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Abstract

We provide a comprehensive analysis of linear DAEs with continuous coefficients
and properly stated leading term. We are mainly interested in so-called regular
DAESs, but we address also under- and overdetermined DAEs.

In particular, we describe the structured characteristic of DAEs, explain how to for-
mulate consistent initial conditions, investigate the flow asymptotics and admissible
excitations. Also, critical points are touched.

We specify the main results for linear DAEs in standard form and discuss sev-
eral canonical forms. We show that the constant rank conditions supporting the
tractability index coincide with those applied in the strangeness index concept.
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Linear DAEs with variable coefficients

1 Introduction

For constant coefficient DAEs
Ex'(t) + Fz(t) = q(t), (1)

the Kronecker index and regularity are well defined via the properties of the matrix pencil
{E,F}, and these characteristics are of particular importance in view of an appropriate
numerical treatment.

From about 1970, challenged by circuit simulation problems, numerical analysts and ex-
perts in circuit simulation begun to devote much work to the numerical integration of
larger systems of implicit ODEs and DAEs (e.g. [Gea71], [EMR77], [SEYES1], [GHP81]).
In particular, linear variable coefficient DAEs

E)'(t) + F(t)z(t) = q(t) (2)
were tackled by the implicit Euler method

E(tl)%(azl C )+ ()T = q(t).

Obviously, for the method to be just feasible, the matrix %E (t,)+ F(t;) must be nonsingu-
lar, but this can be guaranteed for all steps t; and all sufficiently small stepsizes h, if one
requires the so-called local matriz pencils {E(t), F(t)} to be regular on the given interval
(We mention at this place, that feasibility is by far not sufficient for a numerical integra-
tion method to work well). However, as it was discovered already in [GP83], the local
pencils are not at all relevant characteristics of more general DAEs than those being linear
with constant coefficients. Except for the regular index one case, local matrix pencils may
change their index and loose their regularity under smooth regular transformations of the
variables. That means, the local matrix pencils {E(t), F'(t)} of the DAE

E(t)z'(t) + F(t)z(t) = q(t), (3)

which results from transforming z(t) = K (t)z(t) in the DAE (2), with a pointwise non-
singular continuously differentiable matrix function K, may have completely different
characteristics than the local pencils {E(t), F(t)}. Nevertheless, the DAEs are equiva-
lent, and hence, the local matrix pencils are irrelevant for determining the characteristics
of a DAE. The coefficients of the equivalent DAEs (2) and (3) are related by the formulae
E(t)=E(t)K(t), F(t)= F(t)K(t) + E(t)K'(t), which gives the impression that one can
manipulate the resulting local pencil almost arbitrarily by choosing different transforms
K.

In DAEs with properly stated leading term

A)(D(1)z(1) + B(t)z(t) = q(t), (4)
the transformation Z(t) = K (t)z(t) leads to the equivalent DAE
A()(D()x(t))" + B(t)x(t) = q(t), ()
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that has also a properly stated leading term. The coefficients are related by A(t) =
A(t), D(t) = D(t)K(t) and B(t) = B(t)K(t), and the local pencils { A(t)D(t), B(t)} and
{A(t)D(t),B(t)} = {A(#)D(t)K(t), B(t)K(t)} are now equivalent. However, we do not
consider this to justify the local pencils as relevant carriers of DAE essentials. For DAEs
with properly stated leading terms, also so-called refactorizations of the leading term yield
equivalent DAEs, and any serious concept incorporates this fact. For instance, inserting
(Dz) = (DD Dz) = D(D"Dz) + D'D" Dz does not really change the DAE (5), how-
ever, the local matrix pencils may change their nature as the next example demonstrates.
This rules out the local pencils again.

Example 1.1 The constant coefficient DAE

o O O

10
0 1| Z(t)+z(t) =q(t), teR,
00

sl

has Weierstraf-Kronecker canonical form, and its matriz pencil {E,I} is reqular with
Kronecker index three. We transform z(t) = K(t)x(t) by means of the smooth matrix
function K,
1 0 0
K{t):=10 1 0|, teR,
0 —t 1

being everywhere nonsingular. This yields a DAE (3) with variable coefficients

0 0 1 0 0
Et)=EK({t)= |0 —t 1|, Ft)=Kt)+EK'({#t)=|0 0 0
0 0 0 —t 1

We expect the new DAFE to inherit reqularity with index three owing to the equivalence.
However, for each t, the characteristic polynomial det(ANE(t) + F(t)) vanishes identically,
that is, the pencil {E(t), F(t)} is singular.

By means of the simple factorization

FE = =: AD

o O O
O O =
O = O
o O O
O = O
_ o O

we rewrite the original DAFE as the following DAFE with properly stated leading term.:
A(Dz(t)) +z(t) = q(t), teR.
Applying the transformation T(t) = K(t)x(t) to this DAE we arrive now at
0 of {0 0 O 1 0 0
0 (|0 1 ofz@®)+ [0 1 0]z(t)=q(), teR. (6)
0 o (0 —t 1 0 1

(®) B(t)

-1

:l>z<©©}—‘
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Owing to det(ANAD(t) + B(t)) = 1, the local pencil {AD(t), B(t)} is reqular with index
three. However, deriving

. ) 000 . 000 . 000
(D@)z(t)) = (D) [0 1 0| z(t)=D@#)(|0 1 0|x@)+D'(t) |0 1 0] z(t)
00 1 00 1 00 1
yields the further equivalent DAFE
0 1 0] [0 0O 1 0 0
0 —t 1|1(|0 1 0f=x@®)+ |0 0 0fxz()=q(t), tekR, (7)
0 0 0] |00 1 0 —t 1
A(t) D B(t)

the local matriz pencils {A(t)D, B(t)} = {E(t), F(t)} of which are singular for all t € R.

We see, aiming for the characterization of a variable coefficient DAE, it does not make
sense to check regularity and index of the local pencils, neither for standard form DAEs
nor for DAEs with properly stated leading term.

In this paper we provide a comprehensive analysis of linear DAEs (5) with continuous
coefficients and properly stated leading term by taking up the ideas of the projector
based decoupling described for constant coefficient DAEs in [LMT11b]. To handle the
time-varying case, we proceed pointwise on the given interval and generate sequences of
matrix functions G;(.) = Gi-1(.) + Bi—1(.)@;-1(.) and projector functions @;(.) instead of
the former sequences of matrices and projectors. Thereby we incorporate into B;(.) an
additional term that somehow comprises the variations in time. This term is the crucial
one of the generalization, since without it we would be back to the local matrix pencils.
Aside from the higher technical amount in the proofs, the decoupling concept applies pre-
cisely in the same way as for constant coefficient DAEs, and most results take the same
or slightly modified form.

In contrast to [LMT11b] which is devoted to square DAE systems, the present paper is
basically valid for arbitrary, possible rectangular DAEs. Following the arguments e.g. in
[KMO6], rectangular systems may play their role in optimization and control. However,
we underline, our interest is mainly directed to regular DAEs being square by definition.
In Sections 2, 3, and 5 we provide the basic matrix function sequences and admissible
projectors together with their main properties. This part follows the lines of [Mé&r02],
[Méar04b]. While [Mar02], [Mér04b] are devoted to regular square DAEs, we give now an
adequate generalization for systems being not necessarily square.

We begin to preliminary rearrange the DAE terms for better structural insight in Section
4. Later on we resume this topic twice: in Section 6 (Subsections 6.1 and 6.2) for regular
DAEs , and in Section 10 for over- and underdetermined DAEs.

The main objective of this paper constitutes in a comprehensive characterization of regu-
lar DAEs in Section 6, in particular, in their decoupling into the inherent reqular explicit
ODE (53) and the subsystem (64) which comprises the inherent differentiations. We
consider the constructive existence proof of fine and complete decoupling projector func-
tions (Theorem 6.18) to be the most important special result which exposes the DAE
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structure as the basis of the further investigations. The Subsections 6.3 and 6.5 are then
devoted to the intrinsic DAE theory, they offer solvability results, flow properties, and the
T-canonical form being an appropriate generalization of the Weierstrafi-Kronecker form.
Several specifications for regular standard form DAEs are recorded in Subsection 6.4. The
discussion of regular DAEs follows in essence the lines of [Mar04b|, and [Mér04al, while
the material on over- and underdetermined DAEs is to a large extend new.

Section 7 reflects aspects of the critical point discussion from [MRO06], [MRO7], [Ria08].
Section 9 provides widely orthogonal projector functions, a special sort of admissible pro-
jector functions which proves their value in theory and praxis (see [LMT11a]).

In Section 8 we explain by means of canonical forms and reduction steps how the strangeness
and the tractability index concepts are related to each other. Thereby we concentrate on
the constant rank requirements supporting these concepts. We show good reasons to con-
jecture these rank conditions to be fully equivalent. We prove the conditions associated
with the regular strangeness index ( to imply regularity with tractability index pu = ( —1.
As a byproduct in this section, we offer a projector based new reduction procedure.

2 The basic matrix function sequences

We study the equation
A(Dz) + Bz = q, (8)

with continuous coefficients
A€C(Z, L(R",R"), De€C(Z, LR™R"), BeC(Z,LR™R"),

and an excitation ¢ € C(Z,R*). Z € R is an interval. The coefficients A and D are
supposed to be well matched. Roughly speaking this means that there is no gap and no
overlap of the factors within the product AD. We use the two coefficients A and D to
figure out precisely all those components of the unknown function which are involved in
(8) with their first derivatives.

Definition 2.1 The leading term in equation (8) is said to be properly stated, if A(t) and
D(t) have constant rank r on Z, and it holds that

ker A(t) ®im D(t) = R", t € 7, 9)
and, additionally, there are functions ¥; € C*(Z,R"), i =1,...,n, such that
im D = span {dy,...,9,}, ker A=span{d,1,...,9,}.

The projector function R € C*(Z, L(R™)) given by

R:= [791...1%][ . ][191...19”]1 (10)

~—~
T

1s named the border projector of A and D, and of the DAE.
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If A and D form a properly stated leading term, then the relations
imAD =im A, ker AD = ker D, rank A =rank AD = rank D

are valid (cf. Lemma A.3), and A, AD and D have common constant rank r on Z.
Besides the coefficients A, D and the projector R we use a continuous pointwise generalized
inverse D~ € C(Z, L(R",R™)) of D satistying the relations

DD D=D, D DD =D, DD =R. (11)

Such a generalized inverse exists owing to the constant rank of D. Namely, the orthogonal
projector Pp onto ker D+ along ker D is continuous (Lemma C.2). If we added the fourth
condition D~ D = Pp to (11), then the resulting D~ would be uniquely determined and
continuous (Proposition C.4), and this shows the existence of a continuous generalized
inverses satisfying (11). By fixing only the three conditions (11), we have in mind some
more flexibility.

Here D™D =: P, is always a continuous projector function such that ker Py = ker D =
ker AD. On the other side, prescribing P, we fix at the same time D™,

Now we are ready for composing the basic sequence of matrix functions and subspaces to
work with. Put
Go:=AD, By:= B, Ny:=kerGy (12)

and choose projector functions Py, Qo, Il € C(Z, L(R™)) such that
Iy = Fy=1-Q, imGo=Np.
For i > 0, as long as the expressions exist, we form

Giy1 = Gi+ BiQi, (13)
Ni—i—l = kerGiH, (14)

choose projector functions P;;1,@Q;y1 such that Py = I — Q;y1, im Qi1 = Nyy1, and
put

Il = Hi-Pi+1,
Bi+1 = BiPi—GiJrlDi(DHiJrlDi)/DHi. (15)

We emphasize that B;.; contains the derivative of DII;,1 D™, that is, this term com-
prises the variation in time. This term disappears in the constant coefficient case (see
[LMT11b]). The specific form of the new term is motivated in Section 4 below, where
we consider similar decoupling rearrangements for the DAE (8) as in [LMT11b] for the
constant coefficient case.

We are most interested in continuous matrix functions G4 1, B;y1, in particular we have
to take care for DII; 1D~ to be smooth enough.

Important characteristic values of the given DAE emerge from the rank functions

rj :=rankG,, 7 > 0.



Example 2.2 Write the semi-explicit DAE

x4+ Buxy + Biaxs = ¢,
Boyx1 + Baaxa = qo,

with my + mg = m equations in the form (8) with properly stated leading term by

| B | Bu B _ I
a- [l oeir o me B B o [1]

I 0 0 0 I By
Go= {0 o}’QO: {o I}’Gl: {o Bm]'

If Boy 1s nonsingular on the given interval, then so is Gy. It results that Q1 = 0, thus
Gy = Gy and so on. The sequence becomes stationary. All rank functions r; are constant,
wmn particular ro = my, r1 = m.

Take also a look to the case if Bas = 0, but the product By Bis remains nonsingular. We
denote by 2 a projector function onto im Byy, and by By, a reflexive generalized inverse
such that B1oBi, = §), B3B12 = I. The matriz function G has now rank r1 = my,
and a nontrivial nullspace. We choose the next projector functions Q1 and the resulting
DIl D, say as

Then we have

Q 0 _
Ql—[_Bl_Q 0], DILD™ =1-Q.

This makes clear, for a continuously differentiable DI, D™, we have to assume the range
of Bz to be a C'-subspace (cf. D). Then we form the matriz functions

5 _ [Bu 0] 0 o — I+ (B +Q)Q By
L7 By 0O 0o o> %7 By 9 0|’

and consider the nullspace of Gs.
Gaz = 0 means
21+ (Bll -+ Q’)Qzl —+ 81222 = 0, Bngzl =0.

The second equations means Boy B1sB15z1 = 0, thus Bi,z1 = 0, and hence 22y = 0. Now
the first equation simplifies to z1 + Biaze = 0. Multiplication by By gives zo = 0, and
then z; = 0. Therefore, the matriz function G is nonsingular, and again the sequence
becomes stationary.

Example 2.3 We construct a matriz function sequence for the DAE (7) obtained in
Example 1.1. The DAFE is expected to be reqular with index three, as its equivalent constant
coefficient counterpart. We have

0 1 0 000 1 0 0 0 1 0
Alt)y=10 —t 1|, D({t)=1(0 1 0|, B({t)=10 0 0|, Go(t)=10 —t 1],
0 0 0 0 0 1 0 —t 1 0 0 O

and R() D(t). Set D(t)~ = D(t) and IIy(t) = Py(t) = D(t). Next we compute
G1(t) = Go(t) + B(t)Qo(t) as well as a projector Q1(t) onto ker G1(t) = Ny(t):

I 10 0 -10
0 0 0 0 t 0



This leads to

0 0 0 0 0 0 1 1 0
0 —t 1 0 —t 1 0O 0 O
A suitable projector function Qo and the resulting Bo and G3 are:
0 —t 1 0 0 0 11 0
0 —t(l—t) 1—t 0 —t 1 0 —t 1
Here the matriz functions G;, © = 0,1,2 are singular with constant ranks, and Gg s

the first matriz function being nonsingular. This is typical for reqular index three DAFES
(cf. Definition 10.1 below), and meets our expectation in comparison with the constant
coefficient case (see [LMT11b]). Observe that the nullspaces and projectors fulfill the
relations

No(t) N Ni(t) = {0},  (No(t) + Ni(t)) N No(t) = {0},
Q1(1)Qo(t) =0, Q2(1)Qo(t) =0, Q2(t)Qu(t) =
The matriz functions G; as well as the projector functions Q); are continuous here, and it

holds that im Gy = im G; = im G5 C im G3.

The matrix function sequence (12)-(15) generates subspaces

of nondecreasing dimensions.
To show several usefull properties we introduce the additional projector functions W :
7 — L(R*) and generalized inverses G : Z — L(R¥,R™) of G; such that

ker Wj =im Gj, (16)

Proposition 2.4 Let the DAE (8) have a properly stated leading term. Then, for each
matriz function sequence (12)-(15) the following relations are satisfied:

(1) ker I1; C ker B;41,

(2) WiJrlBiJrl = WiJrlBi = - z+lBO WZ’+1B7

Wi Bip1 = Wi—l—lBOPO' P Wi Boll;,
(3) Giy1 = (GiHW;BQ,)Fi 1 with Fipy = [+G; B;Q; and im G4, = im G;®im W, BQ);,
(4) N;Nker B; = N; N N;jy1 € N1 Nker Biyq,
(5) N;io1 N N; € N; N Nyyq,

(6)

6) im G; +im B; C im [AD, B] = im [Gy, By|.



Proof: (1) From (15) we successively derive an expression for B;,; being

Bis1 = (Bi1Piy — G;D~(DIL,D™YDII,_1)P; — Gy D~ (DIl D) DII
i+1

= B, P,P,—» G,;D™(DII;D")DII,
j=i
hence
i+1
Biy1 = Byll; — Y _ G;D~(DII;D™) DII, (18)
j=1

but this immediately verifies assertion (1).

(2) Because of imG; C im Gy for j < i+ 1, we have Wiy1B;11 = W11 Boll; due to
(18). Taking into account also the inclusion im B;Q; = im G;11Q; C im G4 C im Gy,
for j < 7, we obtain from (15) that Wi 1Bix1 = W1 BiP, = Wi By — Wi BiQ; =
Wit1Bi = W1 Bi_ 1Py = W1 Bi—1 = - -+ = W;;1 By, which proves assertion (2).

(3) We rearrange G, as

Giy1 =G, + GGy BQ; + (I — G,G;)B,Q; = Gi((I + G; B;Q;) + W;B;Q;.

Because of Q;G; = Q,FP,G; = 0 the matrix function F;;; = I + G, B;(); remains
nonsingular (see Lemma A.2) and the factorization

Giy1 = (G + WiBiQ)Fii1 = (Gi + W, BQ,) Fia

holds true. This yields assertion (3).

(4) z € N;Nker B;, i.e., Giz =0, B;z =0, leads to z = Q;z and G112 = B;Q;z = B;z = 0,
thus z € N; N N;;1. Conversely, z € N; N N, yields z = Q;z, Biz = BiQ;z = G112 =0,
i.e., z € N;Nker B; and we are done with assertion (4).

(5) From z € N;_y N N; it follows that z = Q;_12z and B;z = B;Q;_12 = B;P,_1Q;_12 =0
because of B; = B;P,_1 (cf. (18)), hence z € N; Nker B; = N; N N;1;.

(6) follows from im Gy + im By = im [Gy, By] by induction. Namely, im G; + im B; C
im [G, By] implies im B;Q; C im [Go, By|, hence im G4 C im [G;, Bo@;] C im [Gy, Bo),
and further im Bi+1 Q im [Gi+1, Bz] Q im [GQ, Bo] ]

3 Admissible projector functions and characteristic
values

In [LMT11b] on constant coefficient DAESs, useful decoupling properties are obtained by
restricting the variety of possible projectors (); and choosing somehow smart ones. Here
we take up this idea again, and we incorporate conditions concerning ranks and dimensions
to ensure the continuity of our matrix functions. Possible rank changes will be treated as
critical points.

Definition 3.1 Given are a DAE (8) with properly stated leading term, and a k € N.

(1) Fach continuous projector function Qo onto ker D is named admissible.
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(2) The projector functions Qq, ..., Q. are said to be admissible on T for the DAE (8),
if

(a) G; has constant rank r; onZ,i=0,... K,
(b) the intersection

j\-f\i = N; N (No+ -+ Niq)
has constant dimension u; = dim ]@ onZ, and Q; satisfies there the condition
X;=(No+ -+ N) O N, CherQi, i=1,...,5,

(c) II; is on I continuous and DII; D~ is continuously differentiable, i =0,. .., K.

(3) If the projector functions Qo, . ..,Qx are admissible, then the corresponding matriz
function sequence (12)-(15) is said to be admissible up to level k.

(4) If Qo,...,Q. are admissible with trivial intersections ﬁl,...,ﬁm then they are
named reqular admaissible .

For a DAE (8) with properly stated leading term, all projectors Qo = I — Py, Py = D™D
built by a continuous generalized inverse D~, are admissible, and 1o = rank D(-) = r.
If Qq,...,Q, are admissible, besides the nullspaces Ny, ..., N, and the intersection spaces

—~

Ny, ..., N, also the sums No+ ---+ N;, © = 1,...,k and the complements X;,..., X,
have constant dimension. Namely, the construction yields

No+-4+N 1 =X,®N;, No+--+N=X,&N;, i=1,...r
and hence

dim Ny = m — ry,
dim(Nog+---+ N;) =dim X; +m—r;, 1=1,... K.

It follows that

/ W—/

g .
dim X; dim N;
i—1 i i—1
=Y (m—rj—ujp)+m—r = E (m—rj)—g Uji1.
Jj=0 J=0 J=0

We are most interested in the case of trivial intersections ]@, yielding X; = No+- -+ N;_1,
and u; = 0. In particular, all so-called regular DAEs in Section 6 belong to this latter

class. Due to the trivial intersection N; = {0}, the subspace Ny + - - - + N; has dimension
dim(Ny + - - - + N;_1) + dim N;, that is, its increase is maximal at each level.

For instance, the projector functions @)y, @)1, Q)2 constructed in Example 2.3 are regular
admissible.
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The next proposition collects benefits from admissible projector functions. Comparing
with [LMT11b, Proposition 2.6] we recognize a far-reaching conformity. The most im-
portant benefit seems to be the fact that II; is a projector function along the sum space
Ny + - - -+ N; which now appears to be a C-subspace.

Proposition 3.2 Given are a DAE (8) with properly stated leading term, and an integer

k€ N.
If Qo, ..., Q. are admissible projector functions, then the following eight relations become
true fori=1,... K:

(1) keI'H,L:No—i——FN“

(2) the products II; = Py---P; and II;_ 1Q; = Py--- P_1Q;, as well as DII;D~ and
DII;_1Q;D~, are projector valued functions, too,

(3) No+ -+ Ni—y C ker II;_,1Q;,

(4) B; = BiIl;_4,

(5) N, C Nin Nit1, and hence N; C ﬁiﬂ ,

(7) D(No+---+ N;) =im DPFy--- P,_1Q; ®im DPy--- P,_9Q;—1 ® - -- ® im DFPyQ1,

(8) the products Q;(I — II;_1) and P;(I — II;_1) are projector functions onto ]@ and X;,
respectively.

Additionally, the matriz functions Gy, ...,G., and G, 1 are continuous.
If Qo, . .., Q. are reqular admissible then it holds for 1 =1,... K that

ker Hi—lQi = ker Qz’7 and Qsz = 0, j = 0, e ,’i — 1.

Proof: (1) See the proof of [LMT11b, Proposition 2.6] (1).

(2) Due to assertion (1) it holds that ker [, = Ny + --- + N;, which means II;,(); = 0,
j = 0,,@ With 0 = Hsz = HZ(I - .Pj>, we obtain Hz = HZ.PJ, j = 0,...,i s which
yields I1;11; = II;. Derive further

(Hilei)2 = (Hifl - HZ)(H’Lfl - Hz) = Hifl - Hiflni - Hinifl +Hz = Hileia

=II; 1 P =II;
(DILD™)? = DIL, D~D,ILD~ = DIL,D",
P
=10
(DII;.1Q;D™)* = DII;_,@Q; D" D II; 1Q;D~ = D(II;_,Q;)*D™~ = DII;,_1Q;D".

=Py

(3) See the proof of [LMT11b, Proposition 2.6] (3)

(4) The detailed structure of B; given in (18) and the projector property of 11;_; (cf. (1))
proves the statement.

(5) z € N; N (NO + -+ Nz'—l) means that z = QZ‘Z, I, 1z = O, hence

Gi—i—lz = GZZ -+ BzQzZ = Blz = Biﬂi_lz =0.

12



(6) For 0 < j <, it follows with (4) from

Gi1 = G+ BiQi = Go+ BoQo + B1Q1 + - -+ + BiQ;
= Go+ BoQo + BihhyQi+ -+ By - - Pi1Qi

that

GinQj = (Go+ BoQo + -+ BiFy - - Pi1Q;)@; = (G + B;Q;)Q; = B;Q;.
(7) From ker Py--- P, = Ng + - - - + N; it follows that

D(No+---+N;)=Dim (I — Fy---F) = Dim(Qo + PoQ1 + -+ Fy--- P_1Qy)
= D{imQy®im Q1 ®---dimFPy--- P,_10Q;}

This proves assertion (7).
(8) We have (cf. (3))

Q’L(I - Hzfl)Qz(I - Hifl) = (Q’L - Qzﬁzle»(I - Hiflz = Qz(I - Hi71>-

=0
Further, z = Q;(I — I1;_1)z implies z € N;, II; 1z = II; 1Q;(I — II;_1)z = 0, and hence
2 € N,
Conversely, from z € ﬁl it follows that z = Q;z and z = (I — Il;_1)z, thus
z = Q;(I — II;_1)z. Similarly, we compute

P(I =1L )P — i) = Bi(I — ;1) — Bi(I — I;—1)Qi(I — II;1) = P(I — 1I;).

From z = P;(I — II;_1)z it follows that Q;z = 0, II; 1z = II;(I — II;_1)z = 0, therefore
z € X;.

Conversely, z € X, yields z = Pz, z = (I — II;_1)z, and hence z = P;(I — II;_1)z. This
verifies (8).

Next we verify the continuity of the matrix functions G;. Applying the representation
(18) of the matrix function B; we express

Git1 =G+ Boll;_1Q; — Z GjDi(DHjDi)/DHileiv

Jj=1

which shows that, supposed the previous matrix functions Gy, ..., G; are continuous, the
continuity of II; 1Q; = II; 1 — II; implies G;;1 to be also continuous.
Finally, let Qq, ..., Q. be regular admissible. 11, 1Q;z = 0 implies Q;z = (I —II;_1)Q;z €

No+ -+ N;_1, hence Q;z € ﬁi, therefore ;2 = 0. It remains to apply (3). O

As in the constant coefficient case, there is a great variety of admissible projectors, and
the matrix functions G clearly depend on the special choice of the projectors @);, included
the way how the complements X; in the decomposition of Ny + --- + N;_; are chosen.
However, there are invariants, in particular invariant subspaces and their dimensions, as
shown by the next assertion.
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Theorem 3.3 Let the DAE (8) have a properly stated leading term. Then, for a given
k € NU{0}, if admissible projector functions up to level k do at all exist, then the
subspaces

iHlGj, N0+"'—|—Nj, Sj ::keerB, jzo,...,li—l—l,

as well as the numbers
rj:=rankG;, 1 =0,...,K, u; ::dimﬁj, j=1...,K,

and the functions rey1 2 Z — NU{0}, wugy1:Z — NU{0} are independent of the special
choice of admissible projector functions Qq, ..., Q.

Proof: These assertions are immediate consequences of Lemma 3.7 below at the end of
the present section. 0]

Definition 3.4 If the DAFE (8) has admissible projector functions up to level k, then the
ntegers

—~

rj:=rankG;, j=0,...,k, u;:=dimN;, j=1,...,k,

are named the characteristic values of the DAFE.

The characteristic values prove to be invariant under regular transformations and refac-
torizations (cf. Section 5, Theorems 5.1 and 5.3), which justifies this notation. As detailed
in [LMT11b], for constant regular matrix pairs, these characteristic values describe the
infinite eigenstructure [LMT11b, Corollary 6.3].

The associated subspace Sy = ker Wy B has its special meaning. At given t € Z, the
subspace

So(t) =ker Wy(t)B(t) = {z € R™: B(t)z € im Gy(t) = im A(t)}

contains all solution values z(t) of the solutions of the homogeneous equation A(Dz)" +
Bz = 0. As we will see later, for so-called regular index-one DAEs, the subspace Spy(t)
consists at all of those solution values, that means, for each element of Sy(t) there exists a
solution passing through. For regular DAEs with a higher index, the sets of corresponding
solution values form proper subspaces of Sy(t) .

In general, the associated subspaces satisfy the relations

Sl+1zsz+N1:Sl—|—No++NZ:SQ+N0++N“ iZO,...,K.

Namely, because of imG; C imG,,;, it holds that W,,; = W, W,;, hence
Siv1 = ker W, 1B = ker W, . )W, B O ker W;B = S;, and Proposition 2.4 (2) yields
Siy1 =ker Wiy 1Biy1 D ker Biyg 2 No+ -+ + N;.

Summarizing, the following three sequences of subspaces are associated with each sequence
of admissible projector functions:

imGy CimG, C...CimG; C... Cim[AD B] C R*, (19)
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and
SoCS C...CS5 C...CR™ (21)

All of these subspaces are independent of the special choice of the admissible projector
functions. In all three cases, the dimension does not decrease if the index increases. We
are looking for criteria indicating that a certain G, has already the maximal possible
rank. For instance, if we meet an injective matrix G, as it is the case in Example 2.3,
then the sequence becomes stationary with ¢, = 0, G,,11 = G, and so on. Therefore, the
smallest index p such that the matrix function G, is injective, indicates at the same time
that im G, is maximal, but im G,_; is a proper subspace, if ;1 > 1. The general case is
more subtle. It may happen that no injective G, exists. Eventually one reaches

imG, =im [AD B, (22)
however, this is not necessarily the case, as the next example shows.

Example 3.5 Set m =k =3, n =2, and consider the DAE
1 0 / 1 01
01 (B (]i) 8] x) + (0 1 0|z=gq. (23)
00 010

Here we have im [AD B] = R3. Compute successively

1 00 [0 0 0 000
Go= 10 1 0|, Qo=10 0 0|, Wo=10 0 0],
0 0 0] 0 0 1 00 1
(1 0 1] (1 0 0 000 100
Gi=101 0|, Q=10 00|, Wi=10 0 0|, Bi=10 1 0f,
0 0 0] -1 0 0 00 1 010
2 0 1] [0 0 0
Go=10 1 0|, IL=1(0 10
0 0 0 0 0 0

We read off No = {2z € R : 2y = 20 = 0}, Ny = {2 € R®: 20 = 0,2 + 23 = 0} and
Ny ={z € R3: 25 =0,2214+25 = 0}. The intersection NoN Ny is trivial, and the condition
1Qo = 0 is fulfilled. We have further

No+ Ny ={2€R*:2p=0}, (No+N))NNy =N, =N, C No+ Ny,
thUSNO—I—Nl:NO—f-Nl—I—NQ andNO—l—leNQ@NO.

We can put Xo = Ny, and compute

1 00
Q=10 0 0|, with Xy Cker@Qy, By=
00

0
1
-2 1

o O O
o O O

The projectors QQg, Q1, Q2 are admissible. It holds that BoQ)o = 0, G3 = Go, N3 = N,
and Il = 11y, further

S[):{ZER?):ZQ:O}, Sog=51=259=25;5.
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We continue the matriz function sequence by Q3 := Q2, B3 = By, BsQ3 = 0, G4 = Gj3
and so on. It results that no G; is injective, and

imGy=...=imG; =...=R* x {0} Cim[AD B] =R?,
So=...=8=...=R x {0} xR,
N(]CN0+N1=N0+N1+N2:...:RX{O}XR,

and the maximal range is already im Gy. A closer look at the DAE (23) gives

/
r;t+ri+x3 = qi,
/
1'2 + Ty = (2,
T2 = (3.

This model is somehow dubtous. It is in parts over- and underdetermined, and much place
for interpretations is left (cf. also [LMT11b, Section 7]). In Section 10 below, this system
0
1s considered as an explicit ODE for the component Dx = [?], with Qox = | 0 | to be
2
Zs3
chosen arbitrarily, accompanied by the consistency condition WoBx = Wyq, i.e. x5 = qs.

We take a closer look at problems of this kind in Section 10. Our next example is much
nicer and more important with respect to applications. It is a so-called Hessenberg form
size three DAE and might be considered as the linear prototype of a system describing
constrained mechanical motion.

Example 3.6 Hessenberg size three DAFEs are relevant for the simulation of constrained
mechanical motion. Consider the system

37/1 By Bia Bis X qi
zh| + |Ban By 0 To| = | G2 (24)
0 0 Bz 0 x3 q3

with m = mq + mo + m3 equations, m; > mo > mg > 1, k = m components, and a
nonsingular product B3sBa1 Biz. Put n = my 4+ mo,

I 0 7 00 I 0 Bll Blg B13
A=10 I}, D:[O I O}’ D =10 I|, B=|By By 0|,
0 0 0 0 0 By 0

and write this DAE in the form (8).

Owing to the nonsingularity of the msxmg matriz function product Bss Boy Bys, the matriz
functions B1z and By Bys have full column rank ms each, and Bss has full row rank ms.
This yields im [AD B] = R™. Further, since By3 and Bgy Bys have constant rank, there
are continuous reflexive generalized inverses Biy and (B Bi3)~ such that (see Proposi-

tion C.4)

B3B3 =1, )y :=DB13B; 1S a projector onto im B3,
(321313)_321B13 = [, QQ Z:Bnglg(Bnglg)_ 1S a p?"OjGCtO’f’ onto 1im Bnglg.
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Let the coefficient function B be smooth enough so that the derivatives used below do
exist. In particular, 2y and €y are assumed to be continuously differentiable. We start
constructing the matriz function sequence by

I 00 000 By B2 Bis I 0 B3
GO = 0 I O 5 QO == 0 0 O 5 B() - BQl BQQ 0 5 Gl == 0 I O
0 00 00 I 0 Bs 0 00 0

It follows that
NOZ{ZERmizlzo, 22:0}, le{ZGRm221+Bl3Z3:O, ZQZO},
ﬁlzNOlez{O}, XlzNo, NO—FNl:No@Nl:{ZERm:ZQ:O,ZleimBlg}.

The matriz functions Gy and Gy have constant rank, ro = r1 = n. Compute the projector
functions

Q0 00
Q=10 0 0, DHID‘:[[_(]Ql ?]
By 00

such that im Q)1 = Ny and Q1Qo = 0, that is ker Q1 O X1. Q) is continuous, and DII{ D~
1s continuously differentiable. In consequence, QQg, Q1 are admissible. Next we form

Bll -+ Qll 312 0 I+ (Bll -+ Qll)Ql 0 BIB
B, = By, By 0f, Gy= By I 0
0 Bsy 0 0 0 O
21 -+ 31323
For z € Rm™tmetms qyith 2, € ker €y it holds that im Gy = 29 . This proves the
0

inclusion
im Gy CR" x {0} = {Ghz: 2 € R™MT™HMs ) € ker Q;} C im G,

and we obtain im Gy = R"™ x {0}, and ry = rank Gy = my +mg = n. Then we investigate
the nullspace of Gy. If z € R™ satisfies Goz = 0, then

21 4 (By1 + Q)21 + Biszs = 0, (25)
Bnglzl + 20 = 0. (26)

In turn, equation (25) decomposes into

([ — Ql)zl + ([ — Ql)(BH + Qll)QlZl =0,
Similarly, considering that im By B13 = im By B13Byy is valid, we derive from (26) the
relations

29 = oz, Bizz1 = —(Ba1B13) 29.
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Altogether this yields

Ny = {Z € R™ : 29 = Oozg, 21 = E1{220, 23 = 539222}, ]@ = {0}, Xy = Ny + Ny,

with
E = —([ — (I — Ql)(Bll + 93)91)313(321313)_
=—I - —N)(Bi1 +Q))Bi3(B21Bi3) ™,
E:=—B(I+ (B + QI1>>BIB<B2IBI3)7'

Notice that & = E1Qq, E5 = E3Q. The projector functions

0 & O
Q=10 Qy 0|, DILD = I _OQl _<§:%1)51 7
0 53 0 2

fulfill the required admissibility conditions, in particular, Q2Qo = 0, Q2Q1 = 0, and hence
Qo, Q1, Q2 are admissible. The resulting By, Gz have the form:

Bin Biz 0O I+ (B + Q) Bi1& + Biafs B3
By = |By By 0|, Gs= Bay Yy I+ Byn& + Baafly 0
0 Bz 0 0 B3y 0

The detailed form of the entries B;; does not matter in this context. We show Gg to
be nonsingular. Namely, Gzz = 0 implies Bs3s$ozo = 0, thus Q929 = 0, and further
Boy1Qz1 + 22 = 0. The latter equation yields (I — Q3)z9 = 0 and By1$12y = 0, and
this gives Q121 = 0, 20 = 0. Now, the first line of the system Gsz = 0 simplifies to
21+ Bizzzs = 0. In turn, (I — Q1)z; = 0 follows, and hence z; = 0, z3 = 0. The matrix
function G5 is nonsingular in fact, and we stop the construction.

In summary, our basic subspaces behaves as

imGy =imG; =im Gy C imGs =im [AD B] = R™,
NOCND—‘I_N]_CNO+N1+N2:NO+N]_+N2+N3CRm.

The additionally associated projector functions W; onto imG; and the subspaces
S; = ker W; B are here:

Wy = , Wo=Wi=W,, Ws=0,

o O O
o O O
~ O O

and
So={2 €ER™: Bpzn =0}, Sy==5 =5CS5=R"

This special subspace behavior is typical for the large class of DAFEs named Hessenberg
form DAFEs. While im G3 and S3 reach the mazimal dimension m, the dimension of the
resulting maximal subspace Ny + N1 + Ny is less than m.

Notice that the relation WyBQo = 0 indicates that im Gy = im G holds true, and we
can recognize this fact before explicitly computing Gy (cf. Proposition 2.4(3)). Similarly,
W/BQ, = 0 indicates that imG; = imGs. Furthermore, we know that
r3 = ro + rank (WhBQ2) = n + m3 = m before we compute Gs.
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Now we come to an important auxiliary result which stands behind Theorem 3.3, and
which generalizes [LMT11b, Lemma 2.10].

Lemma 3.7 If there are two projector function sequences Qo, ..., Q. and Qq,...,Q\,
both admissible on T for the DAE (8), then the corresponding matriz functions and sub-
spaces are related by the following properties:

(1) kerﬁj:]\70+-~+]\7j:No+--~+Nj:kerHj, jIO,...,H,
(2) Gj :Giji
_ _ _ Jj—1
Bj = Bj — GijDi(DHjDi)/DHj + Gj Z ng[ﬂ, 7=1,...,K,
=0

with nonsingular matrix functions Zy, ..., Z.i1 given by
Z() = ], Zi+1 = )/;+IZi7 1= 0,...,/43,

Vi o= T+ Qo(Qo— Qo) =1+ QOQQPOa

1—1
Yiqn = I+ Qz’(ﬁi—IQi —II,_1Q;) + Z QiA4Qi, i =1,...,K,
1=0

and certain continuous coefficients Uy that satisfy condition Ay = Wylli_1,
(3) Z{(N;Nn(No+---+N;i_1))=N;N(No+---+Ni_q), i=1,...,k,

(4) Gupa = Gr125+1, No +-+ Nup1=No+ -+ Nepa,
ZH+1(N,{+1 N (NO + ce + Nﬁ)) - NK+1 N (NO —|— te ‘|— N,{)

Proof: We have Gy = AD = Gy, By = B = By, ker Py = Ny = Ny = ker P,, hence
Py = PPy, By = BoP),

The generalized inverses D~ and D~ of D satisfy the properties DD~ = DD~ = R,
D~D = P,, D~D = P,, and therefore D~ = D"DD~ = D~DD~ = PpD~, D~ = PyD".
Compare G = Gy + ByQp and

G1 = Go+ ByQo = Go+ ByQo = Gy + ByQoQo
= (Go+ BoQo)(Fo + Qo) = G124,

where Z; ;==Y .= Py + Qo = I + QoQoPy = I + Qo(Qo — Qo). 7, is invertible, it has the
inverse Z; ' = I — QoQoFp.

The nullspaces N; and N; are, due to G; = G174, related by N; = Zlel C Ny + M.
This implies No+ Ny = No+(Z;*N1) € No+ Ny. From Ny = Z;N; € No+N; = N+ Ny,
we obtain Ny + N; = Ny + Nj.

Since the projectors PyP; and PyP, have the common nullspace Ny + N; = Ny + Ny, we
may now derive

=P PPy
— — Pt _ —
DFP,PD- = DPRP PP PhD” =DF,PP.PPD =DFPPD DF,P,D,
DP()PlDi = DP()PlDiDpOplDi.
Taking into account the relation 0 = G1Q7 = GiQ: + Gi1(Z, — [)Ql, thus

G1Q1 = —G1(Z, — I)Q; we obtain (cf. Appendix B for details)
Bl - Bl - G1Z1D_(Dp0P1D_),D.
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This gives the basis for proving our assertion by induction. The proof is carried out in
detail in Appendix B. A technically easier version for the time-invariant case is given in
[LMT11b]. .

4 Preliminary decoupling rearrangements

In this section we use admissible projector functions @, ..., Q. to rearrange terms in
the DAE (8) in a similar way as it is done in [LMT11b] on constant coefficient DAEs for
obtaining decoupled systems. The objective of the rearrangements is to place a matrix
function G, in front of the derivative component (DIl,x)’, the rank of which is as large
as possible, and at the same time to separate terms living in Ny + - -+ + N,.

We emphasize that we do not change at all the given DAE, and do not transform the
variables. We work just with the given DAE and its unknown. What we do are rear-
rangements of terms and separations or decouplings of solution components by means of
projector functions. We proceed stepwise. Within this procedure, the special form of the
matrix functions B; in (15) become appearend to make good sense.

Later on (see Definitions 6.2 and 10.1) the tractability index of the DAE is assigned to
the smallest integer p such that the rank r, is maximal. This is valid for general, possibly
rectangular DAEs. The rearranged DAE versions serve then as the basis for the further
decouplings and solutions.

Rewrite first (8) as
GoDi (DZ’)/ + Bo.ﬁlf =4dq, (27)

and then as
GoD™(Dz) + By(Qox + Pyx) = q

and rearranging this in order to increase the rank of the leading coefficient to

(GO + B()Q())(D_(Dl’)/ + Q().T) + B()P()ZE =4q,

or
GlDi(D.%), -+ B(]P[).CL' -+ GlQox = (. (28)
Compute
PlD_ (DZL')/ = PQPlD_(DZL')/ + Q()PlD_(DIL‘)/
= D DPyP.D ™ (Dz) + QyP.D ™ (Dz)
= D7<DP0P13§')/ — Di(DP()PlDi),Daf + Q()PlDi(Dx)/
= D_(Dpopll')/ — D_(DP()PlD_)/DI — (I — PQ)QlD_(DiL‘)/
= D_<DH1I>/ — D_(DﬂlD_)/Dl’ — (I — Ho)QlD_<DHOI>/,
hence

G.D~(Dz) = G1D~(DIL,z) — GyD~(DII,D™Y DPyz — G1(I — I1))Q, D~ (DIIyz)'.
Inserting this into (28) yields
G.D~(DILiz) + (BoPy— GiD~(DII,D™YDPy)x
+ Gi{Qox — (I — 1Io)@1 D™ (Dx)'} =g,
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and, regarding the definition of the matrix function By,
G1D™(DILix) + Bix + G1{Qox — (I — I1))Q: D~ (Dz)'} = gq. (29)
Note that, if Ny N Ny = 0, then the derivative (DFyPyz)" is no more involved in the term
O\D~(Dz) = Q,D~DPyQ: D~ (Dz) = Q1D (DPyQz) — 1D~ (DPyQ:D~) Da.

In the next step we move a part of the term Bjx in (29) to the leading term, and so on.
Proposition 4.1 describes the result of these systematic rearrangements.

Proposition 4.1 Let the DAE (8) with properly stated leading term have the admissible
projectors Qo, . .., Q., where k € NU{0}.

(1) Then this DAE can be rewritten in the form

Kk—1

GxD™(DIx) + By + G > {Quz+ (I — ) (P, — Qua P)D™ (DILx)'} = q. (30)

=0

(2) If, additionally, all intersections ]@, i =1,...,k, are trivial, then the DAE (8)
rewrites as

G.D™(DIl.z) + Bz

L 31
+ G Z{le — (I = I))Qu1 D™ (DIL Q) + ViIDILx} = g, (31)

=0

with coefficients

Vi= I~ IL){RD (DI,D”) — Q1D (DI}, D)} DILD™, 1 =0,...,5 — 1.

Comparing with the rearranged DAE obtained in the constant coefficient case (cf. [LMT11b,
(38)]), now we observe the extra terms V; caused by time-dependent movements of certain
subspaces. They disappear in the time-invariant case.

Proof of Proposition 4.1:

(1) In case of k = 0, equation (27) is just a trivial reformulation of (8). For k = 1 we
are done by considering (29). For applying induction, we suppose for i + 1 < k, that (8)
rewrites as

G:D™(DIIx) + Biz + G Y {Quz + (I — I)(P— QuaPR)D™(DIx)'} =q.  (32)
=0

Represent B;x = B; P,x + B;Q;x = B;P;x + G;1Q;x and derive

G,D~(DILiz) = GiprPoiP.D-(DILz)
— Gin{[lin P,D~(DIz) + (I — I1) Py P,D~(DIT,z)'}
— G {D DI\ D~ (DIz) + (I — )Py P,D-(DITz)'}
— G D (DIpz) — Gy D~ (DI D™ Y DIl
+Gip1(I — IL)(P; — Qi1 P) D™ (DILx)").
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Taking into account that (I — I1;) = QoPy -+ P+ -+ Q;_1 P, + Q; and G;Q; = Gi11Qy,
[=0,...,1—1, we realize that (32) can be reformulated to
Gi+1D7(DHi+1$), -+ (szz - G/L'JrlDi (DHZJrlDi),DHz).Z'

i—1

+ GinQiw + Giyi Y {Qiw + (I = Ih)(F — QuaP)D™ (DITx)'}
=0

+ G (I = IL) (P, — Qi1 P) D™ (DILix) =

We obtain in fact

Giy1D™(DIi1) + Bz + G Y Qe+ (I — IL)(P — Qua P)D™(DILz)'} = g
1=0
as we tried for.
(2) Finally assuming N; = {0}, i = 1,..., &, and taking into account Proposition 3.2, we
compute the part being in question as

k—1 k—1

Fi=> (I—)(P—QuP)D (DIw) = (I = IL)(P, — Qiu1) D™ (DIz)
=0 =0
k—1

([ - Hl)[PlD_(DHl.CE)/ - Ql+1D_DHlQl+1D_<DHl.CI?)/].

Applying the relations

(DMLY = (DILD™)Y (D) + DILD- (D),
(I = I)PD-DILD™ = (I - IL) PRI, D™ =0,
DILQi 1D~ (DIz) = (DILQix) — (DILQi1 D™ ) DIz,
Qi1 (DILQi 1 D7) DII = Quir (DILD™) DI — Qi1 (DI D™) DII
= —Qu1 (DIl D™) DII,,

we obtain, with the coefficients V; described by the assertion,

k—
F =Y (I-1)[PD (DILD") DIz + Qi1 D~ (DIQi41 D™ ) DIl
=0

,_.

T
L

— QD™ (DILQux)') =) [ViDILix — (I — I1;) Q41 D™ (DIL,Qi412)'],

N
Il
o

and this completes the proof. [l

How can one take use of the rearranged version of the DAE (8) and the structural in-
formation included in this version? We discuss this question in Section 6 for the case of
regular DAEs, that is for m = k, and if a nonsingular G, exists. We study the general
case in Section 10. At the moment, to gain a first impression, we cast a look on the
simplest situation, if already Gy has maximal rank. Then the DAE (27) splits into the
two parts

GoD™(Dz) + GoGy Box = GoGgq, WoBoxr = Wog. (33)
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Since im GGy is maximal, it holds that im ByQ)y C im G; = im G, hence Wy By = Wy By F».
Further, since DG, Gy = D, we find the DAE (27) to be equivalent to the system

(DZE), - R,DJ] + DGaBoD_DZE + DGaBoQofL‘ = DGaq, W()B()D_DZE = qu, (34)

the solution of which decomposes as * = D~ Dz + Qpx. It becomes clear, this DAE
comprises an explicit ODE for Dz, that has an undetermined part Qox to be chosen
arbitrarily. The ODE for Dz is accompanied by a consistency condition applied to Dx
and ¢q. If Gg is surjective, the consistency condition disappears. If Gy is injective, then
the undetermined component Qpx disappears. If GG is nonsingular, what happens just
for m = k, then the DAE is nothing else a regular implicit ODE with respect to Dz.
Later on we assign the tractability index zero to each DAE whose matrix functions G,
have already maximal rank .

Of course, if the tractability index is greater than zero, things become much more subtle.
We refer once again to the discussion in Sections 10 and 6.

5 Invariants under transformations and refactoriza-
tions
Given is a DAE (8) with properly stated leading term. We premultiply this equation

by a nonsingular matrix function L € C(Z, L(R¥)) and transform the unknown function
x = KZ by means of a nonsingular function K € C(Z, L(R™)) such that the DAE

A(Dz)' + Bz =q (35)

results, where ¢ := Lq, and

A:=LA, D:=DK, B:=LBK. (36)
The new coefficients are continuous, too. A and D inherit from A and D the constant
ranks, and the leading term of (35) is properly stated (cf. Definition 2.1) with the same
border projector R = R as ker A =ker A, im D = im D.
Suppose that the original DAE (8) has admissible projectors Qo,...,Q.. We form a
corresponding matrix function sequence for the transformed DAE (35) starting with

GO == AD - LADK - LG(]K, BO - B - LB()K,
Qo = K'QK, D =K'D, P=K'RK,
such that DD~ = DD~ = R, D~ D = Py, and
él == Go + BOQO == L(GO + B()Q())K = LGlK
This ylelds Ng = K71]Y0, Nl = KﬁlNl, Nole = Kﬁl(N(]ﬂle Choose Ql = KﬁlQlK
what corresponds to X; := K~!'X,. Proceeding in this way at each level, i = 1,...,x,
with i
Qi = K'Q:K

it results that [I; = K~'II,K, DII,D~ = DII,D~, X; = K~'X,, NU; = K~'(N;), and

Giy1 = LGi1 K, By = LB K.
This shows that Qo,...,Q, are admissible for (35), and the following assertion becomes
evident.
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Theorem 5.1 If the DAE (8) has admissible projectors up to level k € N, and charac-
teristic values r;, u;, i =0, ..., K, then the transformed equation (35) has also admissible
projectors up to level k, and the characteristic values coincide, i.e. 7; = r;, U; = u;,
1=1,...,K.

By Theorem 5.1 the characteristic values and the tractability index are invariant under
transformations of the unknown function as well as under premultiplications of the DAE.
This feature seems to be rather trivial.

The invariance with respect to refactorizations of the leading term, which we verify next,
is more subtle. For a given DAE (8) with properly stated leading term, we consider the
product AD to represent a factorization of the leading term and we ask whether we can
turn to a different factorization AD = AD such that ker A and im D are again transversal
C!-subspaces. For instance, in Example 1.1, equation (7) results from equation (6) by
taking a different factorization.

In general, we describe the change to a different factorization as follows:
Let H € CY(Z, L(R*,R") be given together with a generalized inverse H~ € C'(Z, L(R",R?))
such that HHHH- =H~, HH H = H, and

RHH R =R. (37)

H has constant rank greater or equal the rank of the border projector R. In particular,
one can use any nonsingular H € C'(Z, L(R™)). However, we do not restrict ourselves to

square nonsingular matrix functions H.
Due to AR = ARHH™ R we may write

A(Dz) = ARHH™ R(Dz) = ARH(H RDz) — ARH(H R)' Dz
= AH(H Dz) — AH(H R)'Dx.

This leads to the new DAE
A(Dz)' + Bz =¢q (38)

with the continuous coefficients
A=AH, D:=H D, B ::B—ARH(H*R)’D. (39)

Because of AD = AD we call this procedure that changes (8) to (38) a refactorization of
the leading term. It holds that

ker A=ker AH =ker RH, imD=imH D =imH R,

further (H-RH)* = H RHH RH = H~ RH. Tt becomes clear that H~RH € C'(Z, L(R?))
is actually the border projector corresponding to the new DAE (38), and (38) has a prop-
erly stated leading term.

We emphasize that the old border space R™ and the new one R* may actually have different
dimensions, and this is accompanied by different sizes of the involved matrix functions.
Here, the only restriction is n,s > r. The next example underlines the need of those
changes.
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Example 5.2 The semi-explicit DAFE

'y + By + Biaxs = @1,
Boxy + Bagxa = o,

with my + mg = m = k equations can be put into the form (8) in different ways.

a) Choose n = m,

L0 L0 | Bu B - _
A_{O O}’ D_{O O}’ B_{le BQQ}’ bm=0D.

b) Choose n = m,, A = [(ﬂ,l—): [I 0], and B=B, D™ = {é]

In both cases, it results that
A~ |10 =~ 100 A~ | DB
GO - GO - |:0 O:| ) QO - QO - |:O ]:| ) Gl - Gl - |:O B22:| .

Observe that with H = {é—}, H- = [I O} we can write A = AH, D = H™D, and
AD = AHH-D = AD. The condition (37) is fulfilled. Therefore, the DAE in b) results
from a refactorization of the DAE in a).

Theorem 5.3 Let the DAE (8) have a properly stated leading term and admissible pro-
jectors up to level k € N as well as characteristic values ro, ..., Tx, U, ..., Us.

(a) Then the refactorized DAE (38) has also a properly stated leading term and admis-
sible projectors up to level k. Its characteristic values coincide with that of (8).

(b) The subspaces im G;, No+ ...+ N;, i =0,...,K, are invariant.

Proof: Put F; := 1.
We use induction to show that the following relations are valid:

Gi = GiF;---Fy, (40)

Qi = (B FR)7'QF - F, I,1Q;=1I,1Q; I=1II, (41)
i1

B; = B;—G;D H(H R)DII; + G, Z QjZijlI; 1, (42)
=0

with nonsingular

i—2

Fo=1+PF_, Z Qi Zi ;I Qi 1, 1=1,... K.

J=0

The coefficients Zy; are continuous matrix functions which special form does not matter
at all.

Since Gy =
that ]_70 =

A = AD = Gy we may choose D~ = D H, Qo = Qo. It results
Iy, B = B = B— ARH(H R)D and ByQy = BQoy = ByQo, hence
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Gl = éo —EB,OQO = GO +730Q0 = G1 = GlFl. Choose Ql = Ql = Flel such that
Hl = Hl, Hng = H()Ql, DHlD_ = H_DﬂlD_H, and further

Bl == BOPO - élDi(DﬁlDi)/Dﬁo
= ByPy— ARH(H R)D — G\D"H(H™DII,D~H)'H™ DII,
= ByPy— G,D (DII,D™)DIly + G,D~(DII,D~)'DII,
—ARH(H R)D — GyD"H(H™RDII,D-RH)'H™ DII,
= By +G D (DILD™)DIly— ARH(H R)D — G,D"H{(H R)'DII,D"RH
+H R(DII,D™)YRH + H RDILLD™ (RH)'}H D
= By —ARH(H R)D — G,D"H(H™R)'DII, — G{IIL,D~(RH)H™RD
= By —GD"H(H R)DIl, — ARH(H™R)'D + G1II,D"RH(H™ R)'D.
In the last expression we have used that
D (RHH R)'D=D"R'D =0.
Compute G1/[1D"RH(H R)D — ARH(H R)D = G,(II, — I)D-RH(H™ R)'D and
Gi(II = 1) = Gi((I = Qo) — Q1) — 1) = Gi(—Qo — Q1 + QoQ1)
G1(—Qo + QoQ1) = —G1QoP1.

This yields the wanted expression
B, =B, -~ G\D H(H R)DII, + G1QoZ1oI1,

with Zjp := —Q()PlDiRH(HiR)/D
Next, supposing the relations (40)—(42] to be given up to ¢ we show their validity for ¢+ 1.
Derive

Giy1 = Gi+BiQi={Gi+ Bi(F;-- F)'Qi}F;- - |y
= {Gi+ BiLiy(F;--- Fy) 'Qi}Fi - - - I,

and, because of IT;_F;'--- F[l = II;_1, we obtain further

i—1
G = {Gi + BQ; — G;D”H(H™ R)'DILQ; + G, Z QjZini—lQi}Fi B

Jj=0

i—1
= {Gi—i-l + G, Z QjZini—lQi}Fi Ry
j=0

i—1

= Gz‘+1{]+B‘ZQsz‘jHi—1Qi}Fi'"F1
=0

= Gl kb I,

with nonsingular matrix functions

i—1 i—1
Fion=1+Ph Z Q;Zii11;_1Q;, Ffﬁ =1-F Z Q;Zi11;_1Q;.
=0 =0
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Put Qis1:= (Fip1 - F1)7'Qip1Fiy1 -+ F1, and compute

Qi1 = I1;Qiq = ILF -+ Fz‘:rllQiHEH - Fy
=1;Qi1 Fipr--- Fy = 1L,Qi i ILF - - - Fy = 11;Qi 1 I = 11,Q444,
Iy = 1I; — I;Qiq = II; — I;Qiq = II;44.

It remains to verify the expression for B;,;. We derive

Biyw = BP,—GiD (DI 1D™)DII,
B;IT; — Giz1Fipq--- FlD_H(H_DHHlD_H)/H_Dﬂi,

and
i—1
Bii = { B, —G:,D"H(H RYDIL, + G; Y szijni_l}ni
j=0
—~Gis1(Fyyy---F, —I)D”H(H DII,;,D~H)' H™ DII,
~GiD"H{(H™RYRDII,\,D"RH + H™R(DII;;;D”) RH
+H™RDII, D (RH)'}H™ DII,,
and
i—1
By = BiPi—GiD H(H R)DIL; +G; Y Q;Z;1I;
j=0
—GiD"H(H™ R) DI,y — Giyy D™ (DII;4 D7) DII;
~Gy Il D~ (RH) H™ RDII;
—~Gi1(Fyyy--- B — I)D"H(H™ DII;;,D~H) H™DII,,

and

Bit = Bisi — Gt D-H(H R)DIys1 — Giy D~ H(H™R)DII
i1
+Giy1 ;1 D”H(H™ R)'DII; + G\ P, Z Q;Zi;1;
=0

~Gi(Fyp1 - F,—I)D"H(H DII,,..D"H) H™ DII,.
Finally, decomposing
i1 i1 i—1
P Z Q;Zi11; = Z Q;Zi;1I; — Q; Z Q;Zi11;,
j=0 j=0 j=0
and expressing .
Fz‘+1 te Fl -1 = ZQleiJrl,ja
j=0

and taking into account that

Gisr{Iliy1 — PYD™H(H™R)'DII; = Gis1 Y Qi%Bi41;D”H(H™ R)'DII,

Jj=0
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we obtain

Bip1 = Biyy — Gipn D"H(H R)' DIy + Y Q;Zi1 ;DIT;.

J=0

O

By Theorem 5.3, the characteristic values and the tractability index are invariant under
refactorizations of the leading term. Thereby, the size of A and D may change or not (cf.
Examples 1.1 and 5.2).

6 Regular DAEs

6.1 Regularity and basic decoupling
We define regularity for DAEs after the model of classical ODE theory, where the system

A2/ (8) + B(t)z(t) = q(t), teT, (43)

with continuous coefficients, is named an implicit regular ODE or an ODE having solely
regular line elements, if the matrix A(t) remains nonsingular on the given interval. Roughly
speaking, in our view, regular DAEs should be such that the corresponding homogeneous
versions have finite-dimensional solution spaces, and no consistency conditions related to
the excitations ¢ will arise for inhomogeneous equations. This rules out the DAEs being
non-square. Additionally, each restriction of the DAE to a subinterval should inherit also
the space of admissible excitations.

In case of constant coefficients, regularity of DAEs is bound to regular pairs of square
matrices. In turn, regularity of matrix pairs can be characterized by means of matrix
sequences built by admissible projectors, and the associated characteristic values, as de-
scribed in [LMT11b, Section 5]. A pair of m x m matrices is regular, if and only if there
is a characteristic value r, = m. Then the Kronecker index of the given matrix pair
results as the smallest such index p. The same idea applies to DAEs with time-varying
coefficients, too. However, in distinction to the case of constant matrices in [LMT11b], we
are now facing matrix functions. While, in case of constant coefficients, admissible pro-
jectors do always exist, their existence is now tied to several rank conditions. These rank
conditions do not represent a mistake in the construction, but they are indeed relevant
for the problem. In particular, in case of the implicit ODE (43), each point at which the
matrix A(t) becomes singular is a critical point, and different kind of singularities may
arise (e.g. [KKWO01]).

We turn back to equation (8), i.e.,
A)(D(t)z(t) + B(t)z(t) = q(t), t €T, (44)
We are looking for solutions in the function space
CH(ZT,R™) = {x € C(T,R™) : Dz € C'(Z,R")}.

If v, € ChH(Z,R™) denotes a solution corresponding to the excitation ¢, and
Thom € CH(Z,R™) satisfies the homogenous DAE

A)(D(t)z(t)) + B(t)z(t) =0, t eI, (45)
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then the sum x, 4 Zpom is also a solution of the excited DAE (44). This linearity property
motivates special attention to the solution structure of the homogenous DAE.

Definition 6.1 The subspace
Sean(t) :={z € R™: 3w € C,(Z,R™), A(Dx)' + Bx =0, z(t) = 2}, t € T,

is said to be a canonical subspace of the DAE (44).

The canonical subspace S, (t) represents the geometric locus of all solution values of the
homogenous DAE at time ¢. For the implicit regular ODE (43), Seun(t) = R™ is simply
the entire time-invariant state space. In contrast, for DAEs, the inclusion S.,,(t) C Sy(t)
is valid. While Sy(t) is the obvious constraint associated to the homogenous DAE (43),
the canonical subspace represents the final constraint which includes all hidden ones.

In particular, for the semi-explicit DAE in Example 2.2, the resulting

Scan(t) = {Z € le—l—mg LR = —ng(t)_1B21(t)Zl} = Sg(t)

is a my-dimensional time-varying subspace of R™, supposed By (t) remains nonsingular.
If Bas(t) =0, but By (t)Bia(t) remains nonsingular, then

Scan(t) = {Z € le—l—mg 2B21<t>21 = 0,
zg = —[(Ba1B21) ' Ba1(Bi1 — (Bi2((B21Ba1) ™' Ba)')]() 21}

is a proper subspace of the obvious constraint So(t) = {z € R™*™2 : By (t)z; = 0}.
Example 1.1 confronts us with a zero-dimensional subspace Sg.,(t) = {0}.

Except for those simpler cases, the canonical subspace S, is not easy of access. It co-
incides with the finite eigenspace of the matrix pencil for regular linear time-invariant
DAEs. Theorem 6.15 below provides a description for general regular DAEs (44) by pro-
jector functions.

Omitting the argument ¢, we write (44) also in the form
G()D_ (Dl’)/ + B()l‘ =4dq, (46)

where the begin of our matrix function sequence (12) is already included.

Definition 6.2 The DAE (44) with properly stated leading term and m = k is said to be

(1) regular with tractability index zero if ro = m,

(2) regular with tractability index > 1 if there are admissible projector functions
Qo, .., Qu-1 such that r,—y <1, =m,

(3) regular if the DAE is reqular with any tractability index p (i.e. case (1) or (2) apply).

The numbers o, ..., r, defined by the matriz function sequence (12)-(15) are called characteristic valu
of the DAFE (4}4).
The subspace Negpn := Ny + - -+ + N, is said to be a canonical subspace of the DAE.
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These notions are well-defined in the sense they do not at all depend on the special choice
of the admissible projector functions, which is guaranteed by Theorem 3.3.
Since for a regular DAE the matrix function G/, is nonsingular, all intersections

]/\Z» = N; N (Ng+ -+ + N;_1) are trivial, as a consequence of Proposition 3.2. Then it
holds that

X; = (No+++N;_)ON; = No++ -+ N;_ = Ng@-+ - ®Ni_y CkerQ;, i = 1,...,u—1,
thus Q;(I — II;_,) = 0, and, equivalently,
QiQ; =0, 0<j<i—1, i=1,... pu—1. (47)
Additionally, Proposition 3.2 (4) yields G,Q; = B;Q);, thus
Qi =G,'Bill; 1Q;, j=1,...,p—1 (48)

While, in the general Definition 3.1, only the part II;,_1Q); = II;_y — II; of an admis-
sible projector function @); is required to be continues, for a regular DAE, the admis-
sible projector functions are continuous in all their components, as it follows from the
representation(48).

We underline once again, for regular DAEs, the admissible projector functions are always
reqular admissible, and they are continuous in all components. At this place, we draw the
readers attention to the fact that, in papers dealing exclusively with regular DAEs,; the

requirements for trivial intersections ]@ and the continuity of (); are usually incorporated
already into the admissibility notion (e.g. [Mar04b]) or into the regularity notion (e.g.
[Mér02], [Lam05]). Then, the relations (48) are constituent parts of the definitions (see
also the recent monograph [Ria08]).

Here is a further special quality of regular DAEs: The associated subspaces (cf. Section
3)
Si = ker W;B = {Z e R™: B,z € im Gz} = Si—l + N;_1

are now C-subspaces, too. They have the constant dimensions r;. This can be immediately
checked. By Lemma A.8, the nonsingularity of G, implies the
decomposition N, 1 @& S,-1 = R™, thus dim§,_; = r,_1. Regarding the relation
ker (Gy—o + Wy—2B,—2Q,—2) = N,_o N S,_2, we conclude by Proposition 2.4 (3) that
N, —2NS,,—2 has the same dimension as N, _; has. This means dim N, _oNS,_o = m—r,_;.
Next, the representation 5,1 = S,_2 + N,_5 leads to r,_y = dim S,,_o + (m — r,_2) —
(m —1r,_1), therefore dim S,,_o = r,_5, and so on.

We decouple the regular DAE (44) into its characteristic components, in a similar way as
we did with constant coefficient DAEs in [LMT11b, Section 5. Since G, is nonsingular,
by introducing Q, =0, P, = I, II, = II,_1, the sequence Qo, ..., Q -1, @, is admissible,
and we can apply Proposition 4.1. The DAE (44) rewrites to

pn—1
GHD7<DH#,1.ZC)/+BH$+G“ Z{le_([_HZ)Qlﬁ’lDi (DH[Q[+1.Z')/+VEDH1.Z'} =4dq. (49)

=0
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If the coefficients were constant, we would have D~ (DII,_yx) = (D~ DI, yx) = (II,_1z)’,
further D~ (DI1,Qy412)" = (I1,Q11x)', and V; = 0. This means that formula (49) precisely
generalizes formula [LMT11b, (38)] obtained for constant coefficients. The new formula
(49) contains the extra terms V; which arise from subspaces moving with time. They
disappear in the time-invariant case.

In [LMT11b, Section 5], the decoupled version of the DAE is generated by the scaling
with G;l, and then by the splitting by means of the projectores II,_; and I — II,_;.
Here we go a slightly different way and use DII,_; instead of II,_,. Since II,_; can be
recovered from DII,_, due to II,_y = D~ DII,_,, no information gets lost.

The equation (49) scaled by G, reads

pn—1
D™ (DI, _yz) + G,' By + > {Qw — (I — )Qu1 D™ (DIQuz) + ViDILz} = Gq.
1=0
(50)
The detailed expression for V; (Proposition 4.1) is
Vi=(—IL){PRD (DID™) — Q1D (DIl;,+D~)}DI,D".
This yields DI, 1V; =0, [ =0,...,u— 1, and multiplying (50) by DII,_; results in the
equation
DI, D~ (DI, _yz)' + DIl G, B,z = DII,,_,G,". (51)
Applying the C' property of the projector DII, 1D~, and recognizing that
B,= B, = B,D"DIl,_;, we get
(DI, yx) — (DII,,-yD~)' DIl _yx + DII, G, B,D~ DIl _yx = DI, ,G,'q. (52)
Definition 6.3 For the reqular DAE (44) with tractability index p, and admissible pro-
jector functions Q, ..., Qu—1, the resulting explicit reqular ODE

w — (DI, 1D~ )u+ DII, ,G,'B,D"u = DII, 1G,'q (53)
is called an inherent explicit reqular ODE (IERODE) of the DAE.

It should be pointed out that there is a great variety of admissible projector functions.
In consequence, there are various projector functions I1,,_;, and the IERODE (53) is not
unique, except for the index one case. So far, we know the nullspace Ny + --- + N,_;
of the projector function /1, to be independent of the choice of the admissible pro-
jector functions Qy, ..., Q,—1, that means the subspace Ny + --- + N,_; is unique; it is
determined by the DAE coefficients only (Theorem 3.3). Later on we introduce advanced
fine decouplings which make the corresponding IERODE unique. This means, then the
IERODE coefficients are fully determined by the problem data, and do not depend on the
special choice of fine decoupling projector functions.

Lemma 6.4 If the DAE (44) is reqular with index p, and Qo, ..., Qu—1 are admissible,
then the subspace im DII,,_; is an invariant subspace for the IERODE (53), that is, for
the solutions u € C1(Z,R™) of the ODE (53) the following assertion is valid:

u(ty) € im (DI1,—1)(t.), with a certaint, € T <= wu(t) € im (DI,_1)(t) for allt € T.
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Proof: Let u € C'(Z,R") denote a solution of (53) with @(t.) = (DII,—1 D7) (t.)u(t.).
We multiply the identity

w — (DI, D) u+ DII, ,G,'D"u= DII,_,G,'q

by I — DII,_;D~, and introduce the function v := (I — DII,_1D~)u € C*(Z,R"). This
gives
(I-bpH,.D7)a — (I —DII,_D™)(DH,+D")u=0,
further,
v—(-Dl, «D”)u—(I—-DIl, D”)(DII, 1D~) u=0,
and
v —({I—-DIH, D" )v=0.

Because of 9(t,) = 0, v must vanish identically, and hence u = DII,,_1D~u holds true. OJ

We leave the IERODE for a while, and turn back to the scaled version (50) of the DAE
(44). Now we consider the other part of this equation, which results from multiplication
by the projector function I — I1,_;. First we express

(I-11,.1)D™ (DI, _yz) + (I — I1,.1)G, " B,z
= (I - Hu_l)G;l{GHD_ (Dﬂu_ll’)/ + Bu—lpu—lx - G/.LD_(DHH—ID_YDH/L—IZE}
= (I — Hufl)Gll{Buflpufll’E + GMDfD]_[M,lD*(DHM,lx)'}
= —1,.)G,'By1I, 1z,
and obtain then the equation

pn—1

(I — Hu_l)G;:lBu_lﬂu_lx + {Q[x + ‘/lDHl.fE} (54)

5T
A

— > (I = I)Qu D™ (DILQz) = (I — IT,-1)G, g,

~
[e=]

which is the precise counterpart of equation [LMT11b, (41)]. Again, the extra terms V,
comprise the time variation. By means of the decompositions

DHlx = DH[(Hufl + I — Hu,l)x = Dﬂuflﬂf + Dﬂl([ — Pl+1 tee PH,1)$
DIl _x + DIL(Qiy1 + P Q2 + -+ + Py - - PyoQuon)x
= Dﬂu_ll' + DHZ(QZ—I—I +---+ DHM_QQM_l)I‘,

we rearrange the terms in (54) once more to

pn—1 n—2 n—2

Z Qll‘—Z(l—Hl)QH_lD_(DHZQH_L’L‘),—}-Z Ml—}—lDHlQl—f—ll""’CHu—ll‘ = (]—Hu_l)G;lq,
=0 =0 =0

(55)
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with the continuous coefficients

K:=(I~1,1)G,'B,_Il, ., + Z V,DII, (56)

= ([—Hu_l)Glleu 1+Z (I —m){PD (DI,D~) — QD™ (DI D™)'} DI,

= (I -1,.4)G,'B L+ Z (I - II,,)(P, — Q)(DIL,D™)DII, ,
=1
and
l
My =Y V;DIQi1 D™ (57)
=0

l
=Y (I = ){RAD~(DIL,D") — Q1 D™ (D1 D™ }DIQ11 D™,

[=0,...,0—2.

The coefficients My, vanish together with the V; in the constant coefficient case.

Next we provide a further splitting of the subsystem (55) according to the decomposition
I—1, 1 =QP P+ +QuoP 1 +Qu

into p parts. Notice that the products Q; P41 --- P,_1 are also continuous projectors. To
prepare the further decoupling we provide some useful properties of our projectors and
coefficients.

Lemma 6.5 For the reqular DAE (}4) with tractability index p, and admissible projector
functions Qo, ..., Qu-1, the following relations become true:

()Ql i+1 " Hl(‘[ Hl>—0 ZIO,...,’i—l,izl,...,u—2,
Qu_l(f I)=0, 1=0,...,1—2,

(2) QiPiy1--- Pl —11) =Q;, i=0,...,u0—2,
Qu—l(] - H,u—l) = Q,u—l;

()Q’L i+1 /1'1([ HZ+S) Q’L i+1° Z+S7 521,...’/,L—1—Z.’i:O,...7/L_2,

(4) QiPiy1-- PyoyMiz1 =0, 1=0,...,i—1,i=0,...,u— 2,
QuflMl+1zoa [=0,...,0—2,

(5) QiPiy1-- - Pio1Qs=0idfs#4, s=0,...,u—1,
QiPiy1- P1Qi=Q;, 1=0,...,u—2,

j—1

(6) M= > (I —1I1)(P—Q)D (DIl; ,Q;D”)'DI; 1Q;D~, j=1,...,p—1,
=1

(7) Hu_lG;IBu = Hu—lG,leoUM—l, and hence DHM_lGl;lB#D_ = DHN_lG}:lBD_.
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Proof: (1) The first part of the assertion results from the relation
Ql i+1 " H 1= Qz i+1 " P,u—lﬂi—la and the inclusion im (I—Hl) Q ker Hi—b ) S 1—1.
The second part is a consequence of the inclusion im (I — IT;) CkerQ,—1, | < pu— 2.
(2) This is a consequence of the relations Piy---P,_1({ — II;) = (I — II;) and
Qi = II;) = Q.
(3) We have

QiPiy1-- Pyl 1 =0, thus QP Puoa(I —11,1) = QiPiy1 -+ Py

Taking into account that Q;(I — I1;4+,) = 0 for j > i+ s, we find
Qz i+1° ,u 1([ Hz-i-s) QiPi-‘rl Tt ]Di-i-sPi-i-s-i-l Tt Pu—l(l - )
= QiPit1 PiysPiysyr - Pua(I — )
= Qip'i+1 te PiJrs(] - Hi+s) Q’L 41" z+s

HH—S
Hi+s

(4) This is a consequence of (1).

(5) This is evident.

(6) We derive

1

M, =3I - I))P,D~(DI,D~Y DII;_,Q;D~

=1

<.
|

l\’)

Jj—

E (I = II))Qu1 D~ (DII, 41 D7) DII; 1 Q; D~
1=0
-1

= U —I)BD{(DII;1,Q;D™)" = DILD™(DII;1Q; D) } DII; 1, Q; D™

1

<.

~
Il

7j—2
(I —I11)Qu1D~{(DII;_1Q;D~) — DIl .«D~(DII;_1Q;D~)'} DII; _1Q; D~
=0

<.
I
_

= (I - I,)PD(DI;-1,Q;D~) DII;_,Q;D~

1

N
Il
u

-2
(I = II)Qu1 D™ (DII; 1 Q; D) DII; 1, Q;D™
=0

<.
|
_

= ([ - Hlfl)PlDi(DnjlejDi)lDijleDi

=1

-1

Z(I I )QuD™ (DI;1Q; D7) DIT; 1 Q; D™

=1
(7) Owing to P, = I, it holds that
B,=B,.P,,—-G,D (DII,D")DI, =B, 1P,y —G,D (DI, D) DII, ;.
We compute
11,..G,'B, = 11, \G,'{By-1Fy_1 — G,D~ (DI, 1D~ ) DII, \}
y—1G By I,y — I,y D™ (DI, ,D”)'DII,; .

~~
=0

<.
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The next step is

11,.G,'By I,y = I, 1G,'{B,,—2P,—» — G, 1D~ (DIl,, 1D~ ) DIl _»}II,
=I,1G,' By, 1 — 1,1 B,s D (DI, D7) DII, .y,

~~
=0

and so on. 0

As announced before we split the subsystem (55) into p parts. Multiplying by the projec-
tor functions Q;Pit1---FPy—1,9=10,...,p4— 2, and @,—1, and regarding Lemma 6.5 one
attains the system

n—2
Qir — QiQin D™ (DILQiax) — Y QiPiyy -+ PQua D™ (DI Qi)'

I=i+1
n—2

+ Z QiPip1 - BuioaMip DILQ @ (58)
I=i

= —QiPi1- Py K1z + QiPiyy -~ B G, 1=0,...,p—2.

as well as
Qu_ll‘ = _Qu—llCHu—lx + Qu_lG;lq. (59)

The equation (59) determines @),_;z in terms of ¢ and I,,_;z. The i-th equation in (58)
determines Q;x in terms of ¢, I, 1z, Q,_17,...,Q;y17, and so on, that is, the system
(58), (59) successively determines all components of
I'—11, 1= Qo+ 1Q+---+ 1, 5Q, ;1 in a unique way. Comparing with the constant
coefficient case, we recognize the system (58), (59) to generalize the system [LMT11b,
(43)-(44)].

So far, the regular DAE (44) decouples into the IERODE (53) and the subsystem (58),
(59) by means of each arbitrary sequence of admissible projector functions. The solutions
of the DAE can be expressed as

v=1I, o+ —-I,12)=D u+ (-1, )z,
whereby (I — II,_q)x is determined by the subsystem (58), (59), and v = DIl,_1D"u is
a solution of the IERODE, which belongs to its invariant subspace.
The property
ker Q; = ker II; 1Q;, i=1,...,u—1, (60)

is valid, since we may represent Q; = (I + (I — I1;_1)Q;)I1;_1Q; with the nonsingular
factor I + (I — II;_1)Q;, i =1,...,u — 1. This allows to compute Q;x from I1;_1Q;x and
vice versa. We take advantage of this in the following rather cosmetic changes.

Denote

Vo ‘= Qox, V; = z'leﬂ?, 1= 17 Y 17 (61>
u:= DI, iz, (62)
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such that we have the solution expression

r=vo+vi+-+v,1+D u (63)
Multiply the equation (59) by II,_,, and, if i > 1, the i-th equation in (58) by II;_;. This
yields the following system which determines the functions v,_1,..., vy in terms of ¢ and
u:
0 Ny -+ Nop—a Vg
. . v
’ S G0 B (64)
N,u,—2,,u—1 :
0 Up—1
I Mo -+ Moy U Ho Ly
I . v H _ El
+ Dol | Du= . q
Mo, : : :
I Vp—1 Hufl £N,1

The matrix function D := (Dw)f j—:10 has as entries the blocks D;; = DI, 1Q;, 1 =
1,...,pu—1, Dy =0, and D;; = 0, if ¢ # j. This matrix function is block-diagonal if
n = m. The further coefficients in (64) are also continuous, their detailed form is

Not = —Qo@Q1 D~
Noj = =QoPy--- P;1Q; D™, J=2,...,0p—1,
Niig1 = —11,_1Q;Qi1 D™,
Nij = —II,_1Qi Py -+ P;1Q; D™, J=1+2,...,p—Lie=1...,p—2,
Mo = QoP, -+ oy M;DIT;_,Q;, =1, -1,

Mij = 1L1Qi P+ Bux MDI1Qy,  j=1+1,...,p—1,i=1,...,0—2,

Lo := QP --- PH—1G;17

L; = i,lQiPZ-H---Pu,lG;l, t=1,...,0—2
L1 := M—2Qu—1G;17

Ho = QoPy - - nyllcnufl,

Hi =1, 1QiPiyq--- P, K1, 1=1,...,0—2,
Hy—1 =1, 2Q,1KII, .

Y

Introducing the matrix functions N';, M, H, L of appropriate sizes according to (64), we
write this subsystem as
N(Dv)' + Mv+HD u = Lq, (65)

whereby the vector function v contains the entries vy, ..., v,-1.

Again, we draw the attention to the great consistency with [LMT11b, (49)]. The difficul-
ties caused by the time-variations are now hidden in the coefficients M;; which disappear
for constant coefficients.

We emphasize that the system (64) is nothing else a more transparent reformulation of
the former subsystem (58), (59). The next proposition records important properties.
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Proposition 6.6 Let the DAE (44) be reqular with tractability index p, and let Qq, . . ., Qu—1
be admissible projector functions. Then the coefficient functions in (64) have the further
properties:

(1) ./V; = MjDH]le]D_ and M]D = N’ZJDijlez fOT ] = 1,...,/,6 - 17
1=0,...,u—2.

2) rank N ;11 = rank N ;.1 D =m —riq, fori=0,..., 01— 2.

4

(2)
(3) ker N;i11 =ker DIL,Q; 11 D™, and ker N; ;11D = ker I1;Q; 11, fori=0,...,u— 2.
(4) The subsystem (64) is a DAE with properly stated leading term.

(5)

5) The square matriz function N'D is pointwise nilpotent with index p, more precisely,

(ND)* =0 and rank (ND)* =m —r,_1 > 0.
(6) Mi,iH:O, iZO,...,u—Z.

Proof: (1) This is given by the construction.

(2) Because of N ;11 = N; i1 DD, the matrix functions N; ;11 and N; ;11D have equal
rank. To show that this is precisely m—r;,; we apply the same arguments as for [LMT11b,
Lemma 5.5]. First we validate the relation

im Q;Qiy1 = N; N S;.

Namely, z € N;N.S; implies z = Q;z and B;z = G,w, therefore, (G; + B;Q;)(Pw+ Q;z) =
0, further (Pw + @Q;2) = Qi1(Pw + Q;z) = Qiniw, Q;z = @Q;Q;11w, and hence
z=Qiz = QiQi1w.

Conversely, z € iImQ;Q;y1 yields z = Q;z, z = @Q;Q;r1w. Then the identity
(GZ + Ble)Q/LJrl = 0 leads to BiZ = BZQ1Q2+1U} = —GiQin, thus z € N,L N S@

The intersection N; N S; has the same dimension as N;;;, so that we attain
dimim Q;Q;1 = dim Nypy = m — rigy.

(3) From (1) we derive the inclusions

ker DIT;Qi11 D™ Cker N1,  ker I;Qiy € ker Nji1 D.

Because of 11;Q;+1 = D™ (DII;Q;1+1D~)D, and ker IT;Q;11 = ker Q;41, the assertion be-
comes true for reasons of dimensions.
(4) We provide the subspaces

]
ker N = {z = : ER™ :z;ekerIl; 1Qy, i=1,...,u0—1}
| Zn—1 ]
and ~ _
20
mD={z=| : | eR":z,€eiml; 1Q;,i=1,...,u—1}
[Zn=1 ]
which obviously fulfill the condition ker NV @ imD = R™. The border projector is
R = diag (0, DIl D~,...,DII,_5Q,—1D7), and it is continuously differentiable.
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(5) The matrix function N'D is by nature strictly block upper triangular, and its main
entries (N'D); 11 = N1 D have constant rank m — r;4q, for i = 0,...,u — 2.

The matrix function (ND)? has zero-entries on the block positions (i,7 + 1), and the
dominating entries are

(ND))iiv2 = Niis1 DNip1i12D = I 1QiQi 1 IL;Qi 1 Qi = IT; 1QiQi11Q40,

which have rank m — r; 5, and so on.

In (ND)*~! there remains exactly one mnontrivial block in the upper right corner,
((ND)Mfl)()’M_l = (-1)“71620@1 SR Q,u,—lu and it has rank m — Tp—1-

(6) This property is a direct consequence of the representation of M, in Lemma 6.5 (6)
and Lemma 6.5 (1). O

By this proposition, the subsystem (64) is in turn a regular DAE with tractability index
w and transparent structure. Property (6) slightly improves the structure of (64). We
underline that the DAE (64) lives in R™*. The solutions belong to the function space
CL(Z,R™). Owing to the special form of the matrix function £ on the right hand
side, each solution of (64) satisfies the conditions vy = Qovy and v; = II;_1Q,v;, for
1=1,...,0— 1

We formulate now the main result concerning the basic decoupling:

Theorem 6.7 Let the DAE (44) be regular with tractability index p, and let
Qo, - - ., Qu_1 be admissible projector functions. Then the DAE is equivalent via (61)-(63)
to the system consisting of the IERODE (53) related to its invariant subspace im DII,,_,
and the subsystem (64).

Proof: If z € CL,(Z,R™) is a solution of the DAE, then the component u := DII,_jx €
C'(Z,R™) satisfies the IERODE (53) and belongs to the invariant subspace im I7,,_;. The
functions vy := Qoz € C(Z,R™), wv; := II; 1Q;x € CH(Z,R™), i = 1,...,u — 1, form
the unique solution of the system (64) corresponding to u. Thereby, we recognize that
Dﬂﬂ_lx = Dﬂu_lp_Dl’, D’UZ‘ = Dﬂi_lQil’ = Dﬂi_lQiD_Dl’, 1= 1,...,,u — 1, are
continuously differentiable functions since Dz and the used projectors are so.

Conversely, let u = DII,,_;x denote a solution of the IERODE, and let vy, ...,v,_; form
a solution of the subsystem (64). Then, it holds that v; = II;_1Qv;, for i =1,...,u—1,
and vy = Qovg. The functions v and Dv; = DII; 1Q;v;, i = 1,...,u — 1 are continuously
differentiable. The composed function z := D~ u + vy + vy + - - - + v, is continuous and
has a continuously part Dx. It remains to insert z into the DAE, and to recognize that

z fulfills the DAE. O

The coefficients of the IERODE and the system (64) are determined in terms of the
DAE coefficients and the resulting from these coefficients projector functions. We can
take use of these equations unless supposing that there is a solution of the DAE. Con-
sidering the IERODE (53) and the system (64) as equations with unknown functions
u € CHZ,R"), vy € C(Z,R™), v; € CH(Z,R™), i = 1,...,u — 1, we may solve these
equations and construct continuous functions z := D u + vy + vy + -+ + v, with
Dz = DD~ u+ Dvy + -+ - + Dv,_; being continuously differentiable, such that x satisfies
the DAE. Thereby we restrict our interest to those solutions u of the IERODE that have
the property uw = DII,,_; D~u. This way we could prove the existence of DAE solutions,
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if the excitation and the coefficients are sufficiently smooth.

We finish this subsection by a closer look to the special case of index one DAEs. Let
the DAE (44) be regular with tractability index one. The matrix function Gy = AD is
singular with constant rank. We take an arbitrary continuous projector function ¢)g. The
resulting matrix function G; = G+ BQ)q is nonsingular. It follows that @)1 = 0, IT; = I
and Vo = 0 (cf. Prop. 4.1), further By = BPy — G1D~(DIIyD~) DIly = BP,. The DAE
scaled by G;! is (cf. (50)) now

D~ (DIlyz) + Gy*BPyr + Qo = Gy 'q.
Multiplication by DIl = D and I — I1y = () leads to the system
(Dz) — R'Dx + DG{'BD™Dx = DGyq, (66)
Qo + QoG ' BD™ Dz = QuGy'g, (67)

and the solution expression x = D™Dz + Qox. Equation (67) stands for the subsystem
(64), i.e. for

Qo + HoD™ Dz = Lyg, with Hy = QoK) = QoG 'Blly = QoG 'BPy, Lo = QoG ".

The nonsingularity of G implies the decomposition Sy @ Ny = R™ (cf. Lemma A.8), and
the matrix function QyG;' B is a representation of the projector function onto Ny along
So.

We can choose )y to be the special projector function onto Ny along Sy at the beginning.
The benefit from this choice consists in the property Hy = QoG BPy = 0, that is, the
subsystems (67) uncouples from (66).

Example 6.8 We reconsider the semi-explicit DAFE from Ezample 2.2

I / Biy Bia|
[t oy [B 2],
with nonsingular Bes. Here we have the subspaces
No = {Z € leerQ LR = O} and So = {Z S le+m2 . 32121 + 32222 = O},

and the projector function onto Ny along Sy is given by

0 0
QO - |:3221321 [:| .
We know this projector to be reasonable, although it is far from being orthogonal. This
choice leads to the matriz functions

_3521321 ’ BQl BQQ ’ ! —3521321 ([ + B£21321B12> ’
and the IERODE
.’L'll + (Bll — Blng_;BQl)xl =q1 — 81232_21(]2.

Notice that in Fxample 2.2, QQy is chosen to be the orthoprojector. Precisely the same
IERODE results for this choice, which appears to be typical for reqular index one DAFEs,
and for fine decouplings of general reqular DAFESs.
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Proposition 6.9 Let the DAE (44) be regular with index one. Then its IERODE
' — R'u+ DG{'BD™u = DG ¢
15 actually independent of the choice of the continuous projector function Qy.

Proof: We compare the IERODESs built for two different projector functions Qo and Q.
It holds that Gl = G() + BQQ = GQ + BQ()Q() = Gl(Po + Qo) = Gl(] + Q[)Q()Po) and
D~ =D DD~ =D R = D"DD~ = PyD™, therefore DG;* = DG, DG{'BD~ =
DGT'B(I — Qo)D~ = DGT'B(I — QuQo)D~ = DGT'BD. O

6.2 Fine and complete decouplings

In this subsection we advance the decoupling of the subsystem (64) of the regular DAE
(44). As benefits of such a refined decoupling we get further natural information on the
DAE, that is, information being independent of the choice of projectors in the given con-
text. In particular, we arrive at a natural IERODE.

As discussed at the end of the previous subsection, regular index one DAEs are trans-
parent and simple, and the coefficients of their IERODESs are always independent of the
projector choice. However, higher index DAEs are different. We take a closer look to the
simplest class among them, the regular DAEs with tractability index pu = 2.

Let the DAE (44) be regular with tractability index p = 2, then the IERODE (53) and
the subsystem (64) reduce to

u' — (DII,D™)u+ DILGy'B,D u = DII,G5'q,

and

0 —Qo@1D | ,|0 0 voly, |V H __QPCf1
o SN pmal [l ]+ el o= [gi

with

Ho = QoPKIT, = Qo PGy By, + QuP(DII,D™) DII,
Hy = I,QKII = I[1,Q,G5 ' By I,

Owing to the nonsingularity of G5, the decomposition (cf. Lemma A.8)
NS =R™

is given, and the expression Q,G,'B; appearing in H; reminds of the representation
of the special projector function onto N; along S; (cf. Lemma A.9) which is uniquely
determined. In fact, QG5B is this projector function. The subspaces N; and S; are
given before one has to choose the projector function (), and hence one can settle on
the projector function @)1 onto N; along S; at the beginning. Thereby, the necessary
admissibility condition Ny C ker ; is fullfilled because of Ny C S; = ker Q1. It follows
that
Q1Gy'BiIl = Q1G5 BiPL = QP =0, Hy,=I11,Q:G5' B, = 0.

With the next example we demonstrate that there are various different resulting projector
functions DII,_1D~, and hence different IERODES.
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Example 6.10 Consider once again the so-called Hessenberg size two DAE
I r o |Bu Bia|
[0} (1 0]=)+ {Bm 0 }w = (68)

with the nonsingular product By Biy. Suppose the subspaces im By and ker By to be C!-
subspaces. As it is shown in Fxample 2.2, this DAFE is reqular with index two, and the
projector functions

0 0 Q 0 —

are admissible, for each arbitrary reflexive inverse By, such that ) is continuously differ-
entiable. We have further DI[D~ =1 — ) and

SO = Sl = {Z € le+m2 . 32121 = O}

(a) Set By, = Bjy = (BjyB12) 'Biy in Q. Then Q projects R™ onto im Byy along
ker B}, = im By, and Q, projects R™ onto N, along

kerQ, = {z € R™™™2: B% 2 =0} = (Ny ® N,)= & N.

It results that DIy D~ = I — ) is symmetric. These projector functions QQg, Q1 are
widely orthogonal in the sense of Definition 9.1. Notice that, for this construction
we could dispense with the C' property of the subspace ker By;.

(b) Set By, := (Bo1B12) ' Boy in (68). Then Q projects R™ onto im By along ker Ba;,
and Q)1 projects R™ onto Ny along

ker Ql = {Z S le—i—mz : Bglzl = 0} = Sl.

Except for the special case, if ker Bj, = ker Byy, a nonsymmetric projector function
DII\D™ =1 — Q = I — Byy(By B12) ™' Boy results. As we already know, this choice

has the advantage of a vanishing coupling coefficient H;.

In contrast to (69) the projector functions

0 0 Q 0 B
QO = B;Q(Bll - Q/>(I o Q) _[:| ) Ql = |:_B12 O:| s Q= B12312, (70)

form a further pair of admissible projector functions yielding again DII{D~ =1 — Q. If
By, := (Bo1Bi2) !By, then this choice forces both coefficients Hy and Hy to disappear,
and the subsystem (64) uncouples from the IERODE. Notice that the resulting IERODE
coincides with that from (b).

As mentioned before, the index two case has the simplest higher index structure. The
higher the index, the greater the variety of admissible projector functions. We remind
[LMT11b, Example 5.4] which shows several completely decoupling projectors for a time-
invariant regular matrix pair with Kronecker index two.

41



Definition 6.11 Let the DAE (4}4) be regular with tractability index p, and let
Qo, - .., Qu-1 denote admissible projector functions.

(1) If the p—1 coupling coefficients Hy, ..., H,—1 of the subsystem (64) vanish, then we

speak of fine decoupling projector functions Qo,...,Q,—1, and of a fine decoupling.

(2) If all the p coupling coefficients Ho, ..., H,—1 of the subsystem (64) vanish, then we
speak  of  complete decoupling projector functions Qo,...,Qu—1, and of a
complete decoupling.

In the sense of this definition, fine and complete decoupling projector functions g, Q1
are given in Example 6.10(b) and (70).

In general, if the DAE (44) is regular with tractability index p, and Qo,...,Q,—1 are
admissible projector functions, then the decomposition
Nufl @ Sﬂfl - Rm
holds true (cf. Lemma A.8). If the last projector function (,_; is chosen such that the
associated subspace S,_1 2 Ny @ --- ® N,_o becomes its nullspace, that is ker ), =
Su-1, imQ,—1 = N,_1, then it follows (cf. Lemma A.9) that Q,—1 = Qu_lG;ilBH_l, and
hence (cf. (56))
Hu—l = HH—QQH—IICHM—I - Hu—?Qu—llC
n—2 Qufl([ - HuflzGllBMflﬂufl
:é: .

+ Z 22 Qua(I = IL) (P — Q)(DILD™) DI, 4
—_——
=0
,quQ,uflG,: By I,y =11, 2Q, 11, , = 0.

So far one can prevail on the coefficients H,_; to vanish by determining ker Q,,—1 = S,—1.
This confirms the existence of complete decoupling projector functions for regular index
one DAEs, and the existence of fine decoupling projector functions for regular index two
DAEs.

Remember that, for regular constant coefficient DAEs with arbitrary index, complete
decoupling projectors are provided by [LMT11b, Theorem 5.2]. We follow the lines of
[Mé&r04a] to prove a similar result for general regular DAEs (44).

The following additional description of the coupling coefficients Hy, ..., H,_1 in the sub-
system (64), which tie the solution u of the IERODE in this subsystem, supports the
idea of an advanced decoupling. We draw the reader’s attention to the consistency with
[LMT11b, Theorem 5.2] which provides the easier time-invariant counterpart of a com-
plete decoupling.

Lemma 6.12 Let the DAE (44) be regular with tractability index p. Let Qq, ..., Qu—1
denote admissible projector functions, and

Qo = QP+ P,1G,{By + GoD™(DII,_,D~)' D},
Que = QrbPryr- Pur G, { By + GD™ (DI, D™ ) DIl 1}, k=1,...,n—2,
Qu-1+ = Q#*IGﬁlBl‘*l’
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(1) Then the coupling coefficients of the subsystem (64) have the representations

Ho = Qoxll, 1,
Hk = Hk—l@k*ﬂu—la kzl,...,,u—2,
Hufl - HquQ,ufl*Hufl-

(2) The Qox,--.,Qu-1+ are also continuous projector functions onto the subspaces
No, ..., N,_1, and it holds that Q. = Qrllp—1 for k=1,...,n— 1.

Proof: (1) For k=0,...,u — 2, we express
A+ = QrPyy1 -+ PooaKII,_y  (cf. (56) for K and Prop. 4.1 for V})

pn—1
= QuPes1 -+ Pua Gy ' Byoadly + QrPrgr -+ Pusy Y ViDIT, .
=0

Regarding the identity IT,D~(DII;D~)'DII; = 0 we derive first

pn—1 pn—1
iy ) ViDIDyy = Iy ) ViDIT,
=0

l=k

pn—1
= Ity » {(I — )P, D (DILD™Y DI,y — (I — I)Quy D™ (DI oy D™ Y DI,y }
L
p—1
=Ty Y {PD~(DILD™) — (I — I})Qu1 D~ (DI}, D™ ) DII,_y D~} DII,
-
=Ty Y {RD~(DID™) — (I — I,)Qus D~ (DII, D) DI, 1D~ }DII, ;.
=k

Then, taking into account that @), = 0, as well as the properties

OrPry1- Puo1 = Qe BPryr - PuiIly 1, QrPryr Py 1P = QplPry1 -+ P11,
Qulry1-- P1Qr =0, if [ >k+1,

we compute

pn—1
QiPes1- - Pur Y VIDIT,
=0

pn—1
= QrPry1-- P Z D~ (DII,D~)'DII, 4
I=k+1
pn—1
+ QpPry1- - Py Z Q41 D~ (DII,«D~)'DII,, 4
I—k

I, —I, 1
pn—1
= QkPrs1-Puy Y D (DILD™)DII, s + QPits -+ Pyt Po(DI1, D7) DIT, ;.
l=k+1
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This leads to

pn—1
A= QP - - pﬂ_lG;l{Bkm_l -y GjD_(DHjD_)’DH#_l}

j=k+1
pn—1

+QrPip1-Pucy Y, D (DILD™Y DI,y + QiPig - -+ Puy Po(DIT,yD™) DIT, ;.
I=k+1

Due to QpPyt1 - - P“,lGllej = QyPyis1--- Py1, for j >k + 1, it follows that

pn—1
Ap = QiPir-+ PuaG'Billy = QuPrr -+ Py » | D™ (DILD™)' DI,
j=k+1
pn—1
+QrPiy1+ - Puct Y D (DILD™Y DI,y + QuPyss -+ Puy Po(DI1, 1 D) DI,
I=k+1
= QrLry1- - P,u—lGllBkHu—l + QiPyt1--- Po1P.D™ (DI, D) DII,_4
= Qk*H,LL717
which proves the relations Hy = QoP---P,1Kll,.1 = Qull,—;, and

Hk = Hk:—le:Pk—i-l s P,u—llCHu—l = Hk—lAk:Hu—l == Qk*H#_l, k= 1, e = 2. More-
over, it holds that HP«*I = HH,QQuflK = QuflGlle‘uflnufl = HH,QQufl*Hufl.
(2) Derive

QuxQr = QuPot1 - Py G, { B, + Gx D™ (DII,_1D™)' DIT;_1 } Qi
= QrLryr1- - Py—lG;lBka + QkPyt1- - Py PD™(DII,_1 D™ ) DII;,_1 Qg
= QuPic1 - PyirQi— QuPiss - Py PLD™(DIL, D™)(DIL1 QD7) D.

=Qk =0

Then, QQr+ = Qu« follows. The remaining part is evident. [l

Later on we prove the existence of fine and complete decouplings. Beforehand we present
several benefits coming along with fine decouplings.

Applying fine decoupling projector functions Qo,...,Q,—1, the subsystem (64) corre-
sponding to the homogeneous DAE (45) simplifies to

0 Nop --- No,u—l _ Vo I Mo -+ Moua Vo
. . v . . v
0 : (D .1 ) + 1 : 1
N1 : oMo
0 L U,u—l I vu—l
] (71)
Ho 0
0 0
+ D u=
i 0 0
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For given wu, its solution components are determined successively as

Vp—1 = O, N 0, Vo = —HoDi’U/,

and hence each solution z € CL(Z,R™) of the homogeneous DAE (45) possesses the
representation

=D u + vy = ([ — Ho)Di'U/ = ([ — QO*UH,l)DfDHH,lDfu = (I — QO*)Huleiu,
whereby v = DII,, 1D~ u is a solution of the homogeneous IERODE
u' — (DII,_1D™)u+ DH“,lGlleD*u =0.

Owing to the relations FPyQo. = 0, the continuous matrix function (I — Qo.)I,—; is also
a projector function, and the nullspace is easily checked to be

ker (I - QQ*)HH—l = chzn-
Since each solution of the homogeneous DAE can be represented in this way, the inclusion
Scan g im (I - QO*)H,LL—I

is valid. On the other side, through each element of im (({ — Qo.(t))I,—1(t)), at time ¢,
passes a DAE solution, and we obtain

im (] - QO*)HM—I - Scan'

In fact, fixing an arbitrary pair o € im (I — Qo«(t0))IL,—1(t0)), to € Z, we determine
the unique solution u of the standard IVP

U, — (DHH_lD_)/U + DHM_lG;lBD_U = O, U(to) = D(to)HM_l(to)l‘o,

and then the DAE solution z = (I — Qo.)ll,-1D w. It results that
x(to) = (I — Qos(to)),—1(to)xo = 2. In consequence, the DAE solution passes through
o € im ((I — Q0*<t0))nufl<t0)).

Owing to the projector properties, the decomposition

Noan(t) @ Suan(t) = R™, t €T, (72)

becomes valid. Moreover, now we see S., is a C-subspace of dimension
_ p—1 )
d—m_Zizo(m_Tz)-

Definition 6.13 For a reqular DAE (44) with tractability index u, which has a fine de-
coupling, the projector function Il.., € C(Z, L(R™)) being uniquely determined by

m Hcan = ScaTw ker Hcan = Ncan

1s named the canonical projector function of the DAE.
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We underline, both canonical subspaces S.,, and N.,,, and the canonical projector func-
tion Il.,, depend on the index pu. Sometimes it is reasonable to indicate this writing
Scan I3 Ncan I and Hcan e

The canonical projector plays the same role as the spectral projector does in the time-
invariant case.

Remark 6.14 In earlier papers also the subspaces S; (e.g. [Mdr89b]) and the single pro-
jector functions Qo,...,Q,—1 forming a fine decoupling (e.g. [Mdr89a], [Mdr96]) are
named canonical. This applies, in particular, to projector functions @Q,—1 onto N,
along S,—1. We do not carry on this notation. We know the canonical projector function
in Definition 6.13 to be unique, however, for higher index cases, the single (Q; behind are
not uniquely determined as it is demonstrated by [LMT11b, Example 5.4].

Now we are in the position to gather the fruit of the construction.

Theorem 6.15 Let the DAE (44) be regular with tractability index p, and let
Qo, - .., Qu-1 be fine decoupling projector functions.

(1) Then the canonical subspaces Seqn and Neu, are C-subspaces of dimensions

d=m—3"(m—r;) and m — d.

(2) The decomposition (72) is valid, and the canonical projector function has the repre-
sentation

Hcan = (I - QO*)HMfL

(3) The coefficients of the IERODE (53) are independent of the choice of the fine de-
coupling projector functions.

Proof: It remains to verify (3). Let two sequences of fine decoupling projector functions
Qo .-, Qu1 and Qq,...,Q,_1 be given. Then the canonical projector function has the
representations o, = (I — Qo)1 and oy, = (I — Qo.)I1,—1. Taking into account
that D~ = PyD~ we derive

DIl 1D~ = DIl.., D~ = DIl D~ = DIl,_,D".
Then, with the help of Lemma 3.7 yielding the relation G, = G,Z,,, we arrive at
DIl +G,' = DIl, .D~DZ,'G,' = DII,_,G,",
DI, \G,'BD~ = DIl, ,G,'BD~ = DIl, ,G,,' B(I — Qo)D~ = DII,_,G,' BD",

and this proves the assertion. .

For regular index one DAESs, each continuous projector function )y generates already a
fine decoupling. Therefore, Proposition 6.9 is now a special case of Theorem 6.15 (3).

For regular index two DAEs, the admissible pair @y, ()1 provides a fine decoupling, if
()1 is chosen such that ker @y = S;. This is accompanied by the requirement that
im DII,D~ = DS, is a Cl-subspace. We point out that, for fine decouplings, we need
some additional smoothness with respect to the regularity notion. While regularity with
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index two comprises the eristence of an arbitrary C' decomposition (i.e. the existence of
a continuously differentiable projector function DI, D)

im DILD™ @ im DII,QQ1 D~ @ ker A = R",
—_————
=DN,

one needs for fine decouplings that the special decomposition
DSl EB DN1 EB kerA = Rn,

consists of C! subspaces. For instance, the semi-explicit DAE in Example 6.10 possesses
the fine decoupling projector functions described in (b), if both subspaces im B, and
ker By are continuously differentiable. However, for regularity, it is enough if im Bys is a
C!'-subspace, as it is shown in (a).

Assuming the coefficients A, D, B to be C!, and choosing a continuously differentiable
projector function Q, the resulting DN, and DS, are always C!-subspaces. However, we
do not feel comfortable with such a generous sufficient smoothness assumption, though it
is less demanding than that in derivative array approaches, where one necessarily has to
require A, D, B € C? for the treatment of an index two problem.

We underline, here only certain continuous subspaces are additionally assumed to belong
to the class C'. Since the precise description of these subspaces is somewhat cumbersome,
we use instead the wording the coefficients of the DAE are sufficiently smooth just to
indicate the smoothness problem.

In essence, the additional smoothness requirements are related to the coupling coefficients
Hi,...,H,—1 in the subsystem (64), and in particular to the special projectors introduced
in Lemma 6.12. It turns out that, for a fine decoupling of a regular index y DAE, certain
parts of the coefficients A, D, B have to be continuously differentiable up to degree pu — 1.
This meets the common understanding of index g DAEs, and it is closely related to
solvability conditions. We present an example for more clarity.

Example 6.16 Consider the DAE

1000 L 00O 00 0 0
o1oo0/lotool , [oo0o o -1
o010l o01o0l® o1 0 o*=0
o000l loooo0 a 0 -1 0

A D B

on the interval T = [0,1]. According to the basic continuity assumption, B is continuous,
that is, o € C([0,1]). Taking a look at the solution satisfying the initial condition x1(0) =
1, that s

21(t) = 1, () = alt), wa(t) = 2(t) = (1), 2a(t) = (1) = (1)

we recognize that we must more reasonably assume o« € C?([0,1]). We demonstrate by
constructing a fine decoupling sequence that precisely this is the smoothness we need.
The first elements of the matrix function sequence can be chosen resp. computed as

0000 100 0 0000 1 0 0 0
0000 010 —1 0100 0 1 0 —1
QO_OOOO’Gl 0010’Q1_0000’G2_0—110
000 1 000 0 0100 0 0 0 0
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We could continue with

0000 1 0 0 0
0010 0 1 0 -1
Q2_0010’G3_0—11O’
0010 0 0 —1 0

which shows the DAE to be reqular with tractability index three, and Qg,Qq,Q2 to be
admissible, if a € C([0,1]). However, we dismiss this choice of Q9 and compute it instead
in correspondence with the decomposition

Ny@So={2€R 121 =0, =23 =2 ®{z€R*: az; = 23} = R%

This leads to

Q2 = , DILLD™ =1, =

—Q

0

S 0 o ©
oo oo
== O
oo oo
oo oo
—_ o o o
oo oo

and hence, for these QQy, Q1, Q2 to be admissible, the function « is required to be contin-
uwously differentiable. The coupling coefficients related to the present projector functions
are

0 00 0
o 00 0

=1y ¢ ¢ o H2=0
0 00 0

If o does not vanish identically, we have not yet reached a fine decoupling. In the next
round we set Qo = Qo such that G1 = Gy, but then we put

0 00O
i /
Q1 = Qu. = QPG {By + G.D™(DII,D™)' DIl } = O{) (1) 8 8
o 1 00

in accordance with Lemma 6.12 (see also Lemma 6.17 below). It follows that

1 000 1 0 0 0
o o 0 0 0| = 0 1 0 —1
DILD™=1IL=1 o o ¢ ol = |_w 11 o]
0 0 1 0 0 0 0 0

and we see, to ensure that DII, D~ becomes continuously differentiable, and Qq, Q1 admis-

sible, we need a two times continuously differentiable function . Then we have Ny = Na,
which allows for the choice Qy = Q5. The resulting Qg, Q1, Q2 are fine decoupling projec-
tor functions.

Construction of fine decoupling projector functions.

Now we construct fine decoupling projector functions for the general regular DAE (44).
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As in Example 6.16, we successively improve the decoupling with the help of Lemma 6.12
in several rounds. We begin forming arbitrary admissible projector functions Qo, . .., Q,—2
and G,—1. Then we determine (),—; by ker Q,—1 = S,—; and im Q,—1 = N,_;. This yields
G, =G,y + By_1Qu—1 as well as

Qu—l = Qu—lG;lBu—l = Q,u—l*a and Hu—l = HM—QQu—l*Hu—l = HM—QQM—lnu—l = 0.

If 4 = 2 we have already a fine decoupling. If p > 3, we assume DII,,_3Q),_2.D~ which
is a priori continuous to be even continuously differentiable, and compose a new sequence
from the previous one. We set

Qo =Qo,...,Qu-3=Qu3, and Qo= Qu 2.

DII, 2D~ = DIl 3D~ — DIl 3Q,2.D~ is continuously differentiable, and the projec-
tor functions Qo, ..., Q,—2 are admissible. Further, some technical calculations yield

Gu—l = Gu—ll{] + QM—QPM—2 + (I - Hu—3)Qu—2D_(Dﬁu—QD_)/DHM—3QM—2} :

Zy
The matrix function Z,_; remains nonsingular, it has the pointwise inverse

Z_l I— Qu—ZP,u,—Q - (I - H,u—?))Q,u—QD_(Dﬁ,u—QD_)/DHu—3Qu—2-

p—1 =

We complete the current sequence by
Qu—l = Z;—llQu—lzu—l = Z,:—llQu—l'

It results that Q'u_lQ“_Q = Z;*llQﬂ_lQﬂ_2* = 0 and Q,U,—I_Qi = Z;:llQp,—lQi = 0 for
i = 0,...,0— 3. Applying several basic properties (e.g. II,_o = II,_5II, ) we find
the representation DII, 1D~ = (DII, oD~ )(DII,_yD~) which shows the continuous
differentiability of D]_Yu,lD_. Our new sequence Q, ..., Qu,l is admissible. We have
further im G“,l =im G4, thus

g,u—l = Sﬂ_l = ker W,u—lB = ker Wﬂ_lBZ‘u_l = Z;Elsu_l.

This makes clear, Qu,l = Z;_llQH,l projects onto N, = Zl:_llN“,l along
Sy—1 = Z,;_llsu,l, and therefore the new coupling coefficient satisfies H,; = 0. Ad-
ditionally, making further technical efforts one attains H,_, = 0.

If 4 = 3, a fine decoupling is reached. If ;1 > 4, we built the next sequence analogously as

C:?o = Qm ceey @u—4 = Qu—4, C:?u—?) = Qu—3*7
Q,LL—Q = Z;_IQQ,LL—QZH,—?; Qu—l = Z;_llQu—IZ,u—l-

Supposing DI1,,_4Q,3.D~ to be continuously differentiable, we prove the new sequence
to be admissible, and to generate the coupling coefficients

Hy1=0, H, =0 H, 3=0.

And so on. Lemma 6.17 below guarantees the procedure to reach its goal.
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Lemma 6.17 Let the DAFE (44) with sufficiently smooth coefficients be reqular with tractabil-
ity index 1 > 3, and let Qo, ..., Qu—1 be admissible projector functions.

Let k€ {1,...,u—2} be fived, and let Qy be an additional continuous projector function
onto Ny = ker G}, such that DII,_1Q,D~ is continuously differentiable and the inclusion
No+ -+ Ny_1 C ker Qy, is valid. Then the following becomes true:

(1) The projector function sequence

6:20 = Qo, ... 7Qk71 = Qr—1,

Qka
A 1 A -1
Qk+1 = Zk+1Qk+IZk+17 s 7Qu—1 = Zlu,_lQ,u,—IZp,—lu
with the determined below continuous nonsingular matrix functions Zyi1, ..., 2,1,

15 also admissible.

(2) If, additionally, the projector functions Qy, . .., Q,—1 provide an advanced decoupling
in the sense that the conditions (cf. Lemma 6.12)

Qu-1:Il1 =0, ..., Qpy1:dly1 =0
are given, then also the relations

Qu-1.1l,1=0, ..., Qrr1.11,—1 =0, (73)
are valid, and further

Quelly—1 = (Qre — Qu) 1. (74)

The matrix functions Z; are consistent with those given in Lemma 3.7, however, for an
easier reading we do not access this general lemma in the proof below. In the special case
given here, Lemma 3.7 yields simply Zo=1,Y1, =2, =1,...,Y, = Z, = I, and further

B B
Vi =1+ Qu(@Qr — Q) + Y QiuQr = (1 + D Qu2uQi) (I + Qu(Qr — Qx)),
=0 =0

Zk+1 - Yk+17
j—2

=1+ Zlejfllefla Zy=YZi 1, j=k+2,...
1=0

Besides the general property ker Z_Y]- = kerll;, 5 = 0,...,u — 1, which follows from
Lemma 3.7, now it additionally holds that

imQ, =imQy, but keer:keer, j=k+1,...,0—1

We refer to the Appendix B for the extensive calculations proving this lemma.

Lemma 6.17 guarantees the existence of fine decoupling projector functions, and it con-
firms the procedure sketched above to be reasonable.

The following theorem is the time-varying counterpart of [LMT11b, Theorem 5.2] on
constant coefficient DAEs.
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Theorem 6.18 Let the DAE (44) be reqular with tractability index .
(1) If the coefficients of the DAE are sufficiently smooth, then a fine decoupling exists.

(2) If there is a fine decoupling, then there is also a complete decoupling.

Proof: (1) The first assertion is a consequence of Lemma 6.17 and the procedure described
above.
(2) Let fine decoupling projectors Qo, ..., Q,—1 be given. We form the new sequence

QO = QO*a Ql = Zl_llela ceey Qu—l = Zu__llQu—lzu—la

with the matrix functions Z; from Lemma 3.7, in particular Z; = I + QoPy. Tt holds
that D~ = Ry D~. Owing to the special form of Zj;, the relations II; 17; = Il; 4,
Hj,le*l = Il are given for j < 4 — 1. This yields Q;,Q; = QiZleij =
Qill; 1\ Z;'Q; Z; = 0.
=0
Expressing DII,D~ = DPyZ;'P.Z,P,D~ = D PyZ;'P, Z,PyD~ = DII, D~, and succes-
——

11
sively,
Dﬁzbi = Dﬁl,lZflﬂZZPB
=DIl; \D"DZ;'P;Z;P, = DI, \D DZ;'P,; Z;P;, = DII,D",
i,
we see the new sequence of projector functions Qy, ..., Q#_l to be admissible, too.

Analogously to Lemma 6.17, one shows
Hu—l :O)"'aﬂl :O) 7:(0: (QO*_QO)HM—I)

and this completes the proof. O

6.3 Solvability and flow

Here we continue to investigate regular DAEs (44) which have tractability index p and
fine decoupling projector functions Qo, ..., Q,—1. It is worth emphasizing once more that
Theorem 6.18 guarantees the existence of a fine decoupling for all regular DAEs with
sufficiently smooth coefficients. By Theorem 6.15 (cf. also Lemma 6.12),

e = (I — Qos)—1 = (I — Ho) 1,4
is the canonical projector function onto S.,, along N..,, and hence
Do, = DII,,—y, DIl.q,D” = DIl, D™, and imDII, | =im DIl ., = DScq.
Taking into account also Lemma 6.5 (7), the IERODE can now be written as
w — (DHeanD™)'u+ Dl G, BDu = DIl0nG,, g, (75)
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and, by Lemma 6.4, DS,,, is a time-varying invariant subspace for its solutions, that
means, u(tg) € D(tg)Sean(to) implies u(t) € D(t)Sean(t) for all t € Z. This invariant sub-
space applies also to the homogeneous version of the IERODE. The IERODE is unique,
its coefficients are independent of the special choice of the fine decoupling projector func-
tions, as it is pointed out in the previous subsection.

With regard to the fine decoupling, the Proposition 6.6 (6), and the fact that
v; = II;_1Q;v; holds true for i = 1,...,u — 1, the subsystem (64) has now the slightly
simpler form

pn—1 pn—1
vy = — ZNOI(DUZ)/ - ZMOl vy — HoD™u + Log, (76)
=1 1=2
pn—1 pn—1
Ui:_ZMl(DUZ)/_ZMilUl+£iQa t=1,...,0—3, (77)
I=it+1 I=i+2
V2 = —Ny—2,—1(Dv,—1) + L,-2q, (78)
Vp—1 = Euflq (79>

By Theorem 6.7, the DAE (44) is equivalent to the system consisting of the IERODE and
the subsystem (76)-(79).

6.3.1 Homogeneous DAEs
The following solvability assertion is a simple consequence of the above.

Theorem 6.19 Let the homogeneous DAE (45) be regular, and let the coefficients be
smooth enough for the existence of a fine decoupling. Then,

(1) for each arbitrary z° € R™, the IVP
A(Dx) + Bx =0, x(tg) — 2° € Nean(to), (80)
is uniquely solvable in CH(Z,R™),
(2) the homogeneous IVP
A(Dz)' + Bx =0, x(ty) € Nean(to),
has the trivial solution only, and
(3) through each xg € Sean(to) passes exactly one solution.

Remark 6.20 Sometimes is seems to be more comfortable to describe the initial condition
in (80) by an equation, for instance, as

Mo (to) (x(ty) — 2°) = 0, (81)

and as

C(x(ty) — 2°) =0, (82)

by any matriz C such that ker C' = ker Hean(to) = Nean(to). For instance, taking arbitrary
admissible projector functions Qq, ..., Qu—1, one can choose C' such that C' = Cll .., (t).
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Proof: (2) The initial condition yields u(ty) = D(to)can(to)z(to) = 0. Then, the result-
ing homogeneous IVP for the IERODE admits the trivial solution v = 0 only. Therefore,
the DAE solution x = I1.,, D~ u vanishes identically, too.

(1) We provide the solution u of the homogeneous IERODE which satisfies the initial
condition u(ty) = D(tg)H.an(to)x°. Then we form the DAE solution z = I1., D u, and
check the initial condition to be met:

Jf(to) — 170 = Hcan(to)D(to)_U<t0) — [EO = Hcan(to)D(to)_D(t())Hcan(to)l’o — I’O
= —(I = Hean(t0))2° € Nean(to)-

Owing to (2) this is the only solution of the IVP.
(3) We provide the IVP solution as in (1), with 2° replaced by xq. This leads to

I(to) = Hcan<t0)D(t0)_u(t0) = Hcan(tO)D(tO)_D(tO>Hcan(tO)xO = Hcan(tO)J:O = O

The uniqueness is ensured by (2). O

As it is common in ODE theory we denote by z(.,,2") the solution of the IVP (80).
In contrast to the value 2° being not necessarily consistent, we indicate by xy a consis-
tent value. As for regular time varying ODEs (e.g. [Gaj99]), we may also consider the
qualitative behavior of solutions.

Definition 6.21 Let the homogeneous reqular DAE (45) be given on the infinite interval
Z = [0,00), and let the coefficients be smooth enough for fine decouplings. The homoge-
neous DAFE is said to be

(1) stable, if for every € > 0, to € I a value 6(g,ty) > 0 exists, such that
0, To € Seanlto), |To — To| < (e, ty) imply the existence of solutions
z(.,to, wo), x(.,to, To) € CH(Z,R™), as well as |x(t,to, xo) — z(t, to, To)| < &, t > to,

(2) wuniformly stable, if 0(e,tg) in (1) is independent of to,

(3) asymptotically stable, if (1) holds true and

|z (t, to, x0) — x(t, to, To)| P 0 forall xo,To € Sean(to), to € Z,

(4) uniformly asymptotically stable, if the limit in (3) is uniform with respect to to.

6.3.2 Fundamental solution matrices

By Theorem 6.19, regular homogeneous DAEs are close to regular homogeneous ODEs.
This applies also to their fundamental solution matrices.

Denote by U(t,ty) the classical fundamental solution matrix of the IERODE, that is, of
the explicit ODE (75), which is normalized at ty € Z, i.e. U(to,to) = I.

For each arbitrary initial value uy € D(t)Sean(to), the solution of the homogeneous
IERODE passing through remains for ever in this invariant subspace, which means
Ul(t,to)ug € D(t)Sean(t) for all t € Z, and hence

Ut to) D (to) Hoan(to) = D(t) Loan () D ()" U (¢, t0) D(to) Loan(to), t €.  (83)
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Each solution of the homogeneous DAE (45) can now be expressed as

x(t) = (I — Ho(t))D(t)"U(t,to)ug = Hean(t)D(t)"U(t, to)ug, t € Z, ug € D(ty)Secan(to),
(84)

and also as

2(t) = Houn(t)D(t)"U(t, 1) D(to) Mean(to) 2°, t€Z, with 2 € R™. (85)

(. J
~~

X(t,to)

If x € ChH(Z,R™) fulfills the homogeneous DAE (45), then there is exactly one
ug € D(tg)Sean(to) such that the expression (84) is valid, and there are elements 2° € R™
such that (85) applies. Except for the index zero case, 2° is not unique.

Conversely, for each arbitrary z° € R™, formula (85) provides a solution of (45). We
know, the solution values of the homogeneous DAE lie in the d-dimensional canoni-
cal subspace Sca, in particular z(fy) € Sean(to). Therefore, starting from an arbitrary
2% € R™, the consistency of x(ty) with 2° can not be expected. What we always attain is
the relation

l’(to) = Hcan<t0)x07

but the condition x(ty) = x¢ is exclusively reserved for zy belonging to Sea,(to)-

The composed matrix function
X(t,to) := Hean(t) D) U (L, to) D(to) Hean(to), t€Z, (86)

arising in the solution expression (85) plays the role of a fundamental solution matrix of
the DAE (44). In comparison with the (regular) ODE theory, there are several differences
to be considered. By construction, it holds that X (to,tg) = Il.an(to) and

im X (t,t0) C Sean(t),  Nean(to) C ker X(t,ty), teT, (87)

so that X (t,to) is a singular matrix, except for the case p = 0. X(.,ty) is continuous,
and DX (., tg) = DIy D~ U(.,t0)D(to)I1lan(to) is continuously differentiable, thus the
columns of X (.,ty) are functions belonging to C},(Z,R™).

We show that X (¢,tp) has constant rank d. Fix an arbitrary ¢ # t; and investigate the
nullspace of X (t,%y). X (t,t9)z = 0 means U(t,to)D(to)ean(to)z € ker I ., (t)D(t)~, and
with regard of (83) this yields U(t, to) D(to)Iean(to)z = 0, thus D(to)I1an(to)z = 0, and
further I1..,(t9)z = 0. Owing to (87), and for reasons of dimensions, it follows that

im X (t,t0) = Sean(t), Nean(to) = ker X(t,ty), rank X(¢,tp) =d, teZ. (88)
Lemma 6.22 The matrix function
X(t,t0)” = Hean(to) D(to) Ut to) ' D(t) ean(t), t €T,
is the reflexive generalized inverse of X (t,to) determined by

XX X=X, X XX =X, X X=Iut), XX = .
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Proof: Applying the invariance (83), we derive

X X = Hcan(to)D(to)folDﬂcanﬂcaanUD(tO)Ham to)
= Hcan(tO)D(tO)_U_l DHcanD_UD(tO)Hcan(tO) = Hcan(tO)a

UD(to)Hcan(t())

and X XX = (X" X)X =X, XX X=XXX)=X.
Next we verify the relation

U™'Dl.up, = D(to) Han(to)D(to) U ' DIl g, (89)
which in turn implies

XX~ = 0D UD(tg) H an(to) Hoan(to) D(to) U DIl 4,
- HcanD_U D(tO)Hcan<t0)D(t0)_U_lDHcan = Hcan-

-
U—'DIcqan

From

U' = (DHeanD™)'U + DIloonG,' BD"U =0,  Ulty) =0,

it follows that
U™V + U (DI D™) = U™ DIl.0nG; ' BD™ = 0.

Multiplication by DIl.,, D~ from the right results in the explicit ODE
V' = V(DHeunD™) + VDIl G,  BD~

for the matrix function V = U-'DIl,.,D". Then, the matrix function

V = (I — D(to)an(to)D(to)”)V vanishes identically as the solution of the classical
homogeneous IVP

V' =V(DHeanD ™) + VDIanG,' BD™,  V(ty) =0,
and this proves (89). O

The columns of X(.,ty) are solutions of the homogenecous DAE (45), and the matrix
function X (., o) itself satisfies the equation

ADX) + BX =0, (90)
as well as the initial condition
X (to, to) = Hean(to), (91)
or, equivalently,
I 0 (t0) (X (t0, o) — 1) = 0. (92)

Definition 6.23 Let the DAE (44) be regular with fine decoupling projector functions.
The matriz function Y € C(Z,L(R*,R™)), d < s < m, is said to be a fundamental
solution matriz of the DAE, if its columns belong to Ch(Z,R™), the equation

A(DY) + BY =0
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1s fulfilled, and the condition imY = S.4, is valid.

A fundamental solution matriz is named minimal of size, if s = d, and mazimal of size,
if s =m.

A mazimal size fundamental solution matriz Y is said to be mormalized at tq, if

Hcan(t())(Y(tO) - I) =0.

In this sense, the above matrix function X(.,#y) (cf. 86) is a maximal size fundamental
solution normalized at t,.

Remark 6.24 Concerning fundamental solution matrices of DAFEs, there is no common
agreement in the literature. Minimal and mazimal size fundamental solution matrices, as
well as relations among them, are first described in [BMOO] for standard form index one
DAEs. A comprehensive analysis for reqular lower index DAFEs, both in standard form and
with properly stated leading term, is given in [Bal04]. This analysis applies analogously
to reqular DAFEs with arbitrary index.
Roughly speaking, minimal size fundamental solution matrices have a certain advantage
m view of computational aspects, since they have full column rank. For instance, the
Moore-Penrose inverse can be easily computed. In contrast, the benefits from maximal size
fundamental solution matrices are a natural normalization and useful group properties as
pointed out e.g. in [BMO02], [Bal04].
If X(t,tg) is the maximal size fundamental solution matriz normalized at ty € Z, and
X(t,to)~ is the generalized inverse described by Lemma 6.22, then it holds for allt, ty,t; €
7 that

X<t7 t1>X(t1, to) = X(t, to), and X(t, to)i = X(to, t),

as immediate consequences of the construction, and Lemma 6.22.

Applying normalized maximal size fundamental solution matrices one can modify results
on flow properties of explicit ODEs (e.g. [Gaj99] to be considered for DAEs.

Proposition 6.25 Let the homogeneous DAE (]5) be regular with sufficiently smooth
coefficients so that fine decoupling projector functions exist. Then the following assertions
hold true with positive constants Ky, K and o:

(1) If | X (t,t0)| < Ky, t > to, then the DAE is stable.

(2) If | X (t,10)] - 0, then the DAE is asymptotically stable.

(3) If | X (t,t0) X (s, t0) 7| < K, t > s > to, then the DAE is uniformly stable.

(4) If | X (t,t0) X (s, t0)"| < Ke ®t=3) t > s > t4, then the DAE is uniformly asymptot-
ically stable.
Proof: (1) It suffices to put d(to,€) = ¢/ Ky, .
(2) This is now obvious.

(4) Take g, Ty € Sean(to), 20 := xo — To # 0 such that X (¢, %)z has no zeros. then we
compute for t > s

| X (¢ to)zo] _ |X(E,to) Heanzo| _ | X(E,t0) X (s, t0)” X (s, to) %]
| X (s, t0) 0] | X (s, t0)20] | X (s, t0)20]
<X (t,t0) X (s,t) 7| < Ke @9,
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This implies

’.Cl](t,to,ﬂ?o) — x(t, t(), i’0>| = ‘X(t,to)Zo’ < Keia(tis)’QZ(S,to, $0> — JI(S,to, fo)’
(3) This proves as (4), with a = 0. O
Definition 6.26 The reqular DAE (45) with fine decoupling is said to be dichotomic,
if there are constants K, o, 3 > 0 , and a nontrivial projector (not equal to the zero or

identity matriz) Py, € L(R™) such that Pyien = Hean(to) Paich = PaicnIlean(to), and the
following inequalities apply for allt,s € L:

| X (t,t0) Paien X (5,10) 7| < Ke™@U=9) ¢ >,
|X (t,t0)(I — Pycn) X (s,t0) 7| < Ke P60 ¢ <.

If a8 > 0, then one speaks of an exponential dichotomy.

Sometimes it is reasonable writing the last inequality in the form
X (t,to) (Hean(to) — Paien) X (s,t0) 7| < Ke P70 ¢ <s.

It should be pointed out that dichotomy is actually independent of the reference point ty.
Namely, for ¢, # to, with Pycns, = X (t1,t0) Paicn X (t1,t0)~ we have a projector such that
Pdich,tl = Hcan(t1>Pdich,t1 = Pdich,tl Hcan(tl) and

| X (,t1) Paicni, X (5, 11) 7| < Ke U™t > s,
|X(t7 tl)(ﬂcan(t1> - sz'ch,h)X(Sa t1>_| S Ke—ﬂ(s—t)) 13 S S.
Analogously to the ODE case, the flow of a dichotomic regular DAE is divided into two
parts, one containing in certain sense nonincreasing solution, the other with nondecreas-
ing ones. More precisely, for a nontrivial g € im Py, € Sean(to), the DAE solution
x(t,to, xo) = X (t,to)xo has no zeros, and it satisfies for ¢ > s the inequalities

|z (t, to, x0)| _ | X (t, to)zo| _ | X (t, to) Paich I can (to) o]
(s, to, o) [X(s,t0)wol | X (s, to) ol
N

(
X(t, t())PdichX(S, to)_X(S, t0)$0|

<X (t, to) Paien X (5, 10) 7| < Ke %),
| X (s, )0 < |X(t,t0) Puicn X (s,t0) 7| < Ke

For solutions xz(t,ty, zo) = X(t,to)xe with g € im (I — Pyicn)lcan € Sean(to) we show
analogously, for t < s,

|z (t, to, o) _ | X (t,to)zo| _ | X (¢, t0) (I — Puicn) an(to) o)
|z(s,to, xo)| | X (s,t0)xol | X (s, o) o
| Xt to) (I — Puicn) X (s,t0)~ X (s, to) 20|
| X (s, o) ol
<X (t,t0) (I — Prign) X (s, t0) 7| < Ke P70,

The canonical subspace of the dichotomic DAE decomposes into

Sean(t) =1m X (t, o) = im X (t, to) Pgicr, ® im X (t,10)(I — Paich) =: Sron(t) ® S, (1).
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The following two inequalities result for ¢ > s, and they characterize the subspaces S_,,
and S}~ as those containing nonincreasing and nondecreasing solutions, respectively:

can

|z (t, to, xo)| < Ke’o‘(t"s)]x(s,to,xo)], if x2g€ S

can’
1

?eﬁ(t—s)m(sytojxoﬂ < |:L’(t,t0,l’0)|, if € S;m

In particular, for s = ¢, it results that

|2 (t, to, x0)| < Ke @) ||, if x40 € S

can’
1

K

If « >0, and Z = [ty,00), then |z(t, to,z0)| tends to zero for ¢ tending to oo, if xy be-
longs to S, (to). If 5> 0 and zy € SI,,(to), then z(t, 1o, z9) growths unboundedly with

can can
increasing .

P g < |t to, 20)|, if o € ST

can*

As for explicit ODEs, dichotomy makes good sense on infinite intervals I. The growth
behavior of fundamental solutions is also important for the condition of boundary value
problems stated on compact intervals (e.g. [AMRSS] for explicit ODEs, also [LM90] for
index one DAEs). Dealing with compact intervals one supposes a constant K of moderate
size.

Example 6.27 Consider the semi-explicit DAE

I B B
I 0]a)+ |5 =Zlz=0,
[O] R {321 Bas
consisting of three equations, m; = 2,mo = 1,n = 2. Let By have no zeros, let the

coefficients be such that

By 4 Bz [n1 2] = {(())é _Oﬁ] . [m 7] = =By Ba,

with constants o, 3 > 0. Then, the canonical projector function and the IERODE have
the form (cf. Example 6.8)

1 0 O -
Hu,2,=10 1 0|, and u + {0 —ﬁ] u=0.
7 2 0

The IERODE is obviously dichotomic. Compute the fundamental solution matriz of the
DAFE and its generalized inverse:

6*04(tft0) 0 0 6oz(tfto) 0 0
X(t,to) = 0 ePl=to) 0| | X(t,ty)” = 0 oBlt—to)
,yl(t)efa(tfto) y (t)eﬁ(t to) 0 ,yl(t())ea(t*to) Vz(to)efﬂ(tfto) 0

The projector

1 0 0 0 0 0
Pdich = 0 0 0 ) Hcan(tO) - Pdich = {0 1 0 )
4! (tO) 0 0 0 Y2 (to) 0



meets the condition of Definition 6.26, and it results that

1 00 1
X(t,to)Puen X (t,tg)" =e @t | 0 0 0|, and S, (t)=span | 0 |,
7(t) 0 0 71(t)
0 0 0 0
X(t,to)(ﬂcan(to)—Pdich)X(t,to)_:eﬁ(t_t‘)) 0 1 0|, and S;rm(t):span 1 ,
0 y(t) 0 Ya(t)

If both ~v1 and 7o are bounded functions, then this DAFE is dichotomic. If, additionally, o
and (B are positive, the DAFE has an exponential dichotomy. We see, if the entries of the
canonical projector remain bounded, then the dichotomy of the IERODE is passed over to
the DAE. In contrast, if the functions 1, 2 growth unboundedly, the situation within the
DAFE may change. For instance, if « =0 and § > 0, then the fundamental solution

1 0 0
X(t,te)=1 0 eflt=to)
n(t) ya(t)e’=) o

indicates each nontrivial solution to growth unboundedly though the IERODE s dichotomic.

The last example is somewhat too simple in the sense that DS, = im D = R" is valid,
which happens only for regular index one DAEs, if A has full column rank, and D has
full row rank. In general, DS,,, is a time-varying subspace of im D, and the IERODE at
the whole does not comprise an exponential dichotomy. Here the question is, whether the
IERODE shows a dichotomic behavior along its (time-varying) invariant subspace DSq,.
We do not go in more details in this direction.

6.3.3 Inhomogeneous DAEs with admissible excitations

Turn to inhomogeneous DAESs, first supposing the excitation to be such that a solution
exists. Before long, in the next part, we characterize the classes of admissible functions
in detail.

Definition 6.28 The function ¢ € C(Z,R™) is named an admissible excitation for the
DAE (44), if the DAE is solvable for this q, i.e., if a solution x, € CH(Z,R™) exists such
that A(Dx,) + Bx, = q.

Proposition 6.29 Let the DAE (4}4) be regular with tractability index p, and let a fine
decoupling be given.

(1) Then, q € C(Z,R™) is an admissible excitation, if and only if the IVP
A(Dx) + Bx=¢q, x(ty) € Nean(to), (93)
admits a unique solution.

(2) Each q € C(Z,R™), which for p > 2 fulfills the condition ¢ = G,P; - - - Pu_lGljlq, is
an admissible excitation.
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Proof: (1) Let ¢ be admissible and z, the associated solution. Then the function
Z(t) = my(t) — X(t,t0)xy(to), t € Z, satisfies the IVP (93). The uniqueness results
from Theorem 6.19 (2).
The reverse is trivial.
(2) From the condition ¢ = G, P - -- F,_1G'q it follows that
Lig=1;_ 1Q;Pit1--- Pu—lG,:lq
=1, 1QiPyyy -+ Py P+ PGl =0, i=1,...0—2,
Eu—lq = Hu—2Qu—lG;1q = H,u—QQ,u—lpl s Pp—lGlzlq = 0.
In consequence, the subsystem (77)-(79) yields successively v,_1,...,v; = 0. The IERODE

(75) is solvable for each arbitrary continuous excitation. Denote by w, an arbitrary solu-
tion corresponding to q. Then, the function

v = ~HoD u + Log = ~HoD " u. + QoG g
results from equation (76), and
=D u,+v9= D u, + QoGljlq
is a solution of the DAE (44) corresponding to this excitation . 0J
For a regular index one DAE, all continuous functions ¢ are admissible. For regular
higher index DAEs, the additional projector function G, P; - -- Pu_lGljl cuts away the
"dangerous” parts of a function, and ensures that only the zero function is differentiated

within the subsystem (76)-(79). For higher index DAEs, general admissible excitations
have certain smoother components. We turn back to this problem before long.

Example 6.30 Consider the DAE

10 1 a0 00 O
0 1 ({0 1 0] )+ |0 0 —1|z=gq
0 0 01 0

Here, o is a continuous scalar function. Set and derive

1 —«a 1 a 0 0 00 1 a 0
D =10 1], Go=10 1 0|, Q=10 0 0|, Gi=1[0 1 -1},
0 O 0 0 O 0 01 00 O
and further
0 —a 0 10 1 a 0
Q=10 1 0|, Qi1Qo=0, DILD™ = [O O} ,Go= |0 1 -1
0 1 0 01 0

The projector functions Qo, Q1 are admissible, G5 is nonsingular, and hence the DAE is
reqular with tractability index two. The given property ker Q1 = S1 = {z € R3 : 2, = 0}
indicates that Qo, Q1 already provide a fine decoupling. Compute additionally

1 o 0 1 0 —-«o 1 00
Hcan = Hl =10 0 O , G;l =10 0 1 , G2P1G51 =10 1 O
0 0 O 0O -1 1 0 0O
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A closer look to the detailed equations makes clear, each admissible excitation q must
have a continuously differentiable component qs. By condition ¢ = Go PG5 'q, the third
component of q is put to be zero.

Theorem 6.31 Let the DAE (44) be regular with sufficiently smooth coefficients so that
a fine decoupling exists. Let ¢ € C(Z,R™) be an admissible excitation, and let the matriz
C € L(R™,R®) have the nullspace ker C' = Nqy(to).

(1) Then, for each z° € R™, the IVP
A(Dx) + Bx=q, C(z(ty) —2°) =0, (94)
admits exactly one solution.
(2) The solution of the IVP (94) can be expressed as
z(t, o, 2°) = X (t,t0) 2" + z,(t),
whereby x, € ChH(Z,R™) is the unique solution of the IVP

A(Dz)' + Bx =¢q, Cux(tg) =0, (95)

Proof: (1) It holds that C' = CIl.,(ty). Since ¢ is admissible, by Proposition 6.29(1),
the solution z, exists and is unique. Then the function z, := X (., o)z’ +x, belongs to the
function space C},(Z,R™) and satisfies the DAE. Further, z, meets the initial condition

C(24(to) — 2%) = Clegn(to)(w4(to) — 2°) = Clean(to) (Ian(to)z® + z,(to) — 2°) = 0,

and hence, x, satisfies the IVP (94). By Theorem 6.19, z, is the only IVP solution. This
proves at the same time (2). O

We take a further look to the structure of the DAE solutions z, and x(.,%,2°). To the
given admissible excitation ¢, we denote

pn—1

pn—1
vi=v+ ot v+ Logq — ZNOZ<DUI>/ - ZMozUz; (96>
=1 1=2

whereby v, ...,v,-1 € CH(Z,R™) are determined by equations (77)-(79) in dependence
of g. All needed derivatives exist due to the admissibility of ¢. If ¢ vanishes identically,
so does v. By construction, v(t) € Nen(t), t € Z, and Dv = Dvy + --- + Dv,_q,
thus v € CL(Z,R™). The function v is fully determined by ¢ and the coefficients of
the subsystem (76)-(79). It does not depend neither of the initial condition nor of the
IERODE solution.

Introduce further the continuously differentiable function u, as

ug(t) :—/ U(t,to)U(s,to)’lD(s)Ucan(s)G/jl(s)q(s)ds

to

=U(t,to) /tX(s,to)_G;l(s)q(s)ds, teZ,
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that is, as the solution of the inhomogeneous IERODE completed by the homogeneous
initial condition u(ty) = 0. Now the solution x, and, in particular, its value at ¢, can be
expressed as

q(t) = D(t) ug(t) — Ho(£) D(£) uqg(t) + v(t) = Hean(t) D () uq(t) + v(t),
$q(t0> = ’U(to) c Ncan(t(])-

The solution of the IVP (94) and its value at t, can be written in the form

z(t,to, 2°) = X (t,10)2° + Hean(t) D(t) 1y (t) + v(t), (97)
z(to, to, %) = Hean(to)x® + v(ty), (98)

but also as

2(t10,2%) = Man () D) U (t,£0) D{t6) Mean(t0)a” + Moo () D(E) "1y (£) + v1(2)
o (1) D(t)” {U (1, 10) D(t0) ean(t0)a” + 1, (1)} +0(2).

-~

u(t,to,D(to) Hean (to)z0)

The last representation

o(t,to,2°) = Ian()D(t)”  ult,to, D(to)Hean(to)a”) — + v(t)
() ) ()
wrapping inherent flow perturbation

unveils the general solution structure of regular linear DAEs to be the perturbed and
wrapped flow of the IERODE along the invariant subspace DS,,. If the wrapping is thin
(bounded) and the perturbation disappears, then the situation is close to regular ODEs.
However, it may well happen that wrapping and perturbation dominate (cf. Example
6.27). In extreme cases, it holds that S..,, = {0}, thus the inherent flow vanishes, and the
perturbation term only remains (cf. Example 2.3).

From Theorem 6.31, and the representation (97), it follows that, for each given admissible
excitation, the set

Meang(t) :={z+v(t) : 2 € Sean(t)}, teT, (99)

is occupied with solution values at time ¢, and all solution values at time ¢ belong to this
set. In particular, for zg € Man 4(to) it results that zo = 2o +v(to), 20 € Sean(to), further
Hcan(tO)xO = 20 and

l’(to, to, Io) = Hcan(to)flf() + U(t()) = 20 + U(to) = Xyp-
By construction, the inclusions

Sean(t) € So(t) = {z € R™: B(t)z € im A(t)} = ker W (t) B(t),
Meanq(t) € Mo(t) = {z € R™ : B(t)z — q(t) € im A(t)}
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are valid, whereby W)y (t) is again a projector along im A(t) = im G (t). Recall that Seu, (%)
pn—1 pn—1

and Sp(t) have the dimensions d = m— > (m—r;) =ro— Y (m—r;) and ro, respectively.
j=0 j=1

Representing the obvious constraint set as

Mo(t) = {z € R™ : Wy(t)B(t)x = Wy(t)q(t)}
= {2+ Wo(t)B(t)) Wa(t)q(t) : z € So(t)}

we know that My(t), as an affine space, inherits its dimension from Sy(¢), while M4, 4(%)
has the same dimension d as Seun(t).

Since d = rg if p =1, and d < 7o if g > 1, M an4(t) coincides with My(t) for index-1
DAEs, however, for higher index DAEs, M4, 4(t) is merely a proper subset of My(t).
M ecan,q(t) is the set of consistent values at time ¢. The knowledge of this set gives rise for
an adequate modification of the stability notions given in Definition 6.21 for homogeneous
DAEs. As pointed out in [Bal04] for lower index cases, in general, M4, 4 is a time-varying
affine linear subspace of dimension d.

Definition 6.32 Let the reqular DAE (44) be given on the infinite interval
Z = [0,00), and let the coefficients be smooth enough for fine decouplings. Let the ex-
citation q be admissible. The DAFE is said to be

(1) stable, if for every ¢ > 0, to € I a value 6(g,ty) > 0 exists, such that
20,Zo € Moeang(to), |zo — To| < d(e,to) imply the existence of solutions

z(.,to, xo), x(.,to, To) € CH(Z,R™) as well as |x(t,to, o) — z(t, o, To)| < &, to < t,

(2) wuniformly stable, if 6(e,ty) in (1) is independent of t,

(3) asymptotically stable, if (1) holds true, and

|$(t,t0,I0) — l’(t?tg,.fo” z 0 forall xy,xy € Mc(m,q(to), to € Z,

(4) wuniformly asymptotically stable, if the limit in (3) is uniform with respect to ty.

Remark 6.33 We can dispense with the explicit use of the set M unq(to) within the
stability notion by turning to appropriate IVPs (cf. Theorem 6.31). This might be more
comfortable from the practical point of view.

Let C € L(R™,R*) denote a matriz that has precisely Neq,(to) as nullspace, for instance
C =1I,1(ty) or C = Iy (to).

The DAE (44) is stable, if for every e > 0, ty € L, there ezists a value d¢(e,tg) > 0 such
that the IVPs

A(Dz) + Bx =q, C(z(ty) —2°)

0,
A(Dx) + Bx =q, C(z(ty) —2°) =0,

with 2%, z° € R™, |C(2° — 2%)| < dc(e,to)), have solutions z(.,tg,2°), (., t9,2°) €
CL(Z,R™), and it holds that |x(.,te, 2°) — z(., t0, Z°)| < &, for t > t,.
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This notion is equivalent with the previous one. Namely, denoting by C~ a generalized
reflezive inverse of C' such that C~C = .4, (to), and considering the relation

Cic(l‘o — jf(]) = Hcan(to)l’o - Hcan(to).fo
= zYcan@O)xo + /U(tOZ_EHcan(tO):EO + U(to)) = Ty — fo,

=x0€./\/l0(to) ZfoeMo(to)

we know that the existence of (e, ty) in Definition 6.32 implies the existence of
dc(e, ty) = |Clé(e, ty). Conversely, having ¢ (e, to) we may put 6(e,to) = |C~|dc (e, to).

Making use of the linearity,
l’(t, to, ZE()) — l’(t, to, i’o) = X(t, to)(l‘o - f()) = X(t, to)(Z() - 20) (100)

we trace back the stability questions to the growth behavior of the fundamental solution
matrices.

Theorem 6.34 Let the DAE (44) be regular with sufficiently smooth coefficients so that
fine decoupling projector functions exist. Then, for each admissible excitation q, the fol-
lowing assertions hold true with positive constants K;,, K and a:

(1) If | X (t,t0)| < Ky, t > tg, then the DAE is stable.

(2) If | X (t,10)] — 0, then the DAFE is asymptotically stable.

(3) If | X (t,t0) X (s,t0) 7| < K, tog < s <t, then the DAE is uniformly stable.

(4) If | X (t, t0) X (5,t0)"| < Ke™®=9) t, < s < t, then the DAE is uniformly asymptot-
ically stable.

Proof: With regard of (100), the proof of Proposition 6.25 applies. O

6.3.4 Characterizing admissible excitations

The fine decoupled version of a regular DAE into the IERODE (53) and the subsystem
(64) allows for a precise and detailed description of admissible excitations. The IERODE
is solvable for each arbitrary continuous inhomogeneity, therefore, additional smoothness
requirements may occur from the subsystem (64), and for g > 1 only. We recall the
version (76)-(79) of the subsystem, which is already specified for fine decouplings:

p—1 p—1

vy = — ZNOI(DUZ)/ - ZMOI v — HoD™u + Lyg, (101)
z:_ll lf_l

v = — ZMZ(DUZ)/— ZMil v+ Lig, 1=1,...,0—3, (102)
I=it1 I=i+2

Vyo = —Ny—ou1(Dvy_r) + L,0g, (103)

Vy—1 = Eu—lQa (104)
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as well as the coefficients

Not i= —Qo@Q:1 D7,
Noj = —QoPy -+ P;_1Q; D™, J=2,...,up—1,
Niig1 = —11,.1Q:Qi1 D™,
Nij = —11; 1Qi Py - P;1Q; D™, J=1+2,...p=1i=1...,p—-2
Moj = QoPy--- P,oiM;DII;_1Q);, j=1,...,u—1,

M =11, 1QiPiyy--- P,y M;DII; 1Qj, j=1+1,....,u—1,i=1,...,p0—2,
Lo:= QP PG,
L; = z’—lQiR—i—l"'Py—lG;la t=1,...,0—2,
L= u—2Qu—lG;17
Ho = QoPy -+ Py 1KIT, ;.
For the detailed form of K and M; we refer to (56) and (57), respectively. All these

coefficients are continuous. This allows to introduce the following linear function space,
if p>2:

Cmm(T,R™) .= {q € C(Z,R™) :

Vy—1 = Luflq, DV‘ufl S Cl(I, Rn),

Vy—2 = _NM—Q,M—I(DVu—l)/ + Eu—2£]a DVM—Q S Cl(I7 Rn)a (105)
pn—1 pn—1

Vi = — Z MI(DVI)/ - Z My v+ Liq, Dv; € Cl(ZaRn>7 i=1,...,p— 3}-
l=i+1 l=i+2

This function space makes sense without any further smoothness assumptions concerning
the coefficients. C™¢#(Z,R™) contains, in particular, all functions ¢ that satisfy the condi-
tion ¢ = G.P--- Pu,lG!jlq (cf. Proposition 6.29), which corresponds to
vi = 0,...,v,.1 = 0. C™~(Z,R™) is always a proper subset of the continuous func-
tion space C(Z,R™). Here are the particular cases p =2 and p = 3:

Cm™2(T,R™) :={q € C(Z,R™) : v := L1q, D, € CY(Z,R")} (106)

={q € C(T,R™) : DII,Q,G5'q € CY(Z,R™)} = C})HOnggl(I, R™),

C™3(T,R™) := {q € C(Z,R™) : 1p := Logq, D1, € C*(T,R"),
v = —Niao(Dwy) + Liq, Dy, € CH(Z,R™)} (107)
={q € C(Z,R™) : vp := I1,Q:G5'q, Dvy € C*(Z,R"),
v = 11,Q1Q2D~ (Dvs) + IyQ1 PG5 'q, Dy € CH(Z,R™)}.

If the interval Z is compact, we may equip the space C™"¢#(Z,R™) with its natural norm

lgllina 1 := Nlalloe + [(DV—1)lloo + - + [[(D11) || oo,
which means for the special cases = 2 and p = 3:
lallinaz = llalleo + (D) loo = llglloc + (DIL@Q1 G5 ) [|oo, (108)
allinas = llalleo + 1 (Dv2)lloc + [|(Dr1) [l
= [lallee + (DI11Q2G5 " q) || oo
+ (DI10@Q1Q2 D™ (DI Q2G5 ) + DIInQ1PaG3q) ||oo- (109)
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We introduce now the linear operator L : C,(Z,R™) — C(Z,R™),
Lz := A(Dx)' + Bz, x€CphH(Z,R™), (110)

so that the DAE (44) is represented by the equation Lx = ¢, and the excitation ¢ is
admissible, exactly if it belongs to the range im L of the operator L.

Proposition 6.35 If the DAE (/4) is reqular with tractability index p € N, and its
coefficients are smooth enough for a fine decoupling, then the linear operator L has the
range

imL =C(Z,R™), if p=1,
im L = C™ (T, R™), if > 2.

Proof: The index one case is already known from Proposition 6.29 and the definition
of L. Turn to the case ¢ > 2. By means of the decoupled version, to each excitation
q € C™K(T,R™), we find a solution z € CH(Z,R™) of the DAE, so that the inclusion
Cindr(Z,R™) C im L follows. Namely, owing to the properties of ¢ (cf. (105), there is
a solution v,_1 € CH(Z,R™) of the equation (104), then a solution v, € CLH(Z,R™) of
(103), and solutions v; € C},(Z,R™) of (102), successively for i = u—3, ..., 1. Furthermore,
compute a solution u of the IERODE, and vy from the equation (101). Finally put
r:=D u+uvyg+-+v,-1.

To show the reverse inclusion C"?#(Z,R™) D im L we fix an arbitrary z € Ch(Z,R™)
and investigate the resulting ¢ := A(Dx)' + Bxz. We apply again the decoupling. Denote
vg = Qox, and v; := II; 1Q;x, for © = 1,...,u — 1. Since the projector functions
DI, 1Q;D~,i=1,...,u—1 and the function Dz are continuously differentiable, so are
the functions Dv; = DII; 1Q;D Dx, i = 1,...,u — 1. Now the equation (104) yields
Vy1 = L,-1¢ = v,—1 € CH(Z,R™), the equation (103) gives

Vyo =Ny 9, 1(Dvy1) + L,-2q = v,—9 € CH(Z,R™), and so on. O

At this place, the reader’s attentions should be directed to the fact that the linear function
space Ch(Z,R™) does not necessarily contain all continuously differentiable functions. For
instance, if D is continuous, but fails to be continuously differentiable, then there are
constant functions x..,s such that Dz, fails to be continuously differentiable, and
hence T ons: does not belong to Ci(Z,R™). In contrast, if D is continuously differentiable
and its nullspace is nontrivial, then the proper inclusion

CY(Z,R™) C Cp(Z,R™)

is valid. Similar aspects are to be considered if one deals with the space C™#(Z, R™)
containing the admissible excitations. Only if the involved coefficients £;, N;; and M;;
are supposed to be sufficiently smooth, the inclusion

CH NI, R™) C CMH(T,R™).

holds true.

Theorem 6.36 Let the DAE (44) be regular with tractability index p, and let the co-
efficients be smooth enough for the existence of a fine decoupling. Then the following
assertions are true:
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(1) The excitation q is admissible, if and only if it belongs to C™*(Z,R™).

(2) For each pair ¢ € C™H(Z,R™), 2° € R™ | the solution x € CL(Z,R™) of the IVP
(94) satisfies the inequality

[2]]o0 < Cl‘Hcanx0| + c2qlloo + C3”qundu

S ¢ {|Hcan$0| + ||Q||zndu}a (111)

whereby the function norms can be related to each arbitrary compact subinterval of
I, which contains ty. The constants ¢ and c; depend only on this subinterval.

(3) If the DAE coefficients are so smooth that C*=Y(Z,R™) C C"~*(Z,R™), and

pn—1

lgllinan < coflldlloo + D 114V}, ¢ € C*HT,R™),

=1
then, for each pair ¢ € C*~1(Z,R™), 2° € R™, it holds that

pn—1

2]l < K{Heanz®] + llallos + Y 14”1} (112)
=1

Proof: (1) is a consequence of Proposition 6.35, and (3) results from (2). It remains to
verify (2). We apply the solution representation (97). First we consider the function v
given by (96). For a given g € C"?#(Z, R™), one has in detail

U1 = Ly1q = V1, thus flopallee < Guallglling o,
Vs = Luat = Nzt (DY) = Vs, thus [t lloe < Gallaling
and so on, such that
|villoo < Gillallinap, T=p—3,...,1,
with certain constants ¢;. Then, with a suitable constant ¢, it results that

Now the representation (97) leads to the first part of (111) with ¢; being a bound of the

fundamental solution matrix X(¢,%y), ¢ := ¢ and ¢y resulting as a bound of the term
X(t,to) X (s,t0)~ G, ' (s), whereby s varies between to and ¢t. We finish the proof by letting
¢ :=max{cy, c2 + c3}. O

The inequality (112) indicates that the DAE has perturbation indezx p.

6.4 Regular standard form DAEs
At present, most of the literature on DAEs is devoted to standard form DAEs
E@)'(t) + F(t)x(t) = q(t), teT, (113)

where £ and F' are smooth square matrix functions, and F(t) has constant rank on the
given interval.
As proposed in [GM86] one can treat (113) as

E@)(P(t)x(t)) + (F(t) — E@)P'(t)z(t) = q(t), teT, (114)
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by means of such a continuously projector function P that ker P = ker E. The DAE (114)
has a priori a properly stated leading term, and all results of the previous sections apply.
In particular, we build the matrix function sequence beginning with

A=E D:=P, R=P,B:=F—EP,Gy=E, By := B,

develop decouplings etc. However, now the new question arises which effects are caused
by a change from one projector function P to another one. Clearly, the matrix function
sequence depends on the projector function P.

Suppose P and P to be two continuously differentiable projector functions such that

ker E = ker P = ker P.

Besides (114) we consider

E(t)(P(t)z(t)) + (F(t) — E@)P'(t))x(t) = q(t), teT. (115)

The function spaces Cp(Z,R™) and CL(Z,R™) to coincide. Furthermore, the DAE (115)
results from the DAE (114) by a refactorization of the leading term. Namely, set

A=E, D:=P, R=P, B:=F—EP', and H:=P, H :=P.

Then, condition (37) is satisfied with RHH-R = PPP = P = R, and the refactorized
DAE (38) coincides with (115) because of (cf. (39))

A=AH=EP=E,

D=H D=PP=P,

B=B-ARH(H RYD=F - EP' — EP'P=F — EPP'— EP'P=F — E(PP)
= F - FEP.

In consequence, by Theorem 5.3 on refactorizations, the subspaces imG;, S;, and
Ny + -+ + N;, as well as the characteristic values r;, are independent of the special
choice of P. This justifies the following regularity notion for standard form DAEs which
traces back the problem to Definition 6.2 for DAEs with properly stated leading terms.

Definition 6.37 The standard form DAE (113) is regular with tractability index p, if
the properly stated version (114) is so for one (or, equivalently, for each) continuously
differentiable projector function P , ker P = ker .

The characteristic values of (114) are named characteristic values of (113).

The canonical subspaces Seqn and Nea, of (114) are called canonical subspaces of (113).

While the canonical subspaces S.,, and N, are independent of the special choice of P,
the IERODE resulting from (114) obviously depends on P:

w' — (PI,1)w+ PII, +G,'Bu= PII, ,G,'q, weimPII, ;. (116)

This is a natural consequence of the standard formulation.
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When dealing with standard form DAEs, the choice Py := P, D~ = P suggests itself
to begin the matrix function sequence with. In fact, this is done in the related previous
work. Then the accordingly specialized sequence is

Go=F, By=F — EP,=F — Gyll
Git1 = G + B,Q;, Biy1 = B;P, — GBIl II;, i > 0. (117)
In this context, the projector functions Qy, ..., Q. are reqular admissible, if
(a) the projector functions Gy, ..., G, have constant ranks,

(b) the relations Q;Q; = 0 are valid for j =0,...,i—1,71=1,...,K,
(c) and Iy,..., I, are continuously differentiable.

Then, it holds that PII; = II;, and the IERODE of a regular DAE (113) is
u — HL_1U + Uu_lGl:lBu = Hu_lGljlq, weimll, ;. (118)

In previous papers devoted to regular DAEs exclusively, some higher smoothness is sup-
posed to @;, and these projector functions are simply called admissible, without the
addendum regular. A detailed description of the decoupling supported by the specialized
matrix function (117) can be found in [Ria08].

Remark 6.38 In carlier papers (e.g. [Mar89aj, [Mar89b], [Han90], [Mdar92]) the matriz
function sequence

Giy1 =G+ BiQ;, Biy1=B;P,— G\ II[ II;, i >0, (119)

is used, which is slightly different from (117). While [Mdr89a/, [Mar89b] provide solvabil-
ity results and decouplings for reqular index two and index three DAEs, [Han90] deserves
well of proving the invariance of the tractability index p € N with respect to transfor-
mations (see also [Mdr92], but notice that, unfortunately, there is a misleading misprint
in the sequence on page 158). In these earlier papers the famous role of the sum spaces
No + -+ 4+ N; was not yet discovered, so that the reasoning is less transparent and needs
patient readers.

In [Mdr02, Remark 2.6] it is thought that the sequence (117) coincides with the sequence
(119), however this is not fully correct. Because of

)

Bios = BiP — G BTl 1Ty = BiP; — G Il I+ G Qo 1T, 1T
~——
(PoII;iy1)!

= BiP, — Gy [T 1T + Gi1 Qo Py I 14,

both matriz function sequences coincide in fact, if QoFP) = 0. One can always arrange
that QoPy = 0 is locally valid. Namely, for each fized t. € I, we find a neighborhood N,
such that ker E(t) @ ker E(t,)* = R™ holds true for all t € N;,. The projector function
Qo onto ker E(t) along ker E(t,)* has the wanted property

QoP) = Qo(Po(t.)Py) = QoPo(t.) Py = 0.
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Owing to the independence of the choice of the projector function Py = P, the reqularity
notions for (113), defined by means of (117) or by (119), are actually consistent, and
the sum subspaces, the canonical subspaces, and the characteristic values are precisely the
same.

Several papers on lower index DAFEs use subspace properties rather than rank conditions
for the index definition. For instance, in [Mdr95], an index-two tractable DAE is charac-
terized by a constant-dimensional nontrivial nullspace Ny, together with the transversality
condition N1 ® S, = R™. Owing to Lemma A.8, this is equivalent to the condition for Gy
to have constant rank lower than m, and the requirement for G5 to remain nonsingular.

Theorem 6.39 Let the DAE (113) be regular with tractability index u, and let the coef-
ficients be sufficiently smooth for the existence of a fine decoupling.
Let the matriz C' € L(R™,R®) be such that ker C' = N_qn(to).

(1) Then, the IVP
Ex' + Fr =0, Cux(ty) =0,

has the zero solution only.
(2) For each admissible excitation q, and each x° € R™, the IVP
Ex' + Fx=gq, CO(x(ty)) —2°) =0,
has exactly one solution in CH(Z.R™).

(3) For each given admissible excitation q, the set of consistent initial values at time t
18

Moeanq(to) = {z +v(to) : 2 € Sean(to) },

whereby v is constructed as in (96) by means of fine decoupling projector functions.

(4) If the coefficients of the DAE are sufficiently smooth, then each q € C*~1(Z,R™)
is admissible. If the interval T is compact, then for the IVP solution from (2), the
inequality

pn—1
2] < B{[ean(to)a®] + llalloo + D 14" I} (120)

=1

is valid with a constant K independent of g and x°.

Proof: (1) and (2) are consequences of Theorem 6.19(2) and Theorem 6.31(1), respec-
tively. Assertion (4) follows from Theorem 6.36(3). Assertion (3) results from the repre-
sentations (96) and (99), with D = D~ = P. O
The inequality (120) indicates that the DAE has perturbation index pu.
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6.5 The T-canonical form

Definition 6.40 The structured continuous coefficient DAE with properly stated leading
term

_ - 1 T
I d 5
0 Now — Noyos .
: ( 7
Nu—Z,u—l .
0

) oL Linry (121)
w
7_[0 Im—ro

+| =g,
L ﬂﬂ_l ]m—m,1 J

m=d+ Z;C& (m —r;), as well as its counterpart in standard form

I 0., W o1]. .

~ ~ = 122
with ~ ~

0 Mox -+ Nou—a

5 . . ) : |
- Nu—Q,u—l
0

are said to be in T-canonical form (T indicates tractability), if the entries ./\70’1, e ,./\7“_2,#_1
are full column rank matriz functions, that is rank N;_y; =m —ry, fori=1,...,u— 1.

The subscript p indicates the tractability index u, and at the same time the uniform
nilpotency index of the block upper triangular matrix function N'. N* vanishes identi-
cally, and N+#=1 has the only nontrivial entry ./\70,1./\71,2 . -./\Nfu_m_l of rank m —7,_; in the
right upper corner. If the coefficients Ho, . .. ,7%#_1 vanish, the T-canonical form (122)
looks precisely as the Weierstrafl-Kronecker canonical form for constant matrix pencils
does.

Generalizing [LMT11b, Proposition 5.6], we show that a DAE (44) is regular with tractabil-
ity index g if and only if it can be brought into T-canonical form by a regular multipli-
cation, a regular transformations of the unknown function, and a refactorization of the
leading term as described in Section 5. This justifies the attribute canonical. The struc-
tural sizes 1o, ...,r,—1 coincide with the characteristic values from the tractability index
framework.

Theorem 6.41 (1) The DAFE (44) is reqular with tractability index p and character-
istic values 1o < --- < ry_y < 1, = m, if and only if there are pointwise reqular
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matriz functions L, K € C(Z, L(R™)), and a constant rank refactorization matriz
function H € CY(Z, L(R*,R"™)), RHH ™R = R, such that premultiplication by L, the
transformation v = Kz, and the refactorization of the leading term by H yield a
DAE in T-canonical form, whereby the entry Ni_1,; has size (m — ;1) x (m — ;)
and

rankJ\N/},l,i:m—ri, for i=1,...,u—1.

(2) If the DAFE (44) is reqular with tractability index p, and its coefficients are smooth
enough for the existence of completely decoupling projector functions, then the DAE
is equivalent to a T-canonical form with zero coupling coefficients Ho, ..., H,—1.

Proof: (1) If the DAE has T-canonical form, one can construct a matrix function sequence
and admissible projector functions in the same way as described in [LMT11b, Section 4]
for constant matrix pencils, and this shows regularity and confirms the characteristic
values.

The reverse implication is more difficult. Let the DAE (44) be regular with tractability
index g and characteristic values 1y < --- < 1,y < 7, = m. Let Qo,...,Q,—1 be
admissible projector functions. As explained in Subsection 6.1, the DAE decomposes into
equation (51) being a pre-version of the IERODE and subsystem (65), together

lDH,ng ﬁ/l( [DmalD 1031 m ) + [Hyg_ /&] m = {ﬂ g (123)

TV TV
A D B

This is an inflated system in R™#+) | with W = DUH,IGlleD_, further coefficients
given in Subsection 6.1, and the unknown functions

y [ DI, ]

. Qo
m | 2| me |
v : .

- :

Pt _HquQufl_

We condense this inflated system back to R™ in a similar way as in [LMT11b, Proposition
5.6]. The projector functions DII, 1D~ and DII;_1Q; D~ are continuously differentiable,
and so are their ranges and nullspaces. The C'-subspace im (DII,,_1D~)* has dimension
d=m— Zf;ol (m — r;), and it is spanned by continuously differentiable basis functions,
which means that there is a matrix function I'y € C1(Z, L(R™, R¢)) such that

im (DII,-1D™)" =imI}, kerI'; = {0},
and hence
im[y=R% kerly= (im (DM, D”)*)* =ker DII, D,

By Proposition C.4, there is a pointwise reflexive generalized inverse I'; € C'(Z, L(R¢, R"))
such that I'yI'; = Iyand I'; Ty = DII,_;D~. Analogously we find I'; € C*(Z, L(R",R™ "))
and I'; € CH(Z, L(R™ " ,R")) such that for i =1,...,u—1

im Fl = Rm_ri, ker FZ = ker DHi—lQiD_; FZF; = Im—rm FZ_FZ = DHi—lQiD_-
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This implies
F,LD - FiDHileia D7F; = l',lQiDiF;, FZDfof - FZF; = [m*ﬁ"
Finally we provide I'y € C(Z, L(R™,R™~ ")) and I'y € C(Z, L(R™ ", R™)) such that

im FO = Rmfr(), ker FO = ker Qo, Fora = [mfroa FaFO = Qo.

_ |La - |y
r._[ FSUJ, r ._{ FSUJ,

Then we compose

Ty Ty
D D | o, DTy
| I'y.D | DT,
such that I'T™ = 1,,,, T'swl',,, = Im—q, and
(DI, D~ ]
Qo
1" = oG ,
_ Q.
Qo
I~ T — I
1, 2Qu—
Additionally we introduce
0 0
Q.= b , Q= b ,
L'y F;—1
such that
0 0
0-Q — DIly@Q:D~ | oo = I p—
DI, »Qu- 1D~ Ly,

For the coefficients of the inflated system (123) it results that

Fs_ubrsub N = NQ_Q = N, L, Fsul)~/\/l = MTI', Fsuba D= Q_Fsuba

sub sub
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and further

ol — _FdDHu_lD_ Y [ T,

n L FsubN B I‘sub-/\[Q_Q N I‘sub-/\/‘Q_ Q7
s — [ TaW 0 | [ LTy 0

a _FsubHD_ 1—‘subj\/l n Fsubll_fl)_rgrd Fsuers_ubFsub

[ TaWIy 0 Iy 0

N _FsubHDiri Fsuersub 0 Fsub ’

D - ;T 0 ] _ [Ty 0][Ta O
i 0 Q_Fsub 0 Q- 0 Psub .

Multiplying the inflated system (123) by the condensing matrix function I' and introducing

the new variables
ol |0 Tl v
gives

I 0 Lo 0] [Tq 0] fa]y, [ Towvrg 0 i) _ o[£
0 TN | |0 Q|0 Q|5 TawHD T TouMTo,| 0]~ || ?

N / / /
-~ -~ -~ N—

A D B L

This last DAE lives in R™, but the border space of its leading term is R™*#*+1 . Because
of

= Iy 0 DI, 1D~ 0
ker A = ker [O Q} = ker [ 0 a-0 0 0-0

|, o [P 0]

the refactorization of the leading term (cf. Section 5) by means of

[ty 0 _ [y o
w=[ g = o

suggests itself. H has constant rank d, and H~ is the reflexive generalized inverse with

~ oo . [pH, D~ 07 =, ~ = [DI_ D" 0
HH_{O QQ_],HH_[ . Q_Q],RHHR_R_[ . Q_Q}.

This way we arrive at the DAE

A(Dz) 4+ Bz = Lg,
: 1 0 - [ 07 5 [To0;-Tul; 0
A= {o rsub/\m—] D= {o QQ‘] Bi= l TawHD Ty Byl

The entry

By : = DapMT,, — TapNQ Q™
= Fsubrs_ub + Fsub(M - I)Fsub - Fsuij-gz_Q/Q_ =1+ M
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has block upper triangular form, with identity diagonal blocks. M is strictly block upper
triangular, and I + M remains nonsingular. Scaling the DAE by diag (I, (I + M)™!)

yields ~
lé /(\)/] (lé Qg—} )+ m ﬂx: [é (I+(/)\?l)‘1] Lq, (124)

with coefficients

Ni=T+M)TuNQ, H:=I+M)"'TWwHDT;, W:=T,WI;-T,,.
The DAE (124) has T-canonical form, if the entries ./\~/'z-,l-+1 have full column rank. There-

fore, we take a closer look to these entries. Having in mind that M is strictly block upper
triangular, we derive

-/\/;,i-‘y-l = (FsubNQ)i,i+1 = FiDM,i+1Fi_+1 - _FiDHi—lQiQi+1D_F’£_+1
= —Fzr;rzDQl_A'_lDiF;'_l - _FiDQi-i-lDiFiq-l‘

Then, ./\71-,”12 = 0 means I';DN; ;11T 12 =0, thus NV ;41I';,,2 = 0. Applying Proposition
6.6 (3) we find that DI;Q; 1D~ I'; 2 =T,z € ker DII;Q;+1 D™, and hence I';, ;2 = 0,
therefore z = 0. This shows that ./\N/},Hl is injective for ¢ = 1,...,u — 2. The injec-
tivity of /\7071 follows analogously. We obtain a T-canonical form in fact. The resulting
transformations are

I'yDII, 4
L'oQo
L= ! 0. 4T L) _ 1 0. = [ DIIyGQy Gt
0 (I+M) L 0 (I+M) : :
_Fu—lDH,u—QQ,u—l_
and _ . _
DI, I'yDII, 4
Qo ['oQo
K=T 1)@, = ' DIIyQy
_H/J,—2Q/J,—1_ _F/.L—IDH;L—2Q[.L—1_

Both matrix functions K and L are continuous and pointwise nonsingular. This completes
the proof of (1). )
The assertion (2) follows now immediately, since H = 0 implies H = 0. O

7 Ciritical points

Critical points attract per se much special interest and effort. In particular, to find out
whether the ODE with a so-called singularity of the first kind (e.g. [KKWO01])

#(t) = FM()(0) + al0),

has bounded solutions, the standard ODE theory is of no avail, and one is in need of
smarter tools using the eigenstructure of the matrix M (0).
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In case of DAEs, the inherent ODE might be affected by singularities. For instance, the

DAEs in [KMPW10] show inherent ODEs having a singularity of the first kind. The
following example is taken from [KMPW10].

Example 7.1 The DAE
1 ;o120 B
HIE RS ORI
has a properly stated leading term on [0,1]. It is accompanied by the matrix functions
1 {1 1 2

G-y T @o=3]; 1] ao=|,2, 0

2
such that the DAE is reqular with tractability index 1 just on the interval (0,1]. The
inherent ODE resulting there applies to u(t) = z1(t) — xa(t), and it reads

=)

() = 2+ 2ut) + 7 (4 2an(t) — 20(0).

Observe that, in view of the closed interval [0, 1], this is no longer a reqular ODE but an
inherent explicit singular ODE (IESODE). Given a solution u(-) of the IESODE, a DAE
solution is formed by

o0y = 1 [ 57w+ [0 Teet].

We refer to [KMPW10] for the specification of bounded solutions by means of boundary
conditions as well as for collocation approximations.

One could presume that rank changes in G; would always lead to singular inherent ODEs,
but the situation is much more intricate. A rank drop of the matrix function G is not
necessarily acompanied by a singular inherent ODE, as the next example shows.

Example 7.2 The DAE
o (¢ e+ [ S et = a0,

with an arbitrary continuous real function 3, has a properly stated leading term on (—oo, 00).

Put
t 1

0=l o] o =daf] ew-rz[ ]

and compute

i) 1 {ﬁ(t)+t+t3 L+2—tB(t)

1 _ B )
- o 2 ] wi(t) = det G (t) = t(1 + 12).

This DAE is reqular with index 1 on (—o00,0) and (0,00), t. = 0 is a critical point, and
the inherent ODE reads, with u(t) = tz1(t) + x2(t),

B(t)
t

B(t)

w(t) = =2 u) + ) +

qa(t).
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All DAFE solutions have the form

=i+ 3 ]

Obuiously, if the function B has a zero at t, = 0, or if it actually vanishes identically, then
there is no singularity within the inherent ODE, even though the matriz G1(t.) becomes
singular. Underscore, the determinant wy does not at all depend on the coefficient 3.
Turn to a special case. Set q identically zero, B(t) = t7, with an integer v > 0. The
inherent ODE simplifies to

u'(t) = —t7u(t).

If v =0, this is a singular ODE, and its solutions have the form u(t) = %c. All nontrivial
solutions grow unboundedly, if t approaches zero. In contrast, if v > 1, the ODE is regular,
and it has the solutions u(t) = e_%tvu(O) which remain bounded. However, among the
resulting nontrivial DAE solutions

there is no bounded one, even if v > 1.

As adumbrated by the above example, apart from the singularities concerning the inherent
ODE, DAEs involve further sources for critical points which are unacquainted at all in
explicit ODEs. In DAESs, not only the inherent ODE but also the associated subsystem
(64) which constitutes the wrapping up, and which in higher index cases includes the
differentiated parts, might be hit by singularities. In the previous two examples which
show DAESs being almost overall index 1, a look to the solution representations supports
this idea. The next example provides a first impression of a higher index case.

Example 7.3 The DAE with properly stated leading term

L0000 00 5)
0 1 ([0 ) 0] z)+ [ 1 1 0 |z =q)
00 ) 00
yields
100 000 10 B(t) 100
Go) =10 1 0|, Qo(t)=10 0 0|, Git)=10 1 0 |, Iyt)=1]0 1 0
0 00 0 01 00 O 0 00

and further ﬁl(t) = Ni(t) N No(t) = {2 € R® : 2 = 0,20 = 0,5(t)z3 = 0}. Supposing
B(t) # 0, for all t, we derive

1 00 100 1 0 B
Q)= 0 0 0], IMHQ#) =10 00|, Gt)=|1 1 0 |,
~5m 0 0 000 ¥(t) 0 0
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and wy(t) = det Ga(t) = —p(t)y(t). The projector functions Qq, Q1 are the widely or-
thogonal ones. Taking a look at the following equivalent formulation of the DAE,

1
ri(t) = W%(t)»
2h(1) + 2o(t) = a(t) — %%(w,
1 1 ,
lt) = Gy (@lt) = (5 mlt))

we see the correspondence of zeros of the function v to rank drops in Gy, and to a critical
solution behavior.
Observe also, if we dispense with the demand that the function 3 has no zeros, and allow a

zero at a certain point t., then the intersection Ny (t.) is non-trivial, Ny (t.) = No(t.), and
the above projector function Q1(t) grows unboundedly, if t approaches t.. Nevertheless,
since by construction Gy depends just on the product 11,0, we can continue forming the
next matriz function Gy considering the product I1yQy that has a continuous extension.
The zero of the function 3 also leads to a zero of det Gs.

Apart from critical points, the resulting IERODE applies to

2

u + 00 u = 0
01 N Qz—%% )

DIL G5 ' B1D~- DIIGy'q
Observe the coefficient DIT,G5*BD™ to be independent of the functions 3 and vy, while
DIL, G5 does not depend on 3. Therefore, the IERODE does not at all suffer from zeros
of B.
Notice that, if one restricts the interest to homogenous DAFEs only, then one cannot see
the singular solution behavior in this example.

U:Dﬂl,T: |:O:|,
X

and it reads

Our examples clearly account for a correspondence between singular solution behavior and
points at which the matrix function sequence loses one of the required properties. Roughly
speaking, at all points where the matrix function sequence determining regularity can not
be built, we expect a critical in some sense solution behavior. We refer to [Ria08] for a
closer view onto the relevant literature. As [Ria08], we consider critical (in [Ria08] named
singular) points to be the counterparts of regular points. Therefore, in this section, we
deal with square DAEs (44) the coefficients A of which do not necessarily show constant
rank.

Definition 7.4 Let the DAE (4}4) be square, m = k and let its leading term be almost proper
in the sense that im D is a C* subspace and there is a further C* subspace N4 in R™ such
that

Nu(t) Cker A(t), Na(t) ®im D(t) =R", t € T,

Ny(t) coincides with ker A(t) on a dense subset of .
Then, t, € T is said to be a reqular point of the DAFE, if there is an open interval containing
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t., such that the DAFE is reqular on the intersection of this interval and Z. Otherwise, t,
18 said to be a critical point.
Denote by I,., the set of all t € T being regular points of the DAE.

In this sense, t, = 0 is the only critical point of the DAEs in Examples 7.1 and 7.2, while
in Example 7.3 the set of critical points is formed by the zeros of the functions 3 and 7.

Any open interval, on which the DAE is regular, is called a regqularity interval. If there are
intersecting regularity intervals, then the DAE has common characteristic values on these
intervals, and the union of the intervals is a regularity interval, again ([MRO6], applying
widely orthogonal projector functions one can simplify the proof given there). The set
Z,¢q € 7 is open, and it may be described as the union of disjoint open regularity intervals.
By defintion, Z — Z,., is the set of critical points of the DAE (44).

The regularity notion (cf. Definitions 3.1, 6.2) involves several constant rank conditions.
In particular, the proper leading term brings the matrix function Go = AD with constant
rank 79 = r. Further, the existence of regular admissible projector functions Qo, ..., Q,—1
includes that, at each level k =1,...,u — 1,

(A) the matrix function Gy has constant rank 7, and
(B) the intersection N is trivial, i.e. N = {0}.

Owing to Proposition 3.2 we have ker II;,_; = Ny + - - - + Ni_1, and hence
Ny = Ny N (No+ -+ + Ni_y) = ker G, N ker ITj,_1.

Then, the intersection ]Vk is trivial, exactly if the matrix function

Gy
o] 125
has full column rank m. This means, condition (B) represents also a rank condition.

Supposed the coefficients A, D and B of the DAE are sufficiently smooth (at most class
C™~1 will do), then, if the algebraic rank conditions are fulfilled, the requirements for the
projector functions Il and DIl D~ to be continuous resp. continuously differentiable,
can be satisfied at one level after the other. In consequence (cf. [MR06, MR07, Ria08]),
a critical point can be formally characterized as location, where the leading term fails to
be properly stated, or where one of the constant rank conditions type (A) or type (B), at
a level £ > 1, is violated first.

Definition 7.5 Let the DAFE (44) have an almost proper leading term, and t, be a critical
point. Then, t, is called

(1) a critical point of type 0, if rank Go(t.) < r := rank D(t.),

(2) a critical point of type A at level k > 1 (shortly, type k-A), if there are admissible
projectors functions Qo, . ..,Qr_1, and Gy changes its rank at t,,
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(3) a critical point of type B at level k > 1 (shortly, type k-B), if there are admissible
projector functions Qq, . .., Qr_1, the matriz function Gy has constant rank, but the
full-rank condition for the matrix function (125) is violated at t..

It is worth to be underscored that the proposed typification of critical points remains
invariant with respect to transformations and refactorizations (Sections 5), and also with
respect to the choice of admissible projector function (see Section 3). The DAEs in
Examples 7.1, 7.2 have both the type 1-A critical point £, = 0. In Example 7.3, the zeros
of the function « are type 2-A critical points of the DAE, while zeros of the function (3
yield type 1-B critical points. The next example shows different cases of type 0 critical
points, and it reinforces once again the expectation of a critical solution behavior emerging
from critical points. As before, one might be confronted with serious singularities, but in
other cases, the critical behavior can be restored by more smoothness of the excitation,
and then the critical points are somehow harmless.

Example 7.6 Let the continuous scalar function « have a zero at t, =0, a(t) # 0, for
allt #t., t € T := (—00,00). Then the DAE

S KR RIS ok EURIC

has a quasi-proper leading term, and t, is a critical point of type 0. Generate

Golt) = {8 O‘(()t)], Qo(t) = B 8} Gi(t) = {Zig? a(()t)]'

Case 1: Assume byi(t) =1, by1(t) = —1, bya(t) = 1.
Then Gy inherits the rank drop from «. Apart from t, the DAFE is reqular with index 1.
As in Example 7.1, we are confronted with an inherent singular ODE, namely, for u(t) =

xQ(t): 1
u'(t) = —<Mu(t) + ——<(q1(t) — bia (t)ga(t)),
a(t)
with M(t) = by1(t)baa(t) — by (t) = —2. For instance, if a(t) = t, then this IESODE
1s in fact an ODE with a singularity of the first kind, and all nontrivial solutions of the
homogenous version grow unboundedly if t approches zero (e.g. [KKW01]).
Case 2: Assume by (t) =0, by1(t) =1, bao(t) = 1.
We derive

o=, V) o=y ) an- ) @),

Obviously, Go(t) remains nonsingular. It results that II; = 0, such that there is actually no
inherent ODE. Even though on both subintervals (—oo,0) and (0,00) there are unique CJ,-
solutions, the solution pieces can not be glued together to form a continuous solution on the
entire interval 7. However, smoother excitations yield
Cl-solutions with regard to the entire interval. More precisely, for ¢ € C(Z,R),qo €
CY(Z,R), the DAE solution belongs to Ci,(Z,R?).

Definition 7.7 A critical point t, € T of the DAE (44) is named harmless, if all DAE
solutions defined on a neighborhood of t. belong to the class C},, supposed the corresponding
excitations q are sufficiently smooth.
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While the zero of the function « in the second part of Example 7.6 yields a harmless
critical point, in contrast, in the first part, this zero causes a singular inherent ODE.
We advert the reader to the fact that the critical points in the other examples, and in
particular in Example 7.3, fail to be harmless in this sense.

Next we turn to the question how harmless critical points differ from the other ones. As
it is suggested by Example 7.6, we prove the nonsingularity of the matrix function G, to
indicate harmless critical points in general.

Let the DAE (44) have an almost proper leading term. For simplicity, let DD* be con-
tinuously differentiable such that the widely orthogonal projector functions can be used.
Assume the set of regular points Z,., to be dense in Z.

Let @)y be the orthogonal projector function onto ker D =: Ny, which is continuous on
the entire interval Z, since D has constant rank r there. Set Go = AD, By, = B,
G1 = Gy + BQy. These functions are also continuous on Z. For all ¢t € Z,.,4 it holds
further that rank Gy(t) = r. On each connected part of Z,.,, which is a regularity region,
we construct the matrix function sequence by means of widely orthogonal projector func-
tions up to G, whereby ;1 denotes the lowest index such that G,(¢) is nonsingular for
all t € Z,¢4. In particular, 11y, ..., I, ; are defined and continuous on each part of Z,,.
Assume now that

IIy,...,II,_y have continuous extensions on Z, (126)
and we keep the same denotation for the extensions. Additionally,
DI, D™,...,DIl,_1D~ be continuously differentiable on 7.

Then, the projector functions Il; 1Q; = II; 1 — II;, i« = 1,...,u — 1, have continuous
extensions, too, and the matrix function sequence (cf. (12)-(15), and Proposition 3.2)
B; = B;_11I;_y — G;D~(DII;D™)'DII,;_y,
Gip1 =G+ Bl 1Qy, i=1,...,p0—1,
is defined and continuous on the entire interval Z. In contrast to the regular case, where

the matrix functions G; have constant rank on the entire interval Z, now, for the time
being, the projector functions (); are given on Z,., only, and

Ni(t) =imQ;(t) = ker G;(t), forall t e Z,.,.

The projector function II, = F, inherits constant rank » = rank D from D. On each of
the regularity intervals, the rank ry of Gy coincides with the rank of D, and hence we are
aware of the uniform characteristic value ro = r on all regularity intervals, that is on Z,.,.
Owing to its continuity, the projector function II; has constant rank on Z. Taking into
account the relations

keI'H1<t) :No(t)@Nl(t>, dlmNo(t) =m — 7o, dlmN1<t> =m — T, tEIreg

we recognize the characteristic value r; = rank G to be also uniform on Z,.4, and so on.
This way we find out that all characteristics

ro < ... <71, <r,=m are uniform on Z,.,.
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In particular, the DAE has index p on Z,..4.
Denote by G, ()Y the matrix of cofactors to G,(t), and introduce the determinant
w,(t) := det G, (t), such that

wa(OGu() = Gu(t)™ Y, t € Ty
By construction, it results that G,Q; = B;Q; = B;11;_1Q;, for i =1,...,u— 1, thus
w,(DQi(t) = GO U BT () Qi(t), i=1,....,0—1, tE Ly (127)

The last expression possesses a continuous extension, and hence w,Q; = G/‘idj B;I1;_1Q); is
valid on Z.

Observe that a nonsingular G,(¢,) indicates also each of the projector functions Q1, ..., Q1
to have a continuous extension over the critical point ¢,. In this case, the decoupling for-
mulae (53),(64) keep their value for the continuous extensions, and it is evident that the
critical point is a harmless one.

In contrast, if G, has a rank drop at the critical point ¢,, then the decoupling formulae ac-
tually indicate different but singular solution phenomena. Additionally, several projector
functions ); may suffer discontinuities, as it is the case in Example 7.3.

Next, by means of the widely orthogonal projector functions, on each regularity interval,
we apply the basic decoupling (see Subsection 6.1, Theorem 6.7) of a regular DAE into
the IERODE (53) and the subsystem (64). In order to safely obtain coefficients being
continuous on the entire interval Z, we multiply the IERODE (53) by w,, the first row
of (64) by w, the second by wﬁfl, and so on up to the last line which we multiply
by w,. With regard to assumtion (126) and relation (127), the expressions w,G," and
(cf. (56),(57)), w,K, w,M;41 are continuous on Z, and so are all the coefficients of the
subsystem resulting from (64). Instead of the IERODE (53) we are now confronted with
the equation

wyt' = wy (DI, 1D~ )'u+ DII, G4 B,D~u = DII,_1G}Yq, (128)

which is rather a scalarly implicit inherent ODE or an inherent explicit singular ODE
(IESODE). As it is proved for regular DAEs by Theorem 6.7, the equivalence of the DAE
and the system decoupled in this way is given. We refer to [Ria08, Subsection 4.2.2] for a
detailled description in a slightly different way. Here we take a look at the simplest lower
index cases only.
The case p = 1 corresponds to the solution decomposition x = D~ u + Qgz, the inherent
ODE

wit! — wR'u+ DG B;D~u = DG}%Yq, (129)

and the subsystem

w1Qor = —QoGY BiD u + QuGi¥yq. (130)

For pn = 2, we apply the solution decomposition x = D~ u + I1yQ1x + Qox. The inherent
ODE reads , :
WQU/ — u)g(DﬂlDi)/U + Dﬂngd]BlD*u = Dﬂngdjq, (131)

and we have to add the subsystem

—ngonglD(DﬂlefEY] + |: w%Qol’ :| + |:Q0(,U2P1LUQICH1:| D*u _ |:Q0(U2P1Gg('ij:|
0 wollyQrx 1Ty Q1w K11, Hleng]
(132)
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A carefull inspection of our examples proves these formulae to comprise a worst case
scenario. For instance, in Example 7.3, not only DII; ngj By D~ is continuous but already
DII,G5' B, D~ can be extended continuously. However, as in Example 7.1, the worst case
can well happen.

Proposition 7.8 Let the DAE (44) have an almost proper leading term, and DD* be
continuously differentiable. Let the set of reqular points I,., be dense in Z. If the projec-
tor functions Iy, ..., 11,y associated with the widely orthogonal projector functions have
continuous extensions on the entire interval Z, and DIL D™, ..., DI, 1D~ are continu-
ously differentiable, then the following holds true:

(1) The DAE has on I,., uniform characteristics ro < ... <r,_1 <1, =m.

(2) If G,(t.) is nonsingular at the critical point t., then the widely orthogonal projec-
tor functions Qo,...,Q,—1 themselves have continuous extensions over t.. If the
coefficients A, D, and B are sufficiently smooth, then t, is a harmless critical point.

3) If G,(t.) is nonsingular at the critical point t,, then G,,_1(t) has necessarily constant
( b g P , w y
rank r,—1 on a neighborhood including t..

(4) If the DAE has index 1 on Z,.,, then its critical points fail to be harmless.

(5) A critical point of type B leads necessarily to a singular G, and hence it can never
been harmless.

Proof: Assertion (1) is already verified. Assertion (2) follows immediately by taking use
of the decoupling. If A, D, B are smooth, then the coefficients of the subsystem (64) are
also sufficiently smooth, and alow for the respective solutions.

Turn to (3). Owing to (2), Q,—1 is continuous, and rank@,_i(t.) = m — 7,1,
Gu_1(t)Qu-1(ts) = 0 are valid, thus rankG,_1(t.) < r,_1. The existence of a z €
ker G,,_1(ty), P,_1(ti)z = z # 0, would imply G,_1(t.)z = 0, and hence contradict the
nonsingularity of G,,_;(t.).

(4) is a direct consequence of (3).

For proving Assertion (5) we remember the relations

;1 (0)Q4(t) = ;1 () Q)11 (t), t € Lrey.

These relations keep to be valid for the continuous extensions, that is , for ¢t € Z. Consider
a type k — B critical point t,, and a nontrivial z € Ni(t.) N (No(ts) + -+ + Nuo1(ty)),
which means Gy(t,)z = 0, IIy_1(t.)z = 0. This yields

Gu(t*)z = Gk(t*)Z+Bk(t*)Qk(t*)Hk_1(t*)Z+ : '—|—B#_1(t*)ﬂu_g(t*)Qﬂ_l(t*)ﬂk_1<t*)z = 0,

and hence, G,(t,) is singular. O
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8 Strangeness versus tractability

8.1 Canonical forms

Among the traditional goals of the theory of linear time-varying DAEs are appropriate
generalizations of the Weierstra3-Kronecker canonical form and equivalence transforma-
tions into these canonical forms. So far, except for the T-canonical form which applies to
both standard form DAEs and DAEs with properly stated leading term (cf. Subsection
6.5), reduction to canonical forms is developed for standard form DAEs (e.g. [Cam83],
[BCP&9], [KM94]).

While equivalence transformations for DAEs with properly stated leading term include
transformations K of the unknown, scalings L and refactorizations H of the leading term
(cf. Section 5), equivalence transformations for standard form DAEs combine only the
transformations K of the unknowns and the scalings L.

Transforming the unknown function by x = K7 and scaling the standard form DAE (113)
by L yields the equivalent DAE

LL?K T’ +£LFK + LEK,)/i‘ = Lgq.

-~

E F

Thereby the transformation matrix functions K must be continuously differentiable.

In the remaining part of this subsection we use the letters K and H also for special
entries in the matrix functions describing the coefficients of the canonical forms below.
No confusion will arise from this.

Definition 8.1 The structured DAE with continuous coefficients

I K] , [W 0]
{0 N]x—i—[H [l]x—q, (133)

0 <1l <m, is said to be in

(1) standard canonical form(SCF), if H =0, K =0, and N 1is strictly upper triangular,

(2) strong standard canonical form(SSCF), if H = 0, K = 0, and N is a constant,
strictly upper triangular matrix,

(3) S-canonical form, if H=0, K =0 K; ... K|, and

0 Nig -+ Ny, Hy
N = h : ,
' NI{*LI{ }l’f_l
0 i«
is strictly block upper triangular with full row rank entries N;;41, t =1,...,k — 1,

(4) T-canonical form, if K =0 and N 1is strictly block upper triangular with full column
rank entries N; i1, t=1,...,k — 1.

84



In case of time-invariant coefficients, these four canonical forms are obviously equivalent.
However, this is no longer true for time-varying coefficients.

The matrix function N is nilpotent in all four canonical forms, N has uniform nilpotency
index s in (3) and (4). N and all its powers N* have constant rank in (2), (3) and (4).
In contrast, in (1), the nilpotency index and the rank of N may vary with time. The
S-canonical form is associated with DAEs with regular strangeness index ¢ = k — 1 (cf.
[KM94]), while the T-canonical form is associated with regular DAEs with tractability
index pr = k (cf. Subsection 6.5). The classification into SCF and SSCF goes back to
[Cam83] (cf. also [BCP89]). One can treat DAEs being transformable into SCF as quasi-
regular DAEs. Here we concentrate on the S-canonical form. We prove that each DAE
being transformable into S-canonical form is regular with tractability index p = k, and
hence, each DAE with well-defined regular strangeness index ( is a regular DAE with
tractability index p = ¢ + 1. All above canonical forms are given in standard form. For

the T-canonical form, a version with properly stated leading term is straightforward (cf.
Definition 6.40).

The strangeness index concept applies to standard form DAEs (113) with sufficiently
smooth coefficients. A reader who is not familiar with this concept finds a short introduc-
tion in the next subsection. For the moment, we interprete DA Es with reqular strangeness
index as those being transformable into S-canonical form. This is justified by an equiva-
lence result of [KM94], which is reflected by Theorem 8.2 below.

The regular strangeness index ( is supported by a sequence of characteristic values
Ti,i,8;, © = 0,...,(, which are associated with constant rank conditions for matrix
functions, and which describe the detailed size of the S-canonical form. By definition,
s¢ = 0 (cf. Subsection 8.2). These characteristic values are invariant with respect to the
equivalence transformations, however, they are not independent of each other.

Theorem 8.2 Fach DAE (113) with smooth coefficients, well-defined strangeness index
¢ and characteristic values 7;,a;,5;, 1 = 0,...,(, 1s equivalent to a DAFE in S-canonical
formwithk =C+1, =0+ -+, m—1=7¢, and

h<..<li, lL=382=5_1,1p=35:3,...,lxk1 =350, lx =50+ do,.

Proof: This assertion comprises the regular case of [KM94, Theorem 12| which considers
more general equations having also underdetermined parts (indicated by nontrivial fur-
ther characteristic values ;). O]

By the next assertion, which represents the main result of this subsection, we prove each
DAE with regular strangeness index ( to be at the same time a regular DAE with tractabil-
ity index p = (+1. Therefore, the tractability index concept applies at least to the entire
class of DAEs which are accessible by the strangeness index concept. Both concepts are
associated with characteristic values being invariant under equivalence transformations,
and, of course, we would like to know how these characteristic values are related to each
other. In particular, the question arises whether the constant rank conditions supporting
the strangeness index coincide with the constant rank conditions supporting the tractabil-
ity index.

Theorem 8.3 (1) Let the standard form DAE (113) have smooth coefficients, the reg-
ular strangeness index ¢ and the characteristic values v;, a;, §;, 1 =20,...,(. Then
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this DAFE is reqular with tractability index p = ¢ + 1 and associated characterstic
values
Tozfo, Tj:m—Ej_l, jzl,,/L

(2) Fach DAE in S-canonical form with smooth coefficients can be tranformed into T-
canonical form with H = 0.

Proof: (1) We prove the assertion by constructing a matrix function sequence and admis-
sible projector functions associated with the tractability index framework for the resulting
S-canonical form described by Theorem 8.2.

The matrix function N within the S-canonical form has constant rank [ — /.. Exploiting
the structure of N we compose a projector function QEN] onto ker N, which is block upper
triangular, too. Then we set

Im—l KQ([JN}

Py =
’ o pW

., such that ker Py = ker |:Im—l K]

0 N|°

Py is a projector function. The DAE coefficients are supposed to be smooth enough so
that P, is continuously differentiable. Then we can turn to the following properly stated
version of the S-canonical form:

I, K W 0 L., K

R R A s PR (134
%% —K' ([)N]/
0 I,— NP

The product N P(gN]/ is again strictly block upper triangular, and I;— N P(gN]/

Scaling the DAE by

is nonsingular.

L 0
/
0 (I,— NpPMH
yields

I K ;W —kQM
|: 0 M0:| (POx) +|: Il r =q,

The matrix function M, has the same structure as N, and ker My = ker N. For the
subsystem corresponding to the second line of (135)

(135)

Mo(P(gN}’U)/ + v = qo,

Proposition G.2 in Appendix D provides a matrix function sequence GLN], J=0,...,K,

and admissible projector functions QgN], e Q,@l such that this subsystem is a regular
DAE with tractability index uM = s and characteristic values

rZ[N]:l—l,i_i, 1=0,...,k—1, TLN}:Z.

Now we compose a matrix function sequence and admissible projector functions for the
DAE (135). We begin with D = D~ = R = F,, and build successively for i =0,...,x

L x 0 = L, * W x
Gi—[ 0 G[N]], Qi = {0 Q[N}:|7 Hi_|: 0 H[N]]? B; = [0 B{N]}-

(2
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The coefficients are supposed to be smooth enough so that the II; are continuously dif-
ferentiable. It results that the matrix functions GG; have constant ranks

IN] _

ri=m—1l+r; N =

m—Il+l—1l,_,=m—-Il,, 1=0,...,k=1, r,=m—-I1l+r, m.
This confirms that the DAE is regular with tractability index u = k. Applying again Theo-
rem 8.2, we express r; = m — l.; = §_1 for i« = 1,....,k — 1, further
ro = m — (8o + ag) = T, and this completes the proof of (1). (2) This is a conse-
quence of assertion (1), and the fact that each regular DAE with tractability index p can
be transformed into T-canonical form (with k = p, cf. Theorem 6.41). O

8.2 Strangeness reduction

The original strangeness index concept is a special reduction technique for standard form
DAEs (113)

E(t)z'(t) + F(t)z(t) = q(t)

with sufficiently smooth coefficients on a compact interval Z. We repeat the basic re-
duction step from [KM94]. For more details and a comprehensive discussion of reduction
techniques we refer to [KM06] and [RR02].

As mentioned before, the strangeness index is supported by several constant rank con-
ditions. In particular, the matrix £ in (113) is assumed to have constant rank 7. This
allows to construct continuous injective matrix functions 7', Z, and T" such that

imT =ker B, imT = (ker E)*, imZ = (imE)*.

The columns of T, T, and Z are basis functions of the corresponding subspaces.
Supposing Z*F'T' to have constant rank a, we find a continuous injective matrix function
V such that

imV = (im Z*FT)".
If, additionally, V*Z*FT has constant rank 35, then one can construct pointwise nonsin-

gular matrix functions K and L, such that the transformation x = K7 and scaling the
DAE (113) by L leads to

o
o
T

=

T
W

1
I; 0 0 0 Fyy Fys
0 r+|10 0 I; 0 0| z=Lg, (136)
0 I; 0 0 O 0
0 O 0 0 0 0

with d .= 7 — 5.

The system (136) consists of m = 5+ d + a + 5 + @ equations, 4 := m — 7 — a — 5. The
construction of K and L involves three smooth factorizations of matrix functions and the
solution of a classical linear IVP (see [KMO06]).

The fourth equation in (136) is simply z; = (Lq)4, which gives rise to replace the derivative
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Z) in the first line by (Lgq)}. Doing so we attain the new DAE

0 0 Fip 0 Fia Fis (LQ)Q
I3 0 0 0 Fyy Fys 0
0 +(0 0 I 0 0| zZ=Lg—| 0 |, (137)
0 I, 0 0 0 0 0
0] 0O 0 0 0 0 0
Eneu Fuw

which is expected to have a lower index since the mentioned differentiation of z; is carried
out analytically.
This reduction step is supported by the three rank conditions

rank £ =7, rank Z*FT =a, rankV*Z*FT = 5. (138)

The following proposition guarantees these constant rank conditions to be valid, if the
DAE under consideration is regular in the tractability sense.

Proposition 8.4 Let the DAE (113) be regular with tractability index p and character-
istic values ro < ... < r,_1 <r,. Then the constant rank conditions (188) are valid,

r=7ry, Q=T —17Tg, S=M~—T1,
so that the reduction step is feasible.
Proof: We choose symmetric projector functions Wy, Qg and Wy, and verify the relations
rank Z*BT = rank WyBQy = 1 — 19, rankV*Z*FT =rank W,B =m — r;.
OJ
The reduction from {E, F'} to { Epew, Frew} can be repeated as long as the constant rank
conditions are given. This leads to an iterative reduction procedure. One starts with

{Ey, Fo}:={E, F} and forms, for each i > 0, a new pair {E;1, Fi11} to {E;, F;}. This
works as long as the three constant rank conditions

7y =rank E;, a; = rank Z'F;T;, 5; = rank V;*Z; F;T;, (139)
hold true.
The strangeness index ¢ € NU {0} is defined to be
¢ :=min{i € NU{0} : 5, = 0}.

The strangeness index is the minimal index such that the so-called strangeness disappears.
¢ is named reqular strangeness indez, if there are no so-called underdetermined parts
during the iteration such that 4, =0 and 7, +a; + s; =m forallt=0,...,(.

The values 75, a;, 5;, ¢ >0, and several additional ones, are called characteristic values
associated with the strangeness index concept.

If the original DAE (113) has regular strangeness index (, then the reduction procedure

ends up with the DAE
I; 0O = 0 0] = =
ool *TY
with d:gg, a:&c.
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Remark 8.5 Turn for a moment back to time-invariant DAEs and constant matrix pairs.
If the matriz pair { E, F'} is reqular with Kronecker index p (which is the same as tractabil-
ity index 1), and characteristic values ro < ... < r,_; < 1, = m, then this pair has
the regular strangeness index ( = p — 1. The characteristic values associated with the
strangeness index can then be obtained from the ro, ..., 7, by means of the formulas

=m = Z m=1y),
—E —7’3 —7“1'+1);

Ei:m—riﬂ, ZIO,,C

The same relations apply to DAEs with time-varying coefficients, too (cf. [Lam08]).

8.3 Projector based reduction

Although linear regular higher index DAEs are well understood, they are not accessible for
a direct numerical integration. Especially for this reason, different kind of index reduction
have their meaning.

We formulate a reduction step for the DAE (44) with properly stated leading term, i.e.

A(Dx)' 4+ Bx = q,

by applying the projector function W, associated to the first terms of the matrix function
sequence. W projects along im G = im Go@®im Wy BQ)y, and, because of im A C im Gy C
im G1, multiplication of the DAE by W), leads to the derivative free equations

WiBx = Wiq. (140)

Emphasize these equations to be just a part of the derivative free equations, except for
the case Wy, = W, which is given in Hessenberg systems, and in Example 8.6 below. The
complete set is described by

W()BIE = qu. (141)

We suppose the matrix function W, to have constant rank m—rq, which is at least ensured
in regular DAEs. For regular DAEs the subspace

Sl = ker WlB

is known to have dimension r;.
Introduce a continuous reflexive generalized inverse (W;B)~, and put

Zl =1 - (WlB)_WlB

7y is a continuous projector function onto S;. Because of W, B@Qy = 0 the following
properties hold true:

Z1Q0 = Qo
DZy = DZPy=DZ D™D
DZ D~ =DZ D~ DZ D~
im DZ, D~ =im DZ, = DS; = DS,.
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DZ, D™ is a priori a continuous projector function. Assuming the DAE coefficients to be
sufficiently smooth, it becomes continuously differentiable, and we do so. In consequence,
for each function z € C},(Z,R™) it follows that

DZyx = DZ,D~Dx € CY(Z,R"), D(I — Z))x = Dz — DZ,x € C*(Z,R"),
which allows for writing the DAE as
A(DZyx)' + A(D(I — Zy)x) + Bz = q. (142)

The equation (140) is consistent, since, for reasons of dimensions, im Wi B = imW;. It
results that

This allows to remove the derivative (D(I — Z;)z)" from the DAE, and to replace it by
the exact solution part derived from (140). The resulting new DAE

A(DZyx) + Bx = ¢ — A(DOW,B)" Wiq)'

has no properly stated lading term. This why we express A(DZ x) = A{DZ, D~ (DZx)'+
(DZyD~)DZyz}, and turn to the new DAE with a properly stated leading term

Anew D’!‘LS’LU B7L€’LU

which has the same solutions as the original DAE (44) has, and which is expected to have
a lower index.

Example 8.6 We reconsider the DAE (7) from Example 1.1,

0O 1 0 0 00 1 0 0
0 —t 1|(|0 1 Oofl=z@®)+ |0 0 0|z =q), teR
0 0 O 0 01 0 —t 1

~~ 4 ~~ —r

A(t) D B(t)

A matrixz function sequence and admissible projector functions for this DAE are generated
in Example 2.53. This DAFE is regular with tractability index three. Compute now

0 0 0 0 0 O]
Wy =10 0 0|, WiB(t)=10 0 0
001 0 —t 1]
Since Wi B is already a projector function, we can set (W, B)~ = W, B. This implies
100 0 0 0]
Zi=10 1 0, Dtz (t)=10 1 0f,
0t 0 0 ¢t 0]
and finally the special DAE (144)
01 0] [00O 1 0 0 ¢ (t)
0 0 O[(|0 1 O]z(®)+ 1[0 1 Of=x@)=|¢ k) —d¢t)]|, teR,
00 0] [0t O 0 —t 1 q3(t)
Anew®  Duewlt) Brew(t)

which s indeed regqular with tractability index two.
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For the special choice (W) B)™ = (W, B)™, the resulting Z; is the orthoprojector function
onto S;. This version is the counterpart to the strangeness reduction step from Subsection
8.2.

At the first glance it seems to be somehow arbitrary to figure out just the equations (140)
for reduction. However, after the explanations below it will be seen as nice option.

An analogous reduction step can be arranged by choosing the complete set of derivative
free equations (141) as candidate. For regular DAEs, the subspace ker WyB = Sy has di-
mension 19, and we obtain again consistency, as well as the projector
Zy:=1— WoB) " WyB onto Sy. From (141) it results that

([ — Zo)l' = (W()B>7W0q

Now we need a smoother solution = to be able to differentiate this expression. To be more
transparent we assume at least D and Zj, as well as the solution x to be continuously
differentiable, and turn to the standard form

AD x'+(B— AD)x =q.
&£ ( . )T =q

Here we express
2’ = (Zox) + (WoB) Woq)' = Zoz" + Zyz + (WoB) Woa)',

such that we arrive at the new DAE

EZyx' + (F+ EZ) x = q— E(WoB) Wyq)'. (145)
;"’ S———
new Fnew

This kind of reduction is in essence the procedure described in [RR02]. The description
in [RRO2] concentrates on the coefficient pairs, and one turns to a condensed version of
the pair {EZy, (I — Wy)(F + EZ))}.

In the following we do not provide a precise proof of the index reduction, but explain
the idea behind. Assume the DAE (44) to be regular with tractability index p and
characteristic values o < ... < 1,1 = r, = m, and take a furter look to the completely

decoupled version consisting of the IERODE (53) and the subsystem (cf. (65))

N (Dv) + Mv = Lg. (146)
This subsystem comprises the inherent differentiations. It reads in detail
0 Mg -+ Nop—1 1T 0
" : DIIyQz)
0 : ( O'Ql ) (147)
N,u—Z,u—l :
0 | (DI 2Qu-1)
(1 Moy - Mo Qor Log
1 : IIyQy > Liq
+ ) = :
M, o, : :
| I H;L—QQ#—IZE »C,u—lq

91



We see, if we replace the derivative term (DII, »Q,_1x) by its exact solution part
(DL,_1q)" we arrive at the system

0
1 MO 1 MO n—1 Q X
DITyQx) ’ ’ 0
N ( O'Ql ) . I HUle
DIl ,. oz e Myau :
( a %QM 2 ) I Huf2Quflx

qu - -/\/’O,yfl(‘cuflqy
Liq— Nl,pfl(»c,uflqy

= : (148)
L,u,—Qq - N,LL—Q,,LL—I(£;L—1Q)/
i Lu—1q |
While the matrix function A has nilpotency index pu, the new matrix function
[0 Noa -+ MNoy—a 07
(R :
Nnew = . Nﬂ—?’vﬂ—Q 0
0 0
! 0

has nilpotency index p — 1 (cf. Proposition 6.6). That means, replacing the derivative
(DI,—2Q,—1z)" by the true solution term reduces the index by one. Clearly, replacing
further derivatives and successively solving the subsystem for (I — I1,_1)x = Qozr +
IIyQx + -+ - + I1I,_5Q),—1x reduces the index up to one. We keep in mind that, replacing
at least the derivative (DII,_5Q,—1z)" reduces the index at least by one. However, in
practice, we are not given the decoupled system. How can we otherwise make sure that
this derivative is replaced?

Consider for a moment the equation

W‘uleilf = Wuflq (149)

that is also a part of the derivative free equations of our DAE. Since the subspace
S,—1 = ker W, _; has dimension r,_;, the matrix function W, 1B has constant rank
m — r,_1, equation (149) is consistent, we obtain with Z, 1 := 1 — (W,_1B)"W,_1B a
continuous projector function onto S,_1, and it follows that

(I = Z1)x = W1 B) Wymag.

Since we use completely decoupling projector functions Q,...,Qu—1, we know that
11, 5Q,-1 is the projector function onto im I, @), along S,_;. Therefore, with
I— 7, 1 and II,, »Q,—1 we have two projector functions along S,,—;. This yields

I - Zu—l = (I - Zu—l)ﬂu—QQu—b HM—QQ#—l = Hu—2Qu—1(—] - Zu—l),

and therefore, by replacing (D (I — Z,,_1)z)" we replace at the same time (DI, 2Q,_1z)".
This means, that turning from the original DAE (44) to

ADZ, \D~(DZ, 1z)' 4 (A(DZ, 1D~ YDZ,u1 + B)x = ¢ — A(DW,-1B) W,_1q)’
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reduces the index by one indeed. However, the use of Z,_;, is rather a theoretical option,
since W,_1 is not easy to obtain. The point is, that working instead with (140) and Z;
as described above, and differentiating the more components D(I — Z;)z, includes the
differentiation of the component D(I — Z,_1)x as a part of it. By this, the reduction
step from (44) to (144) seems to be a reasonable compromise from both theoretical and
practical view.

At this place we underline that there are various possibilities to compose special reduction
techniques.

9 Widely orthogonal projector functions

For each DAE with properly stated leading term the orthogonal projector onto Ny is an ad-
missible one.  We can always start the matrix function sequence by choosing
Qo = @), Py = FP;. In the next level, applying the decomposition R™ = (Ny N
Nt @& (Ng N Ny) we determine X in the decomposition Ny = X; & (No N Ny) by
X1 = N() N (N[) N Nl)J'. This leads to N() + N1 = (Xl D (NO N N1)> + N1 = X1 D N1
and R™ = (Ny + Ny)* @ (Ng + Ny) = (No + Ni)t @ X1 @ N;. By this, Q; is uniquely
determined.

On the next levels, if Q,...,Q; 1 are admissible, we first apply the decomposition

R™ = (]Vl)L & N;, and choose

—~

X;=(Nog+ -+ Ni_)) N (N)*. (150)

The resulting decompositions Ny + --- 4+ N; = X; & N;, and
R™ = (No+---+N)T®(No+-+-+N;) = (Ng+- -+ N;) L ® X; @ N; allow for the choice

imQ; = N;, ker@Q; = (No+---+ N)* @ X, (151)

Definition 9.1 Admissible projector functions Qy, ..., Q. are called widely orthogonal if
(150) and (151) are fulfilled fori=1,,..., k.

Notice that widely orthogonal projector functions are uniquely determined. They provide
also special symmetry properties. In fact, applying widely orthogonal projector functions,
the decompositions

w(t) = Hi(t)x(t) + i1 (0)Qi(t)x(t) + ... + Ho(t)Q1()x(t) + Qo(t)x(t)
are orthogonal ones for all t.

Proposition 9.2 IfQ,, ..., Q. are widely orthogonal, then II;, i =0, ..., k, and I[I;,_1Q;,1 =
1,..., K, are symmetric projectors.

Proof:
Let Qo,...,Q, be widely orthogonal. In particular, it holds that II, = IIj, ker Ily =
No, im Ho = Nd‘

Compute 1mH1 = imP0P1 = P() IIHP1 == Po((NO + Nl)l D Xl) = P()(NO + Nl)J'
= Py(Ng- N N{*) = Ni- N N{- = (No + Np)*.
To use induction, assume that im I7; = (Ng + -+ -+ N;)*, j <i— 1.
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Due to Proposition 3.2 (1) we know that kerII; = Ny + --- + N; is true, further
II; 1 X; = 0. From (151) it follows that im I7; = II;_yim P; = II;_{((No+-- -+ N;)t @ X;) =
I (No+ -+ N)t =1L (No+ -+ Nio) P NONH) = (Nog+ -+ + Nm)E NN =
(No+ -+ Ny)*.

Since II; is a projector, and ker IT; = Ny + --- + N;, im II; = (Ng + - - + N;)*, II; must
be the orthoprojector.

Finally, derive (II;_Q:)* = (Ili_y — II, 1 P)* = II,_; — I, \ P, = IT, ,Q;. O

Proposition 9.3 If, for the DAE (8) with properly stated leading term, there exist any
admissible projector functions Qq, ..., Q, and if DD* € C*(Z, L(R")), then also widely
orthogonal projector functions can be chosen (do exist).

Proof:

Let Qq, ..., Q. be admissible. Then, in particular the subspaces Ng+---+N;, i =0,..., Kk
are continuous. The subspaces im DIIyQ1, .. .,im DII,._;Q, belong to the class C!, since
the projectors DIIjQ)1D~, ..., DIl 1Q.D~ do so. Taking Proposition 3.2 into account
we know the subspaces D(Nyo+---+N;), i¢=1,...,k, to be continuously differentiable.
Now we construct widely orthogonal projectors. Choose Qo = Qf, and form
G1 = Go + ByQp. Due to Lemma 3.7 (d) it holds that G, = G1Z;, Ng + N; = Ny + Ny,
Zl<Ng N Nl) = Ny N N;. Since Z; is nonsingular, G; has constant rank r;, and the inter-
section N, = Ny N Ny has constant dimension u;. Put X; = NoN(NyNN;)* and fix the
projector Q1 by means of im Q1 = N;, ker Q; = X1®(NO+N1)L. @, is continuous, but for
the sequence Qo, Q1 to be admissible, DI, D~ has to belong to the class C*. This projector
has the nullspace ker DIT; D~ = D(Ny + N;) @ ker R = D(Ny + N;) @ ker R, which is al-
ready known to belong to C'. If DII; D~ has a range that is a C! subspace, then DII; D~
itself is continuously differentiable. Derive im DII;D~ = im DII; = D(Ny + N;)* =
D(Ny + Ny)t = DD*(D(Ng + Ny))*. Since D(Ny + Ny) belongs to the class Ct, so does
(D(Ng + Ny))*. Tt comes out that DPyP, D~ is in fact continuously differentiable, and
hence, o, Q)1 are admissible.

To use induction, assume that Qo, . .., Q;_1 are admissible and widely orthogonal. Lemma
3.7 (d) y161dS Gz = GzZza N() + -+ Ni—l = NO + -+ Ni—la NO + -+ Nz =
Since Z; is nonsingular, it follows that G; has constant rank 7; and the intersection
NU; = N; N (NO 4+ 4+ ]\_fi,l) has constant dimension u;. The involved subspaces are
continuous. Put

X;=(No+--+N_)N((Ng+---+ Ni_1) N N;)*

and choose Q; to be the projector onto N; along (Ng + -+ -+ N;)* @ X;.

Qo -..,Q;_1,Q; would be admissible if DII; D~ was continuously differentiable. We know
ker DII,D~ = D(Ny+---+ N;) @ ker R to be already continuously differentiable. On the
other hand, we have im DI[;D~ = D imIl; = D(Ny + --- 4+ N;)* = DD*(D(Ny + - -- +
N;))*+, hence im DII; D~ belongs to the class C*. O

The widely orthogonal projectors have the advantage that they are uniquely determined.
This proves its value in theoretical investigations on necessary and sufficient regularity
conditions for nonlinear DAEs, as well as for investigating critical points. Moreover, in
practical calculations, in general, there might be difficulties to assure the continuity of
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the projector functions I7;. Fortunately, owing to their uniqueness the widely orthogonal
projector functions are continuous a priori.

By Proposition 9.3, at least for all DAEs with properly stated leading term, and with a
continuously differentiable coefficient D, we may access widely orthogonal projector func-
tions. However, if D is just continuous, and if D D* fails to be continuously differentiable
as required, then it may happen in fact that admissible projector functions exist but the
special widely orthogonal projector functions do not exist for lack of smoothness. The
following example shows this situation. At this point we underscore that most DAEs are
given with a smooth D, and our example is rather academic.

Example 9.4 We reconsider Example 6.30 which is a reqular DAE with tractability index
two. The detailed equations are

/
(11 +az2) = ¢,
!
Ty — T3 = (2,
T2 = (g3.

Written as (8) with m =k =3, n = 2, the DAE has the coefficients.

10 00 0
AzOl,D:FaO},B:00—1,R:L1)(1)]
0 0 01 0

a I — R is a continuous function. FExample 6.30 provides fine decoupling projector
functions. Now we construct widely orthogonal projector functions. We start with

000 1 —« 1 a 0
Q=10 00, DD=1]0 1], G=1]01 —-1
0 01 0 0 00 O
Compute further
0 —Q 1
No® Ny =span{|0]|, | 1 [}, (No® N;)~ =span |«
1 1 0

0% —

o O O

1
, and it results that DI D™ = [ o O} :

= 1
1+a? 1 T+a?

—a
We recognize that, in the given setting, DI, D~ s just continuous. If we additionally
assume that o € CY(Z,R), then Qo, Q1 appear to be admissible. Notice that in this case

2
DD* — {1 + o
Q 1
more.

Let us stress that this special DAFE is solvable for arbitrary continuous «. From this point
of view there is no need for assuming o to be C*. O

] is continuously differentiable, which confirms Proposition 9.3 once
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10 Over- and underdetermined DAEs (Nonregular
DAEs)

The general purpose of this monograph is the detailed analysis of reqular DAEs. In par-
ticular we aim for regularity criteria, and we would like to assist in modeling regular DAEs
in applications, and in avoiding DAE models that fail to be regular.

On the other side, several authors spend much place also to rectangular DAEs (cf. [KMO06]
for a summary).

In our view, more general linear DAEs (8) than regular ones are less interesting, and we
tear this topic just slightly. As usually, we speak on overdetermined systems, if k > m,
but on underdetermined ones, if k < m. However, this notion does not say so much, it
simply indicates the relation between the numbers of equations and unknown functions.
It seems to be more appropriate speaking on nonreqular DAFEs, that is, on DAEs not
being regular. This option includes also the square systems (with m = k) which may also
contain free variables and consistency conditions if the regularity conditions fail.

As in [LMT11b, Section 7], we point out the great latitude for interpretations when
considering nonregular DAEs.
Turn for a moment to the overdetermined DAE

'+ =q, (152)
T = qo, (153)

with £ = 2, m = n = 1. If one more emphasizes the algebraic equation = = ¢o, one is
led to a differentiation of ¢ as well as to a consistency condition coming from the first
equation, namely

g5+ ¢ —q1 = 0.

Contrarily, if one puts emphasis on the differential equation x’ + x = ¢; one can solve this
equation for

z(t)=e' (xo + /Ot esql(s)ds>

and then consider the second equation to be responsible for consistency. This leads to the
consistency condition

et (mo - /Ot esql(s)ds> — qo(t) = 0.

At a first glance this consistency condition looks quite different, but differentiation im-
mediately yields again ¢o — ¢1 + g5 = 0.

The last interpretation is oriented to solve rather differential equations than algebraic
ones and to differentiate. We join this point of view.

A further room of interpretation is given for the trivial underdetermined DAE

(21 +22) + 21 =9¢ (154)
with £ =1, m = 2, n = 1. Should we choose z; or x5 to be free? One can also think on
writing

(z1 +x2) + (1 + 22) — 22 = q, (155)
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or

1 1
($1 + 1'2)/ + 5(1’1 + .%'2) + 5(1’1 — 1‘2) =4q. (156)

As described in Section 4, the special structure of the matrix function sequence (12)-(15)
built by admissible projector functions allows for a systematic rearrangement of general
DAEs (8), among them also rectangular ones. Section 4 ends up with a first glance
at DAEs the matrix function Gy of which has already maximal rank. We resume this
discussion noting that, in the above two examples, we have the constant matrix functions

GOIH’ and Go=[1 1],

and both have already maximal rank.
Recall that, in this case, the DAE (8) is equivalent to the system (34), that is to

(D.CE), — R/D.T -+ DGaBoD_DJZ + DGaBoQox = DGQ_Q> W()B()D_D[E = W(]q, (157)

the solution of which decomposes as * = D™ Dx + Q.
For the overdetermined system (152), (153), we have in detail: D =D~ =R =1, Qo =0,

! : e 0 0 o
A—[Q}’B—[J GO_[O}’GO_[l O],Wo—[o 1},DGOBOD =1,

Inserting these coefficients we see the first equation in (157) coincides with the ODE (152),
while the second equation in (157) is nothing else (153). This confirms the interpretation
of the given DAE to be primarily the explicit ODE (152) subject to the consistency con-
dition (153).

For the underdetermined DAE (154), one has A = 1, D = [1 1}, R=1,B= [1 0],
Wy = 0, and the second equation in (157) disappears. Many different projectors Qo are
admissible, and different choices lead to different ODEs

(Dz)' + DGy ByD™ Dz + DGy ByQox = DGy q, (158)
and solution representations x = D~ Dx + Qgx. We consider three cases:

(a) Set and compute

[T T
M= D=
—_

)

o

|

and further DGy ByD~ = 3, DGy =1, DGy ByQo

corresponding ODE (158) coincides with (156).

I
N
|

N
o
=
o
=
@
»n
@
@
=
=
@

(b) Set and compute

o[ on- e [ 3] e [))

DGy ByD~ =1, DGy =1, DGy ByQy = [0 —1]. Now the equation (158) coin-
cides with (155).
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(c) Set and compute

ot [ e B

DGy ByD~ =0, DG, =1, DG, ByQy = [1 0}, and the equation (158) coincides
with the version (154).

Observe that the eigenvalues of DGy ByD~ are % or 1 or 0, in dependence of the choice of
the admissible projector (). One could restrict the variety of admissible projectors and
take just the widely orthogonal ones which are uniquely determined. In our example this
corresponds to (a). However, this would be an arbitrary action. We think that is it worth
to be mentioned at this place, that the inherent explicit reqular ODE of a reqular DAE
is uniquely defined by the problem data, independent of the choice of fine decoupling
projectors.

The tractability index of a regular DAE is determined to be the smallest index p such
that the matrix function G, is nonsingular (Definition 6.2). We intend to generalize this
notion, and to assign the tractability index u to each general DAE (8) with properly stated
leading term, for which admissible projector functions do exist and p is the smallest index
such that G, has maximal possible rank. In this sense, both above examples are tractable
with index zero.

Before we formulate the detailed definition, we remember that the ranks of the matrix
functions Gy, ...,G; form a nondecreasing sequence r = rp < r; < ... < r;, but not
necessarily a strictly increasing one. It may well happen that the ranks do not change in
several consecutive steps. For instance, a Hessenberg size u DAE is characterized by the
sequence 79 = ... = r,_1 < 1,. This feature makes the task to recognize the maximal rank
and stop constructing the matrix functions in practice somewhat more subtle as thought
before. Of course, if one reaches im G, = im [AD B, or equivalently W, B = {0}, then
r, is maximal, and one can stop owing to the basic property (19) of the matrix functions.
If one obtains an injectice GG, then one can stop because of the resulting stationarity
G, = Gu1 = ... = G,qi. Proposition 10.2(3) below gives further useful information
which also applies to the case if im[AD B] can not be reached. More precisely, it says,
if there are admissible projector functions g, . .., Q,y1, then there is an index g < r + 1
such that the matrix function sequence can be continued up to infinity, and it is stationary
at least beginning with this index, that is G = G4, for all @ > 1. This provides the
upper bound r 4 1 of the index j.

We are looking for the index 1 such that the rank r, reaches the maximal possible value.
Since p must be always equal or less than fi, having the bound r + 1 for the second index,
we have at the same time a bound for the first one, that is y < r + 1.

Definition 10.1 Let the DAE (8) have a properly stated leading term, and let the matriz
function [AD B] have constant rank.

(1) The DAF is said to be tractable on T with index zero (u=10), if either
im Gy = im [AD B| or admissible projector functions Qo, ..., Q,+1 exist such that
il’IlG() =...= imGr+1.

(2) The DAE is said to be tractable on T with index pn € N,
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(a) if there are admissible projector functions Qq, ..., Q,u—1, and
imG, =im [AD B, or

(b) if there are admissible projector functions Qo, ..., Qr+1, and
imG, = ... =imG, o,

and (v 1s the smallest integer of this kind.

(3) The DAE is reqular on T with tractability index p € N U {0}, if it is tractable with
index 1, and additionally m =k and im G, = R™.

This definition generalizes Definition 6.2. Item(3) repeats Definition 6.2 for completeness.
The special examples (152), (153) and (154) show DAEs being tractable with index zero.
From our point of view one should take care to attain the condition im [AD B] = R*
during the modeling.

A particular case of interest is given if one meets matrix functions G; being injective. This
can only happen if £ > m. Then, the tractability index is the smallest integer p such
that G, is injective, thus r, = m. It is worth mentioning that then ug = ... = u,—1 =0,

i.e. the intersections sz are trivial.

If the complement subspace X, is trivial, then it holds that G; = G for all i > 1, and the
DAE is tractable with index zero and therefore, if X; = {0}, then one can stop. Namely,
X; = {0} means N; N Ny = Ny. This implies Ny C Ny, and Ny = N; because of the
dimensions dim Ny = m — rg > m — r; = dim N;. Choose @)1 := ()g. The projector
functions Qy, @)1 are admissible. It follows that 0 = G1Q1 = GoQ1 + BoQoQ1 = ByQo,
thus G1 = Gg and Gy = G1 + B1Q1 = Gy + B1PyQ1 = G1. Then we set Q3 := ()1 and so
on. In particular, it results that X; = {0} for all : > 1.

Notice that, if there is a trivial complement subspace X, in a matrix function sequence,
the all these subspaces X; must be trivial, too.

Proposition 10.2 Given is the DAE (8) with a properly stated leading term.

(1) If there are admissible projector functions
Qo,...,Q, with a k € N, such that

Gn - Gli+17

then, the projector functions Qo,...,Quyi, with Q.y; == Qx for 1 > 1, are also
admissible, and it holds that

G.=Grriy, No+...+N.=No+ ...+ N.y;.

(2) If there admissible projector functions Q, ..., Q., such that
No+...4+Noqy=No+...+N,,

then G, = G1 holds true.

(3) If Qo, . ..,Qr+1 are admissible projector functions, then the sequence can be contin-
ued up to infinity, and there is an index i < r + 1 such that Gy = Gpqi for all
1> 2.
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Proof: (1) N, = N,y implies Nyyy € No+ ...+ Ny, No+ ...+ No = No+ ...+ Neyy,
No+ ...+ N, =X, ® N, = X, ® Ny1, hence, choosing X, .1 := X, Qui1 := Qx leads
t0 Upy1 = Uy, DI, 1D~ = DI, D™, so that Qo, ..., Q, Qx+1 are admissible, and further
Byi1Qri1 = Bioi111,Qri1 =0, Giyo = Gy, and so on.

(2) No+ ...+ Ny1=No+ ...+ N, implies N, C Ny + ...+ N,_1, hence 11, 1Q, = 0,
B.Qx = Bell, 1Q, =0, Gyy1 = G

(3) Let Qo,...,Q,+1 be admissible projector functions. Apply the decompositions
N; = N, @ ), which is accompanied by (No + ...+ N;-1) NY; = {0}. Namely,

2 € (No+...+ Niiy)NY, yields 2 € (Ng+ ...+ Ni)) N N; = N,, thus z = 0. It
results that No+...+N; = No+...+ N;1+ Vi = (No+...+ N;_1) @Y, that is, the sup-
plement to No+ ...+ N;_; is exactly the subspace );, and therefore dim(Ny+ ...+ N;) =
IfdimY; >1for j=1,...,r, then

dim(No+ ...+ N,) >dim Ny +r=m —ro+1r =m.

In consequence, the subspaces Ny + ...+ N, and Ny + ... + N,,; must coincide, and
assertion (2) leads to G,41 = Grya.

If there is an index j, < r such that dim); = 0, then we have N; = ]v]* = N;, N
(No + ...+ Nj,_1), and the inclusion N;, C Ny + ...+ N;,_; is valid. This leads to
No+ ...+ Nj_1=Ny+ ...+ N,,, and due to assertion (2), to G, = Gy, 11.

Owing to (1), the matrix function sequence can be continued in both cases, and there
exists an index g <r +1 with G = Gjq4, @ > 1. O

By Proposition 10.2, we know that equal subspaces Ng+ ...+ N1 = Ng+ ...+ N, in
the sequence (20) indicate that the matrix functions G; coincide with G, on all following
levels, and we can stop constructing the matrix function sequence. However, the smallest
integer k with Ny + ...+ Ny,_1 = Ny + ... + N, does not necessarily coincide with the
smallest integer v indicating that G, has the maximal possible rank. For instance, in
Example 3.5, we have k = 2, but p = 0.

In general, applying Proposition 10.2 we know the tractability index p to be smaller or
equal to r + 1 = rank (AD) + 1. The inequality

p < rank (AD)+1 (159)
is rigorous. This is confirmed by Example 3.6 with m; = my = m3 = 1, 7y = 2, and

pw=3,ie p=rog+1.

Next we reconsider the rearranged version (30) of the DAE (8), and provide a refined
form which serves below as a basis of the further decouplings.

Proposition 10.3 Let the DAFE (8) with properly stated leading term have the admissible
projectors Qq, . .., Q., with Kk € N. Then this DAE can be rewritten as

k—1

GHDi (Dﬂﬁl’)/ + Bﬁx + GH Z{Qﬂ? - (I - Hl)QH_lDi(DHZQH_LT)/
=0

(160)
+ VlDHll’ + Z/IZ(DHZSB)/} =(q
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with coefficients

U = —(I—=IH){Q+ QI — II)Qu PHID™,
Vi o= (I—-IN{(P+ Qu1Q)D (DID™) — Q1 D™ (DIl D™)'}DIT, D™

Before we verify this assertion, we point out the coefficients V, to be caused by variations
in time, these coefficients vanish in the constant coefficient case.

The coefficients U; disappear, if the intersections ]Vl, cee ﬁl are trivial.

If the intersections ﬁl,...,ﬁﬁ are trivial, then it results (cf. Proposition 4.1) that
Vlzw, lIl,...,H.
Proof: Recall from Proposition 4.1 the general rearranged version (30) of the DAE (8):

k—1
GxD™(DIIx) + Bex + G > {Quw+ (I — IL)(P = Qi P)(DIiz)'} = ¢ (161)
=0

For k = 1 we compute

Gl([ — H0)<P0 - leo)Di(DH[)l')/ = —Gl(I - Ho)QlDi(DHO.T)/
= —Gl(] — Ho)QlD_(DHQQll’)/ - Gl(I - H[))QlD_(DﬂlD_DHOI'),
= —Gl(I - HO)QIDi(DHOQ1I>/ + G1V0DH0LL’ + Glz/{Q(Dﬂol‘)/

with

U = — —Ho)Qq LD = —(I— Ig){Qo + Q:1(1 — Io)Q Py} 1, D™,
VO = _(I — Ho)QlDi(DﬂlDi)/DﬂoDi.

Set k > 1, and take a closer look to
8l = (I - Hl)(lal - QlJrlIDl)D_(DHl.ﬁE),, 0 S l S Kk — 1.
Compute

& = (I — I)(P, — Quu1P)D~((DILD™Y DIz + DIL,D-(DII,z))
= —1II)(P,— Q1 P) D~ (DIL,D™) DIz + (I — I)(—Q; — Qi1 P) I, D~ (DI1z)
— (I — I)(P, — Qu P)D~(DILDY DILz — (I — IL)QuIL,D~ (DI
— (I = I)Qu{IL + I — I} Qi PIL D™ (DILx)
— (I = IL)(P, = Qu1P)D~ (DILD" Y DIl
— (I = I)(Q + Qua{Il + I — II}Qu P)IL, D~ (DI )
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and

E=-1IL)(P—QuFR)D™(DI,D™) DI«
—(I — I)(Qi + Qu{l — I1,}Qi 1 P)II, D™ (DI’
o
— (I = ) Qi1 IhQu PILD™ (D)
HZZ?:H
— (I — I))(P, — Qs P)D~(DILD™)Y DIz + Uy (DIL,z)
— (I = II))Qu1 D™ (DILQu12) + (I — I1))Qu1 D™ (DI Qi D™ ) DIl
= (I — I){(P, = Qs P)D~(DILD™) + Q1 D~ (D [,Q1oy D7) YDz + Uy(DIjx)’

I —1II 4

— (I = I){(P, = Qun ) D™ (DILD™Y
= L{Z(Dﬂlx)’ - ([ — Hl){(f)l - Ql—i-l[)l)D_(DHlD_)/
+ (I = {(P, = Qur P, + Q1) D™ (DILD™) — Qs D™ (DI, D7)} DIT; .

\

VD
In consequence, the representation (161) is nothing else

k—1

GHD_(DHHx)/ + Bnaj + GH Z{le_(j - Hl)QH—lD_(DHlQH—lx)/
=0

+ VZDHZI + UZ<DHZJI)/} =dq,

which completes the proof. O

Throughout the rest of this section the DAE (8) is supposed to be tractable with index
i, and Qo,...,Q,—1 denote admissible projector functions. We may take use of the
rearranged version of (8) (cf. (160))

Gllle_ (DHH,LY?)/ -+ B‘uflﬂf

n—2
+Gu1 D> AQur — (I — ) Qe D™ (DI Qo) + VyDIlix + Uy(DIlx)'} = q,
=0

(162)
the coefficients V,, U, are from Proposition 10.3. By expressing
Gu—le = GuQﬁ; Gu—lvé = Guvﬂa Gu—lué = Guub l= 0,... y = 27
B, =B, 1P,1+ B, 1Qu =B, D DIl + B, 1Q,1,
formula (162) becomes
Gu{Pu_lD‘(DHM_lm)’ +Quz
n—2
+ 3 {Qur — (I = I1)Qusr D™ (DIQuy1) + ViDIlw + U(DIz)'} ) (163)
=0

+ Bu_lD_DHH_lx = (.
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According to the definition of the tractability index p, the matrix function G, has con-
stant rank. We find a continuous generalized inverse GG, and a projector function
W, =1 —G,G, along imG,. Notice that there is no need for the resulting projec-
tor function G, G, to be also admissible. The projector functions G,GG, and W, split
the DAE (163) into two parts. Multiplication by W, leads to equation (165) below.
Multiplication by GG, yields

Gy [P D (DIT, 12) + Qo

pn—1
+ Z{QM—([ — II))Qus1 D™ (DIQes1x) + Ve DIl + Uy(DIIpx)'}

=0
+ G;Bu_lD_DHu_lx - G;q = 0.

This equation G,,[ | = 0 may be rewritten as [ | =y, where y is an arbitrary continuous
function such that G,y = 0. Together this leads to the system

n—2
P, D™ (DI, 1z) + Quoaz + Y {Qur — (I-11)Qe1 D™ (DI, Qi)
(=0
+V,DIlyx + Uy (DILix)'} +y = G,(q— B,1D"DII, ), (164)
WHBH_lD_DH“_ll’ = Wﬂq, (165)

where y can be chosen arbitrarily such that G,y = 0. Thereby, the relation
ker GM = (I - G;—lBu—lQu—l)(NM—l N S,u—l) (166)
might be helpful. The undetermined part of y is actually Q,—1y € N,—1 NS,_;.

Multiplication of (164) by projector functions discovers some further structure. In par-
ticular, multiplication by I, yields

Hu_lD_(DHM_lx)' + Hﬂ—ly = Hu—lG;(q - Bu_lD_DHu_lx),
hence we recognize an inherent explicit regular ODE with respect to DI, x, namely
(DHH,1$)/ — (Dﬂu,lDf)/DHH,laz—i—DHH,ly—I—D]_[H,lG;B”,lDfDUﬂ,lx = Dﬂu,lG;q.

It is worth mentioning again, that, in contrast to regular DAEs, the properties of the flow
of this ODE may depend on the choice of the admissible projector functions, as it is the
case for example (154).

Multiplying (164) by II,_2Q),—1 gives

H,ufZQ,uflx + HquQufly + HufZQuflG;BuleiDHuflx = H,quQ,uflG,ZQ-

Apart from the terms including y, these two formulas are the same as the corresponding
ones in Section 6 on regular DAEs. However, the further equations that will be derived
from (164) by multiplication with further projector functions are more difficult to survey.
We restrict ourselves to several case studies.
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Case 1: G, has full column rank.

This case can happen only if & > m, and r, = m holds true. Since G/, is injective, due to
Proposition 4.1, all intersections (Ng + ...+ N;_1) " N;, i = 1,..., u — 1, are trivial, the
components Uy, . . . ,U,,_o vanish, and V, simplifies to V, =V, £ =0, ..., — 2. Moreover,
Gy = 0 implies y = 0.

The resulting special equation (164) reads

Pu_lD_(DHu_lfb), + Qu_ll’
n—2
+> {Qux — (I = 1)Qe1 D™ (DIT,Qesrx) + VoD Ily} (167)
=0

+ G;B#_lD_DHH_lx = G;q.

For k = m, that is, for regular DAEs with tractability index g, this formula coincides in
essence with formula (50) (several terms are arranged in a different way).

Applying the decoupling procedure from Section 6, we can prove (167) to represent a
regular index p DAE. Completed by an initial condition

D(to)Hufl(to)iﬂ(to) =2y € im D(tO)Hufl(tO)a (168)
this equation is uniquely solvable for z. That means, we have the option to consider

the equation (167) to fully determine the solution z, and to treat equation (165) as an
additional consistency condition.

Example 10.4 Set m =2, k=3, n =1, and write the system

T+ T2 = q,
T2 = (2, (169)
T2 = (s,

as DAE (8) such that

1 10 0 1 0 0
A=10|, D=[10, Gy=|0 0|, B=|0 1[, %:L)J,
0 00 0 1
11 0 0 0 1o
Gi=10 1|, wi=1]0 0 0|, u=1, Q:{01 J.
0 1 0 -1 1

G4 has already mazximal possible rank, r1 = 2, and hence this DAFE is tractable with index
one. The consistency equation Wy (BIlpx — q) = 0 means here go = q3. Equation (167)

has the form
o, |0 _|a—a
ol 2] =[]

which is a regular index-one DAFE.
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Example 10.5 Set m =2, k =3, n =1, and rewrite the system

/
X +ZL’2 = {1,

no= g (170)
Ty = (3,
as DAE (8). This leads to
10 10 0 1 00
A= |0 0|, D=[10], Gy=1|0 0|, B=|1 0}, QO:[O J,
0 0 0 0 0 1
11 000 ) 10 —1
Gy=10 0], Wi=1|01 0|, pu=1, Gl:()() e
0 1 000
Gy has maximal rank, r = 2, this DAFE s tractable with index one. Condition

Wi (Byllpx — q) = 0 means now x1 = qa, and equation (167) specializes to

L, 0 |91 — g3
HE |
which is a regular index-one DAFE.

Example 10.6 Set k =5, m =4, n =4, and put the DAFE

= q,
T = @,
Ty + T = g3 (171)
Tyt rs =
Tea = (5
into the form (8). This yields

1000 0000 00 0O0O
0100 1 000 00 0O0O0
Go=10 010/, B=lo100, Wo=1|000 0 0],
0 001 0010 00 0O0O0
0 00O 0 0 01 00001

and p = 0. This DAFE is interpreted as an explicit ODE for the components x1, xa, T3,
x4 and the consistency condition x4 = qs.

Example 10.7 The DAFE

/
$2+$1 = {1,

Ty + T = qo, (172)
xr3 = g3,
Ty = g,
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results from the index three system
wlg +x = qi1,
l’é —+ To = (2, (173)

T3 = (g3,

by adding the differentiated version of the derivative-free equation. We may write (172)
in the form (8) with k=4, m =3, n =2,

10 1 00 00
0 1 010 010 _
A= OO’D_{OOJ’B_ 0 01 » D7 = (1)(1)
01 0 00
Compute
e e [N g [
GOZ 7Q0: 0007G1: JQOZ 0 1 O7G2:
0 00 00 0 0 00 0 0 0 00
0 01 0 01 0 0

ro =2, 1 = 2, o = 3. It results that (172) has tractability index two while (173) has
tractability index three.

System (172) is overdetermined, and, in our view, the subsystem WhoBx = Wsq (cf.
(165) ), which means here in essence x3 = qs, is interpreted as a consistency condition.
The main part (167) of the DAE reads

/
,1,’2—{—[[‘1 = {1,
o /
To = (42 — QB7
/ /
T3 = (s,

and this is obviously a reqular index two DAE.

The last example adresses an interesting general phenomenon: If one adds to a given
DAE the differentiated version of a certain part of the derivative-free equations, then the
tractability index reduces.

There are several possibilities to choose appropriate derivative-free equations to be differ-
entiated. Here we concentrate on the part

WM—IBx - WM—Ig’

supposing the original DAE (8) to have tractability index p > 2.
Considering the inclusion Ny € 51 € S, = ker W,_1 B we can write this derivative-free
part as

W,_1BD Dz =W, _1q,

and differentiation yields
W,_.1BD™(Dz) + W,-1BD™)' Dz = (W,_1q)". (174)
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The enlarged DAE (8), (174) is now

b |0 *J(WM-lng} o=l (173
=A B

with k& 4+ m =: k equations. The DAE (175) inherits the properly stated leading term

from (8) because of ker A = ker A.
The next proposition says that the tractability index of (175) is less by one than that of

(8).

Proposition 10.8 If the DAE (8) has tractability index u, and characteristic values
ro <o <ryoy <1y =m, p>2, then the DAE (175) has tractability index ji = p — 1,
and characteristic values 7; =r;, 1 =0,..., 40— 1, 7y =7, =m.

Proof: We have Ny C ker W, 1B = 5,1,

- AD [ Gy o
Go=AD = [WH_IBD‘D] - {Wu_lB] » 7o =To.

Set Qo = Qo and form Gy =Gy + B’QO = {WGI B} .
pn—1

If u = 2, then ker G = ker Gy Nker W, B =N, NS, = {0}. Then, 7 =m, 7y < 71 , and
hence the new DAE (175) has tractability index one, and we are ready.

If 4 > 3 then ker G, = ker G; N ker W,1B = Ny, since Ny € Sy € 5,1 = ker W, B.
Moreover, 71 = ry.

Set Q1 = Q; and form

A By _ By
"= |W,.1BD~YD —W,_BD~(DILL,D-)D| ~ |(W,_1BD~) DIl |’

=~ |G+ B Go oo

If = 3, then Ny = Ny N S, = {0}, and 79 = m, i.e. Gs is injective, and the DAE (175)
has tractability index two.
For p > 3, as long as j < u — 2, it results that

. G. . . .
Gj = {Wule} , Nj=N; NSy = Nj, Q5 =@, 75 =135,

B; = [(WulBD_)’DHjl —V\ileD_(DHjD‘)’DHjJ B {(WulB%_)’DHJ- '
Finally,
Gt = WZH Nt = Nt 081 = {0}, 7y = m,
that is, éﬂ_l is injective, and the DAE (175) has tractability index i = pu — 1. U
We mention that V~Vﬂ — Wy I WM_J is a projector function with ker Wﬁ = im C:*ﬁ,

and now the equation W,_; Bx = W, _1q is interpreted as consistency condition, while its
differentiated version is included into the main part (167), as it is the case in Example
10.7.
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Case 2: The DAE is tractable with index one, and (G; has a nontrivial nullspace.

The decomposed system (164), (165) has the form

D™ (Dz)' 4+ Qox +y+ Gy ByD Dz = Gig (176)
WiByD Dz = Wig, (177)

with G1y = 0, i.e. y = (I — Gy BoQo)Qoy, Qoy € No N Sp. The inherent explicit ODE is
here
(Dx)' — R'Dz + Dy + DGy BD™ Dz = DG/ g, (178)

and multiplication of (176) by Qo gives
Qo + Qoy + QoG BoD™ Dx = QoG q. (179)

For each arbitrarily fixed continuous Qoy € Ny N Sy, equation (176) represents a regular
index-one DAE.

We consider (177) as a consistency condition. If im G, = R* m > k, are true, i.e. if G,
has full row-rank, then this condition disappears.

Example 10.9 Set m = mi +mo+m3, k = ki1 + ko + k3, n =mq, miy = ki, mg = ko,
ks >0, m3 > 0, and consider the DAE (8) with the coefficients

I I 0 0 Bis
A=|0|, D=[I 0 0], D =|0|, B=|01T1 0|,
0 0 00 0

which has the detailed form

zy + Bisrs = @i,
Ty = (2,
0 = gs.

This DAFE plays its role in the strangeness indez framework (e.g. [KMO6]). Derive

I 00 000 I 0 B 000
GO =10 0 O 5 QU =10 I O y G1 =10 [ 0 5 W1 =10 0 O 5
000 00 I 00 O 00 I

and rg = my, 11 =my+mg andimG; = im[AD B] = R™ x R™ x {0}. Therefore,
G has mazimal possible rank, and hence the problem is tractable with index 1. The con-
sistency condition (177) means simply 0 = qs, if ks > 0. It disappears for ks = 0.

Moreover, here we have Ng = {z € R™ : 2y =0}, Sy = {2z € R™ : z,, = 0}, Ny N Sy =
{z€R™: 2 =0, 20 =0}. Giy =0 means y; + Bisys = 0, yo = 0. The free component
Qoy € No NSy is actually ys (if ms > 0), so that y; = —By3ys follows.

It results that
I

GI - .[ 5 G;B[)Di == 0,



and the equation (176) reads in detail

/
x7 — Bisys = qi,
T2 = (2,

r3+ys = 0.
For each given function ys, this is obviously a reqular index one DAFE.

The characteristic values r; as well as the tractability index are invariant under regular
scalings and transformations of the unknown function (cf. Section 5). We derive a similar
result on the structure of an index-one DAE via transformations.

Proposition 10.10 Let m > k, and the DAE (8) be tractable with index one. Then
there are monsingular matriz functions L € C(J,L(R*)), L* = L', K € C(J, L(R™)),
K* = K=Y, such that the premultiplication by L and the transformation of the unknown

function x = Kz, x = Fl} b , lead to the equivalent DAE
To| }m—r
A\(Dy71) + Buy + Bty = q, (180)

Bo1 7y q2, (181)

with

Ay = By By Q1| }
LA = , DK=|D; 0|, LBK = |3 , Lg= 2L ,
{O} [ ' } {321 0 1 4z }k_rl
and equation (180) is a regular DAE with tractability index one with respect to Ti. If
r1 =k, i.e. if G1 has full row-rank, then the second equation (181) disappears. In general,
it holds that ker By O ker D;.

Proof: We choose @)y, W, to be the orthogonal projectors onto Ny and im Gy, and
consider the matrix function

G1 = Gy +WoBQo,

that has constant rank r;. Compute L so that

_[Gi] 5
LG, = {0}}]{_“ . rank G, = ry.
Then we provide a K to obtain
GK= [ S |, S nonsingular.
This yields
S 0

0 I

L(Gy + WoBQo) K = {O 0

} . L(Go +WoBQo)K [O O] =0,

0 0 0 0 00 00
and further G()K |:0 [:| = 0, W()BQ()K |:0 ]:| = 07 P()K |:O [:| = 07 DK |:0 [:| = 0.

In particular, D := DK = [D; 0] must be true, and im D; = im D. Denoting P, := D; Dy,
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Qo = I — Py € C(T,L(R™)) we find Qy, = K*QuK = [%0 ?] to be the orthogonal

projector onto ker D = K*ker D.
Next we scale the DAE (8) by L and transform z = KZ. Because of im A C im G, we
must have

a4 At i _
A:=LA= [O}}k—rl , ker A =ker A =KkerA;.
From im BQ, C im Gy = im G; we derive, with B := LBK = @11 512 g , that
Ba1 B }k?—Tl
~—

1 m—ri
im BQ, C im LG;, hence B(Q, has the form [; Ek)]’ and BQIQO = 0, ker D; C ker By,

Bss = 0 must hold.

It remains to show that (180) has regular index one as a DAE for z; in R™. Obvi-
ously, this DAE for x; has a properly stated leading term, too. If we succeed showing
AD; + WOBHQO to be nonsingular, where Wg =1 — fllf_lf, we are done. Notice that

— . 3 1 o 1 A A A
W[) — LWOLfl is the orthoprOJector onto 1m G(J)- = 1m AJ‘, Because of A = |: 1:|7 we

0
Wo O]. Derive

have WOZ |: 0 I

I

AlDl + W{)BHQQ - [I O] LADK |:O

} [ 0] WoLBKQ, H

=[I 0] L(AD +WyBQo)K H

0
wafs []-s

and S is nonsingular. O
Case 3: The DAE is tractable with index two, and (G5, has a nontrivial nullspace
The decomposed system (164), (165) is now

PlDi (Dﬂlx)’ + Q113 + Qox — Q0Q1D7<DH0Q1(17)/ + V()D;C + UO(DQZ)/
+Gy,B1D DILx+y=Gyq, (182)

WQBlDiDﬂlx = qu, (183)
with coefficients (cf. Proposition 4.1)

U = —Qof{Qo+ Q1QuQ1Fo} D™ = —QoQ1QoQ1 D,
Vo = QO{(PO + QlQO)D_R, — QlD_(DﬂlD_)/}DD_ = —QngD_(DﬂlD_)/DD_

and an arbitrary continuous function such that
Gay = 0. (184)
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We multiply (182) by DII, @1 and Qo P, and obtain the system

(Dﬂlx)' — (DHlD_)'Dﬂlx + DﬂlGQ_BlD_Dﬂlx + DHly = DﬂlGQ_q, (185)

@1z + Q1Qor — Q1Qo@Q1 D~ (DIIyQ1x) + Q1 VoD + Q1lUy(Dx)’
+Q1G5 B1D™ DIz + Qiy = Q1G5 q, (186)

QoP1Qox + QoD (DILz) — QoP1Qu@Q1 D~ (DII)Q1x)" + Qo P VoD
+QoPilhp(Dz) + QoPiG5 B1D™DIlx + QoPiy = Qo PG5 q, (187)

which is a decomposed version of (182) due to Ily + QoP1 + Q1 = I, Ily = D~ DII,.
Multiplying equation (186) by 11y and taking into account the property I1,QQ1Qo = 0 we
derive

IyOx + 11yQ1Gy BiD™ DIl x + IIyQvy = IIiQ1G4 q. (188)

Now it is evident that, for given y, and the initial condition
D(to)ﬂl(to)x(to) =20 € im D(to)ﬂl(t()), (189)

there is exactly one solution of the explicit ODE (185), that is, the solution component
Ilyx = D~ DIlyx of the IVP for the DAE is uniquely determined. Having DIz, we
obtain the next component ITQ z from (188), and thus Dx = DIz + DIlyQ1x. Then,
formula (187) provides an expression for Qo P;Qoz in terms of the previous ones. Finally,
multiplying (186) by @y we find an expression Qo@Q1z + QoQ1Qor = E with E depending
on the already given terms y, DIIyQ)1x, DIl x, Dx. In turn, this yields an expression for
QoQ1Qoz, and then for Qozr = QoQ1Qox + Qo1 Q.

In summary, to each function y that satisfies condition (184), the system (185) — (187),
completed by the initial condition (189), determines a unique solution
r =D DIz + IlyQ1x + Qox of the DAE.

With regard of the discussion above (cf. (166)) the actual arbitrary part of y is Q1y €
N1 N Sl.

We mention that, for solvability, the component DIIy();x must be continuously differ-
entiable. Equation (188) shows the terms being responsible for that. For instance,
it I1oQ)1G5 B1D~ is a continuously differentiable matrix function, then the difference
DIIyQ:1(G5 q — y) must be continuously differentiable.

Example 10.11 Set k = 3, m = 4, n = 2, and consider the DAE (8) given by the
coefficients

10
10 1 000
T B A P R
00 00 0100

This DAFE reads in detail
i+ = q,
Ty+T3+Ts = G, (190)
T2 = (3.



We provide the sequence

oo [0
GOZ 1007 Q0_00107

10 0 0 0] 000 1

- - :00 0 0

1 0 00 01 0 0 1 0 00
G1—0111, Ql—o 0 1 0, 31:0000,

10 0 0 0] 0 1 —1 0 01 00

[1 0 0 0] 38?
G=1{0 111, G=| 7 | Wy =0

0 100 00 0

Thereby, the projector Q1 satisfies the admissibility condition X; C ker @i with
Xy ={z€R': 2, =0,20=0,23 =0} and Ny = (Ng N Ny) & X;. Gy has mazimal rank,
ro = k = 3, thus the DAE is tractable with index two. The consistency condition (183)
disappears. Compute further V; =0 and U; = 0, so that the equation (182) simplifies to

P.D™(DILz) + Q17 + Qor — QoQ1 D™ (DIlyQx) + G5 BiD™ DIl iz +y = G5 q,

with

o O O

PlDiz

, Qo D™ = , Gy BiD DIl =

S O O =
_ o O O
o O OO
o O O
o O OO
o O OO
o O OO

—1

Taking into account that Goy = 0 s equivalent to y; =0, yo =0, y4s = —ys, , we find the
equation (182) to be in detail:

Ty + 21 = qu,

T2 = g3
203+ y3 = q2 — g3,

Ty —x3 — X9+ 1y —y3 = 0.

To each function ys, this is a reqular DAE with tractability index two. Its solutions are
the solutions of the original DAFE.
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Linear Algebra — Basics

In this appendix we collect and complete well-known facts concerning projectors and
subspaces of R™ (Section A), and generalized inverses (Section B). Section C provides
material on matrix and projector valued functions with proofs, since these proofs are not
easily available. In Section D we introduce C*-subspaces of R™ via C*-projector functions.
We show CF-subspaces to be those which have local C* basises.

A Projectors and subspaces

We collect some basic and useful properties of projectors and subspaces.

Definition A.1 (1) A linear mapping Q € L(R™) is called a projector, if Q* = Q.
(2) A projector Q € L(R™) is called a projector onto S C R™ if im@Q = S.
(3) A projector @ € L(R™) is called a projector along S C R™ ifker@ = S.

(4) A projector Q € L(R™) is called an orthogonal projector if Q@ = Q*.

10 0
* 0 ...
Example: The m-dimensional matrix Q = |, . .| with arbitrary entries for %
* 0 ... 0
becomes a projector onto the one-dimensional subspace spanned by the first column of )
U1
. . U2
along the (m — 1)-dimensional subspace {v:v= | | ,v; =0}.
Um

Lemma A.2 Let P and P be projectors, and Q :== I — P, Q := I — P the complementary
projectors . Then the following properties hold:

zeim@Q & z=Qz.
If Q and Q project onto the same subspace S, then Q = QQ and Q = QQ are valid.

(1)
(2)
(3) If P and P project along the same subspace S, then P = PP and P = PP are true.
(4) @ projects onto S iff P := 1 — Q projects along S.

(5)

Each matrix of the form I + PZ(Q), with arbitrary matrixz Z, is nonsingular and its
inverse is I — PZ(Q).

(6) Fach projector P is diagonalizable. Its eigenvalues are 0 and 1. The multiplicity of
the eigenvalue 1 1s r = rank P.

Proof:
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L2=Qy — Q:=Q%=Qy=z
2. Qz€im@Q =S5 =imQ, also Qz = QQz Vz.

3. PP=(1-Q)I-Q)=1-Q-Q+QQ=1-Q=P.

4. P2 = P I-Q?=T1-Q & -Q+@Q* =0 & @ = Q and
P & P:x=0& z2=0Qz & z€im(Q.

5. Multiplying (I + PZQ)z =0 by @ = @z = 0. Now with (I + PZQ)z = 0 follows
z=0.
(I +PZQ)I — PZQ)=1— PZQ + PZQ = I.

6. Let P, be a matrix of the r linearly independent columns of P and @, a ma-
trix of the m — r linearly independent columns of I — P. Then by construction

P []51 Qz} = []31 QQ] [I O]' Because of the nonsingularity of [Pl Qg} we have

the structure P = [}51 Qz] {I 0} [}51 Qg] ' The columns of P, resp. Q5 are the

eigenvectors to the eigenvalues 1 resp. 0. U

Lemma A.3 Let A € L(R*,R¥), D € L(R™ R") be given, r := rank (AD). Then the
following two implications are valid:

(1) kerANim D =0, im(AD) =imA = ker A@im D = R".
(2) kerA®dimD =R" =

e ker ANim D = {0},
e iImAD =im A,

o ker AD = ker D,

o rtank A =rank D =r.

Proof: (1) Because of im (AD) = im A, the matrix A has rank r and ker A has dimension
n — r. Moreover, rank D > r must be true. The direct sum ker A & im D is well-defined,
and it has dimension n — r + rank D < n. This means that D has rankr. We are done

with (1).
(2) The first relation is an inherent property of the direct sum. Let R € L(R™) denote
the projector onto im D along ker A. By means of suitable generalized inverses D~ and

A~ of D and A we may write (Appendix B) R=A"A=DD~, D= RD, A= AR. This
leads to

imAD CimA=imADD™ CimAD,
ker AD Cker A”AD =ker D C ker AD.

The remaining rank property follows now from (1). O
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Lemma A.4 [GuL91, Ch. 12.4.2] Given are matrices G, IT, N', W of suitable sizes such
that

ker G = im N,
ker IIN =imW.

Then it holds that
ker G Nker IT = ker NW.

Proof: For x € ker G Nker I we find x = Ny, [Tx = 0, further IINy = 0, and hence
y=Wz, x =NWze€imNW.
Conversely, each z = N Wz belongs obviously to ker G, and Iz = IINWz = 0. ([l

Lemma A.5 N, M C R™ subspaces = (N + M)+ = N+t n M+
Proof:

(N+ M) = {zeR™:Ywe N+ M: (z,w) =0}
{z e R" :Ywy € N,Vwy € M : (z,wy +wy) =0}
{z e R" :Ywy € N,Ywyr € M : (z,wy) =0, (z,wy) =0}

= NtnM=-
O
Lemma A.6 (1) Given two subspaces N, X C R™, N N X = {0} Then
dim N + dim X < m, and there is a projector Q € L(R™) such that im@ = N,

ker@ O X.
(2) Given two subspaces S, N C R™. If the decomposition
R"=5S¢& N

holds true, i.e. S and N are transversal , then there is a uniquely determined pro-
jector P € L(R™) such that im P = S, ker P = N.

(3) An orthoprojector P projects onto S :=im P along S+ = ker P.

(4) Given the subspaces K, N C R™, N:=NNK. If a further subspace X C R™ is a

complement ofﬁ i K, that means K = N@X, then there is a projector Q € L(R™)
onto N such that

X Cker@. (191)

Let di,dy,u denote the dimensions of the subspaces K, N, ﬁ, respectively, then
dg +dy <m+u (192)

holds.
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(5) If the subspace K in (4) is the nullspace of a certain projector II € L(R™), that is
K =%ker Il =im (I — II), then

I -1)=0 (193)
becomes true.

(6) Given are the two projectors II,QQ € L(R™), further P := I — @, N := im(Q),
K :=ker II. Then, supposed (193) is valid, the products II P, I1Q, PIIP, P(I1—1I),
Q(I — II) are projectors, too. The relation

ker ITP =ker PITP = N + K (194)

holds true, and the subspace X :=1im P(I — II) is the complement of N:=NnK
in K, such that K = N® X .

Moreover, the decomposition
R"=(N+K)®imPIIP=N®& X @im PIIP
—_—
im P
1s valid.

(7) If the projectors II,Q in (6) are such that II* = II, (IIP)* = 1P, (P(I — II))* =
P(I —1II) and QIIP = 0, then it follows that

X=KnN, imP=Xa&(N+K)"

Proof: (1): Let z1,...,2, € R™ and ny,...,n, € R™ be basises of X and N. Because of
X NN = {0} the matrix
Fi=lzy...xmny .. 0]

has full column rank and r +¢ = dim X +dim N < m. The matrix F*F is invertible, and

Q:=F [0 I] (F*F)"'F*
rt

is a projector we looked for. Namely,
2 0 * —1 % 0 * —1 % . . 0
Q°=F 7 (F*F)" F*'F 7 (F*F)"F*=@Q, imQ=imF 7 =N,

and z € X implies that it has to have the structure z = F [g] }}:Z, which leads to Qz = 0.
1)

(2): For transversal subspaces S and N we apply Assertion (1) with t =m —r, ie. Fis
square. We have to show that P is unique. Supposed that there are two projectors P, P
such that ker P = ker P = N, im P = im P = S, we immediately have P = (P + Q)P =
PP +QP=PP=P.

(3): Let S :=im P and N := ker P. We choose av € N and y € S. Lemma A.2 (1)
implies y = Py, therefore (v,y) = (v, Py) = (P*v,y). With the symmetry of P we obtain
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(P*v,y) = (Pv,y) =0, ie. N =St

(4): X has dimension dyx — u. Since the sum space K + N = X & N C R™ may have at
most dimension m, it results that dim(K + N) = dim X + dim N = dg —u+ dy < m,
and assertion (1) provides Q.

(5): Take an arbitrary z € im (I — I1) = K and decompose z = = + zx. It follows that

NQz=1Qz -+ 1 Qzx = Iz . =0, and hence (193) is true.
N A d N
=0
(6): (193) means I1Q) = I1QII and hence

HQIIQ = 11QQ = 110,
PP =1(—-Q)IP=1IP—IQIP=IP,

——
=0

(PITP)? = PIIPIIP = PIIP,
(P(I—1))7*=P(I—I)(I-Q)(I~1I)=P(I~1I)-P(I-IQI~II
=P —I)+PHQ( - 1),
\T

(QU — 1) = QU — IT) - QIIQ - IT) = Q(I — II).

The representation I — I[I = Q(I — II) + P(I — II) corresponds to the decomposition

K=N&X.

Next we verify (194). The inclusion ker IIP C ker PIIP is trivial. On the other side,
PIIPz = 0 implies Il PII Pz = 0 and hence I Pz = 0, and it follows ker I/ P = ker PII P.
Now it is evident that K+ N C ker II P. Finally, [ Pz = 0 implies Pz € K,z = Qz+Pz €
N+ K.

(7): From QITP = 0 and the symmetry of ITP we know that PIIP = [P, im PIIP =

(N+ K)t imP = X @& (N + K)*. Next using Lemma A.5, compute Nt = N1+ K4,
and further

Kn]/\?L:Km(NL—FKJ_):{ZGRmIHZ:O,Z:ZNJ_—FZKJ_,ZNJ_ € N+t 21 € K*}
—{zeR™: 2= (1 —H)zy,2zyr € N} = (I — II)N*
—im (] — II)P* =im (P(I — II))* =im P(I — II) = X.

O

Lemma A.7 Let D € L(R™ R"™) be given, M C R™ be a subspace. Dt € L(R™,R™) be
the Moore-Penrose inverse of D. Then,

(1) ker D* =im D*, im D = ker D**, ker D = ker D**, im D = im D**.
(2) ker D C M = (DM)* = (im D)* @ D™ M*.
(3) ker D C M = M+ = D*(DM)*.

Proof: (1) The first two identities are shown in [BIG03] (Theorem 1, p.12).
If z € kerD = im[ — DtD with Lemma A.2(1) it is valid that z = (I — D*D)z or
DDz =0. With (201) it holds 0 = DT Dz = (D" D)*2 = D*D™*2 < D"z = 0 because
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of (198) for D* and we have that z € ker D™. We prove im D = im D™* analogously.
(2) Let T € L(R™) be the orthoprojector onto M, i.e. imT = M, ker T = M+, T* =T.
— DM = im DT,
(DM)*" = (imDT)" =ker (DT)* =kerTD* ={z € R": D*z € M*}
= kerD*®{v€imD: D*v € M*}.
=im D+

It remains to show that
{veimD:Dve M} =DM

From v € imD = im DD* we get with Lemma A.2(1) v = DD%v = (DD%)*v =
D**D*v. Because of D*v € M= it holds v € D™*M*. Conversely with Lemma A.2(4),
w € DM+t =im D™ (I — T) implies u € im D™ = im D, and Jw : u = D™ (I — T)w,
D*u= D*D*(I-T)w = DT*D(I-T)w. Since im (I-T) = M+ C ker D+ = ker D* D+ =
im (D*D)* = im D* D, it holds that DY*D(I —T) = I —T, hence D*u = (I —T)w € M=,

(3) This is a consequence of (2), because of

D*(DM)* = D*[(im D)* @ D™M*) = D*D™*M*+ = D*DM+ = M*.
O

Lemma A.8 ([GMS86], AppendizA, Theorem 13)
Let A,B € L(R™), rankA =r <m, N :=kerA, S :={z € R": Bz € imA}. The
following statements are equivalent:

(1) Multiplication by a nonsingular E € L(R™) such that

_ Al _ Bl A
EA—{O}, EB—{BJ, rank A; = r,

yields a nonsingular [Al} .
By

The pair {A, B} is reqular with Kronecker index one.

The pair {A, B + AW} is regular with Kronecker index one for each arbitrary
W e L(R™).

Proof: (1) = (2): With N :=ker A =ker FEA =ker A = N,
S:=kerBy,={2€R™: EBz € imEB} =S,

we have

0 = ker [41} =NNnS=NNS&.
By
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(2) = (3): (A+ BQ)z = 0 implies BQz = —Az, that is Qz € NN S, thus Qz = 0,
Az =0, therefore z = Qz = 0.

(3) = (4): Fix any projector Q € L(R™) onto N and introduce Q. := Q(A + BQ)™'B.
We show (), to be a projector with im @), = N, ker O, = S so that the assertion follows.
Compute

Q.Q=Q(A+ BQ)'BQ =Q(A+ BQ) '(A+ BQ)Q = Q,

hence Q? = Q., imQ, = N. Further, Q,z = 0 implies (A + BQ)™'Bz = (I — Q)(A +
BQ) !Bz, thus

Bz = (A+ BQ)(I — Q)(A+ BQ)™'Bz= A(A+ BQ)™'Bz,
that is, z € S. Conversely, z € S leads to Bz = Aw and
Q.2 = Q(A+ BQ) "Bz = Q(A+ BQ) " Aw = Q(A + BQ)" (A + BQ)(I — Q)uw = 0.

This proves the relation ker @), = S.

(4) = (5): Let Q. denote the projector onto N along S, P, := I — Q.. Since NNS =0
we know already that G, := A + B(@), is nonsingular as well as the representation @), =
Q.G 'B. Tt holds that

G'A = G;Y(A+BQ.,)P. =P,
G.'B = G;'BQ.+G.'BP, =G, (A+BQ.)Q.+G.'BP, = Q.+ G,'BP..

Consider the equation (AA + B)z = 0, or the equivalent one (A\G;'A+ G;'B)z =0, i.e.
(AP, +G.'BP, +Q,)z = 0. (195)

Multiplying (195) by Q. and taking into account that Q.G;'BP, = Q.P, = 0 we find
Q.z =0, z = P.z. Now (195) writes

(M +G.'B)z =0.

If A does not belong to the spectrum of the matrix —G_ !B, then it follows that z = 0.
This means, AA + B is nonsingular except for a finite number of values A, hence the pair
{A, B} is regular.

Transform {A, B} into Weierstra-Kronecker canonical form (cf. [LMT11b, Section 1]):

I 0
0 J

W 0

A::EAF:{ 0 I

], B::EBF:[ } JH=0, J1£0.

We derive further

N:=kerA=F"kerA, S:={z€R":BzcimA}=F"'S,
F

NNS=F*NnS)={0}, and
Nﬂgz{[zl} E]Rm:zl:(), JZQZO, ZQEiHIJ}.
2

Now it follows that J = 0 must be true since otherwise N NS would be nontrivial.
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I 0
0 0

(5) = (1): This follows from A = FAF = [ WO
NNS=F!YNnS)={0}.

(6) = (b) is trivial.

(2) = (6): Set B:= B+ AW,S := {z €¢ R™ : Bz € imA} = S. Because of SN N =
SN N = {0}, and the equivalence of assertion (2) and (5), which is proved already, the
pair {A, B} is regular with Kronecker index 1. O

Lemma A.9 Let A, B € L(R™) be given, A singular, N :=ker A, S :={z € R™: Bz €
im A}, and N & S =R™. Then the projector QQ onto N along S satisfies the relation

Q=Q(A+BQ)'B. (196)

Proof: First we notice that ) is uniquely determined. A + B() is nonsingular due to
Lemma A.8. The arguments used in that lemma apply to show Q(A+ BQ)™'B to be the
projector onto N along S so that (196) becomes valid. O

],B:EBF:[ },Nm5=0mm

For any matrix A € L(R™) there exists an integer k such that
R™ = imA°>imA>D...>imAF =imA*t = .|
{0} = kerA° CkerAcC...Cker AF = ker A" =

and im A @ ker A¥ = R™. This integer & € NU {0} is said to be the index of A , and we
write £ = ind A.

Lemma A.10 (/GMS86], Appendiz A, Theorem 4)
Let A € L(R™) be given, k = ind A, r = rank A*, and let s1,...,s, € R™ and $;41,...,8m €
R™ be basises of im A¥ and ker A*, respectively. Then, for S = [s1...8m]| the product
S—YAS has the special structure
M 0
-1 o

545 = [O N}
where M € L(R") is nonsingular and N € L(R™") is nilpotent, N* = 0, N¥=1 £ 0.
Proof: For i < r, it holds that As; € Aim A* = im A*"! = im A*, therefore As; =

> s;myi. For i > 7+ 1, it holds that As; € ker A¥*1 = ker A%, thus As; = Y s;nj.
=1 j=r+1

This yields the representations Alsy...s;| = [s1...s,]M with M = (my);,_,, and
Alspi1---8m] = [Srq1-..8m|N, with N = (ny){%_.,;. The block M is nonsingular.
Namely, for a z € R” with M2z = 0, we have Als;...s,|z =0, that is,

szsj € im A" Nker A C im A* N ker A* = {0},

j=1
which shows the matrix M to be nonsingular. It remains to verify the nilpotency of N.

¢
We have AS = S [j\(;_[ ](3[] , hence A'S = S []\g ]84 From A*s; =0, i > r+1 it follows

that N¥ = 0 must be valid. It remains to prove the fact that N*=' #£ 0. Since ker A*~!
is a proper subspace of ker A* there is an index i, > r + 1 such that the basis element

k—1
s;, € ker A* does not belong to ker A*~!. Then, S {MO Ngl} e;, = A¥ls; # 0, that

is, N¥=1 £ 0. U
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B Generalized inverses

In [BIGO3] we find a detailed collection of properties of generalized inverses for theory
and application. We will here report the definitions and relations of generalized inverses
we need for our considerations.

Definition B.1 For a matric Z € L(R",R™), we call the matrizx Z~ € L(R™,R") a
reflexive generalized inverse, if it fulfills

ZZ77Z = Z and (197)
77777 = 7. (198)

Z~ is called a {1,2}-inverse of Z in [BIG03].
The products ZZ~ € L(R™) and Z~Z € L(R") are projectors (cf. Appendix A). We
have (ZZ7) = Z7Z"ZZ = ZZ and (Z=Z)* = Z~ZZ 7 = Z~Z. We know that the
rank of a product of matrices does not exceed the rank of any factor. Let Z has rankr,.
From (197) we obtain rankr, < rankr,- and from (198) the opposite, i.e. that both Z

and Z~ and also the projectors ZZ~ and Z~Z have the same rank.
Let R € L(R™) be any projector onto im Z and P € L(R™) any projector along ker Z.

Lemma B.2 With (197), (198) and the conditions

Z 7 = P and (199)
77~ = R (200)

the reflerive inverse Z~ is uniquely determined.

Proof: Let Y be a further matrix fulfilling (197), (198), (199) and (200).

vy @ vy @y or 2y @y pzy

0y R Ay gy 09 pye 098 5

O

If we choose for the projectors P and R the orthogonal ones the conditions (199) and
(200) could be replaced by

Z=7Z = (Z72), (201)

77~ = (ZZ7). (202)

The resulting generalized inverse is called the Moore-Penrose-inverse and denoted by Z+.
To represent the generalized reflexive inverse Z~ we want to use a decomposition of
S
Z:U{ Jv*

with nonsingular matrices U, V and S. Such a decomposition is e.g. available using an
SVD or a Householder decomposition of Z.
A generalized reflexive inverse is given by

St M, ] -1

M,  M;SM, (203)

z=v|
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with M; and M, being matrices of free parameters that fulfill

[ I A1 B

P=22=V|\g o|V
and SR

_ - I SMy| ..

R=77 —UO 0_U

(cf. also [Zie79]). There are two ways in looking at the parameter matrices M; and M.
We can compute an arbitrary Z~ with fixed M; and M,. Then also the projectors P and
R are fixed by these parameter matrices. Or we provide the projectors P and R, then M;
and M, are given and Z~ is fixed, too.

C Parameter dependent matrices and projectors

For any two continuosly differentiable matrix functions of appropriate size F' : 7 —
L(R™RF) and G : T — L(R'.R™), T C R, an interval, the product F'G : T — L(R"RF)
is defined pointwise by (F'G)(t) := F(t)G(t), t € Z, and the product rule applies to the
derivatives, i.e.

(FG)'(t) = F'(t)G(t) + F(t)G'(t).

In particular, this is valid for projector valued functions.
Let P € CH(Z,L(R™)) be a projector valued function and Q = I — P the complementary
one. The following three simply rules are useful in computations:

(1) @+ P =1, and hence Q' = —P'.
(2) QP = PQ =0, and hence Q'P = —QP’, P'QQ = —PQ'".
(3) PP'P=—PQ'P = PQP =0 and, analogously, QQ'Q = 0.

Lemma C.1 (1) If the matriz function P € C*(Z, L(R™)) is projector valued, that is,
P(t)> = P(t), t € Z, then it has constant rank r, and there are r linearly independent
functions ny, ..., n, € CL(Z,R™) such that im P(t) = span {n(t),...,n.(t)}, t € L.

(2) If a time-depending subspace L(t) C R™, t € I, with constant dimension r is
spanned by functions ny,...,n, € CY(Z,R™), that means L(t) = span {n;(t),...,n.(t)},
t € I, then the orthoprojector function onto this subspace is continuously differen-
tiable.

(3) Let the matriz function A € CH(Z, L(R™)) have constant rank r. Then, there
is a matriz function M € CF(Z,L(R™)) being pointwise nonsingular such that
A(t)M(t) = [A(t) O], rank A(t) =r for allt € T.

N

r

Proof: (1) Denote @Q = I — P, and let r be the maximal rank of P(¢) for t € Z. We fix a
value t € 7 such that rank P(t) = r. Let 71,...,7, be a basis of im P().
Fori=1,...,r, the ordinary IVP

() = Ptn), t€Z, n(t) =,
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is uniquely solvable. The IVP solutions 7y, ...,n, remain linearly independent on the
entire interval Z since they are so at t.

Moreover, the function values of these functions remain in im P, that is, n;(t) = P(t)n;(t).
Namely, multiplying the identity 1, = P'n; by @ gives (Qn;) = —Q'Qn;, and because of
Qt)n:(t) = Q(t)7; = 0, the function Qn; must vanish identically.

It follows that span{n(t),...,n.(t)} € im P(t) for all ¢ € Z, and r < rank P(t), and
hence r = rank P(t) and span {n;(t),...,n.(t)} =im P(t).

(2) The matrix function T' := [y n,| the columns of which are the given functions
M, -..,n- is continuously differentiable and injective., and I'*I" is invertible. Then P :=
[(T*T)~T'™* is continuously differentiable, The value P(t) is an orthoprojector, further
im P C im[' by construction, and PI' =T, in consequence im P =im[' = L.

(3) Proof see [Dol64]. O

For matrix functions depending on several variables we define products pointwise, too.
More precisely, for F : @ — L(R™.R*) and G : Q@ — L(RL.R™), Q C RP, the product
FG: Q — L(R.R*) is defined pointwise by (FG)(z) := F(z)G(x), = € Q.

We speak of a projector function P : Q — L(R'), if for all z € Q, P(x)? = P(z) holds
true, and of an orthoprojector function, if, additionally, P(x)* = P(z). Saying that P is a
projector function onto the subspace L we mean that P and L have a common definition
domain, say 2, and im P(z) = L(z), = € Q.

Lemma C.2 Given is a matriz function A € C*(Q, L(R™,R")), k € NU {0}, Q@ C R?

open, that has constant rank r.
(1) Then the orthoprojector function onto im A is k times continuously differentiable.

(2) The orthoprojector function onto ker A is also k times continuously differentiable.

Proof: (1) Let z € Q be fixed, and Zzj,...,%. be an orthonormal basis of im A(7)~*.
Denote @; := A(Z)z;, i = 1,...,r. By construction, @y, ..., u, are linearly independent.
We form u;(x) := A(x)z; for i = 1,...,r, and then the matrix U(x) := [ui(z) u.(z)],
x € 2. The matrix U(z) has full columnrank r. Therefore, there is a neighborhood N
of Z such that U(x) has full columnrank r on Nz. The Gram-Schmidt orthogonalization
yields the factorization

U(z) = Q(z)R(z), Qr) € LR",R"), Q) Q) =1, zeN;,

with R(x) being uppertriangular and nonsingular. It follows that im U(x) = im Q(z) is
true for x € N.

Further, U = A[z; %] shows that U is k times continuously differentiable together with A.
By construction, @ is as smooth as U. Finally, the matrix function R4 := Q(Q*Q)'Q* is
k times continuously differentiable, and it is an orthoprojector function, im R4y = im Q) =
imU =im A.

(2) This assertion is a consequence of (1). Considering the well-known relation ker AL =
im A* we apply (1) and find the orthoprojector function P4 onto ker A+ along ker A to be
k times continuously differentiable, and I — P4 has this property, too. O
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Remark C.3 By Lemma C.1 the orthogonal projector function P € CY(Z, L(R™)), T
R an interval, generates globally on I defined basises ny,...,n, € CY(Z,L(R™)), r
rank P(t), im P(t) = im [y (t),...,n.(t)], t € L.

In the higher dimensional case, if P € C1(Q, L(R™)), Q C R? open, p > 1, the situation
is different. By Lemma D.2, item (8), there are local basises. However, in general, global
basises do not neccessarily exist.

For instance, the orthoprojector function onto the nullspace of the matriz function
M(l‘) = [x17$27x3]7 MRS R3 \ {0}, T@adé’

I 1n

2 2

1 Ty + 23 —25513322 —T1x3
—T1T2 Ty + XT3 —T23
—T1T3  —ToT3  Th+ T

P(z) =

2 2 2
T + x5 + a3

This projector function is obviously continuously differentiable. On the other hand, the
nullspace ker M(z) = {z € R® : @121 + @220 + w323 = 0} allows only locally different
descriptions by basises e.g.

_z2 oz
ker M(x) = im 10 if v1 # 0,
0 1
| _m
x2
ker M(z) =im |0 0 if 1 =0, 29 #0,
0 1
(1 0
ker M(z) =im |0 1 if vy =0, 2o =0, x3 # 0.
0 0

Proposition C.4 Let, for a k € NU {0}, the matriz function D € C*(Q2, L(R™, R"))
have constant rank on the open set {2 C RP.

(1) Then the Moore-Penrose generalized inverse DT of D is as smooth as D.

(2) Let R € CK(Q, L(R™)) be a projector function onto im D, and P € C*(Q, L(R™)) be
a projector function such that ker P = ker D. Then the four conditions

DD"D=D, D DD =D, D D=P, DD =R,

determine uniquely a function D~ being pointwise a generalized inverse of D, and
D~ is k times continuously differentiable.

Proof: The first assertion is well-known, and can be found e.g. in [CM91].

The second assertion follows from the first one. We simply show the matrix function
D~ := PD"R to be the required one. By Lemma B.2, the four conditions define pointwise
a unique generalized inverse. Taking into account that imD = im R = im DD™ and
ker D = ker D™D = ker P we derive

D(PD*R)D = DD*R = R,
(PDTR)D(PD*R) = PD*DD*R = (PD'R),

(PDTR)D = PD*D = P,

D(PD*R) = DD*R = R,
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so that the four conditions are fulfilled. Obviously, the product PD"R inherits the
smoothness of its factors. OJ

What concerns the derivatives, the situation is more difficult, if several variables are
involved. We use the symbols F,(x,t) , Fy(x,t) for the partial derivatives and partial
Jacobian matrices of the function F € C}(Q x Z, L(R™,R¥)) with respect to z € RP and
t € R, taken at the point (z,t) € Q x Z.

For the two functions F' € C'(Q x Z, L(R™,R*)) and G € C'(Q x Z, L(R',R™)), the
product F'G € CY(Q x Z, L(R!,R*¥)) is defined pointwise. We have

(FGQ)g(x,t)z = [Fy(z,t)2]G(x,t) + F(x,t)Gy(x,t)z  for all z € RP.
Besides the partial derivatives we apply the total derivative in jet variables. For the
function F' € CY(Q x Z, L(R™,R¥)), O x T C R? x R, the function F’ € C(2 x T x
RP, L(R™ R¥)) defined by
F'(z,t,2") = F(2, )" + F(z,t), 2€Q,tcZ, 2' €RP,
is named total derivative of F' in jet variables. For the total derivative, the product rule
(FG) = F'G+ FG'
is easily checked to be valid.
Lemma C.5 The total derivatives in jet variables P' and QQ" of a continuously differen-

tiable projector function P and its complementary one Q = I — P satisfy the following
relations:

QI — _P/
Q/P = _QP/a
PP'P =0.

Proof: The assertion follows from the identities Q + P = I and QP = 0 by regarding
the product rule. O

Notice that, for each given function =, € CY(Z,,RP), Z, C Z, with values in 2, the
resulting superposition F'(z.(t),t) is continuously differentiable with respect to t on Z,,
and it possesses the derivative

(F(z.(t), 1)) = (F2(.), ) (t) = F'(w.(t),, 2.(1)).

D Variable subspaces

Definition D.1 Let Q C R” be open and connected, L(x) C R™ be a subspace for each
r € Q. Fork € NU{0}, L is said to be a C*-subspace on Q, if there exists a pro-
jector function R € C*(Q), L(R™)) which projects pointwise onto L, i.e. R(x) = R(x)?,
im R(z) = L(z), © € Q. We writeim R = L.
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It should be mentioned at this place that the notion smooth subspace (smooth stands for
C!) is applied in [GMS86], Subsection 1.2.1, to subspaces depending on one real variable
(p =1) in the same way.

Lemma D.2 Let k € NU{0}.

(1)
(2) The orthoprojector function onto a C*-subspace belongs to C*.
(3) If L is a C*-subspace, so is L*.

(4)

If L and N are C*-subspaces, and L N\ N has constant dimension, then LN N is a
C*-subspace, too.

(5) If N and L are C*-subspaces, and N & L = R™, then the projector onto N along L
belongs to C*.

(6) If L and N are C*-subspaces, and L N N has constant dimension, then there is a
CF-subspace X such that X C L, and

L=X®&(NnL),
as well as a projector R € C*(Q, L(R™)) withim R = N, ker R 2 X.
(7) If L and N are C*-subspaces, and NN L =0, then L ® N is a C*-subspace, too.

(8) L is a Ck-subspace on Q < to each T € §) there is a neighborhood Uz C € and a
local C*-basis my, ..., nyz) € C*(Uz, R™) spanning L on Uy, i.e.

span{ni(x), ..., @ ()} = L(z), =€ Us.

Proof: (1) Let zg € €, let the columns of £ := [£),. .. ,f?zo] form a basis of L(xy), i.e.
L(zo) = im . &(x) := R(x)€° is a C* matrix function, and since &(zg) = R(z0)¢" = &°
has full column rank r,,, there is a neighborhood U,, C €2 such that £(z) has rank r,, for
all z € U,,. That means im¢{(z) C im R(x),

rank R(z) > rank§(z) = ryy, « € Uy,.

Denote by Tmin, Tmax the minimal and maximal ranks of R(z) on Q, 0 < rpin < Tmax < m,
and by Zmin, Tmax € 2 points with rank R(zmin) = Tmin, rank R(Zmax) = Mmax-
Since () is connected, there is a connecting curve of x,;, and x,., belonging to 2. We
move on this curve from xyax t0 Trmin. If 7min < Tmax, there must be a x, on this curve
with

re :=rank R(z,) < max,

and in each arbitrary neighborhood of z, there are points & with rank R(Z) = rpax.

At each = € 2, as a projector, R(x) has the only eigenvalues 1 and 0 (cf. Lemma A.2(6)).
Hence, R(z,) has eigenvalue 1 with multiplicity r., and eigenvalue 0 with multiplicity
m — ., R(Z) has eigenvalue 1 with multiplicity 7., and eigenvalue 0 with multiplicity
M — Tmax-
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Since eigenvalues depend continuously on the entries of a matrix, and the entries of
R(z) are C*-functions in z, the existence of z, contradicts the continuity of eigenvalues.
Therefore, rpin = rmax must be valid.

(2) If L is a C*-subspace, by definition, there is a projector R € C*(Q, L(R™)) onto L,
and the rank R(x) is constant on €. By Lemma C.2, the orthoprojector function onto
im R = L is k times continuously differentiable.

(3) If L is a C*-subspace, the orthoprojector R onto L belongs to C¥. Then, I — R is a
Ck-projector onto im (I — R) = L*.

(4) Suppose L, N are C*-subspaces in R™, and Ry, Ry corresponding projectors onto L

and N. Then F := H _gL] is a CF-function, and ker ¥ = L N N. Since L N N has
— RN

constant dimension, F' has constant rank, and therefore F* and F*F are C*-functions.
F*F is the orthoprojector onto ker F', thus ker ' = L N N is a C*-subspace.

(5) Let N, L be C*-subspaces, N @ L = R™. For each arbitrary x € Q, R(x) is uniquely
determined by im R(x) = L(z), ker R(z) = N(z), R(x)? = R(x). We have to make sure
that R belongs to C*¥. To each fixed xy € 2 we consider basises £), ..., &% of L(zg), and
ny,...,n% . of N(xg), and consider

£(x) == Rp(2)€°, n(z) := Ry(z)n°, €,

where
50:[5?7'”752]7 770:[77?7"‘7772177*]7

and Ry, Ry are C*-projectors according to the C*-subspaces L and N. There is a neigh-
borhood U,, C Q of xg, such that the columns of {(x) and n(z), for x € U,,, are basises
of L(x) and N(x), and the matrix F(z) := [{(x),n(z)] is nonsingular for z € U,,. Define,
for x € Uy,

Ry = r) | | P,

such that
R e CHQ,L(R™)), imR(z)=L(z), kerR(z)= N(z).

Since the projector corresponding to the decomposition N(z) @ L(x) = R™ is unique, we
have R(z) = R(x), x € U,,, and hence R is C* on U,,.

(6) Let L, N be C*-subspaces, dim(N N L) = constant =: u. By (d), NN L is a C*-
subspace. We have R™ = (LN N)® (LN N)Y, L = (LNN)® (LN (LN N)), and
X := LN(LNN)* is a C*-subspace, too. Further (cf. Lemma A.5), (N + L)t = N+-n L+
is also a C*-subspace. With N + L = N @ X we find

R'=(N+L*®(N+L)=(N+L'**oXoN=S®N, S=N+L"oX.

Denote by Rt and Rx the orthoprojectors onto the C*-subspaces (N + L)+ and X. Due
to X C N+ L, (N+ L)+ C Xt hence im Ry C ker RY, im R+ C ker Ry, it holds
that RxRt = 0, R*Rx = 0, hence Ry := R* + Ry is a projector and belongs to C*,
im Rg = im R+ + im Ry = S. This makes clear that S is also a C*-subspace.

Finally, due to R™ = S @ N, there is a projector R € C*(Q, L(R™)) with im R = N,
kerR=S5 D X.
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(7) By (6), due to N N L = 0, there are projectors Rr, Ry € C*(Q, L(R™)) such that
imR;, = L, N C kerRL, imRy = N, L C kerRN, thus R Ry = 0, RyRp = 0, and
R := Ry + Ry is a C¥-projector, too, and finally im R = im R, +im Ry = L ® N.

(8) If L is a C*-subspace then the orthogonal projector R on L along Lt is C*. For each
7o € Q and a basis &, ..., &Y of L(zg), the columns of £(z) := R(z)£°, &€ = [€),...,¢&Y),
form a C*-basis of L(z) locally on a neighborhood U,, C 2 of z.

Conversely, if there is a local C*-basis on the neighborhood U; of Z, then one can show
that the orthoprojector onto L(x), x € Uz, can be represented by means of this basis.
That means, L is C* on Us. O

Corollary D.3 Any projector function being continuous on an open connected set has
constant rank there.

Proof: The continuous projector function, say P : Q0 — L(RP), defines the C-space im P.
Owing to Lemma D.2 item (1), im P has constant dimension, and hence P has constant
rank. O
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Technical Computations

E Proof of Lemma 3.7

Lemma 3.7 If two projector function sequences Qq, . ..,Qx and Qo, ..., Qs are both ad-
missible, then the corresponding matriz functions and subspaces are related by the following
properties:

(a) ker [I; = Ng+ -+ N;=Ng+---+ N; =ker II;, j=0,...,k,

(b) G; = G;Z;, B
_ _ _ J—

B; = B; — G;Z;D~(DIL,D™YDII; + G; Y. Qj1, j=1,... .k,
=0

with nonsingular matrix functions Zy, . . .jZkH given by
ZO = [, Z,L'+1 = }/iJrlZZ', 1= O,...,k,

Yi = I+ Qo(@o — Qo) =1+ QoQo P,
i1
Yigw = I+ QI 1Q; — I, 1Q;) + Z QAQ;, i =1,....k,
1=0

and certain continuous coefficients Uy that satisfy condition Ay = Wyll;_1,
(c) Z{(NiN(No+---+Ni-1)) = NiN(No+---+ Niy), i=1,...,k,

(d) Grr1 = Gey1Zk41, No+ -+ Nepa = No+ -+ + Niga,
Zk+1(Nk+1 ﬂ (NO + st + Nk)) — Nk+1 ﬂ (No + st + Nk)

Proof:

We have Gy = AD = Gy, By = B = By, kerPy = Ny = Ny, = ker P,, hence
Py = PPy, By = BoP),

The generalized inverses D~ and D~ of D satisfy the properties DD~ = DD~ = R,
D~D = P,, D~D = P,, and therefore D~ = D"DD~ = D~DD~ = P,D~, D~ = PyD".
Compare G = Gy + ByQp and

G1 = Go+ ByQo = Gy + ByQo = Gy + ByQoQo
= (Go+ BoQo)(Fo + Qo) = G124,

where Z; ;==Y := Py + Qo = I + QoQoPy = I + Qo(Qo — Qo). Z; is invertible, it has the
inverse Z; ' = I — QoQoFy.

The nullspaces N; and N; are, due to G; = G174, related by N; = Zl_lNl C Ny + M.
This 1mphes N0+N1 = Ng+(Zl_1N1) g N0+N1~ From N1 = ZlNl Q N()—f-Nl = N0+N1,
we obtain Ny + Ny = Ny + N;.

Sjnce ’Ehe projectors I, = PyP, and II; = PyP, have the common nullspace Ny + N; =
Ny + N1, we may now derive

DP()PlDi == Dpoplp()PlPoDi - Dpoplp()PlDi == DpoplDiDP()PlDi,
DP()PlD_ - DpoplD_DpoplD_.
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Next we compute

B, = ByPy—G,D (DP,P.D)DP,
= By(Py+ Qo) Py— G1Z,D"(DP,P.D-DPyP,D~)'D
= BoPy+ ByQoPy — G12,D~(DPyP, D) DRy P, — G1Z, PyP,D~(DPyP,D~)' D
= B, + G, D (DRPD"YD —G,Z,D~(DP,P,D"YDP,P,
—G1Z,PyP,D~(DPyP,D™)' D + ByQo P,
— B, - GZ,D~(DPyP,D")DR,P, + B,
with B, := G1QoPs + Gi(I — Z,11,)D~(DIL,D-)'D. ) )
The identity 0 = G1Q1 = G1Z,Q1 = G1Q1+G1(Z1—1)Q leads to G1Q1 = —G1(Z1 1)
and further to
G\(I — Z\II) = Gy(I = II, — (Zy — D)IT;) = G1(Q1 + Qo Py — QuQoPoIl)
= G1(—QuQoPyQ1 + QoPr — QuQoPoPr) = G1(—QuQoPo + Qo)
= G1(—Q0Qo + Qo + QoQoP1) = G1(—QoQoQ1 + Qo).
Inserting into the expression of 9B, yields
By = G1QoFPy — G1QuQuQ1 D™ (DILD™)'D = G1Qo%1 with
Aig := Py — Qo1 D~ (DII,D™)'D

and ;g = A0%. In order to verify assertions (a) and (b) by induction, we assume the
relations

N0+"'+Nj e NO_'_'.‘N]"
G

= G;Z;,
7j—1
B; = B;—G;Z;D"(DI;D")DIL; +G; Y Qi (204)
1=0
to be valid for j = 1,...,4, © < k, with nonsingular Z; as described above.

By construction, Z; is of the form Z; =Y;Z;_; = Y;Y,_; ---Y1. By realizing the multipli-
cation and rearranging the terms we find the expression

7j—1
Zi—1=Y QCj (205)
1=0
with continuous coefficients Cj;.

It holds that Y; — I = QyQo P, and

Y, = 1=, -1, j=2,...,1, (206)
such that (Y; — I)(Z;—1 —I) = 0 must be true. From this it follows that Y;(Z;_; — I) =
Zj—l - [, and Zj = Y}Z]’_l = Y} +Y;'(Zj_1 — [) = Y; +Zj_1 —I= Y} —]—l—Z]’_l, i.e.,

J

Zi—1 = > (Vi—1I) (207)

=1
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From (207) one can obtain special formulas for the coefficients C; in (205), but in our
context there is no need for these special descriptions.

Now we compare Gy,1 and G;,;. We have

Giy1 = Gi+ BiQ; = GiZ; + B;Q;.
Because of B; = B;II;,_; we may write
BiQi(Zi— 1) = Billi1Qi(Zi — 1)

= Bl QiIl;(Z; —I)
and using (205) and Q; = Q;Q; we obtain

Derive further

GinZ' = Gi+ BiQi = Giy1 + (BiQ; — B;Q;)
using (204) and Q; = Q;Q; we obtain

i-1
= Gip1 + Bi(Qi — Q) + Gi > Q@
1=0
=Gip+Bi(ll;i1Q; — I1,.1Q;) + Giq Z Qi Q;
1=0

i—1

= Giy1 + BiQi(ILi1Qi — I Qi) + Gipr > QAaQ:
=0

= Gi+1}/;+17

and Gip1 = Gip1Yin1Z; = Gij1 Ziq, that is, Gy and G4y are related as demanded.
Next we show the invertibility of Y;,; and compute the inverse. Consider the linear
equation Y;, 12 = w, i.e.,

i1
24 Qi(II;1Q; — IT;1Q;)z + Z QiAaQiz = w.
1=0
Because of (206) we immediately realize that
HZ‘Z = Hiw, Z=w — (Y;'Jrl — I)Hi,lz,

and o
I a2+ 11 1 Qi(I11 Qi — I1;1Qy)z = II;_w.

Taking into account that
1L 2 Qi1 Qi— 11,1 Q) = I, QiQi— 11,1 Qs = — I, Qi P, = —11; 1 Q;I1;_y P, = —1I,_1Q; P11,
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we conclude

I vz =1 yw— II; - 1@( i— le i—lQi)w

and
2= w— (Y- - Qz< i— 1Qz IT;1Qi))w
Y;J_A = 1= (Yin — DI = Q(I;1Qi — I1;1,Q,)).
The inverse Z. ' = (Yip1--- Y1) =Y, '+ Y| may be expressed as

z+1 [‘i‘ZQz i1l

with certain continuous coefficients &, ;.

We have

Nit1 = Z; \Nis1 © No+ - + Niyo,
No+--+Nijg=No+---+N;+ Niyy S No+ -+ + Ny,
No+ -+ Nig1 =No+ -+ Ni+ (Ziz1Niy1) S No+ -+ Nj+ Niyy = No+ -+ - + Niy,
thusN0+"‘+Ni+1:N0+"'+Ni+1.

It follows that - B )
DIl; D~ = DIIl; D DIl .«D".

Now we consider the terms B;,; and B,,;. We have

Bi+1 - B P G (DHZ+1D ) Dﬁ
= B p é (DHZ+1D DH/L+1D ) Dﬁz
= BP,— GH—IZH—ID (DII;1 D) DIy — Gis1Zi1 111D~ (DI D7) DII;

= B;P,— Gis1Zi1 D~ (DII; ;1 D7) DI 44
—Gis1Zisr iy D {(DII;4, D™Y DIT; — DI, D~ (DII,D”) DII;}

= B;P,— Gis1Zi1 D™ (DII; ;1 D7) DI 44
_Gi+IZi+1ﬁi+lD_ (DHZ'_HD_)/D]L' + GZ‘+1ZZ'+1ﬁi+1D_ (DﬁZD_)/DHz
Taking into account the given result for B; we obtain
i—1
Bip1 = {Bi — G:Z;D™(DIL,D™)DII; + G; > QU }(P; + Qi) P, — Gi1 Zin D™ (DI, D) DIT;

1=0
— Giy1 211l D™ (DI 1 D7) DII; + Giy1 Zija ;1 D~ (DI, D™ ) DI,

— BiP, — Gis1 D~ (DI1;4, DY DII; + Gypy D™ (DI, D) DII,
i1
+ B:Q:P, — G;Z; D~ (DII;D™) DII; + G; Z Qi P, — Gi1Zin D~ (DI D7) DIy
1=0
— Giy1 211l D™ (D1 D7) DI + Giy1 Zia ;1 D~ (DI, D™ ) DII;,
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hence
Bii1 = Biy1 — Gis1Zi1 D (DI D7) DIl + B
with
i—1
B = BQPi+Gi Y QP+ Gipi(I = ZiaI11)D™ (DI, D7) DI
1=0
~Gi1(PZ; — ZiyIl;11) D~ (DII; D) DII;.

i
It remains to show that 9B,,; can be expressed as G;11 Y, Q2 41;. For this purpose we
1=0

rewrite

i—1
B = Gz’+1@i15¢ +Git Z QA P
1=0

+Gi1(I = i1 — (Ziyr — 1)11;41) D™ (DI D™)' DII;
_Gi+1(Zi = QZZZ +1I— ]_Yi-l—l — (Zi+1 — I)]_]7,+1)D_<D]_YZD_)/DHZ
Take a closer look at the term Gy (I — IT;1) = Gi1(Qiy1 + (I — II;) Piyy).
By means of the identity 0 = G;11Qi11 = Gis1Zi+1Qit1 = Gir1Qiv1 + Gis1(Zig1 — 1) Qi
we obtain the relation
Gi+1©i+1 = —Gi+1(Zi+1 - I)Qi—H

and hence

Gisi(I = 1) = Giga(—(Ziga — DQia + (I — L) Piyr).
This yields
i—1
B =G QP+ Gia Z QAP
=0
+ Giyi{—(Zisr = DQiya + (I — II;) Pysy) — (Zioy — I)IT;1 YD~ (D111 D) DII;
- Gi+1{Zi - I - Q’LZl - (Zi+1 - [)Qi+1
+ (I = [1)Pryy — (Zisr — D301} D~ (DILDY DIT;.

With
i i1
Zign—1=> Q€1 Zi— 1= Qi
1=0 1=0
[ —1I; = (I - IL)I —1II) = Qi + Qi P+ -+ Qo Py - -- P) (I — IT;),
by rearranging the terms we arrive at

i
sBz‘+1 = Gi—i—l E lei—i—lla
=0

e.g. with

i1 =5+ {—=Cin1 i(Qz’Jrl + ﬁi+1) + (I — ﬁi)PiJrl}Di(DHz#lDi)/Dﬂi
—{-Zi = €i11i(Qisa + Iia) + (I = IT;) Pia } D™ (DIL;D™) DII,;.
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It is evident that all coefficients have the wanted property 2 1; = i1 111,
Finally, we are done with assertions (a), (b). At the same time, we have proved the first
two relations in (d).
Assertion (c) is a consequence of (a), (b) and the special form (205) of the nonsingular
matrix function Z;. Namely, we have Z;(Ng+---+ N;_1) = No+ -+ + N;_1, Z;N; = N;,
thus
Zi(Ni N (No+ -+ Ni1)) = (ZiNi) N (Z(No + - - - + Ni_1)) =
NiN(Zi(No+ -+ Ni_1)) = Ny (No + - + Ni1).

The same arguments apply for obtaining the third relation in (d). 0

F Proof of Lemma 6.17

Lemma 6.17 Let the DAE (}4) with sufficiently smooth coefficients be regular with
tractability index p > 3, and let Qo, ..., Q,—1 be admissible projector functions.

Let k€ {1,... pu—2} be fized, and let Q. be an additional continuous projector function
onto Ny = ker Gy, such that DII,_1Q, D~ is continuously differentiable and the inclusion
No+ -+ Ni_1 C ker Qy, is valid. Then the following becomes true:

(1) The projector function sequence

Qo = Qo, - - - 7(21@71 = Qr-1,

Qk;
ST | A 1
Qr+1 = 2 1 Q1 Zk+15 -+ Que1 = 2,1 Qu-12p-1,
with the determined below continuous nonsingular matrix functions Zyi1, ..., 2,1,

15 also admissible.

(2) If, additionally, the projector functions Qo, . .., Q,—1 provide an advanced decoupling
in the sense that the conditions (cf. Lemma 6.12)

Qu-1:11,1 =0, ..., Qpr1:1l,—1 =0
are given, then also the relations
Qu-1.l,1=0, ..., Qpi1dl, 1 =0, (208)
are valid, and further
Qrll 1 = (Qre — Qr) Ty (209)

The matrix functions Z; are consistent with those given in Lemma 3.7, however, for an
easier reading we do not access this general lemma in the proof below. In the special case
given here, Lemma 3.7 yields simply Zy =1,Y, =2, =1,...,Y, = Z;, = I, and further

B B
Vi =1+ Qu(@Qr — Qi) + Y QuQr = (1 + D Qu2Qi) (I + Qu(Qr — Qx)),
=0 =0

Zk+1 = Yk+17
j—2

Yi=1+ Zlejfllefla Z;y=YiZj, j=k+2,...p
1=0
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Besides the general property ker I:[]- = kerll;, 5 = 0,...,u — 1, which follows from
Lemma 3.7, now it additionally holds that

imQy =imQg, but kerQ;=ker@;, j=k+1,...,u—1

Proof of Lemma 6.17: B B
(1) Put Q; = Q; for i =0,...,k — 1 such that Q,...,Q are admissible by the assump-
tions and the following relations are valid:

Iy, = Iy, 11, = I, 11y,
QP = Qilly,
QuPr = Qu(I — Qi) = Qr — Qr = QuQr — Qr = —Qr P,
I, = y—y (P + Q) Py = Iy + 1121 Qi P = (I — 111 Q) I,

We verify the assertion level by level by induction. Set G; = G;,Z; = I,B; = B;, for
1=0,....k—1, Gy = Gy, Z,, = I, and derive

Bk - Bk—lpk—l - GkD_<DﬁkD_)/DHk_1
= By 1Piy — GxD~{DII,D~(DIT,D~) + (DII,D~) DIT, D~} DII;_,
= By_1Poy — GiII, D~ (DII,D™Y DIly_y — Gy D~ (DII,D~) DII,,
= By + G(I — ) D~ (DII,D~) DI}, — G.D~(DII,D™) DII,
k—1
=By + Gy Y QU — GD™(DII,D™) DII,,

=0

with regard of Gka =0and I — ]_Yk = Qk + Qkflpk + -+ Q()Pl . 'Pkflpk and with
coefficients B B
Wes = QiPyy- - Po1 PeD™ (DI, D™)' DII},_;.

Next we compute

k—1

Gkﬂ = Gy + ByQr = Gy, + BpQx + Gy, Z Qzﬁk,sz
1=0
k—1

= Grs1 + Be(Qr — Qi) + Gy, Z Q11,1 Qr = Gri1Zk+1,

=0

k—1 k—1
Ziy1 =1+ Qu(Qr — Qi) + ZQﬂlk,le = (I + Z Qi1 Qi) (L + Qr(Qr — Qu)),
1=0 1=0

b1 b1
Zih = (1= Qu@Qr = Q)T = > QuUia Qi) = T — Qu(Qr — Qi) — D> Qi1 Qs
=0 =0

Put Qr1 = 21 Qui1Zk41 = Z;11 Qi such that
Qi1Pii1 =0, Qi1 = Qi1 lli—1, IIQry1 = I Qp1,
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]_YkaH = ]_YkﬂkaH is continuoﬁus and pﬁlekHD_ = D]_YkD_DHkaHD_ is contin-
uously differentiable, and hence Q, ..., Qk, Qrs1 are admissible. It holds that

Hyyy = My Iy, Iy = Mgy Iy, ey = (1 — My 1Qp) I

We obtain the expression

k

Biy1 = Bry1 — Gey1 D™ (DI 1 D7) DIy + Gy Z Qi pt1,1,
=0

with continuous coefficients Ay 11, = Apr1, 1 = Apy1,11), and then

Grio = Gri1 + Bri1Qrs1 = (Gror + Bri1Qrs1) Zis1r = (Grar + Bri1Qraa

k k
+ Gt Z QiAk11,1Qk+1) Zit1 = Grpa( + Z QiNi111Qk11) Zit1 =: Gryo2Zyia,

=0 1=0

with the nonsingular matrix function

p k-1 k
Ziyo = (I + Z Qi1 11Q111) Zkr = 1+ Qu(Qr — Qx) + Z Qi1 Qr + Z Qip1.1Qk41
=0 1=0 1=0

such that i
I Zyly =1 — Z Qi Us1,1Qr1.-
1=0
Letting Qpi2 = Z, ,Qr+2Zk12 = Zi 15 Qri2 we find

Qrr2Qri2 = Qri2, Qri2Qrio = Qrra Qrra = Qrrallprs = Qrrolliy,
1 Qryo = i1 31 Qig2, DIy 1Quyo D™ = DIl D™ DI 1 Qpy2 D™,

so that Qo, ..., Q2 are known to be admissible.
Further, we apply induction. Let, for a certain k > k + 2, the projector functions
Qo, - . ., Q, be already shown to be admissible and, for i =k + 2,... K,
i—2
Bi1=Bi1— G 1D (DI, 1D7)'DIl;_1 + G;_4 Z Qi1
1=0

i1y =i,
i—2

G =GZ, Z =+ Zlei—l,le‘—l)Zi—ly

1=0
Qi = ZleiZi = Z[lQi, I, = (I — Q) IT;.
Now we consider
BR - BH,1PR,1 - GﬁDi(DﬁHDinﬁ,{,l
=B, 1P, — C_T*,.ED_(D]_Y,{D_)’DHN — C_?H]_YRD_(DH&D_)’DI_Yﬁ_l
K—2

=B, — G.D™ (DI, D) DIL, + G. > QUp_1,Prs + €,
=0
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with
Q:R = GRD_(DHRD_)/DHH_l - GﬁﬁHD_(DHHD_)/DﬁR_l — G,{_lD_(Dﬁn_lD_)/DHH_l

=G.D (DII,D”)DI, , — G.I.D {(DII.D”) — DII.D™ (DIl,_,D”)'}DII,_,

~ Ge1D™(DII,_D”)DII,_,

=G.(I - ZJ1.)D(DII.D™YDII, | — Gu(Pi_1Z,. 1 — Z.1,)D~(DIl,,_,D~) DII,_;.

Regarding the relations 11,7, = Il and 11,7, | = II,, we observe that
In.(I—-2Z.11,) =0, II.Pi1Z.— Z.II,) =0.

The representation I — Il,, = Q. + Qn_1P. + ...+ QoP; - - - P, admits of the expressions

I — Znﬁn = Z Qlen,la PK]—IZH,—l - ZHI_YK = Z Ql%n,l-
=0 =0

Considering G.Q, = 0, this leads to the representations

rk—1
¢. =Y Q{¢. D (DI.D")DI,_; - F ;D (DI,D”)DII, 4},

=0

and hence
k—1

B. =B~ G.D (DII.D") DIl + G > Q2.
1=0
with continuous coeflicients

an,l = Q[,{’ln,g_l, l = 0, ooy R— 1.
It follows that
G/{«H = Gn + BKQ_I{ = G/{Zn + Bn«HZ;lQHZ/{

k—1
= {GH + BRQR + GR Z len,lQn}Zn
=0

k—1

— GH—‘,—I{I + Zlen,lQn}Zﬁ = Gﬁ—l—lZﬁ—l—l-
=0

Letting Qu1 = Zit1Qni1Znt1 = Zit1Quy1 we find
Qn-}-l = Ql‘é-f—lﬂli = Qn+1ﬂnﬁn = Qli-f—lﬁli?
ﬁnQNJrl = ﬁanQn+1 DﬁnQnJrlDi = DﬁnDiDHnQnJrlDi;
which shows the sequence Q, ..., Q.11 to be admissible and all required relations to be

valid. We are done with Assertion (1).

(2) Owing to Lemma 6.12, the functions

Q,ufl* = QuflGllBufly
Qiv = QiPiyy1- - Pu—1G,:1 {Bi+G:D~ (DI, \D”)'DIT;_1}, i=1,...,u—2,

J/

=:98;
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are continuous projector-valued functions such that
imQ;, =imQ; =kerG;, Q;.=Q;ll;1, 1=1,...,0—1.
Since Qo, ..., Q,—1 are admissible, for j = 1,..., u — 2, it holds that
QjPj1- - Bun G Gy = QjPjwr -+ Py Byt - Py = Q Py -+ P Py

= QP P — Q= —Q(I — Py -+ Fua)
= —Qi{Qj1 + Pj1Qjro+ ...+ Piy1 - Pui2Q1} (210)

Property (210) immediately implies

QiPip1-+ Punn G, Gy = Qj P -+ Py G, G 1, (211)
QiPjs1 Pur G Gyl 1 = 0, (212)
Qij_;,_l tee Pﬂ_lGllei = Qij—‘rl tee Pu—lG;:lGj for 1< j (213)

Analogous relations are valid also for the new sequence Qo, . .. 7QM—1, and, additionally,
QiPip1+ Punn G, Gy = Qi P+ Pun GG, (214)
QiPjs1+  Pui GGy = Q;Pjuy - Pn G Gy, (215)

With regard of Q; = Q;Q;, Q; = Q,Q; for I > k + 1, we have further

QiPj1- PunG'GiIl, 1 =0, for j>k (216)
Now, assume the projector function sequence Qq, . . ., Q,—1 to provide an already advanced

decoupling such that
Qu—l *Hﬂ—l = O, R 7Qk:+1 *HM—l = 0.
Mind k& < p — 2. Taking into account the relation Q#_lG!le#_l = Qu-1P,—1 =0, we
immediately conclude
prl*ﬁ#A = Qu—léﬁlguqﬁuq = Qu—l @uflz,fl Glle,ufl H/,L*2ﬁ,u,71
N——— ——
:Qufl :Hl»l‘*l
N -1 —_ N _
=Qu1Q, I, =0, 10, 1.1, 1 =0.
Q 1Qu 1GH BM 1Hu 1 Q,u 1Qu 1 Hu 1 0
Next, for k£ <17 < p— 2, we investigate the terms
Qi*ﬁufl =QiPiy1- p,ufléﬁlgiﬁufl
=QiP1 - Pu—lé;l%iﬁu—l +9;,
with @Z = Qiﬁ)i—l-l N 'Pﬂ_lé;l{%i - %i}ﬁu—l- First we show that @Z = 0 thanks to
(214)-(216). Namely, we have by definition
D =QiPy Puflé,zl{gi + GiDi(DﬁMlei)/Dﬁifl — B;
— G;D~(DII,_,D™YDII; 1 }II, 4
i—1
= QiPy1 -+ Py G {(~GD™(DILD™)DIL; + G Y Qi + G;D™(DII,_D™)'DII;_,
1=0
— GiD_(DHu_lD_)’DHi_l}I_Yu_l,
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yielding
D; = QiPry1 -+ PuG' G, D {—(DIL;D~ — DII;,,QD~DII;D™)' DII;
+ (DI, D~ — DIl 1QyD~DIl, D~ (DIl; D~ — DIl 1QD~ DII; ;)
— (DI, D™ DII; 1},
= QiPii1- - PG, GiIl;D™{(DIL},-1Q. D™ ) DII; + (DII,,.1D~)' DIT;_4

— (DI,.«D™)' DIl 1Q.D~DIl;_y — (DII}_1Q.D~) DI,y — (DI, 1D~)' DII;_1}I1, 4

Due to HZ-]_YN_l = II,,_; we arrive at

i = QiPiy1 -+ PuyG,'GiIl;D{—(DII,_y D) DIl QD™ DII; 1 }1T,,
- Q’ipiJrl P é; GHD Dnule (anflc?kDi)lDHiflﬁufl
=QiPiy1- P, G; Gill, D~ (DIly_1Qi.D~) DI, 111, ; =0,
which proves the relation
Qisdly—y = QiPryy -+ - Pufléll%iﬁ,ufl (217)

for k <i < p— 2. By means of the formula

j—1

Z;Z7h =1-> QA0
=0

being available for j = k4 1,..., u — 1, we rearrange the terms in (217) as
Qz*ﬁ Qz z+1 +lZz+1Zz+2P ) Z;;—llpuflzuflzu_lG;hBiﬁﬂfl

QZ 1/J,-1 e ,U,—IGHI%’L‘Z?,UJ—I
n—2

+ Z € ;QiPir- - Pua G Bl g + €y 1Qun G BT, .
j=it1

The very last term in this formula disappears because of
Qu-1G,'Bill, 1 = Q.G 1BH
—QuflGu Bu 1 -1 —Q,u 1*(I Hk 1Qk> p—1 —Q,u 1*H,u 1 =0.

Next we prove to vanish also the involved sum. For this aims we consider the relation

(B; — By) :—ZGl (DILD™YDII,_y, for j>i+1. (218)
l=i+1

We first assume i > k leading to iBi]_Yu,l =B,1l; 11, = B,;11,_ and further
QjPjt--- Pu—lGI:l%iHu—l
= QP P 1G_1%aﬂu—1 +QjPjy1 -+ Puea G (B — B)) T,

*Q]* p—1= =0

= QP B G Y Z G0~ (DILD™)' DI, + (Gj — Gy) (DI, D™)' DIl 1 }.

l=i+1
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Applying once more the properties (211) and (213), we derive
QiPj1- PGB0,

= QP PG, I{Z GD~(DIL,D™Y DI, + (G; — G;)(DI,_,D~) DII, 1}
l=1+1

J
= Q;Piq1 -+ PG, \GII;D™ Y (DILD™)' DI,y = 0.
I=i+1
Now, for ¢ > k, it results that
Qi1 p—1= =Q:Z Z+1 'PH—IGEISBZ'HH—I = QiQiPi1 - Pp—lGll%iﬂu—l
= QzQz* p—1 = 0,
which verifies property (208). By the same means one obtains
Qk*nu—l = @kzz;:l Pryy - PuflG,:thHufl = Qi L1 PMAG,:l‘BkHuA
=Qk
- Qk*ﬂ —

Finally, it remains to investigate the expression Q. /T u—1. Since Qr+ also projects onto
im Q. = ker Gy, it follows that Qy.Qr = Q. This proves property (209), namely

Qrdly—1 = Quu(I — My 1Qp) -1 = Qrudl, 1 — Qrudly—1 Q1,1
= Qpidl 1 — QI = (Qrv — Qr)I1,—1. B

G Admissible projectors for Nz’ +x =r

In this part, admissible projectors are generated for the DAE (219) with a nilpotent ma-
trix function N typical for the normal form in the framework of strangeness index (cf.
[KMO06]). Our admissible projectors are given explicitly by formulas (229) below, they
have block upper triangular form in correspondence to the strict block upper triangular
form of N.
Roughly speaking Lemma G.1 below is the technical key when proving that any DAE
which has a well-defined regular strangeness index is at the same time regular in the
tractability-index framework, and, in particular, the constant-rank requirements associ-
ated to the strangeness index are sufficient for the constant-rank conditions associated to
the tractability index.
We deal with the special DAE

Nz'+z=r, (219)

given by a matrix function N € C(Z, L(R™)), Z C R an interval, that has uniform on Z
strict block upper triangular structure

_0 ng NlM ] } 61
0 .
N = : :
0 Nu—lu } 6“_1
! 0 1} &
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1< <., bi+...+4, =m, p> 2. The blocks Njj41, % =1,...,u — 1, are
supposed to have full row rank each, i.e.

rankNiiH :gz, 1= 1,,/,6—1 (220)
This implies all powers of N to have constant rank, namely

rank N = 6 +... .+, 1,
rank N* = 0 +... 40, k=1,...,p0—1, (221)
rank N* = 0.

N is nilpotent with index u, i.e. N*7t #£ 0, N* = 0. Fori = 1,...,u — 1, we in-
troduce projectors V}EU .1 € C(Z, L(R%+)) onto the continuous subspace ker N; ;41, and
Z/{l-[ﬂl’wrl =1y, — Viiliﬂ. ViﬂliJrl and L[}EUJrl have constant rank ¢;,1 — ¢; and ¢;, respec-
tively. Exploiting the structure of N we built a projector V! € C(Z, L(R™)) onto the
continuous subspace ker N, which has a corresponding block upper triangular structure

I 11 4
V[l] * *
29 o
vl = e . (222)
* bl
i Vil 1 b
The entries indicated by ”%” are uniquely determined by the entries of N and generalized
inverses Ny, with

—_ 1 _
Nijp1Niipr = Vz'[—s-]li+17 Niiy1N;

’L’L'-i-l:]fi) ZZl,,/,L—]_

In the following, we assume the nullspace ker N to be just a C'* subspace, and the projector
VI to be continuously differentiable. Obviously, the property N € C*(Z,L(R™)) is
sufficient for that but might be to generous. For this reason, we do not specify further
smoothness conditions in terms of N but in terms of projectors and subspaces.

Taking use of N = NUYM, ¢y := I — VI we reformulate the DAE (219) as

NUWz) + (I — NU"Yz =7 (223)

The matrix function NUM is again strictly block upper triangular, and I — NUW’ is
nonsingular, block upper triangular with identity diagonal blocks.

[y

My := (I — NUWYIN =N (NUYN

=

~
I
o

has the same strict block upper triangular structure as /N, the same nullspace, and entries
(Mo)iiz1 = Niit1,3=1,...,u— 1. Scaling equation (223) by (I — NUW")~! yields

My@Ua) + 2 = g, (224)

where ¢ := (I — NUM")r. By construction, the DAE (224) has a properly stated leading
term (cf. Definition 2.1). Written as a general linear DAE

A(Dz)' + Bx =¢q
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with A = My, D = UM, B = I, we have ker A = ker My = ker N = ker!, im D =
imyM, R =y,

Next we choose D~ = UM, and, correspondingly Py = UM, Qo = V. With these
projectors, ITy = Py, and Gy = AD = MM = M,, By = I, we form a matrix function
sequence and admissible projectors Qy, . . . , @, for the DAE (224) as described in Section 3.
In particular, we shall prove this DAE to be regular with tractability index pu.

The first matrix function (cf. Section 3) G is

G11 = MO+Q0a

and Glz = O, i.e. (M() + Qo)Z = O, leads to P()M()Z = 0, QQZ = —Q()M()P()Z, Z =
(I — QoMy)Pyz, =z € ker PpM. Because of PyMy = Mj MqM,, MZ = MyPyM, the
nullspaces of PyMy and MZ coincide. The inclusion ker My C ker MZ = ker PyM, allows
for the decomposition ker MZ = ker My @ Pyker MZ. If V12 denotes a projector onto
ker M2, UP := I — VI then it follows that

imV? = im VY @ imyMyR
ylpll — V[l]7 (u[llu[ﬂ)? _ u[llu[ﬂ7
(IIVP)? = IVl
rankU? = rank Mg =l + ...+,
rank V& = o+,
rank T,V = rank V? — rank VIt = [y

The matrix function

Q1 == (I — QoMy) TV (225)
has the properties

Q1Qo = (I — QoMo) Ty VAV = (I — QoMy) Ty WM = (I — QoMy)ITyQp = 0,
hence () - Q1 = @1, and

G1@Q1 = (Mo + Qo)(I — QoMo) IV = (My — QoMo + Qo) IV
= PMyITV? = PyMVP = 0.
It becomes clear, that (); is actually the wanted projector onto ker Gy, if rank Q)1 =
m — rank G1. I — QuM, is nonsingular, and @Q; has the same rank as [T,V that is,
rank () = ¢,,_;. Proposition 2.4(3) allows for an easy rank determination of the matrix

function G;. With
0

W() =
I\ } ¢,

we find imG; = im Gy & im Wy By = im My ® im WyQo, thus r1 = ro + rankVEl]L =
m— 4L, + L, — L,y = m — L, ;. It comes out that (), @); are admissible, supposed
m = UMY is continuously differentiable.
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Next, due to the structure of M2, the projector V2 can be chosen to be block upper
triangular,

yi — ¥ ... %k Uy =1y — ¥ ... ok

k *

The entries in the right lower corners shall play their role in rank calculations. They are

2 2
Vi =1 —u

[y

u/[f/i = (NM—QM—INu—lu)_Nu—w—lNu—m-

To realize this we just remember that the entry (u—2, ) of M3 is [Mg],—2y = Ny—2p—1Ny—1,-
Both N,_s,-1 and N,_;, have full row-rank ¢, 5 resp. {,_;. Therefore, the product
N,—9,-1N,_1, has full row-rank equal to ¢,_,. From this it follows that

rank VEA = dimker N, o, 1 Ny—1,, = €, — {,—o.
Taking into account the inclusion
im Vm =ker N,_1, Cker N, 9, 1N,_1, = im VEA

we find

rankULﬂVEA = rank VEA — rank VEA =Ly — Ly s,

By Proposition 2.4(3), with the projector along im G4
0

W= | W= Wl
Uy
we compute (before knowing G in detail)
im Gy = im Gy &imW1Q1, WiQ1 = WoldVP,
ro =711 +rank WiQ1 =1 + rank UMYR = — bypy + Ly — Ly =m — L, 5.

pie Y g

We compute Gy = Gy + (Bolly — G1D~ (DI, D~) DII)Q; (cf. Section 3) itself as

Gy = Mo+ Qo+ IIoQ1 — (Mo + Qo) Py I1111oQ:
= Mo+ Qo+ 1yQ1 — MyF1II1Qy,

where F) := PyIl{II4(Q); is block upper triangular as all its factors. It results that
Gy = Mo+ Qo+ (I — MoFy) (I — 11h),

(75 is block upper triangular. Due to the nonsingularity of I — MyF7i, as well as the simple
property (I — MyF1)Qo = Qp, we may use the description

G2 - ([ - MQFl)_l{Ml + [ — Hl},
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where M, := (I — MyF;)~' M, has again the strict block upper triangular structur of N,
and entries [Mi]11 = Niv1, 0 = 1,..., 0 — 1. From the representation

LMy, = ILPM, =ILPy(I + MoFy+ ...+ (MOFO)Fhl)MO
= IL(I+ MoFy+ ...+ (MoFy)" ™) Py Mo

we know the inclusion ker IIgM, C ker [I1M; to be valid. Furthermore, we have
ker MZM, = ker I, M, because of the representations ker?) = ker MZ = ker PyMy,
I, My, = PaUP M, = Py(M2)~ MEM,, and MZM; = MZUPIM, = MZPUP M, = MZII, M.

The next lemma shows that we may proceed further in this way to construct admissible
projectors for the DAE (224). We shall use certain auxilary continuous matrix functions
which are determined from level to level as

FQ = 0,
i i J
Fy = F_1+ Z Pyl 1Q; = Z ZPOHEijIQia 1> 1, (226)
=1 j=1 =1
H2 = Hl = HO = 0,
i-1
H;, = Hi_+ Z(I — Ho_1)Py(I — I ) I 1 Q;
(=2
i -1
- ([ - H@,l)Po(I - Hg,l)ﬂéﬂj,le, Z Z 3 (227)
=3 (=2

This matrix functions inherit the block upper triangular structure. They disappear if
the projectors I1y,...,II; do not vary with time (what is given at least in the constant
coefficient case).

It holds that F; = F; Py, H; = H;FP,. The products F; M are strictly block upper triangular
so that I — MyF; is nonsingular, and

Mi = (I - Mgﬂ)ilMO (228)

has again strict block upper triangular structure. The entries (j,j + 1) of M; coincide
with that of N, i.e.
[Miljj+1 = Njji1. (229)

If the projectors Iy, ..., II; are constant, then we have simply M; = My = N.

Lemma G.1 Let N be sufficiently smooth so that the continuous projectors Il; arising
below are even continuously differentiable. Let k € N, k < pu— 1, and let Qo := VY be
given by (222), and, fori=1,... k,

1—1
O; = (1 _ ; Q,(I - Hi_l)‘lMi_1>Hi_1V”+”, (230)

Vil e O(Z, L(R™)) a block upper triangular projector onto ker MZMj - - M;_y, U+ .=
I — ViU Then, the matriz functions Qy, ..., Qy are admissible projectors for the DAE
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(224) on I, and, fori=1,... k, it holds that

I, 1Q; = II,_ ViU =y g+, (231)
ker IT;,_M;_, C ker IT; M, (232)
ker IT; M; = ker MZ M, ... M;, (233)
Gig1= Mo+ Qo + (I — MyF;)(I — H;)Py(I — 11;), (234)

riy1 =rank Gy =m — L1, imGi =imG; @ imWyll;_1Q;,
and I — H; is nonsingular.

Before we turn to the proof of Lemma G.1 we realize that it provides admissible projectors
Qo, - - ., Qu—1 and characteristics ro = m—~{,,...,r,—1 = m—{; < m. Because of the strict
block upper triangular structure of My, ..., M,_s, the product MZM, - - - M,_, disappears
(as N* does). This leads to VI = I, Y = 0, thus 11, ; = 0, and

Gu = MO"‘QO“‘U‘MOFu—l)(I_HM—I)PO(]_Hu—l)
- MO+Q0+(]_MOFM—I)(]_HM—I)PO
= (I = MoFu—)(I = Hyo){(I = Hyr) ™' Myy + 1}

The factors I — MyF,—y and I — H,_; are already known to be nonsingular. (I —
H, 1)"'M,_; inherits the strict block upper triangular structure from M,_;, but then
I+ (I—H, 1)"'M,_; is nonsingular, and so is G,,. By this we have proved an important
consequence of Lemma G.1:

Proposition G.2 Let N be sufficiently smooth to make the continuous projectors
Ily, ..., 1,5 even continuously differentiable. Then the DAE (224) is on I regular with
tractability index v and characteristic values

ri=m-—4L,, 1=0,...,0—1 1,=m.
It holds that 11,y = 0, and there is no inherent reqular ODE within the DAE.
To prepare the proof of Lemma G.1 we give the following one.

Lemma G.3 Let V; € L(R™) be idempotent, U; := I —V;, L; := imV);, v; := rankV;,
1=1,....k,and L; C Ly, i=1,... .k —1.

Then the products Uy Vs, ... .Uy -+ - U 1 Vi, UiUs, ... Uy - - - Uy are projectors, too, and it
holds that

U - UVi V=0, 1<3<4, i=1,...,k—1,

kerUy,---U;=L;, 1=1,... k,

Ly=Li®UI LD ... DUy - Up_1 Ly,

dimU; -+ - Up_1 Ly, = vy — 4. (235)
Proof: The inclusions L1 € Ly C ... C L;yy lead to Vi V; = V), for j = 1,...,4.
Compute

UVolh Vo = UVo(I = V)Vy = Un Vo — UV Vo = U Vs,
Ulhlhilly = U(T —Vo)(T = V)Uy = Us(I — Vi — Vo + V1)U = UnlUhs.
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Ly = im Vy C kerUiUs holds trivially. z € kerUyUs means (I — Vy)(I — Vs)z = 0, hence
z=WV1z+4+ Vaoz — V1 Voz € Lo, so that ker Uil = Lo is true.

By induction, if U, - - -U;_1Q;, U - - - U; are projectors, kerU; - - -U; = L;, then these prop-
erties remain valid for ¢ 4+ 1 instead of 7. Namely,

ul o 'ui—‘rlul o 'ui—‘rl :ul o ul(] - vi—l—l)ul t 'ui—i-l :Z/{l o uzul o 'ui—l-l :Z/[l o 'ui—l-l)
ul tte uivi+1u1 t 'uiv’i+1 = Z/{l o 'Z/{iVi+1,
Liti =kerUq C kerly - -- Ui,

and z € kerlUy ---U; 1 implies U1z € imUy---U; = L;, 2z — Viy1z € Ly, hence z €
L; 4+ L;y1 = L;1;. Now we can decompose
Ly = Ly ®U L,,
L3 — L1 EB Z/{1L2 @ U1U2L3 - L2 EB Z/{1Z/{2L3,
Liyw = !11 QUL D ... @Ul o UiLipy =L; Uy - - Ui Liyq,
— L,

and it results that dimU; - - - Ui L1 = vipy — v, 0 =1,...  k — 1. O

Proof of Lemma G.1: We apply induction. For £ = 1 the assertion is already proved,
and the corresponding projector (); is given by (225).

Let the assertion be true up to level k, and we are going to show its validity for level k+1.
Stress one more that we deal with structured triangular matrices. We know already that
Qo, - - ., Qi are admissible, and, in particular, it holds that @;Q; = 0, for 0 < j < < k.
A closer look to the auxilary matrix functions H; (cf. (227)) shows that H;Q; = 0,
H;Q, = 0, further H;II; = 0, and

HZ‘_QHZ‘ = 0.

Namely, II1Hs = II,Py(I — II)II}11Q2 = 0, and I1;_3H; 1 = 0, for j < 4, implies
II; sH; =0 (due to II; oHy =0, II, oPy(I —II; 1) =0,¢(=1,...,i—1).
The functions F1,. .., Fy (cf. (226)) are well-defined, and they have the properties

(£, — Fj), =0, (F,—F;))ll;=F,—F,;, for j=1,... k. (236)
It follows that, for j =1,...,k,

(I — MoFy,) ' (I — MoFy) = I+ (I — MoFy)™ ' Mo(Fy, — F;)I1;.
Next we verify the property

II;,  MQ; =0, j=0,...,k. (237)

From G;Q; =0,7=0,...,k, we know

MoQ; + QoQj + (I — MoF;_1)({ — Hj_1)Poy(I — I1;-1)Q; = 0. (238)
Multiplication by (I — MyFy)~! leads to

MQ; 4+ QoQ; + {1 + (I — MoFy,) ™' Mo(Fy, — Fj_1)1I;-1 }(I — Hy_1)Po(I — I1;21)Q; = 0,
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and further, with account of I1;_1H;_1 =0, II;_1Fo(I — II;_1) =0,
Mij + Q()Qj + (I - Hj,1>P0(I - ijl)Qj - O, (239)

and hence I7; 1 M;Q; = 0, i.e. (237). Now it follows that II,M;Q; =0, for j =0,... k,
hence
I My, = 11 My 11y, (240)

a property that will appear to be very helpful.
Recall that we have already a nonsingular I — Hy, as well as

Gre1 = Mo+ Qo+ (I — MoFy)(I — Hy)Po(I — )
= (I = MoFy)(I — Ho{(I — Hy)"' My + I — II,;}, (241)

and Gj41 has rank 7441 = m — {,_;—1. We have to show the matrix function
k
Qrt1 := (I - ZQ;‘(I — Hk)ile> k2
j=0

to be a suitable projector. We check first whether Gy 1Q 1 = 0 is satisfied. Derive (cf.
(241))

GrQrar = (L= MoFy){My + (I = H)(I — Uk)}([ - @il - Hk)ile>HkV[k+2}

o,
Il =
o

k
— (1= MoF){ My = 3 MyQ;(1 = Hy) ™ My

J=1

— (I—MoFk){[—Hk —iMij - ([_Hk)in} '

j=1
(I = Hy) ' My IT, Y+ (242)
From (239) we obtain, for j =1,...,k,
MpQj+ (I — Hy)Q; = —QoQj — (I — Hj1)Po(I — I1;1)Q; + (I — Hy)Q;
= RQj — HQ; — (I — Hj1)(I — II; 1) RQ;
= RQ;— H.Q; — (I — H;_1)RQ; + IT;_1Q;
= —(Hy — H; 1) PQ; + 111 Q)

and, therefore,

k k k
D (MQj+ (I = H)Qy) = Y 1,14Q;— > (Hy— H; 1)RQ;
j=1 j=1

J=1

k
= Y II,,Q; — H.
7=1
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The last relation becomes true because of (Hy — Hy)Q1 = 0, (Hr — H;)Q2 = 0, and the
construction of H; (cf. (227)),

hE

k
> (Hy—H;1)RQ; =

Jj=1

(Hy, — Hj—1) @

<.
Il
w

k v—1

[Z [ Hg 1 PO([ HZ 1)]7[ v— IQV POQ]

j =2

hE

w
~
I

1%

.
= |l

7j—1

= Z[ Hy_1)Py(I — Iyy)IIIT; 1 Q; = H

(=2

<.
Il
w

Together with (242) this yields
k
T SRR R T

- MOFk){I Qo — Z 1QJ} (I — Hy) ML+
= (I — MyFy)II,(I — Hk) 1Mknkv[’f+21. (243)

For more specific information on (I — Hy,)™! we consider the equation (I — Hy)z = w, i.e.
(cf. (227))

k-1
(I = He)z— Y (I = Hea ) Po(I = ooy I I 1 Qpz = w. (244)
(=2

Because of IT,_1Hy 1 =0, I}, 1H; 1 =0, I} o Py(I — II,_1) = 0, multiplication of (244)
by I, 1Qy = Iy 1Qr I}y yields I 1Qpz = II;_1Qrw, such that

k—1

2= (1= Hy) w+ 300 = o) Ro(I = 1) I} T Qu}
(=2

results, and further,

S

(I —Hy) ' = (I—Hk_l)‘1<l Y (I — Hy_y)Po(I — I, )T/, 1Qk>

2

~
||

= (I- Hg)_1<1+ Z([ — Hy_1)Py(I — He-1)HéH3Q4>
—2
k-1
.. (_] + Z(I — Hy 1) Py(I — Hz_1)ﬂéﬂk—1Qk)
—2

k—1
= (I + RQULILQs) - (I + 3 (I = He )Rl = I ) T 1 Q).
=2
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This shows that ITy(I — Hy)™' = I} holds true. On the other hand FyIT; = 0 is also
given, what leads to
Gro1Qri1 = I M ITVFH2,

With the help of (240), and taking into account that ker IT, M;, = ker MZM; - - - My, we
arrive at

Gri1Qrsr = I M VEY = 0,

that is, the matrix function )y, satisfies the condition im Q41 C ker Gy11. The inclu-
sions (cf. (232), (233))

ker IT,_{M;_1 = ker ]\/[3]\/[1 <o M;_1 C ker II; M; = ker MOZMl - M,
are valid for ¢ = 1, ..., k. This leads to
im VU cim Ve ... c
what allows an application of Lemma G.3. We take use of the structural properties

rank M(?Ml - M; = rank N2 =/, +... + Cy—i—a,
rank VIit2 =y — O+ +lia) =Ly i1+ ...+ 1,

so that Lemma G.3 yields
rank UM - . YFHIPE+2 — pank PEF2 _ pank P = Cpp.

Writing Q41 in the form
k
Qi1 = <I - Q- Hk)_leHk>HkV[k+2]7
=0

and realizing the first factor to be nonsingular, we conclude
rank Q1 = rank Y2 = Cyp—1 = m —rank Gp4q.

Applying Lemma G.3 again we derive, for j =0,..., k,

k
QrQ; = (f - QiU - Hk)ile)Hkv[kJ&]Qj?
=0
Y0, ullh ...y iylk2n,
= YW ylryplk+20p 00 -L{[j]Qj
Uyl Ulyli) =

such that Qr11Q; =0, j =0,...,k, and furthermore Q4+1Qr+1 = Qk+1. This completes
the proof for @)1 to be a suitable projector function, and for Q, ..., Qr, Qr+1 to be
admissible.

It remains to verify (232)—(234) for i = k + 1, to consider the rank of Gy as well as to
show the nonsingularity of I — Hy,1.

First we consider the rank of Gy 2. Following Proposition 2.4(3) it holds that

im Gpyo = 1m Gy & im Wiy 1 I1.Qp 1,
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with a projector Wy 1 such that ker Wy, = im G, 1. Because of
imGr1 = ImGy @ imWoll,_1Qx
= iImGy®imWyQo & ... BimWyll,_1Q
= imGy®ImWy(Qo + ...+ II;_1Qx)
= Im Gy ®imWy(I — II})
we may choose the projector
Wi = Wolly = Wolli; W.
This leads to
im Gy = im Gy @ im WollQpqr,
as well as to
Tht2 = Th1 + 1ank Wo Il Qpiq = 11 + 1ank [11Qp 1]
= rpgr +rank U] UV =y — 0+ (Gt — ()

=m — gu,kfz.
Thereby, to show that rank i - - - U HIYER — Cy—k—1 — Ly_k—2 we recall that

VL” projects onto ker N,

o —1ps

V,[Z]L projects onto ker N,_o, 1N,_1,,
Vl[jj:rl} projects onto ker N1, -+ Ny_1,
and

VELH] projects onto ker Ny, _x_oy—r—1-" Ny—1p,

and
imVl[ﬂ C imVﬂ C...C imVELH],
rank VIl = ¢, —,;, i=1,... k+2.
Here, Lemma G.3 applies again, and it results that
rank L{Ell . -ULZH]VHL“] = rank VE:;“Q] — rank VELH]
=Ly = lyk—2 — (b — Ly—g—1) = Lymio1 — Cup2.

So we are done with range and rank of Gy.,.
In the next step we provide Gy itself (cf. Section 3). Compute

k1
Gry2 = Gy + 1Qpy1 — Z G PoIl T Qg4
j=1
= Mo+ Qo+ (I — MoFy)(I — Hy)Po(I — i) + M Qr 1
ket
—Mo I T Qry1 — Z{Mo + (I = MoFj1)(I — Hy 1) Po(I — 11 1) M1 Qpya
=2
= Mo+ Qo+ (I — MoFy)Po(I — IIy,) — (I — MyFy)Hy, + 11 Qrsa
k+1 k+1
= ML Quyr — Y (I = MoF;_1)(I = Hj—1)Po(I — 1) IT} T Qg1
j=1 Jj=2
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and rearrange (cf. (226), (227)) certain terms to

k+1
(I = MoFy)Po(I — ITy,) + I Qus — Mo Y PoIT Tk Qpy = (I — MoFyar)Po(I — )
j=1
and
k
(I = MoFp)Hy, +> (I — MyFy)(I — Hj_)Po(I — 1) I T Qpa
j=2
k
— (I MOFk){Hk + 5 (1 = MoFy) (I = MyFj_1)(I — Hy) -
j=2

(I = I ) I T Qi |

k
= - MoFk){Hk + Z(I —H;_1)Py(I — Hj—l)H],‘Hk:Qk:-i-l}

=2
= (I — MoFy)Hy1 = (I — MoFy1)(I — MoFjy1) " (I — MoFy,) Hy
= (I = MoFyy1)Hpy1 = (I = MoFy1)Hep1 Po(I — Iya),

what leads to

Grez = Mo+ Qo+ (I — MoFyy1)Po(d — 1) — (I — MoFyqy) Hyp1 Po(4 — i)
= Mo+ Qo+ (I — MoFy1)({ — Hyy1)Po(I — Ii1q),

and we are done with G2 (cf. (234)).

Next, I —Hj1 is nonsingular, since (/ —H1)z = 0implies I1;,Qr+12 = 0, thus (I—Hy)z =
0, and, finally z = 0 due to the nonsingularity of (I — Hy).

To complete the proof of Lemma G.1 we have to verify (232) and (233) for i = k +
1, supposed ker I1;,_1M;_1 C ker Il My, ker II, M, = ker Mng"'Mk are valid. From
My, = I MiII;, (cf. (240)) and ker MZM, - - - My, = ker II;,M;, = kerU**2 we obtain
the relations

Mg Myyy = UMM, = I (MEM, - My)™ MZM, - - - My My,
MMy -+ My = MgMy - MU My = MGMy -+ My (I My) ™ T Md "2 M

= MZM; - - My (1L M)~ I M ILUS 2 M
= MZM, - My(IT M)~ Iy My Iy My,

hence ker [T} 1 M1 = ker Mng -+« M1 holds true. Additionally, from

1 Myyr = (I — MoFyi) ™ (1 — Mo Fy,) My
= Iy [T+ (I — MoFyy1) " Mo(Fyyq — Fy) I My,
= I [l + (I — MoFy1) " Mo(Fyyq — Fi) ) I M,

we conclude the inclusion
ker HkMk g ker Hk—i—le—H-
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