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Abstract

Linear DAEs with constant coefficients have been well understood by way of the
theory of matrix pencils for quite a long time, and this is the reason why they are
only briefly discussed in monographs. We want to consider them in detail here, not
because we believe that the related linear algebra has to be invented anew, but as
we intend to give a sort of guide for the extensive discussion on linear DAEs with
time-varying coefficients and on nonlinear DAEs.
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Linear constant coefficient DAEs

Linear DAEs with constant coefficients have been well understood by way of the theory
of matrix pencils for quite a long time, and this is the reason why they are only briefly
discussed in monographs. We want to consider them in detail here, not because we believe
that the related linear algebra has to be invented anew, but as we intend to give a sort of
guide for the extensive discussion on linear DAEs with time-varying coefficients and on
nonlinear DAEs. Later on, in particular, when investigating time-dependent linear DAEs,
we will repeat many arguments given here by proceeding pointwise.

This paper is organized as follows. Section 1 records well known facts on regular matrix
pairs and describes the structure of the related DAEs. The other sections serve as an
introduction to the projector based analysis. Section 2 and 3 provide the basic tool of
this analysis, the sequence of matrices GG; and the accompanying admissible projectors and
characteristic values. Section 4 provides a new view of regular Kronecker index p matrix
pairs. They yield singular matrices G;,—; but nonsingular G,. Conversely, in Section 5,
we show that any matrix pair corresponding to a singular G,_; and a nonsingular G,
must be a regular pair with Kronecker index p. Applying the matrix sequence one can
determine the complete structure of a regular matrix pair as well as its finite spectrum
(Section 6). Section 7 touches some questions concerning singular matrix pairs and the
related DAEs.

Let us emphasize that, for constant coefficient linear DAEs, we are given a famous tool
for understanding the DAE structure by the WeierstraB-Kronecker canonical form. The
DAE inherits regularity and index from the matrix pair. However, for time-varying linear
DAEs and for general nonlinear DAEs there are no such tools, but the characterization
by means of a corresponding matrix (function) sequence works well. In particular, a
regularity notion is primarily bound to nonsingular G/,.

1 Regular matrix pairs and the Weierstraf3-Kronecker
canonical form

In this section we deal with the equation
Ex'(t)+ Fx(t) = q(t), t € Z, (1)

formed by the ordered pair { E/, F'} of real valued m xm matrices E, F'. For given functions
q : Z — R™ being at least continuous on the interval Z C R, we are looking for continuous
solutions x : Z — R™ having a continuously differentiable component Ez. We use the
notation Ez'(t) for (Ex)'(t). Special interest is directed to homogeneous equations

Ex'(t)+ Fx(t) =0, t eR. (2)

For E' = I, the special case of explicit ODEs is covered. Now, in the more general setting,
the ansatz z.(t) = e™'z, well-known for explicit ODEs, yields

Bzl (t) + Fr,(t) = e (\E + F)z,

hence, z, is a nontrivial particular solution of the DAE (2) if ), is a zero of the polynomial
p(A) :=det(AE + F), A € C, and z, # 0 satisfies (\,E' + F)z, = 0. A\, and z, are called
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generalized eigenvalue and eigenvector, respectively.
This shows the meaning of the polynomial p(A) and the related family of matrices AE + F'
named matriz pencil formed by {E, F'}.

Example 1.1 The matrices

1 00 -1 0 0
E=101 0| and F=|0 0 1
0 00 0 10
lead to the DAE system
-2 = 0,
ZL‘IQ +x3 = O,
T9 = 0.
The polynomial p(\) is given by
A—1 0 0
p(A) =det(AE+F)=det | 0 X 1| =1-—2A\
0 1 0

implying A, = 1 and z, = (100)T to be a generalized eigenvalue and eigenvector. Ob-
viously, r.(t) = ez, = (e!00)T is a non-trivial solution of the differential-algebraic
equation.

If E is nonsingular, the homogeneous equation (2) represents an implicit regular ODE. Its
fundamental solution system forms an m-dimensional subspace in C'. What happens if
E is singular? Is there a class of equations, i.e., pairs {F, F'}, such that equation (2) has
a finite-dimensional solution space? The answer is closely related to the notion of regular
pairs.

Definition 1.2 The ordered pair {E, F'}, and also the matriz pencil formed by {E, F'},
are called reqular if the polynomial p(\) := det(AE + F), A € C, does not vanish identi-
cally. Otherwise {E, F'} is said to be singular.

A pair {E, F'} with nonsingular F is always regular, and its polynomial p is of degree m.
In case of singular matrices F, the polynomial degree is lower.

Proposition 1.3 For any reqular pair {E, F'} with singular E there exist nonsingular
real valued m X m matrices L and K, and integers 1 <1 <m, p <1, such that

LEK:{I N} {}”_l , LFK:[W [} {;"_l , (3)

where N is nilpotent of order p, i.e., N# =0, N¥=1 £ 0. The integers | and p as well as
the eigenstructure of the blocks N and W are uniquely determined by the pair {E, F'}.
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Proof: Since {E, F} is a regular pair, there is a number ¢ € R such that cE + F
is nonsingular. Put E = (¢E + F)'E, F := (¢cE+ F)"'\F = I — ¢E, p = ind E,
r = rank E#, S = [s1...5,], where s1,...,s, and S,41,..., 5y are basises of im F* and
ker E#, respectively. Lemma A.10 provides the special structure of the product S~'ES,
namely,

. M 0
-1ps = z
STES 0 NI
with a nonsingular ~ x r block M and a nilpotent (m — r) x (m — ) block N. N has
nilpotency index . Compute

_1 7 - . 17 o _[—CM 0 ~
STFS=1-c¢S ES{ 0 I—CN]'

The block I — ¢N is nonsingular due to the nilpotency of N. Denote

M-! 0

=" (1-em

_1] STV eE+F)™!, K:=8, N:=(UI—cN)"'N, W:=M"—cl,

so that we arrive at the representation

I 0

0 N

LEK:[ 0 I

}, LFK:{”’O]

Since N and (I —cN)~! commute, it holds that N' = (I —eN)IN) = ((I—eN) VN,
and N inherits the nilpotency of N, hence N* = 0, N*71 £ 0. Put [l := m —r. It
remains to verify that the integers [ and p as well as the eigenstructure of N and W are

i~nde£)en~dent of the ~transformations L and K. Assume that there is a further collection
Iy, L, K, 7=m — [ such that

q, zpk:[

=~ |1z W 0
LEK_[ON ]

0 L]
Considering the polynomial
p(\) = det(AE + F) = det(L ) det(\, + W) det(K 1)
— det(L™1) det (A7 + W) det (K1)

we realize that the values r and 7 must coincide, hence | = [. Derive further, with

U:=LL",V:=K'K,

I 0 - I 0 W 0 - W 0
U[ }_LEK_[ ~]V, U[O []_LFK_[O []V,

that is in detail

Ull U12N
U21 U22N

P@ %ﬂ {MMfmﬂ_W%1Ww}
NVyr NVa|' |[UaW U Vo Voo |-



Comparing the entries Qf these matrices we find the relations Ujo N = Viy and Uy = VNVVH,
which lead to Uy = WU;uN = ... = WFU3N* = 0. Analogously we derive Uy, = 0.
Then, the blocks Uy; = Vi1, Uz = Voo must be nonsingular. It results that

VW = WViy, VaaN = NV

holds true, that is, the matrices N and N as well as W and W are similar, and in
particular, p = i is valid. OJ

The real valued matrix N has the eigenvalue zero only, and can be transformed into its
Jordan canonical form by means of a real valued similarity transformation. Therefore, in
Proposition 1.3, the transformation matrices L and K can be chosen such that N is in
Jordan canonical form.

Proposition 1.3, as well as the given proof also hold true for complex valued matrices. It
is a well known result of Weierstrafl and Kronecker (cf. [Gan70]). The pair given in (3) is
called Weierstrafl-Kronecker canonical form of the pair {E, F'}.

Definition 1.4 The Kronecker index u of a reqular pair { E, F'} with singular E is defined
to be the nilpotency order p in the Weierstraf-Kronecker canonical form (3). If E is
nonsingular, put u = 0. We write ind {E, F'} = p.

Via the WeierstraB-Kronecker canonical form of a regular pair {E, F'}, the structure of
the corresponding DAE (1), (2) is easily discovered. Scaling of (1) by L and transforming

r=K g leads to the equivalent decoupled system

y() +Wylt) = p(t), (4)
NZ(t)+z2(t) = r(t), teZ, (5)

with Lg =: []; } . The first equation (4) represents a standard explicit ODE. The second

one has the only solution
pn—1
2(t) = Y (1) NTPO(p), (6)
=0

provided that r is smooth enough. This becomes clear after recursive use of (5) since
z=r—NZ =r—N@r—-Nz)=r—Nr'+ N*2" =r— N’ + N*(r — NZ')!" = ...

Expression (6) shows the dependence of the solution z on derivatives of the source or
perturbation term q. The higher the index p, the more differentiations are involved. Only
in the index-one case we have N = 0, hence z(t) = r(t), and no derivatives are involved.
Since numerical differentiations in these circumstances may cause considerably trouble, it
is very important to know the index p as well as details on the structure responsible for
a higher index when modeling and simulating with DAEs in practice.

The general solution of the homogeneous DAE (2), if the pair {F, F'} is regular, is of the

form
o—tW

.flf(t) =K |: 0 :| Yo, Yo € Rm_l7

that means, the solution space has dimension m — [.
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Theorem 1.5 The homogeneous DAE (2) has a finite-dimensional solution space if and
only if the pair {E, F'} is reqular.

Proof: As we have seen before, if the pair {E, F'} is regular, then the solutions of (2)
form an (m — [)-dimensional space.
Conversely, let {E, F'} be a singular pair, i.e., det(AE + F') = 0. For any set of m + 1

different real values Ay, ..., \,11 we find nontrivial vectors ny, ..., n,11 € R™ such that
m—+1
(ME+ F)n; =0, 1 =1,...,m+ 1, and a nontrivial linear combination »_ a;n; = 0.
i=1
m+1
The function z(t) = > a;e*i'n; does not vanish identically, and it satisfies the DAE (2)
i=1

as well as the initial condition x(0) = 0. For disjoint (m + 1)-element sets there always
arise different solutions, and, consequently, there are more than countably many different
solutions of a homogeneous IVP of (2). O

Example 1.6 (c¢f. [GM89]) The pair {E, F'}, with m = 4,

o O O =
o O O
_ o O O
o O = O
o O OO
S O O =
o= O O
o O O O

is singular. In detail, equation (1) reads

(1 4+ 22)" + 2 = qu,

Ty = (2,
T3 = (3,

/ —
ZE3 — q4.

What does the solution space of the corresponding homogeneous DAE (2) look like? Ob-
viously, the component x3 vanishes identically and x4 is an arbitrary constant function.
The remaining equation (x1 + x3) + xo = 0 is satisfied by any arbitrary continuous xs,
and the resulting expression for xq is:

x1(t) = ¢ — zo(t) — /0 xo(s)ds,

¢ being a further arbitrary constant. Clearly, this solution space does not have finite di-
mension, which confirms the assertion of Theorem 1.5. Indeed, the reqularity assumption
1s violated since

p(A) = det(AE + F) = det

O O O >
o o o+
>~ O O
O O > O

Notice that, in case of nontrivial perturbations q, the consistency condition q¢5 = q4 must
be valid for solvability. In practice, such unbalanced models should be avoided. However,
in large dimensions m, this might not be a trivial task.



Definition 1.7 A DAFE (1) with the constant coefficient pair { E, F'} is said to be reqular
or reqular with Kronecker index pn = ind{E, F'} if this pair {E, F'} is reqular with Kro-
necker index .

Let us take a closer look at the subsystem (5), which is specified by the nilpotent matrix
N. We may choose the transformation matrices L and K in such a way that N has Jordan
canonical form, say

N =diag[Jy, ..., Js], (7)
with s nilpotent Jordan blocks
0 1
J; = € L(R*), i=1,...,s,
1
0

where ky + -+ ks = 1, p = max{k; : i = 1,...,s}. The Kronecker index pu is the
maximal order of a Jordan block of N.

The Jordan canonical form (7) shows the further decoupling of the subsystem (5) in
accordance with the Jordan structure into s lower-dimensional equations

JiGi () + G(t) =ri(t), i=1,....s.

Now we observe that (;,...,¢;x, are components involved with derivatives whereas the
derivative of the first component (;; is not involved. Notice that the value of (;;(?)
depends on the (k; — 1)-th derivative of 7, (¢) for all i = 1, ..., s since

=
S

Gia(t) = ria(t) — Co(t) = ria(t) — o () + Cat) = o = (1) V().

j=1

Example 1.8 Choosing m =5 and the nilpotent matriz

0

o O
O =

o O
O =

we have

0 1
S:?), J1:[0], J2:J3: |:0 O:|

and the nilpotency index p = 2. The detailed system (5) reads as

21 = T,
25 + 29 = To,

Z3 = T3, (8)
Zé + 24 = Ty,

Zr = Ts.
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Its solution is given by

1 = T
22 = T2 — Té?
23 = T3,
24 = T4 — Té,
25 — Ts.

Here r = 0 implies z = 0, i.e., the homogeneous equation has the trivial solution only.

2 Basic sequences of matrices and admissible projec-
tors

Our aim is now a suitable rearrangement of terms within the equation
Ex/(t) + Fa(t) = (1), (9)

which allows for a similar insight into the structure of the DAE to that given by the
Weierstra3-Kronecker canonical form. However, we do not use transformations but apply
a projector based decoupling concept, and we work in terms of the original equation
setting.

The basic construction is very simple. Put Gy := E, By := F, Ny := kerGy. Let
Qo € L(R™) be a projector onto Ny, and Py := [ — (g the complementary one. Using the
projector properties (see Appendix 8) Q% = Qq, QP =0, Py + Qo = I and Gy = GyF
we may rewrite (9) as

Gor' + Byx = ¢,
GoPor' + Bo(Qo + Po)x = q,

Go+ B Pyx' + + ByP, = q,
(Go 0Q0) (Pox’ + Qo) (Y q

=Gy =B
Gl(P()[E, —I— Q()ZL‘) —|— Bll’ = (.

Next, let ()1 be a projector onto Ny := ker G; and P, := [ — ()1 the complementary one.
We rearrange the last equation to

G1P1<P0$/ + Q()x) -+ Bl(Ql -+ Pl)I = (q,

(G + B1Q1) [Pi(Por’ + Qox) + Quz] + BiPLx = g, (10)
—_——— Y
Go 2

and so on. The goal is a matrix G with maximal possible rank m in front of the term
containing the derivative /. This will allow us to multiply the last equation obtained this
way by G-!. Multiplying further by suitable projectors we find a decoupled DAE system
that can be solved as simply as a DAE in Weierstraf3-Kronecker canonical form.

The projector based decoupling procedure to be described now is not at all restricted to
pairs of square matrices. Although our interest mainly concerns square DAESs, to be able

8



to consider several aspects of over- and underdetermined DAEs we construct the basic
sequences of matrices and accompanying projectors for ordered pairs {F, F'} of general
rectangular matrices E, F' € L(R™ R¥).

Start with Go := E, By := F, Ny := ker Gy, and let Qg € L(R™) denote a projector onto
Ny, and Py := I — )y the complementary one.
Then, for ¢ > 0, put

Giy1i = Gi+ BiQ;, Niy:=ker Gy, (11)
Biyw = BB,

and introduce Q;11 € L(R™) being a projector onto Ny, Py := I — Q;+1. Denote
r; := rank (G; and introduce the product of projectors II; := Fy--- P;. These ranks and
products of projectors will play a special role later on. From B; 1 = B;P, = Byll; we
derive the inclusion ker II; C ker B;,; as an inherent property of our construction.

Let us stress again that we are aiming at a matrix G, the rank of which is as high as
possible. However, how can one know whether the maximal rank has been reached?
Appropriate criteria would be very helpful. In important cases, in particular for regular
DAEs, one meets full rank matrices G, that is, r, = min{m, k}.

In general, since G; = G;11F;, the images of the GG; satisfy the inclusion relations
imGy CimG; C--- CimG; Cim Gy,

and hence
ro <1y <o <1 < Ty

A further basic property of the sequence (11) is the inclusion

Namely, if G;_12z = 0 and G;z = 0 are valid for a vector z € R™, which corresponds to
P,_1z =0 and z = );z, then we can conclude that

Gi—i—lz = GZZ + BlQZZ = BZZ = Bi_lPi_lz = O

From (12) we learn that a nontrivial intersection N;, 1 N NV;, leads to matrices G; being
not injective for all ¢ > i,. Consequently, we will not find an injective matrix G,. As we
will realize in Section 5 (see also Proposition 6.5), such a nontrivial intersection indicates
immediately a singular pair {E, F'}.

Example 2.1 For the DAE

.CE/l + T —|-332 +xr3 = q1,

Ty +2 = (2
T1 +x3 = g3,
the first matrices of our sequence are
100 111
Go=E=|0 0 1|, By=F=1]010
000 1 01



As a nullspace projector onto ker Gy we choose

000 1 10
Qo= 10 1 0| and obtain G; = Go+ByQo= |0 1 1|, By =ByF=
000 000

=

0
0
0

=

Since G is singular, we turn to the next level. We choose as a projector onto ker GGy

1 00 310
Q1= |—-1 0 0| and arrive at Go =G+ B1Q;= |0 1 1
1 00 2 00

The matriz G5 is nonsingular, hence the maximal rank is reached and we stop constructing
the sequence. Looking at the polynomial p(\) = det(AE + F) = 2\ we know this DAE to
be reqular. Later on we will see that a nonsingular matriz G is typical for reqularity with
Kronecker index two. Observe further that the nullspaces Ny and Ny intersect trivially,
and that the projector Q1 is chosen such that II,Q1Qy = 0 is valid, or equivalently,
NQ g ker HQQl.

Example 2.2 Here we deal with the singular matriz pair from Fxample 1.6, that is with

1100 0100
000 1 0000
GO_E_OOOO’BO_ o010
0010 0000
Choosing
1 00 0 0100 1100
100 0 . 000 1 0000
Q=14 oo o veds Gi=154900" Br=lo010
0 00 0 0010 0000

The matriz Gy is singular. We turn to the next level. We pick

Q= which implies Gy = Gy.

o O O =
o O O O
o O O O
o O O O

We continue constructing

Q?j = Qo, G2j+1 =Gy, Q2j+1 = Q1, G2j+2 =Go, j =1

Here we have r; = 3 for allt > 0. The mazimal rank three is met already by Gy, but there
is no criterion in sight which would indicate this in time. Furthermore, N; N\ N1 = {0}
holds true for all © > 0, which means that there is no step indicating a singular pencil via
property 12. Notice that the product I1yQ1Q¢ = PoQ1Qo does not vanish as it does in the
previous example.

10



The rather bad experience with Example 2.2 leads us to the idea to refine the choice of
the projectors by incorporating more information from the previous steps, in particular
that from the previous nullspaces. So far, just the image spaces of the projectors @); are
prescribed. We refine the construction by prescribing certain appropriate parts of their
nullspaces, too. More precisely, we put parts of the previous nullspaces into the current
one.

In general, when constructing the sequence (11), we proceed as follows. At any level we
decompose

N0++N271:]/\}ZEBXZ7 ]/\7@:<N0++N171)HN17 (13>

where X is any complement to ]VZ in No+---+ N;_1. Then we choose @); in such a way
that the condition

X C ker Q) (14)

is met. This is always possible since the subspaces ]@ and X; intersect trivially (see
Appendix, Lemma A.6). It restricts to some extend the choice of the projectors. However,
a great variety of possible projectors is left.

If the intersection ]Vz = (No+ -4 N;_1) N N; is trivial, then we have
Xi=No+---+ Ni_1 C ker Q.

This is the case in Example 2.1, and it is typical for regular DAEs.

Definition 2.3 For k € N, the projectors Qo,...,Q in the matriz sequence (11) are
said to be admissible for {E, F'} if condition (14) is valid for i =1,... k. Qo is always
admissible. Qq, ..., Q. are called reqular admissible if they are admissible with trivial

—~

intersections Ny, ..., Ng.

The projectors in Example 2.1 are admissible but the projectors in Example 2.2 are not.
We revisit Example 2.2 and provide admissible projectors now.

Example 2.4 Consider once again the singular pair from Ezamples 1.6 and 2.2. We
start the sequence with the same matrices Gy, By, Qo, G1 as described in Example 2.2 but
now we use an admissible projector Q1. The nullspaces of Gy and Gy are given by

1 1
-1 0
Ny = span 0 and Ny = span 0
0 0
This allows us to choose
1100
0 00O
Q=100 0 o]
0000
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which satisfies the condition X1 C ker 1, where X1 = Ny and ﬁl = NoN Ny ={0}. It
yields

1 200 00 0O
0001 0000
“=1o 000" P~ (001 0
0010 00 00O
Now we find Ny = span [—2 10 O]T and with
1 1 1 0
—1 0 0 1
N0+N1—N0@N1—Span( O s O )—Span( O R 0 ),
0 0 0 0

we have N2 Q N0+N1, N0+N1+N2 :N0+N1 as well as ]/\?2 = (No—f-Nl)ﬂNQ:NQ
A possible complement X5 to ]/\_[\2 in No + N1 and an appropriate projector QQo are

1 0 -2 0 0
0 0 1 00
Xp=span |, Q=g ( (¢
0 0 0 00

This leads to G5 = G, and the nontrivial intersection No N N3 indicates (cf. (12)) that
all further matrices G; are singular. Proposition 6.5 below says that this indicates at the
same time a singular matriz pencil. In the next steps, for ¢ > 3, it results that N; = Ny

and G; = Go.

We stress once more that for all our projectors @); their image is fixed to be ;. For
admissible projectors @);, also a part of ker (; is fixed. However, there remains a great
variety of possible projectors, since the subspaces X; are not uniquely determined and
further represent just a part of ker ;. Of course, we could restrict the variety of projectors
by prescribing special subspaces. This might be useful with respect to computational
aspects.

Definition 2.5 The admissible projectors Qy, ..., Qy are called widely orthogonal ones if
Qo = Q, and

X; = ]/\;Z-LQ(N0+---+N2'—1), (15)

and
keI'QZ:[NO—f-—f—NZ]L@X“ ’izl,...,l{, (16)

hold true.

The widely orthogonal projectors are completely fixed and they surely have some advan-
tages.

The next assertions collect useful properties of admissible projectors and the correspond-
ing matrix sequences (11) for a given pair {E, F'}. In particular, the special role of the
products II; = Py - - - P; is revealed. We emphasize this by using mainly the short notation
11;.
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Proposition 2.6 Let Qo,...,Q, be admissible for the pair {E, F}. Then the following
holds true fori=1,... k:

(1) ker Il; = Ng+ --- + N;,

(2) The products 1I; = Py -+ P; and II;_ 1Q; = Py- - P,_1Q;, are projectors again.
(3) No+ -+ N1 C ker IT;_1Q;,
(4)

B; = Bill; 1,

(5) N; € NiNker B; = N; N Niy1 C ﬁiﬂ-

(6) If Qq, . ..,Q. are widely orthogonal, then im II; = [Ny + -+ + Ny|*, II; = II} and
11 Qi = (11,11 Qi)"

(7) If Qo,...,Qx are reqular admissible, then ker II;_1Q); = ker Q; and Q;Q; = 0 for
=0, . i—1.

Proof: (1) (=) To show ker Il; C Ny + ---+ N; for i = 1,..., k, we consider

0=1Iz=PF-Pz=]](I- Qe

k=0

Expanding the right hand expression, we obtain
Z:ZQkaZ €N0+"'+NZ'
k=0

with suitable matrices Hj.

(<) The other direction will be proven by induction. Starting the induction with i = 0,
we observe that ker I, = ker Py = Ny. We suppose that ker Il 1 = Nyg+ --- 4+ N;_1 is
valid. Because of

No+ 4Ny =X;+ Ni+ N,
each z € Ny + --- + N; can be written as z = x; + z; + z; with
2, € X; CNog+---+N;_y=kerIl, ;, % €N, CN; z €N
Since @); is admissible, we have X; C ker Q); and N; = im ();. Consequently,
Iiz=1, (I —Q;)z =1, 1(I — Q;)x; = 1;_12; =0
which implies Ny + --- + N; C ker II; to be true.
(2) From (1) we know that im ); = N; C ker II; for j <. It follows that
ILP; = II,(I — Q) = II,.
Consequently, IT? = II; and IL;II; | = II; implying

(Hi—lQi)2 = i—1(I - Pz)Hz—le = Hi—lQi - Hznz—le = Hi—lQi - HzQz = Hi—lQi-
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(3) For any z € Ny + -+ N;_1, we know from (1) that I7; 1z = 0 and I;z = 0. Thus
Hi—l@iz = Hi_lz - HzZ = 0.
(4) By construction of B; (see (11)), we find B; = ByIl;_;. Using (2), we get that

B; = Boll; 1 = Boll; 11l; y = B;Il; ;.

(5) First, we show that ﬁ, C N, Nker B;. For z € ]Vz = (No+ - -+ N;_1) N N; we find
II; 1z =0 from (1) and, hence, B;z = Byll;_1z = 0 using (4). Next,

Ni N ker Bl = NZ N Ni—‘rl

since G112 = (G; + B;Q;)z = B;z for any z € N; = im Q); = ker G;. Finally,

—~

Ni—i—l = (N() —+ 4 NZ) N Ni—l—l 1mp11es 1mmed1ately that Nz N Ni—l—l Q ]/\-f;+1.

(6) We use induction for showing that im IT; = [Ny + - - - + N;]*. Starting with i = 0, we
know that im [Ty = Ny since Qp = Q.

Since X; € Ny + -+ + N;_1 (see (15)) we derive from (1) that I7;,_;X; = 0. Regarding
(16), we find

USiIlg [NO + -+ NZ]J' Q [N() + -+ Ni_l]J‘ =im Hi—l we conclude

In consequence, II; is the orthoprojector onto [Ny + - -+ + N;]*= along Ny + - -+ + N, i.e.,
II; = II}. Tt follows that

Hi—lQi = Hi—l - HZ = H’Z’Ll —II; = (Hi—l - Hz)* - (HZ—IQ”L)*

(7) Let ]/\}Z =0 be valid. Then, X; = Ny +---+ N;_1 = Ny & --- @& N;_; and, therefore,

ker I1;_; & No@---®N;—1 = X; CkerQ;.

It implies Q;Q; = 0 for j = 0,...,7 — 1. Furthermore, for any z € ker II;_;Q);, we have
Q;z € ker II;_; C ker ();, which means that z € ker );. O

Remark 2.7 If Qq,..., Q. are reqular admissible projectors, and Ily, ..., I, are sym-
metric, then Qq, ..., Q. are widely orthogonal. This is a consequence of the properties

imIT; = (ker IT,)" = (Ng® --- ® N;)*, ker Qi =imIL; & X; fori=1,... k.

In general, if there are nontrivial intersections ]@, widely orthogonal projectors are given,
if the I1; are symmetric and, additionally Q;II; =0, P;(I —I1;_1) = (P;(I — II;_1))* hold.
In the reqular case these properties are always given.
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Once more we emphasize that the matrix sequence depends on the choice of the admissible
projectors. However, the properties that are important for us later on are independent of
the choice of the projectors, as the following theorem shows.

Theorem 2.8 For any pair {E, F'}, the subspaces Ny + -+ + Nj, ]@ and im G;, as well
as the integers ro < ry < -+ < 1y, are independent of the special choice of admissible
projectors for i > 0.

Proof: All claimed properties are direct and obvious consequences of Lemma 2.10 below.

O

Definition 2.9 For a given pair {E, F'}, if the sequence (11) is built with admissible pro-

jectors, the integersr; == rank G;, ¢ > 0, u; :== dim N; ¢ > 1, are called characteristic values.

Lemma 2.10 Let Qo, ..., @y and QO,_. .., Q. be any two admissible projector sequences
for the pair {E, F}, and N;, N;, G;, G; etc. the corresponding subspaces and matrices.
Then it holds that

(1) NQ+"'+Nj:No—f—"'—l—Nij’l"j:O,...,I{,

(2) and
j—1
Gj = Gij, Bj = Bj +GjZQlQljl; fOTj = O, A
1=0
with nonsingular matrices Zy, ..., L1 gwen by Zy =1, Zj g =Y 17Z;,

Vi = T+ Qo(Qo— Qo) =1+ QuQoPy,

j—1
YVigr = 1T+ Q;(I;.1Q; — 1I;1Q;) + ZQlQllej:
1=0
where Ay = I; 4 for1=0,...,5—1.
(3) Gut1 = Gus1Zys1 and Nog+ -+ Nyyy = No+ -+ + Nyj,
(4) (N0++N]_1)ﬂNj :(N0++NJ_1)QN] fOszl,,K+1

Remark 2.11 The introduction of A;; seems to be unnecessary at this point. However,
in the case of DAFEs with time-dependent coefficients, the corresponding terms for 2; are
not as easy as here.

Proof: We prove (1) and (2) together by induction. For i = 0 we have
Go=E=Gy,, By=F=B,, Ny=kerGy=kerGy=N,, Z,=1.
To apply induction we suppose the relations
No+-+Nj=Ny+---+N; (17)

15



j—1
Gj=GiZ;, Bj=B;+G;y Qi (18
=0

to be valid for j < with nonsingular Z; as described above, and
j—1
Zj_l =1+ ZQ[Q:ﬂ
1=0
with certain €;. Comparing Gi+1 and Gy 1 we write
Giy1 = Gi+ BiQ; = G;Z; + B;Q; Z; + B;Q:(I — Z;) (19)
and consider the last term in more detail. We have, due to the form of Y}, induction

assumption (17) and im (Y; — 1) € Ny + --- + N;_; = ker II;_; given for all j > 0 (see
Proposition 2.6), that

No+ -4+ Nj_y CkerII;_1Q;, No+---+N;_1 Ckerll; 1Q;, j<i, (20)
and therefore,
Yijn =1 = — DI, j=1,...i (21)
This implies
im (Y, — ) Cker (Yipy — 1), j=1,....i (22)

Concerning Z; = Y;Z;_; and using (22), a simple induction proof shows

l

J
(YE—[): jzla"'aia
=1
to be satisfied. Consequently,
1m(I—ZZ) §N0++Nl_1 :N0+"‘+Ni—1 gkerQi.

Using (19), we get
Giy1 = GiZ;i + BQi Z;.
which leads to

Gin1Z;' = Gi+ BiQi = Gi + B,Q; + (B;Qi — BiQy).

We apply the induction assumption (18) to find
i—1
Git1Z; " =G + Bi(Qi — Q;) + G, Z QiR Q;.
1=0

Induction assumption (17) and Proposition 2.6 imply ker I1;_; = ker IT;_; and hence
B; = Boll;_y = Boll;_1II;_y = Bill; .
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Finally,

GinZ7' = G+ Bi(IL; 1Q; — II;_1Q;) + Giyy Z Q2A;Q;

i—1
= Gip1 + B, Qz( i 1Q; — I, Qi) + Gina ZQZQLL'ZQZ‘ = Gi11Yi,
1=0
which means that )
Gi+1 = Gz’+1Yi+12i = Gi+1Zz’+1- (23>

Next, we will show Z;,; to be nonsingular. Owing to the induction assumption, we know
that Z; is nonsingular. Considering the definition of Z;,; we have to show Y;,; to be
nonsingular. Firstly,

Y = I, (24)

since im ); C ker II; for j < ¢. This follows immediately from the definition of Y;;; and
Proposition 2.6 (1). Using the induction assumption (17), Proposition 2.6 and Lemma
A2, we find

H]ﬁJ:H], ]_Y]HJ:]?] and H]HJ:H] fOI'j:O,,Z

This implies that
iy (Y — 1) = ;1 (Yig — DI (25)

because

Prop.2.6(1)

Hi—l(}/i—}—l - I) - IQZ( z—le z IQZ)

i—1 = l)( i— 1Qz ilei)
1(6_2@ Qi) = I_(P,— P)

— I, I, P, = II; — II;_|II;
— I LI = (I — I IT;) 1T,

|
55

I
Sk

The equations (24) and (25) imply
i (Y — 1) = i (Yigs — DI = 11 (Y — DILY
and, consequently,

(21)

= Y — (Y — )11y

I (I — 1T 1) Yoy + 111}

I {Yip — I, 1 (Yip — 1)}

I Y — 1 (Yo — DILYi }
= (=Y - ){f Iy (Yigr — DILY) Y.

I = Yy —Yip =1

This means that Y;.; is nonsingular and

Vi =1— Vi = D{I = iy (Y — DI}

17



Then Z;.1 = Y;117; is also nonsingular, and
i—1 i
Zih =20 = T4+ Q)Y =1+ Qi
1=0 1=0
with certain coefficients €; ;. From (23) we conclude Ny = ZijrllNiH, and, due to the
special form of Z .},
Niz1 © No+ -+ Nig1, No+ -+ Nigg € No+ -+ + Niga.
Owing to the property im (Z;;; — I) € Ny + -+ + N; = Ny + - - - + Nj, it holds that
Nit1 = Zi1Nign = (I + (Ziga = I))Nig1 © No + -+ + Nij1.
Thus, Ng+ -+ + Nig1 € Ny + -+ - + N4 is valid. For symmetry reasons we have
No+ -4 Nigy = No+ -+ + Nij1.

Finally, we derive from the induction assumption that

i—1
Biy1 = BP= (Bi + G; Z leil)pi

=0
i—1
= BiP.P,+ BiQiPi+ G Y Qi P,
=0

i—1 )

= BiP,+ BQill; + Gi1 Y QAP = By + Gia1 Y Qi

1=0 1=0
with 41, = WP, 1=0,...,i—1, ity = II;, and therefore, for [ <i—1,
Aip11 = Ay Py = Qli—l,lpi—lf)i = Qll+1,lpl+1 o Py =1IPyy - P =1I,.

We have proved assertions (1) and (2), and (3) is a simple consequence. Next we prove
assertion (4). By assertion (1) from Lemma 2.6, we have Ny + - -- + NV; = ker [1; and

Giy1 = Go+ BoQo+ -+ BiQi = Go + BoQo + BiPoCQ1 + -+ + BiFy -+ - PiaQ;
= Go+ Bo(Qo+ PoQi+ -+ Py Pioa@Qy)
— Go+ Bo(I — Py---P) = Go + Bo(I — II,).

This leads to the description

—~

Nigi=(No+---+N;)NN;yy = {z€R":I1,2=0, Goz+ Bo({ — II;)z = 0}
{zeR":z€ Ny+---+ N;, Goz + Byz =0}
{ze€R™:2€ Nyg+---+ N;, Goz + Byz =0}
= (No+ -+ N;) N Nijq.
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3 Equivalence transformations

Given a matrix pair {E, F}, E,F € L(R™ R*), and nonsingular matrices L € L(R¥),
K € L(R™), we form
E=LEK, F=LFK. (26)

The DAEs corresponding to the pairs {E, F'} and {E, F'} are
Ba(t) + Fat) = qlt),
Ex'(t) + Fi'(t) = q(t),

which are related to each other by the transformation x = Kz and premultiplication by
L resp. L', ¢ = Lq. In this sense, these DAEs are solution equivalent. How are the
matrix functions and admissible projectors for {E, F'} and {F, F'} related? The answer
is simple.

Theorem 3.1 If two matriz pairs {E, F} and {E, F'} are related via (26), then they have
common characteristic values. In detail,

TZ‘:E‘, ’LZO, UZ:ﬂZ,ZZ:l

If {E,F} has the admissible projectors Q, . .., Qx, then {E,F} has the admissible pro-
jectors Qq, . .., Q. with Q; := K~ 1Q;K fori=0,...,k.

Proof: The transformations Gy = LGyK, By = LByK, Ny = K~'N, are given at the
beginning, and Qg := K 'QyK is admissible. Compute G; = Gy + ByQy = LG K,
1 =11, then

Ny =K 'Ny, Non Ny = K (Non Ny).

Put X; := K_IX} such that Ny = (No N Nl,) @7)_(1 and noting that Q, := K~'Q K has
the property ker Q1 O X7, this means that )y, ()1 are admissible. At the level i, we have

G;=LG,K, Ng+ -+ Ni-i =K Y(No+ -+ N;_1), Ni=K 'N;, 7, =,
and Q; := K~'Q,; K satisfies condition ker Q; O X, with
Xi=K'X No+-+Ni_1 =[No+---+Ni_1)) NN & X;.
The conclusion is, in particular, that the characteristic values of a matrix pair are invariant

with respect to equivalence transformations. 0

4 Admissible projectors for a DAE in Weierstraf3-
Kronecker canonical form

Here we deal with the matrix pair {E, F'} given by the m x m structured matrices

S
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where N is a nilpotent, upper triangular [ x [ matrix, [ > 0,

0 Nl’g Nl,,u }ll
N — . : I <28)
N,u,—l,u }lﬂfl
0 }lu

Lh>--->21,>11i+---+1, =, and the blocks N; ;11 with [; rows and /;; columns have
full column rank, that means, ker N; ;13 = {0}, i =1,..., ¢ — 1. Then N has nilpotency
index p; that is N* = 0, N#~! # 0, and [; equals the number of its Jordan blocks of order
>i, 1 =1,..., 0.

This special form of the nilpotent block is closely related with the tractability index
concept, in particular with the decouplings provided by admissible projectors (see Section
5).

The Jordan canonical form of such a nilpotent matrix N consists of [; — Iy (nilpotent)
Jordan chains of order one, ly — I3 chains of order two, and so on up to [, — [, chains of
order u—1, and [, chains of order p. Any nilpotent matrix can be put into the structural
form (28) by means of a similarity transformation. Thus, without loss of generality we
may suppose this special form.

The polynomial p(A) := det(AE + F') = det(A + W) has degree m — [. If [ = m then
p(A) = 1. This pair {E, F'} is regular and represents a slight generalization of the classical
Weierstrafl-Kronecker canonical form discussed in Section 1 (cf. (3)), where the block H
is absent.

In accordance with the structure of £ and F in (27) we write z € R™ as

Now we construct a matrix sequence (11) by admissible projectors. Thereby, on the
next three pages in the present section, the letter N is used twofold: N;, with a single
subscript, indicates one of the subspaces, and N;; , with double subscript, means an entry
of a matrix.

PutGOZE, BOZF

Since Ng =kerGyp ={z € R™: 20 =0, 2, =0, ...,z = 0} we choose

I My 0 My
QUZ 0 ; HOZPOZ 1
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which leads to

I

I Njg

le{ZeRmZZOZO, Z#IO, ..

Ny, i

7B1

Nu—l,u
0

Ha

., 23 =0, z1 + Ny1220 = 0}, N; N Ny = 0. Choosing

[0 ] I
0 I-— NLQ }ll I N172 }ll
I l 0 l
Ql = O } 2 y Pl = } 2 )
- .
0 My
0 l
Hl = I } 2 5
- I -
we meet the condition Ny C ker ()1, which means that Q1()y = 0, and find
- - o )
I N]LQ N N.1,# My 0 My
2,3 : l [
Gy = Ha ., By= 7 Ho
0
N#—L#
i 0 I ]
Ny = {Z e R™ . zo = 0, Zu :0, ey 24 =0, 2o + Nog 23 :O, 21+N1222+N1323:0}7

(No 4+ N1) N Ny = (ker IT;) N Ny = {0}. Suppose that we are on level i and that we have

Qo, - - -, Qi1 being admissible,
- 0 ) _ _
0 * Y I
. : 1 0 Hy
0 =
Qi_l - I }l ’ Iy = 0 ,

0 Z I Hi

0 . I
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Qi-1(No+ -+ Ni2) = Qiaim (I — II;_5) =im Q;—1(I — II,_) = {0},

o ; - )
I Nig --- N1y Hy 0 Hy
0
: Nu—lvu '
It follows that
Ni={2eR":2=0,2,=0, ..., 2i10=0,
%+ Niiv1zig1 =0, ..., 214+ Nigzo + -+ + Ny 41241 = 0},
(NO + -+ Ni—l) N Nz = (ker Hz’—l) N Nz = {0}
Choosing
[0 T ]
0 * Ha 1 * Ha
0 * I %
i = 5 PL = )
¢ I Hiva 0 Hiva
0
i 0 I
-7 -
0 Hy
1, = 0 ,
I Hiva
L I
we meet the admissibility condition (14), as Q;(I — I1;_1) = 0, and arrive at
o ; " )
I Nig --- N1y Hy 0 Hy
Giy1 = I Nij1i40 Hiy1,Bipi= | H Hig -
0
: Nu—lvu .




This verifies formulas (29) to provide the right pair G;, B; at level i, i > 1, for {E, F'}
as in (27). Obviously, we obtain precisely a nonsingular matrix G, but G,_; is singular.
The characteristic values of our pair {E, F'} are u; =0, i > 1, and

ri=m-—dmN,=m—Ili;1<m,i=0,....0—1, r,=m, 1 > p.
The next proposition records this result.

Proposition 4.1 The matriz sequence (11) built with admissible projectors for the special
pair {E, F} given by (27), (28) consists of singular matrices Gy, ...,G,—1 and a nonsin-
gular G,.. The characteristic values are: u; =0 fori=1,...,u, and
ri=m—dimN;, =m —l;1 fori=0,...,0—1, r,=m .

For a DAE in Weierstrafi-Kronecker canonical form (27) with its structured part N (28)
the decoupling into the basic components is given a priori (cf. (4), (5)). The so-called
“slow” subsystem

y'(t) + Wy(t) = p(t)
is a standard explicit ODE, hence an integration problem, whereas the so-called ”fast”

subsystem
NZ'(t) + 2(t) = r(t) — Hy(t)

contains exclusively algebraic relations and differentiation problems.

The admissible projectors expose these two basic structures as well as a further subdivision
of the differentiation problems, too: The proper state variable is comprised by I7,,_; while
I — 11, collects all other variables:

Those variables that are not differentiated at all and those variables that have to be
differentiated i-times are comprised by

_ . 0 )
0 0
I Hy
Qo = 0 and II;_1Q; =

I Hiv1

respectively.
These decoupling properties of the projectors will also be valid for more general DAEs.

Example 4.2 Reconsideration of the DAE from FExample 2.1 that is not in Weierstraf-
Kronecker canonical form, with the projectors

0 00 000 100
IL=PP =0 00|,Q=1010,RPRQ=1000
~10 1 000 100
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The DAFE itself can be rewritten without any differentiations of equations as

(—z1+a3) =@+ —aq, (30)
xry = %(QS — (=71 + 3)), (31)
Ty = (1 — q3) — 7). (32)

Obviously, I x reflects the proper state variable —x1+x3, for which an explicit ODE (30)
is given. PyQyx refers to the variable xq that is described by the algebraic equation (31)
when the solution —x1 + x3 is already given by (30). Finally, Qox reflects the variable x4
which can be determined by (32). Note, that the variable x1 has to be differentiated here.

5 Decoupling of regular DAEs by admissible projec-
tors

In this section we deal with m x m matrices E, F. If they form a regular matrix pair
{E, F} with Kronecker index g € N, then the matrices Gy, ..., G,—1 generated by means
of admissible projectors according to (11) are singular and G, is the first nonsingular
matrix occurring in the sequence (see Proposion 4.1 and Theorem 3.1).

What do we know about the reverse implication? If a nonsingular matrix G, is met in the
sequence (11), then do we have a regular pair {E£, F'}? Does its Kronecker index equal p
? We will have positive answers to both questions at the end of this section.

The nonsingular matrix G, allows for a projector based decoupling so that the decoupled
version of the given DAE looks quite similar to the Weierstra3-Kronecker canonical form.
We stress that, at the same time, our discussion should serve as a model for a correspond-
ing decoupling of time-dependent linear DAEs for which we do not have a Weierstraf-
Kronecker canonical form. As already mentioned, when constructing the matrices G; we

have in mind a rearrangement of terms within the original DAE
Ex'(t) + Fa(t) = q(t) (33)

such that the solution components I1,,_1x(t) and (I — II,_q)x(t) are separated as far as
possible and the nonsingular matrix G, occurs in front of the derivative (I1,_;z(t))". Let

the matrix sequence (11) starting from Gy = E, By = F be realized up to G, which is
nonsingular. Let p € N be the smallest such index.

Consider the accompanying admissible projectors Qo, . .., Q.

We have @, =0, P, = I, II, = II,,_; for trivial reasons. Due to Proposition 2.6, the

intersections [V; are trivial,

]\[’L:NZH<NO++N’L*1):{O}7 izla"'au_la
and therefore
No+--+Nioi=Ng®---®Ni_y, Xj=Nog®---®Nimy, i=1,...,u—1. (34)
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From (34) we derive the relations
QZ'QJ‘:O, j:O,...,i—l, izl,...,u—l,
which are very helpful in computations. Recall from Section 2 the properties

GiPy = Gio, Bi=Blli_y, i=1,...,p,
GiQ; = BjQj, j=0,...,i—1, 1=0,...,p—1,

which will be used frequently.
Applying Gy = GoPy = Golly we rewrite the DAE (33) as

Go(Iloz(t)) + Boz(t) = q(2),
and then, with By = BoFPy + BoQo = Bolly + G1Q)o, as
G P Po(Iox (1)) + Bollpz(t) + G1Qox(t) = q(t).
Now we use the relation

G1P1P0 = G1HOP1P0 + Gl(I — H())Plpo
G I, — G (I — 1))@,
Gy 11, — Gy (I — ) Q1o @

to replace the first term. This yields

Gr(Ihx(t)) + Bia(t) + Gi{Qox(t) — (I — Io)Q1(Ie@Qix(t))'} = q(t).

Proceeding further by induction we suppose

1—1
b S @) — (- T)Qua (TQuz(8))'} = o(2)
1=0
and, in the next step, using the properties G, 1 P11 P, = G;, B;Q; = G;11Q;,
Gin = GprlQl, [ = O, e ,i - 1, and

PPl = II, P PII; + (I — 11;) Py P
=1 — (I = II;)Qina
=1y — (I = 11,) Qi1 1;Qi41,

we reach

Gig1(Iipax(t)) + Bipax(t)

+ Giq Z{Qﬂ'(t) — (I = I1) Qi1 (I Quy12(t))'} = q(1),

25
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so that expression (37) can be used for all i =1,... pu.
In particular, we obtain

Gu(lx(t))" + Byua(t)

s 38
= 6T {Qul) — (1= QM) = a0
=0
Taking into account that @, =0, P, =1, II, = II,_,, and scaling with G;l we derive
the equation

n—

(IT12(t)) + G Bua(t +ZQ1$ (I = ) Quia (IhQuax(t)) = G lq(t). (39)

1=

In turn, equation (39) can be decoupled into two parts, the explicit ODE with respect to
Hﬂflx(t)v

(Iu12(8) + Mur G Buas(t) = 1 G a(b), (40)
and the remaining equation
p—1
(- Hu—l)G;lBux(t) + Z Qu(t)
=0 (41)

l\')

n—

Z (I = I)Quia (I Quirx(t)) = (I — I, 1)G,  q(t).

=0

Next, we show that equation (41) uniquely defines the component (I —I1,,_;)z(t) in terms
of IT,_1x(t).
We decouple equation (41) once again into p further parts according to the decomposition

I'—1, 1 =QP P+ PPy + -+ QuaPy1 + Q. (42)
Notice that Q; P41 --- FPy—1, i =0,...,u — 2 are projectors, too, and
QiPiy1 - PuiaQi = Qi
Qipi+1 e P,LL*le 07 if ¢ 7é j7

QiPig1- - Pu—l(] - Hl)Ql—H = Qi(l - Hl)Ql—H =0, fori=0,...,i—1,
QiPiy1- - P;L—1(I — I1;)Qit1 QiQiy1.

Hence, multiplying (41) by Q;Piy1--- Py—1, 1 =0,..., 0 — 2, and Q,_; yields
QiPig1-+- PM—IG;IBux(t) + Qiz(t) — QiQir1 (IL;Qi1x(t))

n—2
— Z QiPiv1- PQua(ILQr1x(t)) = QiPiyy - - - Pu_nglq(t), (43)

f=itd i=0,...,0—2,

Qu-1G ' Bua(t) + Quoarx(t) = Quar Gl q(t). (44)
Equation (44) uniquely determines the component Q,_1z(t) as
Qu-1x(t) = Qu—lG;lq(t) - Qu—lG;IlBux(t)a

26



and the formula contained in (43) for ¢ = u — 2 gives

Qu-2x(t) = Qu—2pu—1Gﬁlq(t) - Qu—2pu—1G;1Bua7(t) = Qu—2Qu-1(11,2Q,12(1)),

and so on, i.e., in a consecutive manner we obtain expressions determining the compo-
nents (;z(t) in dependence on 1, qz(t) and Q;4;z(t), j=1,...,p—1 —1i.

To compose an expression for the whole solution x(t) there is no need for the compo-
nents Q;x(t) themselves, ¢ = 0,...,u — 1, but one can do with Qox(t), I1;_1Q;x(t),
t=1,...,u— 1, which corresponds to the decomposition

I'=Qo+ HyQy+ -+ 1, 2Q, 1+ II,_;. (45)

For this purpose we rearrange the system (43),(44) once again by multiplying (44) by
II, 5 and (43) for i = 1,..., 1 — 2 by II,_;. Let us remark that, even though we scale
with projectors (which are singular matrices) here, nothing of the equations gets lost.
This is due to the relations

Qz‘ = Qini—lQi
= ([i-1 + (I — 11;1)) Qi I1;-1 Q;
= I+ (I = I;-1)Qi)I1; 1 Q, (46)

I Qi = (I — (I = 11;-1)Q:) Qs
which allow a one-to-one translation of the components @Q;z(t) and II;_1Q;z(t) into each

other.
With notations chosen according to the decomposition (45),

vo(t) = Qox(t), wilt) :=I;1Qx(t), i=1,...,p—1, u(l) = I 2(t), (47)
we obtain the representation resp. decomposition
x(t) = vo(t) +v1(t) + -+ v,1(t) + ult) (48)

of the solution as well as the structured system resulting from (40), (43), (44)

T - - u’(t) -
0 ./\/2)1 M,u—l T
DR (1)
N2 :
_ o] e "
[ W T [ w(t) 7 [ Lg ]
H() I Uo(t) £0
+ ' : = q(t)
| Hu—l ] ] | Uu—l(t) | ﬁu,1 ]
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with the m x m-blocks
Ho := QoPy - -+ PyAG;lB;u
Hi =1 1QiPiyy - Pu—lG;lB;m =1, 0—2
H,ufl = ,quQ,uflG;le,uv
W= M_lG;lBM,

Lyg:= u,lG!jl,
Lo:= QP+ PG,
L= 1QiPpyi -~ Pt Gy i=1,...,p1—2,
L= HM—QQu—lG;17
Nop := —QoQ1,
NOj::QOPI"'F)jleja J=2,...,p—1,
M,i—i—l == i—lQiQi—i—la
Nij = —I;_1Qi Py - Pj_1Qy, J=1+2,..p—11=1,...,p—2

System (49) almost looks like a DAE in Weierstraf-Kronecker canonical form. However,
compared to the latter it is a puffed up system of dimension (u + 1)m. The system (49)
is equivalent to the original DAE (33) in the following sense.

Lemma 5.1 Let {E, F} be a pair with the characteristic values
rg < <1y < Ty =m.

(1) If z(.) is a solution of the DAE (33), then the components u(.), vo(.),...,vu—1(.),
which are given by (47), form a solution of the puffed up system (49).

(2) Conwversely, if the functions u(.),vo(.),...,v,—1(.) are a solution of the system (49)
and if, additionally, u(ty) = II,_1u(ty) holds for a to € I, then the compound
function x(.) defined by (48) is a solution of the original DAE (33).

Proof: It remains to verify (2). Due to the properties of the coefficients, for each solution
of system (49) it holds that v;(¢t) = II;_1Q;v;(t), i = 1,...,u — 1, vo(t) = Qovo(t), which
means that the components v;(t), i =0,...,u — 1, belong to the desired subspaces.

The first equation in (49) is the explicit ODE u/(t) + Wu(t) = Laq(t). Let u,(.) denote
the solution fixed by the initial condition u,(ty) = 0. We have u,(t) = II,_1u4(t) because
of W=1, W, L;=1,_1L,. However, for each arbitrary constant ¢ € im (I — I1,_+),
the function u(.) := ¢+ u,(.) solves this ODE but does not belong to im 7, ; as we want
it to.

With the initial condition u(tg) = ug € im I1,,_; the solution can be kept in the desired
subspace, which means that u(t) € im 1,4 for all ¢t € Z. Now, by carrying out the
decoupling procedure in reverse order and putting things together we have finished the
proof. O

System (49) is given in terms of the original DAE. It shows in some detail the inherent
structure of that DAE. An analogous decoupling applies for time-varying linear DAEs,
too.A special smart choice of the admissible projectors cancels the coefficients H; in system
(49) so that the second part no longer depends on the first one.
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Theorem 5.2 Let {E, F'} be a pair with characteristic values
ro < - <1y <1y =m.

Then there are admissible projectors Qy, . ..Q,—1 such that the coupling coefficients
Ho, ..., Hu—1 in (49) vanish, that is, (49) decouples into two independent subsystems.

Proof:
For any given sequence of admissible projectors @, ...Q,—1 the coupling coefficients can
be expressed as Hy = Qo ll,—1, Hi=11;_1Qull,—1, 1 =1,...,u— 1, where we denote

Qo = QoP1---P,1G,' By,
Qix = QiBH"'PH—lG;lBOHi—l, =1, 0—2,
Qu-1+ = Q#—lGllBoﬂufz.

We realize that Q;,Q; = Q;, 1 =0,...,u— 1, since

Q,ufl*@ufl = QuflGllBOHuf2Qufl = Q,uflGlle,ule,ufl = QuflGﬁlGuQufl = Q,ufl
and so on. This implies (Qs)? = Qix, i.e., Qi is a projector onto N;, i = 0,..., u — 1.
Furthermore, by construction it holds that No+---+ N;,_; Cker@Q;, 1+ =1,...,u— 1.

The new projectors Qo := Qo,...,Q, o = Qu-2, Q-1 = Q,_1. are also admissible
ones, but now, in (49) the respective coefficient H,,_; disappears. Namely, the old and
new sequences are related by

Gi = Gi, 1= 0, ey b — 1, C_';’u = G;l + Bu—lQu—l* = GMZW
with nonsingular 7, := I + Q,~1Qu—1+P,—1. This yields
Qu—l* = Qu—léu—lBOHM—Q = Qu—l*ZJIG;lBoHu—2 = Qu—1GllBOHu—2 =Qu14 = Qu—1

because of

Quq*Z,:l = Qu-1+({ = Qu-1Qu-1+Pu1) = Qu1,
and hence

Hyr i= 11, 2Qu 1.1,y = II,,_5Q, 11,1 = 0.

We show by induction that the coupling coefficients disappear stepwise with an appropri-
ate choice of admissible projectors.
Assume o, ...Q,—1 to be such that

He1 =0, .., Hufl =0, (50)

or, equivalently,
Qk-i—l*nu—l =0, ..., Q,u—l*ﬂu—l =0,
for a certain k, 0 < k < pu— 2.
We build a new sequence by letting Q; := Q;, i =0,...,k—1 (if k > 1), and Qp 1= Q..
In particular it holds that Qy Py = —Qp P
Qo, . . ., Qy are admissible, and the resulting two sequences are related by
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with factors
ZO :[, ,Zk :[, Zk+1 :[+Qka*Pk, Zk—l}l —[—Qka*Pk

We put Qpi1 := Z,;}IQ;CHZ;CH = Zk_lekH. Qo, - .., Qr41 are admissible, too.
Applying Lemma 2.10 we proceed with

Gj:Giju Qj ::Zleij7 j:k+27"'>”_17

and arrive at a new sequence of admissible projectors Qy, . . . ,Qu,l. The invertibility of
Zj is ensured by Lemma 2.10.
Put Y1 := Zi1. Lemma 2.10 provides us with the expressions

j—2

Y; = ZJZJ_ V=14 Qi (I12Qi1 — IT;2Qj-1) + ZQlﬁj—QQj—ly Jj=>k+2.

Additionally we learn from Lemma 2.10 that the subspaces Ng@®- - -@ N; and No@- - - N;
coincide.
For our special new projectors the expression for Y}, j > k + 2, simplifies to

j—2 Jj—2
Yy=1+ ZQlﬁj—2Qj—l =1+ Z QI —5Q;
1=0 I=k
because the following relations are now valid:

QiZ; =0, Q;=2;'Q;, I 2Q; 1 =1l; 27;1,Q; 1 = II; 5Q; 1,

Qim1(I15Q 1 — II; 5Q; 1) = Qj—1(11;_»Q;1 — I; 5Q;_1) = 0.
We have to Verify that the new coupling coefficients Hy and H;, j > k + 1, disappear.
We compute QxZ; !, = Qrp — QP = Q1Qr = Q. and

Jj—2
Zj_lZfl - }/jil - I - Z Qlﬁj_QQj_l, ] Z k + 2 (51)
=k

For j > k + 1 this yields
Qj*ﬁu—l = ijj—i-l e Pﬂ—lé;lBﬁﬂ—l ng j+1 = 'Yu__llpuqyu_lBﬁ#—l
and by inserting (51) into the last expression

-1

Qjull = Z7'Qi(I = Y QuIILj1Q))Pjyr -+ Bui(I = ) Qull,2Qy1)G, ' BIT, 1.

.
N
[\

I
=
I
=

Rearranging the terms:

Qjellyr = (Z7'QjPji1 -+ Puct +Cjj11Qj41 Pz - Py (52)
+ ot Chum2Que2But + €1 Q)G BIT, 1.
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The detailed expression of the coefficients C;; does not matter at all. With analogous
arguments we derive

Q1 = (QusPrt1 - Puc1 + Crji1Qry1Piya - Pua

_ 53
+- Ck,u—2@u—2pu—1 + Ck:,,u—lQ,u—l)G;;lBHu—l ( )

Next we compute

ﬁu—l = Hk—lpkpkﬂ T pu—l = Hk—lpkpk—H R
= I} (P + Qi) PiPrvr - Py = 11 — QipQrll,—q,

and therefore
G,'BIl,y = G,'B(Il,_y — I, 1QrQy1l,—1) = G, ' BIl,, 1 — QQpII,_1.
Now from assumption (50) and the properties of admissible projectors it follows that
QuG,'BIl,y = Qu1G, ' B, — QuaQpll, 1 = Qu-1. 11,1 = 0,
and, fori=k+1,...,0—2,

Qz +1 p 1B Qz +1° u 1BI1 pu—1 Qi@knu—l = Qi*H,u—l = 0.

Furthermore, taking into account the special choice of Q,

Qkpk+1 T P/,L*lBﬁ,ufl = QkPkJrl tee P,uleH,ufl - Qk@kn,ufl = (Qk* - Qk)nufl =0.

This makes it evident that all single summands on the right hand sides of formulas (52)
and (53) disappear, and thus Qj*ﬁu_l =0forj=k,...,u—1, that is, the new decoupling
coefficients vanish. In consequence, starting with any admissible projectors we apply the
above procedure first for k = p — 1, then for £k = u — 2 up to k = 0. At each level an
additional coupling coefficient is cancelled, and we finish with a complete decoupling of
the two parts in (49). O

Definition 5.3 Let {E, F'} be a pair with characteristic valuesrg < --- < 71,1 <71, =m.
If all coefficients H;, i = 0, ..., u—1, vanish in system (49), then the underlying admissible
projectors Qq, . .. Q-1 are called completely decoupling projectors for the DAE (33).

Notice that for DAEs with 4 = 1, the completely decoupling projector )y is uniquely
determined. It is the projector onto Ny along Sy = {z € R™ : Byz € im Gy} (cf.
Appendix 8). However, for higher index p > 1, there are many complete decouplings, as
the next example shows.

Example 5.4 Let

010 L 0o0
E:GOI 0 00 5 F:BOI 010 5
001 0 01
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and choose a projector Qo with a free parameter c.

(1 a 0 [1 —a 0 (1 1+a 0
Q=10 0 0], P=10 1 0], Gi=1|0 0 01|, Bi=F,
1000 0 0 1 0 0 1
0 —(1+a) 0 00 0 1010
Qi1=10 1 O, IL, =10 0 0], Go=1|101 0|,
0 0 0 (00 1 (00 1
(1 -1 0
Gy'=10 1 0], QPG5 By = Q,
0 0 1

i.e., Qo, Q1 are completely decoupling projectors for each arbitrary value c.

The completely decoupled system (49) offers as much insight as the Weierstrafi-Kronecker
canonical form does. Without loosing information it can be compressed back on an
m-dimensional DAE. The next lemma records essential properties to be used in the com-
pression procedure.

Lemma 5.5 It holds that
Niiv1 = Nii IL,Qia,
ker -/\[i,i+1 = ker I1;Q;41,
rank N p=m—ri1, 1=0,...,0—2.
Proof: We use the additional subspaces S; := ker W;B; C R™ and projectors W; € L(R™)
with
ker W; =imG;, i =0,...,u— 1.
Let GG; denote the generalized reflexive inverse of G; with G,G; G; = G;, G; G,G; =
G, GiG; =1-W,, G;G; =P, We factorize G;; as
Git1 =G+ BiQ; = G + W, B,Q; + G,G; BiQi = Gi1Fisa,

Git1:= G+ WiBiQi, Fip1 =1+ BG; BiQ;.

Since F;41 is invertible (cf. Lemma A.2), it follows that G;; has rank r;yy like G;11.
Furthermore, it holds that kerG,,; = N; N S;. Namely, G;112 = 0 means that
Giz=0, W;B;Q;z =0, i.e., z = Q;z, W;B;z =0, but thisis z € N; N S;.

Therefore, N; N S; must have dimension m — r;,1. Next we derive the relation

N;N S, =im Q; Qi1 (54)

z € N; N S; means z = Q;z, B;z = Gw, which implies (G; + B;Q;)(Pw + Q;z) = 0, and
hence, Pw 4+ Q;z = Qiv1(Pw + Q;2) = Q;yiw. Therefore, z = Q;z = Q;Q;1w. Taking
into consideration that (G; + B;Q;)Q;+1 = 0, we derive from z = @Q;Q; 11y that z = @,z
and B;z = B;Q;Qi11y = —GiQi11y, i.e. z € N;, z € S;. Owing to (54) we have

rank QiQH—l = dim Nz N Sz =m —Tit+1- (55)
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If follows immediately that rank A;;11 = m — i1, and, since im Py C ker NV 41,
rank Pi—l—l =Tit1, that im Pi+1 = ker./\/;-’iﬂ. O

We turn to the compression of the large system (49) on m dimensions. The projector
Qo has rank m — ry, II;_1Q; has rank m —r;, ¢« = 1,..., 0 — 1, and II,_; has rank

pn—1
d:=m— > (m—ry).
Jj=0

We introduce full-row-rank matrices I'; € L(R™, R™ "), i =0,...,u—1, [y € L(R™ RY),
such that

im Fdﬂu—l = Fd im Hu—l = Rd,
keer = im([—Hu_l) :N0+"'+Nu—17
FoNo - Rm—'r“o?
kerI'g = ker@Qy,
LG N; = R™
kerI'; = kerlIl;_1Q);, 1=1,...,0—1,
as well as generalized inverses I';,I';", 7 =0,...,u — 1, such that

I Tyg=11, ., Ly, =1,

Iyl = 114Q, Iy =1, i=1...,p—1

FEFO — Qo, Fora - I

If the projectors Qo,...,Q,—1 are widely orthogonal (cf. Proposition 2.6(6)), then the
above projectors are symmetric and I';, I'; are the Moore-Penrose generalized inverses.
Denoting

H; = TyH,Ty, Li=T;L; i=0,...,0—1, (56)
W =T VI, Lg:=T4Ly, (57)
Ny =TN,T;, j=i+1,...,u—1,i=0,...,n0—2, (58)
and transforming the new variables
u="Tqu, v;,=Tw;, i=0,...,u—1, (59)
v=T,a, v=I7% i=0,...,p0—1, (60)

we compress the large system (49) without loosing information into the m-dimensional
one

T S - a’(t) -
0 Nop - -/\/o,u—l 0
SO : (1)
-/\7#—2,“—1 <
L 0 | L vu—1<t> ]
- S (61)
w u(t) éd
Ho |1 To(t) Lo
+ ' = q
| 7:{;1—1 I 1 L 6N—1(t) | E,ufl ]
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As a consequence of Lemma 5.5, the blocks J\~/},i+1 have full column rank m — r;y; for
1=0,...,0—2.

Proposition 5.6 Let the pair {E,F}, E,F € L(R™) have characteristic values
ro<...<r,1 <r,=m.

(1) Then there are nonsingular matrices L, K € L(R™) such that

Wi 7 W ]
0 Noo -+ Noua Ho |1
LEK = . . . , LFK = : ,
Nqu,,ufl ~Z T
i 0 | Hu I

with entries described by (56)-(58).
FEach block N1 has full column rank m — riq, @ = 0,...,u — 2, and hence the
nilpotent part in LEK has index p.

(2) By means of completely decoupling projectors, L and K can be built so that the coeffi-
cients Ho, ..., H,—1 disappear, and the DAE transforms into Weierstraf$-Kronecker
canonical form.

Proof: Due to the properties

Hi:HiHu—l :HiF;Fd, iZO,...,u—l,
W = WII,_, = WI; Ty,

we can recover system (49) from (61) by multiplying from the left by

Ly

o
I~ = . € L(R™, RU+1m)

I L |
using transformation (60) and taking into account that u =1I";a = II,_qu, II,_u' = u'.
The matrix I'” is a generalized inverse of

Iy

[:= . e L(RWHIm R T~ =1,
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Qo
Iy,

r;T,
T, To

H,LL—QQ,LL—I |

1
)1
i

Dol ||

L p—1
I
: is nonsingular.

The product K :=T |:
I

Ty

Our decomposition means now that
r = H#,15C + Q0$ + H()Qll' + -+ HM,QQM,1$
7 u
Vo
= [[---I]T"T x=|[I---1] .
It :
Vp—1
and the transformation (59) reads
i U 1 1
Vo :
=IT"T r=1T r=Kr=1

v
0 _T ‘ .
1 1

Thus, turning from the original DAE (33) to the DAE in the form (61) means a coordinate
transformation = Kz, with a nonsingular matrix K, combined with a scaling by
I

L
QoPr - -- P, :
' G;l.

I 7T 5
QN—QP,u—l
Qu—l_

L is a nonsingular matrix. Namely, LG,z = 0 means that
12+t Hp—3Qu—2PM—1Z + Hu—QQu—lz = 07

Hu—lz+QOPI"'PM—12+H0Q1P2"'PM
and multiplying by II,_; yields II,,_1z = 0, multiplying by @,—: yields Q,_1z = 0, by

Qu—2P,—1 yields Q,—2F, 2z = 0, and so on, hence
([ —1,1)2=Qu12+QuoP, 12+ -+ QoP,---P,_12=0.

The original DAE (33) and the system (61) are equivalent in the usual sense, which
proves the first assertion. Because of the existence of completely decoupling projectors

(see Theorem 5.2), the second assertion is an immediate consequence of the first one. [J
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6 Characterizing matrix pencils by admissible pro-
jectors

Each regular pair of m x m matrices with Kronecker index pz > 1 can be transformed into
the Weierstra-Kronecker canonical form (cf. Section 1).

Ji

ol o= = |

Js

where W is d x d, Jis Il x I, d+1 = m, J; is a nilpotent Jordan block of order k;,
1<k <p, max k;=p .

1,...,s

As in Section f, let l; denote the number of all Jordan blocks of order > ¢, Then, J has
l, > 1 Jordan blocks of order p, and l; — l;41 Jordan blocks of order ¢, ¢ = 1,...,u—1,
L4+, =1

In the present section we show how one can get all this structural information as well as
the spectrum of —W, that is the finite spectrum of the given matrix pencil, by means of
the matrix sequence and the admissible projectors without transforming the given pair
into Weierstrafl-Kronecker canonical form.

Often the given matrix pair might have a large dimension m but a low Kronecker index
1 so that just a few steps in the matrix sequence will do.

Theorem 6.1 For a reqular pair { E, F'} with Kronecker index > 1, the matriz sequence
(11) built with admissible projectors consists of singular matrices Gy, ...,G,—1, but G, is
nonsingular.

Proof: This is a consequence of the existence of the Weierstrafl-Kronecker canonical form
(cf. Proposition 1.3), Theorem 3.1 and Proposition 4.1. 0J

The reverse implication of this assertion is also true. If, for a given pair {£, F'}, in the
sequence G, i > 0, built with admissible projectors, there occurs a nonsingular matrix,
say Gy, and k is the smallest such index, then { £, F'} is a regular pencil with Kronecker
index . This was proven in [GM89] for the first time. We will obtain this result in a
different way, which, from our point of view, is more transparent.

Theorem 6.2 If the pair {E, F}, E,F € L(R™), has characteristic values
rg <o Sy < Ty =m,
then it is regqular with Kronecker index p.

Proof: Let the pair {E, F'} have the characteristic values ro < --- <r,_; <71, =m. By
Theorem 5.2 we can choose completely decoupling projectors. Applying the decoupling
and compressing procedure for the corresponding DAE (33) we arrive at an equivalent
DAE of the form

{I /\7} # + [W 1} i (62)
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The matrix A is nilpotent with index j, and it has the structure

[0 Nog -+ - /%7”_1 i bm — g
0 ' :
N = 7 (63)
/\N/M_2’M_1 }m —Tu—2
i 0 i pm — Tu—1

with full-column rank blocks /\N/'Z-JH,Z' =0,...,0—2.
It turnes out that {F, F'} can be transformed into Weierstra-Kronecker canonical form
with Kronecker index pu, and hence {E, F'} is a regular pair with Kronecker index p. O

Corollary 6.3 If{E,F}, E,F € L(R™), is a pair with characteristic values ro < -+ <
ru—1 < 1, = m, then the nilpotent part in its Weierstraf-Kronecker canonical form con-
tains altogether s = m — ro Jordan blocks, among them r; — r;_1 Jordan chains of order
i, i=1,...,p It holds that l; =m — iy, i=1,...,p, d=m =3 (m—r;_1).

Besides the above structural characteristics the matrix sequence provides also the finite
spectrum of the matrix pencil as a part of the spectrum of the matrix W := II, M_nglB :

Theorem 6.4 Let {E,F}, E and F € L(R™), be reqular with Kronecker index p, and
let the matriz
W :=11,.,G,'BIl,_, =1, ,G,'B

be generated by the matriz sequence (11) with admissible projectors. Then the following
holds:

(1) Each finite eigenvalue of {E, F'} belongs to the spectrum of —W. More precisely,
(AE+F)z=0, z#0, impliesu :=II,_1z# 0, and (A + W)u = 0.

(2) If M +W)u =0, II,_qu#0, then X is a finite eigenvalue of the pair {E, F'}.

B) If M +W)u =0, (I—IH,—1)u # 0, then A\ = 0 must hold. If, additionally,
II,_qu #0, then A =0 is a finite eigenvalue of the pair {E, F'}.

(4) M+W)u=0, u#0, X#0, implies II,_1u = u.
(5) If Qo, ..., Qu_1 are completely decoupling projectors, then W simplifies to
W = G;lBH”,l = G;lBH,
and I1,,_; is the spectral projector of the matriz pair {E, F'}.

Proof: Applying the decoupling procedure (see Section 5) we rewrite the equation (AE +
F)z =0, with

Z=u+v)+ A+ v, uwi=1I, 02, voi=Qoz,. .., V1 = 11,001,

as the decoupled system

A+ Wu =0, (64)
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0 Not -+ Nou-a Up Up Ho

A R ' ] = e (65)
. Nu—2,u—1 : :

0 (O Uy H,1

Equation (65) leads to the representations

Vyp—1 = _Huflu>

Vy—2 = _HM_QU+ANH_27M_1HM_1U7
and so on, showing the linear dependence of u, v; = Hiu, i = 0,...,u— 1. The property
H@' = HiH‘u,1 implies 7:(1 - ﬂiﬂu,l.
If 2 # 0 then u # 0 must be true, since otherwise v = 0 would imply v; = 0,
t =0,...,u0— 1, and hence z = 0. Consequently, A turns out to be an eigenvalue of

—W and u = II,_;z is the corresponding eigenvector. This proves assertion (1).
To verify (2)-(4) we consider

M +W)i=0, @=1I, i+ (-1, )i0.

Because W(I — II,_1) = 0 and (I — II,_;)WW = 0, our equation decomposes into the
following two:

AI =1, 1)i=0, (A+W)i=0. (66)

Next, if II,_yu # 0, we put v; = Hia = 7:11«]7“_117,, t = 0,...,0 — 1. Then
Z:=1I, 14+ Ty + -+ U,—1 is nontrivial, and it satisfies the condition (A\E + F)Z = 0,
and so assertion (2) holds true.

Furthermore, if (I — II,_1)a # 0, then the first part of (66) yields A = 0. Together with
(2) this validates (3).

(4) is a simple consequence of (66).

(5) Compute

G;lBu - HﬂflGllBﬂ - ([ - H,ufl)GlleH,ufl
= (Qur + QuaBua+ -+ QP+ B1)G, Bl
= Qu-1ll 1+ Quollyy + -+ Qoll,—, = 0.

For the proof that I7,_; is the spectral projector we refer to [Mé&r96] O

The matrix W = 1, ,G;;' B = I, G}, BIl,,_, resulting from the projector based decou-
pling procedure contains the finite spectrum of the pencil {F, F'}. The spectrum of —W
consists of the d finite eigenvalues of the pencil {E, F'} plus m — d = [ zero eigenvalues
corresponding to the subspace im (I — I1,_1) C ker W.

The eigenvectors corresponding to non-zero eigenvalues of VW necessarily belong to the
subspace im I1,,_;.

We now have available complete information concerning the structure of the Weierstraf3-
Kronecker canonical form without computing that form itself. All this information is
extracted from the matrix sequence (11).

In particular, using the matrix sequence, the following characteristics of the matrix pair
E| F' are obtained:
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d=m-3")_(m~—rj1), | =m—d, p- the basic structural sizes and the
Kronecker index,

e ;.1 — r; - the number of Jordan blocks with dimension ¢ + 1 in the nilpotent part,
e m — r; - the number of Jordan blocks with dimension > ¢ + 1 in the nilpotent part,
e the finite eigenvalues.
There is also an easy regularity criterion provided by the matrix sequence (11).
Proposition 6.5 The pair {E, F}, E,F € L(R™), is singular if and only if there is a
nontrivial subspace among the intersections
NiANi_1, Ni=Nin(No+ -+ +Niy), i>1, (67)

Proof: Owing to the basic property (12) and Proposition 2.6, each nontrivial subspace
among (67) indicates a singular pencil.

Conversely, let {E, F'} be singular. Then all matrices G; must be singular, their nullspaces
N; have dimensions > 1 and the ranks satisfy the inequality

TOS...ETZS ...... Sm—l_

There is a maximal rank r,,,, < m — 1 and an integer x such that r; = 7,,., for all i > k.
If all above intersections (67) are trivial, then it follows that

No+-+N=Ng®---®N;, dim(Ng@---®N;) >i+1.

However, this contradicts the natural property Ng+--- 4+ N; C R™. O

7 Singular DAEs

As described in Section 2, the concept of admissible projectors and basic matrix sequences
applies to general ordered matrix pairs {E, F'}, and we expect the sequence of matrices
Gj to become stationary as in Example 2.2. What can we do with this knowledge? Let
us have a closer look at some simple special cases.

First we revisit Example 2.4, that is, the DAE

(l’1+$2), + T2 = q,

/ —
r3 = (s,
xh = q.

A matrix sequence and admissible projectors for the DAE (68) are given in Section 2
(see Examples 2.2, 2.4). The matrix G, already has maximal rank three, and hence the
subspaces im (G; are stationary beginning with ¢ = 0, but the sequence itself becomes
stationary at level two. The orthoprojector along im Gy and the projector Ily = P, are

0000 0000
0000 1100
WO_0010’170_0010
0000 000 1

39



How should one interpret this DAE which is not regular? There are several different ways.
The way which we prefer is the following: Consider the equation picked up by the projector
W , that is the third equation, as a consistency condition. The remaining system of three
equations can then be seen as an explicit ODE for the components marked by the projector
11y, i.e. for u := x1 4+ x5, x3, and x4, while x5 can be considered as an arbitrary continuous
function. This means, the DAE (68) is interpreted as having index zero (the level ¢ where
the maximal subspace im G; is reached first).

Obviously, instead of x5 we could also see the component x, as the free one.

There is considerable space for interpretation. Which variable should be the free one?
Which equations should actually represent consistency conditions? Considering the fourth
equation of (68) as consistency condition, the remaining system looks like an index one
DAE for u, x3, z4.

Furthermore, the last two equations of (68) somehow remain an index two problem, which
is mirrored by the strangeness index (cf. [KMO06]) of (68) having index one .

Consider now the underdetermined DAE

vy + 11 = q,
xé—i‘xQZQQ, (69)
I’?4+.TZ'3:CI3,
with
01 00 1 0 00 8(1)88
Go=10 0 1 0], By=10 100, Tho=|, 1 ¢
00 01 0010 00 0 1

This matrix Gy has full row rank, and no equation should be seen as a consistency
condition. We treat this DAE as an index zero DAE for the components indicated by the
projector Iy, and we see the variable x; to be free.

The matrix sequence becomes stationary at level three.

Observe that, choosing instead x4 to be the free component, we arrive at an index three
DAE for z1, 29, x3.

Finally, take a look at the so-called overdetermined DAE

rr = (q1,
L+ T2 = o,
70
Ty + w3 = g5 (70)
xé = Q4

for which the first matrix G is injective, and thus the matrix sequence is stationary at
the beginning. Seeing the first equation in (70) as a consistency condition, the other three
equations in (70) can be treated as an index-zero DAE for z1, xq, x3.

On the other hand, considering the last equation to be the consistency condition one
arrives at an index three DAE for xq, x9, 3. Note that (70) has strangeness index-three,
while the tractability index is zero.

We stress once again the large space for different interpretations.
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8 Comments

As we have seen in this chapter, the Weierstra-Kronecker canonical form of a regular
matrix pencil is very helpful for understanding the structure of a linear constant coeffi-
cient DAE, and, obviously, DAEs and matrix pencils are closely related.

Ever since Weierstral and Kronecker ([Wei68, Kro90]) discovered the canonical forms of
matrix pencils, and Gantmacher ([Gan53]) pointed out their connection with differential
equations, matrix pencils have attracted much interest over and again for many years.
There are untold publications on this topic; we only mention a few of them and refer to
the sources therein.

A large part of the developments concerning matrix pencils and the accompanying differ-
ential equations can be found in the rich literature on control and system theory, where the
resulting differential equations are called singular systems and descriptor systems rather
than DAEs (e.g. [Cam80, Dai89, Lew86, Lue77]).

On the other hand, there are important contributions coming from the area of general-
ized eigenvalue problems and generalized matrix inverses in linear algebra (e.g. [Cam82,
Boy80]). In particular, the Drazin inverse and spectral projections were applied to obtain
expressions for the solution (cf. also [GM86]). However, it seems, that this was a blind
alley in the search for a possible treatment of more general DAEs.

About half a century ago, Gantmacher ([Gan53]) and Dolezal [Dol60] first considered
models describing linear time-invariant mechanical systems and electrical circuits by linear
constant coefficient DAEs. Today, multibody systems and circuit simulation represent the
most traditional DAE application fields (e.g. [ESF98, FS90, GF99]). In between, in about
1980, due to unexpected phenomena in numerical computations (e.g. [SEYES1, Pet82]),
DAEs (descriptor systems) became an actual and challenging topic in applied mathemat-
ics.

Unfortunately, the transformation to Weierstrafl-Kronecker canonical form as well as the
Drazin inverse approaches do not allow for modifications appropriate to the treatment
of time-varying and nonlinear DAEs. A development with great potential for suitable
generalizations is given by the derivative array approach due to Campbell ([Cam87]).
Following this proposal, we consider, in addition to the given DAE

Ea'(t) + Fa(t) = q(t), (71)
the extended system
E 0 0 2/ (t) F q(t)
F E 0 . . . " (t) 0 q(t)
o F E . . . . =—|.|z@)+ . ) (72)
FoB| | 0 40
(;; g

which results from (71) by differentiating this equation p times and collecting all these
equations. If the (p + 1) x m matrix &, is 1-full, or in other words, if there exists a
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nonsingular matrix R such that

In 0
Réu = [0 /C]’

then an explicit ODE, the completion ODE, can be extracted from the derivative array
system (72), say

2'(t) = Cx(t) + iqu(j) (). (73)

The solutions of the DAE (71) are embedded into the solutions of the explicit ODE
(73). If {E, F'} forms a regular matrix pair with Kronecker index y, then &, is 1-full (cf.
[Cam85]). Conversely, if p is the smallest index such that &, is 1-full, then {E, F'} is
regular with Kronecker index p. In this context, applying our sequence of matrices built
using admissible projectors, we find that the 1-fullness of £, implies that G, is nonsingular,
and, then using completely decoupling projectors, we obtain a special representation of
the scaling matrix R. We demonstrate this just for =1, 2.

Case = 1: Let & be 1-full, and consider z with G1z =0, i.e. Ez + FQyz = 0, and so

E 0 Q()Z —0
F E|| 2| 7
but then, due to the 1-fullness, it follows that Qgz = 0. This, in turn, gives Fz = 0 and

then z = 0. Therefore, G; is nonsingular. Taking the completely decoupling projector ()
such that Qo = QoG ' F holds true, we obtain

P, Ql[GY o ][E o] [T 0 -
—RG{'F PRy|| 0 G{'|F E| |0 R’ (74)

N /
-

R

Case 1 = 2: Let & be 1-full, and consider z with Goz = 0, i.e. Ez+ FQyz+ FFPyQ1z = 0.
Because (F 4+ FQo)@Q1 = G1Q1 = 0 we find that F(Qo + PoQ1)z = EQ1z = —FQoQ12,

and therefore

E 0 0 QoQ12
F E 0| |(Q+PO)z| =0
0 F FE z

Now, the 1-fullness of & implies QoQ12 = 0, but this yields EFPy(); = 0, so that PyQ1z =
0, and therefore )1z = 0 and F'Qyz + Ez = 0. Finally, we conclude that z = @,z = 0,
which means that G5 is nonsingular. With completely decoupling projectors Q)g, Q)1 we
compute

PPy QoP + PQ1 Q@i [Gy' 0 0

QP + Po@s Qo1 PP 0 Gy' 0| =R,
—~PyPG;'F PP, Py 0 0 Gy
E 0 O I 0 0
R|F E 0| =|0 PPG,'F PP,
0O F F 0 By 0
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The resulting completion ODE (cf. (73)) is
x’(t) + PopnglFl’(t> = P0P1G51Q(t) -+ (Q()Pl + Po@l)Gglq/@) + QleGglq”(t), (75)
and it decomposes into the three parts

PyPi2'(t) + Py PLGy ' FPyPia(t) =Py PyG5 q(t),
PyQ12'(t) =PyQ1G5q (t),
Qo' (t) =Po@1G3 ¢ (t) + Qo@1G3 ¢ (t),

while the decoupling procedure described in Section 5 yields

(P()Pll’),(t) + PleGEIFP()PlZE(t) :P()PlGQ_lq(t>,
PoQurx(t) =Py@Q1G5 ' q(2),
Qox(t) =Po@Q1G5q(t) + Qo1 (Po@1G5 1 q)' (1)

A comparison shows consistency but also differences. In order to recover the DAE solu-
tions from the solutions of the explicit ODE (75) one obviously needs consistent initial
values. Naturally, more smoothness has to be given when using the derivative array and
the completion ODE. Applying derivative array approaches to time-varying linear or non-
linear DAEs one has to ensure the existence of all the higher derivatives occurring when
differentiating the original DAE again and again, and in practice one has to provide these
derivatives.

The matrix sequence (11) was first introduced in [Mar87]. However, this paper was not
accepted for publication since the corresponding referees did not believe that the approach
would work for time-varying linear DAEs. Part of the material of [M&r87] is included
in [GM89]. The completely decoupling projectors, formerly called canonical projectors
are provided in [M&r96]. They are applied for Lyapunov type stability criteria e.g. in
[Méar94, Mar9sg].

We stress that, in these earlier papers, the sum spaces Ny + ... + N; do not yet play
their important role as they do in the present material. The central role of these sum
spaces is only pointed out in [M&r04] where linear time-varying DAEs are analyzed. In the
same paper, admissible projectors are introduced for regular DAEs. Since we now allow
for general rectangular systems, the notion of admissible projectors given here generalizes

the previous definition and accepts nontrivial intersections ﬁl while the demand for trivial

intersections ]@ is included in the former notion (aiming just for regular DAES).
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Appendix A
Linear Algebra — Basics

In this appendix we collect and complete well-known facts concerning projectors and
subspaces of R™ (Section A), and generalized inverses (Section B).

A Projectors and subspaces

We collect some basic and useful properties of projectors and subspaces.

Definition A.1 (1) A linear mapping Q € L(R™) is called a projector, if Q* = Q.
(2) A projector @ € L(R™) is called a projector onto S C R™ if im@Q = S.
(3) A projector Q € L(R™) is called a projector along S C R™ if kerQ = S.

(4) A projector @ € L(R™) is called an orthogonal projector if QQ = Q*.

10 0
* 0 ...
Example: The m-dimensional matrix Q = |, . .| with arbitrary entries for %
* 0 ... 0
becomes a projector onto the one-dimensional subspace spanned by the first column of )
U1
o)
along the (m — 1)-dimensional subspace {v:v= | | ,v; =0}.
Um

Lemma A.2 Let P and P be projectors, and Q :== I — P, Q := I — P the complementary

projectors . Then the following properties hold:
1) zeim@Q & z=0Qz.

2) If Q and Q project onto the same subspace S, then Q = QQ and Q = QQ are valid.

4

(1)
(2)
(3) If P and P project along the same subspace S, then P = PP and P = PP are true.
(4) Q projects onto S iff P := I — Q projects along S.

()

5

Each matrix of the form I + PZQ), with arbitrary matrix Z, is nonsingular and its
mverse is I — PZ(Q).

(6) Fach projector P is diagonalizable. Its eigenvalues are 0 and 1. The multiplicity of
the ergenvalue 1 is r = rank P.

Proof:
Lz2=Qy — Q:2=Q%=Qy=z
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2. Qz€im@Q =S5 =imQ, also Qz = QQz Vz.
3.PP=(1-Q)I-Q)=1-Q-Q+QQ=1-Q=P.

4. PP =P & ([I-Q2=1-Q & -Q+@ =0 & Q> =Q and
z€kerP & Pz=0& z2=0Qz & z€im(Q.

5. Multiplying (I + PZQ)z =0 by @Q = Qz = 0. Now with (I + PZQ)z = 0 follows
z=0.
(I+PZQ)(I — PZQ) =1 — PZQ + PZQ = I.

6. Let P, be a matrix of the r linearly independent columns of P and @, a ma-
trix of the m — r linearly independent columns of I — P. Then by construction

P [Pl Qg} = [P1 QQ] [I 0]. Because of the nonsingularity of [Pl Q2:| we have

the structure P = [Pl Qg] {[ 0} [Pl Qg]_l. The columns of P; resp. (5 are the

eigenvectors to the eigenvalues 1 resp. 0. 0

Lemma A.3 Let A € L(R*,R¥), D € L(R™ R") be given, r := rank (AD). Then the
following two implications are valid:

(1) kerANimD =0, im(AD) =imA = ker A®im D = R".
(2) kerA®@imD =R" =

e ker ANim D = {0},
e imAD =im A,

e ker AD = ker D,

e rank A =rank D = r.

Proof: (1) Because of im (AD) = im A, the matrix A has rank r and ker A has dimension
n — r. Moreover, rank D > r must be true. The direct sum ker A & im D is well-defined,
and it has dimension n — r + rank D < n. This means that D has rankr. We are done

with (1).
(2) The first relation is an inherent property of the direct sum. Let R € L(R™) denote

the projector onto im D along ker A. By means of suitable generalized inverses D~ and
A~ of D and A we may write (Appendix B) R=A"A=DD~, D= RD, A= AR. This

leads to

imAD CimA=imADD™ CimAD,
ker AD C ker A=AD =ker D C ker AD.

The remaining rank property follows now from (1). O

Lemma A.4 [GuL91, Ch. 12.4.2] Given are matrices G, II, N, W of suitable sizes such
that

ker G =imN,
ker IIN =im W.
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Then it holds that

ker G Nker IT = ker N'W.

Proof: For x € ker G Nker IT we find x = Ny, ITx = 0, further IINy = 0, and hence
y=Wz, z=NWz e imNW.
Conversely, each z = N Wz belongs obviously to ker G, and [Tz = [INWz = 0. ([l

Lemma A.5 N, M C R™ subspaces = (N + M)+ = N+ n M+,

Proof:

(N+M = {zeR™:Ywe N+ M: (z,w) =0}
= {2 €R™:Vwy € N,Ywy € M : {z,wy + wy) = 0}
= {zeR™:Vuy € N,Ywy € M : (z,wy) =0, (z,wy) =0}
= N'NM*.

O

Lemma A.6 (1) Given two subspaces N, X C R™, N N X = {0}. Then

(2)

dim N + dim X < m, and there is a projector Q € L(R™) such that im@ = N,
ker@ O X.

Given two subspaces S, N C R™. If the decomposition
R"=S® N

holds true, i.e. S and N are transversal , then there is a uniquely determined pro-
jector P € L(R™) such that im P = S, ker P = N.

An orthoprojector P projects onto S := im P along S+ = ker P.

Given the subspaces K, N C R™, N:=NnK. If a further subspace X C R™ 1is a

complement of]v i K, that means K = ]V@X, then there is a projector Q € L(R™)
onto N such that

X Cker@. (76)

Let dg,dn,u denote the dimensions of the subspaces K, N, ﬁ, respectively, then
dg +dy <m+u (77)
holds.

If the subspace K in (4) is the nullspace of a certain projector I € L(R™), that is
K =%ker Il =im (I — II), then

QU — II) =0 (78)

becomes true.
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(6) Given are the two projectors I1,QQ € L(R™), further P := I — Q, N := imQ,
K :=ker II. Then, supposed (78) is valid, the products I P, IIQ, PIIP, P(I —1II),
Q(I — II) are projectors, too. The relation

ker [IP =ker PIIP =N + K (79)

holds true, and the subspace X :=1im P(I — II) is the complement of N=NnK

m K, such that K = ﬁ@X.
Moreover, the decomposition

R™ = (N + K) &im PIIP = N & X & im PII P
—_——
im P

15 valid.

(7) If the projectors I1,Q in (6) are such that IT* = II, (IIP)* = 1P, (P(I — II))* =
P(I —1II) and QIIP = 0, then it follows that

X=KNN imP=Xa& (N+K)"

Proof: (1): Let xy,...,x, € R™ and nq,...,n; € R™ be basises of X and N. Because of
X NN = {0} the matrix

Fi=lzy...xmnq ... 10y

has full column rank and r +¢ = dim X +dim N < m. The matrix F*F is invertible, and

Q:=F {0 ]} (F*F)'F*
r i

is a projector we looked for. Namely,
2 0 * —1 % 0 * —1 % : : 0
Q" =F 7 (F*F)"F*'F 7 (F*F)""F*=@Q, imQ=imF 7 = N,

and z € X implies that it has to have the structure z = F g Z, which leads to Qz = 0.

}

¥
(2): For transversal subspaces S and N we apply Assertion (1) with t =m —r, ie. Fis
square. We have to show that P is unique. Supposed that there are two projectors P, P
such that ker P = ker P = N, im P = im P = S, we immediately have P = (P + Q)P =
PP +QP=PP=P.
(3): Let S :=im P and N := ker P. We choose av € N and y € S. Lemma A.2 (1)
implies y = Py, therefore (v,y) = (v, Py) = (P*v,y). With the symmetry of P we obtain
(P*v,y) = (Pv,y) =0, ie. N =St
(4): X has dimension dyx — u. Since the sum space K + N = X @ N C R™ may have at
most dimension m, it results that dim(K + N) = dim X + dim N = dg —u+ dy < m,
and assertion (1) provides Q.
(5): Take an arbitrary z € im (I — I1) = K and decompose z = = + zx. It follows that
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IQz=1Qz .+ 1 Qzx = 1z - = 0, and hence (78) is true.
N -~ N
=0
(6): (78) means I1Q) = I[1QII and hence
QI =11QQ = 11Q,
[IPIIP =II(I — Q)IIP = IIP — [ QIIP = [P,

~——
=0

(PIIP)? = PIIPIIP = PIIP,
(P(I —I))*=P(I—1I)(I-Q)I~1)=P(I—1)- P~ QI
=P(I—H)+PHQ(I - I),
=0

QU — 1)) = QU — IT) — QIIQ(I — IT) = Q(I — IT).
The representation I — I[I = Q(I — II) + P(I — II) corresponds to the decomposition

K=NoX.

Next we verify (79). The inclusion ker IIP C ker PIIP is trivial. On the other side,
PIIPz = 0 implies [IPII Pz = 0 and hence I/ Pz = 0, and it follows ker I/ P = ker PII P.
Now it is evident that K+ N C ker II P. Finally, [ Pz = 0 implies Pz € K,z = Qz+Pz €
N+ K.

(7): From QIIP = 0 and the symmetry of ITP we know that PIIP = IIP, im PIIP =
(N+ K)t imP = X @ (N + K)*. Next using Lemma A.5, compute Nt = N1+ K1
and further

KNN'=KN(NY+ KY) ={z e R™ : [Tz =0,z = zy1 + 25cr, 2yL € N& 2500 € K1)
={2z€R™: 2= —I)zy1,2yL € N*} = (I - II)N*
—im ([ — I)P* =im (P(I — II))* =imP(I - II) = X.

O

Lemma A.7 Let D € L(R™ R"™) be given, M C R™ be a subspace. Dt € L(R™,R™) be

the Moore-Penrose inverse of D. Then,
(1) ker D* =im D+, im D = ker D**, ker D = ker D**, im D = im D**.
(2) ker D C M = (DM)*+ = (im D)+ @ D™*M-*.
(3) ker D C M = M+ = D*(DM)*.

Proof: (1) The first two identities are shown in [BIG03] (Theorem 1, p.12).

If z € kerD = im[ — DtD with Lemma A.2(1) it is valid that = = (I — D*D)z or
Dt Dz = 0. With (86) it holds 0 = D" Dz = (D*D)*z = D*D™z < D%*z = 0 because
of (83) for D* and we have that z € ker D™. We prove im D = im D** analogously.

(2) Let T € L(R™) be the orthoprojector onto M, i.e. imT = M, ker T = M+, T* =T.
— DM = im DT,

(DM)* = (im DT)* = ker (DT)* =kerTD* = {z € R" : D*2 € M~*}
= kerD*@®{v€imD: D*v € M*}.

=im DL
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It remains to show that
{veimD:Dve M} =DM

From v € imD = im DD* we get with Lemma A.2(1) v = DDtv = (DD%)*v =
D**D*v. Because of D*v € M= it holds v € D™ M. Conversely with Lemma A.2(4),
w € DM+t =im D™ (I — T) implies u € im D™ = im D, and Jw : u = D™*(I — T)w,
D*u= D*D*(I-T)w = D*D(I-T)w. Since im (I-T) = M+ C ker D+ = ker D* D+ =
im (DT D)* = im DT D, it holds that DY D(I —T) = I —T, hence D*u = (I —T)w € M*.

(3) This is a consequence of (2), because of

D*(DM)* = D*[(im D)* @ D™M*) = D*D™*M*+ = D*DM+ = M*.
O

Lemma A.8 ([GMS86], AppendizA, Theorem 13)
Let A,B € L(R™), rankA =r <m, N :=kerA, S :={z € R": Bz € imA}. The
following statements are equivalent:

(1) Multiplication by a nonsingular E € L(R™) such that

_ 4 _ B 1 _
EFA = {0}, EB = {BJ’ rank A; = r,

yields a nonsingular [/—11} :
B;

The pair {A, B} is reqular with Kronecker index one.

The pair {A, B + AW} is reqular with Kronecker index one for each arbitrary
W e L(R™).

Proof: (1) = (2): With N := ker A} = ker FEA =ker A= N,
S:=kerBy={z€R": EBz € imEB} =,

we have

0 = ker [41} =NNnS=Nn§&.
By
(2) = (3): (A+ BQ)z = 0 implies BQz = —Az, that is Qz € NN S, thus Qz = 0,
Az =0, therefore z = Qz = 0.
(3) = (4): Fix any projector @ € L(R™) onto N and introduce Q, := Q(A + BQ)™'B.
We show @), to be a projector with im @), = N, ker (Q, = S so that the assertion follows.
Compute

Q.Q = Q(A+ BQ)'BQ = Q(A+ BQ) " (A+ BQ)Q = Q,
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hence Q? = Q., imQ, = N. Further, Q,z = 0 implies (A + BQ)™'Bz = (I — Q)(A +
BQ)™!'Bz, thus

Bz=(A+BQ)I - Q)(A+ BQ)'Bz = A(A+ BQ) 'Bz,
that is, z € S. Conversely, z € S leads to Bz = Aw and
Q.2 =Q(A+ BQ)™'Bz = Q(A+ BQ) ' Aw = Q(A+ BQ)" (A + BQ)(I - Q)w = 0.

This proves the relation ker @, = S.
(4) = (5): Let Q. denote the projector onto N along S, P, := 1 — Q.. Since NN S =0
we know already that G, := A + B(@), is nonsingular as well as the representation @), =
Q.G 'B. Tt holds that

G'A = G;Y(A+ BQ.,)P, =P,,

G.'B = G;'BQ.+G.'BP, =G, (A+BQ.)Q.+G.'BP, = Q.+ G,'BP..

Consider the equation (AA + B)z = 0, or the equivalent one (A\G;'A+ G;'B)z =0, i.e.
(AP, + GT'BP, + Q.)z = 0. (80)

Multiplying (80) by Q. and taking into account that Q.G;'BP, = Q.P, = 0 we find
Q.z =0, z = P,z. Now (80) writes

(M +G.'B)z=0.

If A does not belong to the spectrum of the matrix —G_ !B, then it follows that z = 0.
This means, AA + B is nonsingular except for a finite number of values A, hence the pair
{A, B} is regular.

Transform {A, B} into Weierstra-Kronecker canonical form (cf. Section 1):

I 0
0 J

W 0

A::EAF:[ 0 7

], B::EBF:[ } Jt=0, J1£0.

We derive further

=

=ker A= F'ker A, S:={2€R™:BzecimA}=F'5,

NNnS=F*YNnS)={0}, and

95
Il

NN {{Zl}eRm:zlzo, Jze =0, z5 € im J}.

22

Now it follows that J = 0 must be true since otherwise N NS would be nontrivial.

(5) = (1): This follows from A = FAF = [é 8], B = EBF = P/(I)/ ﬂ, NNS=0and
NNS=FYNNS)=1{0}.

(6) = (5) is trivial.

(2) = (6): Set B := B+ AW,S := {z € R™ : Bz € imA} = S. Because of SN N =

SN N = {0}, and the equivalence of assertion (2) and (5), which is proved already, the
pair {A, B} is regular with Kronecker index 1. O
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Lemma A.9 Let A, B € L(R™) be given, A singular, N :=ker A, S :={z € R™: Bz €
im A}, and N @ S = R™. Then the projector Q onto N along S satisfies the relation

Q=Q(A+ BQ)'B. (81)

Proof: First we notice that @ is uniquely determined. A + B(Q is nonsingular due to
Lemma A.8. The arguments used in that lemma apply to show Q(A+ BQ)™' B to be the
projector onto N along S so that (81) becomes valid. O

For any matrix A € L(R™) there exists an integer k such that

R™ = imA°>imA>D...>imAF =im At = .|
{0} = kerA° CkerAcC...Cker A" =ker A" = |

and im A* @ ker A*¥ = R™. This integer ¥ € NU {0} is said to be the index of A , and we
write k = ind A.

Lemma A.10 (/GM86], Appendiz A, Theorem 4)
Let A € L(R™) be given, k = ind A, r = rank A*, and let s,...,s, € R™ and $y41,...,5m €
R™ be basises of im A* and ker A*, respectively. Then, for S = [s1...8m,] the product
S~1AS has the special structure
M 0
-1 .
STAS = {O N}

where M € L(R") is nonsingular and N € L(R™") is nilpotent, N* = 0, N¥=1 £ 0.

Proof: For i < r, it holds that As; € Aim A* = im A**' = im A*, therefore As; =
> s;myi. For i > 7+ 1, it holds that As; € ker A¥*1 = ker A%, thus As; = Y s;nj.
j=1 j=r+1

This yields the representations Alsy...s;| = [s1...s,]M with M = (my);,_,, and
Alsri1---8m] = [Sry1-..8m|N, with N = (ny){%_.,;. The block M is nonsingular.
Namely, for a z € R” with M2z = 0, we have Als; ...s,|z =0, that is,

szsj € im A" Nker A C im A* N ker A" = {0},

j=1

which shows the matrix M to be nonsingular. It remains to verify the nilpotency of N.

¢
We have AS = S [j\(;_[ ](3[] , hence A'S = S []\g ]84 From A*s; = 0, i > r+1 it follows

that N¥ = 0 must be valid. It remains to prove the fact that N*=' #£ 0. Since ker A*~!

is a proper subspace of ker A* there is an index i, > r + 1 such that the basis element
k—1

s;. € ker A* does not belong to ker A*~1. Then, S {MO Ngl} e;, = AFls; 0, that

is, Nk=1 £ 0. U

ol



B Generalized inverses

In [BIGO3] we find a detailed collection of properties of generalized inverses for theory
and application. We will here report the definitions and relations of generalized inverses
we need for our considerations.

Definition B.1 For a matric Z € L(R",R™), we call the matrizx Z~ € L(R™,R") a
reflexive generalized inverse, if it fulfills

Z7°7 = Z and (82)
77777 = 7. (83)

Z~ is called a {1,2}-inverse of Z in [BIG03].
The products ZZ~ € L(R™) and Z~Z € L(R") are projectors (cf. Appendix A). We
have (ZZ7) = Z7Z"Z7Z = ZZ and (Z~Z)* = Z~Z7Z 7 = Z~Z. We know that the
rank of a product of matrices does not exceed the rank of any factor. Let Z has rankr,.
From (82) we obtain rankr, < rankr,- and from (83) the opposite, i.e. that both Z and

Z~ and also the projectors ZZ~ and Z~Z have the same rank.
Let R € L(R™) be any projector onto im Z and P € L(R™) any projector along ker Z.

Lemma B.2 With (82), (83) and the conditions

Z°7 = P and (84)
77 = R (85)

the reflerive inverse Z~ is uniquely determined.

Proof: Let Y be a further matrix fulfilling (82), (83), (84) and (85).

vy @ vy yvzz2v ©vrzy

B yrR® ygzz @ py & 5

O

If we choose for the projectors P and R the orthogonal ones the conditions (84) and (85)
could be replaced by

77 = (Z72), (86)

77~ = (2Z7). (87)

The resulting generalized inverse is called the Moore-Penrose-inverse and denoted by Z+.

To represent the generalized reflexive inverse Z~ we want to use a decomposition of
S
Z:U{ Jv*

with nonsingular matrices U, V and S. Such a decomposition is e.g. available using an
SVD or a Householder decomposition of Z.
A generalized reflexive inverse is given by

St M, ] -1

M,  M;SM, (88)

z=v|

o2



with M; and M, being matrices of free parameters that fulfill

S o]

o= -1
P=7Z Z_V_MlS O_V
and ) )
_ . I SMy| .4
R=77 —U_0 0 _U

(cf. also [Zie79]). There are two ways in looking at the parameter matrices M; and M.
We can compute an arbitrary Z~ with fixed M; and M,. Then also the projectors P and
R are fixed by these parameter matrices. Or we provide the projectors P and R, then M;
and M, are given and Z~ is fixed, too.
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