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Andreas Schröder · Andreas Byfut · Raffael Joliet · Tobias Surmann

Received: date / Accepted: date

Abstract This paper presents an hp-finite element ap-

proach for the simulation of heat diffusion and ther-

moelastic deformation in the NC milling process. Vary-

ing complex shapes resulting from the material removal

are taken into account via a removal-dependent mesh

refinement that relies on the isotropic bisection of hex-

ahedrons intersecting the geometry of the milling tool

in contact. To represent the cutting surface more accu-

rately, the hexahedrons at the cutting surface are fur-

ther subdivided into tetrahedrons, pyramids and prisms.

To avoid the involved application of higher-order shape

funtions on these shapes, and to enable the exclusive
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use of tensor product shape functions on hexahedrons,

a fictitious domain approach is used. Numerical exper-

iments show the applicability of the proposed method.
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1 Introduction

In the roughing process of the NC milling (see Figure 1),

there is a significant amount of heat induced into the

workpiece due to the conversion of energy during the

chip formation process, which results in a global ther-

moelastic deformation. These distortions remain present

in the subsequent finishing process. As the NC paths

are usually generated purely geometrically, the tool po-

sition is independent from the expansion state of the

workpiece which may consequently cause a strong devi-

ation of the workpiece surface from its designed shape

after cooling down. Consequently, critical fabrication

tolerances may be exceeded. In order to take counter-

measures, it is necessary to know the thermomechanical

deformation. Purely geometric simulation systems that

predict collision situations and general geometric errors

are already commercially available, but do not solve this

kind of problem.

The aim of this paper is to present a finite element

approach for the simulation of heat diffusion and ther-

moelastic deformation during the NC milling process

for varying geometrically complex shapes resulting from

the material removal during the NC milling. This al-

lows for predictions on possible deviations between the
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Fig. 1 Workpiece and milling cutter during the roughing process.

designed and the produced shape. The finite element

approach is based on a removal-dependent mesh refine-

ment for the workpiece. The mesh refinement relies on

the isotropic bisection of hexahedrons intersecting the

geometry of the milling tool in contact. The hexahe-

drons at the cutting surface are further subdivided to

represent this surface more accurately. This is done by

the removal of vertices from hexahedrons that are cap-

tured by the milling tool. The resulting polyhedrons

are then further subdivided into tetrahedrons, pyramids

and prisms. Hexahedrons completely captured by the

milling tool are removed from the workpiece mesh.

Heat diffusion and thermoelastic deformation are of-

ten modeled by linear thermoelasticity [1,10,19] which

is also used in this paper. The varying geometry of the

workpiece is taken into account in presented model of

thermoelasticity, more precisely, in its variational for-

mulation. Furthermore, it is assumed that heat is only

induced by the milling tool. It diffuses into the inte-

rior and eventually balances with the ambient temper-
ature at the boundary. Well-established Newmark and

Crank-Nicholson finite difference schemes are applied to

discretize the hyperbolic and parabolic contributions of

the variational equations in temporal direction, cf. [13].

A finite element approach is used to discretize the re-

sulting semi-discrete system in spatial direction. This

is directly done on the removal-dependent mesh of the

workpiece. To increase the quality of the approxima-

tion, hp-finite elements are applied [2,5,11,17]. To avoid

the involved application of higher-order shape funtions

on tetrahedrons, prisms and in particular pyramids,

and to enable the exclusive use of tensor product shape

functions on hexahedrons, a fictitious domain approach

is used which is similar to that proposed in [7,12] for

the finite cell method. In the approach presented here,

the computational domain is covered by a hexahedron

mesh and is directly used as the finite element mesh.

Similar to the XFEM, the cutting surface is directly in-

corporated into the finite element discretization space.

This is done by the multiplication of the tensor product

shape functions with a characteristic function which is

defined elementwise employing the subtriangulation of

hexahedrons into tetrahedrons, prisms and pyramids.

This method is equivalent to the use of a weighted

L2-scalar product with the characteristic function as

a weight function.

The covering mesh is locally refined and contains

hanging nodes resulting from the refinement of hexa-

hedrons without the refinement of neighboring hexahe-

drons. Using a conforming discretization approach, we

have to ensure the finite element functions of higher-

order to be continuous across edges and faces. In the

presence of hanging nodes, this is done through the

contraint of the local basis functions via the concept

of constrained approximation and the use of connectiv-

ity matrices in the assembly process. For tensor product

shape functions on hexahedrons, this can be done very

efficiently, cf. [15,16]. Apart from the efficient incorpo-

ration of hanging nodes, tensor product shape functions

allow for an efficient evaluation of the functions them-

selves as well as their derivatives. Consequently, the el-

ement matrices can be computed very efficiently, which

is particularly true for paraxial hexahedral meshes. This

further motivates the use of the fictitious domain ap-

proach for the proposed modeling of the NC milling

process.

The approximation quality of the finite element dis-

cretization is increased by a uniform degree distribution

with degree greater one (p-method) or by using an ap-

propriate hp-adaptive degree distribution (hp-method).

A canonical hp-distribution on the mesh refinements is

to use polynomial degree one on smallest hexahedrons

and, then, to increase the polynomial degree layerwise

so that the highest polynomial degree is used on the

largest hexahedrons. This leads to a significant increase

of the approximation quality on large hexahedrons since

it is expected that the solution’s regularity is high away

from the contact area of the milling tool.

In each time step of the time stepping schemes, the

workpiece mesh is adjusted to the position of the milling
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tool and, in the case of hp-finite elements, the polyno-

mial degree distribution is adapted as well. The data

transfer from the previous to the current finite element

mesh is done via an L2-projection. Again, a weighted

L2-scalar product based on the characteristic function

of the workpiece mesh is used. This approach allows for

the removal of heat due to the removal of material from

the workpiece in a natural way.

The remainder of this paper is organized as follows:

In Section 2, the removal-dependent mesh refinement

for the workpiece is presented. The modeling of heat dif-

fusion and thermoelastic deformations of the workpiece

with linear thermoelasticity is described in Section 3.

The modeling of the heat input at cutting surface is

introduced in Section 4. The spatial discretization with

hp-finite element methods and a fictitious domain ap-

proach as well as the L2-projection with weighted L2-

scalar product are described in Section 5. Numerical

results show the applicability of the approach in Sec-

tion 6.

2 Removal-dependent mesh refinement of the

workpiece

In this section, we consider the mesh refinement of the

NC-milled workpiece with respect to the material re-

moval performed by the milling cutter. The mesh re-

finement algorithm introduced in this section computes

a meshH which approximately represents the difference

Ω\Θ of two sets Ω,Θ ⊂ R3 with Lipschitz boundary.

The set Ω is assumed to be polygonal in such a way

that

Ω =
⋃
H∈H̃

⋃
T∈S̃(H)

T. (1)

where H̃ is a mesh of hexahedrons and S̃ is a mapping

which maps each H ∈ H̃ onto a subdivision of a polyhe-

dron resulting from the removal of one or more vertices

or onto H itself. The refinement algorithm generates a

new hexahedron mesh H and a new subdivision map-

ping S so that

Ω\Θ ≈
⋃
H∈H

⋃
T∈S(H)

T.

Furthermore, it generates meshes C and D of faces (tri-

angles or rectangles) which represent the cutting sur-

face and that area of the cutting surface where the ma-

terial removal takes place.

To formally describe the refinement algorithm, we

need some preparations. To this end, let V(T ) be the

set of all vertices of a hexahedron, tetrahedron, prism

or pyramid T ⊂ R3 and U(H) be the set of the 8 hexa-

hedrons which are obtained from the symmetric bisec-

tion of the hexahedron H ⊂ R3. Let V := V(H) ∩ Θ
be the set of vertices of H which are cut. In Figure 4,

all possible distributions of those vertices are depicted

where symmetric vertex distributions are omitted. The

removal of the vertices given by V from H is done in

following way: A vertex V ∈ V is cut by the removal of

the convex hull of this vertex and those vertices which

are adjacent via an edge, see Figure 4a. We continue

this procedure for the remaining polyhedron. This is

done until a polyhedron is obtained which does not con-

tain vertices indicated to be cut. The removal process is

given by the Algorithm 1 where adj(V, P ) denotes the

adjacent vertices to V ∈ V in the polyhedron P and

conv(M) denotes the convex hull of the set M ⊂ R3.

The input data is a hexahedron H and the set V. The

output is a convex polyhedron P = P (H,V).

Algorithm 1 Vertex removal.
P := H
R := V
A := ∅
while R 6= ∅ do

if R∩A 6= ∅ then
V ∈ R ∩A

else
V ∈ R

end if
R := R\{V }
P := (P\ conv({V } ∪ adj(V, P ))) ∪ conv(adj(V, P ))
A := adj(V, P )

end while

Remark 1 Adding the convex hull of the adjacent ver-

tices in Algorithm 1, we ensure that the face spanned by

these vertices remains in the resulting polyhedron. Fur-

thermore, the use of the set A of the adjacent vertices of

V guarantees that conv(adj(V, P )) is always contained

in a plane. An example can be seen in Figure 2(e) where

Algorithm 1 would fail if this precaution is ignored.

We subdivide the resulting polyhedron P (H,V) into

tetrahedrons, pyramids and prisms as examplarily de-

picted in Figure 3 and set S(H,V) to this subdivision.

Note that the subdivision is, of course, not unique. The

particular cases V = ∅ and V = V(H) are specified by

S(H, ∅) := {H} and S(H,V(H)) := ∅. Moreover, we

define the set C(H,V) as the set of faces of the sub-

division S(H,V) which are uncovered by the removal,

cf. Figure 4. This set depends on the dimension of the
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(a)

... as in (a) ...
(b)

... as in (a) ...
(c)

... as in (c) ...
(d)

(e)

Fig. 2 Removal of vertices by Algorithm 1. Vertices to be cut are marked by a circle.

(a) (b) (c)

Fig. 3 Subdivisions S(H,V) of the hexahedron H into tetrahedrons, prisms and pyramids. The polyhedron marked by red
color is removed. This corresponds to the removal of the following vertices given by V: (a) the top, front, left vertex is removed,
(b) both top, left vertices are removed, (c) all top vertices but the top, front, left vertex are removed.

polyhedron P (H,V) and is given by

C(H,V) :=


F(H◦ ∩ ∂P (H,V)), dimP (H,V) = 3

F(∂H ∩ P (H,V)), dimP (H,V) = 2

∅, otherwise

where dim(M) denotes the dimension of the linear hull

of the set M ⊂ R3 and F(M) is the set of faces of M ,

if M is a subset of the boundary of a polyhedron. Note

that C(H, ∅) = C(H,V(H)) = ∅. We define the set of

faces F ′(H) of the subdivision S(H) of the hexahedron

H ∈ H̃ by

F ′(H) :=
⋃

T∈S(H)

F(∂T ). (2)

The input data of the refinement algorithm 2 are

the hexahedron mesh H̃, the mapping S̃ and the set C̃
containing the faces at the cutting surface as well as the
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(a) (b) (c)

(d) (e)

(f) (g) (h)

Fig. 4 Grey faces indicates the faces in C(H,V) of the subdivision S(H,V). The removed vertices are marked by a circle: (a)
one vertex, (b) two vertices, ..., (h) eight vertices

set Θ ⊂ R3 and a minimal hexahedron length d > 0.

The maximum length of the hexahedron H is denoted

by `(H). The output is the new hexahedron mesh H
and the set D containing the faces in the contact area.

Moreover, the mapping S̃ and the set C̃ are updated to

S and C, respectively.

Remark 2 The initial determination of the set R in Al-

gorithm 2 can be done very efficiently by collision de-

tection algorithms based on octree data structures. The

introduction of the vertices set N prevents the use of

vertices which are already cut.

Remark 3 Algorithm 1 is executed in a preprocessing

step to determine all possible, but finite many subdivi-

sions which are tabulated in advance so that the eval-

uation of S(H,V) and C(H,V) can be done efficiently.

In the subsequent sections, we only need to deter-

mine that an element is contained in the sets C or D.

For instance, we do not need an iteration through these

sets. Hence, in the implementation of Algorithm 2, we

only have to assign an attribute to a face F ∈ C or

F ∈ D that indicates its containedness.

3 The coupled system of thermoelasticity

We apply linear thermoelasticity to model the coupling

of the deformation of the workpiece and the heat dif-

fusion and refer to the monographs [9,10,14,19] for de-

tailed overviews. We assume that the raw workpiece

is given by a paraxial cuboid Ω0 := [a1, b1]× [a2, b2]×
[a3, b3] which is, of course, often the case in milling prac-

tice. The workpiece is clamped at the closed boundary

Algorithm 2 Mesh refinement.

R := {H ∈ H̃ | ∃T ∈ S̃(H) : T ∩Θ 6= ∅}
N := {V(H)\V(T ) | H ∈ H̃, T ∈ S(H)}
H := H̃\R
C := C̃
D := ∅
for all H ∈ H do

S(H) := {H}
end for
for all H ∈ R do

C := C\F ′(H)
end for
while R 6= ∅ do

H ∈ R
R := R\{H}
V := V(H) ∩Θ ∩N
if `(H) < d then

if S(H,V) 6= ∅ then
H := H∪ {H}
S(H) := S(H,V)

end if
if C(H,V) 6= ∅ then

C := C ∪ C(H,V)
D := D ∪ C(H,V)

end if
else

if H ∩Θ 6= ∅ then
R = R∪ U(H)

else
H := H∪ {H},
S(H) := {H}

end if
end if

end while
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Fig. 5 Adaptive refinement for workpiece with isotropic hexahedron bisections for the finite element mesh and the subdivision
into tetrahedrons, prism and pyramids for the subtriangulation of hexahedrons.

part ΓD ⊂ ∂Ω0 assumed to have a positive measure.

Furthermore, let Λt ⊂ R3 describe the milling cutter

at time t ∈ I := [0, T ], T > 0, where Λ0 ∩ Ω0 = ∅.
We assume ΓD ∩ Λt = ∅ for all t ∈ I, i.e. there is no

removal at that boundary part where the workpiece is

clamped. The hull of all milling cutter positions is given

by Ξt :=
⋃t
s=0 Λ

s. Hence, the milled workpiece at t ∈ I
is Ωt := Ω0\Ξt.

Let L2(Ω0) and H1(Ω0) denote the usual Sobolev

spaces and H1
D(Ω0) := {v ∈ H1(Ω0) | v = 0 on ΓD}.

For a displacement field v ∈ H1(Ω0;R3) we specify the

linearized strain tensor as ε(v) := 1
2 (∇v + (∇v)>) and

the stress tensor of Hooke’s material law as σ(v) :=

2µε(v)+2 tr ε(v)I with the identity tensor I and Lame’s

contants λ and µ. The heat flow is given by −k∇θ for

a heat distribution θ ∈ H1(Ω0) with heat conductivity

k > 0.

We consider the following problem of thermoelastic-

ity: Find a deformation field u and a heat distribution

θ with u(0) = u̇(0) = 0 and θ(0) = θ0 in Ω0 such that

ρü(t) = div(σ(u(t)) +mθ(t)I) on Ωt, (3)

cθ̇(t) = −k div∇(θ(t)) +mθ0 tr ε(u̇(t)) on Ωt, (4)

σn(u(t)) = 0 on Γ tN , (5)

∂n(θ(t)) = g(t) on Γ tN (6)
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for almost all t ∈ I. Here, θ0 ∈ R is an initial constant

heat distribution, m is the stress-temperature modulus,

c is the specific heat and ρ is the density of the work-

piece. Furthermore, n denotes the vector-valued func-

tion describing the outer unit normal vector with re-

spect to the Neumann boundary part Γ tN := ∂Ωt\ΓD.

We set σn,i := σijnj and ∂n := (∂/∂xi)ni.

The function g(t) ∈ L2(Γ tN ;R3) model the heat in-

put on Γ tN at time t ∈ I, cf. Section 4. Note that no

volume or surface forces are included in (3)-(6) so that

deformations only result from thermal stresses. Further-

more, no interior heat sources are assumed so that heat

is only induced by g(t) on the boundary Γ tN . For sim-

plicity, we assume that m, c and ρ are positive con-

stants.

In the case that the coupling of the heat distribu-

tion to the strains is neglectable, the coupling term

θ0m tr ε(u̇(t)) in (4) can be omitted. Hence, we obtain

the parabolic heat equation

cθ̇(t) = −k div∇(θ(t)) on Ωt (7)

instead of (4). If acceleration effects are irrelevant, we

obtain the quasi-static equilibrium equation

0 = div(σ(u(t)) +mθ(t)I) on Ωt (8)

which substitutes the hyperbolic equation (3). These

model simplifications lead to a decoupling of the heat

distribution from the deformation field and facilitate

the discretization of the problem since only the parabolic

heat equation has to be discretized in time. We refer

to the monograph [1] for more detailed explanations,

in particular, with respect to further justifications of

model reductions.

To apply discretization schemes based on finite ele-

ments, it is necessary to reformulate (3)-(6) in terms of

variational equations. For this purpose, let (·, ·)0,ω de-

note the usual L2-scalar product on L2(ω), L2(ω;R3)

and L2(ω;R3×3), respectively, and define

V := W 2,∞(I;L2(Ω0;R3)) ∩ L∞(I;H1
D(Ω0;R3)),

W := W 1,∞(I;L2(Ω0)) ∩ L∞(I;H1
D(Ω0)).

Using integration by parts, we obtain the weak formu-

lation: Find (u, θ) ∈ V ×W with u(0) = u̇(0) = 0 and

θ(0) = θ0 such that

ρ(ü(t), v)0,Ωt + (σ(u(t)), ε(v))0,Ωt

= m(div(θ(t)I), v)0,Ωt (9)

c(θ̇(t), ϕ)0,Ωt + k(∇(θ(t)),∇ϕ)0,Ωt

= mθ0(tr ε(u̇(t)), ϕ)0,Ωt + (g(t), ϕ)0,Γ t
N

(10)

for all (v, ϕ) ∈ H1
D(Ω0;R3)×H1

D(Ω0) and almost all t ∈
I. We choose the trial spaces V and W for notational

convenience. The existence of a solution is not clear,

even in the case of an unvarying geometry, i.e. Ω0 = Ωt

for all t ∈ I, cf. [8].

The model reductions given by (7) and (8) lead to

the variational formulation

(σ(u(t)), ε(v))0,Ωt = m(div(θ(t)I), v)0,Ωt

c(θ̇(t), ϕ)0,Ωt + k(∇(θ(t)),∇ϕ)0,Ωt = (g(t), ϕ)0,Γ t
N
.

(11)

instead of (9)-(10).

To discretize the variational systems (9)-(10) and

(11) in time, we split the time interval I into N subin-

tervals In := (tn−1, tn] of length kn := tn − tn−1 with

0 =: t0 < t1 < . . . < tN−1 < tN := T .

We also discretize the workpiece domain Ωtn . This

is done by Algorithm 2 where a mesh Hn is generated

in each time step tn, 1 ≤ n ≤ N . Since Ω0 is assumed

to be a paraxial cuboid, we are able to use a mesh H0 of

paraxial hexahedrons with Ω0 :=
⋃
H∈H0 H where the

simplest choice for H0 is given by H0 := {Ω0}. Obvi-

ously, it would be very involved to create a completely

new mesh at time step tn by Algorithm 2 by setting Θ

to the hull of all milling cutter positions Ξtn . In order

to reuse the refinements done in previous steps, Algo-

rithm 2 can be applied in the following way: Compute

the mesh Hn := H as well as the mapping Sn := S and

the sets Cn := C and Dn := D by setting H̃ := Hn−1,

S̃ := Sn−1, C̃ := Cn−1 and Θ := Λtn where Hn−1, Sn−1

and Cn−1 are created at the time step tn−1. For t0 = 0,

we take H0 as introduced above as well as S0(H) := H

for H ∈ H0 and C0 = ∅. The milled workpiece at time

step tn is then approximately given by

Ω̃n :=
⋃

H∈Hn

⋃
T∈Sn(H)

T. (12)

Note that Ω̃n ⊂ Ω̃n−1 and Ω̃n ⊂ Ω̂n where Ω̂n is

created by Algorithm 2 with H̃ := H0 and Θ := Ξtn .

However, Ω̃n = Ω̂n does not hold in general.

Remark 4 To represent Ω̃n within an appropriate data

structure, it is sufficient to store Hn. The access to the

subdivisions at the cutting surface can easily be handled

by the mapping Sn. The sets Cn and Dn are not used so

far. In Section 4 we need these sets to define Neumann

data on the cutting surface.

The temporal discretization of the hyperbolic equa-

tion (9) may be done by the Newmark scheme: Denot-

ing the approximation of the function w(tn) by wn, we

approximate v := u̇ and a := ü by

an :=
1

βk2n
(un − un−1)− 1

βkn
vn−1 − (

1

β
− 1)an−1,

vn := vn−1 + kn((1− α)an−1 + αan).
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Here, α and β are parameters in the interval [0, 2]. For

unvarying geometries, the choice α = 1/2 ensures sec-

ond order convergence, whereas 2β ≥ α ≥ 1 implies

unconditional stability, cf. [13].

The parabolic heat equation (10) can be discretized

in temporal direction with the Crank-Nicholson scheme,

c(θn, ϕ)0,Ω̃n +
kn
2
k(∇θn,∇ϕ)0,Ω̃n = 〈dn, ϕ〉 (13)

with

〈dn, ϕ〉 := 〈fn, ϕ〉+
kn
2
mθ0(tr ε(vn + vn−1), ϕ)0,Ω̃n ,

〈fn, ϕ〉 := c(θn−1, ϕ)0,Ω̃n −
kn
2

(k(∇θn−1,∇ϕ)0,Ω̃n

− (g̃n + ∂nθ
n−1, ϕ)0,Γ̃n

N
). (14)

where the Neumann boundary condition is given by

g̃n ∈ L2(Γ̃nN ) on Γ̃nN := ∂Ω̃n\ΓD. Applying this tem-

poral discretization to the variational formulation (11)

resulting from model reduction, we obtain

(σ(un), ε(v))0,Ω̃n = m(div(θnI), v)0,Ω̃n (15)

c(θn, ϕ)0,Ω̃n +
kn
2
k(∇θn,∇ϕ)0,Ω̃n = 〈fn, ϕ〉. (16)

Again, the temporal discretization (15)-(16) of the re-

duced model is decoupled in the sense that un depends

on θn, but θn does not depend on un. Thus, θn is com-

puted via (15) first, then it is inserted in (16) and un

is computed. The temporal discretization of the non-

reduced model given by the combination of Newmark

and Crank-Nicholson scheme is fully coupled. In each

time step, a further iteration (for instance a fix point

iteration) has to be executed to compute un and θn.

4 Modeling of heat input

The only source of heat is given by the material removal

at the cutting surface. It is modeled by the Neumann

data which also models the balancing of the workpiece’s

heat with the ambient temperature. The Neumann data

are given by the function g(t) ∈ L2(Γ tN ) for t ∈ I or g̃n,

respectively. We assume that a certain fraction µ > 0

of the mechanical cutting work W is induced into the

milled workpiece at the contact area of the milling cut-

ter. On the remaining part of the workpiece surface, the

heat is balanced with the ambient temperature. This

heat input is modeled in the non-discretized systems of

Section 3 by the Neumann data

g(t) :=

{
µ(t)W (t), on ∂Ωt ∩ ∂Λt,
a(θ(t)− θa), on Γ tN\(∂Ωt ∩ ∂Λt)

where θa ∈ R is the constant ambient temperature and

a is a further constant modeling the heat transfer to

air, cf. [18].

The Neumann data g̃n of the discretized systems of

Section 3 are specified via

g̃n :=

{
µnWn, on Γ̃nD
a(θn − θa), on Γ̃nN\Γ̃nD

where Γ̃nD :=
⋃
F∈Dn F .

Note that the boundary conditions modeling the

balance with the ambient temperature is a Robin bound-

ary condition. This has to be taken into account in the

Crank-Nicolson scheme (13), which is modified to

c(θn, ϕ)0,Ω̃n +
kn
2
k(∇θn,∇ϕ)0,Ω̃n −

kn
2
a(θn, ϕ)0,Γ̃n

N\Γ̃n
D

= 〈dn, ϕ〉 (17)

where dn is defined as in (14) and fn is redefined as

〈fn, ϕ〉 := c(θn−1, ϕ)0,Ω̃n −
kn
2

(k(∇θn−1,∇ϕ)0,Ω̃n

−(∂nθ
n−1, ϕ)0,Γ̃n

N
+a(θa, ϕ)0,Γ̃n

N\Γ̃n
D
−(µnWn, ϕ)0,Γ̃n

D
).

These modifications are also applied to the reduced

variational formulation (15)-(16).

5 Spatial discretization with hp-finite elements

and a fictitious domain approach

We apply hp-finite elements to discretize the deforma-

tion un and the temperature θn in space. For this pur-

pose, let pn : Hn → N be a polynomial degree distri-

bution, Pq be the space of polynomials with degree q

on [−1, 1]3 and, finally, ΨH : [−1, 1]3 → H ∈ Hn be

a bijective affine transformation. The hp-finite element

space Snhp is defined as

Snhp := {v ∈ H1
D(Ω̄n) | ∀H ∈ H : v ◦ ΨH ∈ Ppn}

where Ω̄n :=
⋃
H∈HH.

Let (ζi)
s
i=1 be a basis of Snhp with s := dim Snhp. For

each H ∈ Hn, there exists a matrix πH ∈ Rs×r so that

ζ|H = πHξ ◦ Ψ−1H

with the shape functions ξ := (ξi)
r
i=1 as a basis of Pq,

r := dimPq = (q + 1)3 and q := maxH∈Hn pn(H). The

matrices πH are called connectivity matrices; their con-

struction for several basis functions with varying poly-

nomial degree distribution is described in [15,16] where,

in particular, nodal basis function with Lagrange poly-

nomials as well as hierarchical basis functions with inte-

grated Legendre polynomials are discussed. Note that



hp-finite element simulation of thermoelastic deformation in NC-milling 9

(a) (b)

Fig. 6 Polynomial degree distributions for a given time step, where (a) the polynomial degrees are chosen depending on the
size of the individual hexahedrons and (b) on the distance of the individual hexahedrons from the milling cutter.

(multilevel) hanging nodes can not be avoided in the

mesh refinement proposed in Section 2. They can also

efficiently be handled with connectivity matrices. We

refer to the cited references where symmetric and, addi-

tionally, unsymmetric subdivisions of the faces are con-

cerned.

The deformation un is approximated by unhp ∈ (Snhp)3
with

unhp,i|H := x>i (πHξ ◦ Ψ−1H ), i = 1, 2, 3

and the temperature θn is approximated by θnhp ∈ Snhp
with

θnhp := y>(πHξ ◦ Ψ−1H )

and coefficient vectors x = (x1, x2, x3) ∈ R3s and y ∈
Rs.

In the following, we focus on the discretization of the

reduced model as given in (15)-(16). But, all consider-

ations can be carried over to the fully coupled system

(9)-(10) temporally discretized by the Newmark and

Crank-Nicholson scheme.

Using the connectivity matrices πH , we obtain from

the modifications of (15)-(16) as introduced in (17) the

following algebraic system:

Kx = F,

Ay = B.
(18)

The stiffness matrix K ∈ R3s×3s and load vector L ∈
R3s are defined as

K :=
∑
H∈Hn

π̂HKH π̂
>
H , L :=

∑
H∈Hn

π̂HLH (19)

with π̂H := diag(πH , πH , πH) ∈ R3s×3r and the element

matrices KH ∈ R3r×3r as well as the element vectors

LH ∈ R3r,

KH,kl := (σ(ξi′ ◦ Ψ−1H ej′), ε(ξi ◦ Ψ−1H ej))0,∆H
,

LH,k := m(div(θnhpI), ξi ◦ Ψ−1H ej)0,∆H
.

Here, k = 3(j − 1) + i, l = 3(j′ − 1) + i′, i, j = 1, . . . , r,

i′, j′ = 1, 2, 3. The unit cartesian vectors is denoted by

ej ∈ R3, and ∆H is a subset of H which is specified

below. The matrix A ∈ Rs×s and the vector B ∈ Rs
are given by

A :=
∑
H∈Hn

πHAHπ
>
H , B :=

∑
H∈Hn

πHBH (20)

with the element matrices AH ∈ Rr×r and the element

vectors BH ∈ Rr defined as

AH,ij := c(ξj ◦ Ψ−1H , ξi ◦ Ψ−1H )0,∆H

+
kn
2
k(∇(ξj ◦ Ψ−1H ),∇(ξi ◦ Ψ−1H ))0,∆H

− kn
2
a(ξj ◦ Ψ−1H , ξi ◦ Ψ−1H )0,ΥR,H

BH,i := c(θn−1hp , ξi ◦ Ψ−1H )0,∆H

− kn
2

(k(∇θn−1hp ,∇(ξi ◦ Ψ−1H ))0,∆H

− (∂nθ
n−1
hp , ξi ◦ Ψ−1H )0,ΥH

+ a(θa, ξi ◦ Ψ−1H )0,ΥR,H

− (µWn, ξi ◦ Ψ−1H )0,ΥD,H
).

and the subsets ΥH , ΥD,H , ΥR,H ⊂ H.

The fictitious domain approach is given via the def-

inition of the sets ∆H , ΥH , ΥD,H , ΥR,H ⊂ H. Using the
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mappings Sn, we set

∆H :=
⋃

T∈Sn(H)

T.

The sets ΥH , ΥD,H , ΥR,H are subsets of the boundary

Γ̃nN and are defined by using the sets Cn and Dn which

are generated by Algorithm 2. Again, F ′(H) contains

all faces of the subdivision of H given by the mapping

Sn, see (2). With

F0(H) := {F ∈ F ′(H) | F ⊂ Γ 0
N}

we define

ΥD,H :=
⋃

F∈F ′(H)∩Dn

F,

ΥR,H :=
⋃

F∈(F ′(H)∩(Cn\Dn))∪F0(H)

F,

ΥH = ΥD,H ∪ ΥR,H .

If one of the sets ∆H or ΥH , ΥD,H , ΥR,H are empty, the

corresponding L2-scalar products in the definition of

the element matrices and vectors KH , LH , AH and BH
are omitted.

Since Ω̃n ⊂ Ω̃n−1, it is possible to evaluate θn−1hp on

Ω̃n. But this necessitates the use of the different meshes

Hn and Hn−1. It is essentially more efficient to use the

mesh Hn only. For this purpose, we transfer θn−1hp to

the mesh Hn via an L2-projection yielding θ̃n−1hp ∈ Snhp
which is given by

(θ̃n−1hp − θ
n−1
hp , ϕhp)0,Ω̃n (21)

for all ϕhp ∈ Snhp. The L2-projection (21) leads to the

algebraic system

Mz = D (22)

with the mass matrix M ∈ Rs×s and the vector D ∈ Rs
defined as

M :=
∑
H∈Hn

πHMHπ
T
H , D :=

∑
H∈Hn

πHDH . (23)

The element matrices MH ∈ Rr×r and the element vec-

tors DH ∈ Rr are given by

MH,ij := (ξj ◦ Ψ−1H , ξi ◦ Ψ−1H )0,∆H
,

DH,i := (θn−1hp , ξi ◦ Ψ−1H )0,∆H
.

The main advantage of the proposed fictitious do-

main approach is that the integrals defined on ∆H and

ΥH , ΥD,H , ΥR,H have to be computed on simple shapes

given by hexahedrons, tetrahedrons, prisms and pyra-

mids as well as rectangles and triangles. This can eas-

ily be done by using a Gauss quadrature on [−1, 1]k

with k = 2, 3 and a transformation from [−1, 1]k to

T ∈ Sn(H) or F ∈ F ′(H), respectively. In the case

of hexehedrons and rectangles, this transformation is

affine linear. For tetrahedrons, prisms, pyramids and

triangles, a Duffy transformation can be used which,

however, is non-linear, cf. [6,11]. To integrate over a

pyramid, it is also convenient to use a subdivision into

two tetrahedrons.

The exclusive use of hexahedron meshes allows to

solely apply tensor product shape functions to span the

space of polynomials Pq, i.e.

ξα(i,j,k)(x1, x2, x3) = ηi(x1)ηj(x2)ηk(x3)

with polynomials ηi of degree i and i, j, k = 0, . . . , q as

well as a suitable numbering α. This structure can be

exploited for an efficient evaluation and integration of

the shape functions, cf. [11]. The element matrices of

the paraxial hexahedrons, which do not intersect the

cutting surface, can be computed by a simple scaling

of a reference element matrix on [−1, 1]3 which is com-

puted in advance in a preprocessing step. This leads

to an efficient assembling of the matrices K, A and

M , since no further integrations have to be performed

on the hexahedrons which do not intersect the cutting

surface. Moreover, the representations of K, A and M

with (19), (20) and (23) in conjunction with the pro-

posed scaling of reference element matrices enable to

solve the algebraic systems (18) and (22) by an itera-

tive scheme without storing these matrices. Only the

element matrices corresponding to hexahedrons H at

the cutting surface have to be stored and, if neces-

sary, reassembled if the polynomial degree changes, i.e.

if pn−1(H) 6= pn(H).

The Neumann data as given in Section 4 leads to

a local increase of stresses in the contact area of the

milling cutter and the workpiece. We expect that the

solution u and θ have low regularity there and high reg-

ularity away from this area. In order to obtain high (or

even exponential) convergence with hp-methods, it is

well known, that one should use small mesh sizes and

small polynomial degrees in areas with low regularity, in

contrast large mesh sizes and large polynomial degrees

should be used in areas with high solution regularity.

Algorithm 2 generates meshes with small mesh sizes at

the cutting surface, whereas the mesh size of the hex-

ahedrons is increased away from the cutting surface.

Since the contact area of the milling cutter is a part

of the cutting surface, the low regularity properties are

automatically captured by the mesh refinement. How-

ever, it is supposable that high regularity also occurs at

the cutting surface away from the contact area where,

in principle, a large mesh size with high polynomial de-

gree is preferable. Hence, we have a conflict resulting
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Fig. 7 Heat distribution in the milled workpiece

Fig. 8 Euclidian norm of the displacement field.

from the approximation quality of the surface on the

one hand and from the mesh requirements of the finite

element method on the other hand. This conflict may

be solved by coarsening the hexahedrons at the cutting

surface away from the contact area and by preserving

their subdivisions which are still used to define the sets

∆H and ΥH , ΥD,H , ΥR,H .

An obvious choice for the polynomial degree dis-

tribution pn is to choose the degree according to the

mesh size as depicted in Figure 6(a). In order to cap-

ture the probably high regularity of the solutions away

from the contact area of the milling cutter, one may
also choose the degree as a function of the distance

to the contact area, see 6(b). In both cases, it is not

clear whether these polynomial degree distributions to-

gether with the mesh refinement done by Algorithm 2

is appropriate to obtain a desired accuracy of the fi-

nite element solutions unhp and θnhp. Using an adaptive

hp-refinement strategy based on error control, one may

essentially improve the accuracy of the finite element

approximation. In literature, several hp-strategies are

proposed. However, in three dimensions, there are only

few strategies, in particular, dealing with anisotropic

mesh refinement and degree distributions. Here, we re-

fer to the hp-refinement strategies relying on projection

based interpolation techniques, [3,4,2,5].

6 Numerical experiments

In the numerical experiments, we study the heat dif-

fusion in the workpiece and the deformation resulting

from thermal stresses. The raw workpiece is represented

by Ω0 := [−20 mm, 20 mm]3; it is clamped at the bot-

tom side ΓD := [−20 mm, 20 mm]2 × {−20 mm}. The

milling cutter is described by its cylindric hull with ra-

dius 4 mm. The cutter is moved along a circular path

with radius 10 mm and center (0, 0). The depth of en-

gagement is 3 mm in the top side [−20 mm, 20 mm]2 ×
{20 mm} of the workpiece. Algorithm 2 generates the

mesh Hn with minimal hexahedron length d = 1.2 mm.

It is shown in Figure 5. In particular, the hexahedrons

at the cutting surface as well as their subdivisions are

depicted. We apply Hooke’s material law with Young’s

modulus E := 69 · 106 kg s−2 mm−1 and Poisson num-

ber ν := 0.34 which correspond to aluminium AL7075

with density ρ := 2810 · 10−9 kg mm−3. The initial tem-

perature and ambient temperature is set to θ0 := θa :=

293 K. For simplicity, we set the fraction of the mechan-

ical cutting work µW defining the heat input at the con-

tact area to µW := 300 N mm−2. We refer to [18] for the

computation of the mechanical work based on Kienzle’s

equation and the determination of the chip thickness in

normal direction of the cut. The heat conductivity is

set to k := 115 · 103 W mm−1 K−1 and the specific heat

is c := 862 · 106 mm s−2 K−1. The constant describing

the heat transfer to air is given by a := 145 kg s−3 K−1.

In Figure 7, the heat distribution given by θnhp is

shown during the NC milling process. We find that the

heat is induced at the contact area as expected and

diffuses into the workpiece. The loss of heat resulting

from the material removal is done automatically via the

removal of hexahedrons and the L2-projection which
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transfers the previous heat distribution θn−1 onto the

current mesh given by Hn and Sn. In Figure 8, the

Euclidian norm of the deformation |unhp|2 is depicted.

Again, note that the deformation results from thermal

stresses only. We observe that deformations particularly

arise in the inner circle at the top side of the milled

workpiece. A subsequent finishing process in this area

before cooling down would lead to essential deviation

of the workpiece surface from its designed shape.
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