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Abstract

In this paper, a posteriori estimates are derived for higher-order finite element methods and frictional contact problems.
The discretization is based on a mixed approach where the geometrical and frictional constraints are captured by
Lagrange multipliers. The use of higher-order polynomials leads to a certain non-conformity in the discretization
which requires special attention in the error analysis. As a main result an error estimation is proposed which consists
of the dual norm of a residual plus some computable remainder terms. The residual is estimated by well-known
a posteriori error estimates for variational equations. The remainder terms represent typical sources resulting from the
non-conforming mixed discretization. Numerical experiments confirm the applicability of the a posteriori estimates
to adaptive mesh refinements.
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1. Introduction

Frictional contact problems play an import role in many processes of mechanical engineering. Their modeling
involves systems of partial differential equations with inequality conditions describing geometrical as well as frictional
constraints. In the literature, a huge number of discretization schemes for the numerical solution of such contact
problems is discussed. We refer to the monographs [1, 2, 3, 4] for an overview and to [5, 6, 7, 8] for some recent
works on discretization and solution schemes for frictional contact problems .

Well-established approaches to solve static contact problems are given by mixed methods. They are usually
derived from saddle point formulations, where the geometrical and frictional constraints are captured by Lagrange
multipliers. A commonly used mixed method is proposed by Haslinger et al. in [9, 3]. It is widely studied for low-
order finite elements and enhanced for many applications of frictional contact problems, cf. [10, 11, 12]. The main
advantage of this approach is that the Lagrange multipliers can be interpreted as normal and tangential contact forces.
Moreover, the constraints of the Lagrange multipliers are sign conditions and box constraints which are simpler than
the contact conditions in non-mixed formulations.

The low-order finite element discretization is based on the usual (bi-/tri-)linear H1-conforming ansatz functions
for the displacement and piecewise constant functions for the Lagrange multipliers. It allows for a conforming dis-
cretization, where the discrete Lagrange multipliers fulfill the non-discrete constraints. This is not the case when the
discetization is extended to higher-order finite elements, where piecewise polynomial and discontinuous functions
are applied to discretize the Lagrange multipliers. Using polynomials of degree strictly greater than 1, one can only
ensure the constraints of the Lagrange multipliers to hold in a finite set of discrete points, cf. [13, 14]. This results in
a certain non-conformity of the discretization which has to be taken into account in the error analysis.

In this paper, a posteriori estimates for mixed finite element methods of higher-order are derived for frictional
contact problems. In contrast to [15], we put special attention to the non-conformity error of the Lagrange multipliers.
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The basic idea in the derivation of the estimates is to consider a certain residual given by the discrete displacement and
the discrete Lagrange multipliers as well as to carefully insert correction functions to encounter the non-conformity.
As a main result, we state an error estimate consisting of the dual norm of the residual plus some computable remainder
terms. It is easy to see that the dual norm of the residual can be estimated by the discretization error of an auxiliary
problem that is simply a variational equation. Thus, well-known a posteriori error estimates for variational equations
can be used. The remainder terms capture typical sources resulting from the non-conforming mixed discretization:
the geometrical error, the violation of complementary conditions, errors with respect to the frictional constraints and,
finally, errors resulting from the non-conformity of the Lagrange multipliers.

In fact, the use of higher-order schemes to discretize contact problems is not obvious due to the low-regularity
nature of contact problems. However, using adaptivity, one may raise hope to recover optimal algebraic or even
exponential convergence rates. In our numerical experiments, we apply the a posteriori estimates within an adaptive
scheme which resolves the end points of the contact zone and the points where gliding switches to sticking. The
use of adaptivity significantly improves the convergence of the higher-order scheme and makes it applicable to solve
frictional contact problems.

The paper is organized as follows: In the Section 2, we introduce some notations concerning the usual Sobolev
spaces and define the space of the displacements as well as the sets describing the constraints of the Lagrange mul-
tipliers. Frictional contact problems in linear elasticity can be modeled by Signorini’s problem with Tresca friction,
which can be seen as a simplification of Coulomb friction. Section 3 presents this model and its mixed variational
formulation. The higher-order finite element discretization based on the mixed formulation is introduced in Section 4.
The main results, the derivation of a posteriori error estimates, is described in Section 5. Numerical results confirming
the applicability of the a posteriori estimates within adaptive schemes are presented in Section 6.

2. Notations

Let Ω ⊂ Rk, k ∈ {2, 3}, be a domain with sufficiently smooth boundary Γ := ∂Ω. Moreover, let ΓD ⊂ Γ be closed
with positive measure and let ΓC ⊂ Γ\ΓD with ΓC ( Γ\ΓD. L2(Ω), Hk(Ω) with k ≥ 1 and H1/2(ΓC) denote the usual
Sobolev spaces and H1

D(Ω) := {v ∈ H1(Ω) | γ(v) = 0 on ΓD} with the trace operator γ. The space H−1/2(ΓC) is the
topological dual space of H1/2(ΓC) with the norms ‖ · ‖−1/2,ΓC and ‖ · ‖1/2,ΓC . Let (·, ·)0,ω, (·, ·)0,Γ′ be the usual L2-scalar
products on ω ⊂ Ω and Γ′ ⊂ Γ. Note, that the linear and bounded mapping γC := γ|ΓC : H1

D(Ω) → H1/2(ΓC) is
surjective and continuous due to the assumptions on ΓC , cf. [1, p.88]. For functions in L2(Ω) or L2(ΓC), the inequality
symbols ≥ and ≤ are defined as “almost everywhere”. For a function v, we define the positive part by (v)+ := max{v, 0}
and the cutoff functions (·)ζ by (v)ζ := v if |v| ≤ ζ and (v)ζ := ζv/|v| otherwise. Here, ζ is a non-negative function and
| · | the euclidian norm. We set H1/2

+ (ΓC) := {v ∈ H1/2(ΓC) | v ≥ 0} and L2
s,s̃(ΓC) := {µ ∈ (L2(ΓC))k−1 | |µ| ≤ ζ(s, s̃)},

where ζ(s, s̃) is defined as s/s̃ on supp s̃ and 0 on ΓC\ supp s̃ for s ∈ L2(ΓC), s ≥ 0 and s̃ ∈ {1, s}. Furthermore, we
define the dual cone H−1/2

+ (ΓC) := (H1/2
+ (ΓC))′ := {µ ∈ H−1/2(ΓC) | ∀w ∈ H1/2

+ (ΓC) : 〈µ,w〉 ≥ 0} and set γN := γ|ΓN

with ΓN ⊂ Γ\(ΓD ∪ ΓC).
For a displacement field v ∈ (H1

D(Ω))k we specify the linearized strain tensor as ε(v) := 1
2 (∇v + (∇v)>) and the

stress tensor as σ(v)i j := Ci jklε(v)kl with Ci jkl ∈ L∞(Ω) and Ci jkl = C jilk = Ckli j as well as Ci jklτi jτkl ≥ κτ2
i j for

τ ∈ L2(Ω)k×k
sym and a κ > 0. Furthermore, n denotes the vector-valued function describing the outer unit normal vector

with respect to ΓC and t the k×(k−1)-matrix-valued function containing the tangential vectors. We defineσn, j := σi jni,
σnn := σi jnin j, and σnt,l := σi jnit jl. Moreover, we set γn(v) := γC(vi)ni, γt(v) j := γC(vi)ti j and γN,i(v) := γ|ΓN (vi).

For the ease of the notation, we set

V := (H1
D(Ω))k, Wn := H−1/2(ΓC), Wt := (L2(ΓC))k−1, Λn := H−1/2

+ (ΓC), Λt := L2
s,s̃(ΓC).

3. Signorini problem with Tresca friction

Frictional contact between a deformable elastic body and a rigid foundation is often modelled by the Signorini
problem with Tresca friction, where a linear elastic material law is used to describe the deformation of an elastic body.
We assume that the body is described by Ω and is clamped at the boundary part ΓD. Furthermore, volume and surface
forces given by the functions f ∈ (L2(Ω))k and fN ∈ (L2(ΓN))k act on the body leading to its deformation.
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To describe the geometrical contact, we assume that ΓC is parameterized by a sufficiently smooth function φ :
Rk−1 → R so that, without loss of generality, the geometrical constraints for a displacement v in the k-th component
is given by φ(x) + vk(x, φ(x)) ≤ ψ(x1 + v1(x, φ(x)), . . . , xk−1 + vk−1(x, φ(x))) with x := (x1, . . . , xk−1) ∈ Rk−1 and a
sufficiently smooth function ψ describing the surface of the rigid foundation. Since this condition is non-linear in
general, one usually applies the linearization γn(v) ≤ g with g := (ψ(x) − φ(x))(1 + (∇φ(x))>∇φ(x))−1/2, cf. [1, Ch.2].

Frictional contact conditions are introduced assuming that sliding does not occur if the magnitude of the tangential
forces is below a critical value described by a function s ∈ L2(ΓC) with s ≥ 0. If the tangential forces reach this critical
value, sliding is obtained in the direction of the tangential forces. Note that such Tresca friction can be extended to
Coulomb friction setting s to the magnitude of the normal forces times a friction coefficient and integrating the problem
into a fixed point scheme. With the linearized geometrical as well as the frictional contact conditions, the Signorini
problem with Tresca friction is to find a displacement u such that

− divσ(u) = f in Ω, σn(u) = fN on ΓN ,

un − g ≤ 0, σnn(u) ≤ 0, σnn(u)(un − g) = 0 on ΓC ,

|σnt(u)| ≤ s with
{
|σnt(u)| < s ⇒ ut = 0,
|σnt(u)| = s ⇒ ∃ξ ≥ 0 : ut = −ξσnt(u)

}
on ΓC .

Here, un := uini and ut, j := uiti j on ΓC . The function u is a solution if and only if u ∈ K := {v ∈ V | g − γn(v) ≥ 0} and
the variational inequality

(σ(u), ε(v − u))0 + (s, |γt(v)| − |γt(u)|)0,ΓC ≥ ( f , v − u)0 + ( fN , γN(v − u))0,ΓN (1)

is fulfilled for all v ∈ K, cf. [16, Sec. 5.4.5]. The inequality above is fulfilled if and only if u is a minimizer of the
functional J(v) := 1

2 (σ(v), ε(v))0 − ( f , v)0 − ( fN , γN(v))0,ΓN + (s, |γt(v)|)0,ΓC in K. The functional J is strictly convex,
continuous and coercive due to Cauchy’s and Korn’s inequalities. This implies the existence of a unique minimizer u.
Given the Lagrange functional L(v, µn, µt) := J(v) + 〈µn, γn(v)− g〉+ (µt, s̃γt(v))0,ΓC on V ×Λn ×Λt, the Hahn-Banach
theorem and the fact that (s, |γt(v)|)0,ΓC = supµt∈Λt

(µt, s̃γt(v))0,ΓC yield

J(u) = inf
v∈V

sup
(µn,µt)∈Λn×Λt

L(v, µn, µt).

Thus, u is a minimizer of J, whenever (u, λn, λt) ∈ V ×Λn×Λt is a saddle point of L. The existence of a unique saddle
point is guaranteed, since Λt is bounded and the inf-sup condition α‖µn‖−1/2,ΓC ≤ supv∈V, ‖v‖1=1〈µn, γn(v)〉 holds for a
constant α > 0 and all µn ∈ Wn, cf. [1, 14]. In fact, it follows from the closed range theorem and the surjectivity of γn

that the inf-sup condition is valid. Due to the stationary conditions, (u, λn, λt) ∈ V × Λn × Λt is a saddle point of L, if
and only if it fulfills the mixed variational formulation

(σ(u), ε(v))0 = ( f , v)0 + ( fN , γN(v))0,ΓN − 〈λ0, γn(v)〉 − (λt, s̃γt(v))0,ΓC ,

〈µn − λn, γn(u) − g〉 + (µt − λt, s̃γt(u))0,ΓC ≤ 0
(2)

for all (v, µn, µt) ∈ V × Λn × Λt.

Remark 3.1. The main advantage of the mixed approach is that the displacement and contact forces are given simul-
taneously. Under certain regularity assumptions, there holds λn = −σnn(u) and s̃λt = −σnt(u) so that the Lagrange
multipliers can be interpreted as contact forces, cf. [9].

Remark 3.2. The choice of s̃ ∈ {1, s} indicates two equivalent mixed formulations. In the case s̃ = s, the frictional
function s is weakly included in the mixed formulation (2) and the set Λt is defined via constant box constraints. In
the case s̃ = 1, the pointwise box constraints are defined by the possibly non-constant function s which, then again,
does not enter the weak formulation.

4. Higher-order finite element discretization

A higher-order finite element discretization based on quadrangles or hexahedrons is given as follows: Let T be a
finite element mesh of Ω with mesh size h and let E be a finite element mesh of ΓC with mesh size H. Furthermore,
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let ΨT : [−1, 1]k → T ∈ T and ΦT : [−1, 1]k−1 → T ∈ T be bijective and sufficiently smooth transformations and let
pT , qE ∈ N be degree distributions on T and E, respectively. Using the polynomial (Serendipity) tensor product space
Qk,p of order p on the reference element [−1, 1]k, we define

Vhp :=
{
v ∈ V | ∀T ∈ T : v|T ◦ ΨT ∈ (Qk,pT )k

}
,

MHq :=
{
µ ∈ L2(ΓC) | ∀E ∈ E : µ|E ◦ ΦE ∈ Qk−1,qE

}
.

To identify adequate substitutions of Λn and Λt, we have to take into account that polynomials can not be easily
ensured to be positive or bounded. Therefore, we enforce these properties in a finite set of discrete points only. For
this purpose, letM ⊂ [−1, 1] be a finite set of points and

Λn,Hq := {µn,Hq ∈ MHq | ∀E ∈ E : ∀x ∈ Mk−1 : µn,Hq(ΦE(x)) ≥ 0},

Λt,Hq := {µt,Hq ∈ (MHq)k−1 | ∀E ∈ E,∀x ∈ Mk−1 : |µt,Hq(ΦE(x))| ≤ (ζ(s, s̃))(ΦE(x))}.

Note that the definition of Λn,Hq and Λt,Hq using discrete points leads to the non-conformity Λn,Hq 1 Λn and Λt,Hq 1 Λt.
A discrete mixed formulation is to find (uhp, λn,Hq, λt,Hq) ∈ Vhp × Λn,Hq × Λt,Hq such that

(σ(uhp), ε(vhp))0 = ( f , vhp)0 + ( fN , γN(vhp))0,ΓN − (λn,Hq, γn(vhp))0,ΓC − (µt,Hq, s̃γt(vhp))0,ΓC ,

(µn,Hq − λn,Hq, γn(uhp) − g)0,ΓC + (µt,Hq − λt,Hq, s̃γt(uhp))0,ΓC ≤ 0
(3)

for all (vhp, µn,Hq, µt,Hq) ∈ Vhp ×Λn,Hq ×Λt,Hq. In order to ensure the stability of the discretization scheme, we have to
verify the discrete inf-sup condition

β(‖µn,Hq‖−1/2,ΓC + ‖µt,Hq‖−1/2,ΓC ) ≤ sup
vhp∈Vhp,‖vhp‖1=1

(µn,Hq, γn(vhp))0,ΓC + (µt,Hq, s̃γt(vhp))0,ΓC (4)

for all (µn,Hq, µt,Hq) ∈ MHq × (MHq)k−1 and a constant β > 0 independent of the mesh sizes h and H as well as the
polynomial degree distributions p and q.

Remark 4.1. The use of different mesh sizes and polynomial degrees with sufficiently small quotients h/H and q/p
is the key to guarantee the discrete inf-sup condition (4). In our implementation, we usually ensure h/H ≤ 0.5 and
q = p− 1, using hierarchical meshes with E being sufficiently coarser than T . We refer to [17, 14], where this subject
is explicitly outlined.

5. A posteriori error control

The basic idea for the estimation of ‖u − uhp‖1 is to consider the residual Res ∈ V ′ defined by

〈Res, v〉 := ( f , v)0 + ( fN , γN(v))0,ΓN − (λn,Hq, γn(v))0,ΓC − (λt,Hq, γt(v))0,ΓC − (σ(w), ε(v))0.

We will show that an upper bound of ‖u−uhp‖1 is given by the norm of the residual ‖Res ‖V ′ plus some remainder terms.
It is easy to see that ‖Res ‖V ′ can be estimated by an arbitrary error estimation known from variational equations.
Indeed, using Korn’s inequality κ‖v‖21 ≤ (σ(v), ε(v))0 and the continuity statement (σ(v), ε(w))0 ≤ c‖v‖1‖w‖1 for some
positive constants κ and c and all v,w ∈ V , we easily find that

κ‖u∗ − uhp‖1 ≤ ‖Res ‖V ′ ≤ c‖u∗ − uhp‖1.

Here, u∗ ∈ V fulfills the variational equation

(σ(u∗), ε(v))0 = ( f , v)0 + ( fN , γN(v))0,ΓN − 〈λn,Hq, γn(v)〉 − (λt,Hq, γt(v))0,ΓC

for all v ∈ V . The unique existence of u∗ is guaranteed by the Lax-Milgram lemma. Hence, estimating ‖Res ‖V ′
implies the estimation of ‖u∗ − uhp‖1 and vice versa.
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In the following, we assume s ∈ L∞(ΓC) and make use of the basic estimations

ab ≤
1
4ε

a2 + εb2, (5)

(a + b)2 ≤ 2a2 + 2b2 (6)

for a, b ∈ R and ε > 0. Furthermore, we use the continuity of γn and γt, i.e. ‖γt(v)‖1/2,ΓC ≤ ct‖v‖1 and ‖γn(v)‖1/2,ΓC ≤

cn‖v‖1 for some positive constants cn and ct and all v ∈ V .

Lemma 5.1. There exists positive constants C0 and C1 such that

‖u − uhp‖
2
1 ≤ C0(‖Res ‖2V ′ + ‖λn,Hq − µn‖

2
−1/2,ΓC

+ ‖λt,Hq − µt‖
2
0,ΓC

)

+ C1(〈λn − µn, γn(uhp) − g〉 + (λt − µt, s̃γt(uhp))0,ΓC )

for an arbitrary (µn, µt) ∈ Λn × Λt.

Proof. There holds

κ‖u − uhp‖
2
1 ≤ (σ(u − uhp), ε(u − uhp))0

= (σ(u), ε(u − uhp))0 − ( f , u − uhp)0 − ( fN , u − uhp)0,ΓN

+ (λn,Hq, γn(u − uhp))0,ΓC + (λt,Hq, s̃γt(u − uhp))0,ΓC + 〈Res, u − uhp〉

= 〈λn,Hq − λn, γn(u − uhp)〉 + (λt,Hq − λt, s̃γt(u − uhp))0,ΓC + 〈Res, u − uhp〉

= 〈λn,Hq − µn, γn(u − uhp)〉 + (λt,Hq − µt, s̃γt(u − uhp))0,ΓC + 〈µn − λn, γn(u) − g〉 + (µt − λt, s̃γt(u))0,ΓC

+ 〈λn − µn, γn(uhp) − g〉 + (λt − µt, s̃γt(uhp))0,ΓC + 〈Res, u − uhp〉

≤ max{1, cn, ct‖s̃‖∞,ΓC }(‖Res ‖V ′ + ‖λn,Hq − µn‖−1/2,ΓC + ‖λt,Hq − µt‖0,ΓC )‖u − uhp‖1

+ 〈λn − µn, γn(uhp) − g〉 + (λt − µt, s̃γt(uhp))0,ΓC

≤
max{1, cn, ct‖s̃‖∞,ΓC }

2

4ε
(‖Res ‖2(H1

D(Ω))′ + ‖λn,Hq − µn‖
2
−1/2,ΓC

+ ‖λt,Hq − µt‖
2
0,ΓC

) + 3ε‖u − uhp‖
2
1

+ 〈λn − µn, γn(uhp) − g〉 + (λt − µt, s̃γt(uhp))0,ΓC

where we use (5) in the last inequality. Subtraction of 3ε‖u − uhp‖
2
1 and division by κ − 3ε yield the assertion with

0 < ε < κ/3, C0 := max{1, cn, ct‖s̃‖∞,ΓC }
2(4ε(κ − 3ε))−1 and C1 := (κ − 3ε)−1.

In order to obtain an a posteriori error estimation, we have to estimate the term 〈λn − µn, γn(uhp) − g〉 + (λt −

µt, s̃γt(uhp))0,ΓC . This is done in the proof of the following theorem.

Theorem 5.2. Let

η(µn, µt, z) := ‖Res ‖2V ′ + ‖λn,Hq − µn‖
2
−1/2,ΓC

+ ‖λt,Hq − µt‖
2
0,ΓC

+ ‖z‖21/2,ΓC

+ |(λn,Hq, z)0,ΓC | + |〈µn, g − γn(uhp)〉| + (s, |γt(uhp)|)0,ΓC − (µt, s̃γt(uhp))0,ΓC

for an arbitrary (µn, µt) ∈ Λn × Λt and z ∈ Z := {z ∈ H1/2(ΓC) | g − γn(uhp) + z ∈ H1/2
+ (ΓC)}. Then, there exists a

constant C > 0 such that
‖u − uhp‖

2
1 ≤ Cη(µn, µt, z).

Proof. There exists z̃ ∈ V ∩ ker γt with γn(z̃) = z and ‖z̃‖1 ≤ c̃‖z‖1/2,ΓC , cf. [18, Thm. 6.2.40]. Employing (5), we
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obtain from

〈λn − µn, γn(uhp) − g〉 + (λt − µt, s̃γt(uhp))0,ΓC

= −〈λn, g − γn(uhp) + z〉 + 〈λn, z〉 + 〈µn, g − γn(uhp)〉 + (λt, s̃γt(uhp))0,ΓC − (µt, s̃γt(uhp))0,ΓC

≤ 〈λn, γn(z̃)〉 + 〈µn, g − γn(uhp)〉 + (s, |γt(uhp)|)0,ΓC − (µt, s̃γt(uhp))0,ΓC

= ( f , z̃)0 + ( fN , z̃)0,ΓN − (σ(u), ε(z̃))0 + 〈µn, g − γn(uhp)〉 + (s, |γt(uhp)|)0,ΓC − (µt, s̃γt(uhp))0,ΓC

= (σ(uhp − u), ε(z̃))0 + (λn,Hq, γn(z̃))0,ΓC + 〈Res, z̃〉 + 〈µn, g − γn(uhp)〉 + (s, |γt(uhp)|)0,ΓC − (µt, s̃γt(uhp))0,ΓC

≤ c‖u − uhp‖1‖z̃‖1 + (λn,Hq, z)0,ΓC + ‖Res ‖V ′‖z̃‖1 + 〈µn, g − γn(uhp)〉 + (s, |γt(uhp)|)0,ΓC − (µt, s̃γt(uhp))0,ΓC

≤ ε‖u − uhp‖
2
1 + c̃

c2 + 2ε
4ε

‖z‖21/2,ΓC
+ |(λn,Hq, z)0,ΓC | +

1
2
‖Res ‖2V ′ + |〈µn, g − γn(uhp)〉|

+ (s, |γt(uhp|)0,ΓC − (µt, s̃γt(uhp))0,ΓC

with 0 < ε < 1/C1. From Theorem 5.1, we obtain that

‖u − uhp‖
2
1 ≤ C1ε‖u − uhp‖

2
1 + max{C0,C1}max{c̃(c2 + 2ε)(4ε)−1, 3/2, 1}η(µn, µt, z).

Subtraction of C1ε‖u − uhp‖
2
1 and division by 1 −C1ε complete the proof.

In order to derive an a posteriori error estimation using Theorem 5.2, we have to specify suitable z ∈ Z, µn ∈ Λn

and µt ∈ Λt. In principle, we are free to choose each of them arbitrarily. However, it seems to be natural to employ
functions which are close to g − γn(uhp), λn,Hq and λt,Hq. A practical choice is obviously given via the positive part
(·)+ and the cutoff function (·)ζ . Therewith, we obtain the following result.

Corollary 5.3. There holds

‖u − uhp‖
2
1 ≤ Cη((λn,Hq)+, (λt,Hq)ζ(s,s̃), (γn(uhp) − g)+). (7)

Proof. Since g − γn(uhp) + (γn(uhp) − g)+ ≥ 0, we have (γn(uhp) − g)+ ∈ Z. Furthermore, there holds (λn,Hq)+ ∈ Λn

and (λt,Hq)ζ(s,s̃) ∈ Λt.

The error contributions resulting from the insertion of (λn,Hq)+, (λt,Hq)ζ(s,s̃) and (γn(uhp)− g)+ in η are interpretable
as typical sources of discretization errors. The contributions ‖λn,Hq−(λn,Hq)+‖−1/2,ΓC and ‖λt,Hq−(λt,Hq)ζ(s,s̃)‖0,ΓC can be
interpreted as measures for the non-conformity Λn,Hq 1 Λn and Λt,Hq 1 Λt, respectively. The contribution ‖(γn(uhp)−
g)+‖1/2,ΓC measures the error with respect to the geometrical constraint γn(u) ≤ g, whereas |(λn,Hq, (γn(uhp) − g)+)0,ΓC |

and |((λn,Hq)+, γn(uhp)−g)0,ΓC | describe the error with respect to the complementary condition (−σnn(u), g−γn(u))0,ΓC =

(λn, g − γn(u))0,ΓC = 0. Finally, (s, |γt(uhp)|)0,ΓC − ((λt,Hq)ζ(s,s̃), s̃γt(uhp))0,ΓC represents the violation of the frictional
condition (s, |γt(u)|)0,ΓC = (λt, s̃γt(u))0,ΓC .

Remark 5.4. If g ∈ H1(ΓC), we have (γn(uhp) − g)+ ∈ H1(ΓC), cf. [2, Ch. I, Cor 2.1]. In this case, the term
‖(γn(uhp)− g)+‖1/2,ΓC ,n can be further estimated by ‖(γn(uhp)− g)+‖0,ΓC ‖(γn(uhp)− g)+‖1,ΓC up to a positive constant, cf
[19, Ch. I.3.3]. In practice, ‖λn,Hq − (λn,Hq)+‖−1/2,ΓC can simply be estimated by ‖λn,Hq − (λn,Hq)+‖0,ΓC .

To include the error of the Lagrange multipliers into the error estimation, we assume the inf-sup condition

κ̂(‖µn‖−1/2,ΓC + ‖µt‖−1/2,ΓC ) ≤ sup
v∈V,‖v‖1=1

〈µn, γn(v)〉 + (µt, s̃γt(v))0,ΓC (8)

for a constant κ̂ > 0 and all (µn, µt) ∈ Wn ×Wt. In the case s̃ = 1, the inf-sup condition (8) directly results from the
surjectivity of γn and γt.

Theorem 5.5. Let the inf-sup condition (8) be fulfilled. Then, there exists a constant Ĉ > 0 such that

‖u − uhp‖
2
1 + ‖λn − λn,Hq‖

2
−1/2,ΓC

+ ‖λt − λt,Hq‖
2
−1/2,ΓC

≤ Ĉη(µn, µt, z)

for an arbitrary (µn, µt) ∈ Λn × Λt and z ∈ Z. In particular, there holds

‖u − uhp‖
2
1 + ‖λn − λn,Hq‖

2
−1/2,ΓC

+ ‖λt − λt,Hq‖
2
−1/2,ΓC

≤ Ĉη((λn,Hq)+, (λt,Hq)ζ(s,s̃), (γn(uhp) − g)+).
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Proof. We find

κ̂(‖λn − λn,Hq‖−1/2,ΓC + ‖λt − λt,Hq‖−1/2,ΓC )
≤ sup

v∈V,‖v‖1=1
〈λn − λn,Hq, γn(v)〉 + (λt − λt,Hq, s̃γt(v))0,ΓC

= sup
v∈V, ‖v‖V =1

( f , v)0 + ( fN , v)0,ΓN − (σ(u), ε(v))0 − 〈λn,Hq, γn(v)〉 − (λt,Hq, s̃γt(v))0,ΓC

= sup
v∈V, ‖v‖V =1

〈Res, v〉 + (σ(uhp − u), ε(v)) ≤ ‖Res ‖V ′ + c‖u − uhp‖1.

Thus, we obtain from (6) and Theorem 5.1 that

‖u − uhp‖
2
1 + ‖λn − λn,Hq‖

2
−1/2,ΓC

+ ‖λt − λt,Hq‖
2
−1/2,ΓC

≤ (1 +
2c2

κ̂2 )‖u − uhp‖
2
1 +

2
κ̂2 ‖Res ‖2V ′

≤ max{C +
2Cc2

κ̂2 ,
2
κ̂2 }η(uhp, λn,Hq, λt,Hq, µn, µt, z).

The second assertion follows by the same arguments as in Theorem 5.3.

no name

(a)

no name

(b)
no name

(c)

no name

(d)

Figure 1: (a) Von Mises equivalent stress, (b) adaptive mesh for p = 3, (c) adaptive mesh for p = 4, (d) zoom to the
contact zone (p = 4).
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Figure 2: Displacement and Lagrange multipliers on ΓC .
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Figure 3: Estimated error and error contributions.

6. Numerical results

In this section, we study Signorini’s problem with Tresca friction where Ω := (−1, 1)2, ΓC := (−1, 1) × {−1},
ΓD := [−1, 1] × {1}, ΓN := {−1} × (−1, 1), f := 0, fN := −2 and s(x) = 1.5(exp(x + 1) − 1). The surface of
the rigid foundation is described by ψ(x) = (1 − x2)1/2 − 1.85. We use Hooke’s law for plane stress with Young’s
modulus E := 70kN/mm2 and Poisson number ν := 0.33. In Figure 1(a), the displacement and the von Mises stress
σv := (σ11 +σ22 −σ11σ22 + 3σ2

12)1/2 are visualized for the resulting frictional contact problem. We see that the body
gets in contact with the rigid foundation and is deformed in accordance with the surface of the foundation given by ψ.
The surface load on ΓN results in a gliding area on the left of ΓC and an area of sticking on the right. In Figure 2, the
discrete displacement uhp as well as the Lagrange multipliers λn,Hq and λt,Hq are depicted. The discretization is given
by p = 2, q = 1, h = 7.8125 · 10−3, H = 2h on a uniform mesh. Here and in the following, M is the set of q + 1
Chebyshev points and we choose s̃ = s, see Remark 3.2. We observe in Figure 2 that the discrete displacement and
the Lagrange multipliers reflect the geometrical contact conditions un − g ≤ 0, λn ≥ 0 and λn(un − g) = 0 as well as
the frictional constraints |λt | = |σnt(u)| ≤ 1, |λt | < 1 ⇒ ut = 0 and |λt | = 1 ⇒ ut = ξsλt with ξ ≥ 0.

In the experiments, we study the applicability of the a posteriori error estimates as stated in the Theorems 5.3 and
5.5 within an h-adaptive scheme. To get a reliable error estimation, we have to estimate the dual norm of the residual
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‖Res ‖V ′ and to compute the following error contributions,

η1 := |(λn,Hq, (γn(uhp) − g)+)0,ΓC |, η2 := |((λn,Hq)+, g − γn(uhp))0,ΓC |,

η3 := ‖(γn(uhp) − g)+‖0,ΓC ‖(γn(uhp) − g)+‖1,ΓC , η4 := ‖λn,Hq − (λn,Hq)+)‖20,ΓC
,

η5 := (s, |γt(uhp)|)0,ΓC − ((λt,Hq)ζ(s,s̃), s̃γt(uhp))0,ΓC , η6 := ‖λt,Hq − (λt,Hq)ζ(s,s̃)‖
2
0,ΓC

.

To estimate ‖Res ‖V ′ we use a standard residual error estimator ηRes, which is defined by ηRes :=
∑

T∈T (h2
T R2

T +∑
e∈ET

hER2
E) for

RT := ‖ f + divσ(uhp)‖0,T , T ∈ T ,

RE :=


1
2 ‖[σn(uhp)]‖0,E , e ∈ E◦,
‖σn(uhp) − fN‖0,E , E ∈ EN ,

‖σnn(uhp) + λn,Hq‖0,E + ‖σnt(uhp) + s̃λt,Hq‖0,E , E ∈ EC ,

where ET is the set of edges of T ∈ Th, E◦ contains the internal edges, EN and EC contain the edges on ΓN and ΓC . As
usual, [·]E denotes the jump across an edge E ∈ E◦, whereas hT and hE denote the diameter of T and E, respectively.
The overall error estimation is then given by

η := ηRes +

6∑
i=1

ηi.

We localize the error contributions η1, . . . , η6 by adding the local edge contributions to the element contributions which
are associated to the adjacent mesh elements. Unfortunately, this localization is not possible for the contribution
η3. Since η3 seems to be of higher-order (see below), we omit this contribution for the adaptive mesh refinement.
Furthermore, we use a simple fixed fraction strategy where a fixed fraction (here 10%) of the mesh T is refined which
is associated to the largest error contributions. Adaptive meshes are shown in Figure 1(b) and (c) for the polynomial
degrees p = 3 and p = 4. In addition to the local refinements at both ends of the Dirichlet boundary, we find
particularly strong local refinements at those points where the geometrical condition switches from contact to non-
contact and the frictional condition from gliding to sticking, cf. Figure 1(d). These local refinements directly result
from the regularity property of the Lagrange multipliers. Due to the switching from contact to non-contact and from
gliding to sticking the Lagrange multipliers may still be continuous, but they are generally not of higher regularity.
This also influences the local regularity of the displacement solution and, therefore, limits the use of non-adaptive
higher-order finite element methods.

Thanks to the local refinements of the adaptive scheme, we are able to significantly improve the convergence
of the proposed higher-order discretization and recover nearly optimal algebraic rates. This can be seen in Figure
3(left), where the estimated errors resulting from adaptive as well as uniform mesh refinements are compared for the
polynomial degrees p = 1, 2, 3, 4.

Finally, we consider the non-conformity of the higher-order discretization. For this purpose, we study the error
contributions ηRes and η1, . . . , η6. Figure 3(right) shows the contributions for the adaptive mesh for p = 4. Except
for the error contribution η3, all contributions are nearly of the same order. However, the contributions η1, η2, η5, η6
are essentially smaller than ηRes and η4 so that they do not significantly affect the overall estimation. In contrast, the
contribution η4 has an essential effect on the estimation. The error contribution η3 seems to be of higher-order so that
it may be omitted at least in the mesh adaptation.
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