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Abstract

This paper presents a truncated modification of basic ratio type estimators
constructed by dependent sample of finite size.

This method gives a possibility to obtain estimators with guaranteed ac-
curacy in the sense of Lm-norm, m ≥ 2. As an illustration, parametric and
non-parametric estimation problems on a time interval of a fixed length are
considered. In particular, parameters of linear (autoregressive) and non-linear
(ARARCH) discrete-time processes are estimated. Moreover, the parameter es-
timation problem of non-Gaussian Ornstein-Uhlenbeck process by discrete-time
observations and the estimation problem of a logarithmic derivative of a noise
density of an autoregressive process with guaranteed accuracy are solved.

In addition to non-asymptotic properties, the limiting behavior of presented
estimators is investigated. It is shown, in particular, that all parametric trun-
cated estimators have rates of convergence of basic estimators. Non-parametric
estimator has optimal (as compared to the case of independent inputs) rate of
convergence.
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1 Introduction

Modern evolution of mathematical statistics is turned to development of data pro-
cessing methods by dependent sample of finite size.

One of such possibilities gives a well-known sequential estimation method, which
was successfully applied in parametric and non-parametric problems.

This approach for various statistical problems for a scheme of independent ob-
servations has been primarily proposed by [Wald(1947)]. Then this idea has been
applied to parameter estimation problem of continuous and discrete-time dynamic
systems in many papers and books (see [Dobrovidov et al.(2012), Konev(1985),
Küchler and Vasiliev(2010), Liptser and Shiryaev(1977), Vasiliev et al.(2004)] among
others).

Sequential approach has been also applied to non-parametric regression, autore-
gression and density function estimation problems as well (see, e.g., [Arkoun(2011),
Arkoun and Pergamenchtchikov(2008), Dobrovidov et al.(2012), Efroimovich(2007),
Vasiliev et al.(2004)]).

To obtain sequential estimators with an arbitrary accuracy one needs to have a
sample of unbounded size. However in practice the observation time of a system
is usually not only finite but fixed. One of the possibilities for finding estima-
tors with the guaranteed quality of inference using a sample of fixed size is pro-
vided by the approach of truncated sequential estimation. The truncated sequen-
tial estimation method was developed by [Konev and Pergamenshchikov(1990a),
Konev and Pergamenshchikov(1990b), Fourdrinier et al.(2009)] (and others) for pa-
rameter estimation problems in discrete–time dynamic models. Using a sequential
approach, estimators of dynamic systems parameters with known variance by sam-
ple of fixed size were constructed in these papers.

Non-parametric truncated sequential estimators of a regression function were
presented by [Politis and Vasiliev(2012a), Politis and Vasiliev(2012b)] on the basis
of Nadaraya–Watson estimators calculated at a special stopping time. These esti-
mators have known mean square errors as well. The duration of observations is also
random but bounded from above by a non-random fixed number.

The main purpose of this paper is to obtain a modification of ratio type estima-
tors from a wide class, having guaranteed accuracy by dependent sample of finite
size.

When estimating, for example, the ratio type functionals one uses as a rule the
substitution statistics of [Borovkov(1997)], that is ratio of some estimators. Study-
ing the properties of such estimators, we face certain difficulties that are connected
with finding dominating sequences [Cramér(1948)]. In some cases, for instance, in
reconstruction of the logarithmic derivative of a distribution density one can use es-
timators for which an exact asymptotic expression of the mean square error (MSE)
is available, [Dobrovidov et al.(2012), Vasiliev et al.(2004)].

For this problem the theory of smoothing can be also used.It gives a possibility to
find the principal term of the MSE of the ratio estimators with an improved rate of
convergence, similar to the case of independent observations. Moreover, the rate of
convergence of the estimators of their ratio in metric Lm, m ≥ 2, can be obtained,
see [Dobrovidov et al.(2012), Vasiliev et al.(2004)].
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In this paper the truncated estimation method for ratio type functionals con-
structed by dependent sample of finite size is presented. This method gives a pos-
sibility to obtain estimators with guaranteed accuracy in the sense of Lm-norm,
m ≥ 2. Examples of parametric and non-parametric estimation problems on a time
interval of a fixed length are considered.

2 Statement of the problem. Main result

Let (Ω, F , P) be a probability space with a filtration {Fn}n≥0 and let (fn)n≥1 and
(gn)n≥1 be {Fn}–adapted sequences of random numbers.

Let
ΨN =

fN

gN
, N ≥ 1 (1)

be an estimator of a number Ψ. For example,

Ψ =
f

g

if fN and gN are estimators of some numbers f and g 6= 0.
Consider the following modification of the estimator ΨN :

Ψ̃N = ΨN · χ(|gN | ≥ H), N ≥ 1, (2)

where H is a positive number, defined below and χ(a ≥ b) = 1 for a ≥ b and 0 when
a < b.

Our main aim is to formulate general conditions on the sequences (fN ) and (gN )
and on the number H giving a possibility to estimate Ψ with a guaranteed accuracy
in the sense of the Lm-norm, m ≥ 2.

These conditions contained to the following

Theorem 2.1 Let ΨN = fN/gN , N ≥ 1 be an estimator of a number Ψ. Assume for
some integer m ≥ 1 and µ ≥ 1 there exist sequences of positive numbers (ϕN (m))N≥1

and (wN (µ))N≥1, decreasing to zero, as well as a number g 6= 0 such that
(i) E(fN −ΨgN )2m ≤ ϕN (m);
(ii) E(gN − g)2µ ≤ wN (µ).
Then for every H ∈ (0, |g|) and N ≥ 1 the estimator Ψ̃N has the property

E(Ψ̃N −Ψ)2m ≤ VN (m,µ), (3)

where

VN (m,µ) =
1

H2m
ϕN (m) +

Ψ2m

(g −H)2µ
wN (µ).

P r o o f. From the definition of the estimator Ψ̃N we find its deviation

Ψ̃N −Ψ =
fN −ΨgN

gN
· χ(|gN | ≥ H)−Ψ · χ(|gN | < H).
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Then, using the Chebyshev inequality and the definition of VN we can estimate
the desired moment

E(Ψ̃N −Ψ)2m = E
(fN −ΨgN )2m

g2m
N

· χ(|gN | ≥ H)+

+Ψ2m · P (|gN | < H) ≤ 1
H2m

E(fN −ΨgN )2m+

+Ψ2m · P (|gN − g| > |g| −H) ≤

≤ 1
H2m

ϕN (m) + Ψ2m · E(gN − g)2µ

(|g| −H)2µ
≤ VN (m,µ).

Theorem 2.1 is proved.

Corollary 2.1 Assume that Ψ = f/g for some number f, where g is defined in
Theorem 2.1 and, instead of the assumption (i), for some ν ≥ 1 there exists sequence
(vN (ν))N≥1 of non-negative numbers, decreasing to zero, such that

E(fN − f)2ν ≤ vN (ν), N ≥ 1.

Then the condition (i) of Theorem 2.1 is fulfilled, where the function ϕN (m) should
be substituted by the following one:

ϕN (m) =
22m−1

g2m
[g2mv

m/ν
N (m) + f2νw

m/µ
N (ν)], m = ν ∧ µ.

Corollary 2.2 If it is known, that Ψ ∈ [A,B], then the estimator (2) can be taken
in the form

Ψ̃∗
N = ΨN · χ(|gN | ≥ H) + Lχ(|gN | < H), N ≥ 1, (4)

where L = (A + B)/2. In this case the number Ψ in the upper bound V (m,µ) in (3)
should be substituted by the number Ψ∗ = (B −A)/2.

Remark 1 The function VN (m,µ) could be unknown. At the same time the knowl-
edge of the rate of Lm-convergence of proposed estimators can be useful in various
adaptive procedures (control, prediction etc) for the construction of pilot estimators
(see, e.g., [Dobrovidov et al.(2012), Vasiliev et al.(2004)]–[Vasiliev(1997)]).

3 Examples

3.1 Estimation of parameters of a stable first order autoregression

Consider the process satisfying the following equation

xn = λxn−1 + ξn, n ≥ 1, (5)

where noises ξn, n ≥ 1 are i.i.d. zero mean random variables with finite (for some
even number γ ≥ 2) moments σ2γ = Eξ2γ

n , as well as Ex2γ
0 < ∞ and |λ| < 1.
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It should be noted, that under these conditions there exist functions σ2γ
x (θ),

θ = (λ, σ2, σ2γ), such that

sup
n

Eθx
2γ
n ≤ σ2γ

x (θ) < ∞. (6)

Consider the estimation problem of λ and σ2 with a guaranteed accuracy.
a) Non-asymptotic estimation of λ
We define the estimator of the type (2) on the basis of the least squares estimator

(LSE) of the type (1)

λ̂N =

1
N

N∑
n=1

xnxn−1

1
N

N∑
n=1

x2
n−1

, N ≥ 1.

According to general notation, in this case we have

Ψ = λ, ΨN = λ̂N ,

fN =
1
N

N∑

n=1

xnxn−1, gN =
1
N

N∑

n=1

x2
n−1

and Ψ̃N = λ̃N ,
λ̃N = λ̂N · χ(gN ≥ H). (7)

Using formula (5) it is easy to verify that

g =
σ2

1− λ2
,

as well as for m = γ/2, µ = m, constants C1(m, θ) and C2(m, θ) are exist such that

wN (m, θ) =
C1(m, θ)

Nm
+

C2(m, θ)
N2m

, (8)

where, e.g., for m = 1,

C1(1, θ)= 1
(1−λ2)2

[
12λ2σ2

(
λ2Ex2

0+
σ2

1−λ2

)
+3Eξ4

1

]
,

C2(1, θ)= 1
(1−λ2)2

[
24

(
λ4Ex4

0+
4(σ2)2

(1−λ2)2

)
+Ex4

0

]
.

Moreover, using the Burkholder and Hölder inequalities, we have

Eθ(fN − λgN )2m =
1

N2m
Eθ(

N∑

n=1

xn−1ξn)2m ≤

≤ B2m
2mσ2m

N2m
Eθ(

N∑

n=1

x2
n−1)

m ≤ B2m
2mσ2m

Nm+1

N∑

n=1

Eθx
2m
n−1 ≤

≤ B2m
2mσ2mσ2m

x (θ)
1

Nm
=: ϕN (m, θ),
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where B2m is the coefficient from the Burkholder inequality. In particular,

ϕN (1, θ) =
(σ2)2

1− λ2

1
N

.

Thus all conditions of Theorem 2.1 hold, hence for obviously defined numbers
C̃1(m, θ), C̃2(m, θ) and known 0 < H < g (e.g., for 0 < H < σ2),

Eθ(λ̃N − λ)2m ≤ C̃1(m, θ)
Nm

+
C̃2(m, θ)

N2m
, N ≥ 1. (9)

For the parameter estimation with a guaranteed accuracy we have to know that,
e.g., θ ∈ Θ, where Θ = {θ = (λ, σ2, σ2γ) : |λ| ≤ r < 1, 0 < σ2 ≤ σ2, σ2γ ≤ σ2γ}.

In this case we can find known functions

ϕN (m) = sup
θ∈Θ

ϕN (m, θ) and wN (m) = sup
θ∈Θ

wN (m, θ)

such that
sup
Θ

Eθ(fN − λgN )2m ≤ ϕN (m),

sup
Θ

Eθ(gN − g)2m ≤ wN (m).

In particular, for m = 1,

ϕN (1) =
(σ2)2

1− r2

1
N

,

as well as in (8) we can replace C1(1, θ) and C1(2, θ) with

C1(1) =
1

(1− r2)2

[
12r2σ2

(
r2Ex2

0 +
σ2

1− r2

)
+ 3σ4

]
,

C2(1) =
1

(1− r2)2

[
24

(
r4Ex4

0 +
4(σ2)2

(1− r2)2

)
+ Ex4

0

]

and obtain

wN (1) =
C1(1)

N
+

C2(1)
N2

.

In general, for 0 < H < σ2 we can find the numbers

C̃1(m)= sup
Θ

C̃1(m, θ) < ∞, C̃2(m)= sup
Θ

C̃2(m, θ) < ∞

and then, according to (9) we have

sup
Θ

Eθ(λ̃N − λ)2m ≤ C̃1(m)
Nm

+
C̃2(m)
N2m

, N ≥ 1. (10)

In particular, for γ = 2 and m = 1,

sup
Θ

Eθ(λ̃N − λ)2 ≤

≤
[

(σ2)2

(1− r2)H2
+

r2C1(1)
(σ2 −H)2

]
1
N

+
r2C2(1)

(σ2 −H)2
1

N2
.
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Remark 2 It is well known, that for the stable process (5) the function gN → g as
N →∞ almost surely. Then

Pθ(λ̃N = λ̂N ) = 1, θ ∈ Θ,

for N large enough. Moreover, it is easy to establish the uniform on Θ asymptotic
normality of estimator λ̃N with the smallest asymptotic variance. It gives a possi-
bility to prove the minimax optimality of λ̃N .

b) Non-asymptotic estimation of σ2

Consider the estimation problem of the noise variance σ2 in the model (5) under
the assumption γ = 4 (σ8 < ∞, Ex8

0 < ∞).
In the definition of the LSE type estimator σ̂2

N defined as

σ̂2
N =

1
N

N∑

n=1

(xn − λ̃Nxn−1)2, N ≥ 1,

we use the estimator λ̃N of λ, defined in (7), having known non-asymptotic properties
(10) for m = 1 and m = 2.

Thus, using (6) and (10), we have

Eθ(σ̂2
N − σ2)2 = Eθ(λ̃N − λ)2

1
N

N∑

n=1

x2
n−1+

+2Eθ(λ̃N − λ)
1
N

N∑

n=1

xn−1ξn ≤
√

σ4
x(θ)Eθ(λ̃N − λ)4+

+2
√

σ2σ2
x(θ)Eθ(λ̃N − λ)2

1
N
≤ CN (θ)

N
,

where

CN (θ) =

{√
σ4

x(θ)[C̃1(2) + C̃2(2)
1

N2
]+

+2
√

σ2σ2
x(θ)[C̃1(1) + C̃2(1)

1
N

]

}
.

Since the numbers

CN = sup
Θ

CN (θ) < ∞, N ≥ 1

are known, we have obtained estimator of σ2 with a guaranteed accuracy:

sup
Θ

Eθ(σ̂2
N − σ2)2 ≤ CN

N
, N ≥ 1. (11)

It should be noted, that this estimator is asymptotically equivalent to the corre-
sponding LSE. In particular, it has optimal rate of convergence as N →∞.
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3.2 Estimation of parameters of a stable ARARCH(1,1)

Consider the process satisfying the following equation

xn = λxn−1 +
√

σ2
0 + σ2

1x
2
n−1 · ξn, n ≥ 1, (12)

where noises ξn, n ≥ 1 are i.i.d. zero mean random variables with variance equal to
one and finite fourth moment σ4 = Eξ4

1 , as well as Ex4
0 < ∞ and |λ| < 1.

Define the LSE λ̂N of λ of the form:

λ̂N =

1
N

N∑
n=1

xnxn−1

1
N

N∑
n=1

x2
n−1

, N ≥ 1,

which is strongly consistent (see, e.g., [Malyarenko(2010)]) under the following sta-
bility condition

λ4 + 6λ2σ2
1 + (σ2

1)
2σ4 < 1. (13)

a) Non-asymptotic estimation of λ
According to general notation, in this case we have

Ψ = λ, ΨN = λ̂N ,

fN =
1
N

N∑

n=1

xnxn−1, gN =
1
N

N∑

n=1

x2
n−1

and Ψ̃N = λ̃N ,
λ̃N = λ̂N · χ(gN ≥ H). (14)

Define for some known numbers r ∈ (0, 1), σ2
0, σ2

0, σ2
1, and σ2

1 the set

Θ = {θ = (λ, σ2
0, σ

2
1) : λ4 + 6λ2σ2

1 + (σ2
1)

2σ4 ≤ r,

σ2
0 ≤ σ2

0 ≤ σ2
0, σ2

1 ≤ σ2
1 ≤ σ2

1}.
Using the following representation for the process (x2

n) :

x2
n = (λ2 + σ2

1)x
2
n−1 + σ2

0 + ςn, n ≥ 1,

where
ςn=2λxn−1

√
σ2

0+σ2
1x

2
n−1 · ξn+σ2

0(ξ
2
n−1)+σ2

1x
2
n−1(ξ

2
n−1),

it is easy to find the numbers

σ2
x = sup

Θ,n
Eθx

2
n, σ4

x = sup
Θ,n

Eθx
4
n

and lim
N→∞

gN = g Pθ-a.s. for θ ∈ Θ, where

g =
σ2

0

1− λ2 − σ2
1

.

8



For this model we can calculate

wN = {12(σ2
0σ

2
x + σ2

1σ
4
x) + σ4

ξ · ((σ2
0)

2 + 2σ2
0σ

2
1σ

2
x+

+(σ2
1)

2σ4
x)} 1

N
+ {Ex4

0 + 3σ4
x}

1
N2

, (15)

where σ4
ξ is an upper bound for E(ξ2

1 − 1)2.
Now we can find the function ϕN . By the definition of fN and gN we have

sup
Θ

Eθ(fN − λgN )2 =

=
1

N2
sup
Θ

Eθ(
N∑

n=1

xn−1

√
σ2

0 + σ2
1x

2
n−1 · ξn)2 =

=
1

N2

N∑

n=1

sup
Θ

Eθx
2
n−1(σ

2
0 + σ2

1x
2
n−1) ≤ (σ2

0σ
2
x + σ2

1σ
4
x)

1
N

and we can put

ϕN = (σ2
0σ

2
x + σ2

1σ
4
x)

1
N

.

Then for 0 < H <
σ2

0

1− σ2
1

and every N ≥ 1,

sup
Θ

Eθ(λ̃N − λ)2 ≤ 1
H2

ϕN +
(1− σ2

1)
2

(σ2
0 − (1− σ2

1)H)2
wN . (16)

It should be noted, that the rate of convergence of the obtained upper bound is
the same that the rate of the LSE and is optimal.

b) Non-asymptotic estimation of σ2
0 and σ2

1

We will construct estimators with guaranteed accuracy on the bases of correlation
estimators for the following cases:

(i) of σ2
0 with known σ2

1 :

σ̂2
0(N) =

1
N

N∑

n=1

[x2
n − (λ̂2

N + σ2
1)x

2
n−1];

(ii) of σ2
1 with known σ2

0 :

σ̂2
1(N) =

N∑
n=1

(x2
n − σ2

0)

N∑
n=1

x2
n−1

− λ̂2(N),

which are strongly consistent under the condition (13), see [Malyarenko(2010)].
Define estimators for considered cases

(i) σ̃2
0(N) =

1
N

N∑

n=1

[x2
n − ((λ∗N )2 + σ2

1)x
2
n−1];
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(ii) σ̃2
1(N) =

1
N

N∑
n=1

(x2
n − σ2

0)

1
N

N∑
n=1

x2
n−1

χ(gN ≥ H)− (λ∗N )2,

where
λ∗N = proj[−1,1]λ̃N ,

λ̃N and gN are defined in (14).
Similar to previous sections, the upper bounds for the MSE’s of these estimators

with known constants C0 and C1 can be found

(i) sup
Θ0

Eθ(σ̃2
0(N)− σ2

0)
2 ≤ C0

N
, (17)

where Θ0 = {θ = (λ, σ2
0) : λ4 + 6λ2σ2

1 + (σ2
1)

2σ4 ≤ r, σ2
0 ≤ σ2

0 ≤ σ2
0} and

(ii) sup
Θ1

Eθ(σ̃2
1(N)− σ2

1)
2 ≤ C1

N
, (18)

where Θ1 = {θ = (λ, σ2
1) : λ4 + 6λ2σ2

1 + (σ2
1)

2σ4 ≤ r, σ2
1 ≤ σ2

1 ≤ σ2
1}, r ∈ (0, 1).

3.3 Parameter estimation of a stable non-Gaussian Ornstein–Uhlen-
beck process by discrete–time observations

Presented below results give a possibility to make statistical inferences for continuous-
time stochastic systems by finite size of observations. Moreover, one of the main
assumption is a discrete scheme of observations. It coincides to numerous real situ-
ations, in particular, in problems of financial mathematics.

Consider the following regression model

dx(t) = ax(t)dt + dξ(t), 0 ≤ t ≤ T (19)

with an initial condition x(0) = x0, having all moments. Here ξ(t) = ρ1W (t) +
ρ2Z(t), ρ1 6= 0 and ρ2 – some constants, (W (t), t ≥ 0) is a standard Wiener process,
given on a probability space (Ω,F , (Ft)t≥0, P ), adaptive to a filtration {Ft}t≥0,

Z(t) =
Nt∑

k=1
Yk, where Yk, k ≥ 1 are i.i.d.r.v’s having all moments and (Nt) is a

Poisson process with the intensity λ > 0.
It should be noted, that for ρ2 = 0 the process (19) is an Ornstein-Uhlenbeck

process.
We suppose, that the unknown parameter a ∈ [−∆,−δ], where δ and ∆ are

known positive numbers.
The problem is to estimate the parameter a by observations of the discrete–time

process y = (yk),

yk = x(tk), tk =
k

n
T, k = o, n.

Using the following representation for the solution of the equation (19)

x(t) = eatx0 +
t∫

0

ea(t−s)dξ(s), 0 ≤ t ≤ T ,
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we get the recurrent equation for the observations (yk) :

yk = byk−1 + ηk, k = 1, n, (20)

where b = eaT/n, ηk =
tk∫

tk−1

ea(tk−s)dξ(s) – i.i.d.r.v’s with

Eaηk = 0, σ2 := Daηk =
1
2a

(ρ2
1 + λρ2

2)[b
2 − 1].

Moreover, for this model all moments σ2m = Eaη
2m
k and their upper bounds

σ2m = sup
a≤−δ

σ2m, m ≥ 1 are exist.

Define the estimator ãn of a with a guaranteed accuracy using an estimator b̃n

of b as follows
ãn =

n

T
ln b̃n, n ≥ 1, (21)

where the estimator b̃n we construct on the basis of the LSE b̂n, obtained using the
equation (20) and Corollary 2.2:

b̃n = b̂n · χ(gn ≥ H) + Lχ(gn < H), b̂n =
fn

gn
.

Here L = [e−δT/n + e−∆T/n]/2,

fn =
1
n

n∑

k=1

ykyk−1, gn =
1
n

n∑

k=1

y2
k−1

and the number g is defined as

g =
σ2

1− b2
.

Then the estimator b̃n has all properties of the estimator λ̃N , defined in (7). In
particular, according to Theorem 1, which holds for this model for all m ≥ 1 and
µ ≥ 1, the following inequalities

sup
a≤−δ

Ea(b̃n − b)2m ≤ C∗
1 (m)
nm

+
C∗

2 (µ)
nµ

, n ≥ 1 (22)

for an arbitrary µ > m and 0 < H ≤ σ2 hold, where

σ2 =
1
2δ

(%2
1 + λ%2

2)[1− r2], r = e−δ

and numbers C∗
1 (m), C∗

2 (µ) are known.
From (21) and (22) it is easy to verify the following property of estimators ãn for

every µ > m ≥ 1 :
sup

a∈[−∆,−δ]
Ea(ãn − a)2m ≤

≤ (nT−1e∆T/n)2m
{

C∗
1 (m)
nm

+
C∗

2 (µ)
nµ

}
, n ≥ 1. (23)
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3.4 Non-parametric estimation of a logarithmic density derivative

Consider the problem of estimating the logarithmic derivative

Ψ(t) = f ′(t)/f(t)

of a distribution density f(t) of the i.i.d. noises ξn in the model

xn = λxn−1 + ξn, n ≥ 1. (24)

It is assumed, that (ξn)n≥1 is a sequence of zero mean random numbers with finite
(for some even number κ ≥ 1) moments σ2(2κ+1) = Eξ

2(2κ+1)
n , as well as Ex

2(2κ+1)
0 <

∞ and |λ| < 1.
We will suppose that the function f(t) ∈ Φ, i.e. satisfy the following conditions

0 < cf ≤ f(t), sup
s∈R1

f(s) ≤ Cf

and for some L > 0 and γ ∈ (0, 1)

|f (1+2κ)(x)− f (1+2κ)(y)| ≤ L|x− y|γ .

The knowledge of Ψ(t) is important in various statistical problems. In particu-
lar, it is needed when: constructing the algorithm of optimal control of an autore-
gressive process; estimating of a regression curve; testing close hypotheses. These
problems are of a peculiar interest in the case of dependent observations: for ex-
ample, the logarithmic derivative of a density is used when forming the optimal
algorithms of nonlinear filtering and adaptive control of random processes (see, e.g.,
[Dobrovidov et al.(2012), Vasiliev et al.(2004)] and references therein).

We will construct estimators of f(t) and f ′(t) using the following estimators ξ̂n

of noises ξn in (24):
ξ̃n = xn − λ̃n−1xn−1, n = 1, N, (25)

where λ̃n is the estimator defined in (7).
For estimation of the parameter λ with a guaranteed quality we have to know that,

e.g., θ ∈ Θ, where Θ = {θ = (λ, σ2, σ2(2κ+1)) : |λ| ≤ r, 0 < σ2 ≤ σ2, σ2(2κ+1) ≤
σ2(2κ+1)}, r ∈ (0, 1).

As an estimator of the ratio Ψ(t) from the observations (xn)n≥1, one can take
the ratio of statistics f̂

(1)
N (t) and f̂N (t) of the form

f̂
(s)
N (t) =

1
Nhs,N

N∑

n=1

K(s)
a

(
t− ξ̃n

hs,N

)
, s = 0; 1, (26)

where K(s)(z) are kernel functions, h = (hs,N )N≥1 are sequences of positive num-
bers, s = 0; 1.

Estimators like (26) of the density and its derivatives from observations (25) were
considered in [Dobrovidov et al.(2012), Vasiliev et al.(2004)], Section 4.1, where it
was shown that we can establish asymptotic normality and convergence with prob-
ability one for estimators

Ψ̂N (t) = f̂
(1)
N (t)/f̂N (t). (27)
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The results on asymptotic ratio estimation of the partial derivatives of the noise
distribution density in multivariate dynamic systems are given in [Vasiliev et al.(2004)],
Section 5.1. (see [Dobrovidov et al.(2012)] as well).

To obtain estimators of Ψ(t) with a known MSE we apply Theorem 2.1.
Define the estimator

Ψ̃N = Ψ̂Nχ(f̂N (t) ≥ H), N ≥ 1.

By the definition (25), the estimators ξ̃n can be represented in the form

ξ̃n = ξn + (λ− λ̃n−1)xn−1, n = 1, N.

Using properties of estimators λ̃n, defined in (7), we can find the known numbers
C1 and Cm, such that

sup
Θ

N∑

n=1

Eθ(λ− λ̃n−1)2mx2m
n−1 ≤

{
C1 log N, m = 1,
Cm, m > 1.

(28)

Similar relations where obtained in [Dobrovidov et al.(2012), Vasiliev et al.(2004)].
Then, using technique of Theorems 4.3.1 and 5.1.3 from [Dobrovidov et al.(2012),
Vasiliev et al.(2004)] and (28), by appropriate chosen kernels in (26), we can find
known numbers Ci,1 and Ci,2, i = 0; 1, such that

sup
Θ,Φ

Ef (f̂N (t)− f(t))2 ≤ C0,1

Nh0,N
+ C0,2h

2κ
0,N ,

sup
Θ,Φ

Ef (f̂ ′N (t)− f ′(t))2 ≤ C1,1

Nh3
1,N

+ C1,2h
2κ
1,N .

Then it is natural to put

h0,N =

(
C0,1

2κC0,2

) 1
2κ+1

N− 1
2κ+1 ,

h1,N =

(
3C1,1

2κC1,2

) 1
2κ+3

N− 1
2κ+3

and for obviously defined numbers C̃0 and C̃1, we have

sup
Θ,Φ

Ef (f̂N (t)− f(t))2 ≤ C̃0N
− 2κ

2κ+1 ,

sup
Θ,Φ

Ef (f̂ ′N (t)− f ′(t))2 ≤ C̃1N
− 2κ

2κ+3 .

It gives a possibility to apply Theorem 2.1 (taking into account Corollary 2.1) to
estimation of Ψ(t) for H ∈ (0, cf ) with a known upper bound:

sup
Θ,Φ

Ef (Ψ̃(t)−Ψ(t))2 ≤ C̃1N
− 2κ

2κ+3 + C̃0N
− 2κ

2κ+1 . (29)
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4 Conclusion

We have presented a truncated modification of basic ratio type estimators con-
structed by dependent samples of finite size. This method gives a possibility to
obtain estimators with a guaranteed accuracy in the sense of Lm-norm, m ≥ 2 (3)
on a time interval of a fixed length.

As an illustration, parametric and non-parametric estimation problems are con-
sidered. The presented method was applied to estimation of parameters of a linear
autoregressive and a non-linear ARARCH-type process, as well as to estimation of
a parameter of a non-Gaussian Ornstein-Uhlenbeck process by discrete-time obser-
vations (see properties (10), (11), (23), (16), (17), (18)).

Moreover, the estimators with a guaranteed accuracy in the mean square sense
of a logarithmic derivative of noises density of an autoregressive process with an
unknown dynamic parameter was investigated, see (29).

The presented method will be applied in the future to parametric and non-
parametric estimation problems for multivariate dependent samples.

Truncated estimation method will be developed in adaptive problem statement
for an unknown number g (see Theorem 2.1).
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[Küchler and Vasiliev(2010)] U. Küchler and Vasiliev V. On guaranteed parameter
estimation of a multiparameter linear regression process. Automatica, Journal
of IFAC, Elsevier, 46, 637-646, 2010.

[Liptser and Shiryaev(1977)] Liptser R.Sh. and Shiryaev A.N. Statistics of random
processes. I: General theory. N. Y.: Springer-Verlag, 1977. II: Applications.
N. Y.: Springer-Verlag, 1978.

[Malyarenko(2010)] Malyarenko A.A. Estimating the generalized autoregression
model parameters for unknown noise distribution. Automation and Remote
Control, 71 (2), 291-302, 2010.

[Politis and Vasiliev(2012a)] D. N. Politis and V.A.Vasiliev. Sequential kernel esti-
mation of a multivariate regression function. Proceedings of the IX Interna-
tional Conference ’System Identification and Control Problems’, SICPRO’12,
Moscow, 30 January – 2 February, 2012, V. A. Tapeznikov Institute of Control
Sciences, pages 996-1009.

[Politis and Vasiliev(2012b)] D. N. Politis and V.A.Vasiliev. Non-parametric se-
quential estimation of a regression function based on dependent observations.
Sequential Analysis, pages 1-26, 2011 (submitted).

[Fourdrinier et al.(2009)] Fourdrinier D., Konev V. and Pergamenshchikov S. Trun-
cated sequential estimation of the parameter of a first order autoregressive
process with dependent noises. Mathematical Methods of Statistics, 18, 1,
43-58, 2009.

[Vasiliev et al.(2004)] V.A.Vasiliev, A.V.Dobrovidov and G.M.Koshkin, Non-
parametric estimation of functionals of stationary sequences distributions.
Moscow.: Nauka, 2004 (in Russian).

[Vasiliev(1997)] Vasiliev V.A. On Identification of Dynamic Systems of Autoregres-
sive Type. Automat. and Remote Control, 12, 106-118, 1997.

[Vasiliev and Koshkin(1998)] Vasiliev V.A. and Koshkin G.M. Nonparametric Iden-
tification of Autoregression. Probability Theory and Its Applications, 43 (3),
577-588, 1998.

[Wald(1947)] Wald A. Sequential analysis. N. Y.: Wiley, 1947.

15


