Stabilised FEM for
Degenerate Convex Minimisation Problems
under Weak Regularity Assumptions

Wolfgang Boiger * Carsten Carstensen *

The discretisation of degenerate convex minimisation problems experiences nu-
merical difficulties with a singular or nearly singular Hessian matrix. Some discrete
analog of the surface energy in microstrucures is added to the energy functional to
define a stabilisation technique. This paper proves (a) strong convergence of the
stress even without any smoothness assumption for a class of stabilised degenerate
convex minimisation problems. Given the limitted a priori error control in those
cases, the sharp a posteriori error control is of even higher relevance. This paper
derives (b) guaranteed a posteriori error control via some equilibration technique
which does not rely on the strict Galerkin orthogonality of the unperturbed problem.
In the presence of L? control in the original minimisation problem, some realistic
model scenario with piecewise smooth exact solution allows for strong convergence
of the gradients plus refined a posteriori error estimates. This paper presents (c) an
improved a posteriori error control in this interface problem and so narrows the ef-
ficiency reliability gap. Numerical experiments illustrate the theoretical convergence
rates for uniform and adaptive mesh-refinements and the improved a posteriori error
control for four benchmark examples in the computational microstructures.

1 Introduction

Infimising sequences of variational problems with non-quasiconvex energy densities, in general,
develop finer and finer oscillations with no classical limit in Sobolev function spaces called
microstructure [12, 23, 17, 20, 30, 3]. Those oscillations cause difficulty to numerical methods
because fine grids are necessary to resolve such oscillations which results in ineffective and
tricky mesh-depending computations. Strong convergence of gradients of infimising sequences
of the non-quasiconvex problem is impossible.

Relaxation techniques replace the nonconvex energy density by its (semi-)convex hull and
lead to a macroscopic model. Since the convexified energy density obtained by this method, in
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general, lacks strict convexity, numerical algorithms might encounter situations where the Hes-
sian matrix is singular. For instance, the Newton minimisation algorithm fails on the convexi-
fied three-well problem of Subsection 6.4 below. Applications of relaxation techniques include
models in computational microstructure [3, 30, 18], some optimal design problems [5, 26], the
nonlinear Laplacian [15], and elastoplasticity [12].

Stabilisation techniques regularise the energy term by an additional positive semidefinite sta-
bilisation function. The paper [7] discusses several choices of such stabilisation functions for P;
conforming finite elements and quasiuniform meshes. It turns out that stabilisation can ensure
strong convergence of the strain approximations under particular circumstances. An particular
stabilisation in [g] leads to strong convergence even on unstructured grids but is still restricted
to unrealistically smooth solutions. This paper studies the stabilisation technique of [9] and ad-
dresses the question of convergence (i) without extra regularity assumptions and (ii) in a realistic
scenario called model interface problem.

Throughout this introduction, the convex energy functional assumes the form

E(v) := J W(Do(x)) dx + lower-order terms in v € H} ().
o)

Assume that W is convex with quadratic growth so that there exist minimisers u € H}(Q2); below
p-th order growth is included while p = 2 throughout this simplifying introduction. Given a
sequence of shape-regular triangulations (7;)sen, [22], let #, minimise the stabilised discrete
energy

1 . _ 2
Ey(vg) := E(vy) + Elllvelllﬁ with [[og]|7 := HF D g [[[Dodgllizp
FeF,(Q)

amongst all conforming P; finite element functions v, on 7;, where [Dv|; is the jump of the
gradient Dv, along the interior side F, written F € F;((2), and H, := maxr ht is the maximal
diameter it of all simplices T € 7.

Section 3 verifies, for some problem-dependent B > 0, the strong convergence of the discrete
solution u, and its stress 0, := D W(Duy) to their respective continuous conterparts,

2 2
o= oelli2y + Bl — uel[ T2y + lucll7 — 0 as € — co.

Section 4 presents an a posteriori error bound. For the L? projection I, onto the space of
piecewise Py functions, any Raviart-Thomas function 1, € RTo(7;) satisfies

2 .
o= oelli2y < (HW = Tll 2y + M ef + div |12y + OSCé,z(f)) [l = el ey -

This error bound holds for any discrete displacement u, that satisfies the boundary conditions;
the point is that inexact solve is included — there is no Galerkin orthogonality required. The
drawback is to minimise the expression on the right-hand side with respect to 7, in order to
obtain a sharp error bound. This is a selection: degenerate convex minimisation problems do
not allow for a control of |[u — u¢| ;1) and may even face multiple exact or discrete solutions
while the discrete minimum of E; is unique. However, in some results of this paper, either W or
the lower-order terms lead to some control over |u — u¢[| 2 and the selection via stabilisation
is correct.

Phase transition problems motivate the investigation of scenarios with a smooth solution u
up to a one-dimensional interface I' = (2 [14]. Section 5 proves that such problems allow even
for strong convergence of the gradients for any unique solution u in W' (Q) n H2(Q\T') [21].



W. BOIGER, C. CARSTENSEN: Stabilised FEM with Weak Regularity 3

This result also leads to an improvement of the a posteriori error control of the discrete stresses
and narrows the efficiency-reliability gap; the efficiency-reliability gap is the difference of the
convergence rates of the guaranteed upper a posteriori error bound and the guaranteed lower
a posteriori error bound.

Section 6 complements the theoretical findings with numerical experiments to provide em-
pirical evidence of the improved error control. The stabilisation technique competes in four
benchmark examples, with and without known exact solution, for uniform and two different
mesh-refining algorithms for the explicit residual-based error estimator of [18] and with an
averaging-type error estimator of [14, (1.11)]. The optimistic statement that the adaptive con-
vergence rates are always superior to uniform discretisations appears to be incorrect in compu-
tational microstructures and future research on adaptive stabilised computation of degenerate
minimisation algorithms far beyond [12] appears necessary.

Standard notation on Lebesgue and Sobolev spaces is employed throughout this paper and a <
b abbreviates a < Cb with some generic constant 0 < C < o independent of crucial parameters
(like the mesh-size on level £); a ~ b means a < b < a.

2 Model Problem, Discretisation and Stabilisation

Based on the convergence results for unstructured grids, this paper will develop reliable error
estimators for a class of stabilised convex minimisation problems described in the sequel. Let
() < R" be a bounded Lipshitz domain with polygonal boundary for n = 2 or 3. Given a
continuous convex energy density W : R"*" - R, ¢, f € L2(;R™), B=0,andve WLP((; R™)
with2 <p <owand m =1,...,n, the energy reads

E@):= | (WDox) + B ox) = g(x)* = £(9) - 0(x)) i (2.1

Throughout this paper, the energy density W € C1(R™*"; R) satisfies (2.2)-(2.3) for parameters
1<r<2,0<s<owands+r+p <rp. The two-sided growth condition reads

|F|P =1 < W(F) < |FIP +1 forall Fe R™". (2.2)
The convexity control assumption reads, for all F;, F, € R™*",
IDW(F)-DW(R)|" < (1+|A[ +|E[") (DW(F) -DW(R)) : (F - B). (2.3)
Given Dirichlet data up € W7 (;R™) n H>(0Q2;R™) for the set of admissible functions A :=
up +V :=up+ Wg’p(Q; R™), the continuous (convex) model problem reads
minimise E(v) withinv e A. (2.4)

A finite element approximation of (2.4) is based on a family of regular triangulations (7;) e,
of the domain (2 into simplices in the sense of Ciarlet [22] (e.g., for n = 2, two non-disjoint
triangles of 7, share either a common edge or a common node). The set of sides F; consists of
edges (for n = 2) or faces (for n = 3) of 7; and is split into the union of the sets of all interiour
sides F;((2) and of all boundary sides F;(002).

For latter reference, define the diameter /i1 := diam T of a triangle (or tetrahedron) T € 7, and
the size hr := diam F of a side F € F,. The mesh size function h; : (2 — R~ is given by

hy(x) = hr forxeintT e 7,
A7\ min {hr : Fe Fyand x € F} otherwise.
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The global mesh size will be abbreviated by Hy := ||h¢[| (). We presume the family (7¢)en,
to be shape-reqular so that hr ~ hr forall Te Ty, Fe Fyand Fc T.
The space of 7T,-piecewise polynomials of degree < k € Ny is P,(7;). The nodal interpolation

Liw € Pi(Ty) nC(Q) of w e C(Q) is given by [;v(z) = v(z) for all nodes z. Let furthermore
IT;w be the L? projection of w € L?(Q) onto Py(7;), and oscyq(w) := [|hy(1 — Ip)w| gy be the
oscillation of w € L(02) for 2 < q < oo with respect to the triangulation 7. Let up ¢ = I,up, and

-AE = Upg+ Vg with Vg =Vn P1(72,Rm)

Given a function v on 2 which is possibly discontinuous along some side F € F;((2) shared by
the two elements T+ such that there exist traces from either sides, the jump of v along F reads

[v] (x) = [v]p(x) := lim o(y)— lim o(y) forx e F.

Ti3y—x T _sy—x
The stabilisation of [g] will be used throughout this paper with —1 < ¢y < o0 and
H,*

ap(v, w) = Z ;l f [Do] : [Dw]p ds and [[o]|7 := a,(v,v). (2.5)
Fer () ' F JF

The stabilised discrete problem reads
1
minimise E,(v) := E(v) + Eag(v, v) amongst v € A,. (2.6)

Convergence of gradients with a guaranteed convergence rate is shown in [9] under unrealist-
ically high regularity assumptions. A comprehensive collection of the results in [9] is summar-
ised in the following theorem.

Theorem 2.1 ([9]). Let u € A~ HY?*¢(Q;R™) be some solution of (2.4) for some ¢ > 0; let p’ and v’
be the Holder conjugate of p and r, —1 < v < 3, and set

C:=min{l+y,r'} for >0 and {:=min{l+7, 2} for p=0.

Then the discrete solution u, of (2.6) and the continuous and discrete stress 0 := D W (Du) and oy :=
D W(Duy) satisfy

2 1 2 2
o= 0ull + 11t = el 2y + NatellF + HE 2 1D = 0) |72y < HE-

Proof. This combines Lemma 3.5 and 4.1—4.2 plus Theorem 3.8 and 4.4 in [9]. O

3 Global Convergence

This section is devoted to the proof of a general convergence result without higher regularity
assumptions. Let u € A and uy € A, solve the minimisation problem (2.4) and (2.6) and set ¢ :=
DW(Du) and oy := D W(Duy). For the unstabilised approximation, the a priori error estimates
of [18] plus a density argument prove convergence of

2
|o— UéHer'(Q) + B [lu— WHLZ(Q) — 0 as Hy — 0.

The point in the following result is that the stabilised approximation converges as well as ||u||
— 0 even for non-smooth or non-unique minimisers.
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Theorem 3.1 (Global Convergence). Provided u € A, limy_,,, Hy = 0 and B > 0, it holds
2
1 = el ey + B 1t = el 2oy + eI} — 0 as € — co.

Note that this theorem permits f = 0 and then it does not guarantee the convergence of
|l — ugH%z(Q). Under special circumstances, uniqueness of u and the convergence ||u — 11| 2
— 0 can be shown, e.g., in Example 3.3. The point is that even nonunique minimisers are
included, the thorem holds for any of those, but then implies uniqueness.
The proof of Theorem 3.1 is based on the following lemma.

Lemma 3.2. The errors 6y := 0 — oy and ey := u — uy satisfy, for all vy € Vy, that

2 ! 2
186l oy + Blleel 2y < lee = velwinay + B llee — vellia(qy + ae(ug, ve).

Proof. The minimisation problems (2.4) and (2.6) are equivalent to their respective Euler-Lagran-
ge equations, namely for v € V and v, € V,

L (o(x) : Do(x) + 2B(u(x) = g(x)) - v(x) = f(x) - v(x)) dx = 0; (3.1)

JQ (o¢(x) : Dog(x) + 2B(up(x) — g(x)) - vp(x) — f(x) - ve(x)) dx + ap(ug, vs) = 0. (3.2)

Algebraic transformations of the difference of these two equations lead to

JQ 07 : Deydx +2p ||€[H%Z(Q) = JQ (60 : D(eyp —vy) +2Bey - (eg — vg)) dx + ap(uy, vy).

It is shown in [9, Lemma 3.5] that

||(55|\er/((2) < L) 5; : Deydx. (3-3)

Two Holder inequalities on the right-hand side and absorbtions of ||J;||, () and leellr2¢r) even-
tually conclude the proof. Further details are dropped for brevity. O

Proof of Theorem 3.1. Given any positive ¢, the density of smooth functions in W&’p (€2;R™) leads
to some v, € D(Q;R™) such that ||u —up — Ug||W1,,,(Q) < e. Hence vy := Iy(ve +up) —ug € Vy
satisfies

er—vp = (u—up—ve) + (1 —Ip)(ve +up).

Note that the nodal interpolation I;(v; + up) is well-defined since v, and up are assumed to be
smooth. With [9, Lemma 3.1-3.2] it follows that

1e(ve +up)|I2 = (1~ L) (@ + up)|I} < H™" — 0 as £ — co.

Since ||[|;2(2y < [I*lw1e(), this yields some £o € N such that

lee — 0l + Bller = vell Tz + 1 Te(oe +up)||F < € forall £ > &

A Cauchy inequality applied to the stabilisation norm proves

1 1
ar(ue,0p) = =|[uellF + ar(ug, Io(ve + up)) < =3 [uellz + 5 1e(e + up) 7.
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Substitute ay(uy,vy) in Lemma 3.2 and add %|||u(m% on both sides. This leads to
2
10615y + B el oy + lleel2 < € for all £t s

Example 3.3. The two-well example from the computational benchmark [14] allows an estimate
on [le(|[;2() evenfor f=0. Letn =2, let Fy := — F := (3,2)/4/13, and let the energy density W

be the convex hull of F > |F — F;|*|F — F|*. That is
2
W(F) = (max{0,|F|2 - 1}) +4 (|F|2 — (3E(1) +2F(2))2/13). (3.4)

Then [7, Lemma 9.1] proves, for all v, € V,, that

leellz2gy < L 8¢ : Degdx + [|eg — vyl|En 0y -
Therefore, the arguments of Lemma 3.2 lead to

2 ’ 2
18ell 0 oy + lleeltzgay < lee = veloay + llee = vellin qy + ae(ue, ve)-
This result can be used in the proof of Theorem 3.1 in order to obtain

2
o= 0l gy + It = el 22y + el — 0 as £ oo =

4 A Posteriori Error Estimates

Beyond the a posteriori error analysis of [18], the additional stabilisation term in the discretisa-
tion of this paper causes an additional difficulty in that the Galerkin orthogonality does not hold
for the natural residual. Inspired from novell developments in the a posteriori error control of
elliptic PDEs motivated by inexact solve [24, 16], this section presents some guaranteed upper
error bound for the discretisation at hand for any approximation 1, which does not necessarily
satisfy (3.2) exactly. Thereby inexact solve is included.

Let u € A solve (2.4) and let uy € A, be arbitrary. It is not assumed that u, solves the discrete
problem (2.6); the following theorem holds regardless of this. Recall the definitions of oscy,(:)
and I, from Section 2 and, given ¢ := D W(Du) and oy := D W(Duy), abbreviate

Api=-2B(uy—g)+f, e,:=u—uy and 9, := 0 —0y.

Theorem 4.1. Given any w, € WP ((; R™) with wy = u — u, on the boundary 0Q, and given any T €
H(div, (2; R™*"), it holds, for all 2 < q < p and for some constant > known from [9, Lemma 3.5], that

2 — ’ 2
3/2 15l @y + B lleell Ty < (ra¢/2)1 " /1 [wil ooy + B lwell720
+ (lloe =l gy + T + div T ) + 050, (AD) ) llee = Wil waagery -

Before the proofs conclude this section, some practical choice of T in Theorem 4.1 is discussed
as some Raviart-Thomas finite element functions in

RTy(T7) := {wr € Pi(Ty) n H(div, Q) : VT € T; 3a,b,c e R Vx € T, trr(x) = (a,b) + cx}.
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We suggest the computation (or an accurate approximation) of

per= min (o = Tll oy + 1TTeAs + v Tl )

and emphasise that any upper bound is allowed in Theorem 4.1. This leads to

3/2 118001 ) + B lleelTzgay < (r5/2) " /1 wilignagay + B lwellTzn)
+ (pe +0sc g (Ar)) ller — wellwragay -

The algorithm of [6, Prop. 4.1] computes some w, from (1 — I;)up with

1
el acry ~ 1Y (L= T)upllaornany and (4.1)
1/g—1 1
IDwellary < 1™ (1= I)upll pagorony + 1" 101 = 10)up /35|l 1asrrany -

(The proof of the second assertion is analogous to that of [6, Prop. 4.1] and the first is an imme-
diate consequence of the design of wy.) This and [le; — w¢||yy14() < 1 for bounded u, (i.e. solely
Hug||wl,p(Q) < 1is assumed) lead to the practical estimate y, as a computable guaranteed upper
bound of the left-hand side of Theorem 4.1.

The choice T = ¢ in Theorem 4.1 shows that the right-hand side is in fact optimal up to expo-
nents. The reliability-efficiency gap of [14] is visible here in that we have no further estimate on
Hugle,p(Q) [18, 14]. The following result indicates that y is sharp in the sense that it converges
with the correct convergence rate. This theorem employs the Fortin interpolation operator I,
defined for T € H(div, Q) n L'((2;R") by I T € RTy(7;) and

][1’11: ‘(1 —=1Igy)tds =0 forall F e Fy.
F

For the improved regularity of stress in the class of degenerate convex minimisation problems
at hand, we refer to [17, 28].

Theorem 4.2 (Efficiency). If the exact stress o allows the computation of some Fortin interpolant T, =
Ip g0 € RTo(To; R™™), it holds

low — Tl”m’((z) + [T A + diVTlf”m’(Q) S Hééum’(a) +2p ||e€HLq’(Q) +1(1 - IF,K)UHM(Q) :

It is expected that ||(1 — IF’/;)UHM/(Q) < he D(THU,/(Q) (well known for g = 2) and then the
right-hand side of the assertion of Theorem 4.2 is of the form (error + O(H,)) and so converges
with the (expected) optimal convergence rates.

Proof of Theorem 4.1. Let s be the reciprocal of c; in [9, Lemma 3.5], which is also the multiplic-
ative constant hidden in (3.3). Equation (3.3), the continuous Euler-Lagrange equation (3.1) and
some carefull application of Young’s inequality show, for v = ¢, — w, € V, that

» HégHer/(m +28 Heg||i2(9) < L) (6¢ : Dv +2Be; - v) dx + L) (6¢ : Dwy +2Bey - wy) dx

< jﬁ (07 : Do — Ag-0) dx + B ler 22 + Bllwoel Bager

+ /2 H‘Sénrm’(()) + (7’%/2)1_r /”/ |w€‘;v1/p(()) .
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Hence Res;(v) := — {, (07 : Dv— Ay - v) dx satisfies
/215l @y + B ||3€HL2(Q) Res () + (rs/2)' " /1’ |welyinay + B HWHiZ(Q)-

Let Cy denote the Poincaré constant of convex domains with respect to the W norm. The
fundamental theorem of calculus on some one-dimensional arc shows that C,, < 1. The paper
[1] proves C; = 1/2. Hence, operator-interpolation arguments [8, 10] prove C, < (1 /21 < 1.
The Poincaré inequality shows, for any 2 < g < p, that

f (1 —Hg)Ag -vdx = f hg(l — Hg)Ag . l
Q o) hy

< ke _HE)AZHLq’(Q) HDUHM(Q) = 08Cy,q (Ay) ||Dv||Lq(Q)

(1-1I1y)vdx

For any 7 € H(div, (2; R"™*"), the Holder and Poincaré inequalities show

Res(v) = — L)((@ — 1) : Dv— (ITyAg + divT) -0 — (1 = II) Ay - v) dx
< (lloe =Tl oy + 1TTeAAe + iV Tl ) + 0500 (A0)) [0l ygraery =
Proof of Theorem 4.2. The triangle inequality yields
o — Té”y’(()) < [[(1- IF,E)‘THLq’(Q) + H‘5£||Lq’(()) :
Since f = 2B(u — g) — div o, the commutative property div I, = I, div yields

[T A+ diVTéHm’(Q) =2p ||H€e€||m’(o) <26 Heénm’(n) : H

5 Refined Analysis for an Interface Model Problem

This section is devoted for a model scenario from phase transition problems [14] with some
solution u that is smooth outside some one-dimensional interface I'. Suppose some (possibly
non-unique) minimiser u of the continuous problem (2.4) satisfies u € WY®(; R™) n W>P(O\T;
R™) for some finite union I' of (n — 1) dimensional Lipschitz surfaces in (2. Since (2 has a
Lipschitz boundary, this implies Lipschitz continuity of u on (2. We refer to [21] for sufficient
conditions for u € W' ((; R™) and conclude that the remaining assumption u € W27 (Q\I'; R™)
is the essential hypothesis expected in many interface problems. Let u;, € Ay be the (unique)
minimiser of the discrete stabilised problem (2.6). In the following, also I' = J is permitted to
extend previous results [9] for highly regular minimisers.
We will abbreviate the set of all triangles that are touched by I as 7,(I') := {T € T, : dist(T,

I') = 0}, its cardinality as |7;(I')|, its union as Qr , := int({J 7;(I')) with volume |Qr ;| and its
complement as O , := Q\Or .

Theorem 5.1. Provided B > 0, it holds

2 T+ 12 2
||5€|\er’((2) + lleellzz ) + lluell? < H, ™ ulteonr) + H;} |10 )

1) 1) - 1) -
HHCD Nl e HE T e o [T 05 iy 700
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Proof. With w, = (1 — Iy)e; = (1 — I;)u, a Young inequality, (3.3) and [9, Theorem 3.8] yield

2 1)
10l + lleelagary + Musell? < oelppdsey + lwell gy + Ieull?:

Theorem 4.4.4 in [10] shows [[w(|| 12y < |well =) < He [u|wie () and
|w£|wl,p |w£|w1p(9 ) + |w£|€v1,p(ngé)
~ |u|W1/‘ |QF£| +H |ulw2p QC )
Let wr = (Jre7; T be the patch of a side F € .7-"4, and set Fy(I') = {F e Fy(Q) : wpn T # J} and
FcT

F(T) = Fo(Q)\Fu(I). Note that [Du], = 0 for F € F-(I'). Then

1 _
I|Iu? = H *”’( > ke IDwdellfar + Y et DIl gl )

FeFS(T) FeFy(I)
The first sum can be estimated as in the proof of [9, Lemma 3.2], the second sum with
2 _ 2 1,2
H[DIW]FHLZ(P) S hp! ’Iéu‘wlm(F) <hp™! |u’W1f"f-‘(F)'
The observation | F;(I')| < (n+ 1) |T¢(I')| concludes the proof. O

Together with Theorem 5.1, the subsequent result implies strong convergence of the gradients
in the model interface problem as H; — 0.

Theorem 5.2. Under the aforementioned conditions on the (possibly non-unique) exact minimiser u €
WL (; R™) A W2P(OQ\T; R™), the error e, = u — uy of the discrete solution u, € A, of (2.6) satisfies

173 5/6 e
Dell 2 S ||e£||L/2 () +H/ Hazup/f?S2HLz 20) +H( el
1+9)/4 1/2 1/2 o/ o
+ H, T g (Hf?gHLé(o) + H;"[|*up/as 2HU(@Q)

Proof. The basic idea of gradient control is the generalisation of the interpolation estimate H'(2)
= [L*(Q2), H*(Q)]1» (from [8, 10]) for a reduced domain O\I'. Let w, be the boundary value
interpolation of (1 — Iy)up as described in [6, Prop. 4.1], such that w, satisfies the inequalities in

(4.1). A piecewise integration by parts shows, for v := e, —w, € W&’p (€2;R™), that
IDer|22cy = J D(u — up) : Dodx +f De; : Dwy dx
Q Q

< J v-[Du]ands—J v-Audx — J v - [Dug]pneds + |[Deg| 120y IDwell 20 -
r O\ Fer, () F
The trace inequality on I" and |[Du|nr| < 1 almost everywhere along I', lead to

1/2
| o Pulrnrds < ol < ol + 1ol D01,

The case I' = J is contained in [9, Theorem 4.4]. The piecewise Laplacian of u is bounded in
L?(Q2) and so (with the generic constant C := ||Aul| 12(o\r) hidden in the notation C ~ 1)

J v-Audx < [|of 2 -
O\
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The elementwise trace inequality [10, Theorem 1.6.6, p. 39] for an n-dimensional simplex T
and one of its sides F, and f € WUY(T;R™), 1 < g < oo, reads

_ 1
WA ey < Bt LA ery + LAy 1D A lsery Bt 1y + 5 IDF -

The term §; v - [Duy]p nr ds and the stabilisation ||1]|, are already analysed in the Estimate on C
in the proof of [9, Theorem 4.4]. This results in

1—7v)/2 —(1 2
> J [Duglp e ds < fuelle (H 2 1D0]) 2+ H 72 0]l 2y ) -
FE]“[(Q)

The proceeding estimates plus the absorbtion of [[De;|| ;2 lead to

1/2

2 2
IDecllF2(e < 0l iz + 01155y D21l oy + D202y

1—-7v)/2 —(1 2
+ el (T ||Dv||Lzm)+HNW lolizqer) -

The triangle inequality applied to v = ¢y — w, and some careful elementary analysis to absorb
|De, Hiéz( o) eventually lead to

1— 2
e T

1/2

1/3 1/3
IDecll 2y S lleell oty + lewell 2 + el ey + H
1+7)/4 1/2
+ Hy o el (Nl iz + leoell 2o

The inequalities (4.1), Poincaré and Friedrichs inequalities on sides F € F;(0(2) and removal
of higher-order terms in H, conclude the proof. O

The following theorem is an improved a posteriori estimate based on Theorems 4.1 and 5.2.

Theorem 5.3. Recall u € WV (; R™) n W2P(Q\I'; R™), the definitions ey := u — uy and 8y := o —
oy for 0 := DW(Du) and o, := D W(Duy), and the definition of A, from Section 4. Set

M(7) := [loy = Tl[12¢q) + [[TTeA¢ + div T]| 12y + 08C2(Ag) for all T € H(div, Q;R™").
Provided B > 0, it holds
16117y + lleellF2geny < M) + Hy P M B uy 77
+M() (H P gl 4+ Hy T 7 4 E S and
IDer 17200y £ M(T)?° + Hy P M)y |77 4+ H ST HDR)
4 1/2\1/3 1—
M)V (HEP g+ H T ugll)?) "+ )

—(1+7)/2 —(1+7)/3 2/3 in{5,7(14+1/p)}\ /2
+Hg( +7)/ el (M(T)6/5 +H€ (1+7)/ M(T)4/3\Hu ||| /! 4 H;ﬂn{ r'(1+ /P)}>
—(147)/2 (1=7)/2 1—/ay 1/2\ 12
+HL R g MY (B2 a4+ Hy T el 7).

Remark 5.4. Even in the case f = 0, strong convergence of gradients is possible. The theorem
holds verbatim in Example 3.3 and in the modified two-well problem of Subsection 6.3.
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Remark 5.5. The assertion of Theorem 5.3 holds for any discrete u, € up, + V, which may
approximate the discrete unique exact solution of (2.6). This allows the inexact SOLVE via an
iterative procedure.

Proof of Theorem 5.3. Choose wy as in the proof of Theorem 5.2 and g = 2 in Theorem 4.1. Then
(4.1) implies
2 ' 2
H‘SZHer’(Q) +leelltzay € M(T) llee = well iy + [welwrray + lwellz2a)
3/2 in{5, (1+1
< M(1) (W\Hl(g) + lleell 2y + H/ ) + HZ“‘“{ Py,
Theorem 5.2 yields an estimate on the semi-norm [e/|i (). The absorbtion of [le/[[;2) then

leads to the first assertion. The second assertion is an immediate consequence of the first one
and Theorem 5.2. O

6 Numerical Experiments

This section illustrates the theoretical estimates and their impact on the reliability-efficiency gap
on 2D benchmarks in computational microstructures [14, 4].

6.1 Numerical Algorithms

The adaptive finite element method (AFEM) and algorithmic details on the implementation in
MATLAB in the spirit of [2] concern the state-of-the-art AFEM loop

SOLVE — ESTIMATE — MARK — REFINE

and are explained below together with some notation.

6.1.1 SOLVE

The stabilised discrete problem (2.6) is solved in a nested iteration on a given triangulation 7,
with MATLAB'’s standard-minimiser fminunc (with default tolerances). We set v = 1 in the
stabilisation term (2.5) in all our experiments. This is motivated by [9, Theorem 4.4] which
suggest that o = 1 yields an optimal convergence rate. The discrete solution of the previous
AFEM loop iteration serves as a start vector for fminunc; for the first iteration, the initial vector
is zero everywhere up to the Dirichlet boundary nodes. Since the Galerkin orthogonality is not
required in Theorem 4.1, the termination of an iterative realisation for SOLVE is not a sensitive
issue. In the computational PDEs, it is a fundamental issue to involve inexact solve. In this
paper, however, the numerical examples are run with the standard settings of MATLAB.

6.1.2 ESTIMATE

The refinement indicator results from the error estimator of Theorem 4.1. The computation of
the minimiser T € RTy(7,)" of

|70 = Tl 12y + HTeAp + div T| 12 (6.1)
runs Algorithm 6.1 based on the formula

a+b= migl ((1+s)a* + (1 +1/s)b*) fora,b> 0.
S$>



12 6 Numerical Experiments

Input: Oy, HgAg

s1=1

fork=1,2,3do

Compute minimiser 7; of

M(st, T) = (14 1) llow = Tl T2y + (1+1/50) [T A + div 7|2 )
if D2M (i) nearly singular (MATLAB “warning”) then return 73;
St = [[TeAg + div Tic|| 12y / |00 — Tl 120

. Isk+1—sk|
if max {skﬂ, 1/sk41, et | S EM then return Tk;

Output: approximate flux T

Algorithm 6.1: Approximate Flux Computation

The stopping criterion of Algorithm 6.1 monitors relative changes and avoids degenerate val-
ues of s. Undisplayed experiments have conviced us that a maxmium of three iterations and a
stopping tolerance of €32 (with the machine precision ¢y) yields satisfying results. The iteration
is stopped whenever the s, 1/s or the relative change of s drops below this tolerance. As an ad-
ditional precaution, the iteration also stops if the linear system is deemed “nearly singular” by
MATLAB. Our experiments convinced us that ignoring this warning causes a breakdown with
NaNs. Note that if g # 2, we still minimise the L? sums in (6.1) to avoid the computational cost
of a nonlinear solve. With the computed minimiser 7, Section 4 yields the error estimator

Nrg = H(Tg — THL‘i’(O) + HHgAg + div T||L4'(Q) + 08Cyq (Ay).
This will be compared with the well-established residual based a posteriori error estimator [18]

1/q 1/q

Ry = | D)k ||AfHU,(T +| >, ke lllovle ”FllU,
TeT; FeF,(Q)

as well as averaging error control [14]
Nag = [[(1— ZZ)UEHM’(Q)
with the quasi interpolation operator X, with (X,0¢)(z) := fwz oy(x)dx for all nodes z of Ty

followed by elementwise linear interpolation. The aforementioned error estimators are reliable
for the original discretisation without stabilisation. The error estimators in Theorem 5.3 read

6/5 —(1 3 4/3 2/3 1-7)/2 1—-v/4 1/2 in{5,r'(1+1
2 =gy + Hy P ualF0 e (P el Hy gl 7) + ST
NH2 =1 /2 + H (1+’y)/917;4:/29mu |||2/9 + Hmin{5/3,r (1+1/p)/3}

1/3 [ 17(1-7)/2 1-v/4 y2\13 1o
gy (HE gl + Hy el %) + el

e lluelly

(a2 12 1-7)/2 1=y/4 1/2
+ H P gy (gl + H el 7)

— min{5,r 1/2
+H, (1+7)/2\Hug|||g (,72/5 +H; (1+7)/3,4/3 2/3 +H) {5, (1+1/P)})

1/2
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(a) Triangle T (b) red(T) (c) green(T)

(d) blueyg (T) () blueign(T)

Figure 6.1: Possible refinements of a triangle T.

6.1.3 MARK
For any given T € 7T, with its set of faces 7(T), 0T = |JF(T), and given T from (6.1), set

nE(T) := |loy — TH‘Zq,(T) + | TT, Ay + div THZq,(T) + Q=TT AT

L (1)’
/ / ’ 1 ,
(T := | T|7/" HAEHZW'(T) + TV D tare nFHZ’i'(F)’
FeFy(()nF(T)
A (T) = (1= Z))oell]y -

Let 17 (T) be one of the refinement indicators UZI(T), q?{(T) or WZ(T). Some greedy algorithm
computes M, < 7T, of (almost) minimal cardinality such that

DT <1/2 ) 97 (T).

TeM, TeT,

6.1.4 REFINE

This step computes the smallest refinement 7,,, of 7, with M, < T,\7;.1 based on the red-
green-blue refinement strategy as illustrated in Figure 6.1. This refinement involves some closure
algorithm to avoid hanging nodes.

6.2 Two-Well Benchmark of [14]

The computational microstructure benchmark of [14, Section 2] considers two wells with W from
(3-4) in Example 3.3. The energy is given by (2.1) on the domain 2 = (0,1) x (0,3/2) = R? with

for ¢
.= —3£5/128 — /3 and = 80 ’
() / /3 and up(x) {t3/24+t for t

<0
=0
for t :== (3(x; — 1) +2x2)/v13; p = g = 4 and f = 0. The unique minimiser u of min,e 4 E(v)
with A = up + W&A(Q) reads u = up [14, Theorem 2.1] and B = 1 allows for Theorems 5.1-5.3
to hold. An initial triangulation 7y is given by a criss triangulation of (0,1) x (0,3/2) with 12
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congruent triangles and the two interior nodes (1/2,1/2) and (1/2,1). The adaptive algorithm
of Subsection 6.1 computes a sequence of discrete solutions (u,), and stresses (0;)y, as well as
error estimators #r, g and 174 with and without stabilisation for uniform and adaptive meshes
and led to Figure 6.2 with overall observations of Subsection 6.7. The empirical convergence
rates for uniform and R- as well as F-adapted mesh-refining are collected in Table 6.1. Note
that the error estimator 5y performs better than #r. This is evident from the table for uniform
mesh refinements, but a closer look at Figure 6.2 reveals that even in the adaptive scenarios, 71,
converges slightly faster than #r. This is in accordance to the theory of Section 5 where 71, is
derived from #r based on additional smoothness assumptions.

6.3 Modified Two-Well Benchmark

This subsection concerns a modification of the previous problem with (3.4) and a linear right-
hand side for = 0 and f(x) := —div(D W(Dup(x))) and unique solution u = up as before.
Note that Example 3.3 applies to this problem, and so the proof of Theorem 3.1 yields

2
o= el gy + N1t = ey + el — 0 as £ — 0

and Theorems 5.1-5.3 hold as well. The algorithms of Subsection 6.1 ran with and without sta-
bilisation for uniform and adaptive meshes with the same initial triangulation as in Subsection
6.2 and led to Figure 6.3 with overall observations of Subsection 6.7. The empirical conver-
gence rates for uniform and R- as well as F-adapted mesh-refining are collected in Table 6.1 for
completeness although they are empirical identical with those observed in Subsection 6.2.

6.4 Three-Well Benchmark

The energy density W of [4, Example 5.9.3, p. 72] is the convex hull of min{|F|?, |F — (1,0)[?,
|F — (0, 1)]2} with explicit form in [4, Example 5.6.4, p. 58]. Let furthermore Q2 = (0,1)2 = R?
and up(x1,x2) := a(x; — 1/4) +a(xy — 1/4) with a(t) := t3/6 +t/8 for t < 0 and a(t) := t°/40 +
t3/8 for t > 0. Then the energy is given by (2.1) with B = 0 and f := — divDW(Dup). The exact
solution u = up satisfies the interface condition of Section 5 and allows Theorem 5.2 to hold.
Theorems 5.1 and 5.3 do not apply because f = 0. As initial triangulation 7y we use the coarsest
criss triangulation 7y = {conv{(0,0),(1,0),(1,1)},{(0,0),(1,1),(0,1)}} of the unit square.

The algorithms of Subsection 6.1 ran with and without stabilisation for uniform and adaptive
meshes and led to Figure 6.4 with overall observations of Subsection 6.7. Beyond those general
conclusions, this example demonstrates the difficulties with ill-conditioned Hessians. While the
unstabilised method reaches 10° degrees of freedom without difficulty on uniform meshes, the
adapted algorithms fail without stabilisation beyond 260059 degrees of freedom (yr-adaptive)
and 52340 degrees of freedom (77g-adaptive). MATLAB’s error message “Input to EIG must not
contain NaN or Inf” indicates that a matrix operation returned non-finite numbers let fminunc
break down. Undisplayed numerical experiments show condition numbers up to 10!° and bey-
ond. The error estimator 74 fails to predict the error of the stabilised stress ||c — oy|| 12()- The
empirical convergence rates for uniform and R- as well as F-adapted mesh-refining are collec-
ted in Table 6.1. The inconclusive convergence of [u — uy|| ;2. (adaptive) and ||D(u — ug)|| 2(q
without stabilisation consists of oscillations until 1000 degrees of freedom followed by no further
convergence at all. It appears unreasonable to assign a meaningful slope to those graphs.
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6.5 An Optimal Design Example

The energy density of the topology optimisation problem of [13, 17, 5, 31, 29, 27, 25] reads

t2 for 0 <t < VA,
W(F) := ¢(|F|) for Fe R? with ¢(t) := A/2 + { 2//A(t—+V/A/2) for VA <t <2VA,
t2/2+ A for t > 2v/A.

This leads to problem (2.4) with =0, A = 0.0084, up = 0 and two different choices
f =1 (Figure 6.6) and f = —divDW(Du) for u(xy, x2) = x1x2(1 — x1)(1 — x2) (Figure 6.5).

The smooth solution u that corresponds to the latter choice of f permits for the application of
Theorem 5.2. Since regularity of the solutions corresponding to the former choice of f is unclear,
only the results of Sections 3—4 apply. As initial triangulation 7o, we use the coarsest criss
triangulation 7y = {conv{(—1,-1),(1,-1),(1, 1)}, {(-1,-1),(1,1), (=1, 1)}} of Q = (=1, +1)2.

The algorithms of Subsection 6.1 ran with and w1thout stabilisation for uniform and adaptive
meshes and led to Figures 6.6-6.5 with the overall observations of Subsection 6.7. The empirical
convergence rates for uniform and R- as well as F-adapted mesh-refining are collected in Table
6.1. The inconclusive convergence of |[u — uy||;2( for adaptive mesh-refinements without sta-
bilisation (marked as “—”) consists of oscillations without a clear trend beyond 1000 degrees of
freedom. For uniform meshes the unstabilised error |[u — u||;2() shows only a short range of
(strong) convergence (up to 1000 degrees of freedom).

6.6 Empirical Convergence Rates

Global convergence without regularity assumptions. Theorem 3.1 asserts that [[u — (|2,
|0 = ¢l 1p(2), and [[lu¢l|¢ all tend to zero as H, — 0. The plain convergence result applies to
all examples from Subsections 6.2-6.5 for the uniform mesh-refinements with Hy,; = H,/2.
The numerical experiments, however, show empirical convergence rates displayed in the first
columns of Table 6.1. The adaptive algorithms do not reflect the condition H, — 0 explicitly
and hence convergence is not guaranteed a priori. Undisplayed investigations show that indeed
in the R-adapted version of the three-well example of Subsection 6.4, this condition Hy — 0
does not appear to be true for more than 4585 degrees of freedom. In all other experiments we
observe convergence rates even for unstabilised discretisations.

Empirical convergence rates for interface model problems. Theorem 5.1 provides an a pri-
ori error estimate and an estimate of the stabilisation norm. It applies to the benchmark of
Subsections 6.2-6.3 only, because of B > 0 and Example 3.3, and the smoothness conditions im-
posed upon u from Section 5. Recall the definitions of 7,(I'), Qr ; and ng from Section 5 and

assume |[ul[ 2y & 1~ Hu||w2p ag) | To(I)| ~ H, ' and |Qr,| ~ Hy in this discussion. This

leads to a convergence rate of H / P for the right-hand side of Theorem 5.1. The observed conver-
gence rates of ||o — oy ||, Q) |10 — 1| 2(7) and [Jue[]¢ for the stabilised benchmark examples in
Table 6.1 show convergence rates beyond those guaranteed in Theorem 5.1 even in Subsections
6.2-6.3 and 6.5.

Theorem 5.2 implies, up to perturbations on the boundary,

1/2 1/2
1Dt —100) 20y 5 Nl = el 2y + el + HE e |2 N — w12,
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Since the exact solutions of Subsections 6.2-6.4 are all smooth up to a one-dimensional inter-
face line, Theorem 5.2 applies to these examples. Table 6.1 shows that the right-hand side of
Theorem 5.2 is dominated by [|u — u/||;2() in all examples with uniform refinements and that

the inequality [|D(u —u/)|| ;2 < [lu— u[||¥3£ ) is satisfied by all those examples (except the
three-well benchmark).
Reliability without regularity assumptions. Up to boundary terms, Theorem 4.1 states

2 2
H‘T—WHLP’(Q) +Blu— WHLZ(Q) < e flu - WHWLv(Q)-

The convergence rates confirm this assertion for the general and rough estimate [[u — (| y15 ()
< 1 in the sense that the rates for 5r are worse than or equal to those of o — Ug”ip/ Q) and

llu — ugH%z(Q). In the numerical examples, |[u — u¢| ;1) is computed and displayed in Table
6.1 and the convergence rates of the product ||u — || 1y 77F can be compared with those of

llo— UgHip/ @ T |l — u(gH%z(Q). This comparison confirms the above a posteriori error estimate.
In the examples with p = 2 (of Subsections 6.4-6.5), there holds even equality of the convergence
rates which demonstrates the efficiency of the estimate of Theorem 4.1.

Efficiency without regularity assumptions. Up to oscillations and the (possibly) higher-order
term ||(1 — Iplg)(THLqr(Q), Theorem 4.2 states

1 5 10— 0ty + Bl — el ey

The displayed convergence rates of Table 6.1 confirm this estimate.
Reliability of the refined a posteriori error control. Theorem 5.3 applies to the example of
Subsection 6.2 and states

2 2 2
llo = oell iy + It = tellizqy S o and (D = ue) 720 < 7.

At first glance, Table 6.1 displays convergence rates for ||D(u — Mg)H%z(Q) and 7y like 2/5 and
1/2 for the adaptive mesh-refinements in Subsections 6.2-6.3. This seems to be in contradiction
to the overall reliability ||D(u — uy) ||i2(0) < 7y of Theorem 5.3. A closer look at Figures 6.2-6.3

reveals that, in fact, |D(u — uy) Hiz(()) is up to two orders of magnitude smaller than 77y and so
clearly supports Theorem 5.3. The convergence rates of 77y displayed in Table 6.1 surpass those
of 1712_/ ° < nu. However, the convergence history plots of 77y indicate that the higher-order terms
in the definition of 7 dominate in a large preasymptotic range. Therefore they are denoted in
parantheses in Table 6.1.

All displayed convergence rates of #; are better or at least equal to those of 7. For instance,
for uniform mesh-refining in Subsections 6.2-6.3, the error terms || — oy Hi,,/( q) T llu—u Hiz( o)

converge with the empirical convergence rate 5/3 while the upper bound #r does so with a
reduced convergence rate 4/5. The refined error estimator 7, is a guaranteed upper bound (via
Theorem 5.3) and converges with an empirical convergence rate 1.

Performance of the minimisation algorithm 6.1. In all numerical experiments of this paper,
Algorithm 6.1 reaches the maximal number 3 of iterations. While this suggests that the optimal
s is not found after three iterations, undisplayed experiments with higher iteration counts and
hence higher computational efforts result solely in marginal improvements.
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6.7 Global Observations and Conclusions

Effects of stabilisation. The empirical convergence rates of the error estimators #r, 1r, 74
and the errors |1 — || 2 and ||o — o] 1/ () for uniform mesh-refinement with and without
stabilisation coincide. This indicates that the choice iy = 1 leads to some significant perturbation
but maintains the correct convergence rate at the same time. This is different for adaptive mesh
refinement with less optimal convergence rates. Our conclusion is that an improved adaptive
algorithm has to be developed with balance of local mesh-refinement and global stabilisation
parameters in future research. The tested algorithm from Subsection 6.1 does neither reflect the
effects of stabilisation nor that of inexact solve.

Another important aspect of the stabilisation is the regularisation of the Hessian in the step
SOLVE of Subsection 6.1. In the three-well problem of Subsection 6.4, the unstabilised adaptive
algorithms fail.

Adaptive versus uniform mesh-refinement. The overall empirical convergence rates of the
errors and estimators of the unstabilised computation for adaptive mesh-refinements are bet-
ter than those for uniform mesh-refinements. This is in contrast to the stabilised computation,
where the true errors ||c — oy || 1 (0 and |1 — || ;2(r) behave better for uniform compared with
the two adaptive mesh-refinments (with the exception in Subsection 6.5 where there is equality).
It is observed that adaptivity does not necessarily improve the converegnce rates of the error
o — o0l () and |14 — 1| 12(7) in a stabilised computation. Surprisingly, the convergence of
the gradient errors |[D(u — 11y)||;2()are indeed improved in the instabilised calculation by ad-
aptive mesh-refinements. The adaptive mesh-refinement is expected to reduce the a posteriori
error estimators in the first place: cf. [19, 12] for the estimator reduction property. Indeed, the
convergence rates of the a posteriori error estimators #g, 7, 71, 7 are improved (or optimal)
for adaptive mesh-refinements (except for the three-well example of Subsection 6.4).

Strong convergence of the gradients. The convergence of the gradient error of the stabilised
problem surpasses the expectations of [9] in Subsection 6.5 but fails to do so in Subsections
6.2-6.3. The improved error estimator 7y shows the same convergence rate as the error of the
gradients in Subsections 6.2-6.4. This holds for uniform and for adapted mesh refinements and
suggests that #p is in fact reliable and efficient for g > 0.

Guaranteed error control. The assertion on #r in Theorem 4.1 is reflected in the numerical
examples in that the stress approximations converge faster than #r in all cases. This suggests
that the estimate ||u — uy|| wir(y < 1is by far too pessimistic. In fact, the optimal design example

with known exact solution fulfils ||o — oy H%Z( a) 2 1F [ = || g ) In this sense, the estimate of
Theorem 4.1 is sharp. Similar affirmative conclusions follow for Theorem 4.2 and 5.3.

Reliability-efficiency gap. In comparison with the residual-based error estimator of [18, 14],
the new a posteriori error estimators #;, and 77y of Theorem 5.3 lead to refined error control. The
improvement is marginal for uniform meshes without stabilisation but significant for adaptive
stabilised computations. 77;, matches the convergence of the errors and so narrows the reliability-
efficiency gap.
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