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Abstract

Linear DAEs with constant coefficients have been well understood by way of the
theory of matrix pencils for quite a long time, and this is the reason why they are
only briefly discussed in monographs. We want to consider them in detail here, not
because we believe that the related linear algebra has to be invented anew, but as
we intend to give a sort of guide for the extensive discussion on linear DAEs with
time-varying coefficients and on nonlinear DAEs.
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Linear constant coefficient DAEs

Linear DAEs with constant coefficients have been well understood by way of the theory
of matrix pencils for quite a long time, and this is the reason why they are only briefly
discussed in monographs. We want to consider them in detail here, not because we believe
that the related linear algebra has to be invented anew, but as we intend to give a sort of
guide for the extensive discussion on linear DAEs with time-varying coefficients and on
nonlinear DAEs. Later on, in particular, when investigating time-dependent linear DAEs,
we will repeat many arguments given here by proceeding pointwise.
This paper is organized as follows. Section 1 records well known facts on regular matrix
pairs and describes the structure of the related DAEs. The other sections serve as an
introduction to the projector based analysis. Section 2 and 3 provide the basic tool of
this analysis, the sequence of matrices Gi and the accompanying admissible projectors and
characteristic values. Section 4 provides a new view of regular Kronecker index µ matrix
pairs. They yield singular matrices Gµ−1 but nonsingular Gµ. Conversely, in Section 5,
we show that any matrix pair corresponding to a singular Gµ−1 and a nonsingular Gµ

must be a regular pair with Kronecker index µ. Applying the matrix sequence one can
determine the complete structure of a regular matrix pair as well as its finite spectrum
(Section 6). Section 7 touches some questions concerning singular matrix pairs and the
related DAEs.
Let us emphasize that, for constant coefficient linear DAEs, we are given a famous tool
for understanding the DAE structure by the Weierstraß-Kronecker canonical form. The
DAE inherits regularity and index from the matrix pair. However, for time-varying linear
DAEs and for general nonlinear DAEs there are no such tools, but the characterization
by means of a corresponding matrix (function) sequence works well. In particular, a
regularity notion is primarily bound to nonsingular Gµ.

1 Regular matrix pairs and the Weierstraß-Kronecker

canonical form

In this section we deal with the equation

Ex′(t) + Fx(t) = q(t), t ∈ I, (1)

formed by the ordered pair {E,F} of real valued m×m matrices E,F . For given functions
q : I → Rm being at least continuous on the interval I ⊆ R, we are looking for continuous
solutions x : I → Rm having a continuously differentiable component Ex. We use the
notation Ex′(t) for (Ex)′(t). Special interest is directed to homogeneous equations

Ex′(t) + Fx(t) = 0, t ∈ R. (2)

For E = I, the special case of explicit ODEs is covered. Now, in the more general setting,
the ansatz x∗(t) = eλ∗tz∗ well-known for explicit ODEs, yields

Ex′∗(t) + Fx∗(t) = eλ∗t(λ∗E + F )z∗,

hence, x∗ is a nontrivial particular solution of the DAE (2) if λ∗ is a zero of the polynomial
p(λ) := det(λE + F ), λ ∈ C, and z∗ 6= 0 satisfies (λ∗E + F )z∗ = 0. λ∗ and z∗ are called
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generalized eigenvalue and eigenvector, respectively.
This shows the meaning of the polynomial p(λ) and the related family of matrices λE+F
named matrix pencil formed by {E,F}.

Example 1.1 The matrices

E =

1 0 0
0 1 0
0 0 0

 and F =

−1 0 0
0 0 1
0 1 0


lead to the DAE system

x′1 − x1 = 0,

x′2 + x3 = 0,

x2 = 0.

The polynomial p(λ) is given by

p(λ) = det(λE + F ) = det

λ− 1 0 0
0 λ 1
0 1 0

 = 1− λ

implying λ∗ = 1 and z∗ = (1 0 0)T to be a generalized eigenvalue and eigenvector. Ob-
viously, x∗(t) = eλ∗tz∗ = (et 0 0)T is a non-trivial solution of the differential-algebraic
equation.

If E is nonsingular, the homogeneous equation (2) represents an implicit regular ODE. Its
fundamental solution system forms an m-dimensional subspace in C1. What happens if
E is singular? Is there a class of equations, i.e., pairs {E,F}, such that equation (2) has
a finite-dimensional solution space? The answer is closely related to the notion of regular
pairs.

Definition 1.2 The ordered pair {E,F}, and also the matrix pencil formed by {E,F},
are called regular if the polynomial p(λ) := det(λE + F ), λ ∈ C, does not vanish identi-
cally. Otherwise {E,F} is said to be singular.

A pair {E,F} with nonsingular E is always regular, and its polynomial p is of degree m.
In case of singular matrices E, the polynomial degree is lower.

Proposition 1.3 For any regular pair {E,F} with singular E there exist nonsingular
real valued m×m matrices L and K, and integers 1 ≤ l ≤ m, µ ≤ l, such that

LEK =

[
I

N

]
}m− l
}l , LFK =

[
W

I

]
}m− l
}l , (3)

where N is nilpotent of order µ, i.e., Nµ = 0, Nµ−1 6= 0. The integers l and µ as well as
the eigenstructure of the blocks N and W are uniquely determined by the pair {E,F}.
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Proof: Since {E,F} is a regular pair, there is a number c ∈ R such that cE + F
is nonsingular. Put Ẽ := (cE + F )−1E, F̃ := (cE + F )−1F = I − cẼ, µ = ind Ẽ,
r = rank Ẽµ, S = [s1...sm], where s1, . . . , sr and sr+1, . . . , sm are basises of im Ẽµ and
ker Ẽµ, respectively. Lemma A.10 provides the special structure of the product S−1ẼS,
namely,

S−1ẼS =

[
M̃ 0

0 Ñ

]
,

with a nonsingular r × r block M̃ and a nilpotent (m − r) × (m − r) block Ñ . Ñ has
nilpotency index µ. Compute

S−1F̃S = I − cS−1ẼS =

[
I − cM̃ 0

0 I − cÑ

]
.

The block I − cÑ is nonsingular due to the nilpotency of Ñ . Denote

L :=

[
M̃−1 0

0 (I − cÑ)−1

]
S−1(cE+F )−1, K := S, N := (I−cÑ)−1Ñ , W := M̃−1−cI,

so that we arrive at the representation

LEK =

[
I 0
0 N

]
, LFK =

[
W 0
0 I

]
.

Since Ñ and (I − cÑ)−1 commute, it holds that N l = ((I − cÑ)−1Ñ)l = ((I − cÑ)−1)lÑ l,
and N inherits the nilpotency of Ñ , hence Nµ = 0, Nµ−1 6= 0. Put l := m − r. It
remains to verify that the integers l and µ as well as the eigenstructure of N and W are
independent of the transformations L and K. Assume that there is a further collection
l̃, µ̃, L̃, K̃, r̃ = m− l̃ such that

L̃EK̃ =

[
Ir̃ 0

0 Ñ

]
, L̃F K̃ =

[
W̃ 0
0 Il̃

]
.

Considering the polynomial

p(λ) = det(λE + F ) = det(L−1) det(λIr +W ) det(K−1)

= det(L̃−1) det(λIr̃ + W̃ ) det(K̃−1)

we realize that the values r and r̃ must coincide, hence l = l̃. Derive further, with
U := L̃L−1, V := K̃−1K,

U

[
I 0
0 N

]
= L̃EK =

[
I 0

0 Ñ

]
V, U

[
W 0
0 I

]
= L̃FK =

[
W̃ 0
0 I

]
V,

that is in detail[
U11 U12N
U21 U22N

]
=

[
V11 V12

ÑV21 ÑV22

]
,

[
U11W U12

U21W U22

]
=

[
W̃V11 W̃V12

V21 V22

]
.
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Comparing the entries of these matrices we find the relations U12N = V12 and U12 = W̃V12,
which lead to U12 = W̃U12N = ... = W̃ µU12N

µ = 0. Analogously we derive U21 = 0.
Then, the blocks U11 = V11, U22 = V22 must be nonsingular. It results that

V11W = W̃V11, V22N = ÑV22

holds true, that is, the matrices N and Ñ as well as W and W̃ are similar, and in
particular, µ = µ̃ is valid. �

The real valued matrix N has the eigenvalue zero only, and can be transformed into its
Jordan canonical form by means of a real valued similarity transformation. Therefore, in
Proposition 1.3, the transformation matrices L and K can be chosen such that N is in
Jordan canonical form.
Proposition 1.3, as well as the given proof also hold true for complex valued matrices. It
is a well known result of Weierstraß and Kronecker (cf. [Gan70]). The pair given in (3) is
called Weierstraß-Kronecker canonical form of the pair {E,F}.

Definition 1.4 The Kronecker index µ of a regular pair {E,F} with singular E is defined
to be the nilpotency order µ in the Weierstraß-Kronecker canonical form (3). If E is
nonsingular, put µ = 0. We write ind {E,F} = µ.

Via the Weierstraß-Kronecker canonical form of a regular pair {E,F}, the structure of
the corresponding DAE (1), (2) is easily discovered. Scaling of (1) by L and transforming

x = K

[
y
z

]
leads to the equivalent decoupled system

y′(t) +Wy(t) = p(t), (4)

Nz′(t) + z(t) = r(t), t ∈ I, (5)

with Lq =:

[
p
r

]
. The first equation (4) represents a standard explicit ODE. The second

one has the only solution

z(t) =

µ−1∑
j=0

(−1)jN jr(j)(t), (6)

provided that r is smooth enough. This becomes clear after recursive use of (5) since

z = r −Nz′ = r −N(r −Nz′)′ = r −Nr′ +N2z′′ = r −Nr′ +N2(r −Nz′)′′ = ...

Expression (6) shows the dependence of the solution x on derivatives of the source or
perturbation term q. The higher the index µ, the more differentiations are involved. Only
in the index-one case we have N = 0, hence z(t) = r(t), and no derivatives are involved.
Since numerical differentiations in these circumstances may cause considerably trouble, it
is very important to know the index µ as well as details on the structure responsible for
a higher index when modeling and simulating with DAEs in practice.
The general solution of the homogeneous DAE (2), if the pair {E,F} is regular, is of the
form

x(t) = K

[
e−tW

0

]
y0, y0 ∈ Rm−l,

that means, the solution space has dimension m− l.

5



Theorem 1.5 The homogeneous DAE (2) has a finite-dimensional solution space if and
only if the pair {E,F} is regular.

Proof: As we have seen before, if the pair {E,F} is regular, then the solutions of (2)
form an (m− l)-dimensional space.
Conversely, let {E,F} be a singular pair, i.e., det(λE + F ) ≡ 0. For any set of m + 1
different real values λ1, . . . , λm+1 we find nontrivial vectors η1, . . . , ηm+1 ∈ Rm such that

(λiE + F )ηi = 0, i = 1, . . . ,m+ 1, and a nontrivial linear combination
m+1∑
i=1

αiηi = 0.

The function x(t) =
m+1∑
i=1

αie
λitηi does not vanish identically, and it satisfies the DAE (2)

as well as the initial condition x(0) = 0. For disjoint (m + 1)-element sets there always
arise different solutions, and, consequently, there are more than countably many different
solutions of a homogeneous IVP of (2). �

Example 1.6 (cf. [GM89]) The pair {E,F}, with m = 4,

E =


1 1 0 0
0 0 0 1
0 0 0 0
0 0 1 0

 , F =


0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 ,
is singular. In detail, equation (1) reads

(x1 + x2)
′ + x2 = q1,

x′4 = q2,
x3 = q3,

x′3 = q4.

What does the solution space of the corresponding homogeneous DAE (2) look like? Ob-
viously, the component x3 vanishes identically and x4 is an arbitrary constant function.
The remaining equation (x1 + x2)

′ + x2 = 0 is satisfied by any arbitrary continuous x2,
and the resulting expression for x1 is:

x1(t) = c− x2(t)−
∫ t

0

x2(s)ds,

c being a further arbitrary constant. Clearly, this solution space does not have finite di-
mension, which confirms the assertion of Theorem 1.5. Indeed, the regularity assumption
is violated since

p(λ) = det(λE + F ) = det


λ λ+ 1 0 0
0 0 0 λ
0 0 1 0
0 0 λ 0

 = 0.

Notice that, in case of nontrivial perturbations q, the consistency condition q′3 = q4 must
be valid for solvability. In practice, such unbalanced models should be avoided. However,
in large dimensions m, this might not be a trivial task.
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Definition 1.7 A DAE (1) with the constant coefficient pair {E,F} is said to be regular
or regular with Kronecker index µ = ind {E,F} if this pair {E,F} is regular with Kro-
necker index µ.

Let us take a closer look at the subsystem (5), which is specified by the nilpotent matrix
N . We may choose the transformation matrices L and K in such a way that N has Jordan
canonical form, say

N = diag [J1, . . . , Js], (7)

with s nilpotent Jordan blocks

Ji =


0 1

. . . . . .
. . . 1

0

 ∈ L(Rki), i = 1, . . . , s,

where k1 + · · · + ks = l, µ = max{ki : i = 1, . . . , s}. The Kronecker index µ is the
maximal order of a Jordan block of N .
The Jordan canonical form (7) shows the further decoupling of the subsystem (5) in
accordance with the Jordan structure into s lower-dimensional equations

Jiζ
′
i(t) + ζi(t) = ri(t), i = 1, . . . , s.

Now we observe that ζi,2,...,ζi,ki are components involved with derivatives whereas the
derivative of the first component ζi,1 is not involved. Notice that the value of ζi,1(t)
depends on the (ki − 1)-th derivative of ri,ki(t) for all i = 1, ..., s since

ζi,1(t) = ri,1(t)− ζ ′i,2(t) = ri,1(t)− r′i,2(t) + ζ ′i,3(t) = ... =

ki∑
j=1

(−1)j−1r
(j−1)
i,j (t).

Example 1.8 Choosing m = 5 and the nilpotent matrix

N =


0

0 1
0 0

0 1
0 0


we have

s = 3, J1 = [0], J2 = J3 =

[
0 1
0 0

]
and the nilpotency index µ = 2. The detailed system (5) reads as

z1 = r1,
z′3 + z2 = r2,

z3 = r3,
z′5 + z4 = r4,

z5 = r5.

(8)
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Its solution is given by

z1 = r1,

z2 = r2 − r′3,
z3 = r3,

z4 = r4 − r′5,
z5 = r5.

Here r = 0 implies z = 0, i.e., the homogeneous equation has the trivial solution only.

2 Basic sequences of matrices and admissible projec-

tors

Our aim is now a suitable rearrangement of terms within the equation

Ex′(t) + Fx(t) = q(t), (9)

which allows for a similar insight into the structure of the DAE to that given by the
Weierstraß-Kronecker canonical form. However, we do not use transformations but apply
a projector based decoupling concept, and we work in terms of the original equation
setting.

The basic construction is very simple. Put G0 := E, B0 := F, N0 := kerG0. Let
Q0 ∈ L(Rm) be a projector onto N0, and P0 := I−Q0 the complementary one. Using the
projector properties (see Appendix 8) Q2

0 = Q0, Q0P0 = 0, P0 + Q0 = I and G0 = G0P0

we may rewrite (9) as

G0x
′ +B0x = q,

G0P0x
′ +B0(Q0 + P0)x = q,

(G0 +B0Q0︸ ︷︷ ︸
=:G1

)(P0x
′ +Q0x) +B0P0︸ ︷︷ ︸

=:B1

x = q,

G1(P0x
′ +Q0x) +B1x = q.

Next, let Q1 be a projector onto N1 := kerG1 and P1 := I −Q1 the complementary one.
We rearrange the last equation to

G1P1(P0x
′ +Q0x) +B1(Q1 + P1)x = q,

(G1 +B1Q1)︸ ︷︷ ︸
G2

[P1(P0x
′ +Q0x) +Q1x] +B1P1︸ ︷︷ ︸

B2

x = q, (10)

and so on. The goal is a matrix Gκ with maximal possible rank m in front of the term
containing the derivative x′. This will allow us to multiply the last equation obtained this
way by G−1

κ . Multiplying further by suitable projectors we find a decoupled DAE system
that can be solved as simply as a DAE in Weierstraß-Kronecker canonical form.

The projector based decoupling procedure to be described now is not at all restricted to
pairs of square matrices. Although our interest mainly concerns square DAEs, to be able
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to consider several aspects of over- and underdetermined DAEs we construct the basic
sequences of matrices and accompanying projectors for ordered pairs {E,F} of general
rectangular matrices E,F ∈ L(Rm,Rk).

Start with G0 := E, B0 := F, N0 := kerG0, and let Q0 ∈ L(Rm) denote a projector onto
N0, and P0 := I −Q0 the complementary one.
Then, for i ≥ 0, put

Gi+1 := Gi +BiQi, Ni+1 := kerGi+1,
Bi+1 := BiPi,

(11)

and introduce Qi+1 ∈ L(Rm) being a projector onto Ni+1, Pi+1 := I − Qi+1. Denote
ri := rankGi and introduce the product of projectors Πi := P0 · · ·Pi. These ranks and
products of projectors will play a special role later on. From Bi+1 = BiPi = B0Πi we
derive the inclusion kerΠi ⊆ kerBi+1 as an inherent property of our construction.

Let us stress again that we are aiming at a matrix Gκ the rank of which is as high as
possible. However, how can one know whether the maximal rank has been reached?
Appropriate criteria would be very helpful. In important cases, in particular for regular
DAEs, one meets full rank matrices Gκ, that is, rκ = min{m, k}.
In general, since Gi = Gi+1Pi, the images of the Gi satisfy the inclusion relations

imG0 ⊆ imG1 ⊆ · · · ⊆ imGi ⊆ imGi+1,

and hence
r0 ≤ r1 ≤ · · · ≤ ri ≤ ri+1.

A further basic property of the sequence (11) is the inclusion

Ni−1 ∩Ni ⊆ Ni ∩Ni+1, i ≥ 1. (12)

Namely, if Gi−1z = 0 and Giz = 0 are valid for a vector z ∈ Rm, which corresponds to
Pi−1z = 0 and z = Qiz, then we can conclude that

Gi+1z = Giz +BiQiz = Biz = Bi−1Pi−1z = 0.

From (12) we learn that a nontrivial intersection Ni∗−1 ∩ Ni∗ leads to matrices Gi being
not injective for all i > i∗. Consequently, we will not find an injective matrix Gκ. As we
will realize in Section 5 (see also Proposition 6.5), such a nontrivial intersection indicates
immediately a singular pair {E,F}.

Example 2.1 For the DAE

x′1 + x1 +x2 +x3 = q1,
x′3 +x2 = q2,

x1 +x3 = q3,

the first matrices of our sequence are

G0 = E =

1 0 0
0 0 1
0 0 0

 , B0 = F =

1 1 1
0 1 0
1 0 1

 .
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As a nullspace projector onto kerG0 we choose

Q0 =

0 0 0
0 1 0
0 0 0

 and obtain G1 = G0 +B0Q0 =

1 1 0
0 1 1
0 0 0

 , B1 = B0P0 =

1 0 1
0 0 0
1 0 1

 .
Since G1 is singular, we turn to the next level. We choose as a projector onto kerG1

Q1 =

 1 0 0
−1 0 0
1 0 0

 and arrive at G2 = G1 +B1Q1 =

3 1 0
0 1 1
2 0 0

 .
The matrix G2 is nonsingular, hence the maximal rank is reached and we stop constructing
the sequence. Looking at the polynomial p(λ) = det(λE + F ) = 2λ we know this DAE to
be regular. Later on we will see that a nonsingular matrix G2 is typical for regularity with
Kronecker index two. Observe further that the nullspaces N0 and N1 intersect trivially,
and that the projector Q1 is chosen such that Π0Q1Q0 = 0 is valid, or equivalently,
N0 ⊆ kerΠ0Q1.

Example 2.2 Here we deal with the singular matrix pair from Example 1.6, that is with

G0 = E =


1 1 0 0
0 0 0 1
0 0 0 0
0 0 1 0

 , B0 = F =


0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 .
Choosing

Q0 =


1 0 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

 yields G1 =


0 1 0 0
0 0 0 1
0 0 0 0
0 0 1 0

 , B1 =


1 1 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 .
The matrix G1 is singular. We turn to the next level. We pick

Q1 =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 which implies G2 = G0.

We continue constructing

Q2j = Q0, G2j+1 = G1, Q2j+1 = Q1, G2j+2 = G0, j ≥ 1.

Here we have ri = 3 for all i ≥ 0. The maximal rank three is met already by G0, but there
is no criterion in sight which would indicate this in time. Furthermore, Ni ∩Ni+1 = {0}
holds true for all i ≥ 0, which means that there is no step indicating a singular pencil via
property 12. Notice that the product Π0Q1Q0 = P0Q1Q0 does not vanish as it does in the
previous example.
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The rather bad experience with Example 2.2 leads us to the idea to refine the choice of
the projectors by incorporating more information from the previous steps, in particular
that from the previous nullspaces. So far, just the image spaces of the projectors Qi are
prescribed. We refine the construction by prescribing certain appropriate parts of their
nullspaces, too. More precisely, we put parts of the previous nullspaces into the current
one.
In general, when constructing the sequence (11), we proceed as follows. At any level we
decompose

N0 + · · ·+Ni−1 =
_
Ni ⊕Xi,

_
Ni := (N0 + · · ·+Ni−1) ∩Ni, (13)

where Xi is any complement to
_
Ni in N0 + · · ·+Ni−1. Then we choose Qi in such a way

that the condition

Xi ⊆ kerQi (14)

is met. This is always possible since the subspaces
_
Ni and Xi intersect trivially (see

Appendix, Lemma A.6). It restricts to some extend the choice of the projectors. However,
a great variety of possible projectors is left.

If the intersection
_
Ni = (N0 + · · ·+Ni−1) ∩Ni is trivial, then we have

Xi = N0 + · · ·+Ni−1 ⊆ kerQi.

This is the case in Example 2.1, and it is typical for regular DAEs.

Definition 2.3 For κ ∈ N, the projectors Q0, . . . , Qκ in the matrix sequence (11) are
said to be admissible for {E,F} if condition (14) is valid for i = 1, . . . , κ. Q0 is always
admissible. Q0, . . ., Qκ are called regular admissible if they are admissible with trivial

intersections
_
N1, . . . ,

_
Nκ.

The projectors in Example 2.1 are admissible but the projectors in Example 2.2 are not.
We revisit Example 2.2 and provide admissible projectors now.

Example 2.4 Consider once again the singular pair from Examples 1.6 and 2.2. We
start the sequence with the same matrices G0, B0, Q0, G1 as described in Example 2.2 but
now we use an admissible projector Q1. The nullspaces of G0 and G1 are given by

N0 = span


1
−1
0
0

 and N1 = span


1
0
0
0

 .
This allows us to choose

Q1 =


1 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,
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which satisfies the condition X1 ⊆ kerQ1, where X1 = N0 and
_
N1 = N0 ∩ N1 = {0}. It

yields

G2 =


1 2 0 0
0 0 0 1
0 0 0 0
0 0 1 0

 , B2 =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 .
Now we find N2 = span

[
−2 1 0 0

]T
and with

N0 +N1 = N0 ⊕N1 = span (


1
−1
0
0

 ,


1
0
0
0

) = span (


1
0
0
0

 ,


0
1
0
0

),

we have N2 ⊆ N0 +N1, N0 +N1 +N2 = N0 +N1 as well as
_
N2 = (N0 +N1) ∩N2 = N2.

A possible complement X2 to
_
N2 in N0 +N1 and an appropriate projector Q2 are

X2 = span


1
0
0
0

 , Q2 =


0 −2 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 .
This leads to G3 = G2, and the nontrivial intersection N2 ∩ N3 indicates (cf. (12)) that
all further matrices Gi are singular. Proposition 6.5 below says that this indicates at the
same time a singular matrix pencil. In the next steps, for i ≥ 3, it results that Ni = N2

and Gi = G2.

We stress once more that for all our projectors Qi their image is fixed to be Ni. For
admissible projectors Qi, also a part of kerQi is fixed. However, there remains a great
variety of possible projectors, since the subspaces Xi are not uniquely determined and
further represent just a part of kerQi. Of course, we could restrict the variety of projectors
by prescribing special subspaces. This might be useful with respect to computational
aspects.

Definition 2.5 The admissible projectors Q0, . . . , Qκ are called widely orthogonal ones if
Q0 = Q∗0, and

Xi =
_
Ni
⊥ ∩ (N0 + · · ·+Ni−1), (15)

and
kerQi = [N0 + · · ·+Ni]

⊥ ⊕Xi, i = 1, . . . , κ, (16)

hold true.

The widely orthogonal projectors are completely fixed and they surely have some advan-
tages.

The next assertions collect useful properties of admissible projectors and the correspond-
ing matrix sequences (11) for a given pair {E,F}. In particular, the special role of the
products Πi = P0 · · ·Pi is revealed. We emphasize this by using mainly the short notation
Πi.
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Proposition 2.6 Let Q0, . . . , Qκ be admissible for the pair {E,F}. Then the following
holds true for i = 1, . . . , κ:

(1) kerΠi = N0 + · · ·+Ni,

(2) The products Πi = P0 · · ·Pi and Πi−1Qi = P0 · · ·Pi−1Qi, are projectors again.

(3) N0 + · · ·+Ni−1 ⊆ kerΠi−1Qi,

(4) Bi = BiΠi−1,

(5)
_
Ni ⊆ Ni ∩ kerBi = Ni ∩Ni+1 ⊆

_
Ni+1.

(6) If Q0, . . . , Qκ are widely orthogonal, then imΠi = [N0 + · · · + Ni]
⊥, Πi = Π∗i and

Πi−1Qi = (Πi−1Qi)
∗.

(7) If Q0, . . . , Qκ are regular admissible, then kerΠi−1Qi = kerQi and QiQj = 0 for
j = 0, . . . , i− 1.

Proof: (1) (⇒) To show kerΠi ⊆ N0 + · · ·+Ni for i = 1, . . . , κ, we consider

0 = Πiz = P0 · · ·Piz =
i∏

k=0

(I −Qk)z.

Expanding the right hand expression, we obtain

z =
i∑

k=0

QkHkz ∈ N0 + · · ·+Ni

with suitable matrices Hk.
(⇐) The other direction will be proven by induction. Starting the induction with i = 0,
we observe that kerΠ0 = kerP0 = N0. We suppose that kerΠi−1 = N0 + · · · + Ni−1 is
valid. Because of

N0 + · · ·+Ni = Xi +
_
Ni +Ni

each z ∈ N0 + · · ·+Ni can be written as z = xi + z̄i + zi with

xi ∈ Xi ⊆ N0 + · · ·+Ni−1 = kerΠi−1, z̄i ∈
_
Ni ⊆ Ni, zi ∈ Ni.

Since Qi is admissible, we have Xi ⊆ kerQi and Ni = imQi. Consequently,

Πiz = Πi−1(I −Qi)z = Πi−1(I −Qi)xi = Πi−1xi = 0

which implies N0 + · · ·+Ni ⊆ kerΠi to be true.

(2) From (1) we know that imQj = Nj ⊆ kerΠi for j ≤ i. It follows that

ΠiPj = Πi(I −Qj) = Πi.

Consequently, Π2
i = Πi and ΠiΠi−1 = Πi implying

(Πi−1Qi)
2 = Πi−1(I − Pi)Πi−1Qi = Πi−1Qi −ΠiΠi−1Qi = Πi−1Qi −ΠiQi = Πi−1Qi.

13



(3) For any z ∈ N0 + · · ·Ni−1, we know from (1) that Πi−1z = 0 and Πiz = 0. Thus

Πi−1Qiz = Πi−1z −Πiz = 0.

(4) By construction of Bi (see (11)), we find Bi = B0Πi−1. Using (2), we get that

Bi = B0Πi−1 = B0Πi−1Πi−1 = BiΠi−1.

(5) First, we show that
_
Ni ⊆ Ni ∩ kerBi. For z ∈

_
Ni = (N0 + · · · + Ni−1) ∩ Ni we find

Πi−1z = 0 from (1) and, hence, Biz = B0Πi−1z = 0 using (4). Next,

Ni ∩ kerBi = Ni ∩Ni+1

since Gi+1z = (Gi +BiQi)z = Biz for any z ∈ Ni = imQi = kerGi. Finally,

_
Ni+1 = (N0 + · · ·+Ni) ∩Ni+1 implies immediately that Ni ∩Ni+1 ⊆

_
Ni+1.

(6) We use induction for showing that imΠi = [N0 + · · ·+Ni]
⊥. Starting with i = 0, we

know that imΠ0 = N⊥0 since Q0 = Q∗0.
Since Xi ⊆ N0 + · · · + Ni−1 (see (15)) we derive from (1) that Πi−1Xi = 0. Regarding
(16), we find

imΠi = Πi−1imPi = Πi−1([N0 + · · ·+Ni]
⊥ +Xi) = Πi−1([N0 + · · ·+Ni]

⊥).

Using [N0 + · · ·+Ni]
⊥ ⊆ [N0 + · · ·+Ni−1]

⊥ = imΠi−1 we conclude

imΠi = Πi−1([N0 + · · ·+Ni])
⊥ = [N0 + · · ·+Ni]

⊥.

In consequence, Πi is the orthoprojector onto [N0 + · · · + Ni]
⊥ along N0 + · · · + Ni, i.e.,

Πi = Π∗i . It follows that

Πi−1Qi = Πi−1 −Πi = Π∗i−1 −Π∗i = (Πi−1 −Πi)
∗ = (Πi−1Qi)

∗.

(7) Let
_
Ni = 0 be valid. Then, Xi = N0 + · · ·+Ni−1 = N0 ⊕ · · · ⊕Ni−1 and, therefore,

kerΠi−1
(1)
= N0 ⊕ · · · ⊕Ni−1 = Xi ⊆ kerQi.

It implies QiQj = 0 for j = 0, . . . , i − 1. Furthermore, for any z ∈ kerΠi−1Qi, we have
Qiz ∈ kerΠi−1 ⊆ kerQi, which means that z ∈ kerQi. �

Remark 2.7 If Q0, . . . , Qκ are regular admissible projectors, and Π0, . . . , Πκ are sym-
metric, then Q0, . . . , Qκ are widely orthogonal. This is a consequence of the properties

imΠi = (kerΠi)
⊥ = (N0 ⊕ · · · ⊕Ni)

⊥, kerQi = imΠi ⊕Xi for i = 1, . . . , κ.

In general, if there are nontrivial intersections
_
Ni, widely orthogonal projectors are given,

if the Πi are symmetric and, additionally QiΠi = 0, Pi(I −Πi−1) = (Pi(I −Πi−1))
∗ hold.

In the regular case these properties are always given.
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Once more we emphasize that the matrix sequence depends on the choice of the admissible
projectors. However, the properties that are important for us later on are independent of
the choice of the projectors, as the following theorem shows.

Theorem 2.8 For any pair {E,F}, the subspaces N0 + · · · + Ni,
_
Ni and imGi, as well

as the integers r0 ≤ r1 ≤ · · · ≤ ri, are independent of the special choice of admissible
projectors for i ≥ 0.

Proof: All claimed properties are direct and obvious consequences of Lemma 2.10 below.
�

Definition 2.9 For a given pair {E,F}, if the sequence (11) is built with admissible pro-

jectors, the integers ri := rankGi, i ≥ 0, ui := dim
_
Ni i ≥ 1, are called characteristic values.

Lemma 2.10 Let Q0, . . ., Qκ and Q̄0, . . ., Q̄κ be any two admissible projector sequences
for the pair {E,F}, and Nj, N̄j, Gj, Ḡj etc. the corresponding subspaces and matrices.
Then it holds that

(1) N̄0 + · · ·+ N̄j = N0 + · · ·+Nj for j = 0, . . . , κ,

(2) and

Ḡj = GjZj, B̄j = Bj +Gj

j−1∑
l=0

QlAjl, for j = 0, . . . , κ,

with nonsingular matrices Z0, . . . , Zκ+1 given by Z0 := I, Zj+1 := Yj+1Zj,

Y1 := I +Q0(Q̄0 −Q0) = I +Q0Q̄0P0,

Yj+1 := I +Qj(Π̄j−1Q̄j −Πj−1Qj) +

j−1∑
l=0

QlAjlQ̄j,

where Ajl = Π̄j−1 for l = 0, . . . , j − 1.

(3) Ḡκ+1 = Gκ+1Zκ+1 and N̄0 + · · ·+ N̄κ+1 = N0 + · · ·+Nκ+1,

(4) (N̄0 + · · ·+ N̄j−1) ∩ N̄j = (N0 + · · ·+Nj−1) ∩Nj for j = 1, . . . , κ+ 1.

Remark 2.11 The introduction of Ail seems to be unnecessary at this point. However,
in the case of DAEs with time-dependent coefficients, the corresponding terms for Ail are
not as easy as here.

Proof: We prove (1) and (2) together by induction. For i = 0 we have

Ḡ0 = E = G0, B̄0 = F = B0, N̄0 = ker Ḡ0 = kerG0 = N0, Z0 = I.

To apply induction we suppose the relations

N̄0 + · · ·+ N̄j = N0 + · · ·+Nj, (17)
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Ḡj = GjZj, B̄j = Bj +Gj

j−1∑
l=0

QlAjl (18)

to be valid for j ≤ i with nonsingular Zj as described above, and

Z−1
j = I +

j−1∑
l=0

QlCjl

with certain Cjl. Comparing Ḡi+1 and Gi+1 we write

Ḡi+1 = Ḡi + B̄iQ̄i = GiZi + B̄iQ̄iZi + B̄iQ̄i(I − Zi) (19)

and consider the last term in more detail. We have, due to the form of Yl, induction
assumption (17) and im (Yj − I) ⊆ N0 + · · · + Nj−1 = kerΠj−1 given for all j ≥ 0 (see
Proposition 2.6), that

N0 + · · ·+Nj−1 ⊆ kerΠj−1Qj, N̄0 + · · ·+ N̄j−1 ⊆ ker Π̄j−1Q̄j, j ≤ i, (20)

and therefore,

Yj+1 − I = (Yj+1 − I)Πj−1, j = 1, . . . , i. (21)

This implies

im (Yj − I) ⊆ ker (Yj+1 − I), j = 1, . . . , i. (22)

Concerning Zj = YjZj−1 and using (22), a simple induction proof shows

Zj − I =

j∑
l=1

(Yl − I), j = 1, . . . , i,

to be satisfied. Consequently,

im (I − Zi) ⊆ N0 + · · ·+Ni−1 = N̄0 + · · ·+ N̄i−1 ⊆ ker Q̄i.

Using (19), we get

Ḡi+1 = GiZi + B̄iQ̄iZi.

which leads to

Ḡi+1Z
−1
i = Gi + B̄iQ̄i = Gi +BiQi + (B̄iQ̄i −BiQi).

We apply the induction assumption (18) to find

Ḡi+1Z
−1
i = Gi+1 +Bi(Q̄i −Qi) +Gi

i−1∑
l=0

QlAilQ̄i.

Induction assumption (17) and Proposition 2.6 imply ker Π̄i−1 = kerΠi−1 and hence

Bi = B0Πi−1 = B0Πi−1Π̄i−1 = BiΠ̄i−1.
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Finally,

Ḡi+1Z
−1
i = Gi+1 +Bi(Π̄i−1Q̄i −Πi−1Qi) +Gi+1

i−1∑
l=0

QlAilQ̄i

= Gi+1 +BiQi(Π̄i−1Q̄i −Πi−1Qi) +Gi+1

i−1∑
l=0

QlAilQ̄i = Gi+1Yi+1,

which means that
Ḡi+1 = Gi+1Yi+1Zi = Gi+1Zi+1. (23)

Next, we will show Zi+1 to be nonsingular. Owing to the induction assumption, we know
that Zi is nonsingular. Considering the definition of Zi+1 we have to show Yi+1 to be
nonsingular. Firstly,

ΠiYi+1 = Πi (24)

since imQj ⊆ kerΠi for j ≤ i. This follows immediately from the definition of Yi+1 and
Proposition 2.6 (1). Using the induction assumption (17), Proposition 2.6 and Lemma
A.2, we find

ΠjΠ̄j = Πj, Π̄jΠj = Π̄j and ΠjΠj = Πj for j = 0, ..., i.

This implies that
Πi−1(Yi+1 − I) = Πi−1(Yi+1 − I)Πi (25)

because

Πi−1(Yi+1 − I)
Prop.2.6(1)

= Πi−1Qi(Π̄i−1Q̄i −Πi−1Qi)

= (Πi−1 −Πi)(Π̄i−1Q̄i −Πi−1Qi)

= Πi−1(Q̄i −Qi) = Πi−1(Pi − P̄i)
= Πi −Πi−1Π̄i−1P̄i = Πi −Πi−1Π̄i

= Πi −Πi−1Π̄iΠi = (I −Πi−1Π̄i)Πi.

The equations (24) and (25) imply

Πi−1(Yi+1 − I) = Πi−1(Yi+1 − I)Πi = Πi−1(Yi+1 − I)ΠiYi+1

and, consequently,

I = Yi+1 − (Yi+1 − I)
(21)
= Yi+1 − (Yi+1 − I)Πi−1

= Yi+1 − (Yi+1 − I)Πi−1{(I −Πi−1)Yi+1 +Πi−1}
= Yi+1 − (Yi+1 − I)Πi−1{Yi+1 −Πi−1(Yi+1 − I)}
= Yi+1 − (Yi+1 − I)Πi−1{Yi+1 −Πi−1(Yi+1 − I)ΠiYi+1}
= (I − (Yi+1 − I){I −Πi−1(Yi+1 − I)Πi})Yi+1.

This means that Yi+1 is nonsingular and

Y −1
i+1 = I − (Yi+1 − I){I −Πi−1(Yi+1 − I)Πi}.
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Then Zi+1 = Yi+1Zi is also nonsingular, and

Z−1
i+1 = Z−1

i Y −1
i+1 = (I +

i−1∑
l=0

QlCil)Y
−1
i+1 = I +

i∑
l=0

QlCi+1 l

with certain coefficients Ci+1 l. From (23) we conclude N̄i+1 = Z−1
i+1Ni+1, and, due to the

special form of Z−1
i+1,

N̄i+1 ⊆ N0 + · · ·+Ni+1, N̄0 + · · ·+ N̄i+1 ⊆ N0 + · · ·+Ni+1.

Owing to the property im (Zi+1 − I) ⊆ N0 + · · ·+Ni = N̄0 + · · ·+ N̄i, it holds that

Ni+1 = Zi+1N̄i+1 = (I + (Zi+1 − I))N̄i+1 ⊆ N̄0 + · · ·+ N̄i+1.

Thus, N0 + · · ·+Ni+1 ⊆ N̄0 + · · ·+ N̄i+1 is valid. For symmetry reasons we have

N0 + · · ·+Ni+1 = N̄0 + · · ·+ N̄i+1.

Finally, we derive from the induction assumption that

B̄i+1 = B̄iP̄i =
(
Bi +Gi

i−1∑
l=0

QlAil

)
P̄i

= BiPiP̄i +BiQiP̄i +Gi+1

i−1∑
l=0

QlAilP̄i

= BiPi +BiQiΠ̄i +Gi+1

i−1∑
l=0

QlAilP̄i = Bi+1 +Gi+1

i∑
l=0

QlAi+1,l

with Ai+1,l = AilP̄i, l = 0, . . . , i− 1, Ai+1,l = Π̄i, and therefore, for l ≤ i− 1,

Ai+1,l = AilP̄i = Ai−1,lP̄i−1P̄i = Al+1,lP̄l+1 · · · P̄i = Π̄lP̄l+1 · · · P̄i = Π̄i.

We have proved assertions (1) and (2), and (3) is a simple consequence. Next we prove
assertion (4). By assertion (1) from Lemma 2.6, we have N0 + · · ·+Ni = kerΠi and

Gi+1 = G0 +B0Q0 + · · ·+BiQi = G0 +B0Q0 +B1P0Q1 + · · ·+BiP0 · · ·Pi−1Qi

= G0 +B0(Q0 + P0Q1 + · · ·+ P0 · · ·Pi−1Qi)

= G0 +B0(I − P0 · · ·Pi) = G0 +B0(I −Πi).

This leads to the description

_
Ni+1 = (N0 + · · ·+Ni) ∩Ni+1 = {z ∈ Rm : Πiz = 0, G0z +B0(I −Πi)z = 0}

= {z ∈ Rm : z ∈ N0 + · · ·+Ni, G0z +B0z = 0}
= {z ∈ Rm : z ∈ N̄0 + · · ·+ N̄i, Ḡ0z + B̄0z = 0}
= (N̄0 + · · ·+ N̄i) ∩ N̄i+1.

�
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3 Equivalence transformations

Given a matrix pair {E,F}, E,F ∈ L(Rm,Rk), and nonsingular matrices L ∈ L(Rk),
K ∈ L(Rm), we form

Ē = LEK, F̄ = LFK. (26)

The DAEs corresponding to the pairs {E,F} and {Ē, F̄} are

Ex′(t) + Fx(t) = q(t),

Ēx̄′(t) + F̄ x̄′(t) = q̄(t),

which are related to each other by the transformation x = Kx̄ and premultiplication by
L resp. L−1, q̄ = Lq. In this sense, these DAEs are solution equivalent. How are the
matrix functions and admissible projectors for {E,F} and {Ē, F̄} related? The answer
is simple.

Theorem 3.1 If two matrix pairs {E,F} and {Ē, F̄} are related via (26), then they have
common characteristic values. In detail,

ri = r̄i, i ≥ 0, ui = ūi, i ≥ 1.

If {E,F} has the admissible projectors Q0, . . . , Qκ, then {Ē, F̄} has the admissible pro-
jectors Q̄0, . . . , Q̄κ with Q̄i := K−1QiK for i = 0, . . . , κ.

Proof: The transformations Ḡ0 = LG0K, B̄0 = LB0K, N̄0 = K−1N0 are given at the
beginning, and Q̄0 := K−1Q0K is admissible. Compute Ḡ1 = Ḡ0 + B̄0Q̄0 = LG1K,
r̄1 = r1, then

N̄1 = K−1N1, N̄0 ∩ N̄1 = K−1(N0 ∩N1).

Put X̄1 := K−1X1 such that N̄0 = (N̄0 ∩ N̄1) ⊕ X̄1 and noting that Q̄1 := K−1Q1K has
the property ker Q̄1 ⊇ X̄1, this means that Q̄0, Q̄1 are admissible. At the level i, we have

Ḡi = LGiK, N̄0 + · · ·+ N̄i−1 = K−1(N0 + · · ·+Ni−1), N̄i = K−1Ni, r̄i = ri,

and Q̄i := K−1QiK satisfies condition ker Q̄i ⊇ X̄i with

X̄i := K−1X, N̄0 + · · ·+ N̄i−1 = [(N̄0 + · · ·+ N̄i−1) ∩ N̄i]⊕ X̄i.

The conclusion is, in particular, that the characteristic values of a matrix pair are invariant
with respect to equivalence transformations. �

4 Admissible projectors for a DAE in Weierstraß-

Kronecker canonical form

Here we deal with the matrix pair {E,F} given by the m×m structured matrices

E =

[
I 0
0 N

]
}m− l
}l , F =

[
W 0
H I

]
}m− l
}l , (27)
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where N is a nilpotent, upper triangular l × l matrix, l > 0,

N =


0 N1,2 · · · N1,µ

. . .
...

. . . Nµ−1,µ

0


}l1

}lµ−1

}lµ

, (28)

l1 ≥ · · · ≥ lµ ≥ 1, l1 + · · ·+ lµ = l, and the blocks Ni,i+1 with li rows and li+1 columns have
full column rank, that means, kerNi,i+1 = {0}, i = 1, . . . , µ− 1. Then N has nilpotency
index µ; that is Nµ = 0, Nµ−1 6= 0, and li equals the number of its Jordan blocks of order
≥ i, i = 1, . . . , µ.
This special form of the nilpotent block is closely related with the tractability index
concept, in particular with the decouplings provided by admissible projectors (see Section
5).
The Jordan canonical form of such a nilpotent matrix N consists of l1 − l2 (nilpotent)
Jordan chains of order one, l2− l3 chains of order two, and so on up to lµ−1− lµ chains of
order µ− 1, and lµ chains of order µ. Any nilpotent matrix can be put into the structural
form (28) by means of a similarity transformation. Thus, without loss of generality we
may suppose this special form.

The polynomial p(λ) := det(λE + F ) = det(λI + W ) has degree m − l. If l = m then
p(λ) ≡ 1. This pair {E,F} is regular and represents a slight generalization of the classical
Weierstraß-Kronecker canonical form discussed in Section 1 (cf. (3)), where the block H
is absent.

In accordance with the structure of E and F in (27) we write z ∈ Rm as

z =


z0

z1
...
zµ

 , z0 ∈ Rm−l, zi ∈ Rli , i = 1, . . . , µ.

Now we construct a matrix sequence (11) by admissible projectors. Thereby, on the
next three pages in the present section, the letter N is used twofold: Ni, with a single
subscript, indicates one of the subspaces, and Nj,k , with double subscript, means an entry
of a matrix.
Put G0 = E, B0 = F .
Since N0 = kerG0 = {z ∈ Rm : z0 = 0, zµ = 0, . . . , z2 = 0} we choose

Q0 =


0

I
0

. . .

0


}l1

, Π0 = P0 =


I

0
I

. . .

I


}l1

,
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which leads to

G1 =



I
I N1,2 · · · · · · N1,µ

0
. . .

...
. . . . . .

...
. . . Nµ−1,µ

0


}l1

, B1 =


W

0
I

H
. . .

I


}l1

,

N1 = {z ∈ Rm : z0 = 0, zµ = 0, . . . , z3 = 0, z1 +N1,2z2 = 0}, N1 ∩N0 = 0. Choosing

Q1 =



0
0 I −N1,2

I
0

. . .

0


}l1
}l2 , P1 =



I
I N1,2

0
I

. . .

I


}l1
}l2 ,

Π1 =



I
0

0
I

. . .

I


}l1
}l2 ,

we meet the condition N0 ⊆ kerQ1, which means that Q1Q0 = 0, and find

G2 =



I
I N1,2 · · · · · · N1,µ

I N2,3
...

0
. . .

...
. . . Nµ−1,µ

0


}l1
}l2 , B2 =



W
0

0
H I

. . .

I


}l1
}l2 ,

N2 = {z ∈ Rm : z0 = 0, zµ = 0, . . . , z4 = 0, z2 + N23z3 = 0, z1 + N12z2 + N13z3 = 0},
(N0 +N1) ∩N2 = (kerΠ1) ∩N2 = {0}. Suppose that we are on level i and that we have
Q0, . . . , Qi−1 being admissible,

Qi−1 =



0
0 ∗

. . .
...

0 ∗
I

0
. . .

0



}l1

}li
, Πi−1 =



I
0

. . .

0
I

. . .

I



}l1

}li
,
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Qi−1(N0 + · · ·+Ni−2) = Qi−1im (I −Πi−2) = imQi−1(I −Πi−2) = {0},

Gi =



I
I N1,2 · · · · · · · · · N1,µ

. . . . . .
...

I Ni,i+1
...

0
. . .

...
. . . Nµ−1,µ

0



}l1

}li , Bi =



W
0

. . .

H 0
I

. . .

I



}l1

}li . (29)

It follows that

Ni = {z ∈ Rm : z0 = 0, zµ = 0, . . . , zi+2 = 0,

zi +Ni,i+1zi+1 = 0, . . . , z1 +N12z2 + · · ·+N1,i+1zi+1 = 0},
(N0 + · · ·+Ni−1) ∩Ni = (kerΠi−1) ∩Ni = {0}.

Choosing

Qi =



0
0 ∗

. . .
...

0 ∗
I

0
. . .

0



}l1

}li+1
, Pi =



I
I ∗

. . .
...

I ∗
0
I

. . .

I



}l1

}li+1
,

Πi =



I
0

. . .

0
I

. . .

I



}l1

}li+1

,

we meet the admissibility condition (14), as Qi(I −Πi−1) = 0, and arrive at

Gi+1 =



I
I N1,2 · · · · · · · · · N1,µ

. . . . . .
...

I Ni+1,i+2
...

0
. . .

...
. . . Nµ−1,µ

0



}l1

}li+1 , Bi+1 =



W
0

. . .

H 0
I

. . .

I



}l1

}li+1 .
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This verifies formulas (29) to provide the right pair Gi, Bi at level i, i ≥ 1, for {E,F}
as in (27). Obviously, we obtain precisely a nonsingular matrix Gµ, but Gµ−1 is singular.
The characteristic values of our pair {E,F} are ui = 0, i ≥ 1, and

ri = m− dimNi = m− li+1 < m, i = 0, . . . , µ− 1, ri = m, i ≥ µ.

The next proposition records this result.

Proposition 4.1 The matrix sequence (11) built with admissible projectors for the special
pair {E,F} given by (27), (28) consists of singular matrices G0, . . . , Gµ−1 and a nonsin-
gular Gµ. The characteristic values are: ui = 0 for i = 1, . . . , µ, and
ri = m− dimNi = m− li+1 for i = 0, . . . , µ− 1, rµ = m .

For a DAE in Weierstraß-Kronecker canonical form (27) with its structured part N (28)
the decoupling into the basic components is given a priori (cf. (4), (5)). The so-called
“slow” subsystem

y′(t) +Wy(t) = p(t)

is a standard explicit ODE, hence an integration problem, whereas the so-called ”fast”
subsystem

Nz′(t) + z(t) = r(t)−Hy(t)

contains exclusively algebraic relations and differentiation problems.
The admissible projectors expose these two basic structures as well as a further subdivision
of the differentiation problems, too: The proper state variable is comprised by Πµ−1 while
I −Πµ−1 collects all other variables:

Πµ−1 =


I

0
. . .

0

 , I −Πµ−1 =


0

I
. . .

I

 .
Those variables that are not differentiated at all and those variables that have to be
differentiated i-times are comprised by

Q0 =


0

I
0

. . .

0


}l1

and Πi−1Qi =



0
0

. . .

I
. . .

0

}li+1
,

respectively.
These decoupling properties of the projectors will also be valid for more general DAEs.

Example 4.2 Reconsideration of the DAE from Example 2.1 that is not in Weierstraß-
Kronecker canonical form, with the projectors

Π1 = P0P1 =

 0 0 0
0 0 0
−1 0 1

 , Q0 =

0 0 0
0 1 0
0 0 0

 , P0Q1 =

1 0 0
0 0 0
1 0 0

 .
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The DAE itself can be rewritten without any differentiations of equations as

(−x1 + x3)
′ = q2 + q3 − q1, (30)

x1 =
1

2
(q3 − (−x1 + x3)), (31)

x2 = (q1 − q3)− x′1. (32)

Obviously, Π1x reflects the proper state variable −x1 +x3, for which an explicit ODE (30)
is given. P0Q1x refers to the variable x1 that is described by the algebraic equation (31)
when the solution −x1 + x3 is already given by (30). Finally, Q0x reflects the variable x2

which can be determined by (32). Note, that the variable x1 has to be differentiated here.

5 Decoupling of regular DAEs by admissible projec-

tors

In this section we deal with m × m matrices E,F . If they form a regular matrix pair
{E,F} with Kronecker index µ ∈ N, then the matrices G0, . . . , Gµ−1 generated by means
of admissible projectors according to (11) are singular and Gµ is the first nonsingular
matrix occurring in the sequence (see Proposion 4.1 and Theorem 3.1).
What do we know about the reverse implication? If a nonsingular matrix Gµ is met in the
sequence (11), then do we have a regular pair {E,F}? Does its Kronecker index equal µ
? We will have positive answers to both questions at the end of this section.
The nonsingular matrix Gµ allows for a projector based decoupling so that the decoupled
version of the given DAE looks quite similar to the Weierstraß-Kronecker canonical form.
We stress that, at the same time, our discussion should serve as a model for a correspond-
ing decoupling of time-dependent linear DAEs for which we do not have a Weierstraß-
Kronecker canonical form. As already mentioned, when constructing the matrices Gj we

have in mind a rearrangement of terms within the original DAE

Ex′(t) + Fx(t) = q(t) (33)

such that the solution components Πµ−1x(t) and (I − Πµ−1)x(t) are separated as far as
possible and the nonsingular matrix Gµ occurs in front of the derivative (Πµ−1x(t))′. Let

the matrix sequence (11) starting from G0 = E, B0 = F be realized up to Gµ which is
nonsingular. Let µ ∈ N be the smallest such index.
Consider the accompanying admissible projectors Q0, . . . , Qµ.
We have Qµ = 0, Pµ = I, Πµ = Πµ−1 for trivial reasons. Due to Proposition 2.6, the

intersections
_
Ni are trivial,

_
Ni = Ni ∩ (N0 + · · ·+Ni−1) = {0}, i = 1, . . . , µ− 1,

and therefore

N0 + · · ·+Ni−1 = N0 ⊕ · · · ⊕Ni−1, Xi = N0 ⊕ · · · ⊕Ni−1, i = 1, . . . , µ− 1. (34)
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From (34) we derive the relations

QiQj = 0, j = 0, . . . , i− 1, i = 1, . . . , µ− 1, (35)

which are very helpful in computations. Recall from Section 2 the properties

GiPi−1 = Gi−1, Bi = BiΠi−1, i = 1, . . . , µ,

GiQj = BjQj, j = 0, . . . , i− 1, i = 0, . . . , µ− 1,

which will be used frequently.

Applying G0 = G0P0 = G0Π0 we rewrite the DAE (33) as

G0(Π0x(t))′ +B0x(t) = q(t), (36)

and then, with B0 = B0P0 +B0Q0 = B0Π0 +G1Q0, as

G1P1P0(Π0x(t))′ +B0Π0x(t) +G1Q0x(t) = q(t).

Now we use the relation

G1P1P0 = G1Π0P1P0 +G1(I −Π0)P1P0

= G1Π1 −G1(I −Π0)Q1

= G1Π1 −G1(I −Π0)Q1Π0Q1

to replace the first term. This yields

G1(Π1x(t))′ +B1x(t) +G1{Q0x(t)− (I −Π0)Q1(Π0Q1x(t))′} = q(t).

Proceeding further by induction we suppose

Gi(Πix(t))′ + Bix(t)

+ Gi

i−1∑
l=0

{Qlx(t)− (I −Πl)Ql+1(ΠlQl+1x(t))′} = q(t) (37)

and, in the next step, using the properties Gi+1Pi+1Pi = Gi, BiQi = Gi+1Qi,
GiQl = Gi+1Ql, l = 0, . . . , i− 1, and

Pi+1PiΠi = ΠiPi+1PiΠi + (I −Πi)Pi+1PiΠi

= Πi+1 − (I −Πi)Qi+1

= Πi+1 − (I −Πi)Qi+1ΠiQi+1,

we reach

Gi+1(Πi+1x(t))′ + Bi+1x(t)

+ Gi+1

i∑
l=0

{Qlx(t)− (I −Πl)Ql+1(ΠlQl+1x(t))′} = q(t),
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so that expression (37) can be used for all i = 1, . . . , µ.
In particular, we obtain

Gµ(Πµx(t))′ + Bµx(t)

+ Gµ

µ−1∑
l=0

{Qlx(t)− (I −Πl)Ql+1(ΠlQl+1x(t))′} = q(t).
(38)

Taking into account that Qµ = 0, Pµ = I, Πµ = Πµ−1, and scaling with G−1
µ we derive

the equation

(Πµ−1x(t))′ +G−1
µ Bµx(t) +

µ−1∑
l=0

Qlx(t)−
µ−2∑
l=0

(I −Πl)Ql+1(ΠlQl+1x(t))′ = G−1
µ q(t). (39)

In turn, equation (39) can be decoupled into two parts, the explicit ODE with respect to
Πµ−1x(t),

(Πµ−1x(t))′ +Πµ−1G
−1
µ Bµx(t) = Πµ−1G

−1
µ q(t), (40)

and the remaining equation

(I −Πµ−1)G
−1
µ Bµx(t) +

µ−1∑
l=0

Qlx(t)

−
µ−2∑
l=0

(I −Πl)Ql+1(ΠlQl+1x(t))′ = (I −Πµ−1)G
−1
µ q(t).

(41)

Next, we show that equation (41) uniquely defines the component (I−Πµ−1)x(t) in terms
of Πµ−1x(t).
We decouple equation (41) once again into µ further parts according to the decomposition

I −Πµ−1 = Q0P1 · · ·Pµ−1 +Q1P2 · · ·Pµ−1 + · · ·+Qµ−2Pµ−1 +Qµ−1. (42)

Notice that QiPi+1 · · ·Pµ−1, i = 0, . . . , µ− 2 are projectors, too, and

QiPi+1 · · ·Pµ−1Qi = Qi,

QiPi+1 · · ·Pµ−1Qj = 0, if i 6= j,

QiPi+1 · · ·Pµ−1(I −Πl)Ql+1 = Qi(I −Πl)Ql+1 = 0, for l = 0, . . . , i− 1,

QiPi+1 · · ·Pµ−1(I −Πi)Qi+1 = QiQi+1.

Hence, multiplying (41) by QiPi+1 · · ·Pµ−1, i = 0, . . . , µ− 2, and Qµ−1 yields

QiPi+1 · · ·Pµ−1G
−1
µ Bµx(t) +Qix(t)−QiQi+1(ΠiQi+1x(t))′

−
µ−2∑
l=i+1

QiPi+1 · · ·PlQl+1(ΠlQl+1x(t))′ = QiPi+1 · · ·Pµ−1G
−1
µ q(t), (43)

i = 0, . . . , µ− 2,

Qµ−1G
−1
µ Bµx(t) +Qµ−1x(t) = Qµ−1G

−1
µ q(t). (44)

Equation (44) uniquely determines the component Qµ−1x(t) as

Qµ−1x(t) = Qµ−1G
−1
µ q(t)−Qµ−1G

−1
µ Bµx(t),
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and the formula contained in (43) for i = µ− 2 gives

Qµ−2x(t) = Qµ−2Pµ−1G
−1
µ q(t)−Qµ−2Pµ−1G

−1
µ Bµx(t)−Qµ−2Qµ−1(Πµ−2Qµ−1x(t))′,

and so on, i.e., in a consecutive manner we obtain expressions determining the compo-
nents Qix(t) in dependence on Πµ−1x(t) and Qi+jx(t), j = 1, . . . , µ− 1− i.
To compose an expression for the whole solution x(t) there is no need for the compo-
nents Qix(t) themselves, i = 0, . . . , µ − 1, but one can do with Q0x(t), Πi−1Qix(t),
i = 1, . . . , µ− 1, which corresponds to the decomposition

I = Q0 +Π0Q1 + · · ·+Πµ−2Qµ−1 +Πµ−1. (45)

For this purpose we rearrange the system (43),(44) once again by multiplying (44) by
Πµ−2 and (43) for i = 1, . . . , µ − 2 by Πi−1. Let us remark that, even though we scale
with projectors (which are singular matrices) here, nothing of the equations gets lost.
This is due to the relations

Qi = QiΠi−1Qi

= (Πi−1 + (I −Πi−1))QiΠi−1Qi

= (I + (I −Πi−1)Qi)Πi−1Qi,

Πi−1Qi = (I − (I −Πi−1)Qi)Qi,

(46)

which allow a one-to-one translation of the components Qix(t) and Πi−1Qix(t) into each
other.
With notations chosen according to the decomposition (45),

v0(t) = Q0x(t), vi(t) := Πi−1Qix(t), i = 1, . . . , µ− 1, u(t) := Πi−1x(t), (47)

we obtain the representation resp. decomposition

x(t) = v0(t) + v1(t) + · · ·+ vµ−1(t) + u(t) (48)

of the solution as well as the structured system resulting from (40), (43), (44)
I

0 N01 · · · N0,µ−1

. . . . . .
...

. . . Nµ−2,µ−1

0




u′(t)

0
v′1(t)

...
v′µ−1(t)



+


W
H0 I
...

. . .
...

. . .

Hµ−1 I




u(t)
v0(t)

...

...
vµ−1(t)

 =


Ld
L0
...
...
Lµ−1

 q(t)

(49)
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with the m×m-blocks

H0 := Q0P1 · · ·Pµ−1G
−1
µ Bµ,

Hi := Πi−1QiPi+1 · · ·Pµ−1G
−1
µ Bµ, i = 1, . . . , µ− 2,

Hµ−1 := Πµ−2Qµ−1G
−1
µ Bµ,

W := Πµ−1G
−1
µ Bµ,

Ld := Πµ−1G
−1
µ ,

L0 := Q0P1 · · ·Pµ−1G
−1
µ ,

Li := Πi−1QiPi+1 · · ·Pµ−1G
−1
µ , i = 1, . . . , µ− 2,

Lµ−1 := Πµ−2Qµ−1G
−1
µ ,

N01 := −Q0Q1,

N0j := Q0P1 · · ·Pj−1Qj, j = 2, . . . , µ− 1,

Ni,i+1 := −Πi−1QiQi+1,

Nij := −Πi−1QiPi+1 · · ·Pj−1Qj, j = i+ 2, . . . , µ− 1, i = 1, . . . , µ− 2.

System (49) almost looks like a DAE in Weierstraß-Kronecker canonical form. However,
compared to the latter it is a puffed up system of dimension (µ + 1)m. The system (49)
is equivalent to the original DAE (33) in the following sense.

Lemma 5.1 Let {E,F} be a pair with the characteristic values

r0 ≤ · · · ≤ rµ−1 < rµ = m.

(1) If x(.) is a solution of the DAE (33), then the components u(.), v0(.), . . . , vµ−1(.),
which are given by (47), form a solution of the puffed up system (49).

(2) Conversely, if the functions u(.), v0(.), . . . , vµ−1(.) are a solution of the system (49)
and if, additionally, u(t0) = Πµ−1u(t0) holds for a t0 ∈ I, then the compound
function x(.) defined by (48) is a solution of the original DAE (33).

Proof: It remains to verify (2). Due to the properties of the coefficients, for each solution
of system (49) it holds that vi(t) = Πi−1Qivi(t), i = 1, . . . , µ − 1, v0(t) = Q0v0(t), which
means that the components vi(t), i = 0, . . . , µ− 1, belong to the desired subspaces.
The first equation in (49) is the explicit ODE u′(t) +Wu(t) = Ldq(t). Let uq(.) denote
the solution fixed by the initial condition uq(t0) = 0. We have uq(t) = Πµ−1uq(t) because
of W = Πµ−1W , Ld = Πµ−1Ld. However, for each arbitrary constant c ∈ im (I −Πµ−1),
the function ū(.) := c+ uq(.) solves this ODE but does not belong to imΠµ−1 as we want
it to.
With the initial condition u(t0) = u0 ∈ imΠµ−1 the solution can be kept in the desired
subspace, which means that u(t) ∈ imΠµ−1 for all t ∈ I. Now, by carrying out the
decoupling procedure in reverse order and putting things together we have finished the
proof. �

System (49) is given in terms of the original DAE. It shows in some detail the inherent
structure of that DAE. An analogous decoupling applies for time-varying linear DAEs,
too.A special smart choice of the admissible projectors cancels the coefficientsHi in system
(49) so that the second part no longer depends on the first one.
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Theorem 5.2 Let {E,F} be a pair with characteristic values

r0 ≤ · · · ≤ rµ−1 < rµ = m.

Then there are admissible projectors Q0, . . . Qµ−1 such that the coupling coefficients
H0, . . . ,Hµ−1 in (49) vanish, that is, (49) decouples into two independent subsystems.

Proof:
For any given sequence of admissible projectors Q0, . . . Qµ−1 the coupling coefficients can
be expressed as H0 = Q0∗Πµ−1, Hi = Πi−1Qi∗Πµ−1, i = 1, . . . , µ− 1, where we denote

Q0∗ := Q0P1 · · ·Pµ−1G
−1
µ B0,

Qi∗ := QiPi+1 · · ·Pµ−1G
−1
µ B0Πi−1, i = 1, . . . , µ− 2,

Qµ−1∗ := Qµ−1G
−1
µ B0Πµ−2.

We realize that Qi∗Qi = Qi, i = 0, . . . , µ− 1, since

Qµ−1∗Qµ−1 = Qµ−1G
−1
µ B0Πµ−2Qµ−1 = Qµ−1G

−1
µ Bµ−1Qµ−1 = Qµ−1G

−1
µ GµQµ−1 = Qµ−1

and so on. This implies (Qi∗)
2 = Qi∗, i.e., Qi∗ is a projector onto Ni, i = 0, . . . , µ − 1.

Furthermore, by construction it holds that N0 + · · ·+Ni−1 ⊆ kerQi, i = 1, . . . , µ− 1.

The new projectors Q̄0 := Q0, . . . , Q̄µ−2 := Qµ−2, Q̄µ−1 := Qµ−1∗ are also admissible
ones, but now, in (49) the respective coefficient H̄µ−1 disappears. Namely, the old and
new sequences are related by

Ḡi = Gi, i = 0, . . . , µ− 1, Ḡµ = G−1
µ +Bµ−1Qµ−1∗ = GµZµ,

with nonsingular Zµ := I +Qµ−1Qµ−1∗Pµ−1. This yields

Q̄µ−1∗ := Q̄µ−1Ḡµ−1B0Πµ−2 = Qµ−1∗Z
−1
µ G−1

µ B0Πµ−2 = Qµ−1G
−1
µ B0Πµ−2 = Qµ−1∗ = Q̄µ−1

because of
Qµ−1∗Z

−1
µ = Qµ−1∗(I −Qµ−1Qµ−1∗Pµ−1) = Qµ−1,

and hence
H̄µ−1 := Π̄µ−2Q̄µ−1∗Π̄µ−1 = Πµ−2Q̄µ−1Π̄µ−1 = 0.

We show by induction that the coupling coefficients disappear stepwise with an appropri-
ate choice of admissible projectors.
Assume Q0, . . . Qµ−1 to be such that

Hk+1 = 0, . . . , Hµ−1 = 0, (50)

or, equivalently,
Qk+1∗Πµ−1 = 0, . . . , Qµ−1∗Πµ−1 = 0,

for a certain k, 0 ≤ k ≤ µ− 2.
We build a new sequence by letting Q̄i := Qi, i = 0, . . . , k − 1 (if k ≥ 1), and Q̄k := Qk∗.
In particular it holds that QkP̄k = −Q̄kPk.
Q̄0, . . . , Q̄k are admissible, and the resulting two sequences are related by

Ḡi = GiZi i = 0, . . . , k + 1,
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with factors

Z0 = I, . . . , Zk = I, Zk+1 = I +QkQk∗Pk, Z−1
k+1 = I −QkQk∗Pk.

We put Q̄k+1 := Z−1
k+1Qk+1Zk+1 = Z−1

k+1Qk+1. Q̄0, . . . , Q̄k+1 are admissible, too.
Applying Lemma 2.10 we proceed with

Ḡj = GjZj, Qj := Z−1
j QjZj, j = k + 2, . . . , µ− 1,

and arrive at a new sequence of admissible projectors Q̄0, . . . , Q̄µ−1. The invertibility of
Zj is ensured by Lemma 2.10.
Put Yk+1 := Zk+1. Lemma 2.10 provides us with the expressions

Yj := ZjZ
−1
j−1 = I +Qj−1(Π̄j−2Q̄j−1 −Πj−2Qj−1) +

j−2∑
l=0

QlΠ̄j−2Q̄j−1, j ≥ k + 2.

Additionally we learn from Lemma 2.10 that the subspaces N0⊕· · ·⊕Nj and N̄0⊕· · ·⊕N̄j

coincide.
For our special new projectors the expression for Yj, j ≥ k + 2, simplifies to

Yj = I +

j−2∑
l=0

QlΠ̄j−2Q̄j−1 = I +

j−2∑
l=k

QlΠ̄j−2Qj−1

because the following relations are now valid:

QjZj = 0, Q̄j = Z−1
j Qj, Π̄j−2Q̄j−1 = Π̄j−2Z

−1
j−1Qj−1 = Π̄j−2Qj−1,

Qj−1(Π̄j−2Q̄j−1 −Πj−2Qj−1) = Qj−1(Π̄j−2Qj−1 −Πj−2Qj−1) = 0.

We have to verify that the new coupling coefficients H̄k and H̄j, j ≥ k + 1, disappear.
We compute Q̄kZ

−1
k+1 = Q̄k − Q̄kPk = Q̄kQk = Qk and

Zj−1Z
−1
j = Y −1

j = I −
j−2∑
l=k

QlΠ̄j−2Qj−1, j ≥ k + 2. (51)

For j ≥ k + 1 this yields

Q̄j∗Π̄µ−1 = Q̄jP̄j+1 · · · P̄µ−1Ḡ
−1
µ BΠ̄µ−1 = Z−1

j QjY
−1
j+1Pj+1 · · ·Y −1

µ−1Pµ−1Y
−1
µ BΠ̄µ−1

and by inserting (51) into the last expression

Q̄j∗Π̄µ−1 = Z−1
j Qj(I −

j−1∑
l=k

QlΠ̄j−1Qj)Pj+1 · · ·Pµ−1(I −
µ−2∑
l=k

QlΠ̄µ−2Qµ−1)G
−1
µ BΠ̄µ−1.

Rearranging the terms:

Q̄j∗Π̄µ−1 = (Z−1
j QjPj+1 · · ·Pµ−1 + Cj,j+1Qj+1Pj+2 · · ·Pµ−1 (52)

+ · · ·+ Cj,µ−2Qµ−2Pµ−1 + Cj,µ−1Qµ−1)G
−1
µ BΠ̄µ−1.
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The detailed expression of the coefficients Cj,i does not matter at all. With analogous
arguments we derive

Q̄k∗Π̄µ−1 = (Qk∗Pk+1 · · ·Pµ−1 + Ck,j+1Qk+1Pk+2 · · ·Pµ−1

+ · · ·+ Ck,µ−2Qµ−2Pµ−1 + Ck,µ−1Qµ−1)G
−1
µ BΠ̄µ−1.

(53)

Next we compute

Π̄µ−1 = Πk−1P̄kP̄k+1 · · · P̄µ−1 = Πk−1P̄kPk+1 · · ·Pµ−1

= Πk−1(Pk +Qk)P̄kPk+1 · · ·Pµ−1 = Πµ−1 −QkQ̄kΠµ−1,

and therefore

G−1
µ BΠ̄µ−1 = G−1

µ B(Πµ−1 −Πk−1QkQ̄kΠµ−1) = G−1
µ BΠµ−1 −QkQ̄kΠµ−1.

Now from assumption (50) and the properties of admissible projectors it follows that

Qµ−1G
−1
µ BΠ̄µ−1 = Qµ−1G

−1
µ BΠµ−1 −Qµ−1Q̄kΠµ−1 = Qµ−1∗Πµ−1 = 0,

and, for i = k + 1, . . . , µ− 2,

QiPi+1 · · ·Pµ−1BΠ̄µ−1 = QiPi+1 · · ·Pµ−1BΠµ−1 −QiQ̄kΠµ−1 = Qi∗Πµ−1 = 0.

Furthermore, taking into account the special choice of Q̄k,

QkPk+1 · · ·Pµ−1BΠ̄µ−1 = QkPk+1 · · ·Pµ−1BΠµ−1 −QkQ̄kΠµ−1 = (Qk∗ − Q̄k)Πµ−1 = 0.

This makes it evident that all single summands on the right hand sides of formulas (52)
and (53) disappear, and thus Q̄j∗Π̄µ−1 = 0 for j = k, . . . , µ−1, that is, the new decoupling
coefficients vanish. In consequence, starting with any admissible projectors we apply the
above procedure first for k = µ − 1, then for k = µ − 2 up to k = 0. At each level an
additional coupling coefficient is cancelled, and we finish with a complete decoupling of
the two parts in (49). �

Definition 5.3 Let {E,F} be a pair with characteristic values r0 ≤ · · · ≤ rµ−1 < rµ = m.
If all coefficientsHi, i = 0, . . . , µ−1, vanish in system (49), then the underlying admissible
projectors Q0, . . . Qµ−1 are called completely decoupling projectors for the DAE (33).

Notice that for DAEs with µ = 1, the completely decoupling projector Q0 is uniquely
determined. It is the projector onto N0 along S0 = {z ∈ Rm : B0z ∈ imG0} (cf.
Appendix 8). However, for higher index µ > 1, there are many complete decouplings, as
the next example shows.

Example 5.4 Let

E = G0 =

 0 1 0
0 0 0
0 0 1

 , F = B0 =

 1 0 0
0 1 0
0 0 1

 ,
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and choose a projector Q0 with a free parameter α.

Q0 =

 1 α 0
0 0 0
0 0 0

 , P0 =

 1 −α 0
0 1 0
0 0 1

 , G1 =

 1 1 + α 0
0 0 0
0 0 1

 , B1 = P0,

Q1 =

 0 −(1 + α) 0
0 1 0
0 0 0

 , Π1 =

 0 0 0
0 0 0
0 0 1

 , G2 =

 1 1 0
0 1 0
0 0 1

 ,
G−1

2 =

 1 −1 0
0 1 0
0 0 1

 , Q0P1G
−1
2 B0 = Q0,

i.e., Q0, Q1 are completely decoupling projectors for each arbitrary value α.

The completely decoupled system (49) offers as much insight as the Weierstraß-Kronecker
canonical form does. Without loosing information it can be compressed back on an
m-dimensional DAE. The next lemma records essential properties to be used in the com-
pression procedure.

Lemma 5.5 It holds that

Ni,i+1 = Ni,i+1ΠiQi+1,

Nij = NijΠj−1Qj, j = i+ 2, . . . , µ− 1,

kerNi,i+1 = kerΠiQi+1,

rankNi,i+1 = m− ri+1, i = 0, . . . , µ− 2.

Proof: We use the additional subspaces Si := kerWiBi ⊆ Rm and projectorsWi ∈ L(Rm)
with

kerWi = imGi, i = 0, . . . , µ− 1.

Let G−i denote the generalized reflexive inverse of Gi with GiG
−
i Gi = Gi, G−i GiG

−
i =

G−i , GiG
−
i = I −Wi, G−i Gi = Pi. We factorize Gi+1 as

Gi+1 = Gi +BiQi = Gi +WiBiQi +GiG
−
i BiQi = Gi+1Fi+1,

Gi+1 := Gi +WiBiQi, Fi+1 = I + PiG
−
i BiQi.

Since Fi+1 is invertible (cf. Lemma A.2), it follows that Gi+1 has rank ri+1 like Gi+1.
Furthermore, it holds that kerGi+1 = Ni ∩ Si. Namely, Gi+1z = 0 means that
Giz = 0, WiBiQiz = 0, i.e., z = Qiz, WiBiz = 0, but this is z ∈ Ni ∩ Si.
Therefore, Ni ∩ Si must have dimension m− ri+1. Next we derive the relation

Ni ∩ Si = imQiQi+1. (54)

z ∈ Ni ∩ Si means z = Qiz, Biz = Giw, which implies (Gi + BiQi)(Piw +Qiz) = 0, and
hence, Piw + Qiz = Qi+1(Piw + Qiz) = Qi+1w. Therefore, z = Qiz = QiQi+1w. Taking
into consideration that (Gi + BiQi)Qi+1 = 0, we derive from z = QiQi+1y that z = Qiz
and Biz = BiQiQi+1y = −GiQi+1y, i.e. z ∈ Ni, z ∈ Si. Owing to (54) we have

rankQiQi+1 = dimNi ∩ Si = m− ri+1. (55)
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If follows immediately that rank Ni,i+1 = m − ri+1, and, since imPi+1 ⊆ kerNi,i+1,
rankPi+1 = ri+1, that imPi+1 = kerNi,i+1. �

We turn to the compression of the large system (49) on m dimensions. The projector
Q0 has rank m − r0, Πi−1Qi has rank m − ri, i = 1, . . . , µ − 1, and Πµ−1 has rank

d := m−
µ−1∑
j=0

(m− rj).

We introduce full-row-rank matrices Γi ∈ L(Rm,Rm−ri), i = 0, . . . , µ−1, Γd ∈ L(Rm,Rd),
such that

im ΓdΠµ−1 = Γd imΠµ−1 = Rd,
ker Γd = im (I −Πµ−1) = N0 + · · ·+Nµ−1,
Γ0N0 = Rm−r0 ,

ker Γ0 = kerQ0,
ΓiΠi−1Ni = Rm−ri ,

ker Γi = kerΠi−1Qi, i = 1, . . . , µ− 1,

as well as generalized inverses Γ−d ,Γ
−
i , i = 0, . . . , µ− 1, such that

Γ−d Γd = Πµ−1, ΓdΓ
−
d = I,

Γ−i Γi = Πi−1Qi, ΓiΓ
−
i = I, i = 1, . . . , µ− 1,

Γ−0 Γ0 = Q0, Γ0Γ
−
0 = I.

If the projectors Q0, . . . , Qµ−1 are widely orthogonal (cf. Proposition 2.6(6)), then the
above projectors are symmetric and Γ−d , Γ−i are the Moore-Penrose generalized inverses.
Denoting

H̃i := ΓiHiΓ
−
d , L̃i := ΓiLi, i = 0, . . . , µ− 1, (56)

W̃ := ΓdWΓ−d , L̃d := ΓdLd, (57)

Ñij := ΓiNijΓ−j , j = i+ 1, . . . , µ− 1, i = 0, . . . , µ− 2, (58)

and transforming the new variables

ũ = Γdu, ṽi = Γivi, i = 0, . . . , µ− 1, (59)

u = Γ−d ũ, vi = Γ−i ṽi, i = 0, . . . , µ− 1, (60)

we compress the large system (49) without loosing information into the m-dimensional
one 

I

0 Ñ01 · · · Ñ0,µ−1

. . . . . .
...

. . . Ñµ−2,µ−1

0




ũ′(t)

0
ṽ′1(t)

...
ṽ′µ−1(t)



+


W̃
H̃0 I
...

. . .
...

. . .

H̃µ−1 I




ũ(t)
ṽ0(t)

...

...
ṽµ−1(t)

 =


L̃d
L̃0
...
...

L̃µ−1

 q.

(61)
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As a consequence of Lemma 5.5, the blocks Ñi,i+1 have full column rank m − ri+1 for
i = 0, . . . , µ− 2.

Proposition 5.6 Let the pair {E,F}, E,F ∈ L(Rm) have characteristic values
r0 ≤ . . . ≤ rµ−1 < rµ = m.

(1) Then there are nonsingular matrices L,K ∈ L(Rm) such that

LEK =


I

0 Ñ01 · · · Ñ0,µ−1

. . . . . .
...

. . . Ñµ−2,µ−1

0

 , LFK =


W̃
H̃0 I
...

. . .
...

. . .

H̃µ−1 I

 ,

with entries described by (56)-(58).
Each block Ñi,i+1 has full column rank m − ri+1, i = 0, . . . , µ − 2, and hence the
nilpotent part in LEK has index µ.

(2) By means of completely decoupling projectors, L and K can be built so that the coeffi-
cients H̃0, . . . , H̃µ−1 disappear, and the DAE transforms into Weierstraß-Kronecker
canonical form.

Proof: Due to the properties

Hi = HiΠµ−1 = HiΓ
−
d Γd, i = 0, . . . , µ− 1,

W =WΠµ−1 =WΓ−d Γd,

Nij = NijΠj−1Qj = NijΓ−j Γj, j = 1, . . . , µ− 1, i = 0, . . . , µ− 2,

we can recover system (49) from (61) by multiplying from the left by

Γ− :=



Γ−d
Γ−0

. . .

Γ−µ−1


∈ L(Rm,R(µ+1)m)

using transformation (60) and taking into account that u = Γ−d ũ = Πµ−1u, Πµ−1u
′ = u′.

The matrix Γ− is a generalized inverse of

Γ :=



Γd
Γ0

. . .

Γµ−1


∈ L(R(µ+1)m,Rm), ΓΓ− = Im,
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Γ−Γ :=



Γ−d Γd
Γ−0 Γ0

. . .

Γ−µ−1Γµ−1


=



Πµ−1

Q0

Π0Q1

. . .

Πµ−2Qµ−1


.

The product K := Γ

I...
I

 =


Γd

Γ0

...

Γµ−1

 is nonsingular.

Our decomposition means now that

x = Πµ−1x+Q0x+Π0Q1x+ · · ·+Πµ−2Qµ−1x

= [I · · · I]Γ−Γ

I...
I

x = [I · · · I]


u
v0
...

vµ−1


and the transformation (59) reads

ũ
ṽ0
...

ṽµ−1

 = Γ


u
v0
...

vµ−1

 = ΓΓ−Γ


I
...
...
I

x = Γ


I
...
...
I

x = Kx = x̃.

Thus, turning from the original DAE (33) to the DAE in the form (61) means a coordinate
transformation x̃ = Kx, with a nonsingular matrix K, combined with a scaling by

L := [I · · · I] Γ−Γ


Πµ−1

Q0P1 · · ·Pµ−1

. . .

Qµ−2Pµ−1

Qµ−1



I
...
...
I

G−1
µ .

L is a nonsingular matrix. Namely, LGµz = 0 means that

Πµ−1z +Q0P1 · · ·Pµ−1z +Π0Q1P2 · · ·Pµ−1z + · · ·+Πµ−3Qµ−2Pµ−1z +Πµ−2Qµ−1z = 0,

and multiplying by Πµ−1 yields Πµ−1z = 0, multiplying by Qµ−1 yields Qµ−1z = 0, by
Qµ−2Pµ−1 yields Qµ−2Pµ−2z = 0, and so on, hence

(I −Πµ−1)z = Qµ−1z +Qµ−2Pµ−1z + · · ·+Q0P1 · · ·Pµ−1z = 0.

The original DAE (33) and the system (61) are equivalent in the usual sense, which
proves the first assertion. Because of the existence of completely decoupling projectors
(see Theorem 5.2), the second assertion is an immediate consequence of the first one. �
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6 Characterizing matrix pencils by admissible pro-

jectors

Each regular pair of m×m matrices with Kronecker index µ ≥ 1 can be transformed into
the Weierstraß-Kronecker canonical form (cf. Section 1).

{[
I 0
0 J

]
,

[
W 0
0 I

]}
, J =

J1

. . .

Js

 ,
where W is d × d, J is l × l, d + l = m, Ji is a nilpotent Jordan block of order ki,
1 ≤ ki ≤ µ, max

i=1,...,s
ki = µ .

As in Section 1, let li denote the number of all Jordan blocks of order ≥ i, Then, J has
lµ ≥ 1 Jordan blocks of order µ, and li − li+1 Jordan blocks of order i, i = 1, . . . , µ − 1,
l1 + · · ·+ lµ = l.
In the present section we show how one can get all this structural information as well as
the spectrum of −W , that is the finite spectrum of the given matrix pencil, by means of
the matrix sequence and the admissible projectors without transforming the given pair
into Weierstraß-Kronecker canonical form.
Often the given matrix pair might have a large dimension m but a low Kronecker index
µ so that just a few steps in the matrix sequence will do.

Theorem 6.1 For a regular pair {E,F} with Kronecker index µ ≥ 1, the matrix sequence
(11) built with admissible projectors consists of singular matrices G0, . . . , Gµ−1, but Gµ is
nonsingular.

Proof: This is a consequence of the existence of the Weierstraß-Kronecker canonical form
(cf. Proposition 1.3), Theorem 3.1 and Proposition 4.1. �

The reverse implication of this assertion is also true. If, for a given pair {E,F}, in the
sequence Gi, i ≥ 0, built with admissible projectors, there occurs a nonsingular matrix,
say Gκ, and κ is the smallest such index, then {E,F} is a regular pencil with Kronecker
index κ. This was proven in [GM89] for the first time. We will obtain this result in a
different way, which, from our point of view, is more transparent.

Theorem 6.2 If the pair {E,F}, E, F ∈ L(Rm), has characteristic values

r0 ≤ · · · ≤ rµ−1 < rµ = m,

then it is regular with Kronecker index µ.

Proof: Let the pair {E,F} have the characteristic values r0 ≤ · · · ≤ rµ−1 < rµ = m. By
Theorem 5.2 we can choose completely decoupling projectors. Applying the decoupling
and compressing procedure for the corresponding DAE (33) we arrive at an equivalent
DAE of the form [

I

Ñ

]
x̃′ +

[
W̃

I

]
x̃ = q̃. (62)
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The matrix Ñ is nilpotent with index µ, and it has the structure

Ñ =


0 Ñ01 · · · · · · Ñ0,µ−1

0
. . .

...
. . . . . .

...
. . . Ñµ−2,µ−1

0


}m− r0

}m− rµ−2

}m− rµ−1

, (63)

with full-column rank blocks Ñi,i+1, i = 0, . . . , µ− 2.
It turnes out that {E,F} can be transformed into Weierstraß-Kronecker canonical form
with Kronecker index µ, and hence {E,F} is a regular pair with Kronecker index µ. �

Corollary 6.3 If {E,F}, E, F ∈ L(Rm), is a pair with characteristic values r0 ≤ · · · ≤
rµ−1 < rµ = m, then the nilpotent part in its Weierstraß-Kronecker canonical form con-
tains altogether s = m − r0 Jordan blocks, among them ri − ri−1 Jordan chains of order
i, i = 1, . . . , µ. It holds that li = m− ri−1, i = 1, . . . , µ, d = m−

∑µ
j=1(m− rj−1).

Besides the above structural characteristics the matrix sequence provides also the finite
spectrum of the matrix pencil as a part of the spectrum of the matrix W := Πµ−1G

−1
µ B.

Theorem 6.4 Let {E,F}, E and F ∈ L(Rm), be regular with Kronecker index µ, and
let the matrix

W := Πµ−1G
−1
µ BΠµ−1 = Πµ−1G

−1
µ B

be generated by the matrix sequence (11) with admissible projectors. Then the following
holds:

(1) Each finite eigenvalue of {E,F} belongs to the spectrum of −W. More precisely,
(λE + F )z = 0, z 6= 0, implies u := Πµ−1z 6= 0, and (λI +W)u = 0.

(2) If (λI +W)u = 0, Πµ−1u 6= 0, then λ is a finite eigenvalue of the pair {E,F}.

(3) If (λI + W)u = 0, (I − Πµ−1)u 6= 0, then λ = 0 must hold. If, additionally,
Πµ−1u 6= 0, then λ = 0 is a finite eigenvalue of the pair {E,F}.

(4) (λI +W)u = 0, u 6= 0, λ 6= 0, implies Πµ−1u = u.

(5) If Q0, . . . , Qµ−1 are completely decoupling projectors, then W simplifies to

W = G−1
µ BΠµ−1 = G−1

µ Bµ,

and Πµ−1 is the spectral projector of the matrix pair {E,F}.

Proof: Applying the decoupling procedure (see Section 5) we rewrite the equation (λE+
F )z = 0 , with

z = u+ v0 + · · ·+ vµ−1, u := Πµ−1z, v0 := Q0z, . . . , vµ−1 := Πµ−2Qµ−1,

as the decoupled system
λu+Wu = 0, (64)
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λ


0 N01 · · · N0,µ−1

. . . . . .
...

. . . Nµ−2,µ−1

0



v0
...
...

vµ−1

+


v0
...
...

vµ−1

 = −


H0
...
...
Hµ−1

u. (65)

Equation (65) leads to the representations

vµ−1 = −Hµ−1u,

vµ−2 = −Hµ−2u+ λNµ−2,µ−1Hµ−1u,

and so on, showing the linear dependence of u, vi = H̃iu, i = 0, . . . , µ− 1. The property
Hi = HiΠµ−1 implies H̃i = H̃iΠµ−1.
If z 6= 0 then u 6= 0 must be true, since otherwise u = 0 would imply vi = 0,
i = 0, . . . , µ − 1, and hence z = 0. Consequently, λ turns out to be an eigenvalue of
−W and u = Πµ−1z is the corresponding eigenvector. This proves assertion (1).
To verify (2)-(4) we consider

(λI +W)ũ = 0, ũ = Πµ−1ũ+ (I −Πµ−1)ũ 6= 0.

Because W(I − Πµ−1) = 0 and (I − Πµ−1)W = 0, our equation decomposes into the
following two:

λ(I −Πµ−1)ũ = 0, (λI +W)ũ = 0. (66)

Next, if Πµ−1ũ 6= 0, we put ṽi := H̃iũ = H̃iΠµ−1ũ, i = 0, . . . , µ − 1. Then
z̃ := Πµ−1ũ + ṽ0 + · · · + ṽµ−1 is nontrivial, and it satisfies the condition (λE + F )z̃ = 0,
and so assertion (2) holds true.
Furthermore, if (I −Πµ−1)ũ 6= 0, then the first part of (66) yields λ = 0. Together with
(2) this validates (3).
(4) is a simple consequence of (66).
(5) Compute

G−1
µ Bµ −Πµ−1G

−1
µ Bµ = (I −Πµ−1)G

−1
µ BΠµ−1

= (Qµ−1 +Qµ−2Pµ−1 + · · ·+Q0P1 · · ·Pµ−1)G
−1
µ BΠµ−1

= Qµ−1Πµ−1 +Qµ−2Πµ−1 + · · ·+Q0Πµ−1 = 0.

For the proof that Πµ−1 is the spectral projector we refer to [Mär96] �

The matrixW = Πµ−1G
−1
µ B = Πµ−1G

−1
µ BΠµ−1 resulting from the projector based decou-

pling procedure contains the finite spectrum of the pencil {E,F}. The spectrum of −W
consists of the d finite eigenvalues of the pencil {E,F} plus m − d = l zero eigenvalues
corresponding to the subspace im (I −Πµ−1) ⊆ kerW .
The eigenvectors corresponding to non-zero eigenvalues of W necessarily belong to the
subspace imΠµ−1.

We now have available complete information concerning the structure of the Weierstraß-
Kronecker canonical form without computing that form itself. All this information is
extracted from the matrix sequence (11).
In particular, using the matrix sequence, the following characteristics of the matrix pair
E,F are obtained:
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• d = m −
∑µ

j=1(m − rj−1), l = m − d, µ - the basic structural sizes and the
Kronecker index,

• ri+1 − ri - the number of Jordan blocks with dimension i+ 1 in the nilpotent part,

• m− ri - the number of Jordan blocks with dimension ≥ i+ 1 in the nilpotent part,

• the finite eigenvalues.

There is also an easy regularity criterion provided by the matrix sequence (11).

Proposition 6.5 The pair {E,F}, E,F ∈ L(Rm), is singular if and only if there is a
nontrivial subspace among the intersections

Ni ∩Ni−1,
_
Ni = Ni ∩ (N0 + · · ·+Ni−1), i ≥ 1, (67)

Proof: Owing to the basic property (12) and Proposition 2.6, each nontrivial subspace
among (67) indicates a singular pencil.
Conversely, let {E,F} be singular. Then all matrices Gi must be singular, their nullspaces
Ni have dimensions ≥ 1 and the ranks satisfy the inequality

r0 ≤ · · · ≤ ri ≤ · · · · · · ≤ m− 1.

There is a maximal rank rmax ≤ m− 1 and an integer κ such that ri = rmax for all i ≥ κ.
If all above intersections (67) are trivial, then it follows that

N0 + · · ·+Ni = N0 ⊕ · · · ⊕Ni, dim(N0 ⊕ · · · ⊕Ni) ≥ i+ 1.

However, this contradicts the natural property N0 + · · ·+Ni ⊆ Rm. �

7 Singular DAEs

As described in Section 2, the concept of admissible projectors and basic matrix sequences
applies to general ordered matrix pairs {E,F}, and we expect the sequence of matrices
Gj to become stationary as in Example 2.2. What can we do with this knowledge? Let
us have a closer look at some simple special cases.
First we revisit Example 2.4, that is, the DAE

(x1 + x2)
′ + x2 = q1,

x′4 = q2,
x3 = q3,

x′3 = q4.

(68)

A matrix sequence and admissible projectors for the DAE (68) are given in Section 2
(see Examples 2.2, 2.4). The matrix G0 already has maximal rank three, and hence the
subspaces imGi are stationary beginning with i = 0, but the sequence itself becomes
stationary at level two. The orthoprojector along imG0 and the projector Π0 = P0 are

W0 =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 , Π0 =


0 0 0 0
1 1 0 0
0 0 1 0
0 0 0 1

 .
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How should one interpret this DAE which is not regular? There are several different ways.
The way which we prefer is the following: Consider the equation picked up by the projector
W0 , that is the third equation, as a consistency condition. The remaining system of three
equations can then be seen as an explicit ODE for the components marked by the projector
Π0, i.e. for u := x1 +x2, x3, and x4, while x2 can be considered as an arbitrary continuous
function. This means, the DAE (68) is interpreted as having index zero (the level i where
the maximal subspace imGi is reached first).
Obviously, instead of x2 we could also see the component x1 as the free one.

There is considerable space for interpretation. Which variable should be the free one?
Which equations should actually represent consistency conditions? Considering the fourth
equation of (68) as consistency condition, the remaining system looks like an index one
DAE for u, x3, x4.
Furthermore, the last two equations of (68) somehow remain an index two problem, which
is mirrored by the strangeness index (cf. [KM06]) of (68) having index one .

Consider now the underdetermined DAE

x′2 + x1 = q1,
x′3 + x2 = q2,
x′4 + x3 = q3,

(69)

with

G0 =

0 1 0 0
0 0 1 0
0 0 0 1

 , B0 =

1 0 0 0
0 1 0 0
0 0 1 0

 , Π0 =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .
This matrix G0 has full row rank, and no equation should be seen as a consistency
condition. We treat this DAE as an index zero DAE for the components indicated by the
projector Π0, and we see the variable x1 to be free.
The matrix sequence becomes stationary at level three.
Observe that, choosing instead x4 to be the free component, we arrive at an index three
DAE for x1, x2, x3.

Finally, take a look at the so-called overdetermined DAE

x1 = q1,
x′1 + x2 = q2,
x′2 + x3 = q3,
x′3 = q4

(70)

for which the first matrix G0 is injective, and thus the matrix sequence is stationary at
the beginning. Seeing the first equation in (70) as a consistency condition, the other three
equations in (70) can be treated as an index-zero DAE for x1, x2, x3.
On the other hand, considering the last equation to be the consistency condition one
arrives at an index three DAE for x1, x2, x3. Note that (70) has strangeness index-three,
while the tractability index is zero.
We stress once again the large space for different interpretations.
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8 Comments

As we have seen in this chapter, the Weierstraß-Kronecker canonical form of a regular
matrix pencil is very helpful for understanding the structure of a linear constant coeffi-
cient DAE, and, obviously, DAEs and matrix pencils are closely related.
Ever since Weierstraß and Kronecker ([Wei68, Kro90]) discovered the canonical forms of
matrix pencils, and Gantmacher ([Gan53]) pointed out their connection with differential
equations, matrix pencils have attracted much interest over and again for many years.
There are untold publications on this topic; we only mention a few of them and refer to
the sources therein.

A large part of the developments concerning matrix pencils and the accompanying differ-
ential equations can be found in the rich literature on control and system theory, where the
resulting differential equations are called singular systems and descriptor systems rather
than DAEs (e.g. [Cam80, Dai89, Lew86, Lue77]).
On the other hand, there are important contributions coming from the area of general-
ized eigenvalue problems and generalized matrix inverses in linear algebra (e.g. [Cam82,
Boy80]). In particular, the Drazin inverse and spectral projections were applied to obtain
expressions for the solution (cf. also [GM86]). However, it seems, that this was a blind
alley in the search for a possible treatment of more general DAEs.

About half a century ago, Gantmacher ([Gan53]) and Dolezal [Dol60] first considered
models describing linear time-invariant mechanical systems and electrical circuits by linear
constant coefficient DAEs. Today, multibody systems and circuit simulation represent the
most traditional DAE application fields (e.g. [ESF98, FS90, GF99]). In between, in about
1980, due to unexpected phenomena in numerical computations (e.g. [SEYE81, Pet82]),
DAEs (descriptor systems) became an actual and challenging topic in applied mathemat-
ics.

Unfortunately, the transformation to Weierstraß-Kronecker canonical form as well as the
Drazin inverse approaches do not allow for modifications appropriate to the treatment
of time-varying and nonlinear DAEs. A development with great potential for suitable
generalizations is given by the derivative array approach due to Campbell ([Cam87]).
Following this proposal, we consider, in addition to the given DAE

Ex′(t) + Fx(t) = q(t), (71)

the extended system
E 0 . . . 0
F E 0 . . .
0 F E . . .
. . . . . .
. . . . F E


︸ ︷︷ ︸

Eµ


x′(t)
x′′(t)
.
.

xµ+1(t)

 = −


F
0
.
.
0

x(t) +


q(t)
q′(t)
.
.

q(µ)(t)

 . (72)

which results from (71) by differentiating this equation µ times and collecting all these
equations. If the (µ + 1) × m matrix Eµ is 1-full, or in other words, if there exists a

41



nonsingular matrix R such that

REµ =

[
Im 0
0 K

]
,

then an explicit ODE, the completion ODE, can be extracted from the derivative array
system (72), say

x′(t) = Cx(t) +

µ∑
j=0

Djq(j)(t). (73)

The solutions of the DAE (71) are embedded into the solutions of the explicit ODE
(73). If {E,F} forms a regular matrix pair with Kronecker index µ, then Eµ is 1-full (cf.
[Cam85]). Conversely, if µ is the smallest index such that Eµ is 1-full, then {E,F} is
regular with Kronecker index µ. In this context, applying our sequence of matrices built
using admissible projectors, we find that the 1-fullness of Eµ implies thatGµ is nonsingular,
and, then using completely decoupling projectors, we obtain a special representation of
the scaling matrix R. We demonstrate this just for µ = 1, 2.
Case µ = 1: Let E1 be 1-full, and consider z with G1z = 0, i.e. Ez + FQ0z = 0, and so[

E 0
F E

] [
Q0z
z

]
= 0,

but then, due to the 1-fullness, it follows that Q0z = 0. This, in turn, gives Ez = 0 and
then z = 0. Therefore, G1 is nonsingular. Taking the completely decoupling projector Q0

such that Q0 = Q0G
−1
1 F holds true, we obtain[

P0 Q0

−P0G
−1
1 F P0

] [
G−1

1 0
0 G−1

1

]
︸ ︷︷ ︸

R

[
E 0
F E

]
=

[
I 0
0 P0

]
. (74)

Case µ = 2: Let E2 be 1-full, and consider z with G2z = 0, i.e. Ez+FQ0z+FP0Q1z = 0.
Because (E + FQ0)Q1 = G1Q1 = 0 we find that E(Q0 + P0Q1)z = EQ1z = −FQ0Q1z,
and therefore E 0 0

F E 0
0 F E

 Q0Q1z
(Q0 + P0Q1)z

z

 = 0.

Now, the 1-fullness of E2 implies Q0Q1z = 0, but this yields EP0Q1 = 0, so that P0Q1z =
0, and therefore Q1z = 0 and FQ0z + Ez = 0. Finally, we conclude that z = Q1z = 0,
which means that G2 is nonsingular. With completely decoupling projectors Q0, Q1 we
compute  P0P1 Q0P1 + P0Q1 Q0Q1

Q0P1 + P0Q1 Q0Q1 P0P1

−P0P1G
−1
2 F P0P1 P0Q1

G−1
2 0 0
0 G−1

2 0
0 0 G−1

2

 =: R,

R

E 0 0
F E 0
0 F E

 =

I 0 0
0 P0P1G

−1
2 F P0P1

0 P0 0

 .
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The resulting completion ODE (cf. (73)) is

x′(t) + P0P1G
−1
2 Fx(t) = P0P1G

−1
2 q(t) + (Q0P1 + P0Q1)G

−1
2 q′(t) +Q0Q1G

−1
2 q′′(t), (75)

and it decomposes into the three parts

P0P1x
′(t) + P0P1G

−1
2 FP0P1x(t) =P0P1G

−1
2 q(t),

P0Q1x
′(t) =P0Q1G

−1
2 q′(t),

Q0x
′(t) =P0Q1G

−1
2 q′(t) +Q0Q1G

−1
2 q′′(t),

while the decoupling procedure described in Section 5 yields

(P0P1x)′(t) + P0Q1G
−1
2 FP0P1x(t) =P0P1G

−1
2 q(t),

P0Q1x(t) =P0Q1G
−1
2 q(t),

Q0x(t) =P0Q1G
−1
2 q(t) +Q0Q1(P0Q1G

−1
2 q)′(t).

A comparison shows consistency but also differences. In order to recover the DAE solu-
tions from the solutions of the explicit ODE (75) one obviously needs consistent initial
values. Naturally, more smoothness has to be given when using the derivative array and
the completion ODE. Applying derivative array approaches to time-varying linear or non-
linear DAEs one has to ensure the existence of all the higher derivatives occurring when
differentiating the original DAE again and again, and in practice one has to provide these
derivatives.

The matrix sequence (11) was first introduced in [Mär87]. However, this paper was not
accepted for publication since the corresponding referees did not believe that the approach
would work for time-varying linear DAEs. Part of the material of [Mär87] is included
in [GM89]. The completely decoupling projectors, formerly called canonical projectors
are provided in [Mär96]. They are applied for Lyapunov type stability criteria e.g. in
[Mär94, Mär98].
We stress that, in these earlier papers, the sum spaces N0 + ... + Nj do not yet play
their important role as they do in the present material. The central role of these sum
spaces is only pointed out in [Mär04] where linear time-varying DAEs are analyzed. In the
same paper, admissible projectors are introduced for regular DAEs. Since we now allow
for general rectangular systems, the notion of admissible projectors given here generalizes

the previous definition and accepts nontrivial intersections
_
Ni while the demand for trivial

intersections
_
Ni is included in the former notion (aiming just for regular DAEs).
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Appendix A

Linear Algebra – Basics

In this appendix we collect and complete well-known facts concerning projectors and
subspaces of Rm (Section A), and generalized inverses (Section B).

A Projectors and subspaces

We collect some basic and useful properties of projectors and subspaces.

Definition A.1 (1) A linear mapping Q ∈ L(Rm) is called a projector, if Q2 = Q.

(2) A projector Q ∈ L(Rm) is called a projector onto S ⊆ Rm if imQ = S.

(3) A projector Q ∈ L(Rm) is called a projector along S ⊆ Rm if kerQ = S.

(4) A projector Q ∈ L(Rm) is called an orthogonal projector if Q = Q∗.

Example: The m-dimensional matrix Q =


1 0 . . . 0
∗ 0 . . . 0
...

...
. . .

...
∗ 0 . . . 0

 with arbitrary entries for ∗

becomes a projector onto the one-dimensional subspace spanned by the first column of Q

along the (m− 1)-dimensional subspace {v : v =


v1

v2
...
vm

 , v1 = 0}.

Lemma A.2 Let P and P̄ be projectors, and Q := I−P , Q̄ := I− P̄ the complementary
projectors . Then the following properties hold:

(1) z ∈ imQ ⇔ z = Qz.

(2) If Q and Q̄ project onto the same subspace S, then Q̄ = QQ̄ and Q = Q̄Q are valid.

(3) If P and P̄ project along the same subspace S, then P̄ = P̄P and P = PP̄ are true.

(4) Q projects onto S iff P := I −Q projects along S.

(5) Each matrix of the form I + PZQ, with arbitrary matrix Z, is nonsingular and its
inverse is I − PZQ.

(6) Each projector P is diagonalizable. Its eigenvalues are 0 and 1. The multiplicity of
the eigenvalue 1 is r = rankP .

Proof:

1. z = Qy → Qz = Q2y = Qy = z.
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2. Q̄z ∈ im Q̄ = S = imQ, also Q̄z = QQ̄z ∀z.

3. P̄P = (I − Q̄)(I −Q) = I − Q̄−Q+ Q̄Q = I − Q̄ = P̄ .

4. P 2 = P ⇔ (I − Q)2 = I − Q ⇔ −Q + Q2 = 0 ⇔ Q2 = Q and
z ∈ kerP ⇔ Pz = 0⇔ z = Qz ⇔ z ∈ imQ.

5. Multiplying (I + PZQ)z = 0 by Q ⇒ Qz = 0. Now with (I + PZQ)z = 0 follows
z = 0.
(I + PZQ)(I − PZQ) = I − PZQ+ PZQ = I.

6. Let P̄1 be a matrix of the r linearly independent columns of P and Q̄2 a ma-
trix of the m − r linearly independent columns of I − P . Then by construction

P
[
P̄1 Q̄2

]
=
[
P̄1 Q̄2

] [I
0

]
. Because of the nonsingularity of

[
P̄1 Q̄2

]
we have

the structure P =
[
P̄1 Q̄2

] [I
0

] [
P̄1 Q̄2

]−1
. The columns of P̄1 resp. Q̄2 are the

eigenvectors to the eigenvalues 1 resp. 0. �

Lemma A.3 Let A ∈ L(Rn,Rk), D ∈ L(Rm,Rn) be given, r := rank (AD). Then the
following two implications are valid:

(1) kerA ∩ imD = 0, im (AD) = imA⇒ kerA⊕ imD = Rn.

(2) kerA⊕ imD = Rn ⇒

• kerA ∩ imD = {0},
• imAD = imA,

• kerAD = kerD,

• rankA = rankD = r.

Proof: (1) Because of im (AD) = imA, the matrix A has rank r and kerA has dimension
n− r. Moreover, rankD ≥ r must be true. The direct sum kerA⊕ imD is well-defined,
and it has dimension n − r + rankD ≤ n. This means that D has rank r. We are done
with (1).

(2) The first relation is an inherent property of the direct sum. Let R ∈ L(Rn) denote
the projector onto imD along kerA. By means of suitable generalized inverses D− and
A− of D and A we may write (Appendix B) R = A−A = DD−, D = RD, A = AR. This
leads to

imAD ⊆ imA = imADD− ⊆ imAD,

kerAD ⊆ kerA−AD = kerD ⊆ kerAD.

The remaining rank property follows now from (1). �

Lemma A.4 [GvL91, Ch. 12.4.2] Given are matrices G, Π, N , W of suitable sizes such
that

kerG = imN ,
kerΠN = imW .
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Then it holds that

kerG ∩ kerΠ = kerNW .

Proof: For x ∈ kerG ∩ kerΠ we find x = N y,Πx = 0, further ΠN y = 0, and hence
y =Wz, x = NWz ∈ imNW .
Conversely, each x = NWz belongs obviously to kerG, and Πx = ΠNWz = 0. �

Lemma A.5 N,M ⊆ Rm subspaces ⇒ (N +M)⊥ = N⊥ ∩M⊥.

Proof:

(N +M)⊥ = {z ∈ Rm : ∀w ∈ N +M : 〈z, w〉 = 0}
= {z ∈ Rm : ∀wN ∈ N, ∀wM ∈M : 〈z, wN + wM〉 = 0}
= {z ∈ Rm : ∀wN ∈ N, ∀wM ∈M : 〈z, wN〉 = 0, 〈z, wM〉 = 0}
= N⊥ ∩M⊥.

�

Lemma A.6 (1) Given two subspaces N,X ⊆ Rm, N ∩ X = {0}. Then
dimN + dimX ≤ m, and there is a projector Q ∈ L(Rm) such that imQ = N ,
kerQ ⊇ X.

(2) Given two subspaces S,N ⊆ Rm. If the decomposition

Rm = S ⊕N

holds true, i.e. S and N are transversal , then there is a uniquely determined pro-
jector P ∈ L(Rm) such that imP = S, kerP = N .

(3) An orthoprojector P projects onto S := imP along S⊥ = kerP .

(4) Given the subspaces K,N ⊆ Rm,
_
N := N ∩K. If a further subspace X ⊆ Rm is a

complement of
_
N in K, that means K =

_
N⊕X, then there is a projector Q ∈ L(Rm)

onto N such that

X ⊆ kerQ. (76)

Let dK , dN , u denote the dimensions of the subspaces K,N,
_
N, respectively, then

dK + dN ≤ m+ u (77)

holds.

(5) If the subspace K in (4) is the nullspace of a certain projector Π ∈ L(Rm), that is
K = kerΠ = im (I −Π), then

ΠQ(I −Π) = 0 (78)

becomes true.
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(6) Given are the two projectors Π,Q ∈ L(Rm), further P := I − Q, N := imQ,
K := kerΠ. Then, supposed (78) is valid, the products ΠP , ΠQ, PΠP , P (I−Π),
Q(I −Π) are projectors, too. The relation

kerΠP = kerPΠP = N +K (79)

holds true, and the subspace X := imP (I −Π) is the complement of
_
N := N ∩K

in K, such that K =
_
N⊕X.

Moreover, the decomposition

Rm = (N +K)⊕ imPΠP = N ⊕X ⊕ imPΠP︸ ︷︷ ︸
imP

is valid.

(7) If the projectors Π,Q in (6) are such that Π∗ = Π, (ΠP )∗ = ΠP , (P (I −Π))∗ =
P (I −Π) and QΠP = 0, then it follows that

X = K ∩
_
N⊥, imP = X ⊕ (N +K)⊥.

Proof: (1): Let x1, . . . , xr ∈ Rm and n1, . . . , nt ∈ Rm be basises of X and N . Because of
X ∩N = {0} the matrix

F := [x1 . . . xrn1 . . . nt]

has full column rank and r+ t = dimX + dimN ≤ m. The matrix F ∗F is invertible, and

Q := F

[
0

I

]
(F ∗F )−1F ∗

r t

is a projector we looked for. Namely,

Q2 = F

[
0

I

]
(F ∗F )−1F ∗F

[
0

I

]
(F ∗F )−1F ∗ = Q, imQ = imF

[
0

I

]
= N,

and z ∈ X implies that it has to have the structure z = F

[
α
0

]
}r
}t, which leads to Qz = 0.

(2): For transversal subspaces S and N we apply Assertion (1) with t = m− r, i.e. F is
square. We have to show that P is unique. Supposed that there are two projectors P , P̄
such that kerP = ker P̄ = N , imP = im P̄ = S, we immediately have P = (P̄ + Q̄)P =
P̄P + Q̄P = P̄P = P̄ .
(3): Let S := imP and N := kerP . We choose a v ∈ N and y ∈ S. Lemma A.2 (1)
implies y = Py, therefore 〈v, y〉 = 〈v, Py〉 = 〈P ∗v, y〉. With the symmetry of P we obtain
〈P ∗v, y〉 = 〈Pv, y〉 = 0, i.e. N = S⊥.
(4): X has dimension dK − u. Since the sum space K +N = X ⊕N ⊆ Rm may have at
most dimension m, it results that dim(K + N) = dimX + dimN = dK − u + dN ≤ m,
and assertion (1) provides Q.
(5): Take an arbitrary z ∈ im (I −Π) = K and decompose z = z _

N
+ zX . It follows that
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ΠQz = ΠQz _
N

+Π QzX︸︷︷︸
=0

= Πz _
N

= 0, and hence (78) is true.

(6): (78) means ΠQ = ΠQΠ and hence

ΠQΠQ = ΠQQ = ΠQ,

ΠPΠP = Π(I −Q)ΠP = ΠP −Π QΠP︸ ︷︷ ︸
=0

= ΠP,

(PΠP )2 = PΠPΠP = PΠP,

(P (I −Π))2 = P (I −Π)(I −Q)(I −Π) = P (I −Π)− P (I −Π)Q(I −Π)

= P (I −Π) + P ΠQ(I −Π)︸ ︷︷ ︸
=0

,

(Q(I −Π))2 = Q(I −Π)−QΠQ(I −Π) = Q(I −Π).

The representation I − Π = Q(I − Π) + P (I − Π) corresponds to the decomposition

K =
_
N⊕X.

Next we verify (79). The inclusion kerΠP ⊆ kerPΠP is trivial. On the other side,
PΠPz = 0 implies ΠPΠPz = 0 and hence ΠPz = 0, and it follows kerΠP = kerPΠP .
Now it is evident that K+N ⊆ kerΠP . Finally, ΠPz = 0 implies Pz ∈ K, z = Qz+Pz ∈
N +K.
(7): From QΠP = 0 and the symmetry of ΠP we know that PΠP = ΠP , imPΠP =

(N + K)⊥, imP = X ⊕ (N + K)⊥. Next using Lemma A.5, compute
_
N⊥ = N⊥ + K⊥,

and further

K ∩
_
N⊥ = K ∩ (N⊥ +K⊥) = {z ∈ Rm : Πz = 0, z = zN⊥ + zK⊥ , zN⊥ ∈ N⊥, zK⊥ ∈ K⊥}

= {z ∈ Rm : z = (I −Π)zN⊥ , zN⊥ ∈ N⊥} = (I −Π)N⊥

= im (I −Π)P ∗ = im (P (I −Π))∗ = imP (I −Π) = X.

�

Lemma A.7 Let D ∈ L(Rm,Rn) be given, M ⊆ Rm be a subspace. D+ ∈ L(Rn,Rm) be
the Moore-Penrose inverse of D. Then,

(1) kerD∗ = imD⊥, imD = kerD∗⊥, kerD = kerD+∗, imD = imD+∗.

(2) kerD ⊆M ⇒ (DM)⊥ = (imD)⊥ ⊕D+∗M⊥.

(3) kerD ⊆M ⇒M⊥ = D∗(DM)⊥.

Proof: (1) The first two identities are shown in [BIG03] (Theorem 1, p.12).
If z ∈ kerD = im I − D+D with Lemma A.2(1) it is valid that z = (I − D+D)z or
D+Dz = 0. With (86) it holds 0 = D+Dz = (D+D)∗z = D∗D+∗z ⇔ D+∗z = 0 because
of (83) for D∗ and we have that z ∈ kerD+∗. We prove imD = imD+∗ analogously.
(2) Let T ∈ L(Rm) be the orthoprojector onto M , i.e. imT = M , kerT = M⊥, T ∗ = T .
⇒ DM = imDT ,

(DM)⊥ = (imDT )⊥ = ker (DT )∗ = kerTD∗ = {z ∈ Rn : D∗z ∈M⊥}
= kerD∗︸ ︷︷ ︸

=imD⊥

⊕{v ∈ imD : D∗v ∈M⊥}.
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It remains to show that

{v ∈ imD : D∗v ∈M⊥} = D+∗M⊥.

From v ∈ imD = imDD+ we get with Lemma A.2(1) v = DD+v = (DD+)∗v =
D+∗D∗v. Because of D∗v ∈ M⊥ it holds v ∈ D+∗M⊥. Conversely with Lemma A.2(4),
u ∈ D+∗M⊥ = imD+∗(I − T ) implies u ∈ imD+∗ = imD, and ∃w : u = D+∗(I − T )w,
D∗u = D∗D+∗(I−T )w = D+D(I−T )w. Since im (I−T ) = M⊥ ⊆ kerD⊥ = kerD+D⊥ =
im (D+D)∗ = imD+D, it holds that D+D(I −T ) = I −T , hence D∗u = (I −T )w ∈M⊥.

(3) This is a consequence of (2), because of

D∗(DM)⊥ = D∗[(imD)⊥ ⊕D+∗M⊥] = D∗D+∗M⊥ = D+DM⊥ = M⊥.
�

Lemma A.8 ([GM86], AppendixA, Theorem 13)
Let A,B ∈ L(Rm), rankA = r < m, N := kerA, S := {z ∈ Rm : Bz ∈ imA}. The
following statements are equivalent:

(1) Multiplication by a nonsingular E ∈ L(Rm) such that

EA =

[
Ā1

0

]
, EB =

[
B̄1

B̄2

]
, rank Ā1 = r,

yields a nonsingular

[
Ā1

B̄2

]
.

(2) N ∩ S = {0}.

(3) A+BQ is nonsingular for each projector Q onto N .

(4) N ⊕ S = Rm.

(5) The pair {A,B} is regular with Kronecker index one.

(6) The pair {A,B + AW} is regular with Kronecker index one for each arbitrary
W ∈ L(Rm).

Proof: (1)⇒ (2): With N̄ := ker Ā1 = kerEA = kerA = N ,

S̄ := ker B̄2 = {z ∈ Rm : EBz ∈ imEB} = S,

we have

0 = ker

[
Ā1

B̄2

]
= N̄ ∩ S̄ = N ∩ S.

(2) ⇒ (3): (A + BQ)z = 0 implies BQz = −Az, that is Qz ∈ N ∩ S, thus Qz = 0,
Az = 0, therefore z = Qz = 0.

(3) ⇒ (4): Fix any projector Q ∈ L(Rm) onto N and introduce Q∗ := Q(A + BQ)−1B.
We show Q∗ to be a projector with imQ∗ = N , kerQ∗ = S so that the assertion follows.
Compute

Q∗Q = Q(A+BQ)−1BQ = Q(A+BQ)−1(A+BQ)Q = Q,
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hence Q2
∗ = Q∗, imQ∗ = N . Further, Q∗z = 0 implies (A + BQ)−1Bz = (I − Q)(A +

BQ)−1Bz, thus

Bz = (A+BQ)(I −Q)(A+BQ)−1Bz = A(A+BQ)−1Bz,

that is, z ∈ S. Conversely, z ∈ S leads to Bz = Aw and

Q∗z = Q(A+BQ)−1Bz = Q(A+BQ)−1Aw = Q(A+BQ)−1(A+BQ)(I −Q)w = 0.

This proves the relation kerQ∗ = S.

(4)⇒ (5): Let Q∗ denote the projector onto N along S, P∗ := I −Q∗. Since N ∩ S = 0
we know already that G∗ := A + BQ∗ is nonsingular as well as the representation Q∗ =
Q∗G

−1
∗ B. It holds that

G−1
∗ A = G−1

∗ (A+BQ∗)P∗ = P∗,

G−1
∗ B = G−1

∗ BQ∗ +G−1
∗ BP∗ = G−1

∗ (A+BQ∗)Q∗ +G−1
∗ BP∗ = Q∗ +G−1

∗ BP∗.

Consider the equation (λA+B)z = 0, or the equivalent one (λG−1
∗ A+G−1

∗ B)z = 0, i.e.

(λP∗ +G−1
∗ BP∗ +Q∗)z = 0. (80)

Multiplying (80) by Q∗ and taking into account that Q∗G
−1
∗ BP∗ = Q∗P∗ = 0 we find

Q∗z = 0, z = P∗z. Now (80) writes

(λI +G−1
∗ B)z = 0.

If λ does not belong to the spectrum of the matrix −G−1
∗ B, then it follows that z = 0.

This means, λA+B is nonsingular except for a finite number of values λ, hence the pair
{A,B} is regular.
Transform {A,B} into Weierstraß-Kronecker canonical form (cf. Section 1):

Ā := EAF =

[
I 0
0 J

]
, B̄ := EBF =

[
W 0
0 I

]
, Jµ = 0, Jµ−1 6= 0.

We derive further

N̄ := ker Ā = F−1kerA, S̄ := {z ∈ Rm : B̄z ∈ im Ā} = F−1S,

N̄ ∩ S̄ = F−1(N ∩ S) = {0}, and

N̄ ∩ S̄ =
{[z1

z2

]
∈ Rm : z1 = 0, Jz2 = 0, z2 ∈ im J}.

Now it follows that J = 0 must be true since otherwise N̄ ∩ S̄ would be nontrivial.

(5)⇒ (1): This follows from Ā = EAF =

[
I 0
0 0

]
, B̄ = EBF =

[
W 0
0 I

]
, N̄ ∩ S̄ = 0 and

N̄ ∩ S̄ = F−1(N ∩ S) = {0}.
(6)⇒ (5) is trivial.

(2) ⇒ (6): Set B̃ := B + AW, S̃ := {z ∈ Rm : B̃z ∈ imA} = S. Because of S̃ ∩ N =
S ∩ N = {0}, and the equivalence of assertion (2) and (5), which is proved already, the
pair {A, B̃} is regular with Kronecker index 1. �
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Lemma A.9 Let A,B ∈ L(Rm) be given, A singular, N := kerA, S := {z ∈ Rm : Bz ∈
imA}, and N ⊕ S = Rm. Then the projector Q onto N along S satisfies the relation

Q = Q(A+BQ)−1B. (81)

Proof: First we notice that Q is uniquely determined. A + BQ is nonsingular due to
Lemma A.8. The arguments used in that lemma apply to show Q(A+BQ)−1B to be the
projector onto N along S so that (81) becomes valid. �

For any matrix A ∈ L(Rm) there exists an integer k such that

Rm = imA0 ⊃ imA ⊃ . . . ⊃ imAk = imAk+1 = . . . ,

{0} = kerA0 ⊂ kerA ⊂ . . . ⊂ kerAk = kerAk+1 = . . . ,

and imAk ⊕ kerAk = Rm. This integer k ∈ N ∪ {0} is said to be the index of A , and we
write k = indA.

Lemma A.10 ([GM86], Appendix A, Theorem 4)
Let A ∈ L(Rm) be given, k = indA, r = rankAk, and let s1, . . . , sr ∈ Rm and sr+1, . . . , sm ∈
Rm be basises of imAk and kerAk, respectively. Then, for S = [s1 . . . sm] the product
S−1AS has the special structure

S−1AS =

[
M 0
0 N

]
where M ∈ L(Rr) is nonsingular and N ∈ L(Rm−r) is nilpotent, Nk = 0, Nk−1 6= 0.

Proof: For i ≤ r, it holds that Asi ∈ A imAk = imAk+1 = imAk, therefore Asi =
r∑
j=1

sjmji. For i ≥ r + 1, it holds that Asi ∈ kerAk+1 = kerAk, thus Asi =
m∑

j=r+1

sjnji.

This yields the representations A[s1 . . . sr] = [s1 . . . sr]M with M = (mij)
r
i,j=1, and

A[sr+1 . . . sm] = [sr+1 . . . sm]N , with N = (nij)
m
i,j=r+1. The block M is nonsingular.

Namely, for a z ∈ Rr with Mz = 0, we have A[s1 . . . sr]z = 0, that is,

r∑
j=1

zjsj ∈ imAk ∩ kerA ⊆ imAk ∩ kerAk = {0},

which shows the matrix M to be nonsingular. It remains to verify the nilpotency of N .

We have AS = S

[
M 0
0 N

]
, hence A`S = S

[
M ` 0
0 N `

]
. From Aksi = 0, i ≥ r+1 it follows

that Nk = 0 must be valid. It remains to prove the fact that Nk−1 6= 0. Since kerAk−1

is a proper subspace of kerAk there is an index i∗ ≥ r + 1 such that the basis element

si∗ ∈ kerAk does not belong to kerAk−1. Then, S

[
Mk−1 0

0 Nk−1

]
ei∗ = Ak−1si∗ 6= 0, that

is, Nk−1 6= 0. �
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B Generalized inverses

In [BIG03] we find a detailed collection of properties of generalized inverses for theory
and application. We will here report the definitions and relations of generalized inverses
we need for our considerations.

Definition B.1 For a matrix Z ∈ L(Rn,Rm), we call the matrix Z− ∈ L(Rm,Rn) a
reflexive generalized inverse, if it fulfills

ZZ−Z = Z and (82)

Z−ZZ− = Z−. (83)

Z− is called a {1, 2}-inverse of Z in [BIG03].

The products ZZ− ∈ L(Rm) and Z−Z ∈ L(Rn) are projectors (cf. Appendix A). We
have (ZZ−)2 = ZZ−ZZ− = ZZ− and (Z−Z)2 = Z−ZZ−Z = Z−Z. We know that the
rank of a product of matrices does not exceed the rank of any factor. Let Z has rank rz.
From (82) we obtain rank rz ≤ rank rz− and from (83) the opposite, i.e. that both Z and
Z− and also the projectors ZZ− and Z−Z have the same rank.
Let R ∈ L(Rn) be any projector onto imZ and P ∈ L(Rm) any projector along kerZ.

Lemma B.2 With (82), (83) and the conditions

Z−Z = P and (84)

ZZ− = R (85)

the reflexive inverse Z− is uniquely determined.

Proof: Let Y be a further matrix fulfilling (82), (83), (84) and (85).

Y
(83)
= Y ZY

(82)
= Y ZZ−ZY

(85)
= Y RZY

(85)
= Y R

(85)
= Y ZZ−

(84)
= PZ−

(83)
= Z−.

�
If we choose for the projectors P and R the orthogonal ones the conditions (84) and (85)
could be replaced by

Z−Z = (Z−Z)∗, (86)

ZZ− = (ZZ−)∗. (87)

The resulting generalized inverse is called the Moore-Penrose-inverse and denoted by Z+.

To represent the generalized reflexive inverse Z− we want to use a decomposition of

Z = U

[
S

0

]
V −1

with nonsingular matrices U , V and S. Such a decomposition is e.g. available using an
SVD or a Householder decomposition of Z.
A generalized reflexive inverse is given by

Z− = V

[
S−1 M2

M1 M1SM2

]
U−1 (88)
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with M1 and M2 being matrices of free parameters that fulfill

P = Z−Z = V

[
I 0

M1S 0

]
V −1

and

R = ZZ− = U

[
I SM2

0 0

]
U−1

(cf. also [Zie79]). There are two ways in looking at the parameter matrices M1 and M2.
We can compute an arbitrary Z− with fixed M1 and M2. Then also the projectors P and
R are fixed by these parameter matrices. Or we provide the projectors P and R, then M1

and M2 are given and Z− is fixed, too.
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