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Abstract

With this paper we intend to direct attention to linearization phenom-
ena arising in DAEs and to the correspodence between regularity regions
and linearizations. Furthermore, regarding linearization, we formulate a
necessary extremal condition for optimization problems with DAE con-
straint. To ensure indirect optimization methods we develop algebraic
criteria for the optimality DAE to be locally regular with index one.
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1 Introduction

Linearization is used throughout analysis, optimization and control - and in par-
ticular, if differential algebraic equations (DAEs) are involved. Linearized DAEs
play their role as approximations of nonlinear models (e.g. [ESF98, section 1.5]).
In many cases papers either apply to linear DAEs, or base their analysis on linear
DAEs. Frequently even time-invariant linear DAEs are supposed. Linearized
DAEs play also their role in extremal conditions (e.g. [Bac06]), as approxima-
tions of nonlinear equations in Gauß-Newton and SQP methods. Linearized
DAEs and their adjoints, respectively, are utilized in the sensitivity analysis
(e.g. [CLP02]), in the stability analysis (e.g. [Mär98]), and when considering
observability (e.g. [Ter97]).
Even though linearization represents a generally important mathematical tool,
only few papers (e.g. [Cam95, Mär95]) address general relations between a given
nonlinear DAE and its linearizations along trajectories.
In general, one expects a linearized DAE to provide local information on the
nonlinear DAE the linearized originates from. However, this can turn out to be
an error. Linearizations of DAEs feature quite different phenomena.
With this paper we intent to direct attention to linearization phenomena of
square DAEs and to the role of regularity regions. Furthermore, we apply lin-
earization to obtain an extremal condition for an optimization problem with
DAE constraints as well as an optimality DAE together with a boundary value
problem as the background of indirect optimization. The associated criteria and
the optimality DAE are given in terms of the original data.
The background of our analysis is a different view on DAEs. While usually the

1



obvious and hidden constraints come to the fore, we primarily consider the def-
inition domain of the given DAE to decompose in several (maximal) regularity
regions with inherent characteristics such as the index, which are bordered by
critical points, see [Mär09, LMT11]. Solutions may remain within such a region
but they also may cross the borders or stay there. We show the close correspon-
dence between regularity regions and linearizations along reference functions
standing in this regularity region.
We solely address optimization aspects in the context of linearizations. For a
more general discussion we refer to [Bac06, KM06]. Nevertheless, the given be-
low transparent algebraic criteria in terms of the original data are to enable an
advanced utilization of the modeling latitude for obtaining an optimality DAE
that is locally regular with index 1. This way one ensures indirect optimization
methods.
The paper is organized as follows. In Section 2 we describe DAEs with properly
involved derivatives and their linearizations. In Section 3, underdetermined and
regular index-1 DAEs are introduced and a solvability assertion is provided,
which plays its role later on when formulating extremal conditions. Section 4
provides a collection of linearization phenomena in several examples. Regularity
regions are introduced in Section 5. The technical calculations of matrix func-
tion sequences and regularity regions are shifted to the Appendix. In Section 6
we consider an optimization problem comprising a DAE constraint. We provide
a necessary extremal condition and algebraic conditions ensuring that the opti-
mality DAE is locally regular with index 1 and its linearization has an inherent
Hamiltonian flow. These results are specified for controlled square DAEs in
Section 7.

2 Preliminaries

In the present paper we deal with DAEs of the form

f( (Dx)′(t), x(t), t) = 0, (1)

where f(y, x, t) ∈ Rk, D(t) ∈ L(Rm,Rn), y ∈ Rn, x ∈ Df ⊆ Rm, t ∈ If ⊆ R.
Df is open in Rm and If is an interval. The function f is supposed to be
continuous on the definition domain Rn × Df × Jf , together with the partial
derivatives fy, fx. The leading Jacobian fy(y, x, t) is everywhere singular. The
matrix function D is continuously differentiable on If and has constant rank r.
A solution of (1) is a function given on a certain interval J ⊆ Jf , with values
in Df , which belongs to the function space

C1D(I,Rm) := {x ∈ C(I,Rm) : Dx ∈ C1(I,Rn)},

and satisfies the DAE pointwise on J .
Obviously, all solution values at time t have to belong to the so-called obvious
constraint set

M0(t) = {x ∈ Df : ∃y ∈ Rn : f(y, x, t) = 0}. (2)

The extra matrix functionD figuring out the derivative term entails an enhanced
DAE model (e.g. [Mär06, Mär09, LMT11]). In contrast to standard form DAEs

f(x′(t), x(t), t) = 0, (3)
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equation (1) precisely indicates in which way derivatives of the unknown func-
tion are actually involved. Instead of the commonly used C1-solutions one can
tolerate C1D-solutions.
For standard form DAEs (3) there is mostly a singular incidence or projector
matrix D ∈ L(Rm) such that the identity f(x1, x, t) ≡ f(Dx1, x, t) is valid, and
hence the standard DAE (3) can be interpreted as

f((Dx)′(t), x(t), t) = 0.

In particular, any semi-explicit system of m1 and m2 equations

x′1(t)+b1(x1(t), x2(t), t) = 0, (4)
b2(x1(t), x2(t), t) = 0 (5)

can be naturally rewritten as[
I 0
0 0

]
(
[
I 0
0 0

]
x)′(t) +

[
b1(x1(t), x2(t), t)
b2(x1(t), x2(t), t)

]
= 0,

and also as [
I
0

]
(
[
I 0

]
x)′(t) +

[
b1(x1(t), x2(t), t)
b2(x1(t), x2(t), t)

]
= 0. (6)

In case of a semi-explicit DAE, one has good reason to ask for solutions having
a continuously differentiable first component x1, but accept a continuous second
component x2, as it is prescribed by the associated function space

{x ∈ C(I,Rm) : x1 ∈ C1(I,Rm1)}.

Definition 2.1 The DAE (1) has a properly involved derivative, if there is a
projector valued function K ∈ C1(Jf , L(Rn)) such that

ker fy(y, x, t) = kerK(t), imD(t) = imK(t), (y, x, t) ∈ Rn ×Df × If . (7)

The DAE is in full-rank proper form, if n = r and

ker fy(y, x, t) = {0}, imD(t) = Rn, (y, x, t) ∈ Rn ×Df × If . (8)

The DAE has a quasi-proper involved derivative, if r < m and there is a pro-
jector valued function K ∈ C1(Jf , L(Rn)) such that

ker fy(y, x, t) ⊇ kerK(t), imD(t) = imK(t), (y, x, t) ∈ Rn ×Df × If . (9)

The DAE is in full-rank quasi-proper form, if n = r < m and

imD(t) = Rn, (y, x, t) ∈ Rn ×Df × If . (10)

In case of a properly involved derivative, the partial Jacobian fy(y, x, t) has
constant rank and its nullspace is independent of y and x. In contrast, a quasi-
proper involved derivative permits rank changes in fy(y, x, t).
The full-rank forms are associated with the projector K(t) = I. In most appli-
cations at least a full-rank quasi-proper form can be obtained by simple refor-
mulation and interpretation, respectively.
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In earlier papers, when dealing with quasi-linear DAEs, instead of the phrase
properly involved derivative the wording properly stated leading term is intro-
duced. We apply both notations also for fully nonlinear DAEs.

For each arbitrary reference function x∗ ∈ C1D(I,Rm), with graph in Df×If ,
the coefficient functions

A∗(t) := fy((Dx∗)′(t), x∗(t), t),
B∗(t) := fx((Dx∗)′(t), x∗(t), t), t ∈ I,

of the linear DAE

A∗(t)(D(t)x(t))′ +B∗(t)x(t) = q(t), t ∈ I, (11)

are continuous and the DAE (11) inherits from the nonlinear DAE the special
shape of the leading term. Which further relations between the nonlinear DAE
(1) and the linear DAEs (11) can we expect?

Definition 2.2 The linear DAE (11) is called the linearization of the nonlinear
DAE (1) along x∗ or along the trajectory of x∗.

It should be emphasized that the reference function x∗ ∈ C1D(I,Rm) is not nec-
essarily a solution of (1).
If the DAE (1) is autonomous and the reference function is a constant one, then
the coefficients A∗, D,B∗ are time-invariant and the resulting linear constant
coefficient DAE (11) can be treated via the Kronecker canonical form of the
matrix pencil λA∗D +B∗. However, in general, the original DAE (1) is explic-
itly time-dependent and the reference function varies in time so that first and
foremost time-varying linear DAEs (11) result.

We close this preliminary section by directing attention to the fact that all
solutions x ∈ C1D(I,Rm) and λ ∈ C1AT (I,Rk) of the linear DAE (11) with q = 0
and its adjoint

−D(t)T (A∗(t)Tλ(t))′ +BT∗ (t)λ(t) = 0, t ∈ I,

satisfy the (generalized) Lagrange Identity

< D(t)x(t), A∗(t)Tλ(t) >= constant, t ∈ I,

which plays its role in optimization theory. Namely, we have

d

dt
< Dx,AT∗ λ >=< (Dx)′, AT∗ λ > + < Dx, (AT∗ λ)′ >

=< A∗(Dx)′, λ > + < x,DT (AT∗ λ)′ >=< −B∗x, λ > + < x,BT∗ λ >= 0.

3 Linearizations of index-1 DAEs

Definition 3.1 Let the DAE (1) have a properly involved derivative. Let G ⊆
Df × If be an open connected set. If the rank condition

rank {fy(y, x, t)D(t)+fx(y, x, t)(I−D(t)+D(t))} = k, y ∈ Rn, (x, t) ∈ G, (12)
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is satisfied, then the DAE (1) is said to be on G underdetermined with tractability
index 1.
If, additionally, k = m, then the DAE (1) is said to be on G regular with
tractability index 1.

The semi-explicit DAE (6) (and so system (4),(5)) is regular with index 1, ex-
actly if the partial Jacobian b2,x2(x1, x2, t) is nonsingular. The DAE (6) is
underdetermined with index 1, if b2,x2(x1, x2, t) is rectangular with full row-
rank.
At this place it should be mentioned that a more general notion of underdeter-
mined index-1 tractability is given in [LMT11].
For general square equations (1) with properly involved derivative, for k = m,
condition (12) is valid if and only if the local matrix pencil λfy(y, x, t)D(t) +
fx(y, x, t) is regular with Kronecker index 1 (e.g. [Mär04]).

Proposition 3.2 Let the DAE (1) be given with properly stated leading term.

(1) If the DAE (1) has index 1 on the open connected set G ⊆ Df × If , then
each linearization (11) along a function x∗ ∈ C1D(I,Rm) with graph in G
is also an index-1 DAE.

(2) If I ⊆ If , x∗ ∈ C1D(I,Rm) has values in Df and the linearization (11) is
an index-1 DAE, such that

rank {A∗(t)D(t) +B∗(t)(I −D(t)+D(t))} = k, t ∈ I, (13)

then there is an open connected set G enclosing the graph of x∗ and the
DAE (1) has index 1 on G.

Proof: The first part is a direct consequence of the definition and the second
one follows from continuity arguments. �
Proposition 3.2 (2) can not be extended to apply also to DAEs with quasi-proper
leading term. In Example 4.3 below, the linearization along the zero-solution
has index 1, but each neighborhood contains linearizations which have index 4.

Next we add to the DAE the initial condition

D(t0)x(t0) = z0 (14)

and consider the solvability of initial value problems (IVPs).

Proposition 3.3 Let the DAE (1) have a properly stated leading term, t0 ∈
I ⊆ If and let x∗ ∈ C1D(I,Rm) have values in Df . Let the linearization (11)
satisfy (13).

(1) Then, for each arbitrary q ∈ C(I,Rk) , z0 ∈ imD(t0), the linear IVP
(11),(14) possesses at least one solution in C1D(I,Rm).

(2) For square DAEs with k = m, the IVP (11),(14) is uniquely solvable.

Proof: Here we drop the argument t of the matrix functions. Denote Q0 :=
I −D+D, G∗1 := A∗D + B∗Q0 and introduce the reflexive generalized inverse
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D− such that D−D = I −Q0, DD− = K. Since G∗1 has full row-rank k, G+
∗1

is continuous, and G∗1G
+
∗1 = I. This allows to rewrite the DAE (11) as

A∗DD
−︸ ︷︷ ︸

G∗1D−

(Dx)′ +B∗Q0︸ ︷︷ ︸
G∗1Q0

x+G∗1G
+
∗1(B∗D−Dx− q) = 0,

therefore
G∗1[D−(Dx)′ +Q0x+G+

∗1B∗D
−Dx−G+

∗1q] = 0,

thus
D−(Dx)′ +Q0x+G+

∗1B∗D
−Dx−G+

∗1q = w, (15)

with arbitrary functions w such that G∗1w = 0. Multiplying by D and Q0,
respectively, we split equation (15) into

(Dx)′ −K ′Dx+DG+
∗1B∗D

−Dx−DG+
∗1q = Dw, (16)

Q0x+Q0G
+
∗1B∗D

−Dx−Q0G
+
∗1q = Q0w. (17)

Set w = 0. For each given z0 ∈ imD(t0) and continuous q, the resulting
IVP (16),(14) is uniquely solvable and provides a continuously differentiable
Dx. Having Dx we determine Q0x by (17). This way we generate a solution
x = D−Dx+Q0x of the IVP (11 ),(14), which proves the first assertion. Tak-
ing into account that G∗1 is also injective, if m = k, the unique solvability is
evident, and so is the second assertion. �

The linear map L : C1D → C × imD(t0) being determined by

Lx := (A∗(Dx)′ +B∗x, D(t0)x(t0)), x ∈ C1D,

is surjective in Proposition 3.3(1). This property of a rectangular system (1)
plays its role if the DAE (1) serves as constraint in an optimization problem (cf.
Section 6).
At this place it is worth mentioning that condition (13) allows a linear splitting
transformation of the variable x into a state and a control part such that the
resulting controlled DAE is regular with index 1 locally around the reference
function (cf. [CM07] and the examples in Section 6).
Proposition 3.3(2) is related to square systems and means then the bijectivity of
the map L. In turn, the bijectivity of the map L, that is, the unique solvability
of the linearized problem, is most important when applying indirect optimiza-
tion methods via the square optimality DAE (cf. Section 6), and also when
considering the control of DAEs (cf. Section 7).
Furthermore, also famous linearization results of Perron and Lyapunov con-
cerning asymptotical stability apply to regular index-1 DAEs (1), under certain
further conditions and in slightly modified form: if the linearization along a
solution x∗ ∈ C1D[0,∞) is strictly contractive, then the reference solution x∗ is
asymptotically stable ([LMT11], cf. also [Mär98]).
Altogether, in case of index-1 problems, linearization works as expected: The
linearized DAE inherits relevant properties of the nonlinear DAE, and con-
versely, the linearized DAE provides local information on the nonlinear DAE.
Unfortunately, the situation becomes different in a more general setting, as we
see in the next section.
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4 Linearization: Case studies

In this part we demonstrate by several case studies that linearizations may reflect
properties of the original nonlinear DAE, but they may also show astonishing
different properties. This is the case for reference functions being solutions of the
given nonlinear DAE and also for arbitrary reference functions. In particular, a
linearized DAE may

(1) misplace suggestions on stability, observability etc., see Example 4.1,

(2) show a singular flow which emerges from a singular inherent ODE, see
Example 4.2/Case 1,

(3) show both lower index and higher index than the original DAE seems to
have, see Examples 4.1, 4.2/Case 4, 4.3,

(4) show an index which varies on subintervals, causing serious flow singular-
ities, see Example 4.4,

(5) show somehow harmless index changes, see Examples 4.3, 4.5,

(6) fail to remain regular at all, see Example 4.2/Case 2,

(6) reflect properties of the nonlinear DAE well, see Example 4.2/Case 3.

The regularity regions ([Mär06, Mär09, LMT11]) which we introduce in the next
section are to comprehend what is going on. It seems, regularity regions actually
constitute a helpfull tool for investigating the linearization phenomena.
In the following examples, we simply quote the regularity regions and their
structural characteristics and as may be the case quasi-regularity regions. Later
on in Section 5 we explain how those regions are determined.

Example 4.1 The autonomous DAE [Mär98]

x′1(t)− x2(t) = 0,

x1(t)− x2(t)3 = 0,
x′3(t)− αx3(t) = 0,

−x2(t) + x3(t) + x4(t) = 0,

has the form (1) with a properly stated leading term, m = k = 4, r = n = 2,
and

D(t) =
[
1 0 0 0
0 0 1 0

]
, f(y, x, t) =


1 0
0 0
0 1
0 0

 y +


−x2

x1 − x3
2

−αx3

−x2 + x3 + x4

 .
α < 0 is a real parameter, Df = R4, If = [0,∞). The obvious constraint set is
time-invariant,

M0 = {x ∈ R4 : x1 = x3
2, x2 = x3 + x4}.

Besides the obvious zero-solution, the solutions of this DAE are given by the
formulae

x1(t) = (c2 +
2
3
t)

3
2 , x2(t) = (c2 +

2
3
t)

1
2 , x3(t) = eαtd, , x4(t) = −eαtd+ (c2 +

2
3
t)

1
2 ,
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whereby c, d ∈ R denote the arbitrary integration constants. Obviously, all these
solutions grow unboundedly if t→∞.
We take the stationary solution x∗ = 0 as reference function. The homogeneous
version of the linearized along x∗ DAE is

1 0
0 0
0 1
0 0


︸ ︷︷ ︸

A∗

(
[
1 0 0 0
0 0 1 0

]
x)′(t) +


0 −1 0 0
1 0 0 0
0 0 −α 0
0 −1 1 1


︸ ︷︷ ︸

B∗

x(t) = 0.

This linear constant coefficient DAE is regular with Kronecker index 2, and its
general solution is given as

x1(t) = x2(t) = 0, x4(t) = −x3(t) = −eαtx3(0),

which shows the asymptotical stability of the linearized DAE and which induces
to conjecture stability of the reference solution of the original DAE.
Since all nonzero solutions of the nonlinear DAE grow unboundedly if t → ∞,
the zero solution x∗ of the nonlinear DAE is far from being stable, as one - by
mistake - might conclude from the stability of the linearization.
The definition domain Df × If = R4 × [0,∞) of the original DAE decomposes
into the two maximal regularity regions

G− = {(x, t) ∈ Df × If : x2 < 0} and

G+ = {(x, t) ∈ R4 × R : x2 > 0},

and the border between these regions, the set x2 = 0, consist of somehow critical
points. Actually the DAE flow bifurcates at these critical points. Namely, for
each d ∈ R, there are the two solutions

x̄(t) =


0
0

eαtd
−eαtd

 , and ¯̄x(t) =


( 2
3 t)

3
2

( 2
3 t)

1
2

eαtd
−eαtd+ ( 2

3 t)
1
2

 , such that x̄(0) = ¯̄x(0) =


0
0
d
−d

 .
In particular, for d = 0, besides the zero solution x∗, there is also a nontrivial
solution that satisfies the initial condition x(0) = 0.
Notice that our reference function resides on that critical border.
The nonlinear DAE is regular with tractability index 1 only on the two regularity
regions, but not on its entire definition domain. If a reference function remains
within one of the regularity regions, then the linearization along this function is
also regular with index 1.

Example 4.2 The semi-explicit DAE [LMT11, Mär09]

x′1(t)− x3(t) = 0,

x2(t)(1− x2(t))− 1
4

+ t2 = 0,

x1(t)x2(t) + x3(t)(1− x2(t))− t = 0,
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with k = m = 3, r = n = 1, D(t) = [1 0 0], and

f(y, x, t) =

1
0
0

 y +

 −x3

x2(1− x2)− 1
4 + t2

x1x2 + x3(1− x2)− t

 , y ∈ R, x ∈ R3, t ∈ R,

has full-rank proper form. As we will see below, its linearizations1
0
0

 (
[
1 0 0

]
x(t))′ +

 0 0 −1
0 1− 2x∗2(t) 0

x∗2(t) x∗1(t)− x∗3(t) 1− x∗2(t)

x(t) = q(t),

behaves manifestly different for different reference functions x∗.

Case 1: Letting x∗2(t) = 1
2 + t such that the second equation of the original DAE

is satisfied the resulting linear DAE reads1
0
0

 (
[
1 0 0

]
x(t))′ +

 0 0 −1
0 −2t 0

1
2 + t x∗1(t)− x∗3(t) 1

2 − t

x(t) = q(t),

and in detail

x′1(t)− x3(t) =q1(t),
2t x2(t) =q2(t),

(
1
2

+ t)x1(t) + (x∗1(t)− x∗3(t))x2(t) + (
1
2
− t)x3(t) =q3(t).

On all intervals that do not include neither t = 0 nor t = 1
2 , this linear

DAE is regular with (tractability) index 1, and its inherent ODE reads

x′1(t) = −1 + 2t
1− 2t

x1(t)+q1(t)+
2

1− 2t
q3(t)− 1

(1− 2t)t
q2(t)(x∗1(t)−x∗3(t)).

Take a closer look at the homogeneous linear DAE, with identically vanish-
ing right hand sides q. Now a singular homogeneous inherent ODE results,
with a singularity at t = 1

2 . The solutions are given by x1(t) = (1−2t)etc,
c ∈ R being arbitrary, and x1( 1

2 ) = 0 is valid for all solutions, which indi-
cates a singular flow at t = 1

2 .
The solutions of the inhomogeneous linearization may grow unboundedly,
if t approaches the critical point t = 0 or t = 1

2 .

Case 2: Letting x∗2(t) = 1
2 the linear DAE fails to be regular at all. Namely, in

x′1(t)− x3(t) =q1(t),
0 =q2(t),

1
2
x1(t) + (x∗1(t)− x∗3(t))x2(t) +

1
2
x3(t) =q3(t),

the second equation is a consistency condition for q while the solution
component x2 can be fixed arbitrarily.
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Case 3: Letting x∗2(t) = 0 one arrives at the linearization

x′1(t)− x3(t) =q1(t),
x2(t) =q2(t),

(x∗1(t)− x∗3(t))x2(t) + x3(t) =q3(t),

which is a regular DAE with index 1.

Case 4: Letting x∗2(t) = 1 the linearization

x′1(t)− x3(t) =q1(t),
−x2(t) =q2(t),

x1(t) + (x∗1(t)− x∗3(t))x2(t) =q3(t),

is a regular DAE with index 2.

What is going on here? The given nonlinear DAE seems to have index 1, but
this is not correct. More precisely, the domain Df ×If = R3×R splits into the
three maximal regularity regions

G1 =
{

(x, t) ∈ R3 × R : x2 <
1
2

}
,

G2 =
{

(x, t) ∈ R3 × R :
1
2
< x2 < 1

}
,

G3 = {(x, t) ∈ R3 × R : 1 < x2},
The DAE is regular with tractability index 1 on each region G`, ` = 1, 2, 3.
Through each point (x̄, t̄) ∈ G` that satisfies the obvious constraint (the second
and third equation of the DAE) passes a locally unique solution. Linearizations
along reference functions which remain in one of the regularity regions are also
regular with index 1, see Case 3. The border points indicate a critical flow
behavior for the original nonlinear DAE as well as a certain degeneration of the
linearization, see Cases 1,2,4, and also the figures in [LMT11, Mär09].

Example 4.3 The DAE
x4(t) 0 0

0 x4(t) 0
0 0 x4(t)
0 0 0

 (

0 1 0 0
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

=:D

x)′(t) + x(t)−


0
0
0
γ(t)

 = 0

has a full-rank quasi-proper leading term with m = k = 4, n = 3 and

f(y, x, t) =


x4 0 0
0 x4 0
0 0 x4

0 0 0

 y + x−


0
0
0
γ(t)

 , Df = R4, If = R,

and a function γ ∈ C3(R,R). This DAE is uniquely solvable. Each linearization
has the form

x∗4(t) 0 0
0 x∗4(t) 0
0 0 x∗4(t)
0 0 0


︸ ︷︷ ︸

A∗

(Dx)′(t) +


1 0 0 x′∗2(t)
0 1 0 x′∗3(t)
0 0 1 x′∗4(t)
0 0 0 1


︸ ︷︷ ︸

B∗

x(t) = q(t).
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On intervals where x∗4(t) has no zeros, the resulting linearized DAE has index
4, but, on intervals where x∗4(t) vanishes identically, the resulting linearized
DAE has index 1. In particular, the linearization along the zero function is a
regular index-1 DAE.
Supposing the reference function x∗ to be a solution of the given nonlinear DAE,
one has x∗4 = γ. Then the index of the linearized DAE depends on the behavior
of γ. Nevertheless, if q is sufficiently smooth, the linearized DAE is uniquely
solvable, too.
The given nonlinear DAE has the two regularity regions

G+ = {(x, t) ∈ R4 × R : x4 > 0},
G− = {(x, t) ∈ R4 × R : x4 < 0}.

The nonlinear DAE is regular with tractability index 4 and characteristic values
r0 = r1 = r2 = r3 = 3, r4 = 4 on both regions G+and G−. In contrast to
other examples showing a singular flow if the reference function comes to pass a
critical point, now there is no such phenomenon, supposed q is smooth enough.
This kind of critical points is not recognizable in view of the flow in a smooth
setting and therefore said to be harmless.
The nonlinear DAE is also quasi-regular on R4 × R with κ = 4, such that all
critical points are harmless.

Example 4.4 Consider the semi-explicit DAE

x′1(t)− x2(t) + x3(t) = 0,
x′2(t) + x1(t) = 0,

x1(t)3 + α(x1(t))x3(t)− (sin t)3 = 0,

where

α(s) :=
{s2 if s > 0

0 if s < 0 ,

which yield the linearizations

241 0
0 1
0 0

35
| {z }

A∗

(

»
1 0 0
0 1 0

–
| {z }

D

x)′(t) +

24 0 −1 1
1 0 0

α(x∗1(t))x∗3(t) + 3x2
∗1(t) 0 α(x∗1(t))

35
| {z }

B∗

x(t) = q(t).

We choose the periodic solution of the original DAE as reference function
x∗(t) = (sin t, cos t, 0)T . Then the linearization reads in detail

x′1(t)− x2(t) + x3(t) = q1(t),
x′2(t) + x1(t) = q2(t),

3(sin t)2x1(t) + α(sin t)x3(t) = q3(t).

The original DAE has the two maximal stability regions

G+ = {(x, t) ∈ Df × If : x1 > 0}

and
G− = {(x, t) ∈ Df × If : x1 < 0}.
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The DAE is regular with index one on G+, but regular with index two on G−.
The periodic solution x∗ shuttles between the index-1 region and the index-2
region. Accordingly, the linearized along this solution DAE has index 1 on the
intervals (2jπ, (2j+1)π), but index 2 on intervals ((2j+1)π, (2j+2)π). Observe
that also the dynamical degree of freedom changes between two and one such that
the flow becomes severely discontinuous.

Example 4.5 Let the function α be the same as in the previous example, ε be
a constant. The DAE

x′1(t)− x2(t) = 0,
x′2(t) + x1(t) = 0,

α(x1(t)) x′4(t) + x3(t) = 0,
x4(t)− ε = 0,

has a full-rank quasi-proper leading term, with m = k = 4, n = 3,

f(y, x, t) =


1 0 0
0 1 0
0 0 α(x1)
0 0 0

 y +


−x2

x1

x3

x4 − ε

 , D =

1 0 0 0
0 1 0 0
0 0 0 1

 .
The linearized DAEs are2664

1 0 0
0 1 0
0 0 α(x∗1(t))
0 0 0

3775
| {z }

A∗

(

241 0 0 0
0 1 0 0
0 0 0 1

35
| {z }

D

x)′(t) +

2664
0 −1 0 0
1 0 0 0

γ∗(t) 0 1 0
0 0 0 1

3775
| {z }

B∗

x(t) = q(t).

with γ∗(t) := αs(x∗1(t))x′∗1(t). The linearization reads in detail

x′1(t)− x2(t) = q1(t),
x′2(t) + x1(t) = q2(t),

α(x∗1(t)) x′4(t) + αs(x∗1(t))x′∗1(t) x1(t) + x3(t) = q3(t),
x4(t) = q4(t).

Again we choose reference functions x∗ being solutions of the original DAE,
namely the stationary solution x∗(t) = (0, 0, 0, ε)T , and the periodic solution
x∗(t) = (sint, cost, 0, ε)T . In the first case the resulting linearized DAE is regular
with index 1. In the second case, the linearized DAE has in turn index 2 and
index 1 on the intervals (0, π), (π, 2π), and so on.
The nonlinear DAE has the two regularity regions

G+ = {(x, t) ∈ R4 × R : x1 > 0},
G− = {(x, t) ∈ R4 × R : x1 < 0},

The DAE is regular with tractability index 2 and r0 = r1 = 3, r3 = 4 on G+

and regular with index 1, r0 = 2, r1 = 4 on G−. The periodic solution shuttles
between these regularity regions and changes accordingly the index of the lin-
earization.
The DAE is quasi-regular on R4 ×R, e.g. with κ = 2 and all critical points are
harmless.

12



Figure 1: Regularity regions

5 Linearizations and regularity regions

Regarding our examples we do not expect a general DAE (1) to show uniform
structure on its entire domain Df ×If . As suggested by the case studies, and as
sketched in Figure 1, it is rather natural that the domain Df × If decomposes
into several maximal regularity regions bordered by critical points. It may well
happen that the structural characteristics of the DAE are different on different
regularity regions. However, in each regularity region there must be uniform
structural characteristics. A solution of the DAE can enter a regularity region
with new characteristic values only after passing a critical point. Now it is time
to explain how a regularity region is actually determined.

Turn for a moment to the matrix pencil λG+B given by them×mmatricesG
and B. We construct a sequence of matrices by special smart projectors starting
with G0 := G, B0 := B, P0 := I −Q0, and Q0 being a projector matrix onto
N0 = kerG0. One can simply set Q0 = I −G+G. Then, for i ≥ 1, we put

Gi :=Gi−1 +Bi−1Qi−1, (18)
Bi :=Bi−1Pi−1. (19)

choose a nontrivial subspace Ni ⊆ kerGi, (20)
choose Qi to be a projector onto Ni, Pi := I −Qi.

Denote further ri := rankGi and
_
Ni := Ni ∩ (N0 + · · ·+Ni−1). We choose the

projectors Q0, . . . , Qi in such a way that

kerQi ⊇ Xi, imQi = Ni, (21)

with a complement Xi ⊆ N0 + · · ·+Ni−1, Xi ⊕
_
Ni = N0 + · · ·+Ni−1.

Theorem 5.1 [GM89, LMT11, Mär04] The following assertions are equiva-
lent:

13



(1) The matrix pencil λG+B is regular with Kronecker index µ.

(2) Each matrix sequence (18)- (21), built in such a way that Ni = kerGi is
valid at each level, shows r0 ≤ · · · ≤ rµ−1 < rµ = m.

(3) Each matrix sequence (18)- (21) shows r0 ≤ · · · ≤ rκ−1 < rκ = m with a
certain number κ ≥ µ.

Owing to the maximal choice Ni = kerGi, the numbers r0, . . . , rµ in The-
orem 5.1(2), characterize the detailed structure of the Weierstraß-Kronecker
canonical form of the regular matrix pencil. In contrast, these numbers loose
the structural meaning, if only subspaces Ni ⊂ kerGi are used instead of the
nullspaces itself. From this point of view the choice Ni = kerGi is most benefi-
cial.

Return to the DAE (1). We introduce the basic matrix functions

A(x1, x, t) := fy(D(t)x1 +Dt(t)x, x, t),

B(x1, x, t) := fx(D(t)x1 +Dt(t)x, x, t), x1 ∈ Rm, x ∈ Df , t ∈ If ,

and form pointwise a sequence of continuous matrix functions analogously to
(18)-(21). For clarity we drop the arguments of the matrix functions. We start
by

G0 :=AD, B0 := B,

choose a projector function Q0 onto N0 := kerD, P0 := I −Q0, Π0 := P0.

Then, for i ≥ 1, as long as the expressions exist, we put

Gi :=Gi−1 +Bi−1Qi−1, (22)
choose a nontrivial C-subspace Ni ⊆ kerGi, (23)

ri := rankGi,
_
Ni := Ni ∩ (N0 + · · ·+Ni−1),

choose a projector function Qi such that
imQi = Ni, kerQi ⊇ Xi, (24)

with a complement Xi ⊆ N0 + · · ·+Ni−1, Xi ⊕
_
Ni = N0 + · · ·+Ni−1,

Pi := I −Qi, Πi := Πi−1Pi,

Bi :=Bi−1Pi−1 −GiD−(DΠiD
−)′DΠi−1. (25)

We refer to the Appendix for examples of those matrix function sequences.
The expression (DΠiD

−)′ in formula (25) means the total derivative in jet vari-
ables, see [LMT11, Mär09]. Formally, DΠiD

− may depend on t, x, x1, . . . , xi,
and then (DΠiD

−)′ depends on t, x, x1, . . . , xi and xi+1. The matrix function
sequence (22)-(25) clearly generalizes the matrix sequence (18)-(21). The non-
linearity and time-dependence is now encoded in the new extra term in (25).
To have at each level a continuous matrix function Gi, we suppose the projector
functions Q0, . . . , Qi−1 to be admissible also in the sense, that Πi−1 is supposed
to be continuous and DΠi−1D

− to be continuously differentiable.
By definition, a C-subspace in Rm is such that the orthoprojector function onto
this subpace is continuous. Any C-subspace has constant dimension, and hence
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the construction with Ni = kerGi requires constant-rank matrix functions Gi.
Mind at this point that, in the linear time-invariant case, the rank values ri
determine the structure of the Weierstraß-Kronecker canonical form if at each
level Ni = kerGi. Here, in the context of general nonlinear DAEs we can benefit
from the associated constant-rank conditions to describe regularity regions and
to detect critical points.

Definition 5.2 Let G ⊆ Df × If be open connected, further m = k.

(1) The DAE (1) with proper leading term is said to be regular on G, if there
is a number µ ∈ N, such that on G a matrix function sequence (22)-(25)
can be formed up to level µ, with Ni = kerGi, i = 0, . . . , µ − 1, and
r0 ≤ · · · ≤ rµ−1 < rµ = m.
G is then named a regularity region.
The number µ is named tractability index, and the constant rank values
r0, . . . , rµ are said to be characteristic values of the DAE on G.

(2) A point (x̄, t̄) ∈ Df ×If is a regular point, if there is a neighborhood being
a regularity region, and a critical point otherwise.

(3) The DAE (1) with quasi-proper leading term is said to be regular on G, if
it has a proper reformulation being regular on G.

(4) The DAE (1) with quasi-proper leading term is said to be quasi-regular on
G, if there is a number κ ∈ N, such that a matrix function sequence can
be formed on G up to level κ, and Gκ is nonsingular.
The set G is then called a quasi-regularity region.
A point (x̄, t̄) ∈ Df ×If is a quasi-regular point, if there is a neighborhood
being a quasi-regularity region.

Roughly speaking, critical points are those points where the constant rank con-
ditions supporting the matrix functions with Ni being the nullspace of Gi at
each level fail to be valid. Critical points can cause serious flow singularities as
in Examples 4.1, 4.2 and 4.4. A critical point is somehow harmless, if it is at
the same time quasi-regular, as in Examples 4.3 and 4.5.

The following properties justify our regularity notion and allow a deeper
comprehension at the same time. We underline once more, neither the existence
of solutions nor any knowledge concerning the constraints are presupposed to
determine regularity regions.
Properties of regularity regions:

(a) If G is a regularity region of the DAE (1), with characteristics r0 ≤ . . . ≤
rµ−1 < rµ = m, then each open connected subset G̃ ⊂ G is a regularity
region, too, and it has the same characteristics.

(b) A regularity region consists of regular points with uniform characteristics.

(c) The union of intersecting regularity regions is again a regularity region.

(d) Regularity regions, regular and critical points are unchanged, if one turns
from the original DAE (1) to its perturbed version

f( (Dx)′(t) , x(t), t) = q(t). (26)
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(e) Regularity, in particular the characteristics r0 ≤ · · · ≤ rµ−1 < rµ = m,
are invariant with respect to coordinate changes, to refactorizations of the
leading term as well as to the special choice of the admissible projector
functions Qi, see [LMT11].

Theorem 5.3 (Linearization Theorem) Let the DAE (1) have a proper lead-
ing term. Let G ⊆ Df×If be open connected. Then the following three assertions
are equivalent:

(1) G is a regularity region of the DAE (1).

(2) Each linearization (11) of the DAE (1) along a sufficiently smooth function
x∗ with graph in G is a regular linear DAE.

(3) All linearizations (11) of the DAE (1) along sufficiently smooth functions
x∗ with graph in G are regular with uniform characteristics.

Proof: The implications (1) → (3) → (2) are due to the construction. The
implication (2) → (1) is proved in [LMT11] by means of so-called widely or-
thogonal projector functions. �

The next assertion follows from the construction.

Theorem 5.4 If the DAE (1) is quasi-regular on the open connected set G ⊆
Df × If , then each linearization (11) along a sufficiently smooth function x∗
with values in G is also quasi-regular.

Of course, each open connected subset of a quasi-regularity region is again a
quasi-regularity region, and the points of a quasi-regularity region are quasi-
regular points. However, as it is mentioned above for matrix pencils, due to the
considerable arbitrariness of the subspaces Ni ⊆ kerGi, in general, the ranks
of the Gi do not inherit a structural meaning, except for the maximal choice
Ni = kerGi at every level. Furthermore, now the functions Gi have variable
ranks, such there are no counterparts of the meaningful characteristic values of
the regularity regions. As described in Example 4.5, a quasi-regularity region
may include several regularity regions having different characteristics.

6 Optimality condition

Consider the cost

J(x) =
∫ tf

t0

h(x(t), t)dt+ g(D(tf )x(tf )) (27)

to be minimized on functions x ∈ C1D(I,Rm), I = [t0, tf ], subject to the con-
straints

f((Dx)′(t), x(t), t) = 0, t ∈ I, (28)

D(t0)x(t0) = z0 ∈ Rn. (29)

Let the DAE (28) have a full-rank proper leading term (r = n, see (8)) and
let it satisfy the basic assumptions in Section 2. In particular, the DAE (28)
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comprises k ≤ m equations, usually k < m. Additionally, let the real functions
h(x, t) and g(η) depend continuously differentiable on their arguments. Later
on, in Theorem 6.3 we suppose also continuous partial derivatives hxx and fxx.

Theorem 6.1 (Necessary optimality condition) Let x∗ ∈ C1D(I,Rm) be a
local solution of the optimization problem (27),(28),(29).
Let, for each arbitrary z0 ∈ imD(t0) , q ∈ C(I,Rk), the linearized along x∗ DAE

A∗(t)(Dx)′(t) +B∗(t)x(t) = q(t), t ∈ I, (30)

have a solution in C1D(I,Rm), which satisfies the initial condition (29).
Then the terminal value problem

−D(t)T (AT∗ λ)′(t) +B∗(t)Tλ(t) = hx(x∗(t), t)T , t ∈ I, (31)

D(tf )TA∗(tf )Tλ(tf ) = (gη(D(tf )x∗(tf ))D(tf ))T (32)

posses a solution λ∗ ∈ C1AT
∗

(I,Rk).

Proof: For the case of quasilinear DAEs with f(y, x, t) = A(x, t)y + b(x, t) the
assertion is proved in [Bac06, pages 121-139] by applying the famous Lyusternik-
Theorem [Lyu34], providing a representation of functionals on C1D(I,Rm) and
then a representation of the Lagrange multiplier. The same arguments apply
also in the slightly more general case discussed now. �

The required solvability concerning the linearized IVP (30),(29) is guaran-
teed by Proposition 3.3(1). Actually, this means the surjectivity of the linear
operator

Lx := (A∗(Dx)′ +B∗x, D(t0)x(t0)) ∈ C(I,Rk)× imD(t0), x ∈ C1D(I,Rm).

In Proposition 3.3(1), the full row-rank condition (cf. (13))

rank [A∗(t)D(t) +B∗(t)(I −D(t)+D(t))] = k, t ∈ I, (33)

plays its role. The operator L is surjective, exactly if condition (33) is valid. In
turn, the surjectivity (closed range property) of the linear operator L plays an
essential part in the Lyusternik-Theorem.
Condition (33) is necessary for the existence of a solution of the terminal value
problem (31),(32), as it is demonstrated in [Bac06, pages 50-52].
If the above full-rank condition is not given in a problem, then it might be a
good idea to reformulate or reduce the problem so that the reduced DAE meets
the condition.
An other way consists in exploiting given special structural properties with the
aim to obtain surjectivity of the operator L in specially adjusted function spaces,
for instance, in case of controlled Hessenberg size-2 DAEs, cf. [Ger06b, Ger06a,
Cal06]. Note that different function spaces may lead to different representations
of the Lagrange multiplier, and hence yield another terminal value problem than
(31),(32).

Corollary 6.2 Let the DAE (28) be underdetermined index-1 tractable (Defi-
nition 3.1) such that condition (12) is valid.
Then, if x∗ ∈ C1D(I,Rm) is a local solution of the optimization problem (27),(28),(29),
the terminal value problem (31),(32) is solvable on C1AT

∗
(I,Rk).
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Proof: This is a direct consequence of Theorem 6.1.�

Indirect optimization methods rely on the boundary value problem (BVP)
for the composed so-called optimality DAE

f((D(t)x(t))′, x(t), t) = 0, (34)

−D(t)T (fy((D(t)x(t))′, x(t), t)Tλ(t))′+

fx((D(t)x(t))′, x(t), t)Tλ(t) = hx(x(t), t)T (35)

completed by the boundary conditions (29) and (32). Owing to Theorem 6.1 this
BVP is solvable. By introducing the new function y = (Dx)′ and collecting the
components λ, x, y in x̃, the DAE (34),(35) can be put into the more prevalent
form

f̃((d̃(x̃(t), t))′, x̃(t), t) = 0,

with properly involved derivative and nonlinear derivative-term. Those equa-
tions are investigated in [LMT11]. Here we restrict our interest to the transpar-
ent quasi-linear case

f(y, x, t) = A(t)y + b(x, t), (36)

which naturally comprises the semi-explicit systems (4),(5). For (36), the opti-
mality DAE simplifies to

A(t)(Dx)′(t) + b(x(t), t) = 0, (37)

−D(t)T (ATλ)′(t) + bx(x(t), t)Tλ(t) = hx(x(t), t)T . (38)

The optimality DAE combines k+m equations for the same number of unknown
functions. In view of a reliable practical treatment, when applying an indirect
optimization method, it would be an great advantage to know whether the DAE
is regular with index 1. For this aims we consider the linearization of the DAE
(37),(38) along (λ∗, x∗), namely[

A(t) 0
0 D(t)T

]
(
[

0 D(t)
−A(t)T 0

] [
λ(t)
x(t)

]
)′ +

[
0 B∗(t)

B∗(t)T −H∗(t)

] [
λ(t)
x(t)

]
= 0.

(39)
with the continuous symmetric matrix function

H∗(t) := hxx(x∗(t), t)− (bTx (x, t)λ∗(t))x(x∗(t), t). (40)

Theorem 6.3 (Properties of the optimality DAE) Let the DAE (28) have
the special form given by (36). Let the functions b and h have the additional
second continuous partial derivatives bxx, hxx. Let x∗ ∈ C1D(I,Rm) be a local so-
lution of the optimization problem (27),(28),(29). Denote B∗(t) = bx(x∗(t), t),
G(t) = A(t)D(t), Q0(t) = I −D(t)+D(t), W0(t) = I −A(t)A(t)+, t ∈ I.
Let the condition (33) be satisfied, that is

rank [A(t)D(t) +B∗(t)Q0(t)] = k, t ∈ I. (41)

Let λ∗ denote the solution of the terminal value problem (31),(32).
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(1) Then the optimality DAE (37),(38) is regular with index 1 in a neighbor-
hood of the graph of (λ∗, x∗), exactly if

(G(t) +W0(t)B∗(t)Q0(t))z = 0,

H∗(t)Q0(t)z ∈ ker(G(t) +W0(t)B∗(t)Q0(t))⊥

imply z = 0, for all t ∈ I. (42)

(2) If condition (42) is given, then the linearized DAE (39) is selfadjoint and
its inherent regular ODE has Hamiltonian structure such that

Θ′ =
[
0 −I
I 0

]
E Θ, Θ :=

[
Dx
−ATλ

]
, (43)

with a symmetric continuous matrix function E of size 2n× 2n.

(3) If Q0(t)H∗(t)Q0(t) is semi-definite for all t ∈ I, then condition (42) sim-
plifies to the full-rank condition

rank
[
G(t) +W0(t)B∗(t)Q0(t)

Q0(t)H∗(t)Q0(t)

]
= m, t ∈ I. (44)

Proof: Here we drop the argument t. The proper formulation of the leading
term yields kerG = kerD and imG = imA, thereforeQ0 = I−D+D = I−G+G,
W0 = I −GG+ = I −AA+. Introduce the (m+ k)× (k +m) matrix function

Ĝ∗1 =
[

0 G+B∗Q0

−GT +BT∗W0 −H∗Q0

]
.

The optimality DAE (37),(38) is regular with index 1 around the graph of
(x∗, λ∗), exactly if Ĝ∗1 is nonsingular on I (cf. (39) and Proposition 3.2). Com-
pute the relations

G+B∗Q0 = (G+W0B∗Q0)(I +G+B∗Q0),

−GT +BT∗W0 = (−GT +Q0B
T
∗W0)(I −G+TBT∗W0),

im (G+W0B∗Q0) = imG⊕ imW0B∗Q0,

im (−GT +Q0B
T
∗W0) = imGT ⊕ imQ0B

T
∗W0 = im (GT +Q0B

T
∗W0).

From condition (41) it follows now that rank (−GT + BT∗W0) = rank (G +
B∗Q0) = k, and hence ker(−GT +BT∗W0) = {0}.
The matrix function Ĝ∗1 is nonsingular if, for v ∈ Rm and w ∈ Rk, the system

(G+B∗Q0)v = 0, (45)

−H∗Q0v + (−GT +BT∗W0)w = 0 (46)

has only the trivial solution. Since −GT +BT∗W0 has full column-rank and

im (−GT +BT∗W0) = ker(G+W0B∗Q0)⊥,

equation (46) is equivalent to

−H∗Q0v ∈ ker(G+W0B∗Q0)⊥, w = (−GT +BT∗W0)+H∗Q0v.
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Introduce ṽ = (I + G+bxQ0)v so that Q0v = Q0ṽ. Now it is clear that Ĝ∗1 is
nonsingular exactly if

(G+W0B∗Q0)ṽ = 0, (47)

−H∗Q0ṽ ∈ ker(G+W0B∗Q0)⊥ (48)

imply z̃1 = 0. This proves (1).
(3): Equation (47) decomposes to Gṽ = 0 and W0bxQ0ṽ = 0, thus ṽ = Q0ṽ and
ṽ ∈ kerW0B∗. Moreover, regarding condition (48), ṽ and H∗ṽ are orthogonal,
0 =< H∗ṽ, ṽ >=< Q0H∗Q0ṽ, ṽ >. Since Q0H∗Q0 is symmetric and semi-
definite, it follows that Q0H∗Q0v = 0, which confirms (3).
(2): Owing to [BKM06, Theorem 4.3], the linearized DAE (39) is selfadjoint.
As a selfadjoint index-1 DAE it has Hamiltonian structure due to [BKM06,
Theorem 4.5]. �

Notice that the Hamiltonian structure can get lost if the leading term is
properly stated but not full-rank proper (cf. Definition 2.1), as it is demonstrated
in [BKM06, Example 4.7].

Example 6.4 [Bac06, p.144-146] Minimize the cost

J(x) =
1
2

∫ tf

0

(x3(t)2 + (x4(t)−R2)2)dt

subject to the constraint

x′1(t) + x2(t) = 0,
x′2(t)− x1(t)− x3(t) = 0,

−x1(t)2 − x2(t)2 + x4(t) = 0,
x1(0) = r,

x2(0) = 0,

with constants r > 0, R > 0. If x3(t) vanishes identically, the remaining IVP
has a unique solution. Then the point (x1(t), x2(t)) orbits the origin with radius
r and x4(t) = r. By optimizing in view of the cost, the point (x1(t), x2(t)
becomes driven to the circle of radius R, with low cost of x3(t).
We have m = 4, n = 2, k = 3, and

f(y, x, t) =

1 0
0 1
0 0

 y +

 x2

−x1 − x3

−x2
1 − x2

2 + x4

 , D =
[
1 0 0 0
0 1 0 0

]
,

and condition (33) is satisfied, since

fyD + fx(I −D+D) =

1 0 0 0
0 1 −1 0
0 0 0 1


has full row-rank. The adjoint system comprises 4 equations and 3 unknown
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functions λ1, λ2, λ3. The resulting optimality DAE

x′1(t) + x2(t) = 0,
x′2(t)− x1(t)− x3(t) = 0,

−x1(t)2 − x2(t)2 + x4(t) = 0,
−λ′1(t)− λ2(t)− 2x1(t)λ3(t) = 0,
−λ′2(t) + λ1(t)− 2x2(t)λ3(t) = 0,

−λ2(t) = x3(t),

λ3(t) = x4(t)−R2,

has dimension 7 and is everywhere regular with index 1. Here we have

H∗(t) =


2λ∗(t) 0 0 0

0 2λ∗(t) 0 0
0 0 1 0
0 0 0 1

 , Q0(t)H∗(t)Q0(t) =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 ,
so that condition (44) applies.

Example 6.5 Minimize the cost

J(x) =
1
2

∫ tf

0

(α (x1(t) + x3(t))2 + β x2(t)2 )dt+
1
2
γ x2(tf )2

subject to the constraint

x′2(t) + x2(t) + x3(t) = 0,
x′2(t) + sin t = 0,

x2(0) = 1,

with constants α, β, γ ≥ 0, α2 + β2 + γ2 > 0. The optimal solution is

x∗1(t) = − sin t+ cos t, x∗2(t) = cos t, x∗1(t) = sin t− cos t.

We have

f(y, x, t) =
[
1
1

]
y +

[
x2 + x3

sin t

]
, D =

[
0 1 0

]
, fyD + fxQ0 =

[
0 1 1
0 1 0

]
,

so that condition (33) is satisfied for all α, β, γ. The optimality DAE reads

x′2(t) + x2(t) + x3(t) = 0,
x′2(t) + sin t = 0,

−α(x1(t) + x3(t)) = 0,
−(λ1(t) + λ2(t))′ + λ1(t)− βx2(t) = 0,

λ1(t)− α(x1(t) + x3(t)) = 0.

This square DAE of dimension 5 is regular with index 1 exactly if α does not
vanish. This condition reflects condition (44). Namely, we have

H∗(t) = hxx(x∗(t), t) =

α 0 α
0 β 0
α 0 α

 , Q0(t)H∗(t)Q0(t) =

α 0 α
0 0 0
α 0 α

 ,
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G+W0B∗Q0 =
[
0 1 0
0 1 0

]
+
[

1
2 − 1

2
− 1

2
1
2

] [
0 1 1
0 0 0

]1 0 0
0 0 0
0 0 1

 =
[
0 1 1

2
0 1 − 1

2

]
.

In contrast, the optimality DAE fails to be regular for α = 0.
In this example, the constraint DAE (28) consists of 2 equations and 3 unknown
functions. If we fix x3 as a control, the resulting controlled DAE (with respect
to x1, x2) fails to be regular. In contrast, fixing x1 as control, the resulting
controlled DAE (with respect to x2, x3) is regular with index 1. This underlines
that the only property who matters for the extremal condition is the surjectivity of
the operator L. However, to obtain a regular index-1 optimality DAE (37),(38)
the cost must be somehow consistent with the DAE describing the constraint.

Example 6.6 Minimize the cost

J(x) =
1
2

∫ 2π

0

( (x1(t)− sin t)2 + (x2(t)− cos t)2 + γx3(t)2 + x4(t)2 )dt

subject to the constraint

x′1(t)− x2(t) + x3(t) = 0,
x′2(t) + x1(t) = 0,

x1(t)3 + α(x1(t))x3(t)− (sin t)3 − x4(t) = 0,
x1(0) = 0,
x2(0) = 1,

with the real function α given in Example 4.4 and a constant γ ≥ 0. Considering
x4 as a control and letting x4 = 0, the DAE from Example 4.4 reappears.
The optimal solution is

x∗1(t) = sin t, x∗2(t) = cos t, x∗3(t) = 0, x∗4(t) = 0.

We have m = 4, k = 3, n = 2 and

f(y, x, t) =

1 0
0 1
0 0

 y +

 −x2 + x3

x1

x3
1 + α(x1)x3 − (sin t)3 − x4

 , D =
[
1 0 0 0
0 1 0 0

]
,

such that the matrix function

fyD + fx(I −D+D) =

1 0 1 0
0 1 0 0
0 0 α(x1) −1


results, which has full row-rank independently of the behavior of α(x1). The
optimality DAE reads

x′1(t)− x2(t) + x3(t) = 0,
x′2(t) + x1(t) = 0,

x1(t)3 + α(x1(t))x3(t)− (sin t)3 − x4(t) = 0,

−λ′1(t) + λ2(t) + (3x1(t)2 + α′(x1(t))x3(t))λ3(t) = x1(t)− sin t,
−λ′2(t)− λ1(t) = x2(t)− cos t,

λ1(t) + α(x1(t))λ3(t) = γx3(t),
−λ3(t) = x4(t).
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It holds that

G+W0B∗Q0 =

1 0 0 0
0 1 0 0
0 0 α(x1) −1


and

H∗(t) =


1− 6x∗1(t)λ∗3(t) 0 −α′(x∗1(t))λ∗3(t) 0

0 1 0 0
−α′(x∗1(t))λ∗3(t) 0 γ 0

0 0 0 1

 , Q0H∗(t)Q0 =


0 0 0 0
0 0 0 0
0 0 γ 0
0 0 0 1

 .
Condition (44) requires γ + (α(x1))2 6= 0. Therefore, the optimality DAE is
regular with index 1 in case of γ > 0.
If γ = 0, then only the set

G+ = {(z, t) ∈ R7 × (t0, tf ) : z1 > 0}

is a regularity region with characteristic µ = 1. Unfortunately, the optimal
solution does not remain in this index-1 region.

Alltogether, when intending to apply an indirect optimization method, it seems
to be a good idea to make use of the modeling latitude to reach an optimality
DAE which is regular with index-1 or, at least, to reach the situation that the
expected solution stands in a regularity region with characteristic µ = 1.

7 Specification for controlled DAEs

In the present section we specify results of the previous section for the important
case of constraints described by controlled DAEs. Here the DAE and the cost
may depend on a pair of functions, the state x ∈ C1D(I,Rm) and the control
u ∈ C(I,Rl). Now the DAE comprises m equations so that, for each fixed
control, a square m-dimensional DAE results. Consider the cost

J(x, u) =
∫ tf

t0

h(x(t), u(t), t)dt+ g(D(tf )x(tf )) (49)

to be minimized on pairs (x, u) ∈ C1D(I,Rm)×C(I,Rl), subject to the constraints

f((Dx)′(t), x(t), u(t), t) = 0, t ∈ I, (50)

D(t0)x(t0) = z0 ∈ Rn, (51)

with f(y, x, u, t) ∈ Rm, y ∈ Rn, x ∈ Rm, u ∈ Rl, t ∈ I = [t0, tf ], D(t) ∈
L(Rm,Rn), rankD(t) = r = n. Assume analogous smoothness as in Section 6.
Moreover, as in Section 6 the DAE (50) is supposed to have a full-rank proper
leading term (see (8)).
Denote

A∗(t) = fy((Dx∗)′(t), x∗(t), u∗(t), t),
B∗(t) = fx((Dx∗)′(t), x∗(t), u∗(t), t),
C∗(t) = fu((Dx∗)′(t), x∗(t), u∗(t), t), t ∈ I,

23



such that now the linearization along (x∗, u∗) reads

A∗(t)(D(t)x(t))′ +B∗(t)x(t) + C∗(t)u(t) = 0, t ∈ I. (52)

The following assertion is a straightforward consequence of Theorem 6.1.

Theorem 7.1 (Necessary optimality condition) Let the optimization prob-
lem (49),(50),(51) have the local solution (x∗, u∗) ∈ C1D(I,Rm)×C(I,Rl). Then,
if the full-rank condition

rank [A∗(t)D(t) +B∗(t)(I −D(t)+D(t)), C∗(t)] = m, t ∈ I, (53)

is valid, the terminal value problem

−D(t)T (AT∗ λ)′(t) +B∗(t)Tλ(t) = hx(x∗(t), u∗(t), t)T , (54)

C∗(t)Tλ(t) = hu(x∗(t), u∗(t), t)T , t ∈ I (55)

D(tf )TA∗(tf )Tλ(tf ) = D(tf )T (gη(D(tf )x∗(tf )))T (56)

has a solution λ∗ ∈ C1A∗(I,Rm).

If the controlled DAE is regular with index ≤ 1, then A∗D + B∗(I − D+D)
is nonsingular such that condition (53) follows. In this connection it does not
matter how C∗ looks like. However, in all other cases, condition (53) entails
structural restrictions concerning C∗. On the other side, no regularity conditions
result for the given controlled DAE, as it is demonstrated in Example 6.5 letting
u = x3.
At this place we stress once more, that our criteria are clearly represented
algebraic conditions, and they are given in terms of the original optimization
problem. In contrast, in [KM06] an analogous optimization problem with DAE
constraint

f(x′(t), x(t), u(t), t) = 0, t ∈ I,

is treated by transforming this equation first into the so-called reduced form

x′1(t)− L(x1(t), x2(t), u(t), t), x2(t) = R(x1(t), u(t), t), (57)

and not till then formulating an extremal condition and the optimality DAE in
terms of (57). This pre-handling is based on demanding assumptions (e.g. [KM06,
Hypothesis 1]) and it needs considerable effort.
The reduced system (57) represents a special case of a semi-explicit controlled
regular index-1 DAE, such that condition (53) is given. The optimality DAE for
the optimization problem with constraint DAE (57) is then the corresponding
special case of the DAE (59)-(61) below.

As a consequence of Theorem 7.1, the BVP composed from the IVP (50),(51)
and the terminal value problem (54)-(56) is solvable. Indirect optimization
relies on this BVP. Then, for practical reasons, the question arises whether the
associated optimality DAE is regular with index 1. We give an answer for the
transparent quasi-linear case.

f(y, x, u, t) = A(t)y + b(x, u, t), (58)
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so that the optimality DAE simplifies to

A(t)(D(t)x(t))′ + b(x(t), u(t), t) = 0, (59)

−D(t)T (A(t)Tλ(t))′ + bx(x(t), u(t), t)Tλ(t) = hx(x(t), u(t), t)T , (60)

bu(x(t), u(t), t)Tλ(t) = hu(x(t), u(t), t)T . (61)

The optimality DAE (59)-(61) has the linearization (the argument t is dropped)A 0
0 DT

0 0

 (
[

0 D 0
−AT 0 0

]λx
u

)′ +

 0 B∗ C∗
BT∗ −W∗ −S∗
CT∗ −ST∗ −R∗

λx
u

 = 0. (62)

with continuous matrix functions

W∗(t) : = hxx(x∗(t), t)− (bTx (x, t)λ∗(t))x(x∗(t), t),

S∗(t) : = hxu(x∗(t), t)− (bTx (x, t)λ∗(t))u(x∗(t), t),

R∗(t) : = huu(x∗(t), t)− (bTu (x, t)λ∗(t))u(x∗(t), t), t ∈ I.

Theorem 7.2 (Properties of the optimality DAE) Let the DAE (50) have
the special form given by (58). Let the functions b and h have the additional sec-
ond continuous partial derivatives needed. Let (x∗, u∗) ∈ C1D(I,Rm) × C(I,Rl)
be a local solution of the optimization problem (49),(50),(51).
Denote B∗(t) = bx(x∗(t), u∗(t), t), C∗(t) = bu(x∗(t), u∗(t)t), G(t) = A(t)D(t),
Q0(t) = I −D(t)+D(t), W0(t) = I −A(t)A(t)+, t ∈ I.
Let the condition (53) be satisfied, that is

rank [A(t)D(t) +B∗(t)Q0(t), C∗(t)] = m, t ∈ I. (63)

Let λ∗ denote the solution of the terminal value problem (54)-(56).

(1) Then the optimality DAE (59)-(61) is regular with index 1 in a neighbor-
hood of the graph of (λ∗, x∗, u∗), exactly if

[G(t) +W0(t)B∗(t)Q0(t), W0(t)C∗(t)] z = 0,[
W∗(t)Q0(t) S∗(t)
S∗(t)TQ0(t) R∗(t)

]
z ∈ ker[G(t) +W0(t)B∗(t)Q0(t), W0(t)C∗(t)]⊥

imply z = 0, for all t ∈ I. (64)

(2) If condition (64) is given, then the linearized DAE (62) is selfadjoint and
its inherent regular ODE has Hamiltonian structure such that

Θ′ =
[
0 −I
I 0

]
E Θ, Θ :=

[
Dx
−ATλ

]
, (65)

with a symmetric continuous matrix function E of size 2n× 2n.

(3) If the matrix [
Q0(t)W∗(t)Q0(t) Q0(t)S∗(t)
S∗(t)TQ0(t) R∗(t)

]
is semi-definite for all t ∈ I, then condition (64) simplifies to the full-rank
condition

rank

G(t) +W0(t)B∗(t)Q0(t) W0(t)C∗(t)
Q0(t)W∗(t)Q0(t) Q0(t)S∗(t)
S∗(t)TQ0(t) R∗(t)

 = m+ l, t ∈ I. (66)
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Proof: All three assertions are the coresponding special cases of the assertions
in Theorem 6.3.�

We refer to [BKM06, Bac06, Mär05, CM07] for further index relations and for
the consistency with well-known facts in the context of linear-quadratic optimal
control problems.

8 Appendix to Section 4: Matrix functions

Here we provide matrix function sequences and admissible projector functions
to determine the regularity regions and quasi-regularity regions of the examples
in Section 4.
Example 4.1:

G0 =


1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 , Q0 =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

 , B0(x) =


0 −1 0 0
1 −3x2

2 0 0
0 0 −α 0
0 −1 1 1

 ,
therefore

G1(x) = G0 +B0(x)Q0 =


1 −1 0 0
0 −3x2

2 0 0
0 0 1 0
0 −1 0 1

 .
The matrix function G1 remains nonsingular where x2 6= 0, and hence the
definition domain Df × If = R4 × [0,∞) of the original DAE decomposes into
the two maximal regularity regions

G+ := {(x, t) ∈ Df × If : x2 > 0},
G− := {(x, t) ∈ Df × If : x2 < 0},

bordered by the critical point set x2 = 0. The DAE is regular with tractability
index one and characteristics r0 = rankG0 = 2, r1 = rankG1 = 4 on both
regions.

Example 4.2:

G0(x) =

1 0 0
0 0 0
0 0 0

 , Q0 =

0 0 0
0 1 0
0 0 1

 , B0(x) =

 0 0 −1
0 1− 2x2 0
x2 x1 − x3 1− x2

 ,
therefore

G1(x) =

1 0 −1
0 1− 2x2 0
0 x1 − x3 1− x2

 ,
and thus detG1(x, t) = (1−2x2)(1−x2), which has the zeros x2 = 1

2 and x2 = 1.
Then the definition domain of the nonlinear DAE Df ×If = R3 ×R splits into
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the three maximal regularity regions

G1 :=
{

(x, t) ∈ R3 × R : x2 <
1
2

}
,

G2 :=
{

(x, t) ∈ R3 × R :
1
2
< x2 < 1

}
,

G3 := {(x, t) ∈ R3 × R : 1 < x2},

The DAE is regular with tractability index one on each region G`, ` = 1, 2, 3.
The border sets x2 = 1

2 and x2 = 1 consist of critical points.

Example 4.3:
We construct the quasi-admissible matrix functions

G0 =

2640 x4 0 0
0 0 x4 0
0 0 0 x4
0 0 0 0

375 , Q0 =

2641 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

375 , Π0 =

2640 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

375 , B0 =

2664
1 0 0 x1

2
0 1 0 x1

3
0 0 1 x1

4
0 0 0 1

3775 ,

then

G1 =

2641 x4 0 0
0 0 x4 0
0 0 0 x4
0 0 0 0

375 , Q1 =

2640 −x4 0 0
0 1 0 0
0 0 0 0
0 0 0 0

375 , Π1 =

2640 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

375 , B1 =

2664
0 0 0 x1

2
0 1 0 x1

3
0 0 1 x1

4
0 0 0 1

3775 ,

further

G2 =

2641 x4 0 0
0 1 x4 0
0 0 0 x4
0 0 0 0

375 , Q2 =

2664
0 0 (x4)

2 0
0 0 −x4 0
0 0 1 0
0 0 0 0

3775 , Π2 =

2640 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

375 , B2 =

2664
0 0 0 x1

2
0 0 0 x1

3
0 0 1 x1

4
0 0 0 1

3775 ,

and

G3 =

2641 x4 0 0
0 1 x4 0
0 0 1 x4
0 0 0 0

375 , Q3 =

2664
0 0 0 −(x4)

3

0 0 0 (x4)
2

0 0 0 −x4
0 0 0 1

3775 , Π3 = 0, B3 =

2664
0 0 0 x1

2
0 0 0 x1

3
0 0 0 x1

4
0 0 0 1

3775 ,

so that the everywhere nonsingular matrix function

G4 =

2641 x4 0 0
0 1 x4 0
0 0 1 x4
0 0 0 1

375 ,
results. Observe that there are the two maximal regularity regions

G+ := {(x, t) ∈ Df × If : x4 > 0},
G− := {(x, t) ∈ Df × If : x4 < 0},

bordered by the critical point set x4 = 0. On each of these regularity regions
the above matrix function sequence is even admissible, and the DAE is there
regular with characteristics r0 = r1 = r3 = 3 and µ = 4.
At the same time, the DAE is quasi-regular on Df × If since G4 remains non-
singular. This indicates the critical points (x4 = 0) to be somehow harmless.
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Example 4.4:
We have for x ∈ Df = R3, t ∈ If = R

G0(x) =

1 0 0
0 1 0
0 0 0

 , Q0 =

0 0 0
0 0 0
0 0 1

 , B0(x) =

 0 −1 1
1 0 0

3x2
1 + αs(x1)x3 0 α(x1)

 ,
therefore

G1(x) =

1 0 1
0 1 0
0 0 α(x1)

 .
For x1 > 0, it holds that α(x1) > 0, and therefore G1 is nonsingular. Then it
results that

G+ := {(x, t) ∈ Df × If : x1 > 0}

is a regularity region with characteristics r0 = 2, r1 = 3 and µ = 1.
If x1 < 0, then α(x1) = 0 and G1 is singular, and we continue to construct the
matrix function sequence by

G1(x) =

1 0 1
0 1 0
0 0 0

 , Q1 =

 1 0 0
0 0 0
−1 0 0

 , B1(x) =

 0 −1 0
1 0 0

3x2
1 0 0

 ,
and

G2(x) =

 1 0 1
1 1 0

3x2
1 0 0

 , detG2(x) = −3x2
1.

The open set
G− := {(x, t) ∈ Df × If : x1 < 0}

is also a maximal regularity region, but now with different characteristics r0 =
2, r1 = 2 r2 = 3, and µ = 2.

Example 4.5: We construct the quasi-admissible matrix functions

G0 =

2641 0 0 0
0 1 0 0
0 0 0 α(x1)
0 0 0 0

375 , Q0 =

2640 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

375 , B0 =

2664
0 −1 0 0
1 0 0 0

αs(x1)x
1
4 0 1 0

0 0 0 1

3775 ,
and

G1 =

2641 0 0 0
0 1 0 0
0 0 1 α(x1)
0 0 0 0

375 , Q1 =

2640 0 0 0
0 0 0 0
0 0 0 −α(x1)
0 0 0 1

375 , B1 =

2664
0 −1 0 0
1 0 0 0

αs(x1)x
1
4 0 0 0

0 0 0 1

3775 ,
further

G2 =

2641 0 0 0
0 1 0 0
0 0 1 α(x1)
0 0 0 1

375 .
Since the matrix function G2 ia nonsingular everywhere, the DAE is quasi-

regular on its definition domain.
Observe that α(x1) remains positive on the region

G+ := {(x, t) ∈ Df × If : x1 > 0}.
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There the above projector functions Q0, Q1 are admissible, and the DAE is
regular with characteristics r0 = r1 = 3, r2 = 4 and µ = 2.
In contrast, the expression α(x1) disappears on

G− := {(x, t) ∈ Df × If : x1 < 0}.

On this region we can turn to a proper leading term yielding

G̃0 =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , Q̃0 =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 , G̃1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,
which says that the DAE is on G− regular with index 1.
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