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Abstract

We provide a comprehensive analysis of linear DAEs with continuous coefficients
and properly stated leading term. We are mainly interested in so-called regular
DAEs, but we address also under- and overdetermined DAEs.
In particular, we describe the structured characteristic of DAEs, explain how to for-
mulate consistent initial conditions, investigate the flow asymptotics and admissible
excitations. Also, critical points are touched.
We specify the main results for linear DAEs in standard form and discuss sev-
eral canonical forms. We show that the constant rank conditions supporting the
tractability index coincide with those applied in the strangeness index concept.
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Linear DAEs with variable coefficients

1 Introduction

For constant coefficient DAEs

Ēx̄′(t) + F̄ x̄(t) = q̄(t), (1)

the Kronecker index and regularity are well defined via the properties of the matrix pencil
{Ē, F̄}, and these characteristics are of particular importance in view of an appropriate
numerical treatment.
From about 1970, challenged by circuit simulation problems, numerical analysts and ex-
perts in circuit simulation begun to devote much work to the numerical integration of
larger systems of implicit ODEs and DAEs (e.g. [Gea71], [EMR77], [SEYE81], [GHP81]).
In particular, linear variable coefficient DAEs

Ē(t)x̄′(t) + F̄ (t)x̄(t) = q̄(t) (2)

were tackled by the implicit Euler method

Ē(tl)
1

h
(x̄l − x̄l−1) + F̄ (tl)x̄l = q̄(tl).

Obviously, for the method to be just feasible, the matrix 1
h
Ē(tl)+ F̄ (tl) must be nonsingu-

lar, but this can be guaranteed for all steps tl and all sufficiently small stepsizes h, if one
requires the so-called local matrix pencils {Ē(t), F̄ (t)} to be regular on the given interval
(We mention at this place, that feasibility is by far not sufficient for a numerical integra-
tion method to work well). However, as it was discovered already in [GP83], the local
pencils are not at all relevant characteristics of more general DAEs than those being linear
with constant coefficients. Except for the regular index one case, local matrix pencils may
change their index and loose their regularity under smooth regular transformations of the
variables. That means, the local matrix pencils {E(t), F (t)} of the DAE

E(t)x′(t) + F (t)x(t) = q(t), (3)

which results from transforming x̄(t) = K(t)x(t) in the DAE (2), with a pointwise non-
singular continuously differentiable matrix function K, may have completely different
characteristics than the local pencils {Ē(t), F̄ (t)}. Nevertheless, the DAEs are equiva-
lent, and hence, the local matrix pencils are irrelevant for determining the characteristics
of a DAE. The coefficients of the equivalent DAEs (2) and (3) are related by the formulae
E(t) = Ē(t)K(t), F (t) = F̄ (t)K(t) + Ē(t)K ′(t), which gives the impression that one can
manipulate the resulting local pencil almost arbitrarily by choosing different transforms
K.
In DAEs with properly stated leading term

Ā(t)(D̄(t)x̄(t))′ + B̄(t)x̄(t) = q̄(t), (4)

the transformation x̄(t) = K(t)x(t) leads to the equivalent DAE

A(t)(D(t)x(t))′ +B(t)x(t) = q(t), (5)
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that has also a properly stated leading term. The coefficients are related by A(t) =
Ā(t), D(t) = D̄(t)K(t) and B(t) = B̄(t)K(t), and the local pencils {Ā(t)D̄(t), B̄(t)} and
{A(t)D(t), B(t)} = {Ā(t)D̄(t)K(t), B̄(t)K(t)} are now equivalent. However, we do not
consider this to justify the local pencils as relevant carriers of DAE essentials. For DAEs
with properly stated leading terms, also so-called refactorizations of the leading term yield
equivalent DAEs, and any serious concept incorporates this fact. For instance, inserting
(Dx)′ = (DD+Dx)′ = D(D+Dx)′ + D′D+Dx does not really change the DAE (5), how-
ever, the local matrix pencils may change their nature as the next example demonstrates.
This rules out the local pencils again.

Example 1.1 The constant coefficient DAE0 1 0
0 0 1
0 0 0


︸ ︷︷ ︸

Ē

x̄′(t) + x̄(t) = q(t), t ∈ R,

has Weierstraß-Kronecker canonical form, and its matrix pencil {Ē, I} is regular with
Kronecker index three. We transform x̄(t) = K(t)x(t) by means of the smooth matrix
function K,

K(t) :=

1 0 0
0 1 0
0 −t 1

 , t ∈ R,

being everywhere nonsingular. This yields a DAE (3) with variable coefficients

E(t) = ĒK(t) =

0 1 0
0 −t 1
0 0 0

 , F (t) = K(t) + ĒK ′(t) =

1 0 0
0 0 0
0 −t 1

 .
We expect the new DAE to inherit regularity with index three owing to the equivalence.
However, for each t, the characteristic polynomial det(λE(t) +F (t)) vanishes identically,
that is, the pencil {E(t), F (t)} is singular.
By means of the simple factorization

Ē =

0 1 0
0 0 1
0 0 0

0 0 0
0 1 0
0 0 1

 =: ĀD̄

we rewrite the original DAE as the following DAE with properly stated leading term:

Ā(D̄x̄(t))′ + x̄(t) = q(t), t ∈ R.

Applying the transformation x̄(t) = K(t)x(t) to this DAE we arrive now at0 1 0
0 0 1
0 0 0


︸ ︷︷ ︸

Ã

(

0 0 0
0 1 0
0 −t 1


︸ ︷︷ ︸

D̃(t)

x(t))′ +

1 0 0
0 1 0
0 −t 1


︸ ︷︷ ︸

B̃(t)

x(t) = q(t), t ∈ R. (6)
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Owing to det(λÃD̃(t) + B̃(t)) ≡ 1, the local pencil {ÃD̃(t), B̃(t)} is regular with index
three. However, deriving

(D̃(t)x(t))′ = (D̃(t)

0 0 0
0 1 0
0 0 1

x(t))′ = D̃(t)(

0 0 0
0 1 0
0 0 1

x(t))′ + D̃′(t)

0 0 0
0 1 0
0 0 1

x(t)

yields the further equivalent DAE0 1 0
0 −t 1
0 0 0


︸ ︷︷ ︸

A(t)

(

0 0 0
0 1 0
0 0 1


︸ ︷︷ ︸

D

x(t))′ +

1 0 0
0 0 0
0 −t 1


︸ ︷︷ ︸

B(t)

x(t) = q(t), t ∈ R, (7)

the local matrix pencils {A(t)D,B(t)} = {E(t), F (t)} of which are singular for all t ∈ R.

We see, aiming for the characterization of a variable coefficient DAE, it does not make
sense to check regularity and index of the local pencils, neither for standard form DAEs
nor for DAEs with properly stated leading term.

In this paper we provide a comprehensive analysis of linear DAEs (5) with continuous
coefficients and properly stated leading term by taking up the ideas of the projector
based decoupling described for constant coefficient DAEs in [LMT11b]. To handle the
time-varying case, we proceed pointwise on the given interval and generate sequences of
matrix functions Gi(.) = Gi−1(.) +Bi−1(.)Qi−1(.) and projector functions Qi(.) instead of
the former sequences of matrices and projectors. Thereby we incorporate into Bi(.) an
additional term that somehow comprises the variations in time. This term is the crucial
one of the generalization, since without it we would be back to the local matrix pencils.
Aside from the higher technical amount in the proofs, the decoupling concept applies pre-
cisely in the same way as for constant coefficient DAEs, and most results take the same
or slightly modified form.

In contrast to [LMT11b] which is devoted to square DAE systems, the present paper is
basically valid for arbitrary, possible rectangular DAEs. Following the arguments e.g. in
[KM06], rectangular systems may play their role in optimization and control. However,
we underline, our interest is mainly directed to regular DAEs being square by definition.
In Sections 2, 3, and 5 we provide the basic matrix function sequences and admissible
projectors together with their main properties. This part follows the lines of [Mär02],
[Mär04b]. While [Mär02], [Mär04b] are devoted to regular square DAEs, we give now an
adequate generalization for systems being not necessarily square.
We begin to preliminary rearrange the DAE terms for better structural insight in Section
4. Later on we resume this topic twice: in Section 6 (Subsections 6.1 and 6.2) for regular
DAEs , and in Section 10 for over- and underdetermined DAEs.
The main objective of this paper constitutes in a comprehensive characterization of regu-
lar DAEs in Section 6, in particular, in their decoupling into the inherent regular explicit
ODE (53) and the subsystem (64) which comprises the inherent differentiations. We
consider the constructive existence proof of fine and complete decoupling projector func-
tions (Theorem 6.18) to be the most important special result which exposes the DAE

5



structure as the basis of the further investigations. The Subsections 6.3 and 6.5 are then
devoted to the intrinsic DAE theory, they offer solvability results, flow properties, and the
T-canonical form being an appropriate generalization of the Weierstraß-Kronecker form.
Several specifications for regular standard form DAEs are recorded in Subsection 6.4. The
discussion of regular DAEs follows in essence the lines of [Mär04b], and [Mär04a], while
the material on over- and underdetermined DAEs is to a large extend new.
Section 7 reflects aspects of the critical point discussion from [MR06], [MR07], [Ria08].
Section 9 provides widely orthogonal projector functions, a special sort of admissible pro-
jector functions which proves their value in theory and praxis (see [LMT11a]).
In Section 8 we explain by means of canonical forms and reduction steps how the strangeness
and the tractability index concepts are related to each other. Thereby we concentrate on
the constant rank requirements supporting these concepts. We show good reasons to con-
jecture these rank conditions to be fully equivalent. We prove the conditions associated
with the regular strangeness index ζ to imply regularity with tractability index µ = ζ−1.
As a byproduct in this section, we offer a projector based new reduction procedure.

2 The basic matrix function sequences

We study the equation

A(Dx)′ +Bx = q, (8)

with continuous coefficients

A ∈ C(I, L(Rn,Rk)), D ∈ C(I, L(Rm,Rn)), B ∈ C(I, L(Rm,Rk)),

and an excitation q ∈ C(I,Rk). I ∈ R is an interval. The coefficients A and D are
supposed to be well matched. Roughly speaking this means that there is no gap and no
overlap of the factors within the product AD. We use the two coefficients A and D to
figure out precisely all those components of the unknown function which are involved in
(8) with their first derivatives.

Definition 2.1 The leading term in equation (8) is said to be properly stated, if A(t) and
D(t) have constant rank r on I, and it holds that

kerA(t)⊕ imD(t) = Rn, t ∈ I, (9)

and, additionally, there are functions ϑi ∈ C1(I,Rn), i = 1, . . . , n, such that

imD = span {ϑ1, . . . , ϑr}, kerA = span {ϑr+1, . . . , ϑn}.

The projector function R ∈ C1(I, L(Rn)) given by

R := [ϑ1 . . . ϑn]

[
I

︸︷︷︸
r

0

]
[ϑ1 . . . ϑn]−1 (10)

is named the border projector of A and D, and of the DAE.
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If A and D form a properly stated leading term, then the relations

imAD = imA, kerAD = kerD, rankA = rankAD = rankD

are valid (cf. Lemma A.3), and A, AD and D have common constant rank r on I.
Besides the coefficients A,D and the projector R we use a continuous pointwise generalized
inverse D− ∈ C(I, L(Rn,Rm)) of D satisfying the relations

DD−D = D, D−DD− = D−, DD− = R. (11)

Such a generalized inverse exists owing to the constant rank of D. Namely, the orthogonal
projector PD onto kerD⊥ along kerD is continuous (Lemma C.2). If we added the fourth
condition D−D = PD to (11), then the resulting D− would be uniquely determined and
continuous (Proposition C.4), and this shows the existence of a continuous generalized
inverses satisfying (11). By fixing only the three conditions (11), we have in mind some
more flexibility.
Here D−D =: P0 is always a continuous projector function such that kerP0 = kerD =
kerAD. On the other side, prescribing P0 we fix at the same time D−.

Now we are ready for composing the basic sequence of matrix functions and subspaces to
work with. Put

G0 := AD, B0 := B, N0 := kerG0 (12)

and choose projector functions P0, Q0, Π0 ∈ C(I, L(Rm)) such that

Π0 = P0 = I −Q0, imQ0 = N0.

For i ≥ 0, as long as the expressions exist, we form

Gi+1 = Gi +BiQi, (13)

Ni+1 = kerGi+1, (14)

choose projector functions Pi+1, Qi+1 such that Pi+1 = I − Qi+1, imQi+1 = Ni+1, and
put

Πi+1 := ΠiPi+1,

Bi+1 := BiPi −Gi+1D
−(DΠi+1D

−)′DΠi. (15)

We emphasize that Bi+1 contains the derivative of DΠi+1D
−, that is, this term com-

prises the variation in time. This term disappears in the constant coefficient case (see
[LMT11b]). The specific form of the new term is motivated in Section 4 below, where
we consider similar decoupling rearrangements for the DAE (8) as in [LMT11b] for the
constant coefficient case.
We are most interested in continuous matrix functions Gi+1, Bi+1, in particular we have
to take care for DΠi+1D

− to be smooth enough.
Important characteristic values of the given DAE emerge from the rank functions

rj := rankGj, j ≥ 0.
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Example 2.2 Write the semi-explicit DAE

x′1 +B11x1 +B12x2 = q1,

B21x1 +B22x2 = q2,

with m1 +m2 = m equations in the form (8) with properly stated leading term by

A =

[
I
0

]
, D =

[
I 0

]
, B =

[
B11 B12

B21 B22

]
, D− =

[
I
0

]
.

Then we have

G0 =

[
I 0
0 0

]
, Q0 =

[
0 0
0 I

]
, G1 =

[
I B12

0 B22

]
.

If B22 is nonsingular on the given interval, then so is G1. It results that Q1 = 0, thus
G2 = G1 and so on. The sequence becomes stationary. All rank functions ri are constant,
in particular r0 = m1, r1 = m.
Take also a look to the case if B22 = 0, but the product B21B12 remains nonsingular. We
denote by Ω a projector function onto imB12, and by B−12 a reflexive generalized inverse
such that B12B

−
12 = Ω, B−12B12 = I. The matrix function G1 has now rank r1 = m1,

and a nontrivial nullspace. We choose the next projector functions Q1 and the resulting
DΠ1D

−, say as

Q1 =

[
Ω 0
−B−12 0

]
, DΠ1D

− = I − Ω.

This makes clear, for a continuously differentiable DΠ1D
−, we have to assume the range

of B12 to be a C1-subspace (cf. D). Then we form the matrix functions

B1 =

[
B11 0
B21 0

]
−
[
−Ω′ 0

0 0

]
, G2 =

[
I + (B11 + Ω′)Ω B12

B21Ω 0

]
,

and consider the nullspace of G2.
G2z = 0 means

z1 + (B11 + Ω′)Ωz1 +B12z2 = 0, B21Ωz1 = 0.

The second equations means B21B12B
−
12z1 = 0, thus B−12z1 = 0, and hence Ωz1 = 0. Now

the first equation simplifies to z1 + B12z2 = 0. Multiplication by B−12 gives z2 = 0, and
then z1 = 0. Therefore, the matrix function G2 is nonsingular, and again the sequence
becomes stationary.

Example 2.3 We construct a matrix function sequence for the DAE (7) obtained in
Example 1.1. The DAE is expected to be regular with index three, as its equivalent constant
coefficient counterpart. We have

A(t) =

0 1 0
0 −t 1
0 0 0

 , D(t) =

0 0 0
0 1 0
0 0 1

 , B(t) =

1 0 0
0 0 0
0 −t 1

 , G0(t) =

0 1 0
0 −t 1
0 0 0

 ,
and R(t) = D(t). Set D(t)− = D(t) and Π0(t) = P0(t) = D(t). Next we compute
G1(t) = G0(t) +B(t)Q0(t) as well as a projector Q1(t) onto kerG1(t) = N1(t):

G1(t) =

1 1 0
0 −t 1
0 0 0

 , Q1(t) =

0 −1 0
0 1 0
0 t 0

 .
8



This leads to

Π1(t) =

0 0 0
0 0 0
0 −t 1

 , B1(t) =

0 0 0
0 1 0
0 −t 1

 , G2(t) =

1 1 0
0 1− t 1
0 0 0

 .
A suitable projector function Q2 and the resulting B2 and G3 are:

Q2(t) =

0 −t 1
0 t −1
0 −t(1− t) 1− t

 , Π2(t) = 0, B2(t) =

0 0 0
0 0 0
0 −t 1

 , G3(t) =

1 1 0
0 1− t 1
0 −t 1

 .
Here the matrix functions Gi, i = 0, 1, 2 are singular with constant ranks, and G3 is
the first matrix function being nonsingular. This is typical for regular index three DAEs
(cf. Definition 10.1 below), and meets our expectation in comparison with the constant
coefficient case (see [LMT11b]). Observe that the nullspaces and projectors fulfill the
relations

N0(t) ∩N1(t) = {0}, (N0(t) +N1(t)) ∩N2(t) = {0},
Q1(t)Q0(t) = 0, Q2(t)Q0(t) = 0, Q2(t)Q1(t) = 0.

The matrix functions Gi as well as the projector functions Qi are continuous here, and it
holds that imG0 = imG1 = imG2 ⊂ imG3.

The matrix function sequence (12)-(15) generates subspaces

imG0 ⊆ · · · ⊆ imGi ⊆ imGi+1

of nondecreasing dimensions.
To show several usefull properties we introduce the additional projector functions Wj :
I → L(Rk) and generalized inverses G−j : I → L(Rk,Rm) of Gj such that

kerWj = imGj, (16)

GjG
−
j Gj = Gj, G−j GjG

−
j = G−j , G−j Gj = Pj, GjG

−
j = I −Wj. (17)

Proposition 2.4 Let the DAE (8) have a properly stated leading term. Then, for each
matrix function sequence (12)-(15) the following relations are satisfied:

(1) kerΠi ⊆ kerBi+1,

(2) Wi+1Bi+1 =Wi+1Bi = · · · =Wi+1B0 =Wi+1B,
Wi+1Bi+1 =Wi+1B0P0 · · ·Pi =Wi+1B0Πi,

(3) Gi+1 = (Gi+WiBQi)Fi+1 with Fi+1 = I+G−i BiQi and imGi+1 = imGi⊕imWiBQi,

(4) Ni ∩ kerBi = Ni ∩Ni+1 ⊆ Ni+1 ∩ kerBi+1,

(5) Ni−1 ∩Ni ⊆ Ni ∩Ni+1,

(6) imGi + imBi ⊆ im [AD,B] = im [G0, B0].
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Proof: (1) From (15) we successively derive an expression for Bi+1 being

Bi+1 = (Bi−1Pi−1 −GiD
−(DΠiD

−)′DΠi−1)Pi −Gi+1D
−(DΠi+1D

−)′DΠi

= Bi−1Pi−1Pi −
i+1∑
j=i

GjD
−(DΠjD

−)′DΠi,

hence

Bi+1 = B0Πi −
i+1∑
j=1

GjD
−(DΠjD

−)′DΠi, (18)

but this immediately verifies assertion (1).
(2) Because of imGj ⊆ imGi+1 for j ≤ i + 1, we have Wi+1Bi+1 = Wi+1B0Πi due to
(18). Taking into account also the inclusion imBjQj = imGj+1Qj ⊆ imGj+1 ⊆ imGi+1,
for j ≤ i, we obtain from (15) that Wi+1Bi+1 = Wi+1BiPi = Wi+1Bi − Wi+1BiQi =
Wi+1Bi =Wi+1Bi−1Pi−1 =Wi+1Bi−1 = · · · =Wi+1B0, which proves assertion (2).
(3) We rearrange Gi+1 as

Gi+1 = Gi +GiG
−
i BiQi + (I −GiG

−
i )BiQi = Gi((I +G−i BiQi) +WiBiQi.

Because of QiG
−
i = QiPiG

−
i = 0 the matrix function Fi+1 := I + G−i BiQi remains

nonsingular (see Lemma A.2) and the factorization

Gi+1 = (Gi +WiBiQi)Fi+1 = (Gi +WiBQi)Fi+1

holds true. This yields assertion (3).
(4) z ∈ Ni∩kerBi, i.e., Giz = 0, Biz = 0, leads to z = Qiz and Gi+1z = BiQiz = Biz = 0,
thus z ∈ Ni ∩Ni+1. Conversely, z ∈ Ni ∩Ni+1 yields z = Qiz, Biz = BiQiz = Gi+1z = 0,
i.e., z ∈ Ni ∩ kerBi and we are done with assertion (4).
(5) From z ∈ Ni−1 ∩Ni it follows that z = Qi−1z and Biz = BiQi−1z = BiPi−1Qi−1z = 0
because of Bi = BiPi−1 (cf. (18)), hence z ∈ Ni ∩ kerBi = Ni ∩Ni+1.
(6) follows from imG0 + imB0 = im [G0, B0] by induction. Namely, imGi + imBi ⊆
im [G0, B0] implies imBiQi ⊆ im [G0, B0], hence imGi+1 ⊆ im [Gi, B0Qi] ⊆ im [G0, B0],
and further imBi+1 ⊆ im [Gi+1, Bi] ⊆ im [G0, B0]. �

3 Admissible projector functions and characteristic

values

In [LMT11b] on constant coefficient DAEs, useful decoupling properties are obtained by
restricting the variety of possible projectors Qi and choosing somehow smart ones. Here
we take up this idea again, and we incorporate conditions concerning ranks and dimensions
to ensure the continuity of our matrix functions. Possible rank changes will be treated as
critical points.

Definition 3.1 Given are a DAE (8) with properly stated leading term, and a κ ∈ N.

(1) Each continuous projector function Q0 onto kerD is named admissible.
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(2) The projector functions Q0, . . . , Qκ are said to be admissible on I for the DAE (8),
if

(a) Gi has constant rank ri on I, i = 0, . . . , κ,

(b) the intersection
_
Ni := Ni ∩ (N0 + · · ·+Ni−1)

has constant dimension ui := dim
_
Ni on I, and Qi satisfies there the condition

Xi := (N0 + · · ·+Ni−1)	
_
Ni ⊆ kerQi, i = 1, . . . , κ,

(c) Πi is on I continuous and DΠiD
− is continuously differentiable, i = 0, . . . , κ.

(3) If the projector functions Q0, . . . , Qκ are admissible, then the corresponding matrix
function sequence (12)-(15) is said to be admissible up to level κ.

(4) If Q0, . . . , Qκ are admissible with trivial intersections
_
N1, . . . ,

_
Nκ, then they are

named regular admissible .

For a DAE (8) with properly stated leading term, all projectors Q0 = I − P0, P0 = D−D
built by a continuous generalized inverse D−, are admissible, and r0 = rankD(·) = r.
If Q0, . . . , Qκ are admissible, besides the nullspaces N0, . . . , Nκ and the intersection spaces
_
N1, . . . ,

_
Nκ also the sums N0 + · · · + Ni, i = 1, . . . , κ and the complements X1, . . . , Xκ

have constant dimension. Namely, the construction yields

N0 + · · ·+Ni−1 = Xi ⊕
_
Ni, N0 + · · ·+Ni = Xi ⊕Ni, i = 1, . . . κ,

and hence

dimN0 = m− r0,

dim(N0 + · · ·+Ni−1) = dimXi + ui,

dim(N0 + · · ·+Ni) = dimXi +m− ri, i = 1, . . . , κ.

It follows that

dim(N0 + · · ·+Ni) = dim(N0 + · · ·+Ni−1)− ui︸ ︷︷ ︸
dimXi

+m− ri︸ ︷︷ ︸
dimNi

=
i−1∑
j=0

(m− rj − uj+1) +m− ri =
i∑

j=0

(m− rj)−
i−1∑
j=0

uj+1.

We are most interested in the case of trivial intersections
_
Ni, yielding Xi = N0+· · ·+Ni−1,

and ui = 0. In particular, all so-called regular DAEs in Section 6 belong to this latter

class. Due to the trivial intersection
_
Ni = {0}, the subspace N0 + · · ·+Ni has dimension

dim(N0 + · · ·+Ni−1) + dimNi, that is, its increase is maximal at each level.
For instance, the projector functions Q0, Q1, Q2 constructed in Example 2.3 are regular
admissible.
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The next proposition collects benefits from admissible projector functions. Comparing
with [LMT11b, Proposition 2.6] we recognize a far-reaching conformity. The most im-
portant benefit seems to be the fact that Πi is a projector function along the sum space
N0 + · · ·+Ni which now appears to be a C-subspace.

Proposition 3.2 Given are a DAE (8) with properly stated leading term, and an integer
κ ∈ N.
If Q0, . . . , Qκ are admissible projector functions, then the following eight relations become
true for i = 1, . . . , κ:

(1) kerΠi = N0 + · · ·+Ni,

(2) the products Πi = P0 · · ·Pi and Πi−1Qi = P0 · · ·Pi−1Qi, as well as DΠiD
− and

DΠi−1QiD
−, are projector valued functions, too,

(3) N0 + · · ·+Ni−1 ⊆ kerΠi−1Qi,

(4) Bi = BiΠi−1,

(5)
_
Ni ⊆ Ni ∩Ni+1, and hence

_
Ni ⊆

_
Ni+1 ,

(6) Gi+1Qj = BjQj, 0 ≤ j ≤ i,

(7) D(N0 + · · ·+Ni) = imDP0 · · ·Pi−1Qi ⊕ imDP0 · · ·Pi−2Qi−1 ⊕ · · · ⊕ imDP0Q1,

(8) the products Qi(I −Πi−1) and Pi(I −Πi−1) are projector functions onto
_
Ni and Xi,

respectively.

Additionally, the matrix functions G1, . . . , Gκ, and Gκ+1 are continuous.
If Q0, . . . , Qκ are regular admissible then it holds for i = 1, . . . , κ that

kerΠi−1Qi = kerQi, and QiQj = 0, j = 0, . . . , i− 1.

Proof: (1) See the proof of [LMT11b, Proposition 2.6] (1).
(2) Due to assertion (1) it holds that kerΠi = N0 + · · · + Ni, which means ΠiQj = 0,
j = 0, . . . , i. With 0 = ΠiQj = Πi(I − Pj), we obtain Πi = ΠiPj, j = 0, . . . , i , which
yields ΠiΠi = Πi. Derive further

(Πi−1Qi)
2 = (Πi−1 −Πi)(Πi−1 −Πi) = Πi−1 −Πi−1Πi︸ ︷︷ ︸

=Πi−1Pi

−ΠiΠi−1︸ ︷︷ ︸
=Πi

+Πi = Πi−1Qi,

(DΠiD
−)2 = DΠiD

−D︸ ︷︷ ︸
=P0

ΠiD
− = DΠiD

−,

(DΠi−1QiD
−)2 = DΠi−1QiD

−D︸ ︷︷ ︸
=P0

Πi−1QiD
− = D(Πi−1Qi)

2D− = DΠi−1QiD
−.

(3) See the proof of [LMT11b, Proposition 2.6] (3)
(4) The detailed structure of Bi given in (18) and the projector property of Πi−1 (cf. (1))
proves the statement.
(5) z ∈ Ni ∩ (N0 + · · ·+Ni−1) means that z = Qiz, Πi−1z = 0, hence

Gi+1z = Giz +BiQiz = Biz = BiΠi−1z = 0.
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(6) For 0 ≤ j ≤ i, it follows with (4) from

Gi+1 = Gi +BiQi = G0 +B0Q0 +B1Q1 + · · ·+BiQi

= G0 +B0Q0 +B1P0Q1 + · · ·+BiP0 · · ·Pi−1Qi

that

Gi+1Qj = (G0 +B0Q0 + · · ·+BjP0 · · ·Pj−1Qj)Qj = (Gj +BjQj)Qj = BjQj.

(7) From kerP0 · · ·Pi = N0 + · · ·+Ni it follows that

D(N0 + · · ·+Ni) = D im (I − P0 · · ·Pi) = D im (Q0 + P0Q1 + · · ·+ P0 · · ·Pi−1Qi)

= D{imQ0 ⊕ imP0Q1 ⊕ · · · ⊕ imP0 · · ·Pi−1Qi}
= imDP0Q1 ⊕ · · · ⊕ imDP0 · · ·Pi−1Qi.

This proves assertion (7).
(8) We have (cf. (3))

Qi(I −Πi−1)Qi(I −Πi−1) = (Qi −QiΠi−1Qi)(I −Πi−1)︸ ︷︷ ︸
=0

= Qi(I −Πi−1).

Further, z = Qi(I −Πi−1)z implies z ∈ Ni, Πi−1z = Πi−1Qi(I −Πi−1)z = 0, and hence

z ∈
_
Ni.

Conversely, from z ∈
_
Ni it follows that z = Qiz and z = (I − Πi−1)z, thus

z = Qi(I −Πi−1)z. Similarly, we compute

Pi(I −Πi−1)Pi(I −Πi−1) = Pi(I −Πi−1)− Pi(I −Πi−1)Qi(I −Πi−1) = Pi(I −Πi−1).

From z = Pi(I − Πi−1)z it follows that Qiz = 0, Πi−1z = Πi(I − Πi−1)z = 0, therefore
z ∈ Xi.
Conversely, z ∈ Xi yields z = Piz, z = (I −Πi−1)z, and hence z = Pi(I −Πi−1)z. This
verifies (8).
Next we verify the continuity of the matrix functions Gi. Applying the representation
(18) of the matrix function Bi we express

Gi+1 = Gi +B0Πi−1Qi −
i∑

j=1

GjD
−(DΠjD

−)′DΠi−1Qi,

which shows that, supposed the previous matrix functions G0, . . . , Gi are continuous, the
continuity of Πi−1Qi = Πi−1 −Πi implies Gi+1 to be also continuous.
Finally, let Q0, . . . , Qκ be regular admissible. Πi−1Qiz = 0 implies Qiz = (I−Πi−1)Qiz ∈
N0 + · · ·+Ni−1, hence Qiz ∈

_
Ni, therefore Qiz = 0. It remains to apply (3). �

As in the constant coefficient case, there is a great variety of admissible projectors, and
the matrix functions Gi clearly depend on the special choice of the projectors Qj, included
the way how the complements Xj in the decomposition of N0 + · · · + Nj−1 are chosen.
However, there are invariants, in particular invariant subspaces and their dimensions, as
shown by the next assertion.
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Theorem 3.3 Let the DAE (8) have a properly stated leading term. Then, for a given
κ ∈ N ∪ {0}, if admissible projector functions up to level κ do at all exist, then the
subspaces

imGj, N0 + · · ·+Nj, Sj := kerWjB, j = 0, . . . , κ+ 1,

as well as the numbers

rj := rankGj, j = 0, . . . , κ, uj := dim
_
Nj, j = 1, . . . , κ,

and the functions rκ+1 : I → N∪{0}, uκ+1 : I → N∪{0} are independent of the special
choice of admissible projector functions Q0, . . . , Qκ.

Proof: These assertions are immediate consequences of Lemma 3.7 below at the end of
the present section. �

Definition 3.4 If the DAE (8) has admissible projector functions up to level κ, then the
integers

rj := rankGj, j = 0, . . . , κ, uj := dim
_
Nj, j = 1, . . . , κ,

are named the characteristic values of the DAE.

The characteristic values prove to be invariant under regular transformations and refac-
torizations (cf. Section 5, Theorems 5.1 and 5.3), which justifies this notation. As detailed
in [LMT11b], for constant regular matrix pairs, these characteristic values describe the
infinite eigenstructure [LMT11b, Corollary 6.3].
The associated subspace S0 = kerW0B has its special meaning. At given t ∈ I, the
subspace

S0(t) = kerW0(t)B(t) = {z ∈ Rm : B(t)z ∈ imG0(t) = imA(t)}

contains all solution values x(t) of the solutions of the homogeneous equation A(Dx)′ +
Bx = 0. As we will see later, for so-called regular index-one DAEs, the subspace S0(t)
consists at all of those solution values, that means, for each element of S0(t) there exists a
solution passing through. For regular DAEs with a higher index, the sets of corresponding
solution values form proper subspaces of S0(t) .
In general, the associated subspaces satisfy the relations

Si+1 = Si +Ni = Si +N0 + · · ·+Ni = S0 +N0 + · · ·+Ni, i = 0, . . . , κ.

Namely, because of imGi ⊆ imGi+1, it holds that Wi+1 = Wi+1Wi, hence
Si+1 = kerWi+1B = kerWi+1WiB ⊇ kerWiB = Si, and Proposition 2.4 (2) yields
Si+1 = kerWi+1Bi+1 ⊇ kerBi+1 ⊇ N0 + · · ·+Ni.

Summarizing, the following three sequences of subspaces are associated with each sequence
of admissible projector functions:

imG0 ⊆ imG1 ⊆ . . . ⊆ imGi ⊆ . . . ⊆ im [AD B] ⊆ Rk, (19)

N0 ⊆ N0 +N1 ⊆ . . . ⊆ N0 + . . .+Ni ⊆ . . . ⊆ Rm, (20)
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and
S0 ⊆ S1 ⊆ . . . ⊆ Si ⊆ . . . ⊆ Rm. (21)

All of these subspaces are independent of the special choice of the admissible projector
functions. In all three cases, the dimension does not decrease if the index increases. We
are looking for criteria indicating that a certain Gµ has already the maximal possible
rank. For instance, if we meet an injective matrix Gµ as it is the case in Example 2.3,
then the sequence becomes stationary with Qµ = 0, Gµ+1 = Gµ and so on. Therefore, the
smallest index µ such that the matrix function Gµ is injective, indicates at the same time
that imGµ is maximal, but imGµ−1 is a proper subspace, if µ ≥ 1. The general case is
more subtle. It may happen that no injective Gµ exists. Eventually one reaches

imGµ = im [AD B], (22)

however, this is not necessarily the case, as the next example shows.

Example 3.5 Set m = k = 3, n = 2, and consider the DAE1 0
0 1
0 0

([1 0 0
0 1 0

]
x

)′
+

1 0 1
0 1 0
0 1 0

x = q. (23)

Here we have im [AD B] = R3. Compute successively

G0 =

1 0 0
0 1 0
0 0 0

 , Q0 =

0 0 0
0 0 0
0 0 1

 , W0 =

0 0 0
0 0 0
0 0 1

 ,
G1 =

1 0 1
0 1 0
0 0 0

 , Q1 =

 1 0 0
0 0 0
−1 0 0

 , W1 =

0 0 0
0 0 0
0 0 1

 , B1 =

1 0 0
0 1 0
0 1 0

 ,
G2 =

2 0 1
0 1 0
0 0 0

 , Π1 =

0 0 0
0 1 0
0 0 0

 .
We read off N0 = {z ∈ R3 : z1 = z2 = 0}, N1 = {z ∈ R3 : z2 = 0, z1 + z3 = 0} and
N2 = {z ∈ R3 : z2 = 0, 2z1+z3 = 0}. The intersection N0∩N1 is trivial, and the condition
Q1Q0 = 0 is fulfilled. We have further

N0 +N1 = {z ∈ R3 : z2 = 0}, (N0 +N1) ∩N2 =
_
N2 = N2 ⊆ N0 +N1,

thus N0 +N1 = N0 +N1 +N2 and N0 +N1 = N2 ⊕N0.

We can put X2 = N0, and compute

Q2 =

 1 0 0
0 0 0
−2 0 0

 , with X2 ⊆ kerQ2, B2 =

0 0 0
0 1 0
0 1 0

 .
The projectors Q0, Q1, Q2 are admissible. It holds that B2Q2 = 0, G3 = G2, N3 = N2,
and Π2 = Π1, further

S0 = {z ∈ R3 : z2 = 0}, S0 = S1 = S2 = S3.
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We continue the matrix function sequence by Q3 := Q2, B3 = B2, B3Q3 = 0, G4 = G3

and so on. It results that no Gi is injective, and

imG0 = . . . = imGi = . . . = R2 × {0} ⊂ im [AD B] = R3,

S0 = . . . = Si = . . . = R× {0} × R,
N0 ⊂ N0 +N1 = N0 +N1 +N2 = . . . = R× {0} × R,

and the maximal range is already imG0. A closer look at the DAE (23) gives

x′1 + x1 + x3 = q1,

x′2 + x2 = q2,

x2 = q3.

This model is somehow dubious. It is in parts over- and underdetermined, and much place
for interpretations is left (cf. also [LMT11b, Section 7]). In Section 10 below, this system

is considered as an explicit ODE for the component Dx =

[
x1

x2

]
, with Q0x =

 0
0
x3

 to be

chosen arbitrarily, accompanied by the consistency condition W0Bx =W0q, i.e. x2 = q3.

We take a closer look at problems of this kind in Section 10. Our next example is much
nicer and more important with respect to applications. It is a so-called Hessenberg form
size three DAE and might be considered as the linear prototype of a system describing
constrained mechanical motion.

Example 3.6 Hessenberg size three DAEs are relevant for the simulation of constrained
mechanical motion. Consider the systemx′1x′2

0

+

B11 B12 B13

B21 B22 0
0 B32 0

x1

x2

x3

 =

q1

q2

q3

 (24)

with m = m1 + m2 + m3 equations, m1 ≥ m2 ≥ m3 ≥ 1, k = m components, and a
nonsingular product B32B21B13. Put n = m1 +m2,

A =

I 0
0 I
0 0

 , D =

[
I 0 0
0 I 0

]
, D− =

I 0
0 I
0 0

 , B =

B11 B12 B13

B21 B22 0
0 B32 0

 ,
and write this DAE in the form (8).
Owing to the nonsingularity of the m3×m3 matrix function product B32B21B13, the matrix
functions B13 and B21B13 have full column rank m3 each, and B32 has full row rank m3.
This yields im [AD B] = Rm. Further, since B13 and B21B13 have constant rank, there
are continuous reflexive generalized inverses B−13 and (B21B13)− such that (see Proposi-
tion C.4)

B−13B13 = I, Ω1 :=B13B
−
13 is a projector onto imB13,

(B21B13)−B21B13 = I, Ω2 :=B21B13(B21B13)− is a projector onto imB21B13.
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Let the coefficient function B be smooth enough so that the derivatives used below do
exist. In particular, Ω1 and Ω2 are assumed to be continuously differentiable. We start
constructing the matrix function sequence by

G0 =

I 0 0
0 I 0
0 0 0

 , Q0 =

0 0 0
0 0 0
0 0 I

 , B0 =

B11 B12 B13

B21 B22 0
0 B32 0

 , G1 =

I 0 B13

0 I 0
0 0 0

 .
It follows that

N0 = {z ∈ Rm : z1 = 0, z2 = 0}, N1 = {z ∈ Rm : z1 +B13z3 = 0, z2 = 0},
_
N1 = N0 ∩N1 = {0}, X1 = N0, N0 +N1 = N0 ⊕N1 = {z ∈ Rm : z2 = 0, z1 ∈ imB13}.

The matrix functions G0 and G1 have constant rank, r0 = r1 = n. Compute the projector
functions

Q1 =

Ω1 0 0
0 0 0
B−13 0 0

 , DΠ1D
− =

[
I − Ω1 0

0 I

]
,

such that imQ1 = N1 and Q1Q0 = 0, that is kerQ1 ⊇ X1. Q1 is continuous, and DΠ1D
−

is continuously differentiable. In consequence, Q0, Q1 are admissible. Next we form

B1 =

B11 + Ω′1 B12 0
B21 B22 0
0 B32 0

 , G2 =

I + (B11 + Ω′1)Ω1 0 B13

B21Ω1 I 0
0 0 0

 .

For z ∈ Rm1+m2+m3 with z1 ∈ ker Ω1 it holds that imG2 =

z1 +B13z3

z2

0

. This proves the

inclusion

imG2 ⊆ Rn × {0} = {G2z : z ∈ Rm1+m2+m3 , z1 ∈ ker Ω1} ⊆ imG2,

and we obtain imG2 = Rn × {0}, and r2 = rankG2 = m1 +m2 = n. Then we investigate
the nullspace of G2. If z ∈ Rm satisfies G2z = 0, then

z1 + (B11 + Ω′1)Ω1z1 +B13z3 = 0, (25)

B21Ω1z1 + z2 = 0. (26)

In turn, equation (25) decomposes into

(I − Ω1)z1 + (I − Ω1)(B11 + Ω′1)Ω1z1 = 0,

B−13(I +B−13(B11 + Ω′1))Ω1z1 + z3 = 0.

Similarly, considering that imB21B13 = imB21B13B
−
13 is valid, we derive from (26) the

relations

z2 = Ω2z2, B−13z1 = −(B21B13)−z2.
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Altogether this yields

N2 = {z ∈ Rm : z2 = Ω2z2, z1 = E1Ω2z2, z3 = E3Ω2z2},
_
N2 = {0}, X2 = N0 +N1,

with

E1 : = −(I − (I − Ω1)(B11 + Ω′1)Ω1)B13(B21B13)−

= −(I − (I − Ω1)(B11 + Ω′1))B13(B21B13)−,

E3 : = −B−13(I + (B11 + Ω′1))B13(B21B13)−.

Notice that E1 = E1Ω2, E3 = E3Ω2. The projector functions

Q2 =

0 E1 0
0 Ω2 0
0 E3 0

 , DΠ2D
− =

[
I − Ω1 −(I − Ω1)E1

0 I − Ω2

]
,

fulfill the required admissibility conditions, in particular, Q2Q0 = 0, Q2Q1 = 0, and hence
Q0, Q1, Q2 are admissible. The resulting B2, G3 have the form:

B2 =

B11 B12 0
B21 B22 0
0 B32 0

 , G3 =

I + (B11 + Ω′1)Ω1 B11E1 + B12Ω2 B13

B21Ω1 I + B21E1 + B22Ω2 0
0 B32Ω2 0

 .
The detailed form of the entries Bij does not matter in this context. We show G3 to
be nonsingular. Namely, G3z = 0 implies B32Ω2z2 = 0, thus Ω2z2 = 0, and further
B21Ω1z1 + z2 = 0. The latter equation yields (I − Ω2)z2 = 0 and B21Ω1z1 = 0, and
this gives Ω1z1 = 0, z2 = 0. Now, the first line of the system G3z = 0 simplifies to
z1 + B13z3 = 0. In turn, (I − Ω1)z1 = 0 follows, and hence z1 = 0, z3 = 0. The matrix
function G3 is nonsingular in fact, and we stop the construction.
In summary, our basic subspaces behaves as

imG0 = imG1 = imG2 ⊂ imG3 = im [AD B] = Rm,

N0 ⊂ N0 +N1 ⊂ N0 +N1 +N2 = N0 +N1 +N2 +N3 ⊂ Rm.

The additionally associated projector functions Wi onto imGi and the subspaces
Si = kerWiB are here:

W0 =

0 0 0
0 0 0
0 0 I

 , W0 =W1 =W2, W3 = 0,

and
S0 = {z ∈ Rm : B32z2 = 0}, S0 = S1 = S2 ⊂ S3 = Rm.

This special subspace behavior is typical for the large class of DAEs named Hessenberg
form DAEs. While imG3 and S3 reach the maximal dimension m, the dimension of the
resulting maximal subspace N0 +N1 +N2 is less than m.
Notice that the relation W0BQ0 = 0 indicates that imG0 = imG1 holds true, and we
can recognize this fact before explicitly computing G1 (cf. Proposition 2.4(3)). Similarly,
W1BQ1 = 0 indicates that imG1 = imG2. Furthermore, we know that
r3 = r2 + rank (W2BQ2) = n+m3 = m before we compute G3.
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Now we come to an important auxiliary result which stands behind Theorem 3.3, and
which generalizes [LMT11b, Lemma 2.10].

Lemma 3.7 If there are two projector function sequences Q0, . . . , Qκ and Q̄0, . . . , Q̄κ,
both admissible on I for the DAE (8), then the corresponding matrix functions and sub-
spaces are related by the following properties:

(1) ker Π̄j = N̄0 + · · ·+ N̄j = N0 + · · ·+Nj = kerΠj, j = 0, . . . , κ,

(2) Ḡj = GjZj,

B̄j = Bj −GjZjD̄
−(DΠ̄jD̄

−)′DΠj +Gj

j−1∑
l=0

QlAjl, j = 1, . . . , κ,

with nonsingular matrix functions Z0, . . . , Zκ+1 given by
Z0 := I, Zi+1 := Yi+1Zi, i = 0, . . . , κ,

Y1 := I +Q0(Q̄0 −Q0) = I +Q0Q̄0P0,

Yi+1 := I +Qi(Π̄i−1Q̄i −Πi−1Qi) +
i−1∑
l=0

QlAilQ̄i, i = 1, . . . , κ,

and certain continuous coefficients Ail that satisfy condition Ail = AilΠ̄i−1,

(3) Zi(N̄i ∩ (N̄0 + · · ·+ N̄i−1)) = Ni ∩ (N0 + · · ·+Ni−1), i = 1, . . . , κ,

(4) Ḡκ+1 = Gκ+1Zκ+1, N̄0 + · · ·+ N̄κ+1 = N0 + · · ·+Nκ+1,
Zκ+1(N̄κ+1 ∩ (N̄0 + · · ·+ N̄κ)) = Nκ+1 ∩ (N0 + · · ·+Nκ).

Proof: We have G0 = AD = Ḡ0, B0 = B = B̄0, kerP0 = N0 = N̄0 = ker P̄0, hence
P0 = P0P̄0, P̄0 = P̄0P0.
The generalized inverses D− and D̄− of D satisfy the properties DD− = DD̄− = R,
D−D = P0, D̄

−D = P̄0, and therefore D̄− = D̄−DD̄− = D̄−DD− = P̄0D
−, D− = P0D̄

−.
Compare G1 = G0 +B0Q0 and

Ḡ1 = Ḡ0 + B̄0Q̄0 = G0 +B0Q̄0 = G0 +B0Q0Q̄0

= (G0 +B0Q0)(P0 + Q̄0) = G1Z1,

where Z1 := Y1 := P0 + Q̄0 = I +Q0Q̄0P0 = I +Q0(Q̄0 −Q0). Z1 is invertible, it has the
inverse Z−1

1 = I −Q0Q̄0P0.
The nullspaces N1 and N̄1 are, due to Ḡ1 = G1Z1, related by N̄1 = Z−1

1 N1 ⊆ N0 + N1.
This implies N̄0 +N̄1 = N0 +(Z−1

1 N1) ⊆ N0 +N1. From N1 = Z1N̄1 ⊆ N0 +N̄1 = N̄0 +N̄1,
we obtain N̄0 + N̄1 = N0 +N1.

Since the projectors P0P1 and P̄0P̄1 have the common nullspace N0 + N1 = N̄0 + N̄1, we
may now derive

DP̄0P̄1D̄
− = DP̄0P̄1

=P0P1P0︷︸︸︷
P0P1 P̄0D

− = DP̄0P̄1P0P1D
− = DP̄0P̄1D̄

−DP0P1D
−,

DP0P1D
− = DP0P1D

−DP̄0P̄1D̄
−.

Taking into account the relation 0 = Ḡ1Q̄1 = G1Q̄1 + G1(Z1 − I)Q̄1, thus
G1Q̄1 = −G1(Z1 − I)Q̄1 we obtain (cf. Appendix B for details)

B̄1 = B1 −G1Z1D̄
−(DP̄0P̄1D

−)′D.
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This gives the basis for proving our assertion by induction. The proof is carried out in
detail in Appendix B. A technically easier version for the time-invariant case is given in
[LMT11b]. �.

4 Preliminary decoupling rearrangements

In this section we use admissible projector functions Q0, . . . , Qκ to rearrange terms in
the DAE (8) in a similar way as it is done in [LMT11b] on constant coefficient DAEs for
obtaining decoupled systems. The objective of the rearrangements is to place a matrix
function Gκ in front of the derivative component (DΠκx)′, the rank of which is as large
as possible, and at the same time to separate terms living in N0 + · · ·+Nκ.
We emphasize that we do not change at all the given DAE, and do not transform the
variables. We work just with the given DAE and its unknown. What we do are rear-
rangements of terms and separations or decouplings of solution components by means of
projector functions. We proceed stepwise. Within this procedure, the special form of the
matrix functions Bi in (15) become appearend to make good sense.
Later on (see Definitions 6.2 and 10.1) the tractability index of the DAE is assigned to
the smallest integer µ such that the rank rµ is maximal. This is valid for general, possibly
rectangular DAEs. The rearranged DAE versions serve then as the basis for the further
decouplings and solutions.

Rewrite first (8) as
G0D

−(Dx)′ +B0x = q, (27)

and then as
G0D

−(Dx)′ +B0(Q0x+ P0x) = q

and rearranging this in order to increase the rank of the leading coefficient to

(G0 +B0Q0)(D−(Dx)′ +Q0x) +B0P0x = q,

or
G1D

−(Dx)′ +B0P0x+G1Q0x = q. (28)

Compute

P1D
−(Dx)′ = P0P1D

−(Dx)′ +Q0P1D
−(Dx)′

= D−DP0P1D
−(Dx)′ +Q0P1D

−(Dx)′

= D−(DP0P1x)′ −D−(DP0P1D
−)′Dx+Q0P1D

−(Dx)′

= D−(DP0P1x)′ −D−(DP0P1D
−)′Dx− (I − P0)Q1D

−(Dx)′

= D−(DΠ1x)′ −D−(DΠ1D
−)′Dx− (I −Π0)Q1D

−(DΠ0x)′,

hence

G1D
−(Dx)′ = G1D

−(DΠ1x)′ −G1D
−(DΠ1D

−)′DP0x−G1(I −Π0)Q1D
−(DΠ0x)′.

Inserting this into (28) yields

G1D
−(DΠ1x)′ + (B0P0 −G1D

−(DΠ1D
−)′DP0)x

+ G1{Q0x− (I −Π0)Q1D
−(Dx)′} = q,
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and, regarding the definition of the matrix function B1,

G1D
−(DΠ1x)′ +B1x+G1{Q0x− (I −Π0)Q1D

−(Dx)′} = q. (29)

Note that, if N0 ∩N1 = 0, then the derivative (DP0P1x)′ is no more involved in the term

Q1D
−(Dx)′ = Q1D

−DP0Q1D
−(Dx)′ = Q1D

−(DP0Q1x)′ −Q1D
−(DP0Q1D

−)′Dx.

In the next step we move a part of the term B1x in (29) to the leading term, and so on.
Proposition 4.1 describes the result of these systematic rearrangements.

Proposition 4.1 Let the DAE (8) with properly stated leading term have the admissible
projectors Q0, . . . , Qκ, where κ ∈ N ∪ {0}.

(1) Then this DAE can be rewritten in the form

GκD
−(DΠκx)′+Bκx+Gκ

κ−1∑
l=0

{Qlx+ (I −Πl)(Pl−Ql+1Pl)D
−(DΠlx)′} = q. (30)

(2) If, additionally, all intersections
_
Ni, i = 1, . . . , κ, are trivial, then the DAE (8)

rewrites as

GκD
−(DΠκx)′ +Bκx

+Gκ

κ−1∑
l=0

{Qlx− (I −Πl)Ql+1D
−(DΠlQl+1x)′ + VlDΠlx} = q,

(31)

with coefficients

Vl = (I −Πl){PlD−(DΠlD
−)′ −Ql+1D

−(DΠl+1D
−)′}DΠlD

−, l = 0, . . . , κ− 1.

Comparing with the rearranged DAE obtained in the constant coefficient case (cf. [LMT11b,
(38)]), now we observe the extra terms Vl caused by time-dependent movements of certain
subspaces. They disappear in the time-invariant case.

Proof of Proposition 4.1:
(1) In case of κ = 0, equation (27) is just a trivial reformulation of (8). For κ = 1 we
are done by considering (29). For applying induction, we suppose for i + 1 ≤ κ, that (8)
rewrites as

GiD
−(DΠix)′ +Bix+Gi

i−1∑
l=0

{Qlx+ (I −Πl)(Pl −Ql+1Pl)D
−(DΠlx)′} = q. (32)

Represent Bix = BiPix+BiQix = BiPix+Gi+1Qix and derive

GiD
−(DΠix)′ = Gi+1Pi+1PiD

−(DΠix)′

= Gi+1{Πi+1PiD
−(DΠix)′ + (I −Πi)Pi+1PiD

−(DΠix)′}
= Gi+1{D−DΠi+1D

−(DΠix)′ + (I −Πi)Pi+1PiD
−(DΠix)′}

= Gi+1D
−(DΠi+1x)′ −Gi+1D

−(DΠi+1D
−)′DΠix

+Gi+1(I −Πi)(Pi −Qi+1Pi)D
−(DΠix)′).
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Taking into account that (I −Πi) = Q0P1 · · ·Pi + · · ·+Qi−1Pi +Qi and GiQl = Gi+1Ql,
l = 0, . . . , i− 1, we realize that (32) can be reformulated to

Gi+1D
−(DΠi+1x)′ + (BiPi −Gi+1D

−(DΠi+1D
−)′DΠi)x

+Gi+1Qix+Gi+1

i−1∑
l=0

{Qlx+ (I −Πl)(Pl −Ql+1Pl)D
−(DΠlx)′}

+Gi+1(I −Πi)(Pi −Qi+1Pi)D
−(DΠix)′ = q.

We obtain in fact

Gi+1D
−(DΠi+1x)′ +Bi+1x+Gi+1

i∑
l=0

{Qlx+ (I −Πl)(Pl −Ql+1Pl)D
−(DΠlx)′} = q

as we tried for.

(2) Finally assuming
_
Ni = {0}, i = 1, . . . , κ, and taking into account Proposition 3.2, we

compute the part being in question as

F :=
k−1∑
l=0

(I −Πl)(Pl −Ql+1Pl)D
−(DΠlx)′ =

k−1∑
l=0

(I −Πl)(Pl −Ql+1)D−(DΠlx)′

=
k−1∑
l=0

(I −Πl)[PlD
−(DΠlx)′ −Ql+1D

−DΠlQl+1D
−(DΠlx)′].

Applying the relations

(DΠlx)′ = (DΠlD
−)′(DΠlx) +DΠlD

−(DΠlx)′,

(I −Πl)PlD
−DΠlD

− = (I −Πl)PlΠlD
− = 0,

DΠlQl+1D
−(DΠlx)′ = (DΠlQl+1x)′ − (DΠlQl+1D

−)′DΠlx,

Ql+1(DΠlQl+1D
−)′DΠl = Ql+1(DΠlD

−)′DΠl −Ql+1(DΠl+1D
−)′DΠl

= −Ql+1(DΠl+1D
−)′DΠl,

we obtain, with the coefficients Vl described by the assertion,

F =
k−1∑
l=0

(I −Πl)[PlD
−(DΠlD

−)′DΠlx+Ql+1D
−(DΠlQl+1D

−)′DΠlx

−Ql+1D
−(DΠlQl+1x)′] =

k−1∑
l=0

[VlDΠlx− (I −Πl)Ql+1D
−(DΠlQl+1x)′],

and this completes the proof. �

How can one take use of the rearranged version of the DAE (8) and the structural in-
formation included in this version? We discuss this question in Section 6 for the case of
regular DAEs, that is for m = k, and if a nonsingular Gµ exists. We study the general
case in Section 10. At the moment, to gain a first impression, we cast a look on the
simplest situation, if already G0 has maximal rank. Then the DAE (27) splits into the
two parts

G0D
−(Dx)′ +G0G

−
0 B0x = G0G

−
0 q, W0B0x =W0q. (33)
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Since imG0 is maximal, it holds that imB0Q0 ⊆ imG1 = imG0, henceW0B0 =W0B0P0.
Further, since DG−0 G0 = D, we find the DAE (27) to be equivalent to the system

(Dx)′ −R′Dx+DG−0 B0D
−Dx+DG−0 B0Q0x = DG−0 q, W0B0D

−Dx =W0q, (34)

the solution of which decomposes as x = D−Dx + Q0x. It becomes clear, this DAE
comprises an explicit ODE for Dx, that has an undetermined part Q0x to be chosen
arbitrarily. The ODE for Dx is accompanied by a consistency condition applied to Dx
and q. If G0 is surjective, the consistency condition disappears. If G0 is injective, then
the undetermined component Q0x disappears. If G0 is nonsingular, what happens just
for m = k, then the DAE is nothing else a regular implicit ODE with respect to Dx.
Later on we assign the tractability index zero to each DAE whose matrix functions G0

have already maximal rank .
Of course, if the tractability index is greater than zero, things become much more subtle.
We refer once again to the discussion in Sections 10 and 6.

5 Invariants under transformations and refactoriza-

tions

Given is a DAE (8) with properly stated leading term. We premultiply this equation
by a nonsingular matrix function L ∈ C(I, L(Rk)) and transform the unknown function
x = Kx̄ by means of a nonsingular function K ∈ C(I, L(Rm)) such that the DAE

Ā(D̄x̄)′ + B̄x̄ = q̄ (35)

results, where q̄ := Lq, and

Ā := LA, D̄ := DK, B̄ := LBK. (36)

The new coefficients are continuous, too. Ā and D̄ inherit from A and D the constant
ranks, and the leading term of (35) is properly stated (cf. Definition 2.1) with the same
border projector R̄ = R as ker Ā = kerA, im D̄ = imD.
Suppose that the original DAE (8) has admissible projectors Q0, . . . , Qκ. We form a
corresponding matrix function sequence for the transformed DAE (35) starting with

Ḡ0 = ĀD̄ = LADK = LG0K, B̄0 = B̄ = LB0K,

Q̄0 := K−1Q0K, D̄− = K−1D−, P̄0 = K−1P0K,

such that D̄D̄− = DD− = R, D̄−D̄ = P̄0, and

Ḡ1 = Ḡ0 + B̄0Q̄0 = L(G0 +B0Q0)K = LG1K.

This yields N̄0 = K−1N0, N̄1 = K−1N1, N̄0∩N̄1 = K−1(N0∩N1). Choose Q̄1 := K−1Q1K
what corresponds to X̄1 := K−1X1. Proceeding in this way at each level, i = 1, . . . , κ,
with

Q̄i := K−1QiK

it results that Π̄i = K−1ΠiK, D̄Π̄iD̄
− = DΠiD

−, X̄i = K−1Xi, NU i = K−1(
_
Ni), and

Ḡi+1 = LGi+1K, B̄i+1 = LBi+1K.

This shows that Q̄0, . . . , Q̄κ are admissible for (35), and the following assertion becomes
evident.
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Theorem 5.1 If the DAE (8) has admissible projectors up to level κ ∈ N, and charac-
teristic values ri, ui, i = 0, . . . , κ, then the transformed equation (35) has also admissible
projectors up to level κ, and the characteristic values coincide, i.e. r̄i = ri, ūi = ui,
i = 1, . . . , κ.

By Theorem 5.1 the characteristic values and the tractability index are invariant under
transformations of the unknown function as well as under premultiplications of the DAE.
This feature seems to be rather trivial.
The invariance with respect to refactorizations of the leading term, which we verify next,
is more subtle. For a given DAE (8) with properly stated leading term, we consider the
product AD to represent a factorization of the leading term and we ask whether we can
turn to a different factorization AD = ĀD̄ such that ker Ā and im D̄ are again transversal
C1-subspaces. For instance, in Example 1.1, equation (7) results from equation (6) by
taking a different factorization.

In general, we describe the change to a different factorization as follows:
LetH ∈ C1(I, L(Rs,Rn) be given together with a generalized inverseH− ∈ C1(I, L(Rn,Rs))
such that H−HH− = H−, HH−H = H, and

RHH−R = R. (37)

H has constant rank greater or equal the rank of the border projector R. In particular,
one can use any nonsingular H ∈ C1(I, L(Rn)). However, we do not restrict ourselves to
square nonsingular matrix functions H.
Due to AR = ARHH−R we may write

A(Dx)′ = ARHH−R(Dx)′ = ARH(H−RDx)′ − ARH(H−R)′Dx

= AH(H−Dx)′ − AH(H−R)′Dx.

This leads to the new DAE

Ā(D̄x)′ + B̄x = q (38)

with the continuous coefficients

Ā := AH, D̄ := H−D, B̄ := B − ARH(H−R)′D. (39)

Because of ĀD̄ = AD we call this procedure that changes (8) to (38) a refactorization of
the leading term. It holds that

ker Ā = kerAH = kerRH, im D̄ = imH−D = imH−R,

further (H−RH)2 = H−RHH−RH = H−RH. It becomes clear thatH−RH ∈ C1(I, L(Rs))
is actually the border projector corresponding to the new DAE (38), and (38) has a prop-
erly stated leading term.
We emphasize that the old border space Rn and the new one Rs may actually have different
dimensions, and this is accompanied by different sizes of the involved matrix functions.
Here, the only restriction is n, s ≥ r. The next example underlines the need of those
changes.
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Example 5.2 The semi-explicit DAE

x′1 +B11x1 +B12x2 = q1,

B21x1 +B22x2 = q2,

with m1 +m2 = m = k equations can be put into the form (8) in different ways.

a) Choose n = m,

A =

[
I 0
0 0

]
, D =

[
I 0
0 0

]
, B =

[
B11 B12

B21 B22

]
, D− = D.

b) Choose n = m1, Ā =

[
I
0

]
, D̄ =

[
I 0

]
, and B̄ = B, D̄− =

[
I
0

]
.

In both cases, it results that

G0 = Ḡ0 =

[
I 0
0 0

]
, Q0 = Q̄0 =

[
0 0
0 I

]
, G1 = Ḡ1 =

[
I B12

0 B22

]
.

Observe that with H =

[
I
0

]
, H− =

[
I 0

]
we can write Ā = AH, D̄ = H−D, and

ĀD̄ = AHH−D = AD. The condition (37) is fulfilled. Therefore, the DAE in b) results
from a refactorization of the DAE in a).

Theorem 5.3 Let the DAE (8) have a properly stated leading term and admissible pro-
jectors up to level κ ∈ N as well as characteristic values r0, . . . , rκ, u0, . . . , uκ.

(a) Then the refactorized DAE (38) has also a properly stated leading term and admis-
sible projectors up to level κ. Its characteristic values coincide with that of (8).

(b) The subspaces imGi, N0 + . . .+Ni, i = 0, . . . , κ, are invariant.

Proof: Put F1 := I.
We use induction to show that the following relations are valid:

Ḡi = GiFi · · ·F1, (40)

Q̄i := (Fi · · ·F1)−1QiFi · · ·F1, Π̄i−1Q̄i = Πi−1Qi, Π̄i = Πi, (41)

B̄i = Bi −GiD
−H(H−R)′DΠi +Gi

i−1∑
j=0

QjZijΠi−1, (42)

with nonsingular

Fi := I + Pi−1

i−2∑
j=0

QjZi−1jΠi−2Qi−1, i = 1, . . . , κ.

The coefficients Z`j are continuous matrix functions which special form does not matter
at all.
Since Ḡ0 = ĀD̄ = AD = G0 we may choose D̄− = D−H, Q̄0 = Q0. It results
that Π̄0 = Π0, B̄0 = B̄ = B − ARH(H−R)′D and B̄0Q̄0 = BQ0 = B0Q0, hence
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Ḡ1 = Ḡ0 + B̄0Q̄0 = G0 + B0Q0 = G1 = G1F1. Choose Q̄1 = Q1 = F−1
1 Q1 such that

Π̄1 = Π1, Π̄0Q̄1 = Π0Q1, D̄Π̄1D̄
− = H−DΠ1D

−H, and further

B̄1 = B̄0P̄0 − Ḡ1D̄
−(D̄Π̄1D̄

−)′D̄Π̄0

= B0P0 − ARH(H−R)′D −G1D
−H(H−DΠ1D

−H)′H−DΠ0

= B0P0 −G1D
−(DΠ1D

−)′DΠ0 +G1D
−(DΠ1D

−)′DΠ0

−ARH(H−R)′D −G1D
−H(H−RDΠ1D

−RH)′H−DΠ0

= B1 +G1D
−(DΠ1D

−)′DΠ0 − ARH(H−R)′D −G1D
−H{(H−R)′DΠ1D

−RH

+H−R(DΠ1D
−)′RH +H−RDΠ1D

−(RH)′}H−D
= B1 − ARH(H−R)′D −G1D

−H(H−R)′DΠ1 −G1Π1D
−(RH)′H−RD

= B1 −G1D
−H(H−R)′DΠ1 − ARH(H−R)′D +G1Π1D

−RH(H−R)′D.

In the last expression we have used that

D−(RHH−R)′D = D−R′D = 0.

Compute G1Π1D
−RH(H−R)′D − ARH(H−R)′D = G1(Π1 − I)D−RH(H−R)′D and

G1(Π1 − I) = G1((I −Q0)(I −Q1)− I) = G1(−Q0 −Q1 +Q0Q1)

= G1(−Q0 +Q0Q1) = −G1Q0P1.

This yields the wanted expression

B̄1 = B1 −G1D
−H(H−R)′DΠ1 +G1Q0Z10Π0

with Z10 := −Q0P1D
−RH(H−R)′D.

Next, supposing the relations (40)–(42] to be given up to i we show their validity for i+1.
Derive

Ḡi+1 = Ḡi + B̄iQ̄i = {Gi + B̄i(Fi · · ·F1)−1Qi}Fi · · ·F1

= {Gi + B̄iΠi−1(Fi · · ·F1)−1Qi}Fi · · ·F1,

and, because of Πi−1F
−1
1 · · ·F−1

i = Πi−1, we obtain further

Ḡi+1 =
{
Gi +BiQi −GiD

−H(H−R)′DΠiQi +Gi

i−1∑
j=0

QjZijΠi−1Qi

}
Fi · · ·F1

=
{
Gi+1 +Gi

i−1∑
j=0

QjZijΠi−1Qi

}
Fi · · ·F1

= Gi+1

{
I + Pi

i−1∑
j=0

QjZijΠi−1Qi

}
Fi · · ·F1

= Gi+1Fi+1Fi · · ·F1,

with nonsingular matrix functions

Fi+1 = I + Pi

i−1∑
j=0

QjZijΠi−1Qi, F−1
i+1 = I − Pi

i−1∑
j=0

QjZijΠi−1Qi.
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Put Q̄i+1 := (Fi+1 · · ·F1)−1Qi+1Fi+1 · · ·F1, and compute

Π̄iQ̄i+1 = ΠiQ̄i+1 = ΠiF
−1
1 · · ·F−1

i+1Qi+1Fi+1 · · ·F1

= ΠiQi+1Fi+1 · · ·F1 = ΠiQi+1ΠiFi+1 · · ·F1 = ΠiQi+1Πi = ΠiQi+1,

Π̄i+1 = Π̄i − Π̄iQ̄i+1 = Πi −ΠiQi+1 = Πi+1.

It remains to verify the expression for B̄i+1. We derive

B̄i+1 = B̄iP̄i − Ḡi+1D̄
−(D̄Π̄i+1D̄

−)′D̄Π̄i

= B̄iΠi −Gi+1Fi+1 · · ·F1D
−H(H−DΠi+1D

−H)′H−DΠi,

and

B̄i+1 =
{
Bi −GiD

−H(H−R)′DΠi +Gi

i−1∑
j=0

QjZijΠi−1

}
Πi

−Gi+1(Fi+1 · · ·F1 − I)D−H(H−DΠi+1D
−H)′H−DΠi

−Gi+1D
−H{(H−R)′RDΠi+1D

−RH +H−R(DΠi+1D
−)′RH

+H−RDΠi+1D
−(RH)′}H−DΠi,

and

B̄i+1 = BiPi −GiD
−H(H−R)′DΠi +Gi

i−1∑
j=0

QjZijΠi

−Gi+1D
−H(H−R)′DΠi+1 −Gi+1D

−(DΠi+1D
−)′DΠi

−Gi+1Πi+1D
−(RH)′H−RDΠi

−Gi+1(Fi+1 · · ·F1 − I)D−H(H−DΠi+1D
−H)′H−DΠi,

and

B̄i+1 = Bi+1 −Gi+1D
−H(H−R)′DΠi+1 −Gi+1PiD

−H(H−R)′DΠi

+Gi+1Πi+1D
−H(H−R)′DΠi +Gi+1Pi

i−1∑
j=0

QjZijΠi

−Gi+1(Fi+1 · · ·Fi − I)D−H(H−DΠi+1D
−H)′H−DΠi.

Finally, decomposing

Pi

i−1∑
j=0

QjZijΠi =
i−1∑
j=0

QjZijΠi −Qi

i−1∑
j=0

QjZijΠi,

and expressing

Fi+1 · · ·F1 − I =
i∑

j=0

QjAi+1,j,

and taking into account that

Gi+1{Πi+1 − Pi}D−H(H−R)′DΠi = Gi+1

i∑
j=0

QiBi+1,jD
−H(H−R)′DΠi
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we obtain

B̄i+1 = Bi+1 −Gi+1D
−H(H−R)′DΠi+1 +

i∑
j=0

QjZi+1,jDΠi.
�

By Theorem 5.3, the characteristic values and the tractability index are invariant under
refactorizations of the leading term. Thereby, the size of A and D may change or not (cf.
Examples 1.1 and 5.2).

6 Regular DAEs

6.1 Regularity and basic decoupling

We define regularity for DAEs after the model of classical ODE theory, where the system

A(t)x′(t) +B(t)x(t) = q(t), t ∈ I, (43)

with continuous coefficients, is named an implicit regular ODE or an ODE having solely
regular line elements, if the matrixA(t) remains nonsingular on the given interval. Roughly
speaking, in our view, regular DAEs should be such that the corresponding homogeneous
versions have finite-dimensional solution spaces, and no consistency conditions related to
the excitations q will arise for inhomogeneous equations. This rules out the DAEs being
non-square. Additionally, each restriction of the DAE to a subinterval should inherit also
the space of admissible excitations.
In case of constant coefficients, regularity of DAEs is bound to regular pairs of square
matrices. In turn, regularity of matrix pairs can be characterized by means of matrix
sequences built by admissible projectors, and the associated characteristic values, as de-
scribed in [LMT11b, Section 5]. A pair of m×m matrices is regular, if and only if there
is a characteristic value rµ = m. Then the Kronecker index of the given matrix pair
results as the smallest such index µ. The same idea applies to DAEs with time-varying
coefficients, too. However, in distinction to the case of constant matrices in [LMT11b], we
are now facing matrix functions. While, in case of constant coefficients, admissible pro-
jectors do always exist, their existence is now tied to several rank conditions. These rank
conditions do not represent a mistake in the construction, but they are indeed relevant
for the problem. In particular, in case of the implicit ODE (43), each point at which the
matrix A(t) becomes singular is a critical point, and different kind of singularities may
arise (e.g. [KKW01]).

We turn back to equation (8), i.e.,

A(t)(D(t)x(t))′ +B(t)x(t) = q(t), t ∈ I. (44)

We are looking for solutions in the function space

C1
D(I,Rm) = {x ∈ C(I,Rm) : Dx ∈ C1(I,Rn)}.

If xq ∈ C1
D(I,Rm) denotes a solution corresponding to the excitation q, and

xhom ∈ C1
D(I,Rm) satisfies the homogenous DAE

A(t)(D(t)x(t))′ +B(t)x(t) = 0, t ∈ I, (45)
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then the sum xq +xhom is also a solution of the excited DAE (44). This linearity property
motivates special attention to the solution structure of the homogenous DAE.

Definition 6.1 The subspace

Scan(t̄) := {z ∈ Rm : ∃x ∈ C1
D(I,Rm), A(Dx)′ +Bx = 0, x(t̄) = z}, t̄ ∈ I,

is said to be a canonical subspace of the DAE (44).

The canonical subspace Scan(t) represents the geometric locus of all solution values of the
homogenous DAE at time t. For the implicit regular ODE (43), Scan(t) = Rm is simply
the entire time-invariant state space. In contrast, for DAEs, the inclusion Scan(t) ⊆ S0(t)
is valid. While S0(t) is the obvious constraint associated to the homogenous DAE (43),
the canonical subspace represents the final constraint which includes all hidden ones.
In particular, for the semi-explicit DAE in Example 2.2, the resulting

Scan(t) = {z ∈ Rm1+m2 : z2 = −B22(t)−1B21(t)z1} = S0(t)

is a m1-dimensional time-varying subspace of Rm, supposed B22(t) remains nonsingular.
If B22(t) ≡ 0, but B21(t)B12(t) remains nonsingular, then

Scan(t) = {z ∈ Rm1+m2 :B21(t)z1 = 0,

z2 = −[(B21B21)−1B21(B11 − (B12((B21B21)−1B21)′)](t)z1}

is a proper subspace of the obvious constraint S0(t) = {z ∈ Rm1+m2 : B21(t)z1 = 0}.
Example 1.1 confronts us with a zero-dimensional subspace Scan(t) = {0}.
Except for those simpler cases, the canonical subspace Scan is not easy of access. It co-
incides with the finite eigenspace of the matrix pencil for regular linear time-invariant
DAEs. Theorem 6.15 below provides a description for general regular DAEs (44) by pro-
jector functions.

Omitting the argument t, we write (44) also in the form

G0D
−(Dx)′ +B0x = q, (46)

where the begin of our matrix function sequence (12) is already included.

Definition 6.2 The DAE (44) with properly stated leading term and m = k is said to be

(1) regular with tractability index zero if r0 = m,

(2) regular with tractability index µ ≥ 1 if there are admissible projector functions
Q0, . . . , Qµ−1 such that rµ−1 < rµ = m,

(3) regular if the DAE is regular with any tractability index µ (i.e. case (1) or (2) apply).

The numbers r0, . . . , rµ defined by the matrix function sequence (12)-(15) are called characteristic values
of the DAE (44).
The subspace Ncan := N0 + · · ·+Nµ−1 is said to be a canonical subspace of the DAE.
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These notions are well-defined in the sense they do not at all depend on the special choice
of the admissible projector functions, which is guaranteed by Theorem 3.3.
Since for a regular DAE the matrix function Gµ is nonsingular, all intersections
_
Ni = Ni ∩ (N0 + · · · + Ni−1) are trivial, as a consequence of Proposition 3.2. Then it
holds that

Xi = (N0 + · · ·+Ni−1)	
_
Ni = N0 + · · ·+Ni−1 = N0⊕· · ·⊕Ni−1 ⊆ kerQi, i = 1, . . . , µ−1,

thus Qi(I −Πi−1) = 0, and, equivalently,

QiQj = 0, 0 ≤ j ≤ i− 1, i = 1, . . . , µ− 1. (47)

Additionally, Proposition 3.2 (4) yields GµQj = BjQj, thus

Qj = G−1
µ BjΠj−1Qj, j = 1, . . . , µ− 1. (48)

While, in the general Definition 3.1, only the part Πj−1Qj = Πj−1 − Πj of an admis-
sible projector function Qj is required to be continues, for a regular DAE, the admis-
sible projector functions are continuous in all their components, as it follows from the
representation(48).
We underline once again, for regular DAEs, the admissible projector functions are always
regular admissible, and they are continuous in all components. At this place, we draw the
readers attention to the fact that, in papers dealing exclusively with regular DAEs, the

requirements for trivial intersections
_
Ni and the continuity of Qi are usually incorporated

already into the admissibility notion (e.g. [Mär04b]) or into the regularity notion (e.g.
[Mär02], [Lam05]). Then, the relations (48) are constituent parts of the definitions (see
also the recent monograph [Ria08]).

Here is a further special quality of regular DAEs: The associated subspaces (cf. Section
3)

Si = kerWiB = {z ∈ Rm : Biz ∈ imGi} = Si−1 +Ni−1

are now C-subspaces, too. They have the constant dimensions ri. This can be immediately
checked. By Lemma A.8, the nonsingularity of Gµ implies the
decomposition Nµ−1 ⊕ Sµ−1 = Rm, thus dimSµ−1 = rµ−1. Regarding the relation
ker (Gµ−2 + Wµ−2Bµ−2Qµ−2) = Nµ−2 ∩ Sµ−2, we conclude by Proposition 2.4 (3) that
Nµ−2∩Sµ−2 has the same dimension as Nµ−1 has. This means dimNµ−2∩Sµ−2 = m−rµ−1.
Next, the representation Sµ−1 = Sµ−2 + Nµ−2 leads to rµ−1 = dimSµ−2 + (m − rµ−2) −
(m− rµ−1), therefore dimSµ−2 = rµ−2, and so on.

We decouple the regular DAE (44) into its characteristic components, in a similar way as
we did with constant coefficient DAEs in [LMT11b, Section 5]. Since Gµ is nonsingular,
by introducing Qµ = 0, Pµ = I, Πµ = Πµ−1, the sequence Q0, . . . , Qµ−1, Qµ is admissible,
and we can apply Proposition 4.1. The DAE (44) rewrites to

GµD
−(DΠµ−1x)′+Bµx+Gµ

µ−1∑
l=0

{Qlx−(I−Πl)Ql+1D
−(DΠlQl+1x)′+VlDΠlx} = q. (49)
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If the coefficients were constant, we would haveD−(DΠµ−1x)′ = (D−DΠµ−1x)′ = (Πµ−1x)′,
further D−(DΠlQl+1x)′ = (ΠlQl+1x)′, and Vl = 0. This means that formula (49) precisely
generalizes formula [LMT11b, (38)] obtained for constant coefficients. The new formula
(49) contains the extra terms Vl which arise from subspaces moving with time. They
disappear in the time-invariant case.

In [LMT11b, Section 5], the decoupled version of the DAE is generated by the scaling
with G−1

µ , and then by the splitting by means of the projectores Πµ−1 and I − Πµ−1.
Here we go a slightly different way and use DΠµ−1 instead of Πµ−1. Since Πµ−1 can be
recovered from DΠµ−1 due to Πµ−1 = D−DΠµ−1, no information gets lost.
The equation (49) scaled by G−1

µ reads

D−(DΠµ−1x)′ +G−1
µ Bµx+

µ−1∑
l=0

{Qlx− (I −Πl)Ql+1D
−(DΠlQl+1x)′ + VlDΠlx} = G−1

µ q.

(50)
The detailed expression for Vl (Proposition 4.1) is

Vl = (I −Πl){PlD−(DΠlD
−)′ −Ql+1D

−(DΠl+1D
−)′}DΠlD

−.

This yields DΠµ−1Vl = 0, l = 0, . . . , µ− 1, and multiplying (50) by DΠµ−1 results in the
equation

DΠµ−1D
−(DΠµ−1x)′ +DΠµ−1G

−1
µ Bµx = DΠµ−1G

−1
µ . (51)

Applying the C1 property of the projector DΠµ−1D
−, and recognizing that

Bµ = BµΠµ−1 = BµD
−DΠµ−1, we get

(DΠµ−1x)′ − (DΠµ−1D
−)′DΠµ−1x+DΠµ−1G

−1
µ BµD

−DΠµ−1x = DΠµ−1G
−1
µ q. (52)

Definition 6.3 For the regular DAE (44) with tractability index µ, and admissible pro-
jector functions Q0, . . . , Qµ−1, the resulting explicit regular ODE

u′ − (DΠµ−1D
−)′u+DΠµ−1G

−1
µ BµD

−u = DΠµ−1G
−1
µ q (53)

is called an inherent explicit regular ODE (IERODE) of the DAE.

It should be pointed out that there is a great variety of admissible projector functions.
In consequence, there are various projector functions Πµ−1, and the IERODE (53) is not
unique, except for the index one case. So far, we know the nullspace N0 + · · · + Nµ−1

of the projector function Πµ−1 to be independent of the choice of the admissible pro-
jector functions Q0, . . . , Qµ−1, that means the subspace N0 + · · · + Nµ−1 is unique; it is
determined by the DAE coefficients only (Theorem 3.3). Later on we introduce advanced
fine decouplings which make the corresponding IERODE unique. This means, then the
IERODE coefficients are fully determined by the problem data, and do not depend on the
special choice of fine decoupling projector functions.

Lemma 6.4 If the DAE (44) is regular with index µ, and Q0, . . . , Qµ−1 are admissible,
then the subspace imDΠµ−1 is an invariant subspace for the IERODE (53), that is, for
the solutions u ∈ C1(I,Rn) of the ODE (53) the following assertion is valid:

u(t∗) ∈ im (DΠµ−1)(t∗), with a certain t∗ ∈ I ⇐⇒ u(t) ∈ im (DΠµ−1)(t) for all t ∈ I.
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Proof: Let ū ∈ C1(I,Rn) denote a solution of (53) with ū(t∗) = (DΠµ−1D
−)(t∗)ū(t∗).

We multiply the identity

ū′ − (DΠµ−1D
−)′ū+DΠµ−1G

−1
µ D−ū = DΠµ−1G

−1
µ q

by I −DΠµ−1D
−, and introduce the function v̄ := (I −DΠµ−1D

−)ū ∈ C1(I,Rn). This
gives

(I −DΠµ−1D
−)ū′ − (I −DΠµ−1D

−)(DΠµ−1D
−)′ū = 0,

further,

v̄′ − (I −DΠµ−1D
−)′ū− (I −DΠµ−1D

−)(DΠµ−1D
−)′ ū = 0,

and

v̄′ − (I −DΠµ−1D
−)′v̄ = 0.

Because of v̄(t∗) = 0, v̄ must vanish identically, and hence ū = DΠµ−1D
−ū holds true. �

We leave the IERODE for a while, and turn back to the scaled version (50) of the DAE
(44). Now we consider the other part of this equation, which results from multiplication
by the projector function I −Πµ−1. First we express

(I−Πµ−1)D−(DΠµ−1x)′ + (I −Πµ−1)G−1
µ Bµx

= (I −Πµ−1)G−1
µ {GµD

−(DΠµ−1x)′ +Bµ−1Pµ−1x−GµD
−(DΠµ−1D

−)′DΠµ−1x}
= (I −Πµ−1)G−1

µ {Bµ−1Pµ−1x+GµD
−DΠµ−1D

−(DΠµ−1x)′}
= (I −Πµ−1)G−1

µ Bµ−1Πµ−1x,

and obtain then the equation

(I −Πµ−1)G−1
µ Bµ−1Πµ−1x+

µ−1∑
l=0

{Qlx+ VlDΠlx} (54)

−
µ−2∑
l=0

(I −Πl)Ql+1D
−(DΠlQl+1x)′ = (I −Πµ−1)G−1

µ q,

which is the precise counterpart of equation [LMT11b, (41)]. Again, the extra terms Vl
comprise the time variation. By means of the decompositions

DΠlx = DΠl(Πµ−1 + I −Πµ−1)x = DΠµ−1x+DΠl(I − Pl+1 · · ·Pµ−1)x

= DΠµ−1x+DΠl(Ql+1 + Pl+1Ql+2 + · · ·+ Pl+1 · · ·Pµ−2Qµ−1)x

= DΠµ−1x+DΠl(Ql+1 + · · ·+DΠµ−2Qµ−1)x,

we rearrange the terms in (54) once more to

µ−1∑
l=0

Qlx−
µ−2∑
l=0

(I−Πl)Ql+1D
−(DΠlQl+1x)′+

µ−2∑
l=0

Ml+1DΠlQl+1x+KΠµ−1x = (I−Πµ−1)G−1
µ q,

(55)
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with the continuous coefficients

K : = (I −Πµ−1)G−1
µ Bµ−1Πµ−1 +

µ−1∑
l=0

VlDΠµ−1 (56)

= (I −Πµ−1)G−1
µ Bµ−1Πµ−1 +

µ−1∑
l=0

(I −Πl){PlD−(DΠlD
−)′ −Ql+1D

−(DΠl+1D
−)′}DΠµ−1

= (I −Πµ−1)G−1
µ Bµ−1Πµ−1 +

µ−1∑
l=1

(I −Πl−1)(Pl −Ql)(DΠlD
−)′DΠµ−1

and

Ml+1 : =
l∑

j=0

VjDΠlQl+1D
− (57)

=
l∑

j=0

(I −Πl){PlD−(DΠlD
−)′ −Ql+1D

−(DΠl+1D
−)′}DΠlQl+1D

−,

l = 0, . . . , µ− 2.

The coefficients Ml+1 vanish together with the Vj in the constant coefficient case.

Next we provide a further splitting of the subsystem (55) according to the decomposition

I −Πµ−1 = Q0P1 · · ·Pµ−1 + · · ·+Qµ−2Pµ−1 +Qµ−1

into µ parts. Notice that the products QiPi+1 · · ·Pµ−1 are also continuous projectors. To
prepare the further decoupling we provide some useful properties of our projectors and
coefficients.

Lemma 6.5 For the regular DAE (44) with tractability index µ, and admissible projector
functions Q0, . . . , Qµ−1, the following relations become true:

(1) QiPi+1 · · ·Pµ−1(I −Πl) = 0, l = 0, . . . , i− 1, i = 1, . . . , µ− 2,
Qµ−1(I −Πl) = 0, l = 0, . . . , µ− 2,

(2) QiPi+1 · · ·Pµ−1(I −Πi) = Qi, i = 0, . . . , µ− 2,
Qµ−1(I −Πµ−1) = Qµ−1,

(3) QiPi+1 · · ·Pµ−1(I −Πi+s) = QiPi+1 · · ·Pi+s, s = 1, . . . , µ− 1− i, i = 0, . . . , µ− 2,

(4) QiPi+1 · · ·Pµ−1Ml+1 = 0, l = 0, . . . , i− 1, i = 0, . . . , µ− 2,
Qµ−1Ml+1 = 0, l = 0, . . . , µ− 2,

(5) QiPi+1 · · ·Pµ−1Qs = 0 if s 6= i, s = 0, . . . , µ− 1,
QiPi+1 · · ·Pµ−1Qi = Qi, i = 0, . . . , µ− 2,

(6) Mj =
j−1∑
l=1

(I −Πl−1)(Pl −Ql)D
−(DΠj−1QjD

−)′DΠj−1QjD
−, j = 1, . . . , µ− 1,

(7) Πµ−1G
−1
µ Bµ = Πµ−1G

−1
µ B0Πµ−1, and hence DΠµ−1G

−1
µ BµD

− = DΠµ−1G
−1
µ BD−.
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Proof: (1) The first part of the assertion results from the relation
QiPi+1 · · ·Pµ−1 = QiPi+1 · · ·Pµ−1Πi−1, and the inclusion im (I−Πl) ⊆ kerΠi−1, l ≤ i−1.
The second part is a consequence of the inclusion im (I −Πl) ⊆ kerQµ−1, l ≤ µ− 2.
(2) This is a consequence of the relations Pi+1 · · ·Pµ−1(I − Πi) = (I − Πi) and
Qi(I −Πi) = Qi.
(3) We have

QiPi+1 · · ·Pµ−1Πµ−1 = 0, thus QiPi+1 · · ·Pµ−1(I −Πµ−1) = QiPi+1 · · ·Pµ−1.

Taking into account that Qj(I −Πi+s) = 0 for j > i+ s, we find

QiPi+1 · · ·Pµ−1(I −Πi+s) = QiPi+1 · · ·Pi+sPi+s+1 · · ·Pµ−1(I −Πi+s)

= QiPi+1 · · ·Pi+sPi+s+1 · · ·Pµ−1(I −Πi+s)

= QiPi+1 · · ·Pi+s(I −Πi+s) = QiPi+1 · · ·Pi+s.

(4) This is a consequence of (1).
(5) This is evident.
(6) We derive

Mj =

j−1∑
l=1

(I −Πl)PlD
−(DΠlD

−)′DΠj−1QjD
−

−
j−2∑
l=0

(I −Πl)Ql+1D
−(DΠl+1D

−)′DΠj−1QjD
−

=

j−1∑
l=1

(I −Πl)PlD
−{(DΠj−1QjD

−)′ −DΠlD
−(DΠj−1QjD

−)′}DΠj−1QjD
−

−
j−2∑
l=0

(I −Πl)Ql+1D
−{(DΠj−1QjD

−)′ −DΠl+1D
−(DΠj−1QjD

−)′}DΠj−1QjD
−

=

j−1∑
l=1

(I −Πl)PlD
−(DΠj−1QjD

−)′DΠj−1QjD
−

−
j−2∑
l=0

(I −Πl)Ql+1D
−(DΠj−1QjD

−)′DΠj−1QjD
−

=

j−1∑
l=1

(I −Πl−1)PlD
−(DΠj−1QjD

−)′DΠj−1QjD
−

−
j−1∑
l=1

(I −Πl−1)QlD
−(DΠj−1QjD

−)′DΠj−1QjD
−.

(7) Owing to Pµ = I, it holds that

Bµ = Bµ−1Pµ−1 −GµD
−(DΠµD

−)′DΠµ−1 = Bµ−1Pµ−1 −GµD
−(DΠµ−1D

−)′DΠµ−1.

We compute

Πµ−1G
−1
µ Bµ = Πµ−1G

−1
µ {Bµ−1Pµ−1 −GµD

−(DΠµ−1D
−)′DΠµ−1}

= Πµ−1G
−1
µ Bµ−1Πµ−1 −Πµ−1D

−(DΠµ−1D
−)′DΠµ−1︸ ︷︷ ︸

=0

.
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The next step is

Πµ−1G
−1
µ Bµ−1Πµ−1 = Πµ−1G

−1
µ {Bµ−2Pµ−2 −Gµ−1D

−(DΠµ−1D
−)′DΠµ−2}Πµ−1

= Πµ−1G
−1
µ Bµ−2Πµ−1 −Πµ−1Pµ−1D

−(DΠµ−1D
−)′DΠµ−1︸ ︷︷ ︸

=0

,

and so on. �

As announced before we split the subsystem (55) into µ parts. Multiplying by the projec-
tor functions QiPi+1 · · ·Pµ−1, i = 0, . . . , µ − 2, and Qµ−1, and regarding Lemma 6.5 one
attains the system

Qix−QiQi+1D
−(DΠiQi+1x)′ −

µ−2∑
l=i+1

QiPi+1 · · ·PlQl+1D
−(DΠlQl+1x)′

+

µ−2∑
l=i

QiPi+1 · · ·Pµ−1Ml+1DΠlQl+1x (58)

= −QiPi+1 · · ·Pµ−1KΠµ−1x+QiPi+1 · · ·Pµ−1G
−1
µ q, i = 0, . . . , µ− 2.

as well as
Qµ−1x = −Qµ−1KΠµ−1x+Qµ−1G

−1
µ q. (59)

The equation (59) determines Qµ−1x in terms of q and Πµ−1x. The i-th equation in (58)
determines Qix in terms of q, Πµ−1x, Qµ−1x, . . . , Qi+1x, and so on, that is, the system
(58), (59) successively determines all components of
I −Πµ−1 = Q0 +Π0Q1 + · · ·+Πµ−2Qµ−1 in a unique way. Comparing with the constant
coefficient case, we recognize the system (58), (59) to generalize the system [LMT11b,
(43)-(44)].
So far, the regular DAE (44) decouples into the IERODE (53) and the subsystem (58),
(59) by means of each arbitrary sequence of admissible projector functions. The solutions
of the DAE can be expressed as

x = Πµ−1x+ (I −Πµ−1x) = D−u+ (I −Πµ−1)x,

whereby (I −Πµ−1)x is determined by the subsystem (58), (59), and u = DΠµ−1D
−u is

a solution of the IERODE, which belongs to its invariant subspace.

The property
kerQi = kerΠi−1Qi, i = 1, . . . , µ− 1, (60)

is valid, since we may represent Qi = (I + (I − Πi−1)Qi)Πi−1Qi with the nonsingular
factor I + (I −Πi−1)Qi, i = 1, . . . , µ− 1. This allows to compute Qix from Πi−1Qix and
vice versa. We take advantage of this in the following rather cosmetic changes.

Denote

v0 := Q0x, vi := Πi−1Qix, i = 1, . . . , µ− 1, (61)

u := DΠµ−1x, (62)
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such that we have the solution expression

x = v0 + v1 + · · ·+ vµ−1 +D−u. (63)

Multiply the equation (59) by Πµ−2, and, if i ≥ 1, the i-th equation in (58) by Πi−1. This
yields the following system which determines the functions vµ−1, . . . , v0 in terms of q and
u:

0 N01 · · · N0,µ−1

0
. . .

...
. . . Nµ−2,µ−1

0

 (D


v0

v1
...

vµ−1

)′ (64)

+


I M01 · · · M0,µ−1

I
. . .

...
. . . Mµ−2,µ−1

I




v0

v1
...

vµ−1

+


H0

H1
...
Hµ−1

D−u =


L0

L1
...
Lµ−1

 q.

The matrix function D := (Dij)µ−1
i,j=0 has as entries the blocks Dii = DΠi−1Qi, i =

1, . . . , µ − 1, D00 = 0, and Dij = 0, if i 6= j. This matrix function is block-diagonal if
n = m. The further coefficients in (64) are also continuous, their detailed form is

N01 := −Q0Q1D
−

N0j := −Q0P1 · · ·Pj−1QjD
−, j = 2, . . . , µ− 1,

Ni,i+1 := −Πi−1QiQi+1D
−,

Nij := −Πi−1QiPi+1 · · ·Pj−1QjD
−, j = i+ 2, . . . , µ− 1, i = 1, . . . , µ− 2,

M0j := Q0P1 · · ·Pµ−1MjDΠj−1Qj, j = 1, . . . , µ− 1,

Mij := Πi−1QiPi+1 · · ·Pµ−1MjDΠj−1Qj, j = i+ 1, . . . , µ− 1, i = 1, . . . , µ− 2,

L0 := Q0P1 · · ·Pµ−1G
−1
µ ,

Li := Πi−1QiPi+1 · · ·Pµ−1G
−1
µ , i = 1, . . . , µ− 2,

Lµ−1 := Πµ−2Qµ−1G
−1
µ ,

H0 := Q0P1 · · ·Pµ−1KΠµ−1,

Hi := Πi−1QiPi+1 · · ·Pµ−1KΠµ−1, i = 1, . . . , µ− 2,

Hµ−1 := Πµ−2Qµ−1KΠµ−1.

Introducing the matrix functions N , M, H, L of appropriate sizes according to (64), we
write this subsystem as

N (Dv)′ +Mv +HD−u = Lq, (65)

whereby the vector function v contains the entries v0, . . . , vµ−1.

Again, we draw the attention to the great consistency with [LMT11b, (49)]. The difficul-
ties caused by the time-variations are now hidden in the coefficientsMij which disappear
for constant coefficients.
We emphasize that the system (64) is nothing else a more transparent reformulation of
the former subsystem (58), (59). The next proposition records important properties.
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Proposition 6.6 Let the DAE (44) be regular with tractability index µ, and let Q0, . . . , Qµ−1

be admissible projector functions. Then the coefficient functions in (64) have the further
properties:

(1) Nij = NijDΠj−1QjD
− and NijD = NijDΠj−1Qj, for j = 1, . . . , µ − 1,

i = 0, . . . , µ− 2.

(2) rankNi,i+1 = rankNi,i+1D = m− ri+1, for i = 0, . . . , µ− 2.

(3) kerNi,i+1 = kerDΠiQi+1D
−, and kerNi,i+1D = kerΠiQi+1, for i = 0, . . . , µ− 2.

(4) The subsystem (64) is a DAE with properly stated leading term.

(5) The square matrix function ND is pointwise nilpotent with index µ, more precisely,
(ND)µ = 0 and rank (ND)µ−1 = m− rµ−1 > 0.

(6) Mi,i+1 = 0, i = 0, . . . , µ− 2.

Proof: (1) This is given by the construction.
(2) Because of Ni,i+1 = Ni,i+1DD

−, the matrix functions Ni,i+1 and Ni,i+1D have equal
rank. To show that this is precisely m−ri+1 we apply the same arguments as for [LMT11b,
Lemma 5.5]. First we validate the relation

imQiQi+1 = Ni ∩ Si.

Namely, z ∈ Ni∩Si implies z = Qiz and Biz = Giw, therefore, (Gi+BiQi)(Piw+Qiz) =
0, further (Piw + Qiz) = Qi+1(Piw + Qiz) = Qi+1w, Qiz = QiQi+1w, and hence
z = Qiz = QiQi+1w.
Conversely, z ∈ imQiQi+1 yields z = Qiz, z = QiQi+1w. Then the identity
(Gi +BiQi)Qi+1 = 0 leads to Biz = BiQiQi+1w = −GiQi+1w, thus z ∈ Ni ∩ Si.
The intersection Ni ∩ Si has the same dimension as Ni+1, so that we attain
dim imQiQi+1 = dimNi+1 = m− ri+1.
(3) From (1) we derive the inclusions

kerDΠiQi+1D
− ⊆ kerNi,i+1, kerΠiQi+1 ⊆ kerNi,i+1D.

Because of ΠiQi+1 = D−(DΠiQi+1D
−)D, and kerΠiQi+1 = kerQi+1, the assertion be-

comes true for reasons of dimensions.
(4) We provide the subspaces

kerN = {z =

 z0
...

zµ−1

 ∈ Rnµ : zi ∈ kerΠi−1Qi, i = 1, . . . , µ− 1}

and

imD = {z =

 z0
...

zµ−1

 ∈ Rnµ : zi ∈ imΠi−1Qi, i = 1, . . . , µ− 1}

which obviously fulfill the condition kerN ⊕ imD = Rnµ. The border projector is
R = diag (0, DΠ0Q1D

−, . . . , DΠµ−2Qµ−1D
−), and it is continuously differentiable.
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(5) The matrix function ND is by nature strictly block upper triangular, and its main
entries (ND)i,i+1 = Ni,i+1D have constant rank m− ri+1, for i = 0, . . . , µ− 2.
The matrix function (ND)2 has zero-entries on the block positions (i, i + 1), and the
dominating entries are

((ND)2)i,i+2 = Ni,i+1DNi+1,i+2D = Πi−1QiQi+1ΠiQi+1Qi+2 = Πi−1QiQi+1Qi+2,

which have rank m− ri+2, and so on.
In (ND)µ−1 there remains exactly one nontrivial block in the upper right corner,
((ND)µ−1)0,µ−1 = (−1)µ−1Q0Q1 · · ·Qµ−1, and it has rank m− rµ−1.
(6) This property is a direct consequence of the representation ofMi+1 in Lemma 6.5 (6)
and Lemma 6.5 (1). �

By this proposition, the subsystem (64) is in turn a regular DAE with tractability index
µ and transparent structure. Property (6) slightly improves the structure of (64). We
underline that the DAE (64) lives in Rmµ. The solutions belong to the function space
C1
D(I,Rmµ). Owing to the special form of the matrix function L on the right hand

side, each solution of (64) satisfies the conditions v0 = Q0v0 and vi = Πi−1Qivi, for
i = 1, . . . , µ− 1.

We formulate now the main result concerning the basic decoupling:

Theorem 6.7 Let the DAE (44) be regular with tractability index µ, and let
Q0, . . . , Qµ−1 be admissible projector functions. Then the DAE is equivalent via (61)-(63)
to the system consisting of the IERODE (53) related to its invariant subspace imDΠµ−1,
and the subsystem (64).

Proof: If x ∈ C1
D(I,Rm) is a solution of the DAE, then the component u := DΠµ−1x ∈

C1(I,Rm) satisfies the IERODE (53) and belongs to the invariant subspace imΠµ−1. The
functions v0 := Q0x ∈ C(I,Rm), vi := Πi−1Qix ∈ C1

D(I,Rm), i = 1, . . . , µ − 1, form
the unique solution of the system (64) corresponding to u. Thereby, we recognize that
DΠµ−1x = DΠµ−1D

−Dx, Dvi := DΠi−1Qix = DΠi−1QiD
−Dx, i = 1, . . . , µ − 1, are

continuously differentiable functions since Dx and the used projectors are so.
Conversely, let u = DΠµ−1x denote a solution of the IERODE, and let v0, . . . , vµ−1 form
a solution of the subsystem (64). Then, it holds that vi = Πi−1Qivi, for i = 1, . . . , µ− 1,
and v0 = Q0v0. The functions u and Dvi = DΠi−1Qivi, i = 1, . . . , µ− 1 are continuously
differentiable. The composed function x := D−u+ v0 + v1 + · · ·+ vµ−1 is continuous and
has a continuously part Dx. It remains to insert x into the DAE, and to recognize that
x fulfills the DAE. �

The coefficients of the IERODE and the system (64) are determined in terms of the
DAE coefficients and the resulting from these coefficients projector functions. We can
take use of these equations unless supposing that there is a solution of the DAE. Con-
sidering the IERODE (53) and the system (64) as equations with unknown functions
u ∈ C1(I,Rn), v0 ∈ C(I,Rm), vi ∈ C1

D(I,Rm), i = 1, . . . , µ − 1, we may solve these
equations and construct continuous functions x := D−u + v0 + v1 + · · · + vµ−1 with
Dx = DD−u+Dv1 + · · ·+Dvµ−1 being continuously differentiable, such that x satisfies
the DAE. Thereby we restrict our interest to those solutions u of the IERODE that have
the property u = DΠµ−1D

−u. This way we could prove the existence of DAE solutions,
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if the excitation and the coefficients are sufficiently smooth.

We finish this subsection by a closer look to the special case of index one DAEs. Let
the DAE (44) be regular with tractability index one. The matrix function G0 = AD is
singular with constant rank. We take an arbitrary continuous projector function Q0. The
resulting matrix function G1 = G0 +BQ0 is nonsingular. It follows that Q1 = 0, Π1 = Π0

and V0 = 0 (cf. Prop. 4.1), further B1 = BP0 − G1D
−(DΠ0D

−)′DΠ0 = BP0. The DAE
scaled by G−1

1 is (cf. (50)) now

D−(DΠ0x)′ +G−1
1 BP0x+Q0x = G−1

1 q.

Multiplication by DΠ0 = D and I −Π0 = Q0 leads to the system

(Dx)′ −R′Dx+DG−1
1 BD−Dx = DG−1

1 q, (66)

Q0x+Q0G
−1
1 BD−Dx = Q0G

−1
1 q, (67)

and the solution expression x = D−Dx + Q0x. Equation (67) stands for the subsystem
(64), i.e. for

Q0x+H0D
−Dx = L0q, with H0 = Q0KΠ0 = Q0G

−1
1 BΠ0 = Q0G

−1
1 BP0, L0 = Q0G

−1
1 .

The nonsingularity of G1 implies the decomposition S0⊕N0 = Rm (cf. Lemma A.8), and
the matrix function Q0G

−1
1 B is a representation of the projector function onto N0 along

S0.
We can choose Q0 to be the special projector function onto N0 along S0 at the beginning.
The benefit from this choice consists in the property H0 = Q0G

−1
1 BP0 = 0, that is, the

subsystems (67) uncouples from (66).

Example 6.8 We reconsider the semi-explicit DAE from Example 2.2[
I
0

]
(
[
I 0

]
x)′ +

[
B11 B12

B21 B22

]
x = q

with nonsingular B22. Here we have the subspaces

N0 = {z ∈ Rm1+m2 : z1 = 0} and S0 = {z ∈ Rm1+m2 : B21z1 +B22z2 = 0},

and the projector function onto N0 along S0 is given by

Q0 =

[
0 0

B−1
22 B21 I

]
.

We know this projector to be reasonable, although it is far from being orthogonal. This
choice leads to the matrix functions

D− =

[
I

−B−1
22 B21

]
, G1 =

[
I +B12B

−1
22 B21 B12

B21 B22

]
, G−1

1 =

[
I −B12B

−1
22

−B−1
22 B21 (I +B−1

22 B21B12)

]
,

and the IERODE
x′1 + (B11 −B12B

−1
22 B21)x1 = q1 −B12B

−1
22 q2.

Notice that in Example 2.2, Q0 is chosen to be the orthoprojector. Precisely the same
IERODE results for this choice, which appears to be typical for regular index one DAEs,
and for fine decouplings of general regular DAEs.
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Proposition 6.9 Let the DAE (44) be regular with index one. Then its IERODE

u′ −R′u+DG−1
1 BD−u = DG−1

1 q

is actually independent of the choice of the continuous projector function Q0.

Proof: We compare the IERODEs built for two different projector functions Q0 and Q̄0.
It holds that Ḡ1 = G0 + BQ̄0 = G0 + BQ0Q̄0 = G1(P0 + Q̄0) = G1(I + Q0Q̄0P0) and
D̄− = D̄−DD̄− = D̄−R = D̄−DD− = P̄0D

−, therefore DḠ−1
1 = DG−1

1 , DḠ−1
1 BD̄− =

DG−1
1 B(I − Q̄0)D− = DG−1

1 B(I −Q0Q̄0)D− = DG−1
1 BD−. �

6.2 Fine and complete decouplings

In this subsection we advance the decoupling of the subsystem (64) of the regular DAE
(44). As benefits of such a refined decoupling we get further natural information on the
DAE, that is, information being independent of the choice of projectors in the given con-
text. In particular, we arrive at a natural IERODE.
As discussed at the end of the previous subsection, regular index one DAEs are trans-
parent and simple, and the coefficients of their IERODEs are always independent of the
projector choice. However, higher index DAEs are different. We take a closer look to the
simplest class among them, the regular DAEs with tractability index µ = 2.

Let the DAE (44) be regular with tractability index µ = 2, then the IERODE (53) and
the subsystem (64) reduce to

u′ − (DΠ1D
−)′u+DΠ1G

−1
2 B1D

−u = DΠ1G
−1
2 q,

and [
0 −Q0Q1D

−

0 0

]
(

[
0 0
0 DΠ0Q1

] [
v0

v1

]
)′ +

[
v0

v1

]
+

[
H0

H1

]
D−u =

[
Q0P1G

−1
2

Π0Q1G
−1
2

]
q,

with

H0 = Q0P1KΠ1 = Q0P1G
−1
2 B1Π1 +Q0P1(DΠ1D

−)′DΠ1

H1 = Π0Q1KΠ1 = Π0Q1G
−1
2 B1Π1.

Owing to the nonsingularity of G2, the decomposition (cf. Lemma A.8)

N1 ⊕ S1 = Rm

is given, and the expression Q1G
−1
2 B1 appearing in H1 reminds of the representation

of the special projector function onto N1 along S1 (cf. Lemma A.9) which is uniquely
determined. In fact, Q1G

−1
2 B1 is this projector function. The subspaces N1 and S1 are

given before one has to choose the projector function Q1, and hence one can settle on
the projector function Q1 onto N1 along S1 at the beginning. Thereby, the necessary
admissibility condition N0 ⊆ kerQ1 is fullfilled because of N0 ⊆ S1 = kerQ1. It follows
that

Q1G
−1
2 B1Π1 = Q1G

−1
2 B1P1 = Q1P1 = 0, H1 = Π0Q1G

−1
2 B1Π1 = 0.

With the next example we demonstrate that there are various different resulting projector
functions DΠµ−1D

−, and hence different IERODEs.
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Example 6.10 Consider once again the so-called Hessenberg size two DAE[
I
0

]
(
[
I 0

]
x)′ +

[
B11 B12

B21 0

]
x = q, (68)

with the nonsingular product B21B12. Suppose the subspaces imB12 and kerB21 to be C1-
subspaces. As it is shown in Example 2.2, this DAE is regular with index two, and the
projector functions

Q0 =

[
0 0
0 I

]
, Q1 =

[
Ω 0
−B−12 0

]
, Ω := B12B

−
12, (69)

are admissible, for each arbitrary reflexive inverse B−12 such that Ω is continuously differ-
entiable. We have further DΠ1D

− = I − Ω and

S0 = S1 = {z ∈ Rm1+m2 : B21z1 = 0}.

(a) Set B−12 := B+
12 = (B∗12B12)−1B∗12 in Ω. Then Ω projects Rm1 onto imB12 along

kerB∗12 = imB⊥12, and Q1 projects Rm onto N1 along

kerQ1 = {z ∈ Rm1+m2 : B∗12z1 = 0} = (N0 ⊕N1)⊥ ⊕N0.

It results that DΠ1D
− = I −Ω is symmetric. These projector functions Q0, Q1 are

widely orthogonal in the sense of Definition 9.1. Notice that, for this construction
we could dispense with the C1 property of the subspace kerB21.

(b) Set B−12 := (B21B12)−1B21 in (68). Then Ω projects Rm1 onto imB12 along kerB21,
and Q1 projects Rm onto N1 along

kerQ1 = {z ∈ Rm1+m2 : B21z1 = 0} = S1.

Except for the special case, if kerB∗12 = kerB21, a nonsymmetric projector function
DΠ1D

− = I − Ω = I − B12(B21B12)−1B21 results. As we already know, this choice
has the advantage of a vanishing coupling coefficient H1.

In contrast to (69) the projector functions

Q0 =

[
0 0

B−12(B11 − Ω′)(I − Ω) I

]
, Q1 =

[
Ω 0
−B−12 0

]
, Ω := B12B

−
12, (70)

form a further pair of admissible projector functions yielding again DΠ1D
− = I − Ω. If

B−12 := (B21B12)−1B21, then this choice forces both coefficients H1 and H0 to disappear,
and the subsystem (64) uncouples from the IERODE. Notice that the resulting IERODE
coincides with that from (b).

As mentioned before, the index two case has the simplest higher index structure. The
higher the index, the greater the variety of admissible projector functions. We remind
[LMT11b, Example 5.4] which shows several completely decoupling projectors for a time-
invariant regular matrix pair with Kronecker index two.
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Definition 6.11 Let the DAE (44) be regular with tractability index µ, and let
Q0, . . . , Qµ−1 denote admissible projector functions.

(1) If the µ−1 coupling coefficients H1, . . . ,Hµ−1 of the subsystem (64) vanish, then we
speak of fine decoupling projector functions Q0, . . . , Qµ−1, and of a fine decoupling.

(2) If all the µ coupling coefficients H0, . . . ,Hµ−1 of the subsystem (64) vanish, then we
speak of complete decoupling projector functions Q0, . . . , Qµ−1, and of a
complete decoupling.

In the sense of this definition, fine and complete decoupling projector functions Q0, Q1

are given in Example 6.10(b) and (70).

In general, if the DAE (44) is regular with tractability index µ, and Q0, . . . , Qµ−1 are
admissible projector functions, then the decomposition

Nµ−1 ⊕ Sµ−1 = Rm

holds true (cf. Lemma A.8). If the last projector function Qµ−1 is chosen such that the
associated subspace Sµ−1 ⊇ N0 ⊕ · · · ⊕ Nµ−2 becomes its nullspace, that is kerQµ−1 =
Sµ−1, imQµ−1 = Nµ−1, then it follows (cf. Lemma A.9) that Qµ−1 = Qµ−1G

−1
µ−1Bµ−1, and

hence (cf. (56))

Hµ−1 := Πµ−2Qµ−1KΠµ−1 = Πµ−2Qµ−1K
= Πµ−2Qµ−1(I −Πµ−1)︸ ︷︷ ︸

=Qµ−1

G−1
µ Bµ−1Πµ−1

+

µ−1∑
l=0

Πµ−2Qµ−1(I −Πl)︸ ︷︷ ︸
=0

(Pl −Ql)(DΠlD
−)′DΠµ−1

= Πµ−2Qµ−1G
−1
µ Bµ−1Πµ−1 = Πµ−2Qµ−1Πµ−1 = 0.

So far one can prevail on the coefficients Hµ−1 to vanish by determining kerQµ−1 = Sµ−1.
This confirms the existence of complete decoupling projector functions for regular index
one DAEs, and the existence of fine decoupling projector functions for regular index two
DAEs.
Remember that, for regular constant coefficient DAEs with arbitrary index, complete
decoupling projectors are provided by [LMT11b, Theorem 5.2]. We follow the lines of
[Mär04a] to prove a similar result for general regular DAEs (44).

The following additional description of the coupling coefficients H0, . . . ,Hµ−1 in the sub-
system (64), which tie the solution u of the IERODE in this subsystem, supports the
idea of an advanced decoupling. We draw the reader’s attention to the consistency with
[LMT11b, Theorem 5.2] which provides the easier time-invariant counterpart of a com-
plete decoupling.

Lemma 6.12 Let the DAE (44) be regular with tractability index µ. Let Q0, . . . , Qµ−1

denote admissible projector functions, and

Q0∗ := Q0P1 · · ·Pµ−1G
−1
µ {B0 +G0D

−(DΠµ−1D
−)′D},

Qk∗ := QkPk+1 · · ·Pµ−1G
−1
µ {Bk +GkD

−(DΠµ−1D
−)′DΠk−1}, k = 1, . . . , µ− 2,

Qµ−1∗ := Qµ−1G
−1
µ Bµ−1,
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(1) Then the coupling coefficients of the subsystem (64) have the representations

H0 = Q0∗Πµ−1,

Hk = Πk−1Qk∗Πµ−1, k = 1, . . . , µ− 2,

Hµ−1 = Πµ−2Qµ−1∗Πµ−1.

(2) The Q0∗, . . . , Qµ−1∗ are also continuous projector functions onto the subspaces
N0, . . . , Nµ−1, and it holds that Qk∗ = Qk∗Πk−1 for k = 1, . . . , µ− 1.

Proof: (1) For k = 0, . . . , µ− 2, we express

Ak : = QkPk+1 · · ·Pµ−1KΠµ−1 (cf. (56) for K and Prop. 4.1 for Vl)

= QkPk+1 · · ·Pµ−1G
−1
µ Bµ−1Πµ−1 +QkPk+1 · · ·Pµ−1

µ−1∑
l=0

VlDΠµ−1.

Regarding the identity ΠlD
−(DΠlD

−)′DΠl = 0 we derive first

Πk−1

µ−1∑
l=0

VlDΠµ−1 = Πk−1

µ−1∑
l=k

VlDΠµ−1

= Πk−1

µ−1∑
l=k

{(I −Πl)Pl︸ ︷︷ ︸
Pl−Πl

D−(DΠlD
−)′DΠµ−1 − (I −Πl)Ql+1D

−(DΠl+1D
−)′DΠµ−1}

= Πk−1

µ−1∑
l=k

{PlD−(DΠlD
−)′ − (I −Πl)Ql+1D

−(DΠl+1D
−)′DΠµ−1D

−}DΠµ−1

= Πk−1

µ−1∑
l=k

{PlD−(DΠlD
−)′ − (I −Πl)Ql+1D

−(DΠµ−1D
−)′DΠµ−1D

−}DΠµ−1.

Then, taking into account that Qµ = 0, as well as the properties

QkPk+1 · · ·Pµ−1 = QkPk+1 · · ·Pµ−1Πk−1, QkPk+1 · · ·Pµ−1Pk = QkPk+1 · · ·Pµ−1Πk,

QkPk+1 · · ·Pµ−1Ql = 0, if l ≥ k + 1,

we compute

QkPk+1 · · ·Pµ−1

µ−1∑
l=0

VlDΠµ−1

= QkPk+1 · · ·Pµ−1

µ−1∑
l=k+1

D−(DΠlD
−)′DΠµ−1

+QkPk+1 · · ·Pµ−1

µ−1∑
l=k

ΠlQl+1︸ ︷︷ ︸
Πk−Πµ−1

D−(DΠµ−1D
−)′DΠµ−1

= QkPk+1 · · ·Pµ−1

µ−1∑
l=k+1

D−(DΠlD
−)′DΠµ−1 +QkPk+1 · · ·Pµ−1Pk(DΠµ−1D

−)′DΠµ−1.
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This leads to

Ak = QkPk+1 · · ·Pµ−1G
−1
µ

{
BkΠµ−1 −

µ−1∑
j=k+1

GjD
−(DΠjD

−)′DΠµ−1

}

+QkPk+1 · · ·Pµ−1

µ−1∑
l=k+1

D−(DΠlD
−)′DΠµ−1 +QkPk+1 · · ·Pµ−1Pk(DΠµ−1D

−)′DΠµ−1.

Due to QkPk+1 · · ·Pµ−1G
−1
µ Gj = QkPk+1 · · ·Pµ−1, for j ≥ k + 1, it follows that

Ak = QkPk+1 · · ·Pµ−1G
−1
µ BkΠµ−1 −QkPk+1 · · ·Pµ−1

µ−1∑
j=k+1

D−(DΠjD
−)′DΠµ−1

+QkPk+1 · · ·Pµ−1

µ−1∑
l=k+1

D−(DΠlD
−)′DΠµ−1 +QkPk+1 · · ·Pµ−1Pk(DΠµ−1D

−)′DΠµ−1

= QkPk+1 · · ·Pµ−1G
−1
µ BkΠµ−1 +QkPk+1 · · ·Pµ−1PkD

−(DΠµ−1D
−)′DΠµ−1

= Qk∗Πµ−1,

which proves the relations H0 = Q0P1 · · ·Pµ−1KΠµ−1 = Q0∗Πµ−1, and
Hk = Πk−1QkPk+1 · · ·Pµ−1KΠµ−1 = Πk−1AkΠµ−1 = Qk∗Πµ−1, k = 1, . . . , µ − 2. More-
over, it holds that Hµ−1 = Πµ−2Qµ−1K = Qµ−1G

−1
µ Bµ−1Πµ−1 = Πµ−2Qµ−1∗Πµ−1.

(2) Derive

Qk∗Qk = QkPk+1 · · ·Pµ−1G
−1
µ {Bk +GkD

−(DΠµ−1D
−)′DΠk−1}Qk

= QkPk+1 · · ·Pµ−1G
−1
µ BkQk +QkPk+1 · · ·Pµ−1PkD

−(DΠµ−1D
−)′DΠk−1Qk

= QkPk+1 · · ·Pµ−1Qk︸ ︷︷ ︸
=Qk

−QkPk+1 · · ·Pµ−1PkD
−(DΠµ−1︸ ︷︷ ︸

=0

D−)(DΠk−1QkD
−)′D.

Then, Qk∗Qk∗ = Qk∗ follows. The remaining part is evident. �

Later on we prove the existence of fine and complete decouplings. Beforehand we present
several benefits coming along with fine decouplings.

Applying fine decoupling projector functions Q0, . . . , Qµ−1, the subsystem (64) corre-
sponding to the homogeneous DAE (45) simplifies to

0 N01 · · · N0,µ−1

0
. . .

...
. . . Nµ−2,µ−1

0

 (D


v0

v1
...

vµ−1

)′ +


I M01 · · · M0,µ−1

I
. . .

...
. . . Mµ−2,µ−1

I




v0

v1
...

vµ−1


(71)

+


H0

0
...
0

D−u =


0
0
...
0

 .
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For given u, its solution components are determined successively as

vµ−1 = 0, . . . , v1 = 0, v0 = −H0D
−u,

and hence each solution x ∈ C1
D(I,Rm) of the homogeneous DAE (45) possesses the

representation

x = D−u+ v0 = (I −H0)D−u = (I −Q0∗Πµ−1)D−DΠµ−1D
−u = (I −Q0∗)Πµ−1D

−u,

whereby u = DΠµ−1D
−u is a solution of the homogeneous IERODE

u′ − (DΠµ−1D
−)′u+DΠµ−1G

−1
µ BD−u = 0.

Owing to the relations P0Q0∗ = 0, the continuous matrix function (I − Q0∗)Πµ−1 is also
a projector function, and the nullspace is easily checked to be

ker (I −Q0∗)Πµ−1 = Ncan.

Since each solution of the homogeneous DAE can be represented in this way, the inclusion

Scan ⊆ im (I −Q0∗)Πµ−1

is valid. On the other side, through each element of im ((I − Q0∗(t))Πµ−1(t)), at time t,
passes a DAE solution, and we obtain

im (I −Q0∗)Πµ−1 = Scan.

In fact, fixing an arbitrary pair x0 ∈ im ((I − Q0∗(t0))Πµ−1(t0)), t0 ∈ I, we determine
the unique solution u of the standard IVP

u′ − (DΠµ−1D
−)′u+DΠµ−1G

−1
µ BD−u = 0, u(t0) = D(t0)Πµ−1(t0)x0,

and then the DAE solution x := (I − Q0∗)Πµ−1D
−u. It results that

x(t0) = (I −Q0∗(t0))Πµ−1(t0)x0 = x0. In consequence, the DAE solution passes through
x0 ∈ im ((I −Q0∗(t0))Πµ−1(t0)).
Owing to the projector properties, the decomposition

Ncan(t)⊕ Scan(t) = Rm, t ∈ I, (72)

becomes valid. Moreover, now we see Scan is a C-subspace of dimension
d = m−

∑µ−1
i=0 (m− ri).

Definition 6.13 For a regular DAE (44) with tractability index µ, which has a fine de-
coupling, the projector function Πcan ∈ C(I, L(Rm)) being uniquely determined by

imΠcan = Scan, kerΠcan = Ncan

is named the canonical projector function of the DAE.
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We underline, both canonical subspaces Scan and Ncan, and the canonical projector func-
tion Πcan depend on the index µ. Sometimes it is reasonable to indicate this writing
Scan µ, Ncan µ and Πcan µ.
The canonical projector plays the same role as the spectral projector does in the time-
invariant case.

Remark 6.14 In earlier papers also the subspaces Si (e.g. [Mär89b]) and the single pro-
jector functions Q0, . . . , Qµ−1 forming a fine decoupling (e.g. [Mär89a], [Mär96]) are
named canonical. This applies, in particular, to projector functions Qµ−1 onto Nµ−1

along Sµ−1. We do not carry on this notation. We know the canonical projector function
in Definition 6.13 to be unique, however, for higher index cases, the single Qi behind are
not uniquely determined as it is demonstrated by [LMT11b, Example 5.4].

Now we are in the position to gather the fruit of the construction.

Theorem 6.15 Let the DAE (44) be regular with tractability index µ, and let
Q0, . . . , Qµ−1 be fine decoupling projector functions.

(1) Then the canonical subspaces Scan and Ncan are C-subspaces of dimensions
d = m−

∑µ−1
i=0 (m− ri) and m− d.

(2) The decomposition (72) is valid, and the canonical projector function has the repre-
sentation

Πcan = (I −Q0∗)Πµ−1.

(3) The coefficients of the IERODE (53) are independent of the choice of the fine de-
coupling projector functions.

Proof: It remains to verify (3). Let two sequences of fine decoupling projector functions
Q0, . . . , Qµ−1 and Q̄0, . . . , Q̄µ−1 be given. Then the canonical projector function has the
representations Πcan = (I − Q0∗)Πµ−1 and Πcan = (I − Q̄0∗)Π̄µ−1. Taking into account
that D̄− = P̄0D

− we derive

DΠµ−1D
− = DΠcanD

− = DΠ̄µ−1D
− = DΠ̄µ−1D̄

−.

Then, with the help of Lemma 3.7 yielding the relation Ḡµ = GµZµ, we arrive at

DΠ̄µ−1Ḡ
−1
µ = DΠµ−1D

−DZ−1
µ G−1

µ = DΠµ−1G
−1
µ ,

DΠ̄µ−1Ḡ
−1
µ BD̄− = DΠµ−1G

−1
µ BD̄− = DΠµ−1G

−1
µ B(I − Q̄0)D− = DΠµ−1G

−1
µ BD−,

and this proves the assertion. �.

For regular index one DAEs, each continuous projector function Q0 generates already a
fine decoupling. Therefore, Proposition 6.9 is now a special case of Theorem 6.15 (3).

For regular index two DAEs, the admissible pair Q0, Q1 provides a fine decoupling, if
Q1 is chosen such that kerQ1 = S1. This is accompanied by the requirement that
imDΠ1D

− = DS1 is a C1-subspace. We point out that, for fine decouplings, we need
some additional smoothness with respect to the regularity notion. While regularity with
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index two comprises the existence of an arbitrary C1 decomposition (i.e. the existence of
a continuously differentiable projector function DΠ1D

−)

imDΠ1D
− ⊕ imDΠ0Q1D

−︸ ︷︷ ︸
=DN1

⊕ kerA = Rn,

one needs for fine decouplings that the special decomposition

DS1 ⊕DN1 ⊕ kerA = Rn,

consists of C1 subspaces. For instance, the semi-explicit DAE in Example 6.10 possesses
the fine decoupling projector functions described in (b), if both subspaces imB12 and
kerB21 are continuously differentiable. However, for regularity, it is enough if imB12 is a
C1-subspace, as it is shown in (a).
Assuming the coefficients A,D,B to be C1, and choosing a continuously differentiable
projector function Q0, the resulting DN1 and DS1 are always C1-subspaces. However, we
do not feel comfortable with such a generous sufficient smoothness assumption, though it
is less demanding than that in derivative array approaches, where one necessarily has to
require A,D,B ∈ C2 for the treatment of an index two problem.
We underline, here only certain continuous subspaces are additionally assumed to belong
to the class C1. Since the precise description of these subspaces is somewhat cumbersome,
we use instead the wording the coefficients of the DAE are sufficiently smooth just to
indicate the smoothness problem.
In essence, the additional smoothness requirements are related to the coupling coefficients
H1, . . . ,Hµ−1 in the subsystem (64), and in particular to the special projectors introduced
in Lemma 6.12. It turns out that, for a fine decoupling of a regular index µ DAE, certain
parts of the coefficients A,D,B have to be continuously differentiable up to degree µ− 1.
This meets the common understanding of index µ DAEs, and it is closely related to
solvability conditions. We present an example for more clarity.

Example 6.16 Consider the DAE
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


︸ ︷︷ ︸

A

(


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


︸ ︷︷ ︸

D

x)′ +


0 0 0 0
0 0 0 −1
0 −1 0 0
α 0 −1 0


︸ ︷︷ ︸

B

x = 0.

on the interval I = [0, 1]. According to the basic continuity assumption, B is continuous,
that is, α ∈ C([0, 1]). Taking a look at the solution satisfying the initial condition x1(0) =
1, that is

x1(t) = 1, x3(t) = α(t), x2(t) = x′3(t) = α′(t), x4(t) = x′′3(t) = α′′(t)

we recognize that we must more reasonably assume α ∈ C2([0, 1]). We demonstrate by
constructing a fine decoupling sequence that precisely this is the smoothness we need.
The first elements of the matrix function sequence can be chosen resp. computed as

Q0 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 , G1 =


1 0 0 0
0 1 0 −1
0 0 1 0
0 0 0 0

 , Q1 =


0 0 0 0
0 1 0 0
0 0 0 0
0 1 0 0

 , G2 =


1 0 0 0
0 1 0 −1
0 −1 1 0
0 0 0 0

 .
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We could continue with

Q2 =


0 0 0 0
0 0 1 0
0 0 1 0
0 0 1 0

 , G3 =


1 0 0 0
0 1 0 −1
0 −1 1 0
0 0 −1 0

 ,
which shows the DAE to be regular with tractability index three, and Q0, Q1, Q2 to be
admissible, if α ∈ C([0, 1]). However, we dismiss this choice of Q2 and compute it instead
in correspondence with the decomposition

N2 ⊕ S2 = {z ∈ R4 : z1 = 0, z2 = z3 = z4} ⊕ {z ∈ R4 : αz1 = z3} = R4.

This leads to

Q2 =


0 0 0 0
α 0 1 0
α 0 1 0
α 0 1 0

 , DΠ2D
− = Π2 =


1 0 0 0
0 0 0 0
−α 0 0 0
0 0 1 0

 ,
and hence, for these Q0, Q1, Q2 to be admissible, the function α is required to be contin-
uously differentiable. The coupling coefficients related to the present projector functions
are

H1 =


0 0 0 0
α′ 0 0 0
0 0 0 0
0 0 0 0

 , H2 = 0.

If α′ does not vanish identically, we have not yet reached a fine decoupling. In the next
round we set Q̄0 = Q0 such that Ḡ1 = G1, but then we put

Q̄1 := Q1∗ := Q1P2G
−1
3 {B1 +G1D

−(DΠ2D
−)′DΠ0} =


0 0 0 0
α′ 1 0 0
0 0 0 0
α′ 1 0 0

 .
in accordance with Lemma 6.12 (see also Lemma 6.17 below). It follows that

DΠ̄1D
− = Π̄1 =


1 0 0 0
−α′ 0 0 0

0 0 0 0
0 0 1 0

 , Ḡ2 =


1 0 0 0
0 1 0 −1
−α′ −1 1 0

0 0 0 0

 ,
and we see, to ensure that DΠ̄1D

− becomes continuously differentiable, and Q̄0, Q̄1 admis-
sible, we need a two times continuously differentiable function α. Then we have N̄2 = N2,
which allows for the choice Q̄2 = Q2. The resulting Q̄0, Q̄1, Q̄2 are fine decoupling projec-
tor functions.

Construction of fine decoupling projector functions.

Now we construct fine decoupling projector functions for the general regular DAE (44).
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As in Example 6.16, we successively improve the decoupling with the help of Lemma 6.12
in several rounds. We begin forming arbitrary admissible projector functions Q0, . . . , Qµ−2

and Gµ−1. Then we determine Qµ−1 by kerQµ−1 = Sµ−1 and imQµ−1 = Nµ−1. This yields
Gµ = Gµ−1 +Bµ−1Qµ−1 as well as

Qµ−1 = Qµ−1G
−1
µ Bµ−1 = Qµ−1∗, and Hµ−1 = Πµ−2Qµ−1∗Πµ−1 = Πµ−2Qµ−1Πµ−1 = 0.

If µ = 2 we have already a fine decoupling. If µ ≥ 3, we assume DΠµ−3Qµ−2∗D
− which

is a priori continuous to be even continuously differentiable, and compose a new sequence
from the previous one. We set

Q̄0 := Q0, . . . , Q̄µ−3 = Qµ−3, and Q̄µ−2 = Qµ−2∗.

DΠ̄µ−2D
− = DΠµ−3D

−−DΠµ−3Qµ−2∗D
− is continuously differentiable, and the projec-

tor functions Q̄0, . . . , Q̄µ−2 are admissible. Further, some technical calculations yield

Ḡµ−1 = Gµ−1 {I + Q̄µ−2Pµ−2 + (I −Πµ−3)Qµ−2D
−(DΠ̄µ−2D

−)′DΠµ−3Q̄µ−2}︸ ︷︷ ︸
Zµ−1

.

The matrix function Zµ−1 remains nonsingular, it has the pointwise inverse

Z−1
µ−1 = I − Q̄µ−2Pµ−2 − (I −Πµ−3)Qµ−2D

−(DΠ̄µ−2D
−)′DΠµ−3Qµ−2.

We complete the current sequence by

Q̄µ−1 := Z−1
µ−1Qµ−1Zµ−1 = Z−1

µ−1Qµ−1.

It results that Q̄µ−1Q̄µ−2 = Z−1
µ−1Qµ−1Qµ−2∗ = 0 and Q̄µ−1Q̄i = Z−1

µ−1Qµ−1Qi = 0 for
i = 0, . . . , µ − 3. Applying several basic properties (e.g. Π̄µ−2 = Π̄µ−2Πµ−2) we find
the representation DΠ̄µ−1D

− = (DΠ̄µ−2D
−)(DΠµ−1D

−) which shows the continuous
differentiability of DΠ̄µ−1D

−. Our new sequence Q̄0, . . . , Q̄µ−1 is admissible. We have
further im Ḡµ−1 = imGµ−1, thus

S̄µ−1 = Sµ−1 = kerWµ−1B = kerWµ−1BZµ−1 = Z−1
µ−1Sµ−1.

This makes clear, Q̄µ−1 = Z−1
µ−1Qµ−1 projects onto N̄µ−1 = Z−1

µ−1Nµ−1 along

S̄µ−1 = Z−1
µ−1Sµ−1, and therefore the new coupling coefficient satisfies H̄µ−1 = 0. Ad-

ditionally, making further technical efforts one attains H̄µ−2 = 0.
If µ = 3, a fine decoupling is reached. If µ ≥ 4, we built the next sequence analogously as

¯̄Q0 := Q̄0, . . . ,
¯̄Qµ−4 := Q̄µ−4,

¯̄Qµ−3 := Q̄µ−3∗,

¯̄Qµ−2 := Z̄−1
µ−2Q̄µ−2Z̄µ−2,

¯̄Qµ−1 := Z̄−1
µ−1Q̄µ−1Z̄µ−1.

Supposing DΠ̄µ−4Q̄µ−3∗D
− to be continuously differentiable, we prove the new sequence

to be admissible, and to generate the coupling coefficients

¯̄Hµ−1 = 0, ¯̄Hµ−2 = 0, ¯̄Hµ−3 = 0.

And so on. Lemma 6.17 below guarantees the procedure to reach its goal.
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Lemma 6.17 Let the DAE (44) with sufficiently smooth coefficients be regular with tractabil-
ity index µ ≥ 3, and let Q0, . . . , Qµ−1 be admissible projector functions.
Let k ∈ {1, . . . , µ− 2} be fixed, and let Q̄k be an additional continuous projector function
onto Nk = kerGk such that DΠk−1Q̄kD

− is continuously differentiable and the inclusion
N0 + · · ·+Nk−1 ⊆ ker Q̄k is valid. Then the following becomes true:

(1) The projector function sequence

Q̄0 := Q0, . . . , Q̄k−1 := Qk−1,

Q̄k,

Q̄k+1 := Z−1
k+1Qk+1Zk+1, . . . , Q̄µ−1 := Z−1

µ−1Qµ−1Zµ−1,

with the determined below continuous nonsingular matrix functions Zk+1, . . . , Zµ−1,
is also admissible.

(2) If, additionally, the projector functions Q0, . . . , Qµ−1 provide an advanced decoupling
in the sense that the conditions (cf. Lemma 6.12)

Qµ−1∗Πµ−1 = 0, . . . , Qk+1∗Πµ−1 = 0

are given, then also the relations

Q̄µ−1∗Π̄µ−1 = 0, . . . , Q̄k+1∗Π̄µ−1 = 0, (73)

are valid, and further

Q̄k∗Π̄µ−1 = (Qk∗ − Q̄k)Πµ−1. (74)

The matrix functions Zi are consistent with those given in Lemma 3.7, however, for an
easier reading we do not access this general lemma in the proof below. In the special case
given here, Lemma 3.7 yields simply Z0 = I, Y1 = Z1 = I,. . . , Yk = Zk = I, and further

Yk+1 = I +Qk(Q̄k −Qk) +
k−1∑
l=0

QlAklQ̄k = (I +
k−1∑
l=0

QlAklQk)(I +Qk(Q̄k −Qk)),

Zk+1 = Yk+1,

Yj = I +

j−2∑
l=0

QlAj−1lQj−1, Zj = YjZj−1, j = k + 2, . . . , µ.

Besides the general property ker Π̄j = kerΠj, j = 0, . . . , µ − 1, which follows from
Lemma 3.7, now it additionally holds that

im Q̄k = imQk, but ker Q̄j = kerQj, j = k + 1, . . . , µ− 1.

We refer to the Appendix B for the extensive calculations proving this lemma.

Lemma 6.17 guarantees the existence of fine decoupling projector functions, and it con-
firms the procedure sketched above to be reasonable.
The following theorem is the time-varying counterpart of [LMT11b, Theorem 5.2] on
constant coefficient DAEs.
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Theorem 6.18 Let the DAE (44) be regular with tractability index µ.

(1) If the coefficients of the DAE are sufficiently smooth, then a fine decoupling exists.

(2) If there is a fine decoupling, then there is also a complete decoupling.

Proof: (1) The first assertion is a consequence of Lemma 6.17 and the procedure described
above.
(2) Let fine decoupling projectors Q0, . . . , Qµ−1 be given. We form the new sequence

Q̄0 := Q0∗, Q̄1 := Z−1
1 Q1Z1, . . . , Q̄µ−1 := Z−1

µ−1Qµ−1Zµ−1,

with the matrix functions Zj from Lemma 3.7, in particular Z1 = I + Q̄0P0. It holds
that D̄− = P̄0D

−. Owing to the special form of Zj, the relations Πj−1Zj = Πj−1,
Πj−1Z

−1
j = Πj−1 are given for j ≤ i − 1. This yields Q̄iQ̄j = Q̄iZ

−1
j QjZj =

Q̄iΠi−1Z
−1
j Qj︸ ︷︷ ︸

=0

Zj = 0.

Expressing DΠ̄1D̄
− = DP̄0Z

−1
1 P1Z1P̄0D

− = DP0Z
−1
1 P1︸ ︷︷ ︸
Π1

Z1P̄0D
− = DΠ1D

−, and succes-

sively,

DΠ̄iD̄
− = DΠ̄i−1Z

−1
i PiZiP̄

−
D

= DΠ̄i−1D̄
−DZ−1

i PiZiP̄
−
D = DΠi−1D

−DZ−1
i Pi︸ ︷︷ ︸

Πi

ZiP̄
−
D = DΠiD

−,

we see the new sequence of projector functions Q̄0, . . . , Q̄µ−1 to be admissible, too.
Analogously to Lemma 6.17, one shows

H̄µ−1 = 0, . . . , H̄1 = 0, H̄0 = (Q0∗ − Q̄0)Πµ−1,

and this completes the proof. �

6.3 Solvability and flow

Here we continue to investigate regular DAEs (44) which have tractability index µ and
fine decoupling projector functions Q0, . . . , Qµ−1. It is worth emphasizing once more that
Theorem 6.18 guarantees the existence of a fine decoupling for all regular DAEs with
sufficiently smooth coefficients. By Theorem 6.15 (cf. also Lemma 6.12),

Πcan = (I −Q0∗)Πµ−1 = (I −H0)Πµ−1

is the canonical projector function onto Scan along Ncan, and hence

DΠcan = DΠµ−1, DΠcanD
− = DΠµ−1D

−, and imDΠµ−1 = imDΠcan = DScan.

Taking into account also Lemma 6.5 (7), the IERODE can now be written as

u′ − (DΠcanD
−)′u+DΠcanG

−1
µ BD−u = DΠcanG

−1
µ q, (75)
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and, by Lemma 6.4, DScan is a time-varying invariant subspace for its solutions, that
means, u(t0) ∈ D(t0)Scan(t0) implies u(t) ∈ D(t)Scan(t) for all t ∈ I. This invariant sub-
space applies also to the homogeneous version of the IERODE. The IERODE is unique,
its coefficients are independent of the special choice of the fine decoupling projector func-
tions, as it is pointed out in the previous subsection.
With regard to the fine decoupling, the Proposition 6.6 (6), and the fact that
vi = Πi−1Qivi holds true for i = 1, . . . , µ − 1, the subsystem (64) has now the slightly
simpler form

v0 = −
µ−1∑
l=1

N0l(Dvl)
′ −

µ−1∑
l=2

M0l vl −H0D
−u+ L0q, (76)

vi = −
µ−1∑
l=i+1

Nil(Dvl)′ −
µ−1∑
l=i+2

Mil vl + Liq, i = 1, . . . , µ− 3, (77)

vµ−2 = −Nµ−2,µ−1(Dvµ−1)′ + Lµ−2q, (78)

vµ−1 = Lµ−1q. (79)

By Theorem 6.7, the DAE (44) is equivalent to the system consisting of the IERODE and
the subsystem (76)-(79).

6.3.1 Homogeneous DAEs

The following solvability assertion is a simple consequence of the above.

Theorem 6.19 Let the homogeneous DAE (45) be regular, and let the coefficients be
smooth enough for the existence of a fine decoupling. Then,

(1) for each arbitrary x0 ∈ Rm, the IVP

A(Dx)′ +Bx = 0, x(t0)− x0 ∈ Ncan(t0), (80)

is uniquely solvable in C1
D(I,Rm),

(2) the homogeneous IVP

A(Dx)′ +Bx = 0, x(t0) ∈ Ncan(t0),

has the trivial solution only, and

(3) through each x0 ∈ Scan(t0) passes exactly one solution.

Remark 6.20 Sometimes is seems to be more comfortable to describe the initial condition
in (80) by an equation, for instance, as

Πcan(t0)(x(t0)− x0) = 0, (81)

and as
C(x(t0)− x0) = 0, (82)

by any matrix C such that kerC = kerΠcan(t0) = Ncan(t0). For instance, taking arbitrary
admissible projector functions Q̃0, . . . , Q̃µ−1, one can choose C such that C = CΠ̃can(t0).
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Proof: (2) The initial condition yields u(t0) = D(t0)Πcan(t0)x(t0) = 0. Then, the result-
ing homogeneous IVP for the IERODE admits the trivial solution u = 0 only. Therefore,
the DAE solution x = ΠcanD

−u vanishes identically, too.
(1) We provide the solution u of the homogeneous IERODE which satisfies the initial
condition u(t0) = D(t0)Πcan(t0)x0. Then we form the DAE solution x = ΠcanD

−u, and
check the initial condition to be met:

x(t0)− x0 = Πcan(t0)D(t0)−u(t0)− x0 = Πcan(t0)D(t0)−D(t0)Πcan(t0)x0 − x0

= −(I −Πcan(t0))x0 ∈ Ncan(t0).

Owing to (2) this is the only solution of the IVP.
(3) We provide the IVP solution as in (1), with x0 replaced by x0. This leads to

x(t0) = Πcan(t0)D(t0)−u(t0) = Πcan(t0)D(t0)−D(t0)Πcan(t0)x0 = Πcan(t0)x0 = 0.

The uniqueness is ensured by (2). �

As it is common in ODE theory we denote by x(., t0, x
0) the solution of the IVP (80).

In contrast to the value x0 being not necessarily consistent, we indicate by x0 a consis-
tent value. As for regular time varying ODEs (e.g. [Gaj99]), we may also consider the
qualitative behavior of solutions.

Definition 6.21 Let the homogeneous regular DAE (45) be given on the infinite interval
I = [0,∞), and let the coefficients be smooth enough for fine decouplings. The homoge-
neous DAE is said to be

(1) stable, if for every ε > 0, t0 ∈ I a value δ(ε, t0) > 0 exists, such that
x0, x̄0 ∈ Scan(t0), |x0 − x̄0| < δ(ε, t0) imply the existence of solutions
x(., t0, x0), x(., t0, x̄0) ∈ C1

D(I,Rm), as well as |x(t, t0, x0)− x(t, t0, x̄0)| < ε, t ≥ t0,

(2) uniformly stable, if δ(ε, t0) in (1) is independent of t0,

(3) asymptotically stable, if (1) holds true and

|x(t, t0, x0)− x(t, t0, x̄0)| −−−→
t→∞

0 for all x0, x̄0 ∈ Scan(t0), t0 ∈ I,

(4) uniformly asymptotically stable, if the limit in (3) is uniform with respect to t0.

6.3.2 Fundamental solution matrices

By Theorem 6.19, regular homogeneous DAEs are close to regular homogeneous ODEs.
This applies also to their fundamental solution matrices.
Denote by U(t, t0) the classical fundamental solution matrix of the IERODE, that is, of
the explicit ODE (75), which is normalized at t0 ∈ I, i.e. U(t0, t0) = I.
For each arbitrary initial value u0 ∈ D(t0)Scan(t0), the solution of the homogeneous
IERODE passing through remains for ever in this invariant subspace, which means
U(t, t0)u0 ∈ D(t)Scan(t) for all t ∈ I, and hence

U(t, t0)D(t0)Πcan(t0) = D(t)Πcan(t)D(t)−U(t, t0)D(t0)Πcan(t0), t ∈ I. (83)
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Each solution of the homogeneous DAE (45) can now be expressed as

x(t) = (I −H0(t))D(t)−U(t, t0)u0 = Πcan(t)D(t)−U(t, t0)u0, t ∈ I, u0 ∈ D(t0)Scan(t0),
(84)

and also as

x(t) = Πcan(t)D(t)−U(t, t0)D(t0)Πcan(t0)︸ ︷︷ ︸
X(t,t0)

x0, t ∈ I, with x0 ∈ Rm. (85)

If x ∈ C1
D(I,Rm) fulfills the homogeneous DAE (45), then there is exactly one

u0 ∈ D(t0)Scan(t0) such that the expression (84) is valid, and there are elements x0 ∈ Rm

such that (85) applies. Except for the index zero case, x0 is not unique.
Conversely, for each arbitrary x0 ∈ Rm, formula (85) provides a solution of (45). We
know, the solution values of the homogeneous DAE lie in the d-dimensional canoni-
cal subspace Scan, in particular x(t0) ∈ Scan(t0). Therefore, starting from an arbitrary
x0 ∈ Rm, the consistency of x(t0) with x0 can not be expected. What we always attain is
the relation

x(t0) = Πcan(t0)x0,

but the condition x(t0) = x0 is exclusively reserved for x0 belonging to Scan(t0).

The composed matrix function

X(t, t0) := Πcan(t)D(t)−U(t, t0)D(t0)Πcan(t0), t ∈ I, (86)

arising in the solution expression (85) plays the role of a fundamental solution matrix of
the DAE (44). In comparison with the (regular) ODE theory, there are several differences
to be considered. By construction, it holds that X(t0, t0) = Πcan(t0) and

imX(t, t0) ⊆ Scan(t), Ncan(t0) ⊆ kerX(t, t0), t ∈ I, (87)

so that X(t, t0) is a singular matrix, except for the case µ = 0. X(., t0) is continuous,
and DX(., t0) = DΠcanD

−U(., t0)D(t0)Πcan(t0) is continuously differentiable, thus the
columns of X(., t0) are functions belonging to C1

D(I,Rm).
We show that X(t, t0) has constant rank d. Fix an arbitrary t 6= t0 and investigate the
nullspace of X(t, t0). X(t, t0)z = 0 means U(t, t0)D(t0)Πcan(t0)z ∈ kerΠcan(t)D(t)−, and
with regard of (83) this yields U(t, t0)D(t0)Πcan(t0)z = 0, thus D(t0)Πcan(t0)z = 0, and
further Πcan(t0)z = 0. Owing to (87), and for reasons of dimensions, it follows that

imX(t, t0) = Scan(t), Ncan(t0) = kerX(t, t0), rankX(t, t0) = d, t ∈ I. (88)

Lemma 6.22 The matrix function

X(t, t0)− = Πcan(t0)D(t0)−U(t, t0)−1D(t)Πcan(t), t ∈ I,

is the reflexive generalized inverse of X(t, t0) determined by

XX−X = X, X−XX− = X−, X−X = Πcan(t0), XX− = Πcan.
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Proof: Applying the invariance (83), we derive

X−X = Πcan(t0)D(t0)−U−1DΠcanΠcanD
−UD(t0)Πcan(t0)

= Πcan(t0)D(t0)−U−1DΠcanD
−UD(t0)Πcan(t0)︸ ︷︷ ︸

UD(t0)Πcan(t0)

= Πcan(t0),

and X−XX− = (X−X)X− = X−, XX−X = X(X−X) = X.
Next we verify the relation

U−1DΠcan = D(t0)Πcan(t0)D(t0)−U−1DΠcan, (89)

which in turn implies

XX− = ΠcanD
−UD(t0)Πcan(t0)Πcan(t0)D(t0)−U−1DΠcan

= ΠcanD
−U D(t0)Πcan(t0)D(t0)−U−1DΠcan︸ ︷︷ ︸

U−1DΠcan

= Πcan.

From
U ′ − (DΠcanD

−)′U +DΠcanG
−1
µ BD−U = 0, U(t0) = 0,

it follows that
U−1′ + U−1(DΠcanD

−)′ − U−1DΠcanG
−1
µ BD− = 0.

Multiplication by DΠcanD
− from the right results in the explicit ODE

V ′ = V (DΠcanD
−)′ + V DΠcanG

−1
µ BD−

for the matrix function V = U−1DΠcanD
−. Then, the matrix function

Ṽ := (I − D(t0)Πcan(t0)D(t0)−)V vanishes identically as the solution of the classical
homogeneous IVP

Ṽ ′ = Ṽ (DΠcanD
−)′ + Ṽ DΠcanG

−1
µ BD−, Ṽ (t0) = 0,

and this proves (89). �

The columns of X(., t0) are solutions of the homogeneous DAE (45), and the matrix
function X(., t0) itself satisfies the equation

A(DX)′ +BX = 0, (90)

as well as the initial condition

X(t0, t0) = Πcan(t0), (91)

or, equivalently,
Πcan(t0)(X(t0, t0)− I) = 0. (92)

Definition 6.23 Let the DAE (44) be regular with fine decoupling projector functions.
The matrix function Y ∈ C(I, L(Rs,Rm)), d ≤ s ≤ m, is said to be a fundamental
solution matrix of the DAE, if its columns belong to C1

D(I,Rm), the equation

A(DY )′ +BY = 0
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is fulfilled, and the condition imY = Scan is valid.
A fundamental solution matrix is named minimal of size, if s = d, and maximal of size,
if s = m.
A maximal size fundamental solution matrix Y is said to be normalized at t0, if
Πcan(t0)(Y (t0)− I) = 0.

In this sense, the above matrix function X(., t0) (cf. 86) is a maximal size fundamental
solution normalized at t0.

Remark 6.24 Concerning fundamental solution matrices of DAEs, there is no common
agreement in the literature. Minimal and maximal size fundamental solution matrices, as
well as relations among them, are first described in [BM00] for standard form index one
DAEs. A comprehensive analysis for regular lower index DAEs, both in standard form and
with properly stated leading term, is given in [Bal04]. This analysis applies analogously
to regular DAEs with arbitrary index.
Roughly speaking, minimal size fundamental solution matrices have a certain advantage
in view of computational aspects, since they have full column rank. For instance, the
Moore-Penrose inverse can be easily computed. In contrast, the benefits from maximal size
fundamental solution matrices are a natural normalization and useful group properties as
pointed out e.g. in [BM02], [Bal04].
If X(t, t0) is the maximal size fundamental solution matrix normalized at t0 ∈ I, and
X(t, t0)− is the generalized inverse described by Lemma 6.22, then it holds for all t, t0, t1 ∈
I that

X(t, t1)X(t1, t0) = X(t, t0), and X(t, t0)− = X(t0, t),

as immediate consequences of the construction, and Lemma 6.22.

Applying normalized maximal size fundamental solution matrices one can modify results
on flow properties of explicit ODEs (e.g. [Gaj99] to be considered for DAEs.

Proposition 6.25 Let the homogeneous DAE (45) be regular with sufficiently smooth
coefficients so that fine decoupling projector functions exist. Then the following assertions
hold true with positive constants Kt0 , K and α:

(1) If |X(t, t0)| ≤ Kt0 , t ≥ t0, then the DAE is stable.

(2) If |X(t, t0)| −−−→
t→∞

0, then the DAE is asymptotically stable.

(3) If |X(t, t0)X(s, t0)−| ≤ K, t ≥ s ≥ t0, then the DAE is uniformly stable.

(4) If |X(t, t0)X(s, t0)−| ≤ Ke−α(t−s), t ≥ s ≥ t0, then the DAE is uniformly asymptot-
ically stable.

Proof: (1) It suffices to put δ(t0, ε) = ε/Kt0 .
(2) This is now obvious.
(4) Take x0, x̄0 ∈ Scan(t0), z0 := x0 − x̄0 6= 0 such that X(t, t0)z0 has no zeros. then we
compute for t ≥ s

|X(t, t0)z0|
|X(s, t0)z0|

=
|X(t, t0)Πcanz0|
|X(s, t0)z0|

=
|X(t, t0)X(s, t0)−X(s, t0)z0|

|X(s, t0)z0|
≤ |X(t, t0)X(s, t0)−| ≤ Ke−α(t−s).
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This implies

|x(t, t0, x0)− x(t, t0, x̄0)| = |X(t, t0)z0| ≤ Ke−α(t−s)|x(s, t0, x0)− x(s, t0, x̄0)|.

(3) This proves as (4), with α = 0. �

Definition 6.26 The regular DAE (45) with fine decoupling is said to be dichotomic,
if there are constants K,α, β ≥ 0 , and a nontrivial projector (not equal to the zero or
identity matrix) Pdich ∈ L(Rm) such that Pdich = Πcan(t0)Pdich = PdichΠcan(t0), and the
following inequalities apply for all t, s ∈ I:

|X(t, t0)PdichX(s, t0)−| ≤ Ke−α(t−s), t ≥ s,

|X(t, t0)(I − Pdich)X(s, t0)−| ≤ Ke−β(s−t), t ≤ s.

If αβ > 0, then one speaks of an exponential dichotomy.

Sometimes it is reasonable writing the last inequality in the form

|X(t, t0)(Πcan(t0)− Pdich)X(s, t0)−| ≤ Ke−β(s−t), t ≤ s.

It should be pointed out that dichotomy is actually independent of the reference point t0.
Namely, for t1 6= t0, with Pdich,t1 := X(t1, t0)PdichX(t1, t0)− we have a projector such that
Pdich,t1 = Πcan(t1)Pdich,t1 = Pdich,t1Πcan(t1) and

|X(t, t1)Pdich,t1X(s, t1)−| ≤ Ke−α(t−s), t ≥ s,

|X(t, t1)(Πcan(t1)− Pdich,t1)X(s, t1)−| ≤ Ke−β(s−t), t ≤ s.

Analogously to the ODE case, the flow of a dichotomic regular DAE is divided into two
parts, one containing in certain sense nonincreasing solution, the other with nondecreas-
ing ones. More precisely, for a nontrivial x0 ∈ imPdich ⊆ Scan(t0), the DAE solution
x(t, t0, x0) = X(t, t0)x0 has no zeros, and it satisfies for t ≥ s the inequalities

|x(t, t0, x0)|
|x(s, t0, x0)|

=
|X(t, t0)x0|
|X(s, t0)x0|

=
|X(t, t0)PdichΠcan(t0)x0|

|X(s, t0)x0|

=
|X(t, t0)PdichX(s, t0)−X(s, t0)x0|

|X(s, t0)x0|
≤ |X(t, t0)PdichX(s, t0)−| ≤ Ke−α(t−s).

For solutions x(t, t0, x0) = X(t, t0)x0 with x0 ∈ im (I − Pdich)Πcan ⊆ Scan(t0) we show
analogously, for t ≤ s,

|x(t, t0, x0)|
|x(s, t0, x0)|

=
|X(t, t0)x0|
|X(s, t0)x0|

=
|X(t, t0)(I − Pdich)Πcan(t0)x0|

|X(s, t0)x0|

=
|X(t, t0)(I − Pdich)X(s, t0)−X(s, t0)x0|

|X(s, t0)x0|
≤ |X(t, t0)(I − Pdich)X(s, t0)−| ≤ Ke−β(s−t).

The canonical subspace of the dichotomic DAE decomposes into

Scan(t) = imX(t, t0) = imX(t, t0)Pdich ⊕ imX(t, t0)(I − Pdich) =: S−can(t)⊕ S+
can(t).
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The following two inequalities result for t ≥ s, and they characterize the subspaces S−can
and S+

can as those containing nonincreasing and nondecreasing solutions, respectively:

|x(t, t0, x0)| ≤ Ke−α(t−s)|x(s, t0, x0)|, if x0 ∈ S−can,
1

K
eβ(t−s)|x(s, t0, x0)| ≤ |x(t, t0, x0)|, if x0 ∈ S+

can.

In particular, for s = t0 it results that

|x(t, t0, x0)| ≤ Ke−α(t−t0)|x0|, if x0 ∈ S−can,
1

K
eβ(t−t0)|x0| ≤ |x(t, t0, x0)|, if x0 ∈ S+

can.

If α > 0, and I = [t0,∞), then |x(t, t0, x0)| tends to zero for t tending to ∞, if x0 be-
longs to S−can(t0). If β > 0 and x0 ∈ S+

can(t0), then x(t, t0, x0) growths unboundedly with
increasing t.

As for explicit ODEs, dichotomy makes good sense on infinite intervals I. The growth
behavior of fundamental solutions is also important for the condition of boundary value
problems stated on compact intervals (e.g. [AMR88] for explicit ODEs, also [LM90] for
index one DAEs). Dealing with compact intervals one supposes a constant K of moderate
size.

Example 6.27 Consider the semi-explicit DAE[
I
0

]
(
[
I 0

]
x)′ +

[
B11 B12

B21 B22

]
x = 0,

consisting of three equations, m1 = 2,m2 = 1, n = 2. Let B22 have no zeros, let the
coefficients be such that

B11 +B12

[
γ1 γ2

]
=

[
α 0
0 −β

]
,
[
γ1 γ2

]
:= −B−1

22 B21,

with constants α, β ≥ 0. Then, the canonical projector function and the IERODE have
the form (cf. Example 6.8)

Πcan =

 1 0 0
0 1 0
γ1 γ2 0

 , and u′ +

[
α 0
0 −β

]
u = 0.

The IERODE is obviously dichotomic. Compute the fundamental solution matrix of the
DAE and its generalized inverse:

X(t, t0) =

 e−α(t−t0) 0 0
0 eβ(t−t0) 0

γ1(t)e−α(t−t0) γ2(t)eβ(t−t0) 0

 , X(t, t0)− =

 eα(t−t0) 0 0
0 e−β(t−t0) 0

γ1(t0)eα(t−t0) γ2(t0)e−β(t−t0) 0

 .
The projector

Pdich =

 1 0 0
0 0 0

γ1(t0) 0 0

 , Πcan(t0)− Pdich =

0 0 0
0 1 0
0 γ2(t0) 0

 ,
58



meets the condition of Definition 6.26, and it results that

X(t, t0)PdichX(t, t0)− = e−α(t−t0)

 1 0 0
0 0 0

γ1(t) 0 0

 , and S−can(t) = span

 1
0

γ1(t)

 ,
X(t, t0)(Πcan(t0)−Pdich)X(t, t0)− = eβ(t−t0)

0 0 0
0 1 0
0 γ2(t) 0

 , and S+
can(t) = span

 0
1

γ2(t)

 ,
If both γ1 and γ2 are bounded functions, then this DAE is dichotomic. If, additionally, α
and β are positive, the DAE has an exponential dichotomy. We see, if the entries of the
canonical projector remain bounded, then the dichotomy of the IERODE is passed over to
the DAE. In contrast, if the functions γ1, γ2 growth unboundedly, the situation within the
DAE may change. For instance, if α = 0 and β > 0, then the fundamental solution

X(t, t0) =

 1 0 0
0 eβ(t−t0) 0

γ1(t) γ2(t)eβ(t−t0) 0


indicates each nontrivial solution to growth unboundedly though the IERODE is dichotomic.

The last example is somewhat too simple in the sense that DScan = imD = Rn is valid,
which happens only for regular index one DAEs, if A has full column rank, and D has
full row rank. In general, DScan is a time-varying subspace of imD, and the IERODE at
the whole does not comprise an exponential dichotomy. Here the question is, whether the
IERODE shows a dichotomic behavior along its (time-varying) invariant subspace DScan.
We do not go in more details in this direction.

6.3.3 Inhomogeneous DAEs with admissible excitations

Turn to inhomogeneous DAEs, first supposing the excitation to be such that a solution
exists. Before long, in the next part, we characterize the classes of admissible functions
in detail.

Definition 6.28 The function q ∈ C(I,Rm) is named an admissible excitation for the
DAE (44), if the DAE is solvable for this q, i.e., if a solution xq ∈ C1

D(I,Rm) exists such
that A(Dxq)

′ +Bxq = q.

Proposition 6.29 Let the DAE (44) be regular with tractability index µ, and let a fine
decoupling be given.

(1) Then, q ∈ C(I,Rm) is an admissible excitation, if and only if the IVP

A(Dx)′ +Bx = q, x(t0) ∈ Ncan(t0), (93)

admits a unique solution.

(2) Each q ∈ C(I,Rm), which for µ ≥ 2 fulfills the condition q = GµP1 · · ·Pµ−1G
−1
µ q, is

an admissible excitation.
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Proof: (1) Let q be admissible and xq the associated solution. Then the function
x̃(t) := xq(t) − X(t, t0)xq(t0), t ∈ I, satisfies the IVP (93). The uniqueness results
from Theorem 6.19 (2).
The reverse is trivial.
(2) From the condition q = GµP1 · · ·Pµ−1G

−1
µ q it follows that

Liq = Πi−1QiPi+1 · · ·Pµ−1G
−1
µ q

= Πi−1QiPi+1 · · ·Pµ−1P1 · · ·Pµ−1G
−1
µ q = 0, i = 1, . . . µ− 2,

Lµ−1q = Πµ−2Qµ−1G
−1
µ q = Πµ−2Qµ−1P1 · · ·Pµ−1G

−1
µ q = 0.

In consequence, the subsystem (77)-(79) yields successively vµ−1, . . . , v1 = 0. The IERODE
(75) is solvable for each arbitrary continuous excitation. Denote by u∗ an arbitrary solu-
tion corresponding to q. Then, the function

v0 = −H0D
−u∗ + L0q = −H0D

−u∗ +Q0G
−1
µ q

results from equation (76), and

x := D−u∗ + v0 = ΠcanD
−u∗ +Q0G

−1
µ q

is a solution of the DAE (44) corresponding to this excitation q. �

For a regular index one DAE, all continuous functions q are admissible. For regular
higher index DAEs, the additional projector function GµP1 · · ·Pµ−1G

−1
µ cuts away the

”dangerous” parts of a function, and ensures that only the zero function is differentiated
within the subsystem (76)-(79). For higher index DAEs, general admissible excitations
have certain smoother components. We turn back to this problem before long.

Example 6.30 Consider the DAE1 0
0 1
0 0

 (

[
1 α 0
0 1 0

]
x)′ +

0 0 0
0 0 −1
0 1 0

x = q.

Here, α is a continuous scalar function. Set and derive

D− =

1 −α
0 1
0 0

 , G0 =

1 α 0
0 1 0
0 0 0

 , Q0 =

0 0 0
0 0 0
0 0 1

 , G1 =

1 α 0
0 1 −1
0 0 0

 ,
and further

Q1 =

0 −α 0
0 1 0
0 1 0

 , Q1Q0 = 0, DΠ1D
− =

[
1 0
0 0

]
, G2 =

1 α 0
0 1 −1
0 1 0


The projector functions Q0, Q1 are admissible, G2 is nonsingular, and hence the DAE is
regular with tractability index two. The given property kerQ1 = S1 = {z ∈ R3 : z2 = 0}
indicates that Q0, Q1 already provide a fine decoupling. Compute additionally

Πcan = Π1 =

1 α 0
0 0 0
0 0 0

 , G−1
2 =

1 0 −α
0 0 1
0 −1 1

 , G2P1G
−1
2 =

1 0 0
0 1 0
0 0 0

 .
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A closer look to the detailed equations makes clear, each admissible excitation q must
have a continuously differentiable component q3. By condition q = G2P1G

−1
2 q, the third

component of q is put to be zero.

Theorem 6.31 Let the DAE (44) be regular with sufficiently smooth coefficients so that
a fine decoupling exists. Let q ∈ C(I,Rm) be an admissible excitation, and let the matrix
C ∈ L(Rm,Rs) have the nullspace kerC = Ncan(t0).

(1) Then, for each x0 ∈ Rm, the IVP

A(Dx)′ +Bx = q, C(x(t0)− x0) = 0, (94)

admits exactly one solution.

(2) The solution of the IVP (94) can be expressed as

x(t, t0, x
0) = X(t, t0)x0 + xq(t),

whereby xq ∈ C1
D(I,Rm) is the unique solution of the IVP

A(Dx)′ +Bx = q, Cx(t0) = 0, (95)

Proof: (1) It holds that C = CΠcan(t0). Since q is admissible, by Proposition 6.29(1),
the solution xq exists and is unique. Then the function x∗ := X(., t0)x0 +xq belongs to the
function space C1

D(I,Rm) and satisfies the DAE. Further, x∗ meets the initial condition

C(x∗(t0)− x0) = CΠcan(t0)(x∗(t0)− x0) = CΠcan(t0)(Πcan(t0)x0 + xq(t0)− x0) = 0,

and hence, x∗ satisfies the IVP (94). By Theorem 6.19, x∗ is the only IVP solution. This
proves at the same time (2). �

We take a further look to the structure of the DAE solutions xq and x(., t0, x
0). To the

given admissible excitation q, we denote

v := v1 + · · ·+ vµ−1 + L0q −
µ−1∑
l=1

N0l(Dvl)
′ −

µ−1∑
l=2

M0lvl, (96)

whereby v1, . . . , vµ−1 ∈ C1
D(I,Rm) are determined by equations (77)-(79) in dependence

of q. All needed derivatives exist due to the admissibility of q. If q vanishes identically,
so does v. By construction, v(t) ∈ Ncan(t), t ∈ I, and Dv = Dv1 + · · · + Dvµ−1,
thus v ∈ C1

D(I,Rm). The function v is fully determined by q and the coefficients of
the subsystem (76)-(79). It does not depend neither of the initial condition nor of the
IERODE solution.
Introduce further the continuously differentiable function uq as

uq(t) :=

∫ t

t0

U(t, t0)U(s, t0)−1D(s)Πcan(s)G−1
µ (s)q(s)ds

=U(t, t0)

∫ t

t0

X(s, t0)−G−1
µ (s)q(s)ds, t ∈ I,
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that is, as the solution of the inhomogeneous IERODE completed by the homogeneous
initial condition u(t0) = 0. Now the solution xq and, in particular, its value at t0 can be
expressed as

xq(t) = D(t)−uq(t)−H0(t)D(t)−uq(t) + v(t) = Πcan(t)D(t)−uq(t) + v(t),

xq(t0) = v(t0) ∈ Ncan(t0).

The solution of the IVP (94) and its value at t0 can be written in the form

x(t, t0, x
0) = X(t, t0)x0 +Πcan(t)D(t)−uq(t) + v(t), (97)

x(t0, t0, x
0) = Πcan(t0)x0 + v(t0), (98)

but also as

x(t, t0, x
0) = Πcan(t)D(t)−U(t, t0)D(t0)Πcan(t0)x0 +Πcan(t)D(t)−uq(t) + v(t)

= Πcan(t)D(t)− {U(t, t0)D(t0)Πcan(t0)x0 + uq(t)}︸ ︷︷ ︸
u(t,t0,D(t0)Πcan(t0)x0)

+v(t).

The last representation

x(t, t0, x
0) = Πcan(t)D(t)−︸ ︷︷ ︸ u(t, t0, D(t0)Πcan(t0)x0)︸ ︷︷ ︸ + v(t)︸︷︷︸

⇑ ⇑ ⇑
wrapping inherent flow perturbation

unveils the general solution structure of regular linear DAEs to be the perturbed and
wrapped flow of the IERODE along the invariant subspace DScan. If the wrapping is thin
(bounded) and the perturbation disappears, then the situation is close to regular ODEs.
However, it may well happen that wrapping and perturbation dominate (cf. Example
6.27). In extreme cases, it holds that Scan = {0}, thus the inherent flow vanishes, and the
perturbation term only remains (cf. Example 2.3).

From Theorem 6.31, and the representation (97), it follows that, for each given admissible
excitation, the set

Mcan,q(t) := {z + v(t) : z ∈ Scan(t)}, t ∈ I, (99)

is occupied with solution values at time t, and all solution values at time t belong to this
set. In particular, for x0 ∈Mcan,q(t0) it results that x0 = z0 +v(t0), z0 ∈ Scan(t0), further
Πcan(t0)x0 = z0 and

x(t0, t0, x0) = Πcan(t0)x0 + v(t0) = z0 + v(t0) = x0.

By construction, the inclusions

Scan(t) ⊆ S0(t) = {z ∈ Rm : B(t)z ∈ imA(t)} = kerW0(t)B(t),

Mcan,q(t) ⊆M0(t) = {x ∈ Rm : B(t)x− q(t) ∈ imA(t)}
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are valid, wherebyW0(t) is again a projector along imA(t) = imG0(t). Recall that Scan(t)

and S0(t) have the dimensions d = m−
µ−1∑
j=0

(m−rj) = r0−
µ−1∑
j=1

(m−rj) and r0, respectively.

Representing the obvious constraint set as

M0(t) = {x ∈ Rm :W0(t)B(t)x =W0(t)q(t)}
= {z + (W0(t)B(t))−W0(t)q(t) : z ∈ S0(t)}

we know thatM0(t), as an affine space, inherits its dimension from S0(t), whileMcan,q(t)
has the same dimension d as Scan(t).
Since d = r0 if µ = 1, and d < r0 if µ > 1, Mcan,q(t) coincides with M0(t) for index-1
DAEs, however, for higher index DAEs, Mcan,q(t) is merely a proper subset of M0(t).
Mcan,q(t) is the set of consistent values at time t. The knowledge of this set gives rise for
an adequate modification of the stability notions given in Definition 6.21 for homogeneous
DAEs. As pointed out in [Bal04] for lower index cases, in general,Mcan,q is a time-varying
affine linear subspace of dimension d.

Definition 6.32 Let the regular DAE (44) be given on the infinite interval
I = [0,∞), and let the coefficients be smooth enough for fine decouplings. Let the ex-
citation q be admissible. The DAE is said to be

(1) stable, if for every ε > 0, t0 ∈ I a value δ(ε, t0) > 0 exists, such that
x0, x̄0 ∈ Mcan,q(t0), |x0 − x̄0| < δ(ε, t0) imply the existence of solutions
x(., t0, x0), x(., t0, x̄0) ∈ C1

D(I,Rm) as well as |x(t, t0, x0)− x(t, t0, x̄0)| < ε, t0 ≤ t,

(2) uniformly stable, if δ(ε, t0) in (1) is independent of t0,

(3) asymptotically stable, if (1) holds true, and

|x(t, t0, x0)− x(t, t0, x̄0)| −−−→
t→∞

0 for all x0, x̄0 ∈Mcan,q(t0), t0 ∈ I,

(4) uniformly asymptotically stable, if the limit in (3) is uniform with respect to t0.

Remark 6.33 We can dispense with the explicit use of the set Mcan,q(t0) within the
stability notion by turning to appropriate IVPs (cf. Theorem 6.31). This might be more
comfortable from the practical point of view.
Let C ∈ L(Rm,Rs) denote a matrix that has precisely Ncan(t0) as nullspace, for instance
C = Πµ−1(t0) or C = Πcan(t0).
The DAE (44) is stable, if for every ε > 0, t0 ∈ I, there exists a value δC(ε, t0) > 0 such
that the IVPs

A(Dx)′ +Bx = q, C(x(t0)− x0) = 0,

A(Dx)′ +Bx = q, C(x(t0)− x̄0) = 0,

with x0, x̄0 ∈ Rm, |C(x0 − x̄0)| < δC(ε, t0)), have solutions x(., t0, x
0), x(., t0, x̄

0) ∈
C1
D(I,Rm), and it holds that |x(., t0, x

0)− x(., t0, x̄
0)| < ε, for t ≥ t0.
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This notion is equivalent with the previous one. Namely, denoting by C− a generalized
reflexive inverse of C such that C−C = Πcan(t0), and considering the relation

C−C(x0 − x̄0) = Πcan(t0)x0 −Πcan(t0)x̄0

= Πcan(t0)x0 + v(t0)︸ ︷︷ ︸
=x0∈M0(t0)

− (Πcan(t0)x̄0 + v(t0))︸ ︷︷ ︸
=x̄0∈M0(t0)

= x0 − x̄0,

we know that the existence of δ(ε, t0) in Definition 6.32 implies the existence of
δC(ε, t0) = |C|δ(ε, t0). Conversely, having δC(ε, t0) we may put δ(ε, t0) = |C−|δC(ε, t0).

Making use of the linearity,

x(t, t0, x0)− x(t, t0, x̄0) = X(t, t0)(x0 − x̄0) = X(t, t0)(z0 − z̄0) (100)

we trace back the stability questions to the growth behavior of the fundamental solution
matrices.

Theorem 6.34 Let the DAE (44) be regular with sufficiently smooth coefficients so that
fine decoupling projector functions exist. Then, for each admissible excitation q, the fol-
lowing assertions hold true with positive constants Kt0 , K and α:

(1) If |X(t, t0)| ≤ Kt0 , t ≥ t0, then the DAE is stable.

(2) If |X(t, t0)| −−−→
t→∞

0, then the DAE is asymptotically stable.

(3) If |X(t, t0)X(s, t0)−| ≤ K, t0 ≤ s ≤ t, then the DAE is uniformly stable.

(4) If |X(t, t0)X(s, t0)−| ≤ Ke−α(t−s), t0 ≤ s ≤ t, then the DAE is uniformly asymptot-
ically stable.

Proof: With regard of (100), the proof of Proposition 6.25 applies. �

6.3.4 Characterizing admissible excitations

The fine decoupled version of a regular DAE into the IERODE (53) and the subsystem
(64) allows for a precise and detailed description of admissible excitations. The IERODE
is solvable for each arbitrary continuous inhomogeneity, therefore, additional smoothness
requirements may occur from the subsystem (64), and for µ > 1 only. We recall the
version (76)-(79) of the subsystem, which is already specified for fine decouplings:

v0 = −
µ−1∑
l=1

N0l(Dvl)
′ −

µ−1∑
l=2

M0l vl −H0D
−u+ L0q, (101)

vi = −
µ−1∑
l=i+1

Nil(Dvl)′ −
µ−1∑
l=i+2

Mil vl + Liq, i = 1, . . . , µ− 3, (102)

vµ−2 = −Nµ−2,µ−1(Dvµ−1)′ + Lµ−2q, (103)

vµ−1 = Lµ−1q, (104)

64



as well as the coefficients

N01 := −Q0Q1D
−,

N0j := −Q0P1 · · ·Pj−1QjD
−, j = 2, . . . , µ− 1,

Ni,i+1 := −Πi−1QiQi+1D
−,

Nij := −Πi−1QiPi+1 · · ·Pj−1QjD
−, j = i+ 2, . . . , µ− 1, i = 1, . . . , µ− 2,

M0j := Q0P1 · · ·Pµ−1MjDΠj−1Qj, j = 1, . . . , µ− 1,

Mij := Πi−1QiPi+1 · · ·Pµ−1MjDΠj−1Qj, j = i+ 1, . . . , µ− 1, i = 1, . . . , µ− 2,

L0 := Q0P1 · · ·Pµ−1G
−1
µ ,

Li := Πi−1QiPi+1 · · ·Pµ−1G
−1
µ , i = 1, . . . , µ− 2,

Lµ−1 := Πµ−2Qµ−1G
−1
µ ,

H0 := Q0P1 · · ·Pµ−1KΠµ−1.

For the detailed form of K and Mj we refer to (56) and (57), respectively. All these
coefficients are continuous. This allows to introduce the following linear function space,
if µ ≥ 2:

Cind µ(I,Rm) := {q ∈ C(I,Rm) :

νµ−1 := Lµ−1q, Dνµ−1 ∈ C1(I,Rn),

νµ−2 := −Nµ−2,µ−1(Dνµ−1)′ + Lµ−2q, Dνµ−2 ∈ C1(I,Rn), (105)

νi := −
µ−1∑
l=i+1

Nil(Dνl)′ −
µ−1∑
l=i+2

Mil νl + Liq, Dνi ∈ C1(I,Rn), i = 1, . . . , µ− 3}.

This function space makes sense without any further smoothness assumptions concerning
the coefficients. Cind µ(I,Rm) contains, in particular, all functions q that satisfy the condi-
tion q = GµP1 · · ·Pµ−1G

−1
µ q (cf. Proposition 6.29), which corresponds to

ν1 = 0, . . . , νµ−1 = 0. Cind µ(I,Rm) is always a proper subset of the continuous func-
tion space C(I,Rm). Here are the particular cases µ = 2 and µ = 3:

Cind 2(I,Rm) :={q ∈ C(I,Rm) : ν1 := L1q, Dν1 ∈ C1(I,Rn)} (106)

={q ∈ C(I,Rm) : DΠ0Q1G
−1
2 q ∈ C1(I,Rm)} = C1

DΠ0Q1G
−1
2

(I,Rm),

Cind 3(I,Rm) := {q ∈ C(I,Rm) : ν2 := L2q, Dν2 ∈ C1(I,Rn),

ν1 := −N12(Dν2)′ + L1q, Dν1 ∈ C1(I,Rn)} (107)

= {q ∈ C(I,Rm) : ν2 := Π1Q2G
−1
3 q, Dν2 ∈ C1(I,Rn),

ν1 := Π0Q1Q2D
−(Dν2)′ +Π0Q1P2G

−1
3 q, Dν1 ∈ C1(I,Rn)}.

If the interval I is compact, we may equip the space Cind µ(I,Rm) with its natural norm

‖q‖ind µ := ‖q‖∞ + ‖(Dνµ−1)′‖∞ + · · ·+ ‖(Dν1)′‖∞,

which means for the special cases µ = 2 and µ = 3:

‖q‖ind 2 := ‖q‖∞ + ‖(Dν1)′‖∞ = ‖q‖∞ + ‖(DΠ0Q1G
−1
2 q)′‖∞, (108)

‖q‖ind 3 := ‖q‖∞ + ‖(Dν2)′‖∞ + ‖(Dν1)′‖∞
= ‖q‖∞ + ‖(DΠ1Q2G

−1
3 q)′‖∞

+ ‖(DΠ0Q1Q2D
−(DΠ1Q2G

−1
3 q)′ +DΠ0Q1P2G

−1
3 q)′‖∞. (109)
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We introduce now the linear operator L : C1
D(I,Rm)→ C(I,Rm),

Lx := A(Dx)′ +Bx, x ∈ C1
D(I,Rm), (110)

so that the DAE (44) is represented by the equation Lx = q, and the excitation q is
admissible, exactly if it belongs to the range imL of the operator L.

Proposition 6.35 If the DAE (44) is regular with tractability index µ ∈ N, and its
coefficients are smooth enough for a fine decoupling, then the linear operator L has the
range

imL = C(I,Rm), if µ = 1,

imL = Cind µ(I,Rm), if µ ≥ 2.

Proof: The index one case is already known from Proposition 6.29 and the definition
of L. Turn to the case µ ≥ 2. By means of the decoupled version, to each excitation
q ∈ Cind µ(I,Rm), we find a solution x ∈ C1

D(I,Rm) of the DAE, so that the inclusion
Cind µ(I,Rm) ⊆ imL follows. Namely, owing to the properties of q (cf. (105), there is
a solution vµ−1 ∈ C1

D(I,Rm) of the equation (104), then a solution vµ−2 ∈ C1
D(I,Rm) of

(103), and solutions vi ∈ C1
D(I,Rm) of (102), successively for i = µ−3, . . . , 1. Furthermore,

compute a solution u of the IERODE, and v0 from the equation (101). Finally put
x := D−u+ v0 + · · ·+ vµ−1.
To show the reverse inclusion Cind µ(I,Rm) ⊇ imL we fix an arbitrary x ∈ C1

D(I,Rm)
and investigate the resulting q := A(Dx)′ +Bx. We apply again the decoupling. Denote
v0 := Q0x, and vi := Πi−1Qix, for i = 1, . . . , µ − 1. Since the projector functions
DΠi−1QiD

−, i = 1, . . . , µ− 1 and the function Dx are continuously differentiable, so are
the functions Dvi = DΠi−1QiD

−Dx, i = 1, . . . , µ − 1. Now the equation (104) yields
νµ−1 := Lµ−1q = vµ−1 ∈ C1

D(I,Rm), the equation (103) gives
νµ−2 := −Nµ−2 µ−1(Dvµ−1)′ + Lµ−2q = vµ−2 ∈ C1

D(I,Rm), and so on. �

At this place, the reader’s attentions should be directed to the fact that the linear function
space C1

D(I,Rm) does not necessarily contain all continuously differentiable functions. For
instance, if D is continuous, but fails to be continuously differentiable, then there are
constant functions xconst such that Dxconst fails to be continuously differentiable, and
hence xconst does not belong to C1

D(I,Rm). In contrast, if D is continuously differentiable
and its nullspace is nontrivial, then the proper inclusion

C1(I,Rm) ⊂ C1
D(I,Rm)

is valid. Similar aspects are to be considered if one deals with the space Cind µ(I,Rm)
containing the admissible excitations. Only if the involved coefficients Li, Nij and Mij

are supposed to be sufficiently smooth, the inclusion

Cµ−1(I,Rm) ⊂ Cind µ(I,Rm).

holds true.

Theorem 6.36 Let the DAE (44) be regular with tractability index µ, and let the co-
efficients be smooth enough for the existence of a fine decoupling. Then the following
assertions are true:
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(1) The excitation q is admissible, if and only if it belongs to Cind µ(I,Rm).

(2) For each pair q ∈ Cind µ(I,Rm), x0 ∈ Rm , the solution x ∈ C1
D(I,Rm) of the IVP

(94) satisfies the inequality

‖x‖∞ ≤ c1|Πcanx
0|+ c2‖q‖∞ + c3‖q‖ind µ

≤ c {|Πcanx
0|+ ‖q‖ind µ}, (111)

whereby the function norms can be related to each arbitrary compact subinterval of
I, which contains t0. The constants c and ci depend only on this subinterval.

(3) If the DAE coefficients are so smooth that Cµ−1(I,Rm) ⊂ Cind µ(I,Rm), and

‖q‖ind µ ≤ c0{‖q‖∞ +

µ−1∑
l=1

‖q(l)‖∞}, q ∈ Cµ−1(I,Rm),

then, for each pair q ∈ Cµ−1(I,Rm), x0 ∈ Rm, it holds that

‖x‖∞ ≤ K{|Πcanx
0|+ ‖q‖∞ +

µ−1∑
l=1

‖q(l)‖∞}. (112)

Proof: (1) is a consequence of Proposition 6.35, and (3) results from (2). It remains to
verify (2). We apply the solution representation (97). First we consider the function v
given by (96). For a given q ∈ Cind µ(I,Rm), one has in detail

vµ−1 = Lµ−1q = νµ−1, thus ‖vµ−1‖∞ ≤ c̄µ−1‖q‖ind µ,
vµ−2 = Lµ−2q −Nµ−2µ−1(Dνµ−1)′ = νµ−2, thus ‖vµ−2‖∞ ≤ c̄µ−2‖q‖ind µ,

and so on, such that
‖vi‖∞ ≤ c̄i‖q‖ind µ, i = µ− 3, . . . , 1,

with certain constants c̄i. Then, with a suitable constant c̄, it results that

‖v‖∞ ≤ c̄‖q‖ind µ.

Now the representation (97) leads to the first part of (111) with c1 being a bound of the
fundamental solution matrix X(t, t0), c3 := c̄ and c2 resulting as a bound of the term
X(t, t0)X(s, t0)−G−1

µ (s), whereby s varies between t0 and t. We finish the proof by letting
c := max{c1, c2 + c3}. �
The inequality (112) indicates that the DAE has perturbation index µ.

6.4 Regular standard form DAEs

At present, most of the literature on DAEs is devoted to standard form DAEs

E(t)x′(t) + F (t)x(t) = q(t), t ∈ I, (113)

where E and F are smooth square matrix functions, and E(t) has constant rank on the
given interval.
As proposed in [GM86] one can treat (113) as

E(t)(P (t)x(t))′ + (F (t)− E(t)P ′(t))x(t) = q(t), t ∈ I, (114)
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by means of such a continuously projector function P that kerP = kerE. The DAE (114)
has a priori a properly stated leading term, and all results of the previous sections apply.
In particular, we build the matrix function sequence beginning with

A := E, D := P, R = P, B := F − EP ′, G0 = E, B0 := B,

develop decouplings etc. However, now the new question arises which effects are caused
by a change from one projector function P to another one. Clearly, the matrix function
sequence depends on the projector function P .
Suppose P and P̃ to be two continuously differentiable projector functions such that

kerE = kerP = ker P̃ .

Besides (114) we consider

E(t)(P̃ (t)x(t))′ + (F (t)− E(t)P̃ ′(t))x(t) = q(t), t ∈ I. (115)

The function spaces C1
P (I,Rm) and C1

P̃
(I,Rm) to coincide. Furthermore, the DAE (115)

results from the DAE (114) by a refactorization of the leading term. Namely, set

A := E, D := P, R := P, B := F − EP ′, and H := P̃ , H− := P̃ .

Then, condition (37) is satisfied with RHH−R = PP̃P = P = R, and the refactorized
DAE (38) coincides with (115) because of (cf. (39))

Ā = AH = EP̃ = E,

D̄ = H−D = P̃P = P̃ ,

B̄ = B − ARH(H−R)′D = F − EP ′ − EP̃ ′P = F − EP̃P ′ − EP̃ ′P = F − E(P̃P )′

= F − EP̃ ′.

In consequence, by Theorem 5.3 on refactorizations, the subspaces imGi, Si, and
N0 + · · · + Ni, as well as the characteristic values ri, are independent of the special
choice of P . This justifies the following regularity notion for standard form DAEs which
traces back the problem to Definition 6.2 for DAEs with properly stated leading terms.

Definition 6.37 The standard form DAE (113) is regular with tractability index µ, if
the properly stated version (114) is so for one (or, equivalently, for each) continuously
differentiable projector function P , kerP = kerE.
The characteristic values of (114) are named characteristic values of (113).
The canonical subspaces Scan and Ncan of (114) are called canonical subspaces of (113).

While the canonical subspaces Scan and Ncan are independent of the special choice of P ,
the IERODE resulting from (114) obviously depends on P :

u′ − (PΠµ−1)′u+ PΠµ−1G
−1
µ Bu = PΠµ−1G

−1
µ q, u ∈ imPΠµ−1. (116)

This is a natural consequence of the standard formulation.
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When dealing with standard form DAEs, the choice P0 := P, D− = P suggests itself
to begin the matrix function sequence with. In fact, this is done in the related previous
work. Then the accordingly specialized sequence is

G0 = E, B0 = F − EP ′0 = F −G0Π
′
0

Gi+1 = Gi +BiQi, Bi+1 = BiPi −Gi+1P0Π
′
i+1Πi, i ≥ 0. (117)

In this context, the projector functions Q0, . . . , Qκ are regular admissible, if

(a) the projector functions G0, . . . , Gκ have constant ranks,

(b) the relations QiQj = 0 are valid for j = 0, . . . , i− 1, i = 1, . . . , κ,

(c) and Π0, . . . , Πκ are continuously differentiable.

Then, it holds that PΠi = Πi, and the IERODE of a regular DAE (113) is

u′ −Π ′µ−1u+Πµ−1G
−1
µ Bu = Πµ−1G

−1
µ q, u ∈ imΠµ−1. (118)

In previous papers devoted to regular DAEs exclusively, some higher smoothness is sup-
posed to Qi, and these projector functions are simply called admissible, without the
addendum regular. A detailed description of the decoupling supported by the specialized
matrix function (117) can be found in [Ria08].

Remark 6.38 In earlier papers (e.g. [Mär89a], [Mär89b], [Han90], [Mär92]) the matrix
function sequence

Gi+1 = Gi +BiQi, Bi+1 = BiPi −Gi+1Π
′
i+1Πi, i ≥ 0, (119)

is used, which is slightly different from (117). While [Mär89a], [Mär89b] provide solvabil-
ity results and decouplings for regular index two and index three DAEs, [Han90] deserves
well of proving the invariance of the tractability index µ ∈ N with respect to transfor-
mations (see also [Mär92], but notice that, unfortunately, there is a misleading misprint
in the sequence on page 158). In these earlier papers the famous role of the sum spaces
N0 + · · · + Ni was not yet discovered, so that the reasoning is less transparent and needs
patient readers.
In [Mär02, Remark 2.6] it is thought that the sequence (117) coincides with the sequence
(119), however this is not fully correct. Because of

Bi+1 = BiPi −Gi+1P0Π
′
i+1Πi = BiPi −Gi+1Π

′
i+1Πi +Gi+1Q0 Π ′i+1︸︷︷︸

(P0Πi+1)′

Πi

= BiPi −Gi+1Π
′
i+1Πi +Gi+1Q0P

′
0Πi+1,

both matrix function sequences coincide in fact, if Q0P
′
0 = 0. One can always arrange

that Q0P
′
0 = 0 is locally valid. Namely, for each fixed t∗ ∈ I, we find a neighborhood Nt∗

such that kerE(t) ⊕ kerE(t∗)
⊥ = Rm holds true for all t ∈ Nt∗. The projector function

Q0 onto kerE(t) along kerE(t∗)
⊥ has the wanted property

Q0P
′
0 = Q0(P0(t∗)P0)′ = Q0P0(t∗)P

′
0 = 0.
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Owing to the independence of the choice of the projector function P0 = P , the regularity
notions for (113), defined by means of (117) or by (119), are actually consistent, and
the sum subspaces, the canonical subspaces, and the characteristic values are precisely the
same.
Several papers on lower index DAEs use subspace properties rather than rank conditions
for the index definition. For instance, in [Mär95], an index-two tractable DAE is charac-
terized by a constant-dimensional nontrivial nullspace N1, together with the transversality
condition N1⊕S1 = Rm. Owing to Lemma A.8, this is equivalent to the condition for G1

to have constant rank lower than m, and the requirement for G2 to remain nonsingular.

Theorem 6.39 Let the DAE (113) be regular with tractability index µ, and let the coef-
ficients be sufficiently smooth for the existence of a fine decoupling.
Let the matrix C ∈ L(Rm,Rs) be such that kerC = Ncan(t0).

(1) Then, the IVP

Ex′ + Fx = 0, Cx(t0) = 0,

has the zero solution only.

(2) For each admissible excitation q, and each x0 ∈ Rm, the IVP

Ex′ + Fx = q, C(x(t0)− x0) = 0,

has exactly one solution in C1
P (I.Rm).

(3) For each given admissible excitation q, the set of consistent initial values at time t0
is

Mcan,q(t0) = {z + v(t0) : z ∈ Scan(t0)},

whereby v is constructed as in (96) by means of fine decoupling projector functions.

(4) If the coefficients of the DAE are sufficiently smooth, then each q ∈ Cµ−1(I,Rm)
is admissible. If the interval I is compact, then for the IVP solution from (2), the
inequality

‖x‖ ≤ K{|Πcan(t0)x0|+ ‖q‖∞ +

µ−1∑
l=1

‖q(l)‖∞} (120)

is valid with a constant K independent of q and x0.

Proof: (1) and (2) are consequences of Theorem 6.19(2) and Theorem 6.31(1), respec-
tively. Assertion (4) follows from Theorem 6.36(3). Assertion (3) results from the repre-
sentations (96) and (99), with D = D− = P . �
The inequality (120) indicates that the DAE has perturbation index µ.
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6.5 The T-canonical form

Definition 6.40 The structured continuous coefficient DAE with properly stated leading
term


Id

0 Ñ0,1 · · · Ñ0,µ−1

. . . . . .
...

. . . Ñµ−2,µ−1

0

 (



Id
0

Im−r1
. . .

. . .

Im−rµ−1


x̃ )′

+


W̃
H̃0 Im−r0
...

. . .
...

. . .

H̃µ−1 Im−rµ−1

 x̃ = q̃,

(121)

m = d+
∑µ−1

j=0 (m− rj), as well as its counterpart in standard form[
Id 0

0 Ñ

]
x̃′ +

[
W̃ 0

H̃ Im−d

]
x̃ = q̃, (122)

with

Ñ =


0 Ñ0,1 · · · Ñ0,µ−1

. . . . . .
...

. . . Ñµ−2,µ−1

0

 ,
are said to be in T-canonical form (T indicates tractability), if the entries Ñ0,1, . . . , Ñµ−2,µ−1

are full column rank matrix functions, that is rankNi−1,i = m− ri, for i = 1, . . . , µ− 1.

The subscript µ indicates the tractability index µ, and at the same time the uniform
nilpotency index of the block upper triangular matrix function Ñ . Ñ µ vanishes identi-
cally, and Ñ µ−1 has the only nontrivial entry Ñ0,1Ñ1,2 · · · Ñµ−2,µ−1 of rank m−rµ−1 in the
right upper corner. If the coefficients H̃0, . . . , H̃µ−1 vanish, the T-canonical form (122)
looks precisely as the Weierstraß-Kronecker canonical form for constant matrix pencils
does.
Generalizing [LMT11b, Proposition 5.6], we show that a DAE (44) is regular with tractabil-
ity index µ if and only if it can be brought into T-canonical form by a regular multipli-
cation, a regular transformations of the unknown function, and a refactorization of the
leading term as described in Section 5. This justifies the attribute canonical. The struc-
tural sizes r0, . . . , rµ−1 coincide with the characteristic values from the tractability index
framework.

Theorem 6.41 (1) The DAE (44) is regular with tractability index µ and character-
istic values r0 ≤ · · · ≤ rµ−1 < rµ = m, if and only if there are pointwise regular
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matrix functions L,K ∈ C(I, L(Rm)), and a constant rank refactorization matrix
function H ∈ C1(I, L(Rs,Rn)), RHH−R = R, such that premultiplication by L, the
transformation x = Kx̃, and the refactorization of the leading term by H yield a
DAE in T-canonical form, whereby the entry Ñi−1,i has size (m − ri−1) × (m − ri)
and

rank Ñi−1,i = m− ri, for i = 1, . . . , µ− 1.

(2) If the DAE (44) is regular with tractability index µ, and its coefficients are smooth
enough for the existence of completely decoupling projector functions, then the DAE
is equivalent to a T-canonical form with zero coupling coefficients H̃0, . . . , H̃µ−1.

Proof: (1) If the DAE has T-canonical form, one can construct a matrix function sequence
and admissible projector functions in the same way as described in [LMT11b, Section 4]
for constant matrix pencils, and this shows regularity and confirms the characteristic
values.
The reverse implication is more difficult. Let the DAE (44) be regular with tractability
index µ and characteristic values r0 ≤ · · · ≤ rµ−1 < rµ = m. Let Q0, . . . , Qµ−1 be
admissible projector functions. As explained in Subsection 6.1, the DAE decomposes into
equation (51) being a pre-version of the IERODE and subsystem (65), together[

DΠµ−1D
− 0

0 N

]
︸ ︷︷ ︸

A

(

[
DΠµ−1D

− 0
0 D

]
︸ ︷︷ ︸

D

[
u
v

]
)′ +

[
W 0
HD− M

]
︸ ︷︷ ︸

B

[
u
v

]
=

[
Ld
L

]
q. (123)

This is an inflated system in Rm(µ+1), with W := DΠµ−1G
−1
µ BD−, further coefficients

given in Subsection 6.1, and the unknown functions

[
u
v

]
:=


u
v0
...

vµ−1

 :=


DΠµ−1

Q0

Π0Q1
...

Πµ−2Qµ−1

x.

We condense this inflated system back to Rm in a similar way as in [LMT11b, Proposition
5.6]. The projector functions DΠµ−1D

− and DΠi−1QiD
− are continuously differentiable,

and so are their ranges and nullspaces. The C1-subspace im (DΠµ−1D
−)∗ has dimension

d = m −
∑µ−1

i=0 (m − ri), and it is spanned by continuously differentiable basis functions,
which means that there is a matrix function Γd ∈ C1(I, L(Rn,Rd)) such that

im (DΠµ−1D
−)∗ = im Γ∗d, ker Γ∗d = {0},

and hence

im Γd = Rd, ker Γd = (im (DΠµ−1D
−)∗)⊥ = kerDΠµ−1D

−.

By Proposition C.4, there is a pointwise reflexive generalized inverse Γ−d ∈ C1(I, L(Rd,Rn))
such that ΓdΓ

−
d = Id and Γ−d Γd = DΠµ−1D

−. Analogously we find Γi ∈ C1(I, L(Rn,Rm−ri))
and Γ−i ∈ C1(I, L(Rm−ri ,Rn)) such that for i = 1, . . . , µ− 1

im Γi = Rm−ri , ker Γi = kerDΠi−1QiD
−, ΓiΓ

−
i = Im−ri , Γ−i Γi = DΠi−1QiD

−.
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This implies

ΓiD = ΓiDΠi−1Qi, D−Γ−i = Πi−1QiD
−Γ−i , ΓiDD

−Γ−i = ΓiΓ
−
i = Im−ri .

Finally we provide Γ0 ∈ C(I, L(Rm,Rm−r0)) and Γ−0 ∈ C(I, L(Rm−r0 ,Rm)) such that

im Γ0 = Rm−r0 , ker Γ0 = kerQ0, Γ0Γ−0 = Im−r0 , Γ−0 Γ0 = Q0.

Then we compose

Γ :=

[
Γd

Γsub

]
, Γ− :=

[
Γ−d

Γ−sub

]
,

Γsub :=


Γ0

Γ1D
. . .

Γµ−1D

 , Γ−sub :=


Γ−0

D−Γ−1
. . .

D−Γ−µ−1


such that ΓΓ− = Im, ΓsubΓ

−
sub = Im−d, and

Γ−Γ =


DΠµ−1D

−

Q0

Π0Q1

. . .

Πµ−2Qµ−1

 ,

Γ−subΓsub =


Q0

Π0Q1

. . .

Πµ−2Qµ−1

 .
Additionally we introduce

Ω :=


0

Γ1

. . .

Γµ−1

 , Ω− :=


0

Γ−1
. . .

Γ−µ−1

 ,
such that

Ω−Ω =


0

DΠ0Q1D
−

. . .

DΠµ−2Qµ−1D
−

 , ΩΩ− =


0

Im−r1
. . .

Im−rµ−1

 .
For the coefficients of the inflated system (123) it results that

Γ−subΓsub N = NΩ−Ω = N , Γ−subΓsubM =MΓ−subΓsub, D = Ω−Γsub,
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and further

ΓA =

[
ΓdDΠµ−1D

−

ΓsubN

]
=

[
Γd

ΓsubNΩ−Ω

]
=

[
Id

ΓsubNΩ−

] [
Γd

Ω

]
,

ΓB =

[
ΓdW 0

ΓsubHD− ΓsubM

]
=

[
ΓdWΓ−d Γd 0

ΓsubHD−Γ−d Γd ΓsubMΓ−subΓsub

]

=

[
ΓdWΓ−d 0

ΓsubHD−Γ− ΓsubMΓsub

] [
Γd 0
0 Γsub

]
,

D =

[
Γ−d Γd 0

0 Ω−Γsub

]
=

[
Γ−d 0
0 Ω−

] [
Γd 0
0 Γsub

]
.

Multiplying the inflated system (123) by the condensing matrix function Γ and introducing
the new variables

x̃ :=

[
ũ
ṽ

]
:=

[
Γd 0
0 Γsub

] [
u
v

]
gives[
I 0
0 ΓsubNΩ−

] [
Γd 0
0 Ω

]
︸ ︷︷ ︸

Ā

(

[
Γ−d 0
0 Ω−

]
︸ ︷︷ ︸

D̄

[
ũ
ṽ

]
)′ +

[
ΓdWΓ−d 0

ΓsubHD−Γ−d ΓsubMΓ−sub

]
︸ ︷︷ ︸

B̄

[
ũ
ṽ

]
= Γ

[
Ld
L

]
︸ ︷︷ ︸

L̄

q.

This last DAE lives in Rm, but the border space of its leading term is Rn(µ+1). Because
of

ker Ā = ker

[
Γd 0
0 Ω

]
= ker

[
DΠµ−1D

− 0
0 Ω−Ω

]
, im D̄ = im

[
DΠµ−1D

− 0
0 Ω−Ω

]
,

the refactorization of the leading term (cf. Section 5) by means of

H :=

[
Γd 0
0 Ω

]
, H− =

[
Γ−d 0
0 Ω−

]
suggests itself. H has constant rank d, and H− is the reflexive generalized inverse with

HH− =

[
Id 0
0 ΩΩ−

]
, H−H =

[
DΠµ−1D

− 0
0 Ω−Ω

]
, R̄HH−R̄ = R̄ =

[
DΠµ−1D

− 0
0 Ω−Ω

]
.

This way we arrive at the DAE

Ã(D̃x̃)′ + B̃x̃ = L̄q,

Ã :=

[
I 0
0 ΓsubNΩ−

]
, D̃ :=

[
I 0
0 ΩΩ−

]
, B̃ :=

[
ΓdWΓ−d − Γ′dΓ

−
d 0

ΓsubHD−Γ−d B̃22

]
.

The entry

B̃22 : = ΓsubMΓ−sub − ΓsubNΩ−Ω′Ω−

= ΓsubΓ
−
sub + Γsub(M− I)Γsub − ΓsubNΩ−Ω′Ω− =: I + M̃
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has block upper triangular form, with identity diagonal blocks. M̃ is strictly block upper
triangular, and I + M̃ remains nonsingular. Scaling the DAE by diag (I, (I + M̃)−1)
yields [

I 0

0 Ñ

]
(

[
I 0
0 ΩΩ−

]
x̃)′ +

[
W̃ 0

H̃ I

]
x̃ =

[
I 0

0 (I + M̃)−1

]
L̄q, (124)

with coefficients

Ñ := (I + M̃)−1ΓsubNΩ−, H̃ := (I + M̃)−1ΓsubHD−Γ−d , W̃ := ΓdWΓ−d − Γ′dΓ
−
d .

The DAE (124) has T-canonical form, if the entries Ñi,i+1 have full column rank. There-
fore, we take a closer look to these entries. Having in mind that M̃ is strictly block upper
triangular, we derive

Ñi,i+1 = (ΓsubNΩ)i,i+1 = ΓiDNi,i+1Γ−i+1 = −ΓiDΠi−1QiQi+1D
−Γ−i+1

= −ΓiΓ
−
i ΓiDQi+1D

−Γ−i+1 = −ΓiDQi+1D
−Γ−i+1.

Then, Ñi,i+1z = 0 means ΓiDNi,i+1Γ−i+1z = 0, thus Ni,i+1Γ−i+1z = 0. Applying Proposition
6.6 (3) we find that DΠiQi+1D

−Γ−i+1z = Γ−i+1z ∈ kerDΠiQi+1D
−, and hence Γ−i+1z = 0,

therefore z = 0. This shows that Ñi,i+1 is injective for i = 1, . . . , µ − 2. The injec-
tivity of Ñ0,1 follows analogously. We obtain a T-canonical form in fact. The resulting
transformations are

L =

[
I 0

0 (I + M̃)−1

]
Γ

[
Ld
L

]
=

[
I 0

0 (I + M̃)−1

]


ΓdDΠµ−1

Γ0Q0

Γ1DΠ0Q1
...

Γµ−1DΠµ−2Qµ−1

G−1
µ

and

K = Γ


DΠµ−1

Q0

Π0Q1
...

Πµ−2Qµ−1

 =


ΓdDΠµ−1

Γ0Q0

Γ1DΠ0Q1
...

Γµ−1DΠµ−2Qµ−1


Both matrix functions K and L are continuous and pointwise nonsingular. This completes
the proof of (1).
The assertion (2) follows now immediately, since H = 0 implies H̃ = 0. �

7 Critical points

Critical points attract per se much special interest and effort. In particular, to find out
whether the ODE with a so-called singularity of the first kind (e.g. [KKW01])

x′(t) =
1

t
M(t)x(t) + q(t),

has bounded solutions, the standard ODE theory is of no avail, and one is in need of
smarter tools using the eigenstructure of the matrix M(0).
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In case of DAEs, the inherent ODE might be affected by singularities. For instance, the
DAEs in [KMPW10] show inherent ODEs having a singularity of the first kind. The
following example is taken from [KMPW10].

Example 7.1 The DAE[
1
1

]
(
[
1 −1

]
x(t))′ +

[
2 0
0 t+ 2

]
x(t) = q(t)

has a properly stated leading term on [0, 1]. It is accompanied by the matrix functions

G0(t) =

[
1 −1
1 −1

]
, Q0(t) =

1

2

[
1 1
1 1

]
, G1(t) =

[
2 0

2 + t
2

t
2

]
,

such that the DAE is regular with tractability index 1 just on the interval (0, 1]. The
inherent ODE resulting there applies to u(t) = x1(t)− x2(t), and it reads

u′(t) = −2

t
(t+ 2)u(t) +

1

t
((t+ 2)q1(t)− 2q2(t)).

Observe that, in view of the closed interval [0, 1], this is no longer a regular ODE but an
inherent explicit singular ODE (IESODE). Given a solution u(·) of the IESODE, a DAE
solution is formed by

x(t) =
1

t

[
t+ 2

2

]
u(t) +

1

t

[
−q1(t) + q2(t)
−q1(t) + q2(t)

]
.

We refer to [KMPW10] for the specification of bounded solutions by means of boundary
conditions as well as for collocation approximations.

One could presume that rank changes in G1 would always lead to singular inherent ODEs,
but the situation is much more intricate. A rank drop of the matrix function G1 is not
necessarily acompanied by a singular inherent ODE, as the next example shows.

Example 7.2 The DAE[
1
0

]
(
[
t 1

]
x(t))′ +

[
β(t) 0

0 1

]
x(t) = q(t),

with an arbitrary continuous real function β, has a properly stated leading term on (−∞,∞).
Put

G0(t) =

[
t 1
0 0

]
, D(t)− =

1

1 + t2

[
t
1

]
, Q0(t) =

1

1 + t2

[
1 −t
−t t2

]
,

and compute

G1(t) =
1

1 + t2

[
β(t) + t+ t3 1 + t2 − tβ(t)

−t t2

]
, ω1(t) := detG1(t) = t(1 + t2).

This DAE is regular with index 1 on (−∞, 0) and (0,∞), t∗ = 0 is a critical point, and
the inherent ODE reads, with u(t) = tx1(t) + x2(t),

u′(t) = −β(t)

t
u(t) + q1(t) +

β(t)

t
q2(t).
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All DAE solutions have the form

x(t) =
1

t

[
1
0

]
u(t) +

1

t

[
−q2(t)
tq2(t)

]
.

Obviously, if the function β has a zero at t∗ = 0, or if it actually vanishes identically, then
there is no singularity within the inherent ODE, even though the matrix G1(t∗) becomes
singular. Underscore, the determinant ω1 does not at all depend on the coefficient β.
Turn to a special case. Set q identically zero, β(t) = tγ, with an integer γ ≥ 0. The
inherent ODE simplifies to

u′(t) = −tγ−1u(t).

If γ = 0, this is a singular ODE, and its solutions have the form u(t) = 1
t
c. All nontrivial

solutions grow unboundedly, if t approaches zero. In contrast, if γ ≥ 1, the ODE is regular,

and it has the solutions u(t) = e−
1
γ
tγu(0) which remain bounded. However, among the

resulting nontrivial DAE solutions

x(t) =
1

t

[
1
0

]
u(t)

there is no bounded one, even if γ ≥ 1.

As adumbrated by the above example, apart from the singularities concerning the inherent
ODE, DAEs involve further sources for critical points which are unacquainted at all in
explicit ODEs. In DAEs, not only the inherent ODE but also the associated subsystem
(64) which constitutes the wrapping up, and which in higher index cases includes the
differentiated parts, might be hit by singularities. In the previous two examples which
show DAEs being almost overall index 1, a look to the solution representations supports
this idea. The next example provides a first impression of a higher index case.

Example 7.3 The DAE with properly stated leading term1 0
0 1
0 0

 (

[
1 0 0
0 1 0

]
x(t))′ +

 0 0 β(t)
1 1 0
γ(t) 0 0

x(t) = q(t)

yields

G0(t) =

1 0 0
0 1 0
0 0 0

 , Q0(t) =

0 0 0
0 0 0
0 0 1

 , G1(t) =

1 0 β(t)
0 1 0
0 0 0

 , Π0(t) =

1 0 0
0 1 0
0 0 0

 ,
and further

_
N1(t) = N1(t) ∩ N0(t) = {z ∈ R3 : z1 = 0, z2 = 0, β(t)z3 = 0}. Supposing

β(t) 6= 0, for all t, we derive

Q1(t) =

 1 0 0
0 0 0
− 1
β(t)

0 0

 , Π0(t)Q1(t) =

1 0 0
0 0 0
0 0 0

 , G2(t) =

 1 0 β(t)
1 1 0
γ(t) 0 0

 ,
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and ω2(t) := detG2(t) = −β(t)γ(t). The projector functions Q0, Q1 are the widely or-
thogonal ones. Taking a look at the following equivalent formulation of the DAE,

x1(t) =
1

γ(t)
q3(t),

x′2(t) + x2(t) = q2(t)− 1

γ(t)
q3(t),

x3(t) =
1

β(t)
(q1(t)− (

1

γ(t)
q3(t))′),

we see the correspondence of zeros of the function γ to rank drops in G2, and to a critical
solution behavior.
Observe also, if we dispense with the demand that the function β has no zeros, and allow a

zero at a certain point t∗, then the intersection
_
N1(t∗) is non-trivial,

_
N1(t∗) = N0(t∗), and

the above projector function Q1(t) grows unboundedly, if t approaches t∗. Nevertheless,
since by construction G2 depends just on the product Π1Q2, we can continue forming the
next matrix function G2 considering the product Π0Q1 that has a continuous extension.
The zero of the function β also leads to a zero of detG2.
Apart from critical points, the resulting IERODE applies to

u = DΠ1x =

[
0
x2

]
,

and it reads

u′ +

[
0 0
0 1

]
︸ ︷︷ ︸

DΠ1G
−1
2 B1D−

u =

[
0

q2 − 1
γ
q3

]
︸ ︷︷ ︸
DΠ1G

−1
2 q

.

Observe the coefficient DΠ1G
−1
2 BD− to be independent of the functions β and γ, while

DΠ1G
−1
2 does not depend on β. Therefore, the IERODE does not at all suffer from zeros

of β.
Notice that, if one restricts the interest to homogenous DAEs only, then one cannot see
the singular solution behavior in this example.

Our examples clearly account for a correspondence between singular solution behavior and
points at which the matrix function sequence loses one of the required properties. Roughly
speaking, at all points where the matrix function sequence determining regularity can not
be built, we expect a critical in some sense solution behavior. We refer to [Ria08] for a
closer view onto the relevant literature. As [Ria08], we consider critical (in [Ria08] named
singular) points to be the counterparts of regular points. Therefore, in this section, we
deal with square DAEs (44) the coefficients A of which do not necessarily show constant
rank.

Definition 7.4 Let the DAE (44) be square, m = k and let its leading term be almost proper
in the sense that imD is a C1 subspace and there is a further C1 subspace NA in Rn such
that

NA(t) ⊆ kerA(t), NA(t)⊕ imD(t) = Rn, t ∈ I,
NA(t) coincides with kerA(t) on a dense subset of I.
Then, t∗ ∈ I is said to be a regular point of the DAE, if there is an open interval containing
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t∗, such that the DAE is regular on the intersection of this interval and I. Otherwise, t∗
is said to be a critical point.
Denote by Ireg the set of all t ∈ I being regular points of the DAE.

In this sense, t∗ = 0 is the only critical point of the DAEs in Examples 7.1 and 7.2, while
in Example 7.3 the set of critical points is formed by the zeros of the functions β and γ.

Any open interval, on which the DAE is regular, is called a regularity interval. If there are
intersecting regularity intervals, then the DAE has common characteristic values on these
intervals, and the union of the intervals is a regularity interval, again ([MR06], applying
widely orthogonal projector functions one can simplify the proof given there). The set
Ireg ⊆ I is open, and it may be described as the union of disjoint open regularity intervals.
By defintion, I − Ireg is the set of critical points of the DAE (44).

The regularity notion (cf. Definitions 3.1, 6.2) involves several constant rank conditions.
In particular, the proper leading term brings the matrix function G0 = AD with constant
rank r0 = r. Further, the existence of regular admissible projector functions Q0, . . . , Qµ−1

includes that, at each level k = 1, . . . , µ− 1,

(A) the matrix function Gk has constant rank rk , and

(B) the intersection
_
Nk is trivial, i.e.

_
Nk = {0}.

Owing to Proposition 3.2 we have kerΠk−1 = N0 + · · ·+Nk−1, and hence

_
Nk = Nk ∩ (N0 + · · ·+Nk−1) = kerGk ∩ kerΠk−1.

Then, the intersection
_
Nk is trivial, exactly if the matrix function[

Gk

Πk−1

]
(125)

has full column rank m. This means, condition (B) represents also a rank condition.

Supposed the coefficients A,D and B of the DAE are sufficiently smooth (at most class
Cm−1 will do), then, if the algebraic rank conditions are fulfilled, the requirements for the
projector functions Πk and DΠkD

− to be continuous resp. continuously differentiable,
can be satisfied at one level after the other. In consequence (cf. [MR06, MR07, Ria08]),
a critical point can be formally characterized as location, where the leading term fails to
be properly stated, or where one of the constant rank conditions type (A) or type (B), at
a level k ≥ 1, is violated first.

Definition 7.5 Let the DAE (44) have an almost proper leading term, and t∗ be a critical
point. Then, t∗ is called

(1) a critical point of type 0, if rankG0(t∗) < r := rankD(t∗),

(2) a critical point of type A at level k ≥ 1 (shortly, type k-A), if there are admissible
projectors functions Q0, . . . , Qk−1, and Gk changes its rank at t∗,
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(3) a critical point of type B at level k ≥ 1 (shortly, type k-B), if there are admissible
projector functions Q0, . . . , Qk−1, the matrix function Gk has constant rank, but the
full-rank condition for the matrix function (125) is violated at t∗.

It is worth to be underscored that the proposed typification of critical points remains
invariant with respect to transformations and refactorizations (Sections 5), and also with
respect to the choice of admissible projector function (see Section 3). The DAEs in
Examples 7.1, 7.2 have both the type 1-A critical point t∗ = 0. In Example 7.3, the zeros
of the function γ are type 2-A critical points of the DAE, while zeros of the function β
yield type 1-B critical points. The next example shows different cases of type 0 critical
points, and it reinforces once again the expectation of a critical solution behavior emerging
from critical points. As before, one might be confronted with serious singularities, but in
other cases, the critical behavior can be restored by more smoothness of the excitation,
and then the critical points are somehow harmless.

Example 7.6 Let the continuous scalar function α have a zero at t∗ = 0, α(t) 6= 0, for
all t 6= t∗, t ∈ I := (−∞,∞). Then the DAE[

α(t)
0

]
(
[
0 1

]
x(t))′ +

[
b11(t) b12(t)
b21(t) b22(t)

]
x(t) = q(t)

has a quasi-proper leading term, and t∗ is a critical point of type 0. Generate

G0(t) =

[
0 α(t)
0 0

]
, Q0(t) =

[
1 0
0 0

]
, G1(t) =

[
b11(t) α(t)
b21(t) 0

]
.

Case 1: Assume b21(t) = 1, b11(t) = −1, b22(t) = 1 .
Then G1 inherits the rank drop from α. Apart from t∗ the DAE is regular with index 1.
As in Example 7.1, we are confronted with an inherent singular ODE, namely, for u(t) =
x2(t),

u′(t) =
1

α(t)
Mu(t) +

1

α(t)
(q1(t)− b11(t)q2(t)),

with M(t) = b11(t)b22(t) − b21(t) = −2. For instance, if α(t) = t, then this IESODE
is in fact an ODE with a singularity of the first kind, and all nontrivial solutions of the
homogenous version grow unboundedly if t approches zero (e.g. [KKW01]).
Case 2: Assume b21(t) = 0, b11(t) = 1, b22(t) = 1 .
We derive

G1(t) =

[
1 α(t)
0 0

]
, Q1(t) =

[
0 −α(t)
0 1

]
, G2(t) =

[
1 α(t) + b12(t)
0 1

]
.

Obviously, G2(t) remains nonsingular. It results that Π1 = 0, such that there is actually no
inherent ODE. Even though on both subintervals (−∞, 0) and (0,∞) there are unique C1

D-
solutions, the solution pieces can not be glued together to form a continuous solution on the
entire interval I. However, smoother excitations yield
C1
D-solutions with regard to the entire interval. More precisely, for q1 ∈ C(I,R), q2 ∈
C1(I,R), the DAE solution belongs to C1

D(I,R2).

Definition 7.7 A critical point t∗ ∈ I of the DAE (44) is named harmless, if all DAE
solutions defined on a neighborhood of t∗ belong to the class C1

D, supposed the corresponding
excitations q are sufficiently smooth.
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While the zero of the function α in the second part of Example 7.6 yields a harmless
critical point, in contrast, in the first part, this zero causes a singular inherent ODE.
We advert the reader to the fact that the critical points in the other examples, and in
particular in Example 7.3, fail to be harmless in this sense.
Next we turn to the question how harmless critical points differ from the other ones. As
it is suggested by Example 7.6, we prove the nonsingularity of the matrix function Gµ to
indicate harmless critical points in general.

Let the DAE (44) have an almost proper leading term. For simplicity, let DD∗ be con-
tinuously differentiable such that the widely orthogonal projector functions can be used.
Assume the set of regular points Ireg to be dense in I.
Let Q0 be the orthogonal projector function onto kerD =: N0, which is continuous on
the entire interval I, since D has constant rank r there. Set G0 = AD, B0 = B,
G1 = G0 + BQ0. These functions are also continuous on I. For all t ∈ Ireg it holds
further that rankG0(t) = r. On each connected part of Ireg, which is a regularity region,
we construct the matrix function sequence by means of widely orthogonal projector func-
tions up to Gµ, whereby µ denotes the lowest index such that Gµ(t) is nonsingular for
all t ∈ Ireg. In particular, Π1, . . . , Πµ−1 are defined and continuous on each part of Ireg.
Assume now that

Π1, . . . , Πµ−1 have continuous extensions on I, (126)

and we keep the same denotation for the extensions. Additionally,

DΠ1D
−, . . . , DΠµ−1D

− be continuously differentiable on I.

Then, the projector functions Πi−1Qi = Πi−1 − Πi, i = 1, . . . , µ − 1, have continuous
extensions, too, and the matrix function sequence (cf. (12)-(15), and Proposition 3.2)

Bi = Bi−1Πi−1 −GiD
−(DΠiD

−)′DΠi−1,

Gi+1 = Gi +BiΠi−1Qi, i = 1, . . . , µ− 1,

is defined and continuous on the entire interval I. In contrast to the regular case, where
the matrix functions Gj have constant rank on the entire interval I, now, for the time
being, the projector functions Qj are given on Ireg only, and

Ni(t) = imQi(t) = kerGi(t), for all t ∈ Ireg.

The projector function Π0 = P0 inherits constant rank r = rankD from D. On each of
the regularity intervals, the rank r0 of G0 coincides with the rank of D, and hence we are
aware of the uniform characteristic value r0 = r on all regularity intervals, that is on Ireg.
Owing to its continuity, the projector function Π1 has constant rank on I. Taking into
account the relations

kerΠ1(t) = N0(t)⊕N1(t), dimN0(t) = m− r0, dimN1(t) = m− r1, t ∈ Ireg

we recognize the characteristic value r1 = rankG1 to be also uniform on Ireg, and so on.
This way we find out that all characteristics

r0 ≤ . . . ≤ rµ−1 < rµ = m are uniform on Ireg.
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In particular, the DAE has index µ on Ireg.
Denote by Gµ(t)adj the matrix of cofactors to Gµ(t), and introduce the determinant
ωµ(t) := detGµ(t), such that

ωµ(t)Gµ(t)−1 = Gµ(t)adj, t ∈ Ireg.

By construction, it results that GµQi = BiQi = BiΠi−1Qi, for i = 1, . . . , µ− 1, thus

ωµ(t)Qi(t) = Gµ(t)adjBi(t)Πi−1(t)Qi(t), i = 1, . . . , µ− 1, t ∈ Ireg. (127)

The last expression possesses a continuous extension, and hence ωµQi = Gadj
µ BiΠi−1Qi is

valid on I.
Observe that a nonsingularGµ(t∗) indicates also each of the projector functionsQ1, . . . , Qµ−1

to have a continuous extension over the critical point t∗. In this case, the decoupling for-
mulae (53),(64) keep their value for the continuous extensions, and it is evident that the
critical point is a harmless one.
In contrast, if Gµ has a rank drop at the critical point t∗, then the decoupling formulae ac-
tually indicate different but singular solution phenomena. Additionally, several projector
functions Qj may suffer discontinuities, as it is the case in Example 7.3.
Next, by means of the widely orthogonal projector functions, on each regularity interval,
we apply the basic decoupling (see Subsection 6.1, Theorem 6.7) of a regular DAE into
the IERODE (53) and the subsystem (64). In order to safely obtain coefficients being
continuous on the entire interval I, we multiply the IERODE (53) by ωµ, the first row
of (64) by ωµµ, the second by ωµ−1

µ , and so on up to the last line which we multiply
by ωµ. With regard to assumtion (126) and relation (127), the expressions ωµG

−1
µ and

(cf. (56),(57)), ωµK, ωµMl+1 are continuous on I, and so are all the coefficients of the
subsystem resulting from (64). Instead of the IERODE (53) we are now confronted with
the equation

ωµu
′ − ωµ(DΠµ−1D

−)′u+DΠµ−1G
adj
µ BµD

−u = DΠµ−1G
adj
µ q, (128)

which is rather a scalarly implicit inherent ODE or an inherent explicit singular ODE
(IESODE). As it is proved for regular DAEs by Theorem 6.7, the equivalence of the DAE
and the system decoupled in this way is given. We refer to [Ria08, Subsection 4.2.2] for a
detailled description in a slightly different way. Here we take a look at the simplest lower
index cases only.
The case µ = 1 corresponds to the solution decomposition x = D−u+Q0x, the inherent
ODE

ω1u
′ − ω1R

′u+DGadj
1 B1D

−u = DGadj
1 q, (129)

and the subsystem
ω1Q0x = −Q0G

adj
1 B1D

−u+Q0G
adj
1 q. (130)

For µ = 2, we apply the solution decomposition x = D−u+Π0Q1x+Q0x. The inherent
ODE reads

ω2u
′ − ω2(DΠ1D

−)′u+DΠ1G
adj
2 B1D

−u = DΠ1G
adj
2 q, (131)

and we have to add the subsystem[
−ω2Q0ω2Q1D

−(DΠ0Q1x)′

0

]
+

[
ω2

2Q0x
ω2Π0Q1x

]
+

[
Q0ω2P1ω2KΠ1

Π0Q1ω2KΠ1

]
D−u =

[
Q0ω2P1G

adj
2

Π0Q1G
adj
2

]
q.

(132)
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A carefull inspection of our examples proves these formulae to comprise a worst case
scenario. For instance, in Example 7.3, not only DΠ1G

adj
2 B1D

− is continuous but already
DΠ1G

−1
2 B1D

− can be extended continuously. However, as in Example 7.1, the worst case
can well happen.

Proposition 7.8 Let the DAE (44) have an almost proper leading term, and DD∗ be
continuously differentiable. Let the set of regular points Ireg be dense in I. If the projec-
tor functions Π1, . . . , Πµ−1 associated with the widely orthogonal projector functions have
continuous extensions on the entire interval I, and DΠ1D

−, . . . , DΠµ−1D
− are continu-

ously differentiable, then the following holds true:

(1) The DAE has on Ireg uniform characteristics r0 ≤ . . . ≤ rµ−1 < rµ = m.

(2) If Gµ(t∗) is nonsingular at the critical point t∗, then the widely orthogonal projec-
tor functions Q0, . . . , Qµ−1 themselves have continuous extensions over t∗. If the
coefficients A,D, and B are sufficiently smooth, then t∗ is a harmless critical point.

(3) If Gµ(t∗) is nonsingular at the critical point t∗, then Gµ−1(t) has necessarily constant
rank rµ−1 on a neighborhood including t∗.

(4) If the DAE has index 1 on Ireg, then its critical points fail to be harmless.

(5) A critical point of type B leads necessarily to a singular Gµ, and hence it can never
been harmless.

Proof: Assertion (1) is already verified. Assertion (2) follows immediately by taking use
of the decoupling. If A,D,B are smooth, then the coefficients of the subsystem (64) are
also sufficiently smooth, and alow for the respective solutions.
Turn to (3). Owing to (2), Qµ−1 is continuous, and rankQµ−1(t∗) = m − rµ−1,
Gµ−1(t∗)Qµ−1(t∗) = 0 are valid, thus rankGµ−1(t∗) ≤ rµ−1. The existence of a z ∈
kerGµ−1(t∗), Pµ−1(t∗)z = z 6= 0, would imply Gµ−1(t∗)z = 0, and hence contradict the
nonsingularity of Gµ−1(t∗).
(4) is a direct consequence of (3).
For proving Assertion (5) we remember the relations

Πj−1(t)Qj(t) = Πj−1(t)Qj(t)Πj−1(t), t ∈ Ireg.

These relations keep to be valid for the continuous extensions, that is , for t ∈ I. Consider
a type k − B critical point t∗, and a nontrivial z ∈ Nk(t∗) ∩ (N0(t∗) + · · · + Nµ−1(t∗)),
which means Gk(t∗)z = 0, Πk−1(t∗)z = 0. This yields

Gµ(t∗)z = Gk(t∗)z+Bk(t∗)Qk(t∗)Πk−1(t∗)z+· · ·+Bµ−1(t∗)Πµ−2(t∗)Qµ−1(t∗)Πk−1(t∗)z = 0,

and hence, Gµ(t∗) is singular. �
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8 Strangeness versus tractability

8.1 Canonical forms

Among the traditional goals of the theory of linear time-varying DAEs are appropriate
generalizations of the Weierstraß-Kronecker canonical form and equivalence transforma-
tions into these canonical forms. So far, except for the T-canonical form which applies to
both standard form DAEs and DAEs with properly stated leading term (cf. Subsection
6.5), reduction to canonical forms is developed for standard form DAEs (e.g. [Cam83],
[BCP89], [KM94]).
While equivalence transformations for DAEs with properly stated leading term include
transformations K of the unknown, scalings L and refactorizations H of the leading term
(cf. Section 5), equivalence transformations for standard form DAEs combine only the
transformations K of the unknowns and the scalings L.
Transforming the unknown function by x = Kx̃ and scaling the standard form DAE (113)
by L yields the equivalent DAE

LEK︸ ︷︷ ︸
Ẽ

x̃′ + (LFK + LEK ′)︸ ︷︷ ︸
F̃

x̃ = Lq.

Thereby the transformation matrix functions K must be continuously differentiable.

In the remaining part of this subsection we use the letters K and H also for special
entries in the matrix functions describing the coefficients of the canonical forms below.
No confusion will arise from this.

Definition 8.1 The structured DAE with continuous coefficients[
Im−l K

0 N

]
x′ +

[
W 0
H Il

]
x = q, (133)

0 ≤ l ≤ m, is said to be in

(1) standard canonical form(SCF), if H = 0, K = 0, and N is strictly upper triangular,

(2) strong standard canonical form(SSCF), if H = 0, K = 0, and N is a constant,
strictly upper triangular matrix,

(3) S-canonical form, if H = 0, K = [0 K1 . . . Kκ], and

N =


0 N1,2 · · · N1,κ

. . .
...

. . . Nκ−1,κ

0


}l1

}lκ−1

}lκ

,

is strictly block upper triangular with full row rank entries Ni,i+1, i = 1, . . . , κ− 1,

(4) T-canonical form, if K = 0 and N is strictly block upper triangular with full column
rank entries Ni,i+1, i = 1, . . . , κ− 1.
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In case of time-invariant coefficients, these four canonical forms are obviously equivalent.
However, this is no longer true for time-varying coefficients.
The matrix function N is nilpotent in all four canonical forms, N has uniform nilpotency
index κ in (3) and (4). N and all its powers Nk have constant rank in (2), (3) and (4).
In contrast, in (1), the nilpotency index and the rank of N may vary with time. The
S-canonical form is associated with DAEs with regular strangeness index ζ = κ − 1 (cf.
[KM94]), while the T-canonical form is associated with regular DAEs with tractability
index µ = κ (cf. Subsection 6.5). The classification into SCF and SSCF goes back to
[Cam83] (cf. also [BCP89]). One can treat DAEs being transformable into SCF as quasi-
regular DAEs. Here we concentrate on the S-canonical form. We prove that each DAE
being transformable into S-canonical form is regular with tractability index µ = κ, and
hence, each DAE with well-defined regular strangeness index ζ is a regular DAE with
tractability index µ = ζ + 1. All above canonical forms are given in standard form. For
the T-canonical form, a version with properly stated leading term is straightforward (cf.
Definition 6.40).

The strangeness index concept applies to standard form DAEs (113) with sufficiently
smooth coefficients. A reader who is not familiar with this concept finds a short introduc-
tion in the next subsection. For the moment, we interprete DAEs with regular strangeness
index as those being transformable into S-canonical form. This is justified by an equiva-
lence result of [KM94], which is reflected by Theorem 8.2 below.
The regular strangeness index ζ is supported by a sequence of characteristic values
r̄i, āi, s̄i, i = 0, . . . , ζ, which are associated with constant rank conditions for matrix
functions, and which describe the detailed size of the S-canonical form. By definition,
sζ = 0 (cf. Subsection 8.2). These characteristic values are invariant with respect to the
equivalence transformations, however, they are not independent of each other.

Theorem 8.2 Each DAE (113) with smooth coefficients, well-defined strangeness index
ζ and characteristic values r̄i, āi, s̄i, i = 0, . . . , ζ, is equivalent to a DAE in S-canonical
form with κ = ζ + 1 , l = l1 + · · ·+ lκ, m− l = r̄ζ, and

l1 ≤ . . . ≤ lκ, l1 = s̄κ−2 = s̄ζ−1, l2 = s̄κ−3, . . . , lκ−1 = s̄0, lκ = s̄0 + ā0, .

Proof: This assertion comprises the regular case of [KM94, Theorem 12] which considers
more general equations having also underdetermined parts (indicated by nontrivial fur-
ther characteristic values ūi). �

By the next assertion, which represents the main result of this subsection, we prove each
DAE with regular strangeness index ζ to be at the same time a regular DAE with tractabil-
ity index µ = ζ+1. Therefore, the tractability index concept applies at least to the entire
class of DAEs which are accessible by the strangeness index concept. Both concepts are
associated with characteristic values being invariant under equivalence transformations,
and, of course, we would like to know how these characteristic values are related to each
other. In particular, the question arises whether the constant rank conditions supporting
the strangeness index coincide with the constant rank conditions supporting the tractabil-
ity index.

Theorem 8.3 (1) Let the standard form DAE (113) have smooth coefficients, the reg-
ular strangeness index ζ and the characteristic values r̄i, āi, s̄i, i = 0, . . . , ζ. Then
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this DAE is regular with tractability index µ = ζ + 1 and associated characterstic
values

r0 = r̄0, rj = m− s̄j−1, j = 1, . . . , µ.

(2) Each DAE in S-canonical form with smooth coefficients can be tranformed into T-
canonical form with H = 0.

Proof: (1) We prove the assertion by constructing a matrix function sequence and admis-
sible projector functions associated with the tractability index framework for the resulting
S-canonical form described by Theorem 8.2.
The matrix function N within the S-canonical form has constant rank l − lκ. Exploiting
the structure of N we compose a projector function Q

[N ]
0 onto kerN , which is block upper

triangular, too. Then we set

P0 :=

[
Im−l KQ

[N ]
0

0 P
[N ]
0

]
, such that kerP0 = ker

[
Im−l K

0 N

]
.

P0 is a projector function. The DAE coefficients are supposed to be smooth enough so
that P0 is continuously differentiable. Then we can turn to the following properly stated
version of the S-canonical form:[

Im−l K
0 N

]
(P0x)′ + (

[
W 0
0 Il

]
−
[
Im−l K

0 N

]
P ′0)︸ ︷︷ ︸264W −K ′Q[N ]

0

0 Il −NP [N ]′

0

375

x = q, (134)

The product NP
[N ]′

0 is again strictly block upper triangular, and Il−NP [N ]′

0 is nonsingular.
Scaling the DAE by [

Im−l 0

0 (Il −NP [N ]
0

′
)−1

]
yields [

Im−l K
0 M0

]
(P0x)′ +

[
W −K ′Q[N ]

0

Il

]
x = q, (135)

The matrix function M0 has the same structure as N , and kerM0 = kerN . For the
subsystem corresponding to the second line of (135)

M0(P
[N ]
0 v)′ + v = q2,

Proposition G.2 in Appendix D provides a matrix function sequence G
[N ]
j , j = 0, . . . , κ,

and admissible projector functions Q
[N ]
0 , . . . , Q

[N ]
κ−1 such that this subsystem is a regular

DAE with tractability index µ[N ] = κ and characteristic values

r
[N ]
i = l − lκ−i, i = 0, . . . , κ− 1, r[N ]

κ = l.

Now we compose a matrix function sequence and admissible projector functions for the
DAE (135). We begin with D = D− = R = P0, and build successively for i = 0, . . . , κ

Gi =

[
Im−l ∗

0 G
[N ]
i

]
, Qi =

[
0 ∗
0 Q

[N ]
i

]
, Πi =

[
Im−l ∗

0 Π
[N ]
i

]
, Bi =

[
W ∗
0 B

[N ]
i

]
.
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The coefficients are supposed to be smooth enough so that the Πi are continuously dif-
ferentiable. It results that the matrix functions Gi have constant ranks

ri = m− l+ r
[N ]
i = m− l+ l− lκ−i = m− lκ−i, i = 0, . . . , κ−1, rκ = m− l+ r[N ]

κ = m.

This confirms that the DAE is regular with tractability index µ = κ. Applying again Theo-
rem 8.2, we express ri = m − lκ−i = s̄i−1 for i = 1, . . . , κ − 1, further
r0 = m − (s̄0 + ā0) = r̄0, and this completes the proof of (1). (2) This is a conse-
quence of assertion (1), and the fact that each regular DAE with tractability index µ can
be transformed into T-canonical form (with κ = µ, cf. Theorem 6.41). �

8.2 Strangeness reduction

The original strangeness index concept is a special reduction technique for standard form
DAEs (113)

E(t)x′(t) + F (t)x(t) = q(t)

with sufficiently smooth coefficients on a compact interval I. We repeat the basic re-
duction step from [KM94]. For more details and a comprehensive discussion of reduction
techniques we refer to [KM06] and [RR02].

As mentioned before, the strangeness index is supported by several constant rank con-
ditions. In particular, the matrix E in (113) is assumed to have constant rank r̄. This
allows to construct continuous injective matrix functions T, Z, and T̄ such that

imT = kerE, im T̄ = (kerE)⊥, imZ = (imE)⊥.

The columns of T, T̄ , and Z are basis functions of the corresponding subspaces.
Supposing Z∗FT to have constant rank ā, we find a continuous injective matrix function
V such that

imV = (imZ∗FT )⊥.

If, additionally, V ∗Z∗FT̄ has constant rank s̄, then one can construct pointwise nonsin-
gular matrix functions K and L, such that the transformation x = Kx̃ and scaling the
DAE (113) by L leads to

Is̄
Id̄

0
0

0

 x̄′ +


0 F̃1,2 0 F̃1,4 F̃1,5

0 0 0 F̃2,4 F̃2,5

0 0 Iā 0 0
Is̄ 0 0 0 0
0 0 0 0 0

 x̄ = Lq, (136)

with d̄ := r̄ − s̄.
The system (136) consists of m = s̄ + d̄ + ā + s̄ + ū equations, ū := m− r̄ − ā− s̄. The
construction of K and L involves three smooth factorizations of matrix functions and the
solution of a classical linear IVP (see [KM06]).
The fourth equation in (136) is simply x̄1 = (Lq)4, which gives rise to replace the derivative
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x̄′1 in the first line by (Lq)′4. Doing so we attain the new DAE
0

Id̄
0

0
0


︸ ︷︷ ︸

Enew

x̄′ +


0 F̃1,2 0 F̃1,4 F̃1,5

0 0 0 F̃2,4 F̃2,5

0 0 Iā 0 0
Is̄ 0 0 0 0
0 0 0 0 0


︸ ︷︷ ︸

Fnew

x̄ = Lq −


(Lq)′4

0
0
0
0

 , (137)

which is expected to have a lower index since the mentioned differentiation of x̄1 is carried
out analytically.
This reduction step is supported by the three rank conditions

rankE = r̄, rankZ∗FT = ā, rankV ∗Z∗FT̄ = s̄. (138)

The following proposition guarantees these constant rank conditions to be valid, if the
DAE under consideration is regular in the tractability sense.

Proposition 8.4 Let the DAE (113) be regular with tractability index µ and character-
istic values r0 ≤ . . . ≤ rµ−1 < rµ. Then the constant rank conditions (138) are valid,

r̄ = r0, ā = r1 − r0, s̄ = m− r1,

so that the reduction step is feasible.

Proof: We choose symmetric projector functionsW0, Q0 andW1, and verify the relations

rankZ∗BT = rankW0BQ0 = r1 − r0, rankV ∗Z∗FT̄ = rankW1B = m− r1.

�

The reduction from {E,F} to {Enew, Fnew} can be repeated as long as the constant rank
conditions are given. This leads to an iterative reduction procedure. One starts with
{E0, F0}:={E,F} and forms, for each i ≥ 0, a new pair {Ei+1, Fi+1} to {Ei, Fi}. This
works as long as the three constant rank conditions

r̄i = rankEi, āi = rankZ∗i FiTi, s̄i = rankV ∗i Z
∗
i FiT̄i, (139)

hold true.
The strangeness index ζ ∈ N ∪ {0} is defined to be

ζ := min{i ∈ N ∪ {0} : s̄i = 0}.

The strangeness index is the minimal index such that the so-called strangeness disappears.
ζ is named regular strangeness index, if there are no so-called underdetermined parts
during the iteration such that ūi = 0 and r̄i + āi + s̄i = m for all i = 0, . . . , ζ.
The values r̄i, āi, s̄i, i ≥ 0, and several additional ones, are called characteristic values
associated with the strangeness index concept.
If the original DAE (113) has regular strangeness index ζ, then the reduction procedure
ends up with the DAE [

Id 0
0 0

]
˜̃x′ +

[
0 0
0 Ia

]
˜̃x = ˜̃q,

with d = d̄ζ , a = āζ .
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Remark 8.5 Turn for a moment back to time-invariant DAEs and constant matrix pairs.
If the matrix pair {E,F} is regular with Kronecker index µ (which is the same as tractabil-
ity index µ), and characteristic values r0 ≤ . . . ≤ rµ−1 < rµ = m, then this pair has
the regular strangeness index ζ = µ − 1. The characteristic values associated with the
strangeness index can then be obtained from the r0, . . . , rµ by means of the formulas

r̄i = m−
i∑

j=0

(m− rj),

āi =
i∑

j=0

(m− rj)− (m− ri+1),

s̄i = m− ri+1, i = 0, . . . , ζ.

The same relations apply to DAEs with time-varying coefficients, too (cf. [Lam08]).

8.3 Projector based reduction

Although linear regular higher index DAEs are well understood, they are not accessible for
a direct numerical integration. Especially for this reason, different kind of index reduction
have their meaning.
We formulate a reduction step for the DAE (44) with properly stated leading term, i.e.

A(Dx)′ +Bx = q,

by applying the projector functionW1 associated to the first terms of the matrix function
sequence. W1 projects along imG1 = imG0⊕imW0BQ0, and, because of imA ⊆ imG0 ⊆
imG1, multiplication of the DAE by W1 leads to the derivative free equations

W1Bx =W1q. (140)

Emphasize these equations to be just a part of the derivative free equations, except for
the caseW0 =W1, which is given in Hessenberg systems, and in Example 8.6 below. The
complete set is described by

W0Bx =W0q. (141)

We suppose the matrix functionW1 to have constant rank m−r1, which is at least ensured
in regular DAEs. For regular DAEs the subspace

S1 = kerW1B

is known to have dimension r1.
Introduce a continuous reflexive generalized inverse (W1B)−, and put

Z1 := I − (W1B)−W1B.

Z1 is a continuous projector function onto S1. Because of W1BQ0 = 0 the following
properties hold true:

Z1Q0 = Q0

DZ1 = DZ1P0 = DZ1D
−D

DZ1D
− = DZ1D

−DZ1D
−

imDZ1D
− = imDZ1 = DS1 = DS0.
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DZ1D
− is a priori a continuous projector function. Assuming the DAE coefficients to be

sufficiently smooth, it becomes continuously differentiable, and we do so. In consequence,
for each function x ∈ C1

D(I,Rm) it follows that

DZ1x = DZ1D
−Dx ∈ C1(I,Rn), D(I − Z1)x = Dx−DZ1x ∈ C1(I,Rn),

which allows for writing the DAE as

A(DZ1x)′ + A(D(I − Z1)x)′ +Bx = q. (142)

The equation (140) is consistent, since, for reasons of dimensions, imW1B = imW1. It
results that

(I − Z1)x = (W1B)−W1q. (143)

This allows to remove the derivative (D(I − Z1)x)′ from the DAE, and to replace it by
the exact solution part derived from (140). The resulting new DAE

A(DZ1x)′ +Bx = q − A(D(W1B)−W1q)
′

has no properly stated lading term. This why we expressA(DZ1x)′ = A{DZ1D
−(DZ1x)′+

(DZ1D
−)′DZ1x}, and turn to the new DAE with a properly stated leading term

ADZ1D
−︸ ︷︷ ︸

Anew

(DZ1︸︷︷︸
Dnew

x)′ + (A(DZ1D
−)′DZ1 +B)︸ ︷︷ ︸
Bnew

x = q − A(D(W1B)−W1q)
′ (144)

which has the same solutions as the original DAE (44) has, and which is expected to have
a lower index.

Example 8.6 We reconsider the DAE (7) from Example 1.1,0 1 0
0 −t 1
0 0 0


︸ ︷︷ ︸

A(t)

(

0 0 0
0 1 0
0 0 1


︸ ︷︷ ︸

D

x(t))′ +

1 0 0
0 0 0
0 −t 1


︸ ︷︷ ︸

B(t)

x(t) = q(t), t ∈ R.

A matrix function sequence and admissible projector functions for this DAE are generated
in Example 2.3. This DAE is regular with tractability index three. Compute now

W1 =

0 0 0
0 0 0
0 0 1

 , W1B(t) =

0 0 0
0 0 0
0 −t 1

 .
Since W1B is already a projector function, we can set (W1B)− =W1B. This implies

Z1 =

1 0 0
0 1 0
0 t 0

 , D(t)Z1(t) =

0 0 0
0 1 0
0 t 0

 ,
and finally the special DAE (144)0 1 0

0 0 0
0 0 0


︸ ︷︷ ︸

Anew(t)

(

0 0 0
0 1 0
0 t 0


︸ ︷︷ ︸

Dnew(t)

x(t))′ +

1 0 0
0 1 0
0 −t 1


︸ ︷︷ ︸

Bnew(t)

x(t) =

 q1(t)
q2(t)− q′3(t)

q3(t)

 , t ∈ R,

which is indeed regular with tractability index two.

90



For the special choice (W1B)− = (W1B)+, the resulting Z1 is the orthoprojector function
onto S1. This version is the counterpart to the strangeness reduction step from Subsection
8.2.

At the first glance it seems to be somehow arbitrary to figure out just the equations (140)
for reduction. However, after the explanations below it will be seen as nice option.

An analogous reduction step can be arranged by choosing the complete set of derivative
free equations (141) as candidate. For regular DAEs, the subspace kerW0B = S0 has di-
mension r0, and we obtain again consistency, as well as the projector
Z0 := I − (W0B)−W0B onto S0. From (141) it results that

(I − Z0)x = (W0B)−W0q.

Now we need a smoother solution x to be able to differentiate this expression. To be more
transparent we assume at least D and Z0, as well as the solution x to be continuously
differentiable, and turn to the standard form

AD︸︷︷︸
E

x′ + (B − AD′)︸ ︷︷ ︸
F

x = q.

Here we express

x′ = (Z0x)′ + ((W0B)−W0q)
′ = Z0x

′ + Z ′0x+ ((W0B)−W0q)
′,

such that we arrive at the new DAE

EZ0︸︷︷︸
Enew

x′ + (F + EZ ′0)︸ ︷︷ ︸
Fnew

x = q − E((W0B)−W0q)
′. (145)

This kind of reduction is in essence the procedure described in [RR02]. The description
in [RR02] concentrates on the coefficient pairs, and one turns to a condensed version of
the pair {EZ0, (I −W0)(F + EZ ′0)}.

In the following we do not provide a precise proof of the index reduction, but explain
the idea behind. Assume the DAE (44) to be regular with tractability index µ and
characteristic values r0 ≤ . . . ≤ rµ−1 = rµ = m, and take a furter look to the completely
decoupled version consisting of the IERODE (53) and the subsystem (cf. (65))

N (Dv)′ +Mv = Lq. (146)

This subsystem comprises the inherent differentiations. It reads in detail
0 N0,1 · · · N0,µ−1

0
. . .

...
. . . Nµ−2,µ−1

0




0
(DΠ0Q1x)′

...
(DΠµ−2Qµ−1x)′

 (147)

+


I M0,1 · · · M0,µ−1

I
. . .

...
. . . Mµ−2,µ−1

I




Q0x
Π0Q1x

...
Πµ−2Qµ−1x

 =


L0q
L1q

...
Lµ−1q

 .
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We see, if we replace the derivative term (DΠµ−2Qµ−1x)′ by its exact solution part
(DLµ−1q)

′ we arrive at the system

Nnew


0

(DΠ0Q1x)′

...
(DΠµ−3Qµ−2x)′

0

+


I M0,1 · · · M0,µ−1

I
. . .

...
. . . Mµ−2,µ−1

I




Q0x
Π0Q1x

...
Πµ−2Qµ−1x



=


L0q −N0,µ−1(Lµ−1q)

′

L1q −N1,µ−1(Lµ−1q)
′

...
Lµ−2q −Nµ−2,µ−1(Lµ−1q)

′

Lµ−1q

 (148)

While the matrix function N has nilpotency index µ, the new matrix function

Nnew =


0 N0,1 · · · N0,µ−2 0

0
. . .

... 0
. . . Nµ−3,µ−2 0

0 0
0


has nilpotency index µ − 1 (cf. Proposition 6.6). That means, replacing the derivative
(DΠµ−2Qµ−1x)′ by the true solution term reduces the index by one. Clearly, replacing
further derivatives and successively solving the subsystem for (I − Πµ−1)x = Q0x +
Π0Q1x+ · · ·+Πµ−2Qµ−1x reduces the index up to one. We keep in mind that, replacing
at least the derivative (DΠµ−2Qµ−1x)′ reduces the index at least by one. However, in
practice, we are not given the decoupled system. How can we otherwise make sure that
this derivative is replaced?
Consider for a moment the equation

Wµ−1Bx =Wµ−1q (149)

that is also a part of the derivative free equations of our DAE. Since the subspace
Sµ−1 = kerWµ−1 has dimension rµ−1, the matrix function Wµ−1B has constant rank
m − rµ−1, equation (149) is consistent, we obtain with Zµ−1 := I − (Wµ−1B)−Wµ−1B a
continuous projector function onto Sµ−1, and it follows that

(I − Zµ−1)x = (Wµ−1B)−Wµ−1q.

Since we use completely decoupling projector functions Q0, . . . , Qµ−1, we know that
Πµ−2Qµ−1 is the projector function onto imΠµ−2Qµ−1 along Sµ−1. Therefore, with
I − Zµ−1 and Πµ−2Qµ−1 we have two projector functions along Sµ−1. This yields

I − Zµ−1 = (I − Zµ−1)Πµ−2Qµ−1, Πµ−2Qµ−1 = Πµ−2Qµ−1(I − Zµ−1),

and therefore, by replacing (D(I −Zµ−1)x)′ we replace at the same time (DΠµ−2Qµ−1x)′.
This means, that turning from the original DAE (44) to

ADZµ−1D
−(DZµ−1x)′ + (A(DZµ−1D

−)′DZµ−1 +B)x = q − A(D(Wµ−1B)−Wµ−1q)
′
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reduces the index by one indeed. However, the use of Zµ−1, is rather a theoretical option,
since Wµ−1 is not easy to obtain. The point is, that working instead with (140) and Z1

as described above, and differentiating the more components D(I − Z1)x, includes the
differentiation of the component D(I − Zµ−1)x as a part of it. By this, the reduction
step from (44) to (144) seems to be a reasonable compromise from both theoretical and
practical view.
At this place we underline that there are various possibilities to compose special reduction
techniques.

9 Widely orthogonal projector functions

For each DAE with properly stated leading term the orthogonal projector onto N0 is an ad-
missible one. We can always start the matrix function sequence by choosing
Q0 = Q∗0, P0 = P ∗0 . In the next level, applying the decomposition Rm = (N0 ∩
N1)⊥ ⊕ (N0 ∩ N1) we determine X1 in the decomposition N0 = X1 ⊕ (N0 ∩ N1) by
X1 = N0 ∩ (N0 ∩ N1)⊥. This leads to N0 + N1 = (X1 ⊕ (N0 ∩ N1)) + N1 = X1 ⊕ N1

and Rm = (N0 + N1)⊥ ⊕ (N0 + N1) = (N0 + N1)⊥ ⊕ X1 ⊕ N1. By this, Q1 is uniquely
determined.
On the next levels, if Q0, . . . , Qi−1 are admissible, we first apply the decomposition

Rm = (
_
Ni)
⊥ ⊕

_
Ni, and choose

Xi = (N0 + · · ·+Ni−1) ∩ (
_
Ni)
⊥. (150)

The resulting decompositions N0 + · · ·+Ni = Xi ⊕Ni, and
Rm = (N0 + · · ·+Ni)

⊥⊕ (N0 + · · ·+Ni) = (N0 + · · ·+Ni)
⊥⊕Xi⊕Ni allow for the choice

imQi = Ni, kerQi = (N0 + · · ·+Ni)
⊥ ⊕Xi. (151)

Definition 9.1 Admissible projector functions Q0, . . . , Qκ are called widely orthogonal if
(150) and (151) are fulfilled for i = 1, , . . . , κ.

Notice that widely orthogonal projector functions are uniquely determined. They provide
also special symmetry properties. In fact, applying widely orthogonal projector functions,
the decompositions

x(t) = Πi(t)x(t) +Πi−1(t)Qi(t)x(t) + . . .+Π0(t)Q1(t)x(t) +Q0(t)x(t)

are orthogonal ones for all t.

Proposition 9.2 If Q0, . . . , Qκ are widely orthogonal, then Πi, i = 0, . . . , κ, and Πi−1Qi, i =
1, . . . , κ, are symmetric projectors.

Proof:
Let Q0, . . . , Qκ be widely orthogonal. In particular, it holds that Π0 = Π∗0 , kerΠ0 =
N0, imΠ0 = N⊥0 .
Compute imΠ1 = imP0P1 = P0 imP1 = P0((N0 +N1)⊥ ⊕X1) = P0(N0 +N1)⊥

= P0(N⊥0 ∩N⊥1 ) = N⊥0 ∩N⊥1 = (N0 +N1)⊥.
To use induction, assume that imΠj = (N0 + · · ·+Nj)

⊥, j ≤ i− 1.
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Due to Proposition 3.2 (1) we know that kerΠi = N0 + · · · + Ni is true, further
Πi−1Xi = 0. From (151) it follows that imΠi = Πi−1imPi = Πi−1((N0+· · ·+Ni)

⊥⊕Xi) =
Πi−1(N0 + · · · + Ni)

⊥ = Πi−1((N0 + · · · + Ni−1)⊥ ∩ N⊥i ) = (N0 + · · · + Ni−1)⊥ ∩ N⊥i =
(N0 + · · ·+Ni)

⊥.
Since Πi is a projector, and kerΠi = N0 + · · ·+Ni, imΠi = (N0 + · · ·+Ni)

⊥, Πi must
be the orthoprojector.
Finally, derive (Πi−1Qi)

∗ = (Πi−1 −Πi−1Pi)
∗ = Πi−1 −Πi−1Pi = Πi−1Qi. �

Proposition 9.3 If, for the DAE (8) with properly stated leading term, there exist any
admissible projector functions Q0, . . . , Qκ, and if DD∗ ∈ C1(I, L(Rn)), then also widely
orthogonal projector functions can be chosen (do exist).

Proof:
Let Q0, . . . , Qκ be admissible. Then, in particular the subspaces N0 + · · ·+Ni, i = 0, . . . , κ
are continuous. The subspaces imDΠ0Q1, . . . , imDΠκ−1Qκ belong to the class C1, since
the projectors DΠ0Q1D

−, . . . , DΠκ−1QκD
− do so. Taking Proposition 3.2 into account

we know the subspaces D(N0 + · · ·+Ni), i = 1, . . . , κ, to be continuously differentiable.
Now we construct widely orthogonal projectors. Choose Q̄0 = Q̄∗0, and form
Ḡ1 = G0 + B0Q̄0. Due to Lemma 3.7 (d) it holds that Ḡ1 = G1Z1, N̄0 + N̄1 = N0 + N1,
Z1(N̄0 ∩ N̄1) = N0 ∩N1. Since Z1 is nonsingular, Ḡ1 has constant rank r1, and the inter-
section NU1 = N̄1∩ N̄0 has constant dimension u1. Put X̄1 = N̄0∩ (N̄0∩ N̄1)⊥ and fix the
projector Q̄1 by means of im Q̄1 = N̄1, ker Q̄1 = X̄1⊕(N̄0+N̄1)⊥. Q̄1 is continuous, but for
the sequence Q̄0, Q̄1 to be admissible, DΠ̄1D̄

− has to belong to the class C1. This projector
has the nullspace kerDΠ̄1D̄

− = D(N̄0 + N̄1)⊕ kerR = D(N0 +N1)⊕ kerR, which is al-
ready known to belong to C1. If DΠ̄1D̄

− has a range that is a C1 subspace, then DΠ̄1D̄
−

itself is continuously differentiable. Derive imDΠ̄1D̄
− = imDΠ̄1 = D(N̄0 + N̄1)⊥ =

D(N0 + N1)⊥ = DD∗(D(N0 + N1))⊥. Since D(N0 + N1) belongs to the class C1, so does
(D(N0 + N1))⊥. It comes out that DP̄0P̄1D̄

− is in fact continuously differentiable, and
hence, Q̄0, Q̄1 are admissible.
To use induction, assume that Q̄0, . . . , Q̄i−1 are admissible and widely orthogonal. Lemma
3.7 (d) yields Ḡi = GiZi, N̄0 + · · · + N̄i−1 = N0 + · · · + Ni−1, N̄0 + · · · + N̄i =
N0 + · · ·+Ni, Zi(N̄i ∩ (N̄0 + · · ·+ N̄i−1)) = Ni ∩ (N0 + · · ·+Ni−1).
Since Zi is nonsingular, it follows that Ḡi has constant rank ri and the intersection
NU i = N̄i ∩ (N̄0 + · · · + N̄i−1) has constant dimension ui. The involved subspaces are
continuous. Put

X̄i = (N̄0 + · · ·+ N̄i−1) ∩ ((N̄0 + · · ·+ N̄i−1) ∩ N̄i)
⊥

and choose Q̄i to be the projector onto N̄i along (N̄0 + · · ·+ N̄i)
⊥ ⊕ X̄i.

Q̄0 . . . , Q̄i−1, Q̄i would be admissible if DΠ̄iD̄
− was continuously differentiable. We know

kerDΠ̄iD̄
− = D(N0 + · · ·+Ni)⊕ kerR to be already continuously differentiable. On the

other hand, we have imDΠ̄iD̄
− = D im Π̄i = D(N0 + · · · + Ni)

⊥ = DD∗(D(N0 + · · · +
Ni))

⊥, hence imDΠ̄iD̄
− belongs to the class C1. �

The widely orthogonal projectors have the advantage that they are uniquely determined.
This proves its value in theoretical investigations on necessary and sufficient regularity
conditions for nonlinear DAEs, as well as for investigating critical points. Moreover, in
practical calculations, in general, there might be difficulties to assure the continuity of
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the projector functions Πi. Fortunately, owing to their uniqueness the widely orthogonal
projector functions are continuous a priori.
By Proposition 9.3, at least for all DAEs with properly stated leading term, and with a
continuously differentiable coefficient D, we may access widely orthogonal projector func-
tions. However, if D is just continuous, and if DD∗ fails to be continuously differentiable
as required, then it may happen in fact that admissible projector functions exist but the
special widely orthogonal projector functions do not exist for lack of smoothness. The
following example shows this situation. At this point we underscore that most DAEs are
given with a smooth D, and our example is rather academic.

Example 9.4 We reconsider Example 6.30 which is a regular DAE with tractability index
two. The detailed equations are

(x1 + αx2)′ = q1,

x′2 − x3 = q2,

x2 = q3.

Written as (8) with m = k = 3, n = 2, the DAE has the coefficients.

A =

1 0
0 1
0 0

 , D =

[
1 α 0
0 1 0

]
, B =

0 0 0
0 0 −1
0 1 0

 , R =

[
1 0
0 1

]
.

α : I → R is a continuous function. Example 6.30 provides fine decoupling projector
functions. Now we construct widely orthogonal projector functions. We start with

Q0 =

0 0 0
0 0 0
0 0 1

 , D− =

1 −α
0 1
0 0

 , G1 =

1 α 0
0 1 −1
0 0 0

 .
Compute further

N0 ⊕N1 = span {

0
0
1

 ,
−α1

1

}, (N0 ⊕N1)⊥ = span

1
α
0

 .
The wanted projector function onto N1 along N0 ⊕ (N0 ⊕N1)⊥ is

Q1 =
1

1 + α2

 α2 −α 0
−α 1 0
−α 1 0

 , and it results that DΠ1D
− =

[
1 0
α

1+α2 0

]
.

We recognize that, in the given setting, DΠ1D
− is just continuous. If we additionally

assume that α ∈ C1(I,R), then Q0, Q1 appear to be admissible. Notice that in this case

DD∗ =

[
1 + α2 α
α 1

]
is continuously differentiable, which confirms Proposition 9.3 once

more.
Let us stress that this special DAE is solvable for arbitrary continuous α. From this point
of view there is no need for assuming α to be C1. �
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10 Over- and underdetermined DAEs (Nonregular

DAEs)

The general purpose of this monograph is the detailed analysis of regular DAEs. In par-
ticular we aim for regularity criteria, and we would like to assist in modeling regular DAEs
in applications, and in avoiding DAE models that fail to be regular.
On the other side, several authors spend much place also to rectangular DAEs (cf. [KM06]
for a summary).
In our view, more general linear DAEs (8) than regular ones are less interesting, and we
tear this topic just slightly. As usually, we speak on overdetermined systems, if k > m,
but on underdetermined ones, if k < m. However, this notion does not say so much, it
simply indicates the relation between the numbers of equations and unknown functions.
It seems to be more appropriate speaking on nonregular DAEs, that is, on DAEs not
being regular. This option includes also the square systems (with m = k) which may also
contain free variables and consistency conditions if the regularity conditions fail.

As in [LMT11b, Section 7], we point out the great latitude for interpretations when
considering nonregular DAEs.
Turn for a moment to the overdetermined DAE

x′ + x = q1, (152)

x = q2, (153)

with k = 2, m = n = 1. If one more emphasizes the algebraic equation x = q2, one is
led to a differentiation of q2 as well as to a consistency condition coming from the first
equation, namely

q′2 + q2 − q1 = 0.

Contrarily, if one puts emphasis on the differential equation x′+x = q1 one can solve this
equation for

x(t) = e−t
(
x0 +

∫ t

0

esq1(s)ds
)

and then consider the second equation to be responsible for consistency. This leads to the
consistency condition

e−t
(
x0 +

∫ t

0

esq1(s)ds
)
− q2(t) = 0.

At a first glance this consistency condition looks quite different, but differentiation im-
mediately yields again q2 − q1 + q′2 = 0.
The last interpretation is oriented to solve rather differential equations than algebraic
ones and to differentiate. We join this point of view.

A further room of interpretation is given for the trivial underdetermined DAE

(x1 + x2)′ + x1 = q (154)

with k = 1, m = 2, n = 1. Should we choose x1 or x2 to be free? One can also think on
writing

(x1 + x2)′ + (x1 + x2)− x2 = q, (155)
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or

(x1 + x2)′ +
1

2
(x1 + x2) +

1

2
(x1 − x2) = q. (156)

As described in Section 4, the special structure of the matrix function sequence (12)-(15)
built by admissible projector functions allows for a systematic rearrangement of general
DAEs (8), among them also rectangular ones. Section 4 ends up with a first glance
at DAEs the matrix function G0 of which has already maximal rank. We resume this
discussion noting that, in the above two examples, we have the constant matrix functions

G0 =

[
1
0

]
, and G0 =

[
1 1

]
,

and both have already maximal rank.
Recall that, in this case, the DAE (8) is equivalent to the system (34), that is to

(Dx)′ −R′Dx+DG−0 B0D
−Dx+DG−0 B0Q0x = DG−0 q, W0B0D

−Dx =W0q, (157)

the solution of which decomposes as x = D−Dx+Q0x.
For the overdetermined system (152), (153), we have in detail: D = D− = R = 1, Q0 = 0,

A =

[
1
0

]
, B =

[
1
1

]
G0 =

[
1
0

]
, G−0 =

[
1 0

]
, W0 =

[
0 0
0 1

]
, DG−0 B0D

− = 1.

Inserting these coefficients we see the first equation in (157) coincides with the ODE (152),
while the second equation in (157) is nothing else (153). This confirms the interpretation
of the given DAE to be primarily the explicit ODE (152) subject to the consistency con-
dition (153).

For the underdetermined DAE (154), one has A = 1, D =
[
1 1

]
, R = 1, B =

[
1 0

]
,

W0 = 0, and the second equation in (157) disappears. Many different projectors Q0 are
admissible, and different choices lead to different ODEs

(Dx)′ +DG−0 B0D
−Dx+DG−0 B0Q0x = DG−0 q, (158)

and solution representations x = D−Dx+Q0x. We consider three cases:

(a) Set and compute

D− =

[
1
2

1
2

]
, P0 =

[
1
2

1
2

1
2

1
2

]
, Q0 =

[
1
2
−1

2

−1
2

1
2

]
, G−0 =

[
1
2

1
2

]
,

and further DG−0 B0D
− = 1

2
, DG−0 = 1, DG−0 B0Q0 =

[
1
2
−1

2

]
, and we see the

corresponding ODE (158) coincides with (156).

(b) Set and compute

D− =

[
1
0

]
, P0 =

[
1 1
0 0

]
, Q0 =

[
0 −1
0 1

]
, G−0 =

[
1
0

]
,

DG−0 B0D
− = 1, DG−0 = 1, DG−0 B0Q0 =

[
0 −1

]
. Now the equation (158) coin-

cides with (155).
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(c) Set and compute

D− =

[
0
1

]
, P0 =

[
0 0
1 1

]
, Q0 =

[
1 0
−1 0

]
, G−0 =

[
0
1

]
,

DG−0 B0D
− = 0, DG−0 = 1, DG−0 B0Q0 =

[
1 0

]
, and the equation (158) coincides

with the version (154).

Observe that the eigenvalues of DG−0 B0D
− are 1

2
or 1 or 0, in dependence of the choice of

the admissible projector Q0. One could restrict the variety of admissible projectors and
take just the widely orthogonal ones which are uniquely determined. In our example this
corresponds to (a). However, this would be an arbitrary action. We think that is it worth
to be mentioned at this place, that the inherent explicit regular ODE of a regular DAE
is uniquely defined by the problem data, independent of the choice of fine decoupling
projectors.
The tractability index of a regular DAE is determined to be the smallest index µ such
that the matrix function Gµ is nonsingular (Definition 6.2). We intend to generalize this
notion, and to assign the tractability index µ to each general DAE (8) with properly stated
leading term, for which admissible projector functions do exist and µ is the smallest index
such that Gµ has maximal possible rank. In this sense, both above examples are tractable
with index zero.
Before we formulate the detailed definition, we remember that the ranks of the matrix
functions G0, . . . , Gi form a nondecreasing sequence r = r0 ≤ r1 ≤ . . . ≤ ri, but not
necessarily a strictly increasing one. It may well happen that the ranks do not change in
several consecutive steps. For instance, a Hessenberg size µ DAE is characterized by the
sequence r0 = . . . = rµ−1 < rµ. This feature makes the task to recognize the maximal rank
and stop constructing the matrix functions in practice somewhat more subtle as thought
before. Of course, if one reaches imGµ = im [AD B], or equivalently WµB = {0}, then
rµ is maximal, and one can stop owing to the basic property (19) of the matrix functions.
If one obtains an injectice Gµ, then one can stop because of the resulting stationarity
Gµ = Gµ+1 = . . . = Gµ+i. Proposition 10.2(3) below gives further useful information
which also applies to the case if im [AD B] can not be reached. More precisely, it says,
if there are admissible projector functions Q0, . . . , Qr+1, then there is an index µ̄ ≤ r + 1
such that the matrix function sequence can be continued up to infinity, and it is stationary
at least beginning with this index, that is Gµ̄ = Gµ̄+i for all i ≥ 1. This provides the
upper bound r + 1 of the index µ̄.
We are looking for the index µ such that the rank rµ reaches the maximal possible value.
Since µ must be always equal or less than µ̄, having the bound r+ 1 for the second index,
we have at the same time a bound for the first one, that is µ ≤ r + 1.

Definition 10.1 Let the DAE (8) have a properly stated leading term, and let the matrix
function

[
AD B

]
have constant rank.

(1) The DAE is said to be tractable on I with index zero (µ = 0), if either
imG0 = im [AD B] or admissible projector functions Q0, . . . , Qr+1 exist such that
imG0 = . . . = imGr+1.

(2) The DAE is said to be tractable on I with index µ ∈ N,
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(a) if there are admissible projector functions Q0, . . . , Qµ−1, and
imGµ = im [AD B], or

(b) if there are admissible projector functions Q0, . . . , Qr+1, and
imGµ = . . . = imGr+2,

and µ is the smallest integer of this kind.

(3) The DAE is regular on I with tractability index µ ∈ N ∪ {0}, if it is tractable with
index µ, and additionally m = k and imGµ = Rm.

This definition generalizes Definition 6.2. Item(3) repeats Definition 6.2 for completeness.
The special examples (152), (153) and (154) show DAEs being tractable with index zero.
From our point of view one should take care to attain the condition im [AD B] = Rk

during the modeling.
A particular case of interest is given if one meets matrix functions Gi being injective. This
can only happen if k ≥ m. Then, the tractability index is the smallest integer µ such
that Gµ is injective, thus rµ = m. It is worth mentioning that then u0 = . . . = uµ−1 = 0,

i.e. the intersections
_
Ni are trivial.

If the complement subspace X1 is trivial, then it holds that Gi = G0 for all i ≥ 1, and the
DAE is tractable with index zero and therefore, if X1 = {0}, then one can stop. Namely,
X1 = {0} means N1 ∩ N0 = N0. This implies N0 ⊆ N1, and N0 = N1 because of the
dimensions dimN0 = m − r0 ≥ m − r1 = dimN1. Choose Q1 := Q0. The projector
functions Q0, Q1 are admissible. It follows that 0 = G1Q1 = G0Q1 + B0Q0Q1 = B0Q0,
thus G1 = G0 and G2 = G1 +B1Q1 = G1 +B1P0Q1 = G1. Then we set Q2 := Q1 and so
on. In particular, it results that Xi = {0} for all i ≥ 1.
Notice that, if there is a trivial complement subspace Xκ in a matrix function sequence,
the all these subspaces Xi must be trivial, too.

Proposition 10.2 Given is the DAE (8) with a properly stated leading term.

(1) If there are admissible projector functions
Q0, . . . , Qκ, with a κ ∈ N, such that

Gκ = Gκ+1,

then, the projector functions Q0, . . . , Qκ+i, with Qκ+i := Qκ for i ≥ 1, are also
admissible, and it holds that

Gκ = Gκ+i, N0 + . . .+Nκ = N0 + . . .+Nκ+i.

(2) If there admissible projector functions Q0, . . . , Qκ, such that

N0 + . . .+Nκ−1 = N0 + . . .+Nκ,

then Gκ = Gκ+1 holds true.

(3) If Q0, . . . , Qr+1 are admissible projector functions, then the sequence can be contin-
ued up to infinity, and there is an index µ̄ ≤ r + 1 such that Gµ̄+1 = Gµ̄+i for all
i ≥ 2.
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Proof: (1) Nκ = Nκ+1 implies Nκ+1 ⊆ N0 + . . .+Nκ, N0 + . . .+Nκ = N0 + . . .+Nκ+1,
N0 + . . . + Nκ = Xκ ⊕Nκ = Xκ ⊕Nκ+1, hence, choosing Xκ+1 := Xκ, Qκ+1 := Qκ leads
to uκ+1 = uκ, DΠκ+1D

− = DΠκD
−, so that Q0, . . . , Qκ, Qκ+1 are admissible, and further

Bκ+1Qκ+1 = Bκ+1ΠκQκ+1 = 0, Gκ+2 = Gκ+1, and so on.

(2) N0 + . . . + Nκ−1 = N0 + . . . + Nκ implies Nκ ⊆ N0 + . . . + Nκ−1, hence Πκ−1Qκ = 0,
BκQκ = BκΠκ−1Qκ = 0, Gκ+1 = Gκ.

(3) Let Q0, . . . , Qr+1 be admissible projector functions. Apply the decompositions

Ni =
_
Ni ⊕ Yi, which is accompanied by (N0 + . . . + Ni−1) ∩ Yi = {0}. Namely,

z ∈ (N0 + . . . + Ni−1) ∩ Yi yields z ∈ (N0 + . . . + Ni−1) ∩ Ni =
_
Ni, thus z = 0. It

results that N0 + . . .+Ni = N0 + . . .+Ni−1 +Yi = (N0 + . . .+Ni−1)⊕Yi, that is, the sup-
plement to N0 + . . .+Ni−1 is exactly the subspace Yi, and therefore dim(N0 + . . .+Ni) =
dim(N0 + . . .+Ni−1) + dimYi.
If dimYi ≥ 1 for j = 1, . . . , r, then

dim(N0 + . . .+Nr) ≥ dimN0 + r = m− r0 + r = m.

In consequence, the subspaces N0 + . . . + Nr and N0 + . . . + Nr+1 must coincide, and
assertion (2) leads to Gr+1 = Gr+2.

If there is an index j∗ ≤ r such that dimYi = 0, then we have Nj∗ =
_
Nj∗ = Nj∗ ∩

(N0 + . . . + Nj∗−1), and the inclusion Nj∗ ⊆ N0 + . . . + Nj∗−1 is valid. This leads to
N0 + . . .+Nj∗−1 = N0 + . . .+Nj∗ , and due to assertion (2), to Gj∗ = Gj∗+1.
Owing to (1), the matrix function sequence can be continued in both cases, and there
exists an index µ̄ ≤ r + 1 with Gµ̄ = Gµ̄+i, i ≥ 1. �

By Proposition 10.2, we know that equal subspaces N0 + . . . + Nκ−1 = N0 + . . . + Nκ in
the sequence (20) indicate that the matrix functions Gi coincide with Gκ on all following
levels, and we can stop constructing the matrix function sequence. However, the smallest
integer κ with N0 + . . . + Nκ−1 = N0 + . . . + Nκ does not necessarily coincide with the
smallest integer µ indicating that Gµ has the maximal possible rank. For instance, in
Example 3.5, we have κ = 2, but µ = 0.

In general, applying Proposition 10.2 we know the tractability index µ to be smaller or
equal to r + 1 = rank (AD) + 1. The inequality

µ ≤ rank (AD) + 1 (159)

is rigorous. This is confirmed by Example 3.6 with m1 = m2 = m3 = 1, r0 = 2, and
µ = 3, i.e. µ = r0 + 1.

Next we reconsider the rearranged version (30) of the DAE (8), and provide a refined
form which serves below as a basis of the further decouplings.

Proposition 10.3 Let the DAE (8) with properly stated leading term have the admissible
projectors Q0, . . . , Qκ, with κ ∈ N. Then this DAE can be rewritten as

GκD
−(DΠκx)′ +Bκx+Gκ

κ−1∑
l=0

{Qlx− (I −Πl)Ql+1D
−(DΠlQl+1x)′

+ VlDΠlx+ Ul(DΠlx)′} = q

(160)
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with coefficients

Ul := −(I −Πl){Ql +Ql+1(I −Πl)Ql+1Pl}ΠlD
−,

Vl := (I −Πl){(Pl +Ql+1Ql)D
−(DΠlD

−)′ −Ql+1D
−(DΠl+1D

−)′}DΠlD
−.

Before we verify this assertion, we point out the coefficients Vl to be caused by variations
in time, these coefficients vanish in the constant coefficient case.

The coefficients Ul disappear, if the intersections
_
N1, . . . ,

_
Nl are trivial.

If the intersections
_
N1, . . . ,

_
Nκ are trivial, then it results (cf. Proposition 4.1) that

Vl = Vl, l = 1, . . . , κ.

Proof: Recall from Proposition 4.1 the general rearranged version (30) of the DAE (8):

GκD
−(DΠκx)′ +Bκx+Gκ

κ−1∑
l=0

{Qlx+ (I −Πl)(Pl −Ql+1Pl)(DΠlx)′} = q. (161)

For κ = 1 we compute

G1(I −Π0)(P0 −Q1P0)D−(DΠ0x)′ = −G1(I −Π0)Q1D
−(DΠ0x)′

= −G1(I −Π0)Q1D
−(DΠ0Q1x)′ −G1(I −Π0)Q1D

−(DΠ1D
−DΠ0x)′

= −G1(I −Π0)Q1D
−(DΠ0Q1x)′ +G1V0DΠ0x+G1U0(DΠ0x)′

with

U0 = −(I −Π0)Q1Π1D
− = −(I −Π0){Q0 +Q1(I −Π0)Q1P0}Π0D

−,

V0 = −(I −Π0)Q1D
−(DΠ1D

−)′DΠ0D
−.

Set κ > 1, and take a closer look to

El := (I −Πl)(Pl −Ql+1Pl)D
−(DΠlx)′, 0 ≤ l ≤ κ− 1.

Compute

El = (I −Πl)(Pl −Ql+1Pl)D
−((DΠlD

−)′DΠlx+DΠlD
−(DΠlx)′)

= (I −Πl)(Pl −Ql+1Pl)D
−(DΠlD

−)′DΠlx+ (I −Πl)(−Ql −Ql+1Pl)ΠlD
−(DΠlx)′

= (I −Πl)(Pl −Ql+1Pl)D
−(DΠlD

−)′DΠlx− (I −Πl)QlΠlD
−(DΠlx)′

− (I −Πl)Ql+1{Πl + I −Πl}Ql+1PlΠlD
−(DΠlx)′

= (I −Πl)(Pl −Ql+1Pl)D
−(DΠlD

−)′DΠlx

− (I −Πl)(Ql +Ql+1{Πl + I −Πl}Ql+1Pl)ΠlD
−(DΠlx)′
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and

El = (I −Πl)(Pl −Ql+1Pl)D
−(DΠlD

−)′DΠlx

−(I −Πl)(Ql +Ql+1{I −Πl}Ql+1Pl)ΠlD
−︸ ︷︷ ︸

Ul

(DΠlx)′

− (I −Πl)Ql+1ΠlQl+1PlΠlD
−︸ ︷︷ ︸

ΠlQl+1

(DΠlx)′

= (I −Πl)(Pl −Ql+1Pl)D
−(DΠlD

−)′DΠlx+ Ul(DΠlx)′

− (I −Πl)Ql+1D
−(DΠlQl+1x)′ + (I −Πl)Ql+1D

−(DΠlQl+1D
−)′DΠlx

= (I −Πl){(Pl −Ql+1Pl)D
−(DΠlD

−)′ +Ql+1D
−(DΠlQl+1︸ ︷︷ ︸

Πl−Πl+1

D−)′}DΠlx+ Ul(DΠlx)′

− (I −Πl){(Pl −Ql+1Pl)D
−(DΠlD

−)′

= Ul(DΠlx)′ − (I −Πl){(Pl −Ql+1Pl)D
−(DΠlD

−)′

+ (I −Πl){(Pl −Ql+1Pl +Ql+1)D−(DΠlD
−)′ −Ql+1D

−(DΠl+1D
−)′}DΠl︸ ︷︷ ︸

VlD

x.

In consequence, the representation (161) is nothing else

GκD
−(DΠκx)′ +Bκx+Gκ

κ−1∑
l=0

{Qlx−(I −Πl)Ql+1D
−(DΠlQl+1x)′

+ VlDΠlx+ Ul(DΠlx)′} = q,

which completes the proof. �

Throughout the rest of this section the DAE (8) is supposed to be tractable with index
µ, and Q0, . . . , Qµ−1 denote admissible projector functions. We may take use of the
rearranged version of (8) (cf. (160))

Gµ−1D
−(DΠµ−1x)′ +Bµ−1x

+Gµ−1

µ−2∑̀
=0

{Q`x− (I −Π`)Q`+1D
−(DΠ`Q`+1x)′ + V`DΠ`x+ U`(DΠ`x)′} = q,

(162)
the coefficients V`, U` are from Proposition 10.3. By expressing

Gµ−1Q` = GµQ`, Gµ−1V` = GµV`, Gµ−1U` = GµU`, ` = 0, . . . , µ− 2,

Bµ−1 = Bµ−1Pµ−1 +Bµ−1Qµ−1 = Bµ−1D
−DΠµ−1 +Bµ−1Qµ−1,

formula (162) becomes

Gµ

{
Pµ−1D

−(DΠµ−1x)′ +Qµ−1x

+

µ−2∑
`=0

{Q`x− (I −Π`)Q`+1D
−(DΠ`Q`+1x)′ + V`DΠ`x+ U`(DΠ`x)′}

}
(163)

+Bµ−1D
−DΠµ−1x = q.
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According to the definition of the tractability index µ, the matrix function Gµ has con-
stant rank. We find a continuous generalized inverse G−µ , and a projector function
Wµ = I − GµG

−
µ along imGµ. Notice that there is no need for the resulting projec-

tor function G−µGµ to be also admissible. The projector functions GµG
−
µ and Wµ split

the DAE (163) into two parts. Multiplication by Wµ leads to equation (165) below.
Multiplication by GµG

−
µ yields

Gµ

[
Pµ−1D

−(DΠµ−1x)′ +Qµ−1x

+

µ−1∑
`=0

{Q`x−(I −Π`)Q`+1D
−(DΠ`Q`+1x)′ + V`DΠ`x+ U`(DΠ`x)′}

+G−µBµ−1D
−DΠµ−1x−G−µ q

]
= 0.

This equation Gµ[ ] = 0 may be rewritten as [ ] = y, where y is an arbitrary continuous
function such that Gµy = 0. Together this leads to the system

Pµ−1D
−(DΠµ−1x)′ +Qµ−1x+

µ−2∑
`=0

{Q`x− (I−Π`)Q`+1D
−(DΠ`Q`+1x)′

+V`DΠ`x+ U`(DΠ`x)′}+ y = G−µ (q −Bµ−1D
−DΠµ−1x), (164)

WµBµ−1D
−DΠµ−1x =Wµq, (165)

where y can be chosen arbitrarily such that Gµy = 0. Thereby, the relation

kerGµ = (I −G−µ−1Bµ−1Qµ−1)(Nµ−1 ∩ Sµ−1) (166)

might be helpful. The undetermined part of y is actually Qµ−1y ∈ Nµ−1 ∩ Sµ−1.

Multiplication of (164) by projector functions discovers some further structure. In par-
ticular, multiplication by Πµ−1 yields

Πµ−1D
−(DΠµ−1x)′ +Πµ−1y = Πµ−1G

−
µ (q −Bµ−1D

−DΠµ−1x),

hence we recognize an inherent explicit regular ODE with respect to DΠµ−1x, namely

(DΠµ−1x)′−(DΠµ−1D
−)′DΠµ−1x+DΠµ−1y+DΠµ−1G

−
µBµ−1D

−DΠµ−1x = DΠµ−1G
−
µ q.

It is worth mentioning again, that, in contrast to regular DAEs, the properties of the flow
of this ODE may depend on the choice of the admissible projector functions, as it is the
case for example (154).
Multiplying (164) by Πµ−2Qµ−1 gives

Πµ−2Qµ−1x+Πµ−2Qµ−1y +Πµ−2Qµ−1G
−
µBµ−1D

−DΠµ−1x = Πµ−2Qµ−1G
−
µ q.

Apart from the terms including y, these two formulas are the same as the corresponding
ones in Section 6 on regular DAEs. However, the further equations that will be derived
from (164) by multiplication with further projector functions are more difficult to survey.
We restrict ourselves to several case studies.
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Case 1: Gµ has full column rank.

This case can happen only if k ≥ m, and rµ = m holds true. Since Gµ is injective, due to
Proposition 4.1, all intersections (N0 + . . . + Ni−1) ∩Ni, i = 1, . . . , µ− 1, are trivial, the
components U0, . . . ,Uµ−2 vanish, and V` simplifies to V` = V`, ` = 0, . . . , µ− 2. Moreover,
Gµy = 0 implies y = 0.

The resulting special equation (164) reads

Pµ−1D
−(DΠµ−1x)′ +Qµ−1x

+

µ−2∑
`=0

{Q`x− (I −Π`)Q`+1D
−(DΠ`Q`+1x)′ + V`DΠ`x} (167)

+G−µBµ−1D
−DΠµ−1x = G−µ q.

For k = m, that is, for regular DAEs with tractability index µ, this formula coincides in
essence with formula (50) (several terms are arranged in a different way).

Applying the decoupling procedure from Section 6, we can prove (167) to represent a
regular index µ DAE. Completed by an initial condition

D(t0)Πµ−1(t0)x(t0) = z0 ∈ imD(t0)Πµ−1(t0), (168)

this equation is uniquely solvable for x. That means, we have the option to consider
the equation (167) to fully determine the solution x, and to treat equation (165) as an
additional consistency condition.

Example 10.4 Set m = 2, k = 3, n = 1, and write the system

x′1 + x2 = q1,
x2 = q2,
x2 = q3,

(169)

as DAE (8) such that

A =

1
0
0

 , D = [1 0], G0 =

1 0
0 0
0 0

 , B =

0 1
0 1
0 1

 , Q0 =

[
0 0
0 1

]
,

G1 =

1 1
0 1
0 1

 , W1 =

0 0 0
0 0 0
0 −1 1

 , µ = 1, G−1 =

[
1 −1 0
0 1 0

]
.

G1 has already maximal possible rank, r1 = 2, and hence this DAE is tractable with index
one. The consistency equation W1(BΠ0x − q) = 0 means here q2 = q3. Equation (167)
has the form [

1
0

]
x′1 +

[
0
x2

]
=

[
q1 − q2

q2

]
,

which is a regular index-one DAE.
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Example 10.5 Set m = 2, k = 3, n = 1, and rewrite the system

x′1 + x2 = q1,
x1 = q2,
x2 = q3,

(170)

as DAE (8). This leads to

A =

1 0
0 0
0 0

 , D = [1 0], G0 =

1 0
0 0
0 0

 , B =

0 1
1 0
0 1

 , Q0 =

[
0 0
0 1

]
,

G1 =

1 1
0 0
0 1

 , W1 =

0 0 0
0 1 0
0 0 0

 , µ = 1, G−1 =

[
1 0 −1
0 0 1

]
.

G1 has maximal rank, r1 = 2, this DAE is tractable with index one. Condition
W1(B0Π0x− q) = 0 means now x1 = q2, and equation (167) specializes to[

1
0

]
x′1 +

[
0
x2

]
=

[
q1 − q3

q3

]
,

which is a regular index-one DAE.

Example 10.6 Set k = 5, m = 4, n = 4, and put the DAE

x′1 = q1,
x′2 + x1 = q2,
x′3 + x2 = q3,
x′4 + x3 = q4,

x4 = q5,

(171)

into the form (8). This yields

G0 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 , B =


0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , W0 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

 ,
and µ = 0. This DAE is interpreted as an explicit ODE for the components x1, x2, x3,
x4 and the consistency condition x4 = q5.

Example 10.7 The DAE

x′2 + x1 = q1,

x′3 + x2 = q2, (172)

x3 = q3,

x′3 = q′3,
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results from the index three system

x′2 + x1 = q1,

x′3 + x2 = q2, (173)

x3 = q3,

by adding the differentiated version of the derivative-free equation. We may write (172)
in the form (8) with k = 4, m = 3, n = 2,

A =


1 0
0 1
0 0
0 1

 , D =

[
0 1 0
0 0 1

]
, B =


1 0 0
0 1 0
0 0 1
0 0 0

 , D− =

0 0
1 0
0 1

 .
Compute

G0 =


1 0 0
0 0 1
0 0 0
0 0 1

 , Q0 =

1 0 0
0 0 0
0 0 0

 , G1 =


1 1 0
0 0 1
0 0 0
0 0 1

 , Q0 =

0 −1 0
0 1 0
0 0 0

 , G2 =


1 1 0
0 1 1
0 0 0
0 0 1

 ,
r0 = 2, r1 = 2, r2 = 3. It results that (172) has tractability index two while (173) has
tractability index three.
System (172) is overdetermined, and, in our view, the subsystem W2Bx = W2q (cf.
(165)), which means here in essence x3 = q3, is interpreted as a consistency condition.
The main part (167) of the DAE reads

x′2 + x1 = q1,

x2 = q2 − q′3,
x′3 = q′3,

and this is obviously a regular index two DAE.

The last example adresses an interesting general phenomenon: If one adds to a given
DAE the differentiated version of a certain part of the derivative-free equations, then the
tractability index reduces.
There are several possibilities to choose appropriate derivative-free equations to be differ-
entiated. Here we concentrate on the part

Wµ−1Bx =Wµ−1q,

supposing the original DAE (8) to have tractability index µ ≥ 2.
Considering the inclusion N0 ⊆ S1 ⊆ Sµ−1 = kerWµ−1B we can write this derivative-free
part as

Wµ−1BD
−Dx =Wµ−1q,

and differentiation yields

Wµ−1BD
−(Dx)′ + (Wµ−1BD

−)′Dx = (Wµ−1q)
′. (174)
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The enlarged DAE (8), (174) is now[
A

Wµ−1BD
−

]
︸ ︷︷ ︸

=:Ã

(Dx)′ +

[
B

(Wµ−1BD
−)′D

]
︸ ︷︷ ︸

=:B̃

x =

[
q

(Wµ−1q)
′

]
, (175)

with k + m =: k̃ equations. The DAE (175) inherits the properly stated leading term
from (8) because of ker Ã = kerA.
The next proposition says that the tractability index of (175) is less by one than that of
(8).

Proposition 10.8 If the DAE (8) has tractability index µ, and characteristic values
r0 ≤ · · · ≤ rµ−1 < rµ = m, µ ≥ 2, then the DAE (175) has tractability index µ̃ = µ − 1,
and characteristic values r̃i = ri, i = 0, . . . , µ̃− 1, r̃µ̃ = r̃µ−1 = m.

Proof: We have N0 ⊆ kerWµ−1B = Sµ−1,

G̃0 = ÃD =

[
AD

Wµ−1BD
−D

]
=

[
G0

Wµ−1B

]
, r̃0 = r0.

Set Q̃0 = Q0 and form G̃1 = G̃0 + B̃Q̃0 =

[
G1

Wµ−1B

]
.

If µ = 2, then ker G̃1 = kerG1 ∩ kerW1B = N1 ∩ S1 = {0}. Then, r̃1 = m, r̃0 < r̃1 , and
hence the new DAE (175) has tractability index one, and we are ready.
If µ ≥ 3 then ker G̃1 = kerG1 ∩ kerWµ−1B = N1, since N1 ⊆ S2 ⊆ Sµ−1 = kerWµ−1B.
Moreover, r̃1 = r1.
Set Q̃1 = Q1 and form

B̃1 =

[
B1

(Wµ−1BD
−)′D −Wµ−1BD

−(DΠ1D
−)′D

]
=

[
B1

(Wµ−1BD
−)′DΠ1

]
,

G̃2 =

[
G1 +B1Q1

Wµ−1B

]
=

[
G2

Wµ−1B

]
, Ñ2 = N2 ∩ Sµ−1.

If µ = 3, then Ñ2 = N2 ∩ S2 = {0}, and r̃2 = m, i.e. G̃2 is injective, and the DAE (175)
has tractability index two.
For µ > 3, as long as j ≤ µ− 2, it results that

G̃j =

[
Gj

Wµ−1B

]
, Ñj = Nj ∩ Sµ−1 = Nj, Q̃j = Qj, r̃j = rj,

B̃j =

[
Bj

(Wµ−1BD
−)′DΠj−1 −Wµ−1BD

−(DΠjD
−)′DΠj−1

]
=

[
Bj

(Wµ−1BD
−)′DΠj

]
.

Finally,

G̃µ−1 =

[
Gµ−1

Wµ−1B

]
, Ñµ−1 = Nµ−1 ∩ Sµ−1 = {0}, r̃µ−1 = m,

that is, G̃µ−1 is injective, and the DAE (175) has tractability index µ̃ = µ− 1. �

We mention that W̃µ̃ =

[
Wµ−1

I −Wµ−1

]
is a projector function with ker W̃µ̃ = im G̃µ̃,

and now the equationWµ−1Bx =Wµ−1q is interpreted as consistency condition, while its
differentiated version is included into the main part (167), as it is the case in Example
10.7.
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Case 2: The DAE is tractable with index one, and G1 has a nontrivial nullspace.

The decomposed system (164), (165) has the form

D−(Dx)′ +Q0x+ y +G−1 B0D
−Dx = G−1 q (176)

W1B0D
−Dx = W1q, (177)

with G1y = 0, i.e. y = (I −G−0 B0Q0)Q0y, Q0y ∈ N0 ∩ S0. The inherent explicit ODE is
here

(Dx)′ −R′Dx+Dy +DG−1 BD
−Dx = DG−1 q, (178)

and multiplication of (176) by Q0 gives

Q0x+Q0y +Q0G
−
1 B0D

−Dx = Q0G
−
1 q. (179)

For each arbitrarily fixed continuous Q0y ∈ N0 ∩ S0, equation (176) represents a regular
index-one DAE.

We consider (177) as a consistency condition. If imG1 = Rk, m ≥ k, are true, i.e. if G1

has full row-rank, then this condition disappears.

Example 10.9 Set m = m1 + m2 + m3, k = k1 + k2 + k3, n = m1, m1 = k1, m2 = k2,
k3 ≥ 0, m3 ≥ 0, and consider the DAE (8) with the coefficients

A =

I0
0

 , D =
[
I 0 0

]
, D− =

I0
0

 , B =

0 0 B13

0 I 0
0 0 0

 ,
which has the detailed form

x′1 +B13x3 = q1,
x2 = q2,
0 = q3.

This DAE plays its role in the strangeness index framework (e.g. [KM06]). Derive

G0 =

I 0 0
0 0 0
0 0 0

 , Q0 =

0 0 0
0 I 0
0 0 I

 , G1 =

I 0 B13

0 I 0
0 0 0

 , W1 =

0 0 0
0 0 0
0 0 I

 ,
and r0 = m1, r1 = m1 + m2 and imG1 = im [AD B] = Rm1 × Rm1 × {0}. Therefore,
G1 has maximal possible rank, and hence the problem is tractable with index 1. The con-
sistency condition (177) means simply 0 = q3, if k3 > 0. It disappears for k3 = 0.

Moreover, here we have N0 = {z ∈ Rm : z1 = 0}, S0 = {z ∈ Rm : z2 = 0}, N0 ∩ S0 =
{z ∈ Rm : z1 = 0, z2 = 0}. G1y = 0 means y1 + B13y3 = 0, y2 = 0. The free component
Q0y ∈ N0 ∩ S0 is actually y3 (if m3 > 0), so that y1 = −B13y3 follows.
It results that

G−1 =

I I
0

 , G−1 B0D
− = 0,
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and the equation (176) reads in detail

x′1 −B13y3 = q1,

x2 = q2,

x3 + y3 = 0.

For each given function y3, this is obviously a regular index one DAE.

The characteristic values ri as well as the tractability index are invariant under regular
scalings and transformations of the unknown function (cf. Section 5). We derive a similar
result on the structure of an index-one DAE via transformations.

Proposition 10.10 Let m > k, and the DAE (8) be tractable with index one. Then
there are nonsingular matrix functions L ∈ C(J, L(Rk)), L∗ = L−1, K ∈ C(J, L(Rm)),
K∗ = K−1, such that the premultiplication by L and the transformation of the unknown

function x = Kx̄, x̄ =

[
x̄1

x̄2

]
} r1

} m− r1
, lead to the equivalent DAE

Ā1(D̄1x̄1)′ + B̄11x̄1 + B̄12x̄2 = q̄1, (180)

B̄21x̄1 = q̄2, (181)

with

LA =

[
Ā1

0

]
, DK =

[
D̄1 0

]
, LBK =

[
B̄11 B̄12

B̄21 0

]
, Lq =

[
q̄1

q̄2

]
} r1

} k − r1
,

and equation (180) is a regular DAE with tractability index one with respect to x̄1. If
r1 = k, i.e. if G1 has full row-rank, then the second equation (181) disappears. In general,
it holds that ker B̄21 ⊇ ker D̄1.

Proof: We choose Q0, W0 to be the orthogonal projectors onto N0 and imG0, and
consider the matrix function

G1 = G0 +W0BQ0,

that has constant rank r1. Compute L so that

LG1 =

[
Ǧ1

0

]
} r1

} k − r1
, rank Ǧ1 = r1.

Then we provide a K to obtain

Ǧ1K = [ S︸︷︷︸
r1

0︸︷︷︸
m−r1

] , S nonsingular.

This yields

L(G0 +W0BQ0)K =

[
S 0
0 0

]
, L(G0 +W0BQ0)K

[
0 0
0 I

]
= 0,

and further G0K

[
0 0
0 I

]
= 0, W0BQ0K

[
0 0
0 I

]
= 0, P0K

[
0 0
0 I

]
= 0, DK

[
0 0
0 I

]
= 0.

In particular, D̄ := DK = [D̄1 0] must be true, and im D̄1 = imD. Denoting P̃0 := D̄+
1 D̄1,
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Q̃0 := I − P̃0 ∈ C(I, L(Rr1)) we find Q̄0 = K∗Q0K =

[
Q̃0 0
0 I

]
to be the orthogonal

projector onto ker D̄ = K∗kerD.
Next we scale the DAE (8) by L and transform x = Kx̄. Because of imA ⊆ imG1, we
must have

Ā := LA =

[
A1

0

]
} r1

} k − r1
, ker Ā = kerA = kerA1.

From imBQ0 ⊆ imG1 = imG1 we derive, with B̄ := LBK =

[
B̄11 B̄12

B̄21 B̄22

]
} r1

} k − r1︸︷︷︸
r1

︸︷︷︸
m−r1

, that

im B̄Q̄0 ⊆ imLG1, hence B̄Q̄0 has the form

[
∗ ∗
0 0

]
, and B̄21Q̃0 = 0, ker D̄1 ⊆ ker B̄21,

B̄22 = 0 must hold.
It remains to show that (180) has regular index one as a DAE for x1 in Rr1 . Obvi-
ously, this DAE for x1 has a properly stated leading term, too. If we succeed showing
Ā1D̄1 + W̃0B̄11Q̃0 to be nonsingular, where W̃0 := I − Ā1Ā

+
1 , we are done. Notice that

W̄0 := LW0L
−1 is the orthoprojector onto im Ḡ⊥0 = im Ā⊥. Because of Ā =

[
A1

0

]
, we

have W̄0 =

[
W̃0 0
0 I

]
. Derive

Ā1D̄1 + W̃0B̄11Q̃0 =
[
I 0

]
LADK

[
I
0

]
+
[
I 0

]
W̄0LBKQ̄0

[
I
0

]
=
[
I 0

]
L(AD +W0BQ0)K

[
I
0

]
=
[
I 0

] [S 0
0 0

] [
I
0

]
= S,

and S is nonsingular. �

Case 3: The DAE is tractable with index two, and G2 has a nontrivial nullspace

The decomposed system (164), (165) is now

P1D
−(DΠ1x)′ +Q1x+Q0x−Q0Q1D

−(DΠ0Q1x)′ + V0Dx+ U0(Dx)′

+G−2 B1D
−DΠ1x+ y = G−2 q, (182)

W2B1D
−DΠ1x =W2q, (183)

with coefficients (cf. Proposition 4.1)

U0 = −Q0{Q0 +Q1Q0Q1P0}Π0D
− = −Q0Q1Q0Q1D

−,

V0 = Q0{(P0 +Q1Q0)D−R′ −Q1D
−(DΠ1D

−)′}DD− = −Q0Q1D
−(DΠ1D

−)′DD−

and an arbitrary continuous function such that

G2y = 0. (184)
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We multiply (182) by DΠ1, Q1 and Q0P1, and obtain the system

(DΠ1x)′ − (DΠ1D
−)′DΠ1x+DΠ1G

−
2 B1D

−DΠ1x+DΠ1y = DΠ1G
−
2 q, (185)

Q1x+Q1Q0x−Q1Q0Q1D
−(DΠ0Q1x)′ +Q1V0Dx+Q1U0(Dx)′

+Q1G
−
2 B1D

−DΠ1x+Q1y = Q1G
−
2 q, (186)

Q0P1Q0x+Q0P1D
−(DΠ1x)′ −Q0P1Q0Q1D

−(DΠ0Q1x)′ +Q0P1V0Dx

+Q0P1U0(Dx)′ +Q0P1G
−
2 B1D

−DΠ1x+Q0P1y = Q0P1G
−
2 q, (187)

which is a decomposed version of (182) due to Π0 + Q0P1 + Q1 = I, Π0 = D−DΠ0.
Multiplying equation (186) by Π0 and taking into account the property Π0Q1Q0 = 0 we
derive

Π0Q1x+Π0Q1G
−
2 B1D

−DΠ1x+Π0Q1y = Π0Q1G
−
2 q. (188)

Now it is evident that, for given y, and the initial condition

D(t0)Π1(t0)x(t0) = z0 ∈ imD(t0)Π1(t0), (189)

there is exactly one solution of the explicit ODE (185), that is, the solution component
Π0x = D−DΠ0x of the IVP for the DAE is uniquely determined. Having DΠ1x, we
obtain the next component Π0Q1x from (188), and thus Dx = DΠ1x+DΠ0Q1x. Then,
formula (187) provides an expression for Q0P1Q0x in terms of the previous ones. Finally,
multiplying (186) by Q0 we find an expression Q0Q1x+Q0Q1Q0x = E with E depending
on the already given terms y, DΠ0Q1x, DΠ1x, Dx. In turn, this yields an expression for
Q0Q1Q0x, and then for Q0x = Q0Q1Q0x+Q0P1Q0.

In summary, to each function y that satisfies condition (184), the system (185) – (187),
completed by the initial condition (189), determines a unique solution
x = D−DΠ1x+Π0Q1x+Q0x of the DAE.
With regard of the discussion above (cf. (166)) the actual arbitrary part of y is Q1y ∈
N1 ∩ S1.
We mention that, for solvability, the component DΠ0Q1x must be continuously differ-
entiable. Equation (188) shows the terms being responsible for that. For instance,
if Π0Q1G

−
2 B1D

− is a continuously differentiable matrix function, then the difference
DΠ0Q1(G−2 q − y) must be continuously differentiable.

Example 10.11 Set k = 3, m = 4, n = 2, and consider the DAE (8) given by the
coefficients

A =

1 0
0 1
0 0

 , D =

[
1 0 0 0
0 1 0 0

]
, D− =


1 0
0 1
0 0
0 0

 , B =

1 0 0 0
0 0 1 1
0 1 0 0

 .
This DAE reads in detail

x′1 + x1 = q1,
x′2 + x3 + x4 = q2,

x2 = q3.
(190)
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We provide the sequence

G0 =

1 0 0 0
0 1 0 0
0 0 0 0

 , Q0 =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 ,

G1 =

1 0 0 0
0 1 1 1
0 0 0 0

 , Q1 =


0 0 0 0
0 1 0 0
0 0 1 0
0 −1 −1 0

 , B1 =

1 0 0 0
0 0 0 0
0 1 0 0

 ,

G2 =

1 0 0 0
0 1 1 1
0 1 0 0

 , G−2 =


1 0 0
0 0 1
0 1 −1
0 0 0

 , W2 = 0.

Thereby, the projector Q1 satisfies the admissibility condition X1 ⊂ kerQ1 with
X1 := {z ∈ R4 : z1 = 0, z2 = 0, z3 = 0} and N0 = (N0 ∩N1)⊕X1. G2 has maximal rank,
r2 = k = 3, thus the DAE is tractable with index two. The consistency condition (183)
disappears. Compute further Vl = 0 and Ul = 0, so that the equation (182) simplifies to

P1D
−(DΠ1x)′ +Q1x+Q0x−Q0Q1D

−(DΠ0Q1x)′ +G−2 B1D
−DΠ1x+ y = G−2 q,

with

P1D
− =


1 0
0 0
0 0
0 1

 , Q0Q1D
− =


0 0
0 0
0 0
0 −1

 , G−2 B1D
−DΠ1 =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .
Taking into account that G2y = 0 is equivalent to y1 = 0, y2 = 0, y4 = −y3, , we find the
equation (182) to be in detail:

x′1 + x1 = q1,

x2 = q3.

2x3 + y3 = q2 − q3,

x4 − x3 − x2 + x′2 − y3 = 0.

To each function y3, this is a regular DAE with tractability index two. Its solutions are
the solutions of the original DAE.
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Linear Algebra – Basics

In this appendix we collect and complete well-known facts concerning projectors and
subspaces of Rm (Section A), and generalized inverses (Section B). Section C provides
material on matrix and projector valued functions with proofs, since these proofs are not
easily available. In Section D we introduce Ck-subspaces of Rm via Ck-projector functions.
We show Ck-subspaces to be those which have local Ck basises.

A Projectors and subspaces

We collect some basic and useful properties of projectors and subspaces.

Definition A.1 (1) A linear mapping Q ∈ L(Rm) is called a projector, if Q2 = Q.

(2) A projector Q ∈ L(Rm) is called a projector onto S ⊆ Rm if imQ = S.

(3) A projector Q ∈ L(Rm) is called a projector along S ⊆ Rm if kerQ = S.

(4) A projector Q ∈ L(Rm) is called an orthogonal projector if Q = Q∗.

Example: The m-dimensional matrix Q =


1 0 . . . 0
∗ 0 . . . 0
...

...
. . .

...
∗ 0 . . . 0

 with arbitrary entries for ∗

becomes a projector onto the one-dimensional subspace spanned by the first column of Q

along the (m− 1)-dimensional subspace {v : v =


v1

v2
...
vm

 , v1 = 0}.

Lemma A.2 Let P and P̄ be projectors, and Q := I−P , Q̄ := I− P̄ the complementary
projectors . Then the following properties hold:

(1) z ∈ imQ ⇔ z = Qz.

(2) If Q and Q̄ project onto the same subspace S, then Q̄ = QQ̄ and Q = Q̄Q are valid.

(3) If P and P̄ project along the same subspace S, then P̄ = P̄P and P = PP̄ are true.

(4) Q projects onto S iff P := I −Q projects along S.

(5) Each matrix of the form I + PZQ, with arbitrary matrix Z, is nonsingular and its
inverse is I − PZQ.

(6) Each projector P is diagonalizable. Its eigenvalues are 0 and 1. The multiplicity of
the eigenvalue 1 is r = rankP .

Proof:
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1. z = Qy → Qz = Q2y = Qy = z.

2. Q̄z ∈ im Q̄ = S = imQ, also Q̄z = QQ̄z ∀z.

3. P̄P = (I − Q̄)(I −Q) = I − Q̄−Q+ Q̄Q = I − Q̄ = P̄ .

4. P 2 = P ⇔ (I − Q)2 = I − Q ⇔ −Q + Q2 = 0 ⇔ Q2 = Q and
z ∈ kerP ⇔ Pz = 0⇔ z = Qz ⇔ z ∈ imQ.

5. Multiplying (I + PZQ)z = 0 by Q ⇒ Qz = 0. Now with (I + PZQ)z = 0 follows
z = 0.
(I + PZQ)(I − PZQ) = I − PZQ+ PZQ = I.

6. Let P̄1 be a matrix of the r linearly independent columns of P and Q̄2 a ma-
trix of the m − r linearly independent columns of I − P . Then by construction

P
[
P̄1 Q̄2

]
=
[
P̄1 Q̄2

] [I
0

]
. Because of the nonsingularity of

[
P̄1 Q̄2

]
we have

the structure P =
[
P̄1 Q̄2

] [I
0

] [
P̄1 Q̄2

]−1
. The columns of P̄1 resp. Q̄2 are the

eigenvectors to the eigenvalues 1 resp. 0. �

Lemma A.3 Let A ∈ L(Rn,Rk), D ∈ L(Rm,Rn) be given, r := rank (AD). Then the
following two implications are valid:

(1) kerA ∩ imD = 0, im (AD) = imA⇒ kerA⊕ imD = Rn.

(2) kerA⊕ imD = Rn ⇒

• kerA ∩ imD = {0},

• imAD = imA,

• kerAD = kerD,

• rankA = rankD = r.

Proof: (1) Because of im (AD) = imA, the matrix A has rank r and kerA has dimension
n− r. Moreover, rankD ≥ r must be true. The direct sum kerA⊕ imD is well-defined,
and it has dimension n − r + rankD ≤ n. This means that D has rank r. We are done
with (1).

(2) The first relation is an inherent property of the direct sum. Let R ∈ L(Rn) denote
the projector onto imD along kerA. By means of suitable generalized inverses D− and
A− of D and A we may write (Appendix B) R = A−A = DD−, D = RD, A = AR. This
leads to

imAD ⊆ imA = imADD− ⊆ imAD,

kerAD ⊆ kerA−AD = kerD ⊆ kerAD.

The remaining rank property follows now from (1). �
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Lemma A.4 [GvL91, Ch. 12.4.2] Given are matrices G, Π, N , W of suitable sizes such
that

kerG = imN ,
kerΠN = imW .

Then it holds that

kerG ∩ kerΠ = kerNW .

Proof: For x ∈ kerG ∩ kerΠ we find x = N y,Πx = 0, further ΠN y = 0, and hence
y =Wz, x = NWz ∈ imNW .
Conversely, each x = NWz belongs obviously to kerG, and Πx = ΠNWz = 0. �

Lemma A.5 N,M ⊆ Rm subspaces ⇒ (N +M)⊥ = N⊥ ∩M⊥.

Proof:

(N +M)⊥ = {z ∈ Rm : ∀w ∈ N +M : 〈z, w〉 = 0}
= {z ∈ Rm : ∀wN ∈ N,∀wM ∈M : 〈z, wN + wM〉 = 0}
= {z ∈ Rm : ∀wN ∈ N,∀wM ∈M : 〈z, wN〉 = 0, 〈z, wM〉 = 0}
= N⊥ ∩M⊥.

�

Lemma A.6 (1) Given two subspaces N,X ⊆ Rm, N ∩ X = {0}. Then
dimN + dimX ≤ m, and there is a projector Q ∈ L(Rm) such that imQ = N ,
kerQ ⊇ X.

(2) Given two subspaces S,N ⊆ Rm. If the decomposition

Rm = S ⊕N

holds true, i.e. S and N are transversal , then there is a uniquely determined pro-
jector P ∈ L(Rm) such that imP = S, kerP = N .

(3) An orthoprojector P projects onto S := imP along S⊥ = kerP .

(4) Given the subspaces K,N ⊆ Rm,
_
N := N ∩K. If a further subspace X ⊆ Rm is a

complement of
_
N in K, that means K =

_
N⊕X, then there is a projector Q ∈ L(Rm)

onto N such that

X ⊆ kerQ. (191)

Let dK , dN , u denote the dimensions of the subspaces K,N,
_
N, respectively, then

dK + dN ≤ m+ u (192)

holds.
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(5) If the subspace K in (4) is the nullspace of a certain projector Π ∈ L(Rm), that is
K = kerΠ = im (I −Π), then

ΠQ(I −Π) = 0 (193)

becomes true.

(6) Given are the two projectors Π,Q ∈ L(Rm), further P := I − Q, N := imQ,
K := kerΠ. Then, supposed (193) is valid, the products ΠP , ΠQ, PΠP , P (I−Π),
Q(I −Π) are projectors, too. The relation

kerΠP = kerPΠP = N +K (194)

holds true, and the subspace X := imP (I −Π) is the complement of
_
N := N ∩K

in K, such that K =
_
N⊕X.

Moreover, the decomposition

Rm = (N +K)⊕ imPΠP = N ⊕X ⊕ imPΠP︸ ︷︷ ︸
imP

is valid.

(7) If the projectors Π,Q in (6) are such that Π∗ = Π, (ΠP )∗ = ΠP , (P (I −Π))∗ =
P (I −Π) and QΠP = 0, then it follows that

X = K ∩
_
N⊥, imP = X ⊕ (N +K)⊥.

Proof: (1): Let x1, . . . , xr ∈ Rm and n1, . . . , nt ∈ Rm be basises of X and N . Because of
X ∩N = {0} the matrix

F := [x1 . . . xrn1 . . . nt]

has full column rank and r+ t = dimX + dimN ≤ m. The matrix F ∗F is invertible, and

Q := F

[
0

I

]
(F ∗F )−1F ∗

r t

is a projector we looked for. Namely,

Q2 = F

[
0

I

]
(F ∗F )−1F ∗F

[
0

I

]
(F ∗F )−1F ∗ = Q, imQ = imF

[
0

I

]
= N,

and z ∈ X implies that it has to have the structure z = F

[
α
0

]
}r
}t, which leads to Qz = 0.

(2): For transversal subspaces S and N we apply Assertion (1) with t = m− r, i.e. F is
square. We have to show that P is unique. Supposed that there are two projectors P , P̄
such that kerP = ker P̄ = N , imP = im P̄ = S, we immediately have P = (P̄ + Q̄)P =
P̄P + Q̄P = P̄P = P̄ .
(3): Let S := imP and N := kerP . We choose a v ∈ N and y ∈ S. Lemma A.2 (1)
implies y = Py, therefore 〈v, y〉 = 〈v, Py〉 = 〈P ∗v, y〉. With the symmetry of P we obtain
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〈P ∗v, y〉 = 〈Pv, y〉 = 0, i.e. N = S⊥.
(4): X has dimension dK − u. Since the sum space K +N = X ⊕N ⊆ Rm may have at
most dimension m, it results that dim(K + N) = dimX + dimN = dK − u + dN ≤ m,
and assertion (1) provides Q.
(5): Take an arbitrary z ∈ im (I −Π) = K and decompose z = z _

N
+ zX . It follows that

ΠQz = ΠQz _
N

+Π QzX︸︷︷︸
=0

= Πz _
N

= 0, and hence (193) is true.

(6): (193) means ΠQ = ΠQΠ and hence

ΠQΠQ = ΠQQ = ΠQ,

ΠPΠP = Π(I −Q)ΠP = ΠP −Π QΠP︸ ︷︷ ︸
=0

= ΠP,

(PΠP )2 = PΠPΠP = PΠP,

(P (I −Π))2 = P (I −Π)(I −Q)(I −Π) = P (I −Π)− P (I −Π)Q(I −Π)

= P (I −Π) + P ΠQ(I −Π)︸ ︷︷ ︸
=0

,

(Q(I −Π))2 = Q(I −Π)−QΠQ(I −Π) = Q(I −Π).

The representation I − Π = Q(I − Π) + P (I − Π) corresponds to the decomposition

K =
_
N⊕X.

Next we verify (194). The inclusion kerΠP ⊆ kerPΠP is trivial. On the other side,
PΠPz = 0 implies ΠPΠPz = 0 and hence ΠPz = 0, and it follows kerΠP = kerPΠP .
Now it is evident that K+N ⊆ kerΠP . Finally, ΠPz = 0 implies Pz ∈ K, z = Qz+Pz ∈
N +K.
(7): From QΠP = 0 and the symmetry of ΠP we know that PΠP = ΠP , imPΠP =

(N + K)⊥, imP = X ⊕ (N + K)⊥. Next using Lemma A.5, compute
_
N⊥ = N⊥ + K⊥,

and further

K ∩
_
N⊥ = K ∩ (N⊥ +K⊥) = {z ∈ Rm : Πz = 0, z = zN⊥ + zK⊥ , zN⊥ ∈ N⊥, zK⊥ ∈ K⊥}

= {z ∈ Rm : z = (I −Π)zN⊥ , zN⊥ ∈ N⊥} = (I −Π)N⊥

= im (I −Π)P ∗ = im (P (I −Π))∗ = imP (I −Π) = X.

�

Lemma A.7 Let D ∈ L(Rm,Rn) be given, M ⊆ Rm be a subspace. D+ ∈ L(Rn,Rm) be
the Moore-Penrose inverse of D. Then,

(1) kerD∗ = imD⊥, imD = kerD∗⊥, kerD = kerD+∗, imD = imD+∗.

(2) kerD ⊆M ⇒ (DM)⊥ = (imD)⊥ ⊕D+∗M⊥.

(3) kerD ⊆M ⇒M⊥ = D∗(DM)⊥.

Proof: (1) The first two identities are shown in [BIG03] (Theorem 1, p.12).
If z ∈ kerD = im I − D+D with Lemma A.2(1) it is valid that z = (I − D+D)z or
D+Dz = 0. With (201) it holds 0 = D+Dz = (D+D)∗z = D∗D+∗z ⇔ D+∗z = 0 because
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of (198) for D∗ and we have that z ∈ kerD+∗. We prove imD = imD+∗ analogously.
(2) Let T ∈ L(Rm) be the orthoprojector onto M , i.e. imT = M , kerT = M⊥, T ∗ = T .
⇒ DM = imDT ,

(DM)⊥ = (imDT )⊥ = ker (DT )∗ = kerTD∗ = {z ∈ Rn : D∗z ∈M⊥}
= kerD∗︸ ︷︷ ︸

=imD⊥

⊕{v ∈ imD : D∗v ∈M⊥}.

It remains to show that

{v ∈ imD : D∗v ∈M⊥} = D+∗M⊥.

From v ∈ imD = imDD+ we get with Lemma A.2(1) v = DD+v = (DD+)∗v =
D+∗D∗v. Because of D∗v ∈ M⊥ it holds v ∈ D+∗M⊥. Conversely with Lemma A.2(4),
u ∈ D+∗M⊥ = imD+∗(I − T ) implies u ∈ imD+∗ = imD, and ∃w : u = D+∗(I − T )w,
D∗u = D∗D+∗(I−T )w = D+D(I−T )w. Since im (I−T ) = M⊥ ⊆ kerD⊥ = kerD+D⊥ =
im (D+D)∗ = imD+D, it holds that D+D(I −T ) = I −T , hence D∗u = (I −T )w ∈M⊥.

(3) This is a consequence of (2), because of

D∗(DM)⊥ = D∗[(imD)⊥ ⊕D+∗M⊥] = D∗D+∗M⊥ = D+DM⊥ = M⊥.
�

Lemma A.8 ([GM86], AppendixA, Theorem 13)
Let A,B ∈ L(Rm), rankA = r < m, N := kerA, S := {z ∈ Rm : Bz ∈ imA}. The
following statements are equivalent:

(1) Multiplication by a nonsingular E ∈ L(Rm) such that

EA =

[
Ā1

0

]
, EB =

[
B̄1

B̄2

]
, rank Ā1 = r,

yields a nonsingular

[
Ā1

B̄2

]
.

(2) N ∩ S = {0}.

(3) A+BQ is nonsingular for each projector Q onto N .

(4) N ⊕ S = Rm.

(5) The pair {A,B} is regular with Kronecker index one.

(6) The pair {A,B + AW} is regular with Kronecker index one for each arbitrary
W ∈ L(Rm).

Proof: (1)⇒ (2): With N̄ := ker Ā1 = kerEA = kerA = N ,

S̄ := ker B̄2 = {z ∈ Rm : EBz ∈ imEB} = S,

we have

0 = ker

[
Ā1

B̄2

]
= N̄ ∩ S̄ = N ∩ S.

118



(2) ⇒ (3): (A + BQ)z = 0 implies BQz = −Az, that is Qz ∈ N ∩ S, thus Qz = 0,
Az = 0, therefore z = Qz = 0.

(3) ⇒ (4): Fix any projector Q ∈ L(Rm) onto N and introduce Q∗ := Q(A + BQ)−1B.
We show Q∗ to be a projector with imQ∗ = N , kerQ∗ = S so that the assertion follows.
Compute

Q∗Q = Q(A+BQ)−1BQ = Q(A+BQ)−1(A+BQ)Q = Q,

hence Q2
∗ = Q∗, imQ∗ = N . Further, Q∗z = 0 implies (A + BQ)−1Bz = (I − Q)(A +

BQ)−1Bz, thus

Bz = (A+BQ)(I −Q)(A+BQ)−1Bz = A(A+BQ)−1Bz,

that is, z ∈ S. Conversely, z ∈ S leads to Bz = Aw and

Q∗z = Q(A+BQ)−1Bz = Q(A+BQ)−1Aw = Q(A+BQ)−1(A+BQ)(I −Q)w = 0.

This proves the relation kerQ∗ = S.

(4)⇒ (5): Let Q∗ denote the projector onto N along S, P∗ := I −Q∗. Since N ∩ S = 0
we know already that G∗ := A + BQ∗ is nonsingular as well as the representation Q∗ =
Q∗G

−1
∗ B. It holds that

G−1
∗ A = G−1

∗ (A+BQ∗)P∗ = P∗,

G−1
∗ B = G−1

∗ BQ∗ +G−1
∗ BP∗ = G−1

∗ (A+BQ∗)Q∗ +G−1
∗ BP∗ = Q∗ +G−1

∗ BP∗.

Consider the equation (λA+B)z = 0, or the equivalent one (λG−1
∗ A+G−1

∗ B)z = 0, i.e.

(λP∗ +G−1
∗ BP∗ +Q∗)z = 0. (195)

Multiplying (195) by Q∗ and taking into account that Q∗G
−1
∗ BP∗ = Q∗P∗ = 0 we find

Q∗z = 0, z = P∗z. Now (195) writes

(λI +G−1
∗ B)z = 0.

If λ does not belong to the spectrum of the matrix −G−1
∗ B, then it follows that z = 0.

This means, λA+B is nonsingular except for a finite number of values λ, hence the pair
{A,B} is regular.
Transform {A,B} into Weierstraß-Kronecker canonical form (cf. [LMT11b, Section 1]):

Ā := EAF =

[
I 0
0 J

]
, B̄ := EBF =

[
W 0
0 I

]
, Jµ = 0, Jµ−1 6= 0.

We derive further

N̄ := ker Ā = F−1kerA, S̄ := {z ∈ Rm : B̄z ∈ im Ā} = F−1S,

N̄ ∩ S̄ = F−1(N ∩ S) = {0}, and

N̄ ∩ S̄ =
{[z1

z2

]
∈ Rm : z1 = 0, Jz2 = 0, z2 ∈ im J}.

Now it follows that J = 0 must be true since otherwise N̄ ∩ S̄ would be nontrivial.
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(5)⇒ (1): This follows from Ā = EAF =

[
I 0
0 0

]
, B̄ = EBF =

[
W 0
0 I

]
, N̄ ∩ S̄ = 0 and

N̄ ∩ S̄ = F−1(N ∩ S) = {0}.
(6)⇒ (5) is trivial.

(2) ⇒ (6): Set B̃ := B + AW, S̃ := {z ∈ Rm : B̃z ∈ imA} = S. Because of S̃ ∩ N =
S ∩ N = {0}, and the equivalence of assertion (2) and (5), which is proved already, the
pair {A, B̃} is regular with Kronecker index 1. �

Lemma A.9 Let A,B ∈ L(Rm) be given, A singular, N := kerA, S := {z ∈ Rm : Bz ∈
imA}, and N ⊕ S = Rm. Then the projector Q onto N along S satisfies the relation

Q = Q(A+BQ)−1B. (196)

Proof: First we notice that Q is uniquely determined. A + BQ is nonsingular due to
Lemma A.8. The arguments used in that lemma apply to show Q(A+BQ)−1B to be the
projector onto N along S so that (196) becomes valid. �

For any matrix A ∈ L(Rm) there exists an integer k such that

Rm = imA0 ⊃ imA ⊃ . . . ⊃ imAk = imAk+1 = . . . ,

{0} = kerA0 ⊂ kerA ⊂ . . . ⊂ kerAk = kerAk+1 = . . . ,

and imAk ⊕ kerAk = Rm. This integer k ∈ N ∪ {0} is said to be the index of A , and we
write k = indA.

Lemma A.10 ([GM86], Appendix A, Theorem 4)
Let A ∈ L(Rm) be given, k = indA, r = rankAk, and let s1, . . . , sr ∈ Rm and sr+1, . . . , sm ∈
Rm be basises of imAk and kerAk, respectively. Then, for S = [s1 . . . sm] the product
S−1AS has the special structure

S−1AS =

[
M 0
0 N

]
where M ∈ L(Rr) is nonsingular and N ∈ L(Rm−r) is nilpotent, Nk = 0, Nk−1 6= 0.

Proof: For i ≤ r, it holds that Asi ∈ A imAk = imAk+1 = imAk, therefore Asi =
r∑
j=1

sjmji. For i ≥ r + 1, it holds that Asi ∈ kerAk+1 = kerAk, thus Asi =
m∑

j=r+1

sjnji.

This yields the representations A[s1 . . . sr] = [s1 . . . sr]M with M = (mij)
r
i,j=1, and

A[sr+1 . . . sm] = [sr+1 . . . sm]N , with N = (nij)
m
i,j=r+1. The block M is nonsingular.

Namely, for a z ∈ Rr with Mz = 0, we have A[s1 . . . sr]z = 0, that is,

r∑
j=1

zjsj ∈ imAk ∩ kerA ⊆ imAk ∩ kerAk = {0},

which shows the matrix M to be nonsingular. It remains to verify the nilpotency of N .

We have AS = S

[
M 0
0 N

]
, hence A`S = S

[
M ` 0
0 N `

]
. From Aksi = 0, i ≥ r+1 it follows

that Nk = 0 must be valid. It remains to prove the fact that Nk−1 6= 0. Since kerAk−1

is a proper subspace of kerAk there is an index i∗ ≥ r + 1 such that the basis element

si∗ ∈ kerAk does not belong to kerAk−1. Then, S

[
Mk−1 0

0 Nk−1

]
ei∗ = Ak−1si∗ 6= 0, that

is, Nk−1 6= 0. �

120



B Generalized inverses

In [BIG03] we find a detailed collection of properties of generalized inverses for theory
and application. We will here report the definitions and relations of generalized inverses
we need for our considerations.

Definition B.1 For a matrix Z ∈ L(Rn,Rm), we call the matrix Z− ∈ L(Rm,Rn) a
reflexive generalized inverse, if it fulfills

ZZ−Z = Z and (197)

Z−ZZ− = Z−. (198)

Z− is called a {1, 2}-inverse of Z in [BIG03].

The products ZZ− ∈ L(Rm) and Z−Z ∈ L(Rn) are projectors (cf. Appendix A). We
have (ZZ−)2 = ZZ−ZZ− = ZZ− and (Z−Z)2 = Z−ZZ−Z = Z−Z. We know that the
rank of a product of matrices does not exceed the rank of any factor. Let Z has rank rz.
From (197) we obtain rank rz ≤ rank rz− and from (198) the opposite, i.e. that both Z
and Z− and also the projectors ZZ− and Z−Z have the same rank.
Let R ∈ L(Rn) be any projector onto imZ and P ∈ L(Rm) any projector along kerZ.

Lemma B.2 With (197), (198) and the conditions

Z−Z = P and (199)

ZZ− = R (200)

the reflexive inverse Z− is uniquely determined.

Proof: Let Y be a further matrix fulfilling (197), (198), (199) and (200).

Y
(198)
= Y ZY

(197)
= Y ZZ−ZY

(200)
= Y RZY

(200)
= Y R

(200)
= Y ZZ−

(199)
= PZ−

(198)
= Z−.

�
If we choose for the projectors P and R the orthogonal ones the conditions (199) and
(200) could be replaced by

Z−Z = (Z−Z)∗, (201)

ZZ− = (ZZ−)∗. (202)

The resulting generalized inverse is called the Moore-Penrose-inverse and denoted by Z+.

To represent the generalized reflexive inverse Z− we want to use a decomposition of

Z = U

[
S

0

]
V −1

with nonsingular matrices U , V and S. Such a decomposition is e.g. available using an
SVD or a Householder decomposition of Z.
A generalized reflexive inverse is given by

Z− = V

[
S−1 M2

M1 M1SM2

]
U−1 (203)
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with M1 and M2 being matrices of free parameters that fulfill

P = Z−Z = V

[
I 0

M1S 0

]
V −1

and

R = ZZ− = U

[
I SM2

0 0

]
U−1

(cf. also [Zie79]). There are two ways in looking at the parameter matrices M1 and M2.
We can compute an arbitrary Z− with fixed M1 and M2. Then also the projectors P and
R are fixed by these parameter matrices. Or we provide the projectors P and R, then M1

and M2 are given and Z− is fixed, too.

C Parameter dependent matrices and projectors

For any two continuosly differentiable matrix functions of appropriate size F : I →
L(Rm.Rk) and G : I → L(Rl.Rm), I ⊆ R, an interval, the product FG : I → L(Rl.Rk)
is defined pointwise by (FG)(t) := F (t)G(t), t ∈ I, and the product rule applies to the
derivatives, i.e.

(FG)′(t) = F ′(t)G(t) + F (t)G′(t).

In particular, this is valid for projector valued functions.
Let P ∈ C1(I, L(Rm)) be a projector valued function and Q = I − P the complementary
one. The following three simply rules are useful in computations:

(1) Q+ P = I, and hence Q′ = −P ′.

(2) QP = PQ = 0, and hence Q′P = −QP ′, P ′Q = −PQ′.

(3) PP ′P = −PQ′P = PQP ′ = 0 and, analogously, QQ′Q = 0.

Lemma C.1 (1) If the matrix function P ∈ C1(I, L(Rm)) is projector valued, that is,
P (t)2 = P (t), t ∈ I, then it has constant rank r, and there are r linearly independent
functions η1, . . . , ηr ∈ C1(I,Rm) such that imP (t) = span {η1(t), . . . , ηr(t)}, t ∈ I.

(2) If a time-depending subspace L(t) ⊆ Rm, t ∈ I, with constant dimension r is
spanned by functions η1, . . . , ηr ∈ C1(I,Rm), that means L(t) = span {η1(t), . . . , ηr(t)},
t ∈ I, then the orthoprojector function onto this subspace is continuously differen-
tiable.

(3) Let the matrix function A ∈ Ck(I, L(Rm)) have constant rank r. Then, there
is a matrix function M ∈ Ck(I, L(Rm)) being pointwise nonsingular such that
A(t)M(t) = [Ã(t)︸︷︷︸

r

0], rank Ã(t) = r for all t ∈ I.

Proof: (1) Denote Q = I −P , and let r be the maximal rank of P (t) for t ∈ I. We fix a
value t̄ ∈ I such that rankP (t̄) = r. Let η̄1, . . . , η̄r be a basis of imP (t̄).
For i = 1, . . . , r, the ordinary IVP

η′(t) = P ′(t)η(t), t ∈ I, η(t̄) = η̄i,
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is uniquely solvable. The IVP solutions η1, . . . , ηr remain linearly independent on the
entire interval I since they are so at t̄.
Moreover, the function values of these functions remain in imP , that is, ηi(t) = P (t)ηi(t).
Namely, multiplying the identity ηi = P ′ηi by Q gives (Qηi)

′ = −Q′Qηi, and because of
Q(t̄)ηi(t̄) = Q(t̄)η̄i = 0, the function Qηi must vanish identically.
It follows that span {η1(t), . . . , ηr(t)} ⊆ imP (t) for all t ∈ I, and r ≤ rankP (t), and
hence r = rankP (t) and span {η1(t), . . . , ηr(t)} = imP (t).
(2) The matrix function Γ := [η1 ηr] the columns of which are the given functions
η1, . . . , ηr is continuously differentiable and injective., and Γ∗Γ is invertible. Then P :=
Γ(Γ∗Γ)−1Γ∗ is continuously differentiable, The value P (t) is an orthoprojector, further
imP ⊆ im Γ by construction, and PΓ = Γ, in consequence imP = im Γ = L.
(3) Proof see [Dol64]. �

For matrix functions depending on several variables we define products pointwise, too.
More precisely, for F : Ω → L(Rm.Rk) and G : Ω → L(Rl.Rm), Ω ⊆ Rp, the product
FG : Ω→ L(Rl.Rk) is defined pointwise by (FG)(x) := F (x)G(x), x ∈ Ω.
We speak of a projector function P : Ω → L(Rl), if for all x ∈ Ω, P (x)2 = P (x) holds
true, and of an orthoprojector function, if, additionally, P (x)∗ = P (x). Saying that P is a
projector function onto the subspace L we mean that P and L have a common definition
domain, say Ω, and imP (x) = L(x), x ∈ Ω.

Lemma C.2 Given is a matrix function A ∈ Ck(Ω, L(Rm,Rn)), k ∈ N ∪ {0}, Ω ⊆ Rp

open, that has constant rank r.

(1) Then the orthoprojector function onto imA is k times continuously differentiable.

(2) The orthoprojector function onto kerA is also k times continuously differentiable.

Proof: (1) Let x̄ ∈ Ω be fixed, and z̄1, . . . , z̄r be an orthonormal basis of imA(x̄)⊥.
Denote ūi := A(x̄)z̄i, i = 1, . . . , r. By construction, ū1, . . . , ūr are linearly independent.
We form ui(x) := A(x)z̄i for i = 1, . . . , r, and then the matrix U(x) := [u1(x) ur(x)],
x ∈ Ω. The matrix U(x̄) has full columnrank r. Therefore, there is a neighborhood Nx̄
of x̄ such that U(x) has full columnrank r on Nx̄. The Gram-Schmidt orthogonalization
yields the factorization

U(x) = Q(x)R(x), Q(x) ∈ L(Rr,Rn), Q(x)∗Q(x) = Ir, x ∈ Nx̄,

with R(x) being uppertriangular and nonsingular. It follows that imU(x) = imQ(x) is
true for x ∈ Nx̄.
Further, U = A[z̄1 z̄r] shows that U is k times continuously differentiable together with A.
By construction, Q is as smooth as U . Finally, the matrix function RA := Q(Q∗Q)−1Q∗ is
k times continuously differentiable, and it is an orthoprojector function, imRA = imQ =
imU = imA.
(2) This assertion is a consequence of (1). Considering the well-known relation kerA⊥ =
imA∗ we apply (1) and find the orthoprojector function PA onto kerA⊥ along kerA to be
k times continuously differentiable, and I − PA has this property, too. �

123



Remark C.3 By Lemma C.1 the orthogonal projector function P ∈ C1(I, L(Rm)), I ⊆
R an interval, generates globally on I defined basises η1, . . . , ηr ∈ C1(I, L(Rm)), r =
rankP (t), imP (t) = im [η1(t), . . . , ηr(t)], t ∈ I.
In the higher dimensional case, if P ∈ C1(Ω, L(Rm)), Ω ⊆ Rp open, p > 1, the situation
is different. By Lemma D.2, item (8), there are local basises. However, in general, global
basises do not neccessarily exist.
For instance, the orthoprojector function onto the nullspace of the matrix function
M(x) = [x1, x2, x3], x ∈ R3 \ {0}, reads

P (x) =
1

x2
1 + x2

2 + x2
3

x2
2 + x2

3 −x1x2 −x1x3

−x1x2 x2
1 + x2

3 −x2x3

−x1x3 −x2x3 x2
1 + x2

2

 .
This projector function is obviously continuously differentiable. On the other hand, the
nullspace kerM(x) = {z ∈ R3 : x1z1 + x2z2 + x3z3 = 0} allows only locally different
descriptions by basises e.g.

kerM(x) = im

−x2

x1
−x3

x1

1 0
0 1

 if x1 6= 0,

kerM(x) = im

1 −x3

x2

0 0
0 1

 if x1 = 0, x2 6= 0,

kerM(x) = im

1 0
0 1
0 0

 if x1 = 0, x2 = 0, x3 6= 0.

Proposition C.4 Let, for a k ∈ N ∪ {0}, the matrix function D ∈ Ck(Ω, L(Rm,Rn))
have constant rank on the open set Ω ⊆ Rp.

(1) Then the Moore-Penrose generalized inverse D+ of D is as smooth as D.

(2) Let R ∈ Ck(Ω, L(Rn)) be a projector function onto imD, and P ∈ Ck(Ω, L(Rm)) be
a projector function such that kerP = kerD. Then the four conditions

DD−D = D, D−DD− = D, D−D = P, DD− = R,

determine uniquely a function D− being pointwise a generalized inverse of D, and
D− is k times continuously differentiable.

Proof: The first assertion is well-known, and can be found e.g. in [CM91].
The second assertion follows from the first one. We simply show the matrix function
D− := PD+R to be the required one. By Lemma B.2, the four conditions define pointwise
a unique generalized inverse. Taking into account that imD = imR = imDD+ and
kerD = kerD+D = kerP we derive

D(PD+R)D = DD+R = R,

(PD+R)D(PD+R) = PD+DD+R = (PD+R),

(PD+R)D = PD+D = P,

D(PD+R) = DD+R = R,
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so that the four conditions are fulfilled. Obviously, the product PD+R inherits the
smoothness of its factors. �

What concerns the derivatives, the situation is more difficult, if several variables are
involved. We use the symbols Fx(x, t) , Ft(x, t) for the partial derivatives and partial
Jacobian matrices of the function F ∈ C1(Ω× I, L(Rm,Rk)) with respect to x ∈ Rp and
t ∈ R, taken at the point (x, t) ∈ Ω× I.
For the two functions F ∈ C1(Ω × I, L(Rm,Rk)) and G ∈ C1(Ω × I, L(Rl,Rm)), the
product FG ∈ C1(Ω× I, L(Rl,Rk)) is defined pointwise. We have

(FG)x(x, t)z = [Fx(x, t)z]G(x, t) + F (x, t)Gx(x, t)z for all z ∈ Rp.

Besides the partial derivatives we apply the total derivative in jet variables. For the
function F ∈ C1(Ω × I, L(Rm,Rk)), Ω × I ⊆ Rp × R, the function F ′ ∈ C(Ω × I ×
Rp, L(Rm,Rk)) defined by

F ′(x, t, x1) := Fx(x, t)x
1 + Ft(x, t), x ∈ Ω, t ∈ I, x1 ∈ Rp,

is named total derivative of F in jet variables. For the total derivative, the product rule

(FG)′ = F ′G+ FG′

is easily checked to be valid.

Lemma C.5 The total derivatives in jet variables P ′ and Q′ of a continuously differen-
tiable projector function P and its complementary one Q = I − P satisfy the following
relations:

Q′ = −P ′,
Q′P = −QP ′,

PP ′P = 0.

Proof: The assertion follows from the identities Q + P = I and QP = 0 by regarding
the product rule. �

Notice that, for each given function x∗ ∈ C1(I∗,Rp), I∗ ⊆ I, with values in Ω, the
resulting superposition F (x∗(t), t) is continuously differentiable with respect to t on I∗,
and it possesses the derivative

(F (x∗(t), t))
′ := (F (x∗(.), .))

′(t) = F ′(x∗(t), t, x
′
∗(t)).

D Variable subspaces

Definition D.1 Let Ω ⊆ RP be open and connected, L(x) ⊆ Rm be a subspace for each
x ∈ Ω. For k ∈ N ∪ {0}, L is said to be a Ck-subspace on Ω, if there exists a pro-

jector function R ∈ Ck(Ω, L(Rm)) which projects pointwise onto L, i.e. R(x) = R(x)2,
imR(x) = L(x), x ∈ Ω. We write imR = L.
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It should be mentioned at this place that the notion smooth subspace (smooth stands for
C1) is applied in [GM86], Subsection 1.2.1, to subspaces depending on one real variable
(p = 1) in the same way.

Lemma D.2 Let k ∈ N ∪ {0}.

(1) A Ck-subspace on an open connected Ω has constant dimension.

(2) The orthoprojector function onto a Ck-subspace belongs to Ck.

(3) If L is a Ck-subspace, so is L⊥.

(4) If L and N are Ck-subspaces, and L ∩ N has constant dimension, then L ∩ N is a
Ck-subspace, too.

(5) If N and L are Ck-subspaces, and N ⊕ L = Rm, then the projector onto N along L
belongs to Ck.

(6) If L and N are Ck-subspaces, and L ∩ N has constant dimension, then there is a
Ck-subspace X such that X ⊆ L, and

L = X ⊕ (N ∩ L),

as well as a projector R ∈ Ck(Ω, L(Rm)) with imR = N , kerR ⊇ X.

(7) If L and N are Ck-subspaces, and N ∩ L = 0, then L⊕N is a Ck-subspace, too.

(8) L is a Ck-subspace on Ω ⇔ to each x̄ ∈ Ω there is a neighborhood Ux̄ ⊆ Ω and a
local Ck-basis η1, . . . , ηr(x̄) ∈ Ck(Ux̄,Rm) spanning L on Ux̄, i.e.

span{η1(x), . . . , ηr(x̄)(x)} = L(x), x ∈ Ux̄.

Proof: (1) Let x0 ∈ Ω, let the columns of ξ0 := [ξ0
1 , . . . , ξ

0
rx0

] form a basis of L(x0), i.e.

L(x0) = im ξ0. ξ(x) := R(x)ξ0 is a Ck matrix function, and since ξ(x0) = R(x0)ξ0 = ξ0

has full column rank rx0 , there is a neighborhood Ux0 ⊂ Ω such that ξ(x) has rank rx0 for
all x ∈ Ux0 . That means im ξ(x) ⊆ imR(x),

rankR(x) ≥ rank ξ(x) = rx0 , x ∈ Ux0 .

Denote by rmin, rmax the minimal and maximal ranks of R(x) on Ω, 0 ≤ rmin ≤ rmax ≤ m,
and by xmin, xmax ∈ Ω points with rankR(xmin) = rmin, rankR(xmax) = rmax.
Since Ω is connected, there is a connecting curve of xmin and xmax belonging to Ω. We
move on this curve from xmax to xmin. If rmin < rmax, there must be a x∗ on this curve
with

r∗ := rankR(x∗) < rmax,

and in each arbitrary neighborhood of x∗ there are points x̂ with rankR(x̂) = rmax.
At each x ∈ Ω, as a projector, R(x) has the only eigenvalues 1 and 0 (cf. Lemma A.2(6)).
Hence, R(x∗) has eigenvalue 1 with multiplicity r∗, and eigenvalue 0 with multiplicity
m − r∗, R(x̂) has eigenvalue 1 with multiplicity rmax and eigenvalue 0 with multiplicity
m− rmax.
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Since eigenvalues depend continuously on the entries of a matrix, and the entries of
R(x) are Ck-functions in x, the existence of x∗ contradicts the continuity of eigenvalues.
Therefore, rmin = rmax must be valid.

(2) If L is a Ck-subspace, by definition, there is a projector R ∈ Ck(Ω, L(Rm)) onto L,
and the rankR(x) is constant on Ω. By Lemma C.2, the orthoprojector function onto
imR = L is k times continuously differentiable.

(3) If L is a Ck-subspace, the orthoprojector R onto L belongs to Ck. Then, I − R is a
Ck-projector onto im (I −R) = L⊥.

(4) Suppose L, N are Ck-subspaces in Rm, and RL, RN corresponding projectors onto L

and N . Then F :=

[
I −RL

I −RN

]
is a Ck-function, and kerF = L ∩ N . Since L ∩ N has

constant dimension, F has constant rank, and therefore F+ and F+F are Ck-functions.
F+F is the orthoprojector onto kerF , thus kerF = L ∩N is a Ck-subspace.

(5) Let N , L be Ck-subspaces, N ⊕ L = Rm. For each arbitrary x ∈ Ω, R(x) is uniquely
determined by imR(x) = L(x), kerR(x) = N(x), R(x)2 = R(x). We have to make sure
that R belongs to Ck. To each fixed x0 ∈ Ω we consider basises ξ0

1 , . . . , ξ
0
r of L(x0), and

η0
1, . . . , η

0
m−r of N(x0), and consider

ξ(x) := RL(x)ξ0, η(x) := RN(x)η0, x ∈ Ω,

where
ξ0 = [ξ0

1 , . . . , ξ
0
r ], η0 = [η0

1, . . . , η
0
m−r],

and RL, RN are Ck-projectors according to the Ck-subspaces L and N . There is a neigh-
borhood Ux0 ⊂ Ω of x0, such that the columns of ξ(x) and η(x), for x ∈ Ux0 , are basises
of L(x) and N(x), and the matrix F (x) := [ξ(x), η(x)] is nonsingular for x ∈ Ux0 . Define,
for x ∈ Ux0 ,

R̃(x) := F (x)

[
Ir

0

]
F (x)−1,

such that
R̃ ∈ Ck(Ω, L(Rm)), im R̃(x) = L(x), ker R̃(x) = N(x).

Since the projector corresponding to the decomposition N(x)⊕ L(x) = Rm is unique, we
have R(x) = R̃(x), x ∈ Ux0 , and hence R is Ck on Ux0 .

(6) Let L, N be Ck-subspaces, dim(N ∩ L) = constant =: u. By (d), N ∩ L is a Ck-
subspace. We have Rm = (L ∩ N) ⊕ (L ∩ N)⊥, L = (L ∩ N) ⊕ (L ∩ (L ∩ N)⊥), and
X := L∩ (L∩N)⊥ is a Ck-subspace, too. Further (cf. Lemma A.5), (N +L)⊥ = N⊥∩L⊥
is also a Ck-subspace. With N + L = N ⊕X we find

Rm = (N + L)⊥ ⊕ (N + L) = (N + L)⊥ ⊕X ⊕N = S ⊕N, S := (N + L)⊥ ⊕X.

Denote by R⊥ and RX the orthoprojectors onto the Ck-subspaces (N + L)⊥ and X. Due
to X ⊆ N + L, (N + L)⊥ ⊆ X⊥, hence imRX ⊆ kerR⊥, imR⊥ ⊆ kerRX , it holds
that RXR

⊥ = 0, R⊥RX = 0, hence RS := R⊥ + RX is a projector and belongs to Ck,
imRS = imR⊥ + imRX = S. This makes clear that S is also a Ck-subspace.
Finally, due to Rm = S ⊕ N , there is a projector R ∈ Ck(Ω, L(Rm)) with imR = N ,
kerR = S ⊃ X.
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(7) By (6), due to N ∩ L = 0, there are projectors RL, RN ∈ Ck(Ω, L(Rm)) such that
imRL = L, N ⊂ kerRL, imRN = N , L ⊂ kerRN , thus RLRN = 0, RNRL = 0, and
R := RL +RN is a Ck-projector, too, and finally imR = imRL + imRN = L⊕N .

(8) If L is a Ck-subspace then the orthogonal projector R on L along L⊥ is Ck. For each
x0 ∈ Ω and a basis ξ0

1 , . . . , ξ
0
r of L(x0), the columns of ξ(x) := R(x)ξ0, ξ = [ξ0

1 , . . . , ξ
0
r ],

form a Ck-basis of L(x) locally on a neighborhood Ux0 ⊂ Ω of x0.
Conversely, if there is a local Ck-basis on the neighborhood Ux̄ of x̄, then one can show
that the orthoprojector onto L(x), x ∈ Ux̄, can be represented by means of this basis.
That means, L is Ck on Ux̄. �

Corollary D.3 Any projector function being continuous on an open connected set has
constant rank there.

Proof: The continuous projector function, say P : Ω→ L(Rp), defines the C-space imP .
Owing to Lemma D.2 item (1), imP has constant dimension, and hence P has constant
rank. �
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Technical Computations

E Proof of Lemma 3.7

Lemma 3.7 If two projector function sequences Q0, . . . , Qk and Q̄0, . . . , Q̄k are both ad-
missible, then the corresponding matrix functions and subspaces are related by the following
properties:

(a) ker Π̄j = N̄0 + · · ·+ N̄j = N0 + · · ·+Nj = kerΠj, j = 0, . . . , k,

(b) Ḡj = GjZj,

B̄j = Bj −GjZjD̄
−(DΠ̄jD̄

−)′DΠj +Gj

j−1∑
l=0

QlAjl, j = 1, . . . , k,

with nonsingular matrix functions Z0, . . . , Zk+1 given by
Z0 := I, Zi+1 := Yi+1Zi, i = 0, . . . , k,

Y1 := I +Q0(Q̄0 −Q0) = I +Q0Q̄0P0,

Yi+1 := I +Qi(Π̄i−1Q̄i −Πi−1Qi) +
i−1∑
l=0

QlAilQ̄i, i = 1, . . . , k,

and certain continuous coefficients Ail that satisfy condition Ail = AilΠ̄i−1,

(c) Zi(N̄i ∩ (N̄0 + · · ·+ N̄i−1)) = Ni ∩ (N0 + · · ·+Ni−1), i = 1, . . . , k,

(d) Ḡk+1 = Gk+1Zk+1, N̄0 + · · ·+ N̄k+1 = N0 + · · ·+Nk+1,
Zk+1(N̄k+1 ∩ (N̄0 + · · ·+ N̄k)) = Nk+1 ∩ (N0 + · · ·+Nk).

Proof:
We have G0 = AD = Ḡ0, B0 = B = B̄0, kerP0 = N0 = N̄0 = ker P̄0, hence
P0 = P0P̄0, P̄0 = P̄0P0.
The generalized inverses D− and D̄− of D satisfy the properties DD− = DD̄− = R,
D−D = P0, D̄

−D = P̄0, and therefore D̄− = D̄−DD̄− = D̄−DD− = P̄0D
−, D− = P0D̄

−.
Compare G1 = G0 +B0Q0 and

Ḡ1 = Ḡ0 + B̄0Q̄0 = G0 +B0Q̄0 = G0 +B0Q0Q̄0

= (G0 +B0Q0)(P0 + Q̄0) = G1Z1,

where Z1 := Y1 := P0 + Q̄0 = I +Q0Q̄0P0 = I +Q0(Q̄0 −Q0). Z1 is invertible, it has the
inverse Z−1

1 = I −Q0Q̄0P0.
The nullspaces N1 and N̄1 are, due to Ḡ1 = G1Z1, related by N̄1 = Z−1

1 N1 ⊆ N0 + N1.
This implies N̄0 +N̄1 = N0 +(Z−1

1 N1) ⊆ N0 +N1. From N1 = Z1N̄1 ⊆ N0 +N̄1 = N̄0 +N̄1,
we obtain N̄0 + N̄1 = N0 +N1.

Since the projectors Π1 = P0P1 and Π̄1 = P̄0P̄1 have the common nullspace N0 + N1 =
N̄0 + N̄1, we may now derive

DP̄0P̄1D̄
− = DP̄0P̄1P0P1P̄0D

− = DP̄0P̄1P0P1D
− = DP̄0P̄1D̄

−DP0P1D
−,

DP0P1D
− = DP0P1D

−DP̄0P̄1D̄
−.
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Next we compute

B̄1 = B̄0P̄0 − Ḡ1D̄
−(DP̄0P̄1D̄

−)′DP̄0

= B0(P0 +Q0)P̄0 −G1Z1D̄
−(DP̄0P̄1D̄

−DP0P1D
−)′D

= B0P0 +B0Q0P̄0 −G1Z1D̄
−(DP̄0P̄1D̄

−)′DP0P1 −G1Z1P̄0P̄1D̄
−(DP0P1D

−)′D

= B1 +G1D
−(DP0P1D

−)′D −G1Z1D̄
−(DP̄0P̄1D̄

−)′DP0P1

−G1Z1P̄0P̄1D
−(DP0P1D

−)′D +B0Q0P̄0

= B1 −G1Z1D̄
−(DP̄0P̄1D̄

−)′DP0P1 + B1

with B1 := G1Q0P̄0 +G1(I − Z1Π̄1)D−(DΠ1D
−)′D.

The identity 0 = Ḡ1Q̄1 = G1Z1Q̄1 = G1Q̄1+G1(Z1−I)Q̄1 leads to G1Q̄1 = −G1(Z1−I)Q̄1

and further to

G1(I − Z1Π̄1) = G1(I − Π̄1 − (Z1 − I)Π̄1) = G1(Q̄1 + Q̄0P̄1 −Q0Q̄0P0Π̄1)

= G1(−Q0Q̄0P0Q̄1 + Q̄0P̄1 −Q0Q̄0P0P̄1) = G1(−Q0Q̄0P0 + Q̄0P̄1)

= G1(−Q0Q̄0 +Q0 +Q0Q̄0P̄1) = G1(−Q0Q̄0Q̄1 +Q0).

Inserting into the expression of B1 yields
B1 = G1Q0P̄0 −G1Q0Q̄0Q̄1D

−(DΠ1D
−)′D = G1Q0A10 with

A10 := P̄0 − Q̄0Q̄1D
−(DΠ1D

−)′D

and A10 = A10P̄0. In order to verify assertions (a) and (b) by induction, we assume the
relations

N̄0 + · · ·+ N̄j = N0 + · · ·Nj,

Ḡj = GjZj,

B̄j = Bj −GjZjD̄
−(DΠ̄jD̄

−)′DΠj +Gj

j−1∑
l=0

QlAjl (204)

to be valid for j = 1, . . . , i, i < k, with nonsingular Zi as described above.

By construction, Zi is of the form Zj = YjZj−1 = YjYj−1 · · ·Y1. By realizing the multipli-
cation and rearranging the terms we find the expression

Zj − I =

j−1∑
l=0

QlCjl (205)

with continuous coefficients Cjl.

It holds that Y1 − I = Q0Q̄0P0 and

Yj − I = (Yj − I)Πj−2, j = 2, . . . , i, (206)

such that (Yj − I)(Zj−1 − I) = 0 must be true. From this it follows that Yj(Zj−1 − I) =
Zj−1 − I, and Zj = YjZj−1 = Yj + Yj(Zj−1 − I) = Yj + Zj−1 − I = Yj − I + Zj−1, i.e.,

Zj = Yj − I + · · ·+ Y1 − I + Z0,

Zj − I =

j∑
l=1

(Yl − I). (207)
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From (207) one can obtain special formulas for the coefficients Cjl in (205), but in our
context there is no need for these special descriptions.

Now we compare Ḡi+1 and Gi+1. We have

Ḡi+1 = Ḡi + B̄iQ̄i = GiZi + B̄iQ̄i.

Because of B̄i = B̄iΠ̄i−1 we may write

B̄iQ̄i(Zi − I) = B̄iΠ̄i−1Q̄i(Zi − I)

= B̄iΠ̄i−1Q̄iΠ̄i−1(Zi − I)

and using (205) and Qi = Q̄iQi we obtain

= 0,

i.e., B̄iQ̄i = B̄iQ̄iZi. This yields

Ḡi+1 = (Gi + B̄iQ̄i)Zi.

Derive further

Ḡi+1Z
−1
i = Gi + B̄iQ̄i = Gi+1 + (B̄iQ̄i −BiQi)

using (204) and Q̄i = QiQ̄i we obtain

= Gi+1 +Bi(Q̄i −Qi) +Gi

i−1∑
l=0

QlAilQ̄i

= Gi+1 +Bi(Π̄i−1Q̄i −Πi−1Qi) +Gi+1

i−1∑
l=0

QlAilQ̄i

= Gi+1 +BiQi(Π̄i−1Q̄i −Πi−1Qi) +Gi+1

i−1∑
l=0

QlAilQ̄i

= Gi+1Yi+1,

and Ḡi+1 = Gi+1Yi+1Zi = Gi+1Zi+1, that is, Ḡi+1 and Gi+1 are related as demanded.
Next we show the invertibility of Yi+1 and compute the inverse. Consider the linear
equation Yi+1z = w, i.e.,

z +Qi(Π̄i−1Q̄i −Πi−1Qi)z +
i−1∑
l=0

QlAilQ̄iz = w.

Because of (206) we immediately realize that

Πiz = Πiw, z = w − (Yi+1 − I)Πi−1z,

and
Πi−1z +Πi−1Qi(Π̄i−1Q̄i −Πi−1Qi)z = Πi−1w.

Taking into account that

Πi−1Qi(Π̄i−1Q̄i−Πi−1Qi) = Πi−1QiQ̄i−Πi−1Qi = −Πi−1QiP̄i = −Πi−1QiΠ̄i−1P̄i = −Πi−1QiP̄iΠi
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we conclude
Πi−1z = Πi−1w −Πi−1Qi(Π̄i−1Q̄i −Πi−1Qi)w

and

z = w − (Yi+1 − I)(I −Qi(Π̄i−1Q̄i −Πi−1Qi))w,

Y −1
i+1 = I − (Yi+1 − I)(I −Qi(Π̄i−1Q̄i −Πi−1Qi)).

The inverse Z−1
i+1 = (Yi+1 · · ·Y1)−1 = Y −1

1 · · ·Y −1
i+1 may be expressed as

Z−1
i+1 = I +

i∑
l=0

QlEi+1,l

with certain continuous coefficients Ei+1,l.
We have

N̄i+1 = Z−1
i+1Ni+1 ⊆ N0 + · · ·+Ni+1,

N̄0 + · · ·+ N̄i+1 = N0 + · · ·+Ni + N̄i+1 ⊆ N0 + · · ·+Ni+1,

N0 + · · ·+Ni+1 = N0 + · · ·+Ni + (Zi+1N̄i+1) ⊆ N0 + · · ·+Ni + N̄i+1 = N̄0 + · · ·+ N̄i+1,

thus N̄0 + · · ·+ N̄i+1 = N0 + · · ·+Ni+1.
It follows that

DΠ̄i+1D̄
− = DΠ̄i+1D̄

−DΠi+1D
−.

Now we consider the terms B̄i+1 and Bi+1. We have

B̄i+1 = B̄iP̄i − Ḡi+1D̄
−(DΠ̄i+1D̄

−)′DΠ̄i

= B̄iP̄i − Ḡi+1D̄
−(DΠ̄i+1D̄

−DΠi+1D
−)′DΠ̄i

= B̄iP̄i −Gi+1Zi+1D̄
−(DΠ̄i+1D̄

−)′DΠi+1 −Gi+1Zi+1Π̄i+1D̄
−(DΠi+1D

−)′DΠ̄i

= B̄iP̄i −Gi+1Zi+1D̄
−(DΠ̄i+1D̄

−)′DΠi+1

−Gi+1Zi+1Π̄i+1D̄
−{(DΠi+1D

−)′DΠi −DΠi+1D
−(DΠ̄iD̄

−)′DΠi}

= B̄iP̄i −Gi+1Zi+1D̄
−(DΠ̄i+1D̄

−)′DΠi+1

−Gi+1Zi+1Π̄i+1D
−(DΠi+1D

−)′DΠi +Gi+1Zi+1Π̄i+1D̄
−(DΠ̄iD̄

−)′DΠi.

Taking into account the given result for B̄i we obtain

B̄i+1 = {Bi −GiZiD̄
−(DΠ̄iD̄

−)′DΠi +Gi

i−1∑
l=0

QlAil}(Pi +Qi)P̄i −Gi+1Zi+1D̄
−(DΠ̄i+1D̄

−)′DΠi+1

−Gi+1Zi+1Π̄i+1D
−(DΠi+1D

−)′DΠi +Gi+1Zi+1Π̄i+1D̄
−(DΠ̄iD̄

−)′DΠi

= BiPi −Gi+1D
−(DΠi+1D

−)′DΠi +Gi+1D
−(DΠi+1D

−)′DΠi

+BiQiP̄i −GiZiD̄
−(DΠ̄iD̄

−)′DΠi +Gi

i−1∑
l=0

QlAilP̄i −Gi+1Zi+1D̄
−(DΠ̄i+1D̄

−)′DΠi+1

−Gi+1Zi+1Π̄i+1D
−(DΠi+1D

−)′DΠi +Gi+1Zi+1Π̄i+1D̄
−(DΠ̄iD̄

−)′DΠi,
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hence
B̄i+1 = Bi+1 −Gi+1Zi+1D̄

−(DΠ̄i+1D̄
−)′DΠi+1 + Bi+1

with

Bi+1 = BiQiP̄i +Gi

i−1∑
l=0

QlAilP̄i +Gi+1(I − Zi+1Π̄i+1)D−(DΠi+1D
−)′DΠi

−Gi+1(PiZi − Zi+1Π̄i+1)D̄−(DΠ̄iD̄
−)′DΠi.

It remains to show that Bi+1 can be expressed as Gi+1

i∑
l=0

QlAi+1 l. For this purpose we

rewrite

Bi+1 = Gi+1QiP̄i +Gi+1

i−1∑
l=0

QlAilP̄i

+Gi+1(I − Π̄i+1 − (Zi+1 − I)Π̄i+1)D−(DΠi+1D
−)′DΠi

−Gi+1(Zi − I −QiZi + I − Π̄i+1 − (Zi+1 − I)Π̄i+1)D̄−(DΠ̄iD
−)′DΠi.

Take a closer look at the term Gi+1(I − Π̄i+1) = Gi+1(Q̄i+1 + (I − Π̄i)P̄i+1).
By means of the identity 0 = Ḡi+1Q̄i+1 = Gi+1Zi+1Q̄i+1 = Gi+1Q̄i+1 +Gi+1(Zi+1− I)Q̄i+1

we obtain the relation
Gi+1Q̄i+1 = −Gi+1(Zi+1 − I)Q̄i+1

and hence
Gi+1(I − Π̄i+1) = Gi+1(−(Zi+1 − I)Q̄i+1 + (I − Π̄i)P̄i+1).

This yields

Bi+1 =Gi+1QiP̄i +Gi+1

i−1∑
l=0

QlAilP̄i

+Gi+1{−(Zi+1 − I)Q̄i+1 + (I − Π̄i)P̄i+1)− (Zi+1 − I)Π̄i+1}D−(DΠi+1D
−)′DΠi

−Gi+1{Zi − I −QiZi − (Zi+1 − I)Q̄i+1

+ (I − Π̄i)P̄i+1 − (Zi+1 − I)Π̄i+1}D̄−(DΠ̄iD̄
−)′DΠi.

With

Zi+1 − I =
i∑
l=0

QlCi+1 l, Zi − I =
i−1∑
l=0

QlCil,

I − Π̄i = (I −Πi)(I − Π̄i) = Qi +Qi−1Pi + · · ·+Q0P1 · · ·Pi)(I − Π̄i),

by rearranging the terms we arrive at

Bi+1 = Gi+1

i∑
l=0

QlAi+1 l,

e.g. with

Ai+1 i :=P̄i + {−Ci+1 i(Q̄i+1 + Π̄i+1) + (I − Π̄i)P̄i+1}D−(DΠi+1D
−)′DΠi

− {−Zi − Ci+1 i(Q̄i+1 + Π̄i+1) + (I − Π̄i)P̄i+1}D̄−(DΠ̄iD̄
−)′DΠi.
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It is evident that all coefficients have the wanted property Ai+1 l = Ai+1 lΠ̄i.
Finally, we are done with assertions (a), (b). At the same time, we have proved the first
two relations in (d).
Assertion (c) is a consequence of (a), (b) and the special form (205) of the nonsingular
matrix function Zi. Namely, we have Zi(N0 + · · ·+Ni−1) = N0 + · · ·+Ni−1, ZiN̄i = Ni,
thus

Zi(N̄i ∩ (N̄0 + · · ·+ N̄i−1)) = (ZiN̄i) ∩ (Zi(N̄0 + · · ·+Ni−1)) =

Ni ∩ (Zi(N0 + · · ·+Ni−1)) = Ni ∩ (N0 + · · ·+Ni−1).

The same arguments apply for obtaining the third relation in (d). �

F Proof of Lemma 6.17

Lemma 6.17 Let the DAE (44) with sufficiently smooth coefficients be regular with
tractability index µ ≥ 3, and let Q0, . . . , Qµ−1 be admissible projector functions.
Let k ∈ {1, . . . , µ− 2} be fixed, and let Q̄k be an additional continuous projector function
onto Nk = kerGk such that DΠk−1Q̄kD

− is continuously differentiable and the inclusion
N0 + · · ·+Nk−1 ⊆ ker Q̄k is valid. Then the following becomes true:

(1) The projector function sequence

Q̄0 := Q0, . . . , Q̄k−1 := Qk−1,

Q̄k,

Q̄k+1 := Z−1
k+1Qk+1Zk+1, . . . , Q̄µ−1 := Z−1

µ−1Qµ−1Zµ−1,

with the determined below continuous nonsingular matrix functions Zk+1, . . . , Zµ−1,
is also admissible.

(2) If, additionally, the projector functions Q0, . . . , Qµ−1 provide an advanced decoupling
in the sense that the conditions (cf. Lemma 6.12)

Qµ−1∗Πµ−1 = 0, . . . , Qk+1∗Πµ−1 = 0

are given, then also the relations

Q̄µ−1∗Π̄µ−1 = 0, . . . , Q̄k+1∗Π̄µ−1 = 0, (208)

are valid, and further

Q̄k∗Π̄µ−1 = (Qk∗ − Q̄k)Πµ−1. (209)

The matrix functions Zi are consistent with those given in Lemma 3.7, however, for an
easier reading we do not access this general lemma in the proof below. In the special case
given here, Lemma 3.7 yields simply Z0 = I, Y1 = Z1 = I,. . . , Yk = Zk = I, and further

Yk+1 = I +Qk(Q̄k −Qk) +
k−1∑
l=0

QlAklQ̄k = (I +
k−1∑
l=0

QlAklQk)(I +Qk(Q̄k −Qk)),

Zk+1 = Yk+1,

Yj = I +

j−2∑
l=0

QlAj−1lQj−1, Zj = YjZj−1, j = k + 2, . . . , µ.
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Besides the general property ker Π̄j = kerΠj, j = 0, . . . , µ − 1, which follows from
Lemma 3.7, now it additionally holds that

im Q̄k = imQk, but ker Q̄j = kerQj, j = k + 1, . . . , µ− 1.

Proof of Lemma 6.17:
(1) Put Q̄i = Qi for i = 0, . . . , k − 1 such that Q̄0, . . . , Q̄k are admissible by the assump-
tions and the following relations are valid:

Πk = ΠkΠ̄k, Π̄k = Π̄kΠk,

Q̄kPk = Q̄kΠk,

QkP̄k = Qk(I − Q̄k) = Qk − Q̄k = Q̄kQk − Q̄k = −Q̄kPk,

Π̄k = Πk−1(Pk +Qk)P̄k = Πk +Πk−1QkP̄k = (I −Πk−1Q̄k)Πk.

We verify the assertion level by level by induction. Set Ḡi = Gi, Zi = I, B̄i = Bi, for
i = 0, . . . , k − 1, Ḡk = Gk, Zk = I, and derive

B̄k = Bk−1Pk−1 −GkD
−(DΠ̄kD

−)′DΠk−1

= Bk−1Pk−1 −GkD
−{DΠ̄kD

−(DΠkD
−)′ + (DΠ̄kD

−)′DΠkD
−}DΠk−1

= Bk−1Pk−1 −GkΠ̄kD
−(DΠkD

−)′DΠk−1 −GkD
−(DΠ̄kD

−)′DΠk

= Bk +Gk(I − Π̄k)D
−(DΠkD

−)′DΠk−1 −GkD
−(DΠ̄kD

−)′DΠk

= Bk +Gk

k−1∑
l=0

QlAk,l −GkD
−(DΠ̄kD

−)′DΠk,

with regard of GkQ̄k = 0 and I − Π̄k = Q̄k + Qk−1P̄k + · · · + Q0P1 · · ·Pk−1P̄k and with
coefficients

Ak,l = QlPl+1 · · ·Pk−1P̄kD
−(DΠ̄kD

−)′DΠk−1.

Next we compute

Ḡk+1 = Gk + B̄kQ̄k = Gk +BkQ̄k +Gk

k−1∑
l=0

QlAk,lQ̄k

= Gk+1 +Bk(Q̄k −Qk) +Gk

k−1∑
l=0

QlAk,lQ̄k = Gk+1Zk+1,

Zk+1 = I +Qk(Q̄k −Qk) +
k−1∑
l=0

QlAk,lQ̄k = (I +
k−1∑
l=0

QlAk,lQk)(I +Qk(Q̄k −Qk)),

Z−1
k+1 = (I −Qk(Q̄k −Qk))(I −

k−1∑
l=0

QlAk,lQk) = I −Qk(Q̄k −Qk)−
k−1∑
l=0

QlAk,lQk.

Put Q̄k+1 = Z−1
k+1Qk+1Zk+1 = Z−1

k+1Qk+1 such that

Q̄k+1Pk+1 = 0, Q̄k+1 = Q̄k+1Πk−1, ΠkQ̄k+1 = ΠkQk+1,
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Π̄kQ̄k+1 = Π̄kΠkQk+1 is continuous and DΠ̄kQ̄k+1D
− = DΠ̄kD

−DΠkQk+1D
− is contin-

uously differentiable, and hence Q̄0, . . . , Q̄k, Q̄k+1 are admissible. It holds that

Πk+1 = Πk+1Π̄k+1, Π̄k+1 = Π̄k+1Πk+1, Π̄k+1 = (I −Πk−1Q̄k)Πk+1.

We obtain the expression

B̄k+1 = Bk+1 − Ḡk+1D
−(DΠ̄k+1D

−)′DΠk+1 +Gk+1

k∑
l=0

QlAk+1,l,

with continuous coefficients Ak+1,l = Ak+1,lΠk = Ak+1,lΠ̄k, and then

Ḡk+2 = Ḡk+1 + B̄k+1Q̄k+1 = (Gk+1 + B̄k+1Qk+1)Zk+1 = (Gk+1 +Bk+1Qk+1

+Gk+1

k∑
l=0

QlAk+1,lQk+1)Zk+1 = Gk+2(I +
k∑
l=0

QlAk+1,lQk+1)Zk+1 =: Gk+2Zk+2,

with the nonsingular matrix function

Zk+2 = (I+
k∑
l=0

QlAk+1,lQk+1)Zk+1 = I+Qk(Q̄k−Qk) +
k−1∑
l=0

QlAk,lQ̄k +
k∑
l=0

QlAk+1,lQk+1

such that

Zk+1Z
−1
k+2 = I −

k∑
l=0

QlAk+1,lQk+1.

Letting Q̄k+2 = Z−1
k+2Qk+2Zk+2 = Z−1

k+2Qk+2 we find

Qk+2Q̄k+2 = Qk+2, Q̄k+2Qk+2 = Q̄k+2 Q̄k+2 = Q̄k+2Πk+1 = Q̄k+2Π̄k+1,

Π̄k+1Q̄k+2 = Π̄k+1Πk+1Qk+2, DΠ̄k+1Q̄k+2D
− = DΠ̄k+1D

−DΠk+1Qk+2D
−,

so that Q̄0, . . . , Q̄k+2 are known to be admissible.
Further, we apply induction. Let, for a certain κ ≥ k + 2, the projector functions
Q̄0, . . . , Q̄κ be already shown to be admissible and, for i = k + 2, . . . , κ,

B̄i−1 = Bi−1 − Ḡi−1D
−(DΠ̄i−1D

−)′DΠi−1 +Gi−1

i−2∑
l=0

QlAi−1,l,

Ai−1,l = Ai−1,lΠi−2,

Ḡi = GiZi, Zi = (I +
i−2∑
l=0

QlAi−1,lQi−1)Zi−1,

Q̄i = Z−1
i QiZi = Z−1

i Qi, Π̄i = (I −Πk−1Q̄k)Πi.

Now we consider

B̄κ = B̄κ−1P̄κ−1 − ḠκD
−(DΠ̄κD

−)′DΠ̄κ−1

= B̄κ−1Pκ−1 − ḠκD
−(DΠ̄κD

−)′DΠκ − ḠκΠ̄κD
−(DΠκD

−)′DΠ̄κ−1

= Bκ − ḠκD
−(DΠ̄κD

−)′DΠκ +Gκ

κ−2∑
l=0

QlAκ−1,lPκ−1 + Cκ,
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with

Cκ := GκD
−(DΠκD

−)′DΠκ−1 − ḠκΠ̄κD
−(DΠκD

−)′DΠ̄κ−1 − Ḡκ−1D
−(DΠ̄κ−1D

−)′DΠκ−1

= GκD
−(DΠκD

−)′DΠκ−1 − ḠκΠ̄κD
−{(DΠκD

−)′ −DΠκD
−(DΠ̄κ−1D

−)′}DΠκ−1

− Ḡκ−1D
−(DΠ̄κ−1D

−)′DΠκ−1

= Gκ(I − ZκΠ̄κ)D
−(DΠκD

−)′DΠκ−1 −Gκ(Pκ−1Zκ−1 − ZκΠ̄κ)D
−(DΠ̄κ−1D

−)′DΠκ−1.

Regarding the relations ΠκZκ = Πκ and ΠκZκ−1 = Πκ we observe that

Πκ(I − ZκΠ̄κ) = 0, Πκ(Pκ−1Zκ−1 − ZκΠ̄κ) = 0.

The representation I −Πκ = Qκ +Qκ−1Pκ + . . .+Q0P1 · · ·Pκ admits of the expressions

I − ZκΠ̄κ =
κ∑
l=0

QlEκ,l, Pκ−1Zκ−1 − ZκΠ̄κ =
κ∑
l=0

QlFκ,l.

Considering GκQκ = 0, this leads to the representations

Cκ =
κ−1∑
l=0

Ql{Eκ,lD
−(DΠκD

−)′DΠκ−1 − Fκ,lD
−(DΠ̄κ−1D

−)′DΠκ−1},

and hence

B̄κ = Bκ − ḠκD
−(DΠ̄κD

−)′DΠκ +Gκ

κ−1∑
l=0

QlAκ,l,

with continuous coefficients

Aκ,l = Aκ,lΠκ−1, l = 0, . . . , κ− 1.

It follows that

Ḡκ+1 = Ḡκ + B̄κQ̄κ = GκZκ + B̄κ+1Z
−1
κ QκZκ

= {Gκ +BκQκ +Gκ

κ−1∑
l=0

QlAκ,lQκ}Zκ

= Gκ+1{I +
κ−1∑
l=0

QlAκ,lQκ}Zκ =: Gκ+1Zκ+1.

Letting Q̄κ+1 = Z−1
κ+1Qκ+1Zκ+1 = Z−1

κ+1Qκ+1 we find

Q̄κ+1 = Q̄κ+1Πκ = Q̄κ+1ΠκΠ̄κ = Q̄κ+1Π̄κ,

Π̄κQ̄κ+1 = Π̄κΠκQκ+1 DΠ̄κQ̄κ+1D
− = DΠ̄κD

−DΠκQκ+1D
−,

which shows the sequence Q̄0, . . . , Q̄κ+1 to be admissible and all required relations to be
valid. We are done with Assertion (1).

(2) Owing to Lemma 6.12, the functions

Qµ−1 ∗ = Qµ−1G
−1
µ Bµ−1,

Qi ∗ = QiPi+1 · · ·Pµ−1G
−1
µ {Bi +GiD

−(DΠµ−1D
−)′DΠi−1}︸ ︷︷ ︸

=:Bi

, i = 1, . . . , µ− 2,
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are continuous projector-valued functions such that

imQi ∗ = imQi = kerGi, Qi ∗ = Qi ∗Πi−1, i = 1, . . . , µ− 1.

Since Q0, . . . , Qµ−1 are admissible, for j = 1, . . . , µ− 2, it holds that

QjPj+1 · · ·Pµ−1G
−1
µ Gj = QjPj+1 · · ·Pµ−1Pµ−1 · · ·Pj = QjPj+1 · · ·Pµ−1Pj

= QjPj+1 · · ·Pµ−1 −Qj = −Qj(I − Pj+1 · · ·Pµ−1)

= −Qj{Qj+1 + Pj+1Qj+2 + . . .+ Pj+1 · · ·Pµ−2Qµ−1}. (210)

Property (210) immediately implies

QjPj+1 · · ·Pµ−1G
−1
µ Gj = QjPj+1 · · ·Pµ−1G

−1
µ GjΠj, (211)

QjPj+1 · · ·Pµ−1G
−1
µ GjΠµ−1 = 0, (212)

QjPj+1 · · ·Pµ−1G
−1
µ Gi = QjPj+1 · · ·Pµ−1G

−1
µ Gj for i < j. (213)

Analogous relations are valid also for the new sequence Q̄0, . . . , Q̄µ−1, and, additionally,

Q̄jP̄j+1 · · · P̄µ−1Ḡ
−1
µ Ḡj = Q̄jP̄j+1 · · · P̄µ−1Ḡ

−1
µ Gj, (214)

Q̄jP̄j+1 · · · P̄µ−1Ḡ
−1
µ Ḡj = Q̄jP̄j+1 · · · P̄µ−1Ḡ

−1
µ ḠjΠj. (215)

With regard of Q̄l = Q̄lQl, Ql = QlQ̄l for l ≥ k + 1, we have further

Q̄jP̄j+1 · · · P̄µ−1Ḡ
−1
µ ḠjΠµ−1 = 0, for j ≥ k. (216)

Now, assume the projector function sequence Q0, . . . , Qµ−1 to provide an already advanced
decoupling such that

Qµ−1 ∗Πµ−1 = 0, . . . , Qk+1 ∗Πµ−1 = 0.

Mind k ≤ µ − 2. Taking into account the relation Qµ−1G
−1
µ Gµ−1 = Qµ−1Pµ−1 = 0, we

immediately conclude

Q̄µ−1 ∗Π̄µ−1 = Q̄µ−1Ḡ
−1
µ B̄µ−1Π̄µ−1 = Q̄µ−1Qµ−1Z

−1
µ︸ ︷︷ ︸

=Qµ−1

G−1
µ B̄µ−1Πµ−2Π̄µ−1︸ ︷︷ ︸

=Πµ−1

= Q̄µ−1Qµ−1G
−1
µ Bµ−1Πµ−1 = Q̄µ−1Qµ−1 ∗Πµ−1 = 0.

Next, for k ≤ i ≤ µ− 2, we investigate the terms

Q̄i ∗Π̄µ−1 = Q̄iP̄i+1 · · · P̄µ−1Ḡ
−1
µ B̄iΠ̄µ−1

= Q̄iP̄i+1 · · · P̄µ−1Ḡ
−1
µ BiΠ̄µ−1 + Di,

with Di := Q̄iP̄i+1 · · · P̄µ−1Ḡ
−1
µ {B̄i − Bi}Π̄µ−1. First we show that Di = 0 thanks to

(214)-(216). Namely, we have by definition

Di = Q̄iP̄i+1 · · · P̄µ−1Ḡ
−1
µ {B̄i + ḠiD

−(DΠ̄µ−1D
−)′DΠ̄i−1 −Bi

−GiD
−(DΠµ−1D

−)′DΠi−1}Π̄µ−1

= Q̄iP̄i+1 · · · P̄µ−1Ḡ
−1
µ {−ḠiD

−(DΠ̄iD
−)′DΠi +Gi

i−1∑
l=0

QlAi,l + ḠiD
−(DΠ̄µ−1D

−)′DΠ̄i−1

−GiD
−(DΠµ−1D

−)′DΠi−1}Π̄µ−1,
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yielding

Di = Q̄iP̄i+1 · · · P̄µ−1Ḡ
−1
µ ḠiΠiD

−{−(DΠiD
− −DΠk−1Q̄kD

−DΠiD
−)′DΠi

+ (DΠµ−1D
− −DΠk−1Q̄kD

−DΠµ−1D
−)′(DΠi−1D

− −DΠk−1Q̄kD
−DΠi−1)

− (DΠµ−1D
−)′DΠi−1}Π̄µ−1

= Q̄iP̄i+1 · · · P̄µ−1Ḡ
−1
µ ḠiΠiD

−{(DΠk−1Q̄kD
−)′DΠi + (DΠµ−1D

−)′DΠi−1

− (DΠµ−1D
−)′DΠk−1Q̄kD

−DΠi−1 − (DΠk−1Q̄kD
−)′DΠµ−1 − (DΠµ−1D

−)′DΠi−1}Π̄µ−1.

Due to ΠiΠ̄µ−1 = Πµ−1 we arrive at

Di = Q̄iP̄i+1 · · · P̄µ−1Ḡ
−1
µ ḠiΠiD

−{−(DΠµ−1D
−)′DΠk−1Q̄kD

−DΠi−1}Π̄µ−1

= Q̄iP̄i+1 · · · P̄µ−1Ḡ
−1
µ ḠiΠiD

−DΠµ−1D
−(DΠk−1Q̄kD

−)′DΠi−1Π̄µ−1

= Q̄iP̄i+1 · · · P̄µ−1Ḡ
−1
µ ḠiΠµ−1D

−(DΠk−1Q̄kD
−)′DΠi−1Π̄µ−1 = 0,

which proves the relation

Q̄i ∗Π̄µ−1 = Q̄iP̄i+1 · · · P̄µ−1Ḡ
−1
µ BiΠ̄µ−1 (217)

for k ≤ i ≤ µ− 2. By means of the formula

ZjZ
−1
j+1 = I −

j−1∑
l=0

QlAj,lQj

being available for j = k + 1, . . . , µ− 1, we rearrange the terms in (217) as

Q̄i ∗Π̄µ−1 = Q̄iZ
−1
i+1Pi+1Zi+1Z

−1
i+2Pi+2 · · ·Z−1

µ−1Pµ−1Zµ−1Z
−1
µ G−1

µ BiΠ̄µ−1

= Q̄iZ
−1
i+1Pi+1 · · ·Pµ−1G

−1
µ BiΠ̄µ−1

+

µ−2∑
j=i+1

Ei, jQjPj+1 · · ·Pµ−1G
−1
µ BiΠ̄µ−1 + Ei, µ−1Qµ−1G

−1
µ BiΠ̄µ−1.

The very last term in this formula disappears because of

Qµ−1G
−1
µ BiΠ̄µ−1 = Qµ−1G

−1
µ BiΠ̄µ−1

= Qµ−1G
−1
µ Bµ−1Π̄µ−1 = Qµ−1 ∗(I −Πk−1Qk)Πµ−1 = Qµ−1 ∗Πµ−1 = 0.

Next we prove to vanish also the involved sum. For this aims we consider the relation

(Bj −Bi)Πµ−1 = −
j∑

l=i+1

GlD
−(DΠlD

−)′DΠµ−1, for j ≥ i+ 1. (218)

We first assume i > k leading to BiΠ̄µ−1 = BiΠi−1Πµ−1 = BiΠµ−1 and further

QjPj+1 · · ·Pµ−1G
−1
µ BiΠµ−1

= QjPj+1 · · ·Pµ−1G
−1
µ BjΠµ−1︸ ︷︷ ︸

=Qj ∗Πµ−1=0

+QjPj+1 · · ·Pµ−1G
−1
µ (Bi −Bj)Πµ−1

= QjPj+1 · · ·Pµ−1G
−1
µ {

j∑
l=i+1

GlD
−(DΠlD

−)′DΠµ−1 + (Gj −Gi)(DΠµ−1D
−)′DΠµ−1}.
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Applying once more the properties (211) and (213), we derive

QjPj+1 · · ·Pµ−1G
−1
µ BiΠµ−1

= QjPj+1 · · ·Pµ−1G
−1
µ {

j∑
l=i+1

GlD
−(DΠlD

−)′DΠµ−1 + (Gj −Gi)(DΠµ−1D
−)′DΠµ−1}

= QjPj+1 · · ·Pµ−1G
−1
µ GjΠjD

−
j∑

l=i+1

(DΠlD
−)′DΠµ−1 = 0.

Now, for i > k, it results that

Q̄i ∗Πµ−1 = Q̄iZ
−1
i+1Pi+1 · · ·Pµ−1G

−1
µ BiΠµ−1 = Q̄iQiPi+1 · · ·Pµ−1G

−1
µ BiΠµ−1

= Q̄iQi ∗Πµ−1 = 0,

which verifies property (208). By the same means one obtains

Q̄k ∗Πµ−1 = Q̄kZ
−1
k+1︸ ︷︷ ︸

=Qk

Pk+1 · · ·Pµ−1G
−1
µ BkΠµ−1 = QkPk+1 · · ·Pµ−1G

−1
µ BkΠµ−1

= Qk ∗Πµ−1.

Finally, it remains to investigate the expression Q̄k ∗Π̄µ−1. Since Q̄k ∗ also projects onto
im Q̄k = kerGk, it follows that Q̄k ∗Q̄k = Q̄k. This proves property (209), namely

Q̄k ∗Π̄µ−1 = Q̄k ∗(I −Πk−1Q̄k)Πµ−1 = Q̄k ∗Πµ−1 − Q̄k ∗Πk−1Q̄kΠµ−1

= Qk ∗Πµ−1 − Q̄kΠµ−1 = (Qk ∗ − Q̄k)Πµ−1. �

G Admissible projectors for Nx′ + x = r

In this part, admissible projectors are generated for the DAE (219) with a nilpotent ma-
trix function N typical for the normal form in the framework of strangeness index (cf.
[KM06]). Our admissible projectors are given explicitly by formulas (229) below, they
have block upper triangular form in correspondence to the strict block upper triangular
form of N .
Roughly speaking Lemma G.1 below is the technical key when proving that any DAE
which has a well-defined regular strangeness index is at the same time regular in the
tractability-index framework, and, in particular, the constant-rank requirements associ-
ated to the strangeness index are sufficient for the constant-rank conditions associated to
the tractability index.
We deal with the special DAE

Nx′ + x = r, (219)

given by a matrix function N ∈ C(I, L(Rm)), I ⊆ R an interval, that has uniform on I
strict block upper triangular structure

N =


0 N12 . . . N1µ

0
. . .

...
. . .

...
0 Nµ−1µ

0


} `1

} `µ−1

} `µ

,
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1 ≤ `1 ≤ . . . ≤ `µ, `1 + . . . + `µ = m, µ ≥ 2. The blocks Nii+1, i = 1, . . . , µ − 1, are
supposed to have full row rank each, i.e.

rankNii+1 = `i, i = 1, . . . , µ− 1. (220)

This implies all powers of N to have constant rank, namely

rankN = `1 + . . .+ `µ−1,

rankNk = `1 + . . .+ `µ−k, k = 1, . . . , µ− 1, (221)

rankNµ = 0.

N is nilpotent with index µ, i.e. Nµ−1 6= 0, Nµ = 0. For i = 1, . . . , µ − 1, we in-
troduce projectors V [1]

i+1i+1 ∈ C(I, L(R`i+1)) onto the continuous subspace kerNi,i+1, and

U [1]
i+1,i+1 := I`i+1

−V [1]
i+1i+1. V [1]

i+1i+1 and U [1]
i+1i+1 have constant rank `i+1− `i and `i, respec-

tively. Exploiting the structure of N we built a projector V [1] ∈ C(I, L(Rm)) onto the
continuous subspace kerN , which has a corresponding block upper triangular structure

V [1] =


I

V [1]
22 ∗ . . . ∗

. . . . . .
...

. . . ∗
V [1]
µµ


} `1

} `µ−1

} `µ

. (222)

The entries indicated by ”∗” are uniquely determined by the entries of N and generalized
inverses N−ii+1 with

N−ii+1Nii+1 = V [1]
i+1i+1, Nii+1N

−
ii+1 = I`i , i = 1, . . . , µ− 1.

In the following, we assume the nullspace kerN to be just a C1 subspace, and the projector
V [1] to be continuously differentiable. Obviously, the property N ∈ C1(I, L(Rm)) is
sufficient for that but might be to generous. For this reason, we do not specify further
smoothness conditions in terms of N but in terms of projectors and subspaces.
Taking use of N = NU [1], U [1] := I − V [1], we reformulate the DAE (219) as

N(U [1]x)′ + (I −NU [1]′)x = r. (223)

The matrix function NU [1]′ is again strictly block upper triangular, and I − NU [1]′ is
nonsingular, block upper triangular with identity diagonal blocks.

M0 := (I −NU [1]′)−1N =

µ−1∑
`=0

(NU [1]′)`N

has the same strict block upper triangular structure as N , the same nullspace, and entries
(M0)ii+1 = Nii+1, i = 1, . . . , µ− 1. Scaling equation (223) by (I −NU [1]′)−1 yields

M0(U [1]x)′ + x = q, (224)

where q := (I −NU [1]′)r. By construction, the DAE (224) has a properly stated leading
term (cf. Definition 2.1). Written as a general linear DAE

A(Dx)′ +Bx = q
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with A = M0, D = U [1], B = I, we have kerA = kerM0 = kerN = kerU [1], imD =
imU [1], R = U [1].
Next we choose D− = U [1], and, correspondingly P0 = U [1], Q0 = V [1]. With these
projectors, Π0 = P0, and G0 = AD = M0U [1] = M0, B0 = I, we form a matrix function
sequence and admissible projectorsQ0, . . . , Qκ for the DAE (224) as described in Section 3.
In particular, we shall prove this DAE to be regular with tractability index µ.
The first matrix function (cf. Section 3) G1 is

G1 = M0 +Q0,

and G1z = 0, i.e. (M0 + Q0)z = 0, leads to P0M0z = 0, Q0z = −Q0M0P0z, z =
(I − Q0M0)P0z, z ∈ kerP0M . Because of P0M0 = M−

0 M0M0, M2
0 = M0P0M0 the

nullspaces of P0M0 and M2
0 coincide. The inclusion kerM0 ⊂ kerM2

0 = kerP0M0 allows
for the decomposition kerM2

0 = kerM0 ⊕ P0 kerM2
0 . If V [2] denotes a projector onto

kerM2
0 , U [2] := I − V [2], then it follows that

imV [2] = imV [1] ⊕ imU [1]V [2],

V [2]V [1] = V [1], (U [1]U [2])2 = U [1]U [2],

(Π0V [2])2 = Π0V [2],

rankU [2] = rankM2
0 = `1 + . . .+ `µ−2,

rankV [2] = `µ−1 + `µ,

rankΠ0V [2] = rankV [2] − rankV [1] = `µ−1.

The matrix function

Q1 := (I −Q0M0)Π0V [2] (225)

has the properties

Q1Q0 = (I −Q0M0)Π0V [2]V [1] = (I −Q0M0)Π0V [1] = (I −Q0M0)Π0Q0 = 0,

hence Q1 ·Q1 = Q1, and

G1Q1 = (M0 +Q0)(I −Q0M0)Π0V [2] = (M0 −Q0M0 +Q0)Π0V [2]

= P0M0Π0V [2] = P0M0V [2] = 0.

It becomes clear, that Q1 is actually the wanted projector onto kerG1, if rankQ1 =
m − rankG1. I − Q0M0 is nonsingular, and Q1 has the same rank as Π0V [2], that is,
rankQ1 = `µ−1. Proposition 2.4(3) allows for an easy rank determination of the matrix
function G1. With

W0 :=


0

. . .

0
I


} `µ

we find imG1 = imG0 ⊕ imW0B0Q0 = imM0 ⊕ imW0Q0, thus r1 = r0 + rankV [1]
µµ =

m − `µ + `µ − `µ−1 = m − `µ−1. It comes out that Q0, Q1 are admissible, supposed
π1 = U [1]U [2] is continuously differentiable.
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Next, due to the structure of M2
0 , the projector V [2] can be chosen to be block upper

triangular,

V [2] =


I

I
∗ . . . ∗

. . .
...
∗

 , U [2] = I − V [2] =


0

0
∗ . . . ∗

. . .
...
∗

 .

The entries in the right lower corners shall play their role in rank calculations. They are

V [2]
µµ = I − U [2]

µµ, U [2]
µµ = (Nµ−2µ−1Nµ−1µ)−Nµ−2µ−1Nµ−1µ.

To realize this we just remember that the entry (µ−2, µ) ofM2
0 is [M2

0 ]µ−2µ = Nµ−2µ−1Nµ−1µ.
Both Nµ−2µ−1 and Nµ−1µ have full row-rank `µ−2 resp. `µ−1. Therefore, the product
Nµ−2µ−1Nµ−1µ has full row-rank equal to `µ−2. From this it follows that

rankV [2]
µµ = dim kerNµ−2µ−1Nµ−1µ = `µ − `µ−2.

Taking into account the inclusion

imV [1]
µµ = kerNµ−1µ ⊆ kerNµ−2µ−1Nµ−1µ = imV [2]

µµ

we find
rankU [1]

µµV [2]
µµ = rankV [2]

µµ − rankV [1]
µµ = `µ−1 − `µ−2.

By Proposition 2.4(3), with the projector along imG1

W1 :=


0

. . .

0

U [1]
µµ

 , W1 =W0U [1],

we compute (before knowing G2 in detail)

imG2 = imG1 ⊕ imW1Q1, W1Q1 =W0U [1]V [2],

r2 = r1 + rankW1Q1 = r1 + rankU [1]
µµV [2]

µµ = m− `µ−1 + `µ−1 − `µ−2 = m− `µ−2.

We compute G2 = G1 + (B0Π0 −G1D
−(DΠ1D

−)′DΠ0)Q1 (cf. Section 3) itself as

G2 = M0 +Q0 +Π0Q1 − (M0 +Q0)P0Π
′
1Π0Q1

= M0 +Q0 +Π0Q1 −M0F1Π0Q1,

where F1 := P0Π
′
1Π0Q1 is block upper triangular as all its factors. It results that

G2 = M0 +Q0 + (I −M0F1)P0(I −Π1),

G2 is block upper triangular. Due to the nonsingularity of I−M0F1, as well as the simple
property (I −M0F1)Q0 = Q0, we may use the description

G2 = (I −M0F1)−1{M1 + I −Π1},
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where M1 := (I −M0F1)−1M0 has again the strict block upper triangular structur of N ,
and entries [M1]ii+1 = Nii+1, i = 1, . . . , µ− 1. From the representation

Π1M1 = Π1P0M1 = Π1P0(I +M0F1 + . . .+ (M0F0)µ−1)M0

= Π1(I +M0F1 + . . .+ (M0F1)µ−1)P0M0

we know the inclusion kerΠ0M0 ⊆ kerΠ1M1 to be valid. Furthermore, we have
kerM2

0M1 = kerΠ1M1 because of the representations kerU [2] = kerM2
0 = kerP0M0,

Π1M1 = P0U [2]M1 = P0(M2
0 )−M2

0M1, andM2
0M1 = M2

0U [2]M1 = M2
0P0U [2]M1 = M2

0Π1M1.

The next lemma shows that we may proceed further in this way to construct admissible
projectors for the DAE (224). We shall use certain auxilary continuous matrix functions
which are determined from level to level as

F0 := 0,

Fi := Fi−1 +
i∑

`=1

P0Π
′
`Πi−1Qi =

i∑
j=1

j∑
`=1

P0Π
′
`Πj−1Qi, i ≥ 1, (226)

H2 := H1 := H0 := 0,

Hi := Hi−1 +
i−1∑
`=2

(I −H`−1)P0(I −Π`−1)Π ′`Πi−1Qi

=
i∑

j=3

j−1∑
`=2

(I −H`−1)P0(I −Π`−1)Π ′`Πj−1Qj, i ≥ 3. (227)

This matrix functions inherit the block upper triangular structure. They disappear if
the projectors Π1, . . . , Πi do not vary with time (what is given at least in the constant
coefficient case).
It holds that Fi = FiP0, Hi = HiP0. The products FiM0 are strictly block upper triangular
so that I −M0Fi is nonsingular, and

Mi := (I −M0Fi)
−1M0 (228)

has again strict block upper triangular structure. The entries (j, j + 1) of Mi coincide
with that of N , i.e.

[Mi]jj+1 = Njj+1. (229)

If the projectors Π0, . . . , Πi are constant, then we have simply Mi = M0 = N .

Lemma G.1 Let N be sufficiently smooth so that the continuous projectors Πi arising
below are even continuously differentiable. Let k ∈ N, k ≤ µ − 1, and let Q0 := V [1] be
given by (222), and, for i = 1, . . . , k,

Qi :=
(
I −

i−1∑
j=0

Qj(I −Hi−1)−1Mi−1

)
Πi−1V [i+1], (230)

V [i+1] ∈ C(I, L(Rm)) a block upper triangular projector onto kerM2
0M1 · · ·Mi−1, U [i+1] :=

I − V [i+1]. Then, the matrix functions Q0, . . . , Qk are admissible projectors for the DAE
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(224) on I, and, for i = 1, . . . , k, it holds that

Πi−1Qi = Πi−1V [i+1], Πi = U [1] · · · U [i+1], (231)

kerΠi−1Mi−1 ⊂ kerΠiMi, (232)

kerΠiMi = kerM2
0M1 . . .Mi, (233)

Gi+1 = M0 +Q0 + (I −M0Fi)(I −Hi)P0(I −Πi), (234)

ri+1 = rankGi+1 = m− `µ−i−1, imGi+1 = imGi ⊕ imW0Πi−1Qi,

and I −Hi is nonsingular.

Before we turn to the proof of Lemma G.1 we realize that it provides admissible projectors
Q0, . . . , Qµ−1 and characteristics r0 = m−`µ, . . . , rµ−1 = m−`1 < m. Because of the strict
block upper triangular structure of M0, . . . ,Mµ−2, the product M2

0M1 · · ·Mµ−2 disappears
(as Nµ does). This leads to V [µ] = I, U [µ] = 0, thus Πµ−1 = 0, and

Gµ = M0 +Q0 + (I −M0Fµ−1)(I −Hµ−1)P0(I −Πµ−1)

= M0 +Q0 + (I −M0Fµ−1)(I −Hµ−1)P0

= (I −M0Fµ−1)(I −Hµ−1){(I −Hµ−1)−1Mµ−1 + I}.

The factors I − M0Fµ−1 and I − Hµ−1 are already known to be nonsingular. (I −
Hµ−1)−1Mµ−1 inherits the strict block upper triangular structure from Mµ−1, but then
I + (I −Hµ−1)−1Mµ−1 is nonsingular, and so is Gµ. By this we have proved an important
consequence of Lemma G.1:

Proposition G.2 Let N be sufficiently smooth to make the continuous projectors
Π0, . . . , Πµ−2 even continuously differentiable. Then the DAE (224) is on I regular with
tractability index µ and characteristic values

ri = m− `µ−i, i = 0, . . . , µ− 1, rµ = m.

It holds that Πµ−1 = 0, and there is no inherent regular ODE within the DAE.

To prepare the proof of Lemma G.1 we give the following one.

Lemma G.3 Let Vi ∈ L(Rm) be idempotent, Ui := I − Vi, Li := imVi, νi := rankVi,
i = 1, . . . , k, and Li ⊆ Li+1, i = 1, . . . , k − 1.
Then the products U1V2, . . . ,U1 · · · Uk−1Vk,U1U2, . . . ,U1 · · · Uk are projectors, too, and it
holds that

U1 · · · UiVi+1Vj = 0, 1 ≤ j ≤ i, i = 1, . . . , k − 1,

kerU1 · · · Ui = Li, i = 1, . . . , k,

Lk = L1 ⊕ U1L2 ⊕ . . .⊕ U1 · · · Uk−1Lk,

dimU1 · · · Uk−1Lk = νk − νk−1. (235)

Proof: The inclusions L1 ⊆ L2 ⊆ . . . ⊆ Li+1 lead to Vi+1Vj = Vj, for j = 1, . . . , i.
Compute

U1V2U1V2 = U1V2(I − V1)V2 = U1V2 − U1V1V2 = U1V2,

U1U2U1U2 = U1(I − V2)(I − V1)U2 = U1(I − V1 − V2 + V1)U2 = U1U2.
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L2 = imV2 ⊆ kerU1U2 holds trivially. z ∈ kerU1U2 means (I − V1)(I − V2)z = 0, hence
z = V1z + V2z − V1V2z ∈ L2, so that kerU1U2 = L2 is true.
By induction, if U1 · · · Ui−1Qi, U1 · · · Ui are projectors, kerU1 · · · Ui = Li, then these prop-
erties remain valid for i+ 1 instead of i. Namely,

U1 · · · Ui+1U1 · · · Ui+1 = U1 · · · Ui(I − Vi+1)U1 · · · Ui+1 = U1 · · · UiU1 · · · Ui+1 = U1 · · · Ui+1,

U1 · · · UiVi+1U1 · · · UiVi+1 = U1 · · · UiVi+1,

Li+1 = kerUi+1 ⊆ kerU1 · · · Ui+1,

and z ∈ kerU1 · · · Ui+1 implies Ui+1z ∈ imU1 · · · Ui = Li, z − Vi+1z ∈ Li, hence z ∈
Li + Li+1 = Li+1. Now we can decompose

L2 = L1 ⊕ U1L2,

L3 = L1 ⊕ U1L2 ⊕ U1U2L3 = L2 ⊕ U1U2L3,

Li+1 = L1 ⊕ U1L2 ⊕ . . .⊕︸ ︷︷ ︸
= Li

U1 · · · UiLi+1 = Li ⊕ U1 · · · UiLi+1,

and it results that dimU1 · · · UiLi+1 = vi+1 − vi, i = 1, . . . , k − 1. �

Proof of Lemma G.1: We apply induction. For k = 1 the assertion is already proved,
and the corresponding projector Q1 is given by (225).
Let the assertion be true up to level k, and we are going to show its validity for level k+1.
Stress one more that we deal with structured triangular matrices. We know already that
Q0, . . . , Qk are admissible, and, in particular, it holds that QiQj = 0, for 0 ≤ j < i ≤ k.
A closer look to the auxilary matrix functions Hi (cf. (227)) shows that HiQ1 = 0,
HiQ2 = 0, further HiΠi = 0, and

Πi−2Hi = 0.

Namely, Π1H3 = Π1P0(I − Π1)Π ′2Π1Q2 = 0, and Πj−3Hj−1 = 0, for j ≤ i, implies
Πi−2Hi = 0 (due to Πi−2H` = 0, Πi−2P0(I −Π`−1) = 0, ` = 1, . . . , i− 1).
The functions F1, . . . , Fk (cf. (226)) are well-defined, and they have the properties

(Fk − Fj)Πk = 0, (Fk − Fj)Πj = Fk − Fj, for j = 1, . . . , k. (236)

It follows that, for j = 1, . . . , k,

(I −M0Fk)
−1(I −M0Fj) = I + (I −M0Fk)

−1M0(Fk − Fj)Πj.

Next we verify the property

Πj−1MkQj = 0, j = 0, . . . , k. (237)

From GjQj = 0, j = 0, . . . , k, we know

M0Qj +Q0Qj + (I −M0Fj−1)(I −Hj−1)P0(I −Πj−1)Qj = 0. (238)

Multiplication by (I −M0Fk)
−1 leads to

MkQj +Q0Qj + {I + (I −M0Fk)
−1M0(Fk − Fj−1)Πj−1}(I −Hj−1)P0(I −Πj−1)Qj = 0,
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and further, with account of Πj−1Hj−1 = 0, Πj−1P0(I −Πj−1) = 0,

MkQj +Q0Qj + (I −Hj−1)P0(I −Πj−1)Qj = 0, (239)

and hence Πj−1MkQj = 0, i.e. (237). Now it follows that ΠkMkQj = 0, for j = 0, . . . , k,
hence

ΠkMk = ΠkMkΠk, (240)

a property that will appear to be very helpful.
Recall that we have already a nonsingular I −Hk, as well as

Gk+1 = M0 +Q0 + (I −M0Fk)(I −Hk)P0(I −Πk)

= (I −M0Fk)(I −Hk){(I −Hk)
−1Mk + I −Πk}, (241)

and Gk+1 has rank rk+1 = m− `µ−k−1. We have to show the matrix function

Qk+1 :=
(
I −

k∑
j=0

Qj(I −Hk)
−1Mk

)
ΠkV [k+2]

to be a suitable projector. We check first whether Gk+1Qk+1 = 0 is satisfied. Derive (cf.
(241))

Gk+1Qk+1 = (I −M0Fk){Mk + (I −Hk)(I −Πk)}
(
I −

k∑
j=0

Qj(I −Hk)
−1Mk

)
ΠkV [k+2]

= (I −M0Fk)
{
Mk −

k∑
j=1

MkQj(I −Hk)
−1Mk

−(I −Hk)
k∑
j=0

Qi(I −Hk)
−1Mk

}
ΠkV [k+2]

= (I −M0Fk)
{
I −Hk −

k∑
j=1

MkQj − (I −Hk)
k∑
j=0

Qj

}
·

· (I −Hk)
−1MkΠkV [k+2]. (242)

From (239) we obtain, for j = 1, . . . , k,

MkQj + (I −Hk)Qj = −Q0Qj − (I −Hj−1)P0(I −Πj−1)Qj + (I −Hk)Qj

= P0Qj −HkQj − (I −Hj−1)(I −Πj−1)P0Qj

= P0Qj −HkQj − (I −Hj−1)P0Qj +Πj−1Qj

= −(Hk −Hj−1)P0Qj +Πj−1Qj

and, therefore,

k∑
j=1

(MkQj + (I −Hk)Qj) =
k∑
j=1

Πj−1Qj −
k∑
j=1

(Hk −Hj−1)P0Qj

=
k∑
j=1

Πj−1Qj −Hk.

147



The last relation becomes true because of (Hk −H0)Q1 = 0, (Hk −H1)Q2 = 0, and the
construction of Hi (cf. (227)),

k∑
j=1

(Hk −Hj−1)P0Qj =
k∑
j=3

(Hk −Hj−1)P0Qj

=
k∑
j=3

[ k∑
ν=j

ν−1∑
`=2

(I −H`−1)P0(I −Π`−1)Π ′`Πν−1Qν

]
P0Qj

=
k∑
j=3

j−1∑
`=2

(I −H`−1)P0(I −Π`−1)Π ′`Πj−1Qj = Hk.

Together with (242) this yields

Gk+1Qk+1 = (I −M0Fk)
{
I −Hk −

( k∑
j=1

Πj−1Qj −Hk

)
−Q0

}
(I −Hk)

−1MkΠkV [k+2]

= (I −M0Fk)
{
I −Q0 −

k∑
j=1

Πj−1Qj

}
(I −Hk)

−1MkΠkV [k+2]

= (I −M0Fk)Πk(I −Hk)
−1MkΠkV [k+2]. (243)

For more specific information on (I −Hk)
−1 we consider the equation (I −Hk)z = w, i.e.

(cf. (227))

(I −Hk−1)z −
k−1∑
`=2

(I −H`−1)P0(I −Π`−1)Π ′`Πk−1Qkz = w. (244)

Because of Πk−1Hk−1 = 0, Πk−1H`−1 = 0, Πk−2P0(I −Π`−1) = 0, multiplication of (244)
by Πk−1Qk = Πk−1QkΠk−1 yields Πk−1Qkz = Πk−1Qkw, such that

z = (I −Hk−1)−1
{
w +

k−1∑
`=2

(I −H`−1)P0(I −Π`−1)Π ′`Πk−1Qkw
}

results, and further,

(I −Hk)
−1 = (I −Hk−1)−1

(
I −

k−1∑
`=2

(I −H`−1)P0(I −Π`−1)Π ′`Πk−1Qk

)
= (I −H3)−1

(
I +

3∑
`=2

(I −H`−1)P0(I −Π`−1)Π ′`Π3Q4

)
· · ·

· · ·
(
I +

k−1∑
`=2

(I −H`−1)P0(I −Π`−1)Π ′`Πk−1Qk

)
= (I + P0Q1Π

′
2Π2Q3) · · ·

(
I +

k−1∑
`=2

(I −H`−1)P0(I −Π`−1)Π ′`Πk−1Qk

)
.
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This shows that Πk(I − Hk)
−1 = Πk holds true. On the other hand FkΠk = 0 is also

given, what leads to
Gk+1Qk+1 = ΠkMkΠkV [k+2].

With the help of (240), and taking into account that kerΠkMk = kerM2
0M1 · · ·Mk, we

arrive at
Gk+1Qk+1 = ΠkMkV [k+2] = 0,

that is, the matrix function Qk+1 satisfies the condition imQk+1 ⊆ kerGk+1. The inclu-
sions (cf. (232), (233))

kerΠi−1Mi−1 = kerM2
0M1 · · ·Mi−1 ⊂ kerΠiMi = kerM2

0M1 · · ·Mi

are valid for i = 1, . . . , k. This leads to

imV [1] ⊂ imV [2] ⊂ . . . ⊂ V [κ+2]

what allows an application of Lemma G.3. We take use of the structural properties

rankM2
0M1 · · ·Mi = rankN i+2 = `1 + . . .+ `µ−i−2,

rankV [i+2] = m− (`1 + . . .+ `µ−i−2) = `µ−i−1 + . . .+ `µ,

so that Lemma G.3 yields

rankU [1] · · · U [k+1]V [k+2] = rankV [k+2] − rankV [k+1] = `µ−k−1.

Writing Qk+1 in the form

Qk+1 =
(
I −

k∑
j=0

Qj(I −Hk)
−1MkΠk

)
ΠkV [k+2],

and realizing the first factor to be nonsingular, we conclude

rankQk+1 = rankΠkV [k+2] = `µ−k−1 = m− rankGk+1.

Applying Lemma G.3 again we derive, for j = 0, . . . , k,

Qk+1Qj =
(
I −

k∑
j=0

Qj(I −Hk)
−1Mk

)
ΠkV [k+2]Qj,

ΠkV [k+2]Qj = U [1] · · · U [k+1]V [k+2]Qj

= U [1] · · · U [k+1]V [k+2]U [1] · · · U [j]Qj

= U [1] · · · U [k+1]V [k+2]U [1] · · · U [j]V [j+1] = 0,

such that Qk+1Qj = 0, j = 0, . . . , k, and furthermore Qk+1Qk+1 = Qk+1. This completes
the proof for Qk+1 to be a suitable projector function, and for Q0, . . . , Qk, Qk+1 to be
admissible.
It remains to verify (232)–(234) for i = k + 1, to consider the rank of Gk+2 as well as to
show the nonsingularity of I −Hk+1.
First we consider the rank of Gk+2. Following Proposition 2.4(3) it holds that

imGk+2 = imGk+1 ⊕ imWk+1ΠkQk+1,
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with a projector Wk+1 such that kerWk+1 = imGk+1. Because of

imGk+1 = imGk ⊕ imW0Πk−1Qk

= imG0 ⊕ imW0Q0 ⊕ . . .⊕ imW0Πk−1Qk

= imG0 ⊕ imW0(Q0 + . . .+Πk−1Qk)

= imG0 ⊕ imW0(I −Πk)

we may choose the projector

Wk+1 =W0Πk =W0ΠkW0.

This leads to
imGk+2 = imGk+1 ⊕ imW0ΠkQk+1,

as well as to

rk+2 = rk+1 + rankW0ΠkQk+1 = rk+1 + rank [ΠkQk+1]µµ

= rk+1 + rankU [1]
µµ · · · U [k+1]

µµ V [k+2]
µµ = m− `µ−k−1 + (`µ−k−1 − `µ−k−2)

= m− `µ−k−2.

Thereby, to show that rankU [1]
µµ · · · U [k+1]

µµ V [k+2]
µµ = `µ−k−1 − `µ−k−2 we recall that

V [1]
µµ projects onto kerNµ−1µ,

V [2]
µµ projects onto kerNµ−2µ−1Nµ−1µ,

. . .

V [k+1]
µµ projects onto kerNµ−k−1µ−k · · ·Nµ−1µ

and
V [k+2]
µµ projects onto kerNµ−k−2µ−k−1 · · ·Nµ−1µ,

and

imV [1]
µµ ⊂ imV [2]

µµ ⊂ . . . ⊂ imV [k+2]
µµ ,

rankV [i]
µµ = `µ − `µ−i, i = 1, . . . , k + 2.

Here, Lemma G.3 applies again, and it results that

rankU [1]
µµ · · · U [k+1]

µµ V [k+2]
µµ = rankV [k+2]

µµ − rankV [k+1]
µµ

= `µ − `µ−k−2 − (`µ − `µ−k−1) = `µ−k−1 − `µ−k−2.

So we are done with range and rank of Gk+2.
In the next step we provide Gk+2 itself (cf. Section 3). Compute

Gk+2 = Gk+1 +ΠkQk+1 −
k+1∑
j=1

GjP0Π
′
jΠkQk+1

= M0 +Q0 + (I −M0Fk)(I −Hk)P0(I −Πk) +ΠkQk+1

−M0Π
′
1ΠkQk+1 −

k+1∑
j=2

{M0 + (I −M0Fj−1)(I −Hj−1)P0(I −Πj−1)}Π ′jΠkQk+1

= M0 +Q0 + (I −M0Fk)P0(I −Πk)− (I −M0Fk)Hk +ΠkQk+1

−
k+1∑
j=1

M0Π
′
jΠkQk+1 −

k+1∑
j=2

(I −M0Fj−1)(I −Hj−1)P0(I −Πj−1)Π ′jΠkQk+1
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and rearrange (cf. (226), (227)) certain terms to

(I −M0Fk)P0(I −Πk) +ΠkQk+1 −M0

k+1∑
j=1

P0Π
′
jΠkQk+1 = (I −M0Fk+1)P0(I −Πk+1)

and

(I −M0Fk)Hk +
k∑
j=2

(I −M0Fj−1)(I −Hj−1)P0(I −Πj−1)Π ′jΠkQk+1

= (I −M0Fk)
{
Hk +

k∑
j=2

(I −M0Fk)
−1(I −M0Fj−1)(I −Hj−1) ·

· P0(I −Πj−1)Π ′jΠkQk+1

}
= (I −M0Fk)

{
Hk +

k∑
j=2

(I −Hj−1)P0(I −Πj−1)Π ′jΠkQk+1

}
= (I −M0Fk)Hk+1 = (I −M0Fk+1)(I −M0Fk+1)−1(I −M0Fk)Hk+1

= (I −M0Fk+1)Hk+1 = (I −M0Fk+1)Hk+1P0(I −Πk+1),

what leads to

Gk+2 = M0 +Q0 + (I −M0Fk+1)P0(I −Πk+1)− (I −M0Fk+1)Hk+1P0(I −Πk+1)

= M0 +Q0 + (I −M0Fk+1)(I −Hk+1)P0(I −Πk+1),

and we are done with Gk+2 (cf. (234)).
Next, I−Hk+1 is nonsingular, since (I−Hk+1)z = 0 impliesΠkQk+1z = 0, thus (I−Hk)z =
0, and, finally z = 0 due to the nonsingularity of (I −Hk).
To complete the proof of Lemma G.1 we have to verify (232) and (233) for i = k +
1, supposed kerΠk−1Mk−1 ⊆ kerΠkMk, kerΠkMk = kerM2

0M1 · · ·Mk are valid. From
ΠkMk = ΠkMkΠk (cf. (240)) and kerM2

0M1 · · ·Mk = kerΠkMk = kerU [k+2] we obtain
the relations

Πk+1Mk+1 = ΠkU [k+2]Mk+1 = Πk(M
2
0M1 · · ·Mk)

−M2
0M1 · · ·MkMk+1,

M2
0M1 · · ·Mk+1 = M2

0M1 · · ·MkU [k+2]Mk+1 = M2
0M1 · · ·Mk(ΠkMk)

−ΠkMkU [k+2]Mk+1

= M2
0M1 · · ·Mk(ΠkMk)

−ΠkMkΠkU [k+2]Mk+1

= M2
0M1 · · ·Mk(ΠkMk)

−ΠkMkΠk+1Mk+1,

hence kerΠk+1Mk+1 = kerM2
0M1 · · ·Mk+1 holds true. Additionally, from

Πk+1Mk+1 = Πk+1(I −M0Fk+1)−1(I −M0Fk)Mk

= Πk+1[I + (I −M0Fk+1)−1M0(Fk+1 − Fk)Πk]Mk

= Πk+1[I + (I −M0Fk+1)−1M0(Fk+1 − Fk)Πk]ΠkMk

we conclude the inclusion
kerΠkMk ⊆ kerΠk+1Mk+1. �
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der Elektronik. VEB Verlag Technik, Berlin, 1977.

[Gaj99] Gajshun. Vvedenie v teoriyu linejnykh nestatsionarnykh sistem. Institut
matematiki NAN Belarusi, Minsk, 1999. (russian).

[Gea71] C. W. Gear. Simultaneous numerical solution of differential-algebraic equa-
tions. IEEE Trans. Circuit Theory, CT-18(1):89–95, 1971.

[GHP81] C. W. Gear, H. H. Hsu, and L. Petzold. Differential-algebraic equations
revisited. In Proc. Oberwolfach Conf. on Stiff Equations, Bericht des Instituts
für Geom. und Prakt. Math.; 9, Aachen, 1981. Rhein.-Westfälische Techn.
Hochschule.

[GM86] E. Griepentrog and R. März. Differential-Algebraic Equations and Their
Numerical Treatment. Teubner-Texte zur Mathematik No. 88. BSB B.G.
Teubner Verlagsgesellschaft, Leipzig, 1986.

152



[GP83] C.W. Gear and L.R. Petzold. Differential/algebraic systems and matrix pen-
cils. In B. Kagstrom and A. Ruhe, editors, Matrix Pencils, volume 973 of
Lecture Notes in Mathematics, pages 75–89. Springer-Verlag, Berlin, New
York, 1983.

[GvL91] Gene H. Golub and Charles F. van Loan. Matrix Computations. The John
Hopkins University Press, 1991.

[Han90] B. Hansen. Differentiell-algebraic equations.- Consistent initial values for
index-k-tractable linear equations and nonlinear index-2 equations. PhD the-
sis, Humboldt-University of Berlin, Institute of Mathematics, 1990.

[KKW01] O. Koch, P. Kofler, and E. Weinmüller. Initial value problems for systems
of ordinary first and second order differential equations with a singularity of
the first kind. Analysis, 21:373–389, 2001.

[KM94] P. Kunkel and V. Mehrmann. Canonical forms for linear differential-algebraic
equations with variable coefficients. J. Comput. Appl. Math., 56:225–251,
1994.

[KM06] P. Kunkel and V. Mehrmann. Differential-Algebraic Equations - Analysis
and Numerical Solution. EMS Publishing House, Zürich, Switzerland, 2006.
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