal, chemical deposition processes).

We analyze the coupled transport-reaction equation with mobile and
immobile areas.

The main idea is to apply transformation methods to spatial and non-
linear terms to obtain linear or nonlinear ordinary differential equations.

Such differential equations can simpler solved with Laplace-transformation
methods or nonlinear solver methods, see [25].

The nonlinear methods are based on characteristic methods and can be
generalised numerically to higher-order TVD methods, see [20].

In this article we will focus on the derivation of the analytical solutions
for spatial- and nonlinear problems, that can be embedded into finite
volume methods.

At the end of the article we illustrate numerical experiments for different
benchmark problems.
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1 Introduction

We study real-life problems in the direction of deposition processes given by
transport and reaction models.

The modeling is based an a homogenization of the underlying media, see [3]
and [4].

We deal with the following processes in the fluid transport:

– Transport, Sorption and Reaction of the mobile
concentration in mobile Groundwater



2

– Sorption and Reaction of the immobile concentration
in the immobile Groundwater

– Kinetic Sorption and Reaction in the adsorpted phase

Based on such processes the derived modeling equations are given as:

φ ∂t C
L
i + ∂t (g(1 − φ− φim)ρCad

i )

+ ∇ · (q CL
i −D ∇ CL

i )

= −λi(φC
L
i + g(1 − φ− φim)ρCad

i )

+
∑

k(i)

λk(φCL
k + g(1 − φ− φim)ρCad

k )

− αe(i)(CL
i −GL

i ) + Q̃d
i −QfρfC

L
i (1)

Ci
L : i-th concentration of the mobile species

Ci
ad : i-th concentration of the adsorbed pollutant

Gi
L : i-th concentration solved in the immobile

groundwater
λi : i-th decay rate (λ0 = 0.0)
q : Darcy-velocity-vector
D : Diffusive-dispersive tensor
φ : effective porosity
φim porosity of the immobile aquifer
ρ : density of the aquifer
g : factor for matrix-surface for the immobile and

mobile part
αe(i) : element rate for exchange after Coat-Smith
Qf : fluid sources or sinks

Q̃i : Sources or sinks for the i-th species
ρf : fluid density
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Formulation of the equilibrium sorption :

Henry − Isotherm :

Cad
i = K

e(i)
d CL

i (2)

Langmuir− Isotherm :

Cad
i =

bκ

1 + bCL
e(i)

CL
i (3)

Freundlich− Isotherm :

Cad
i =

Knl(C
L
e(i))

p

CL
e(i)

CL
i (4)

K
e(i)
d : element specified Kd value for the Henry-Isotherm

b : element specified sorption-constant for the
Langmuir-Isotherm

κ : element specified sorption-capacity of Langmuir
Knl : element specified sorption-constant for the

Freundlich-Isotherm
p : element specified exponent for the

Freundlich-Isotherm
Formulation for the kinetic Sorption :

Henry − Isotherm :

∂

∂t
Cad

i = ke(i)
α (K

e(i)
d CL

i − Cad
i ) (5)

+λiC
ad
i +

∑

k(i)

λkC
ad
k )

Langmuir− Isotherm :

∂

∂t
Cad

i = ke(i)
α (

bκ

1 + bCL
e(i)

CL
i − Cad

i ) (6)

+λiC
ad
i +

∑

k(i)

λkC
ad
k )

Freundlich− Isotherm :

∂

∂t
Cad

i = ke(i)
α (

Knl(C
L
e(i))

p

CL
e(i)

CL
i − Cad

i ) (7)

+λiC
ad
i +

∑

k(i)

λkC
ad
k )

kα : element specified velocity-rate for the kinetic sorption
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Formulation of the immobile pore-water :

∂

∂t
(φim GL

i + (1 − g)(1 − φ− φim)ρGad
i ) (8)

= −λi(φimG
L
i + (1 − g)(1 − φ− φim)ρGad

i )

+
∑

k(i)

λk(φimG
L
k + (1 − g)(1 − φ− φim)ρGad

k )

+αe(i)(CL
i −GL

i )

(9)

Gi
ad : i-th concentration solved in the immobile

groundwater from the adsorbed species

1.1 Description of the physical model

The physical motivation arose to model a nonlinear fluid transport in a porous
media with multiple phases.

The following processes are included to the physical model:

– Reaction and Transport of radioactive waste.

– Four different phases in which the species can be.

– Species in the Mobile phase of the groundwater
are transported by the flow.

– Species in the immobile phase of the groundwater
are remain at a fixed position.

– Species could be adsorbed by the matrix in a
mobile adsorbed and an immobile adsorbed phase.

In figure 1, we see the different species that are located in the four phases.

Based on the important sorption processes, which are influencing nonlinear
the model equations, the solutions are delicate to obtain in an analytical frame-
work.

We concentrate on the main idea of the traveling waves, which allows to
transform into ordinary differential equations. Physically, the traveling waves
are paths of the moving species on which they react with other species.

The paper is organized as follows. One of the main contributions are the one-
dimensional analytical solutions. The application for spatial dependent equations
are described in section 2. In section 3, the construction of the nonlinear differ-
ential equations in different situations is presented. The verification of the new
discretization method in various numerical examples is performed in section 4.
At the end of this paper we introduce future works.
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immobile pore water

immobile adsorbed phase

mobile pore water

adsorbed phase

kα
e(i)

α e(i)

CL
i α e(i)

iGad

Water C
i

ad

iGL

Porous media

Fig. 1. Concentration in the porous media

2 Spatial dependent Case

For the spatial dependent case, we restrict us to the following equations, which
are coupled with the reaction terms and are presented as follows.

∂tRiui + ei(x, t)∇ · v ui = −λi gi(t) Ri ui + λi−1 Ri−1 gi−1(t) ui−1 (10)

+β(−ui + uim,i) in Ω × (0, T ) ,

ui,0(x) = ui(x, 0) on Ω , (11)

∂tRiuim,i = −λi Ri gi(t) uim,i + λi−1 Ri−1 gi−1(t) uim,i−1 (12)

+β(−uim,i + ui) in Ω × (0, T ) ,

uim,i,0(x) = uim,i(x, 0) on Ω , (13)

i = 1, . . . ,m ,

where m is the number of equations and i is the index of each component.
The unknown mobile concentrations ui = ui(x, t) are considered in Ω× (0, T ) ⊂
R

n×R
+, where n is the spatial dimension. The unknown immobile concentrations

uim,i = uim,i(x, t) are considered in Ω× (0, T ) ⊂ R
n×R

+, where n is the spatial
dimension. The retardation factors Ri are constant and Ri ≥ 0. The kinetic part
is given by the factors λi. They are constant and λi ≥ 0.

Further ei(, x, t) : R × R
+ → R

+, i = 1, . . . ,m, fi(t) : R
+ → R

+, i =
1, . . . ,m are the polynomial functions of the time-dependent convection and
reaction term.

For the initialization of the kinetic part, we set λ0 = 0. The kinetic part is
linear and irreversible, so the successors have only one predecessor. The initial
conditions are given for each component i as constants or linear impulses. For the
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boundary conditions we have trivial inflow and outflow conditions with ui = 0
at the inflow boundary. The transport part is given by the velocity v ∈ R

n and
is piecewise constant, see [13] and [14]. The exchange between the mobile and
immobile part is given by β.

2.1 Analytical solutions for spatial-dependent convection equation

Scalar case We deal with the following spatial-dependent convection equation:

∂tu+ e(x, t)∂xu = 0 , x, t ∈ [0, L] × [0, T ], (14)

where we assume e(x, t) = f(x)g(t) and we have polynomial functions for f(x)

and g(t), given as f(x) =
∑I

i=0 aix
i, where I ∈ N

+
0 is a given number, so for

example f(x) = (a0 + a1x).
To solve the equation 88, we transform into a new space variable, Z by:

dZ =
dx

f(x)
= g(t)dt (15)

where

Z =

∫

1

f(x)
dx =

ln(f(x))

f ′(x)
(16)

and we obtain the following equation:

∂tu+ g(t)∂Zu = 0 , Z, t ∈ [Z(0), Z(X)] × [0, T ], (17)

where Z(x) = ln(f(x))
f ′(x) and X ∈ R+.

This equation, we can solve the results of [17].

Example 1. We deal with

∂tu+ (1 + ax)∂xu = 0 , x, t ∈ [0, X ] × [0, T ], (18)

where a ∈ R
+ is a constant and X ∈ R

+.
The initial condition is defined for x ∈ (0, 1),

u(x, 0) =

{

b , x ∈ (0, 1)
0 , otherwise

, (19)

where b ∈ R
+ is a constant,

The transformed equation is given as:

∂tu+ ∂Zu = 0 , Z, t ∈ [0, Z(X)] × [0, T ], (20)

with the initial condition:

u(Z, 0) =

{

b , Z ∈ (0, Z0)
0 , otherwise

, (21)

and Z = ln(1+ax)
a

, with Z0 = ln(1+aL)
a

, where L = 1.
The solution is given as,

u(Z(x), t) =







0 , Z(0) ≤ Z(x) ≤ Z(t)
b , Z(t+ L) ≤ Z(x) ≤ Z(t+ L)
0 , Z(t+ L) ≤ Z(x)

. (22)
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Vectorial case

∂tRiui + ei(x, t) vi ∂xui = −λi gi(t) Ri ui + λi−1 Ri−1 gi−1(t) ui−1(23)

in Ω × (0, T ) ,

ui,0(x) = ui(x, 0) on Ω , (24)

(25)

where m is the number of equations and i is the index of each component. The
unknown mobile concentrations ui = ui(x, t) are considered in Ω × (0, T ) ⊂

R
n × R

+, where n is the spatial dimension.
Further we assume ei(, x, t) = f(x)gi(t) : R × R

+ → R
+, i = 1, . . . ,m,

gi(t) : R
+ → R

+, i = 1, . . . ,m and f(x) are the polynomial functions.
For the boundary conditions we use zero concentrations at the inflow bound-

ary x = 0. The initial conditions are defined for x ∈ (0, 1),

u1(x, 0) =

{

b , x ∈ (0, 1)
0 , otherwise

,

ui(x, 0) = 0 , i = 2, . . . ,m ,

(26)

where b is a constant.
To solve the equation 29, we transform into a new space variable, Z by:

dZ =
dx

f(x)
= gi(t)dt (27)

where

Z =

∫

1

f(x)
dx =

ln(f(x))

f ′(x)
(28)

and we obtain the following equation:

∂tRiui + gi(t) vi ∂Z ui (29)

= −λi gi(t) Ri ui + λi−1 Ri−1 gi−1(t) ui−1 in [0, Z0] × (0, T ) ,

ui,0(Z) = ui(Z, 0) on [0, Z0] , (30)

where Z0 = ln(f(L))
f ′(L) .

We use the Laplace transformation for the translation of the partial differen-
tial equation to the ordinary differential equation. The transformations for this
case are given in [6], [18] and [21].

In equation (??) we apply the Laplace transformation given in [1] and [5].
For that we need to define the transformed function û = û(s, t):

ûi(s, t) :=

∞
∫

0

ui(Z, t) e
−sZ dx . (31)

From (??), the functions ûi satisfy the transformed equations

∂tû1 = − (λ1 g1(t) + sv1 g1(t) ) û1 , (32)

∂tûi = − (λi gi(t) + svi gi(t) ) ûi + λi−1 gi−1(t)ûi−1 , (33)
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and the transformed initial conditions for s ∈ (0,∞),

û1(s, 0) =
b

s
(1 − e−s) , (34)

ûi(s, 0) = 0 , i = 2, . . . ,m .

Lemma 1. We deal with the linear differential equations (48) and (33) where
gi : R → R, m = 1, . . . ,m are a Riemann integrable functions.

Then the analytical solution of equations (48) and (33) are given as:

û1(t) = û01 exp(−λ1

∫ t

0

g1(t̃)dt̃− sv1

∫ t

0

g1(t̃)dt̃), (35)

ûi(t) = û0i exp(−λi

∫ t

0

gi(t̃)dt̃− svi

∫ t

0

gi(t̃)dt̃) (36)

+û0i−1λi−1 exp(−λi

∫ t

0

gi(t̃)dt̃− svi

∫ t

0

gi(t̃)dt̃) (37)

·

∫ t

0

exp(λi

∫ s1

0

gi(t̃)dt̃+ svi

∫ s1

0

gi(t̃)dt̃) gi−1(s1)ûi−1(s1) ds1

where û(0) = (û01, . . . , û0i)
t are the initial condition. We assume i components.

Proof. The idea is based on the integration rule of a linear differential equation
and we apply the recursive arguments.
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Example 2. We obtain the analytical solution for i = 1, 2, 3 with gi : R → R:

û1(t) = û01 exp(−λ1

∫ t

0

f1(t̃)dt̃− sv1

∫ t

0

g1(t̃)dt̃), (38)

û2(t) = û02 exp(−λ2

∫ t

0

g2(t̃)dt̃− sv2

∫ t

0

g2(t̃)dt̃) (39)

+û01λ1 exp(−λ2

∫ t

0

g2(t̃)dt̃− sv2

∫ t

0

g2(t̃)dt̃)

·

∫ t

0

exp

(

−λ1

∫ s1

0

g1(t̃)dt̃− sv1

∫ s1

0

g1(t̃)dt̃+ λ2

∫ s1

0

g2(t̃)dt̃+ sv2

∫ s1

0

g2(t̃)dt̃

)

g1(s1) ds1

û3(t) = û03 exp(−λ3

∫ t

0

g3(t̃)dt̃− sv3

∫ t

0

g3(t̃)dt̃) (40)

+û02λ2 exp(−λ3

∫ t

0

g3(s1)ds1 − sv3

∫ t

0

g3(s1)ds1)

·

∫ t

0

exp

(

−λ2

∫ s1

0

g2(t̃)dt̃− sv2

∫ s1

0

g2(t̃)dt̃+ λ3

∫ s1

0

g3(t̃)dt̃+ sv3

∫ s1

0

g3(t̃)dt̃

)

g2(s1) ds1

+û01λ1λ2 exp(−λ3

∫ t

0

f3(t̃)dt̃− sv3

∫ t

0

g3(t̃)dt̃)

·

∫ t

0

exp

(

−λ2

∫ s1

0

g2(t̃)dt̃− sv2

∫ s1

0

g2(t̃)dt̃+ λ3

∫ s1

0

f3(t̃)dt̃+ sv3

∫ s1

0

g3(t̃)dt̃

)

·

(

∫ s1

0

exp

(

−λ1

∫ s2

0

g1(t̃)dt̃− sv1

∫ s2

0

g1(t̃)dt̃+ λ2

∫ s2

0

g2(t̃)dt̃+ sv2

∫ s2

0

g2(t̃)dt̃

)

(41)

·g1(s2) ds2

)

g2(s1) ds1

Remark 1. The closed forms are only possible for a helpful simplification with
fi(t) = f(t), ∀i = 1, . . . ,m, here we obtain an analytical integrable for of the
integral in equation (36). We can use the primitive
∫ t

0 exp(
∫ s

0 λf(s1)ds1)f(s) ds = 1
λ

exp(
∫ s

0 λf(s1)ds1 while λ ∈ R is a constant.
In general, the integral in equation (36) can be solved with numerical inte-

gration.

2.2 Special case

We assume g(t) = gi(t), ∀ i = 1, . . . ,m.
Based on this assumption, we can follow the linear case, see also below the

proof.
We denote for further solutions:

Λi =
i−1
∏

j=1

λj . (42)
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The equation (33) is solved with the solution methods for the ordinary dif-
ferential equation, described in [18], and the more general case is presented in
[6].

Lemma 2. The exact solution of (48) and (33) are given as:

û1 = û1(s, 0) e−(λ1+sv1)
R

t

0
f(t̃) dt̃ , (43)

for i = 2, . . . ,m ,

ûi = û1(s, 0) Λi

i
∑

j=1

e−(λj+svj)
R

t

0
f(t̃) dt̃

i
∏

k=1
k 6=j

(s(vk − vj) + λk − λj)
−1

. (44)

Proof. The case i = 1 is trivial:

∂tû1 = − (λ1 g(t) + sv1 g(t) ) û1 , (45)

(46)

we have to inset the solution in equation (45):

û1 = û1(s, 0) e−(λ1+sv1)
R

t

0
f(t̃) dt̃ , (47)

and we obtain:

∂tû1 = − (λ1 g(t) + sv1 g(t) ) û1 , (48)

(49)

which is the result.
The proof idea for i > 1 is given to the transformation to the linear case. see

[16].
The derivation of ûi is given as:

∂tûi = g(t)∂̂tui,linear , (50)

where the linear solutions ui,linear can also be written with kernel e−(λj+svj)
R

t

0
f(t̃) dt̃

instead of kernel e−(λj+svj)t. The linear solutions are given and proofed in [16].
One can easily re-substitute the linear to the time-dependent kernel with out

loosing any generality.
So we have to fulfill:

∂tûi = g(t) (− (λi + svi ) ûi + g(t)λi−1ûi−1) , (51)

and we have

g(t)∂tûi,linear = g(t) (− (λi + svi ) ûi,linear + g(t)λi−1ûi−1,linear) , (52)

∂tûi,linear = − (λi + svi ) ûi,linear + λi−1ûi−1,linear , (53)

while the linear solutions with the time-dependent kernel fulfilled the equation
(53) and we are done.
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The analytical solution in (44) can have a singular point for a single value
of s. Nevertheless, this causes no difficulties when we apply the inverse Laplace
transformation and thus we do not need to discuss this issue any further.

To obtain the exact solution of (??), we must apply the inverse Laplace
transformation on (48). For that we have to apply some algebraic manipulations.

For the first case, let us assume that vj 6= vk and λj 6= λk for j 6= k and
∀j, k = 1, . . . ,m. Then we can denote

λkj = λjk :=
λj − λk

vj − vk

. (54)

Furthermore, for the next transformation, we require that the values λjk are
different for each pair of indices j and k.

The factors Λj,i with λj 6= λk for j 6= k and the factor Λjk,i with λjk 6= λjl

for k 6= l are given by

Λj,i =







i
∏

k=1
k 6=j

1

λk − λj






, Λjk,i =









i
∏

l=1
l 6=j
l 6=k

λjl

λjl − λjk









, (55)

where we have the following assumptions:

1. vj 6= vk ∀j, k = 1, . . . ,m, for j 6= k , (56)

2. λj 6= λk ∀j, k = 1, . . . ,m, for j 6= k , (57)

3. λjk 6= λjl ∀j, k, l = 1, . . . ,m, for j 6= k ∧ j 6= l ∧ k 6= l, (58)

4. vj 6= vk and λj 6= λk ∀j, k = 1, . . . ,m, for j 6= k . (59)

From (55), the last term in (44) for a given index j can be rewritten in the
following form,

i
∏

k=1
k 6=j

(s(vk − vj) + λk − λj)
−1

= Λj,i

i
∑

k=1
k 6=j

λjk

s+ λjk

Λjk,i . (60)
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From (34), adopted in (50) and (44), the standard inverse Laplace transformation
can be used and the solution ui for (??) is given by

u1(Z, t) (61)

= exp(−λ1

∫ t

0

g(t̃) dt̃)











0 , Z(0) ≤ Z(x) < Z(v1
∫ t

0 g(t̃) dt̃)

b , Z(v1
∫ t

0 g(t̃) dt̃) ≤ Z(x) < Z(v1
∫ t

0 g(t̃) dt̃+ L)

0 , Z(v1
∫ t

0 g(t̃) dt̃+ L) ≤ Z(x)

,

ui(Z, t) = Λi







i
∑

j=1

exp(−λj

∫ t

0

g(t̃) dt̃)Λj,i

i
∑

k=1
k 6=j

Λjk,iAjk






, (62)

Ajk =



































0 , Z(0) ≤ Z < Z(vj

∫ t

0
g(t̃) dt̃)

b (1 − exp(−λjk(X(Z) − vj

∫ t

0
g(t̃) dt̃))) , Z(vjt) ≤ Z < Z(vj

∫ t

0
g(t̃) dt̃+ L)

b exp(−λjk(X(Z) − vj

∫ t

0 g(t̃) dt̃− 1))

−b exp(−λjk(X(Z) − vj

∫ t

0 g(t̃) dt̃)) , Z(vj

∫ t

0 g(t̃) dt̃+ L) ≤ Z

.(63)

where the transformation is given as Z(x) = ln(f(x))
f ′(x) and L = 1 and inverse

transformation is given as X(Z) = Z−1(x).

3 Analytical solutions for nonlinear convection-reaction

equations

Scalar case We deal with the following nonlinear convection-reaction equation,
that are motivated of the Freundlich and Langimur Isotherms. We concentrate
on the constant case of the convection part, but we could also use time- and
spatial dependent functions; see the previous section:

∂tu
p + v∂xu = −λup , x, t ∈ [0, L]× [0, T ], (64)

where we assume v ∈ R
+ and p ∈ N

+
0 .

u(x, 0) =

{

1 , x ∈ (0, 1)
0 , otherwise

. (65)

To solve the equation 64, we transform into a new variable c̃:

u(x, t) = ũ(η), η = x− vt, (66)

where we have:

∂up

∂t
=
∂ũp(η)

∂t
=
∂ũp

∂η

∂η

∂x
= pũp−1ũ′

∂η

∂t

= p(−v)ũp−1ũ′ , (67)
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and

∂u

∂x
=
∂ũ(η)

∂x
=
∂ũ

∂η

∂η

∂x

= ũ′ (68)

and we obtain the following equation:
{

−vp ũp−1 ũ′ + vũ′ = −λũp , η = x− vt , vt ≤ x ≤ vt+ 1
0, else

, (69)

where ũ′ = ∂ũ
∂η

, and we obtain:

{

(−vp ũ−1 + ũ−p)∂ũ = −λ∂η , η = x− vt , vt ≤ x ≤ vt+ 1
0, else

, (70)

and we obtain:
{

−vp ln(ũ) − pũ−p−1 = −λη + C0(x) , η = x− vt , vt ≤ x ≤ vt+ 1
0, else

, (71)

with C0(x) is the constant, that can be found with the initial value of c0(x).
While the initial function is given as:

C0(x) = −vp ln(˜̃u) − p˜̃u−p−1 + λx , η = x , 0 ≤ x ≤ 1, (72)

0 else . (73)

where ˜̃u = u(x, 0).
This equation, we can solve with fix-point solvers or Newton solvers.

Example 3. We deal with

∂tu
p + v∂xu = −λup , x, t ∈ [0, L]× [0, T ], (74)

where L = 1.
The initial condition is defined for x ∈ (0, 1),

u(x, 0) =

{

1 , x ∈ (0, 1)
0 , otherwise

. (75)

We apply: u(x, t) = ũ(η) and the transformed equation is given as:

{

−vpũ−p−1 + vp ln(ũ) = −λη + C0(x) , η = x− vt , vt ≤ x ≤ vt+ 1
0, else

, (76)

with C0(x) is the constant, that can be found with the initial value of c0(x).
While the initial function is given as:

{

C0(x) = −vpũ−p−1 + vp ln(ũ) + λx , η = x , 0 ≤ x ≤ 1
0, else

. (77)
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Vectorial case

Example 4. We deal with

∂tu
p
1 + v∂xu1 = −λ1u

p
1 , x, t ∈ [0, L]× [0, T ], (78)

∂tu
p
2 + v∂xu2 = −λ2u

p
2 + λ1u

p
1 , x, t ∈ [0, L]× [0, T ], (79)

where L = 10, T = 10.

The initial condition is defined for x ∈ (0, 1),

u1(x, 0) =

{

1 , x ∈ (0, 1)
0 , otherwise

. (80)

u2(x, 0) =

{

1 , x ∈ (0, 1)
0 , otherwise

. (81)

We apply: u1(x, t) = ũ1(η), u2(x, t) = ũ2(η) and the transformed equation is
given as:







−vpũ
−p−1
1 + vp ln(ũ1)

= −λ1η + C0(x) , η = x− vt , vt ≤ x ≤ vt+ 1
0, else

, (82)







−vpũ
−p−1
2 + vp ln(ũ2)

= −λ2η + λ1

∫ 1

0 ( ũ1

ũ2
)pdη + C1(x) , η = x− vt , vt ≤ x ≤ vt+ 1

0, else

, (83)

with C0(x), C1(x) is the constant, that can be found with the initial value of
u1(x, 0) and u2(x, 0).

While the initial function is given as:

{

C0(x) = −vp ˜̃u−p−1
1 + vp ln( ˜̃u1) + λ1x , η = x , 0 ≤ x ≤ 1

0, else
,(84)

{

C1(x) = −vp ˜̃u−p−1
2 + vp ln( ˜̃u2) + λ2x+ λ1

∫ 1

0 ( ũ1

ũ2
)pdx , η = x , 0 ≤ x ≤ 1

0, else
,(85)

where ˜̃u1(η) = u1(x, 0), ˜̃u2(η) = u2(x, 0). The initial-values can be solved di-
rectly.

The full solutions (82) and (83) are solved by a Newton’s method.

4 Numerical Experiments

4.1 First experiment: Spatial-dependent Problem

We deal with

∂tu+ (1 + ax)∂xu = 0 , x, t ∈ [0, L]× [0, T ], (86)
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where a = 1 and L = 1, e(x) = 1 + ax.
The initial condition is defined for x ∈ (0, 1),

u(x, 0) =

{

b , x ∈ (0, 1)
0 , otherwise

, (87)

where b = 1,
The transformed equation is given as:

∂tu+ ∂Zu = 0 , Z, t ∈ [0, Z0] × [0, T ], (88)

with the initial condition:

u(Z, 0) =

{

b , Z ∈ (0, Z0)
0 , otherwise

, (89)

and Z = ln(1+ax)
a

, with Z0 = ln(1+aL)
a

, where L = 1.
The solution is given as,

u(Z(x), t) =







0 , Z(0) ≤ Z(x) ≤ Z(t)
b , Z(t) ≤ Z(x) ≤ Z(t+ 1)
0 , Z(t+ 1) ≤ Z(x)

, (90)

where b = 1.
In the following figure 2, we see the spatial-dependent problem.

t = 0 t = 2 t = 3

x
0 2 4 6 8 10

0

0,2

0,4

0,6

0,8

1,0

Fig. 2. Experiment with the spatial-dependent problem, here t = 0.0.

Remark 2. The results shows the shifted solution of the spatial dependent case.
Here we obtain the exact solution with the spatial dependent case.
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4.2 Second experiment: descending retardation factor with two
species (Transport and Decay)

We use ascending parameters for the retardation factors. The retardation factors
are given as R1 = 10, R2 = 0.0. The reaction factors are given as λ1 = 2.0, λ2 =
1.8. Further g(t) = gi(t) = t, i = 1, . . . , 2.

With the assumptions:

– λj 6= λk

– vj 6= vk

– λjk 6= λjl

The initial conditions are given as

u1(x, 0) =

{

b , x ∈ (0, 1)
0 , otherwise

,

ui(x, 0) = 0 , i = 2, . . . ,m ,

(91)

where b = 1.
The velocity is given as v = 1, where each species velocity is given as vi =

v
Ri
, i = 1, . . . , 2.
The end time is given as t ∈ [0, T ], T = 10 and the spacial domain x ∈ [0, 10].
Here we apply the reduced equation (61) and (62).
The idea is to select the dominated decay chains and to apply them in the

scheme.
The spatial-time-dependent cases is given in Figure 3 and 4 .
The mass conserved spatial-timedependent cases of the 2 species is given in

the Table 1 and Figure 5

t=0 t=0.5 t=1 t=2 t=3 t=4 t=6

u1 1 0.3678794412 0.1353352832 0.007287706133 0 0 0

u2 0 0.6220667333 0.8428446943 0.8987320224 0.6133217504 0.1865886310 0
2

P

i=1

ui 1 0.9899461745 0.9781799775 0.9060197285 0.6133217504 0.1865886310 0

Table 1. Mass conservation of two descending parameters for the spatial-
timedependent case.

Remark 3. Here we can see the influence of at least five species to our analytical
equations. We can concentrate on the dominant species and save so computa-
tional time without loosing accuracy. Such analytical results helps to generalize
analytical solutions with efficient computations.
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4.3 Nonlinear experiments

In the following experiment, we deal with a nonlinear sorption (Freundlich
Isotherm) in equilibrium and apply the equations:

∂

∂t
(φu+ g(1 − φ)ρup) + q

∂u

∂x
−D

∂2u

∂x2
= 0 forx > 0, t > 0 (92)

u(0, t) = u0ψ(t), u(x, 0) = 0 , x > 0, (93)

with ψ(0) = 0 and ψ(t) → 1 for t→ ∞ (94)

where φ = 0.5, q = 0.5, D = 0.005 and g = 1.
The exact solution for the equilibrium case are given as:

u(x, t) = f(ξ) = u0(1 − exp(
ab

a+ u
(1−p)
0

(1 − p)

c
ξ))

1
(1−p) for ξ < 0; (95)

u(x, t) = f(ξ) = 0.0 for ξ ≥ 0 (96)

ξ = x− vt (97)

v =
bu

(1−p)
0

a+ u
(1−p)
0

(98)

a =
g(1 − φ)ρ

φ
b =

q

φ
c =

D

φ
(99)

with the inflow-boundary:

u(0, t) = u0

(

1 − exp

(

ab

a+ u
(1−p)
0

(1 − p)

c
(−

bu
(1−p)
0

a+ u
(1−p)
0

)

))
1

(1−p)

(100)

The underlying idea is to follow the traveling waves : ξ = x−vt , front which
is moving in one direction. Such a transformation allows to consider a simpler
ODE system and accelerate the solver process.

The numerical are given in Figure 6.
Error between the numerical solution and the exact

solution are given in Figure 7.

Remark 4. A nonlinear experiment is computed with the software UG for differ-
ent times. Based on fast nonlinear solvers for ordinary differential equations, we
could simple extend the idea to a partial differential equation. Such analytical
results helps to generalize the nonlinear transport problem to multidimensional
applications.

5 Conclusions

We derived analytical solutions of convection dominant equations with spatial
and nonlinear dependencies. The spatial-dependent and nonlinear differential
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equations are transformed to simpler ordinary differential equations, which can
be solved analytically.

The analytical test functions can be embedded to discretization methods for
the convection diffusion reaction equation.

Further mobile and immobile equations can be treated with decomposition
methods that allow to reduce the computational complexity and obtain higher-
order discretization schemes.

We could confirm also the new methods with the analytical and numerical
test examples and present the higher-order results of the underlying schemes.

In future the decomposition methods and analytically-improved methods can
be generalized for non-smooth and non-linear problems in multi-dimensions.
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Fig. 3. Experiment with two descending parameters for the spatial-timedependent case
with x ∈ [0, 1], t ∈ [0, 3].
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Fig. 4. Experiment with two descending parameters for the spatial-timedependent case
with x ∈ [0, 1], t ∈ [3, 6].
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Fig. 5. Experiment with two descending parameters for the spatial-timedependent case
in mass conserved version x ∈ [0, 1], t ∈ [0, 6].
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Fig. 6. The traveling of the front Wave after t = 1 and t = 2.
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Fig. 7. The relative L1-error for 1 components of the numerical solution of a nonlinear
problem in equilibrium.


