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Mixed FEM of higher-order for a frictional contact problem

Andreas Schröder1,∗

1 Unter den Linden 6, 10099 Berlin, Germany

This paper presents mixed finite element methods of higher-order for an idealized frictional contact problem in linear elasticity.
The approach relies on a saddle point formulation where the frictional contact condition is captured by a Lagrange multiplier.
The convergence of the mixed scheme is proven and some a priori estimates for the h- and p-method are derived. Furthermore,
a posteriori error estimates are presented which rely on the estimation of the discretization error of an auxiliary problem
and some further terms capturing the error in the friction and complementary conditions. Numerical results confirm the
applicability of the a posteriori error estimates within h- and hp-adaptive schemes.
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1 Introduction

The aim of this note is to derive a mixed finite element method of higher-order for an idealized frictional contact problem in
linear elasticity. We consider a model problem with Tresca friction which captures the main characteristics of many frictional
contact problems. The discretization approach is based on mixed finite elements for contact problems introduced by Haslinger
et al. in [1]. This approach was originally developed for low-order finite elements and is based on a saddle point formulation.
In this paper, we extend it to a higher-order discretization. The introduced Lagrange multiplier is defined on the contact
boundary and enforces the frictional condition via box constraints in some Gauss quadrature points.

The stability of the mixed scheme is guaranteed by a discrete inf-sup condition. The proof of its convergence is based on
the verification of some approximation properties and intensively utilizes the definition of the box constraints in Gauss points
enabling to allow for higher-order interpolation, cf. [2].

The mixed method also allows for a posteriori error estimates and their application within h- and hp-adaptive schemes. The
error control relies on the estimation of the discretization error of an auxiliary problem and some further terms which capture
the error in the friction and complementary conditions.

Higher-order discretizations based on mixed schemes for frictional contact problems are rarely studied in literature. We
refer to [3] for some estimates using a mortar approach. The definition of the contact conditions in some quadrature points
only is already suggested in this work. To derive similar results for Signorini’s problem with geometrical contact conditions,
we refer to [4, 5].

2 Mixed variational formulation of an idealized frictional problem

Let Ω ⊂ Rk, k ∈ N, be a domain with a polygonal boundary Γ := ∂Ω. Moreover, let ΓD ⊂ Γ be closed with positive
measure and let ΓC ⊂ Γ\ΓD with ΓC $ Γ\ΓD and ΓN := Γ\(ΓD ∪ ΓC). L2(Ω), H1(Ω) and H1/2(ΓC) denote the usual
Sobolev spaces and H1

D(Ω) := {v ∈ H1(Ω) | γ(v) = 0 on ΓD} with the trace operator γ. The space H−1/2(ΓC) denotes
the topological dual space of H1/2(ΓC) with the norms ‖ · ‖−1/2,ΓC

and ‖ · ‖1/2,ΓC
, respectively. Let (·, ·)0,ω , (·, ·)0,Γ′ be

the usual L2-scalar products on ω ⊂ Ω and Γ′ ⊂ Γ, respectively. We define ‖v‖20,ω := (v, v)0,ω and omit the subscript ω
whenever ω = Ω. Moreover, ‖ · ‖21 is the usual H1-norm. We denote the gradient operator in the weak sense by ∇ and the
Laplace operator by ∆. For functions in L2(Ω) or L2(ΓC), the inequality symbols ≥ and ≤ are defined by means of “almost
everywhere”.

An idealized frictional problem is to find a function u ∈ H1
D(Ω) such that

−∆u = f in Ω, ∂nu = 0 on ΓN , |∂nu| ≤ s with

{ |∂nu| < s⇒ u = 0,
∂nu = s⇒ u ≥ 0,
−∂nu = s⇒ u ≤ 0

}
on ΓC (1)

for f ∈ L2(Ω) and s ∈ L∞(ΓC), s > 0, [1, 6]. It is well-known, that u ∈ H1
D(Ω) is a solution if and only if the variational

inequality

(∇u,∇(v − u))0 + (s, |γ(v)| − |γ(u)|)0,ΓC
≥ (f, v − u)0 (2)

holds for all v ∈ H1
D(Ω) which is equivalent to the minimization problem (E + j)(u) = minv∈H1

D
(Ω)(E + j)(v) with

j(v) := (s, |γC(v)|)0,ΓC
and the trace opterator γC := γ|ΓC

, [6]. Since j is strictly convex, continuous and coercive,
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the unique existence of a minimizer u is guaranteed. With Λ :=
{
µ ∈ L2(ΓC) | |µ| ≤ 1

}
it is easy to see that j(v) =

supµ∈Λ(µ, sγC(v))0,ΓC
and, therefore, (E + j)(u) = infv∈H1

D(Ω) supµ∈Λ L(v, µ) with the Lagrange functional L(v, µ) :=
E(v) + (µ, sγC(v))0,ΓC

on H1
D(Ω)×Λ. Thus, u is a minimizer of E + j if (u, λ) ∈ H1

D(Ω)×Λ is a saddle point of L. The
existence of a saddle point is guaranteed by the boundedness of Λ, [7, Prop IV.2.3 and Remark IV.2.1]. Due to the stationarity
conditions, the pair (u, λ) ∈ H1

D(Ω)× Λ is equivalently characterized by the mixed variational formulation,

(∇u,∇v)0 = (f, v)0 − (λ, sγC(v))0,ΓC
,

(µ− λ, sγC(u))0,ΓC
≤ 0

(3)

for all v ∈ H1
D(Ω) and µ ∈ Λ. Since H1/2(ΓC) is dense in L2(ΓC), we conclude from (3) that the Lagrange multiplier is

unique. It is easy to see that −sλ = ∂nu, cf. [1]

To define a higher-order finite element discretization based on quadrangles or hexahedrons, let Th and EH be finite element
meshes of Ω and ΓC with mesh sizes h and H , respectively. Moreover, let ΨT : [−1, 1]k → T ∈ Th and ΦE : [−1, 1]k−1 →
E ∈ EH be bijective transformations and let pT , qE ∈ N be degree distributions on Th and EH , respectively. Using the
polynomial tensor product space Sqk of order q on the reference element [−1, 1]k, we define

Sph :=
{
v ∈ H1

D(Ω) | ∀T ∈ Th : v|T ◦ΨT ∈ SpT

k

}
,

Mq
H :=

{
µ ∈ L2(ΓC) | ∀E ∈ EH : µ|E ◦ ΦE ∈ SqE

k−1

}
.

Moreover, we set

ΛqH := {µqH ∈M
q
H | ∀E ∈ EH ,∀x ∈ CE : |µqH(ΦE(x))| ≤ 1},

where CE denotes a finite set of nodes. The discrete saddle point problem of the idealized frictional problem is then to find a
pair (uph, λ

q
H) ∈ Sph × ΛqH such that

(∇uph,∇v
q
h)0 = (f, vph)0 − (λqH , sγC(vph))0,ΓC

,

(µqH − λ
q
H , sγC(uph))0,ΓC

≤ 0
(4)

for all vph ∈ Sph and µqH ∈ ΛqH . Due to the boundedness of ΛqH , the existence of a discrete saddle point is guaranteed by
the same arguments as in the non-discretized case. The first component of the discrete saddle point is unique. The second
component is unique if, for instance, a discrete inf-sup condition is fulfilled, i.e., there exists an α > 0 such that

α‖µqH‖τ,ΓC
≤ sup
vp

h∈S
p
h, ‖v

p
h‖1=1

(µqH , sγC(vph))0,ΓC
, τ ≤ 0. (5)

Remark 2.1 Indeed, it is shown in [8] that (5) is even uniformly fulfilled if hH−1 max{1, q}2p−1 is sufficiently small for
constant p and q as well as τ = −1/2.

3 A priori estimates

Let Ω be a subset of R2 and the polynomial degree distributions p and q be constant. The convergence of the mixed method
can be stated without any regularity assumptions using some standard techniques of convex analysis. Only, the coercivity
and the approximation properties of Sqh and Mq

H are used. In the following, a sequence {vph} with vph ∈ S
p
h converges to

v ∈ H1
D(Ω) if vph → v as h→ 0 for a fixed p or as p→∞ for a fixed h. Similarly, the convergence of a sequence {µqH} with

µqH ∈ M
q
H is defined. Moreover, we omit h,H → 0 and p, q → ∞ using the usual lim-notation. It is shown in [1, Theorem

1.1.5.3] that the sequence {uph} converges strongly to u and the sequence of Lagrange multipliers {λqH} converges weakly
to λ, if (i) for all v ∈ H1

D(Ω), there exists a sequence {vph} with vph ∈ S
p
h which converges strongly to v, (ii) for all µ ∈ Λ

there exists a sequence {µqH} with µqH ∈M
q
H which converges strongly to µ, and (iii) for all sequences {µqH} with µqH ∈ ΛqH

converging weakly to µ ∈ L2(ΓC), there holds µ ∈ Λ.
Condition (i) is fulfilled due to the approximation properties of Sph. In order to show that Conditions (ii) and (iii) are also

fulfilled, let CE , E ∈ EH , be the qE + 1 Gauss points. Note that polynomials P̂ of order 2qE + 1 are exactly integrated by the
quadrature rule defined by CE , i.e, with some weights αx̂ ≥ 0, there holds

∫ 1

−1
P̂ (x̂) dx̂ =

∑
x̂∈CE

αx̂P̂ (x̂). For polynomials
P on E ∈ EH we have

∫
E
P (x) dx =

∑
x̂∈CE

βx̂P (ΦE(x̂)) with βx̂ := αx̂|det∇ΦE(x̂)>∇ΦE(x̂)| ≥ 0, x̂ ∈ CE . Using
the set of points CE on each E ∈ EH , we define the standard interpolation operator IqH which maps continuous functions into
Mq
H . There holds

‖v − IqH(v)‖0,ΓC
. Hmin(q+1,θ)/qθ‖v‖θ,Γ1

C

for v ∈ Hθ(ΓC) with θ > 1/2, cf. [2, Theorem 5.6]. Here, . abbreviates ≤ up to a positive constant which is independent of
the mesh and the polynomial degree.
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Lemma 3.1 Let {µqH} with µqH ∈M
q
H be a bounded sequence in L2(ΓC) and v ∈ Hθ(ΓC) with θ > 1/2. It holds

|(µqH , v − I
q
H(v))0| . Hmin(q+1,θ)qθ‖v‖θ,ΓC

.

P r o o f. From Cauchy’s inequality as well as the interpolation estimate, we have

|(µqH , v − I
q
H(v))0,ΓC

| ≤ ‖µqH‖0,ΓC
‖v − IqH(v)‖0,ΓC

. Hmin(q+1,θ)/qθ‖v‖θ,ΓC
‖µqH‖0,ΓC

.

As the sequence {µqH} is assumed to be bounded in L2(ΓC), we obtain the assertion.

Theorem 3.2 {uph} converges strongly to u and {λqH} converges weakly to λ.

P r o o f. Let µ ∈ Λ and ε > 0. Due to the density of continuous functions in L2(ΓC), there exists a continuous function µε
on ΓC with ‖µ−µε‖0,Γ1

C
≤ ε. Define µ̄ε := max{min{µε, 1},−1}, then µ̄ε ∈ H1(ΓC) and ‖µ− µ̄ε‖0,ΓC

≤ ‖µ−µε‖0,ΓC
≤

ε. For a fixed q there exists an H so that ‖µ̄ε − IqH(µ̄ε)‖0,ΓC
≤ ε. Define µqH := IqH(µ̄ε) ∈ ΛqH , then ‖µ − µqH‖0,ΓC

≤
‖µ− µε‖0,Γ1

C
+ ‖µ̄ε − µqH‖0,ΓC

≤ 2ε, which gives us Condition (ii). The same holds for a fixed H .
Obvioulsy, for q ∈ {0, 1} we have ΛqH ⊂ Λ, so that Condition (iii) is immediately given. To show Condition (iii) for q ≥ 2,

let the sequence {µqH} with µqH ∈ M
q
H converge weakly to µ ∈ L2(ΓC) and v ∈ Hθ(ΓC) with θ > 1/2 and v ≥ 0. From

Lemma 3.1 we obtain

(µ± 1,∓v)0,ΓC
= lim(µqH ± 1,∓v)0,ΓC

= lim(µqH ± 1,∓(v − IqH(v))0,ΓC
∓ (µqH ± 1, IqH(v))0,ΓC

= ∓ lim(µqH ± 1, IqH(v))0,ΓC
= ∓ lim

∑
E∈EH

∑
x̂∈CE

βx̂(µqH(ΦE(x̂)± 1)v(ΦE(x̂)) ≤ 0.

Thus, we obtain µ ∈ Λ using the density of Hθ(ΓC) in L2(ΓC).

To derive convergence rates, we apply well-known a priori estimates as, for instance, introduced in [1]. Assume condition
(5) to be uniformly fulfilled. Then,

‖u− uph‖
2
1 . ‖u− vph‖

2
1 + ‖λ− µqH‖

2
τ,ΓC

+ (λ− µqH , sγC(u))0,ΓC
+ (λqH − µ, sγC(u))0,ΓC

,

‖λ− λqH‖τ,ΓC
. ‖u− uph‖1 + ‖λ− µqH‖τ,ΓC

(6)

for all vph ∈ S
p
h, µqH ∈ ΛqH and µ ∈ Λ.

Theorem 3.3 Let u ∈ H1+κ(Ω), λ ∈ Hθ(ΓC) and sγC(u) ∈ H κ̃(ΓC) with θ, κ, κ̃ > 1/2. Assume the inf-sup condition
(5) to be uniformly fulfilled and let the set of points of ΓC , in which λ changes from negative to positive, be finite. Furthermore,
let H be sufficiently small. Then, there holds

‖u− uph‖1 + ‖λ− λqH‖τ,ΓC
. Hmin(q+1,θ)/2/qθ/2 +Hmin(q+1,κ̃)/2/qκ̃/2 + hmin(p,κ)/pκ.

P r o o f. There holds IqH(λ) ∈ ΛqH and, therefore, (λ − IqH(λ), γC(u))0,ΓC
. ‖λ − IqH(λ)‖0 . Hmin(q+1,θ)/qθ. We

conclude from Theorem 3.2 that the sequence {λqH} converges weakly and is, therefore, bounded in L2(ΓC). Let E∗H :=
{E ∈ EH | ∀x ∈ E : λ(x) ∈ (−1, 1)} and E±H := {E ∈ EH\E∗H | ∀x ∈ E : ±λ(x) ≥ 0}. From (1), we conclude u(x) = 0
for x ∈ E ∈ E∗H and ±u(x) ≤ 0 and, therefore, (λqH(x) ± 1)u(x) ≤ 0 for x ∈ E ∈ E±H . Due to the continuity of λ and the
assumption on its change of sign, we have EH = E∗H ∪ E

+
H ∪ E

−
H for a sufficiently small mesh size H . Define δ(x) := ±1 if

x ∈ E ∈ E±H and δ := 0 if x ∈ E ∈ E∗H . Then, δ ∈ Λ and we obtain from Lemma 3.1

(λqH − δ, sγC(u))0,ΓC
≤ |(λqH − δ, γC(u)− IqH(sγC(u)))0,ΓC

|+ (λqH − δ, I
q
H(sγC(u)))0,ΓC

. Hmin(q+1,κ̃)/qκ̃ +
∑

E∈E+H∪E
−
H

∑
x̂∈CE

βx̂ (λqH(ΦE(x̂))− δ)(su)(ΦE(x̂))︸ ︷︷ ︸
≤0

.

The assertion follows from (6) using some well-known approximation estimates for the hp-method, cf. [2].

4 A posteriori estimates

The aim of this section is to derive a reliable a posteriori error estimate for ‖u − uh‖1. The basic idea is to consider the
following auxiliary problem: Find u? ∈ H1

D(Ω) such that

(∇u?,∇v) = (f, v)− (λqH , γC(v))0,ΓC
(7)
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Fig. 1 (a) Solution of the idealized frictional contact problem, (b)-(d) adaptive meshes (p = 2, p = 3, hp), (e) convergence rates.

for all v ∈ H1
D(Ω). Obviously, the solution u? of (7) exists and is unique. Moreover, uph is the finite element solution of (7).

For all µ ∈ Λ, there holds

‖u− uph‖
2
1 . (∇(u− u?),∇(u− uph))0 + ‖u? − uph‖1‖u− u

p
h‖1

. (λqH − λ, sγC(u− uph))0,ΓC
+ ε−1‖u? − uph‖

2
1 + ε‖u− uph‖

2
1

= (λqH − µ, sγC(u− uph))0,ΓC
+ (µ− λ, sγC(u− uph))0,ΓC

+ ε−1‖u? − uph‖
2
1 + ε‖u− uph‖

2
1

. ‖λqH − µ‖0,ΓC
‖u− uph‖1 + j(uph)− (µ, sγC(uph))0,ΓC

+ ε−1‖u? − uph‖
2
1 + ε‖u− uph‖

2
1,

where we use Young’s inequality 2ab ≤ εa2 + (ε)−1b2 for a, b, ε > 0. Applying a suitable ε yields

‖u− uph‖
2
1 . ‖u? − uph‖

2
1 + ‖λqH − µ‖

2
0,ΓC

+ j(uph)− (µ, sγC(uph))0,ΓC
.

Using an error estimator η? to estimate ‖u?− uph‖1 and setting, for instance, λ̄qH(x) := max{min{λqH(x), 1},−1} we finally
get the error estimation

‖u− uph‖
2
1 . η2

? + ‖λqH − λ̄
q
H‖

2
0,ΓC

+ (s, |uph| − λ̄
q
HγC(uph))0,ΓC

.

Remark 4.1 In principle, each error estimator known from the literature of variational equations can be used to define η?.
We refer to [9] for an overview of h-adaptive methods. For hp-adaptivity, we need an error estimator which takes the degree
distribution p into account. Such an estimator can be found in [10].

5 Numerical results

In our numerical experiments, we study the idealized frictional contact problem with Ω := (−1, 1)2, ΓD := (−1, 1) × {1},
ΓC := (−1, 1) × {−1}, f := −1 and s(x, y) = 2(1 − x2). In Figure 1(a), the finite element solution uph is depicted.
In addition, the function 1 and the discrete Lagrangian multiplier −λqH are sketched in. We observe, that the conditions as
stated in (1) are approximatively fulfilled. In Figure 1(b),(c), h-adaptive meshes for p = 2 and p = 3 are shown. We find
local refinements towards both ends of the contact zone and within the contact zone. In Figure 1(d), we observe the typical
geometrical refinement patterns of an hp-adaptive mesh. Here, we use the hp-strategy as introduced in [5]. Some corners
of the domain and the ends of the contact zone are resolved by h-refinements with small polynomial degrees (p = 1 or
p = 2), whereas, away from the corners and the contact zone, the polynomial degree increases. We obtain almost exponential
convergence rates for hp-adaptivity and optimal algebraic convergence rates for h-adaptivity, see Figure 1(e).
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