COMPUTATIONAL SURVEY ON A POSTERIORI ERROR ESTIMATORS
FOR NONCONFORMING FINITE ELEMENT METHODS
FOR THE POISSON PROBLEM*

C. CARSTENSEN AND C. MERDON

ABSTRACT. This paper compares different a posteriori error estimators for nonconforming
first-order Crouzeix-Raviart finite element methods for simple second-order partial differ-
ential equations. All suggested error estimators yield a guaranteed upper bound of the
discrete energy error up to oscillation terms with explicit constants. Novel equilibration
techniques and an improved interpolation operator for the design of conforming approxim-
ations of the discrete nonconforming finite element solution perform very well in an error
estimator competition with six benchmark examples.

1. INTRODUCTION

The a posteriori error analysis of conforming FEM is well established and contained even in
textbooks [BS08, Bra07, AO00, Han05, Rep08]. Although a unified framework is established
[Car05], much less is known about a posteriori error analysis for nonconforming lowest-
order Crouzeix-Raviart finite element methods [Ago94, HW96, DM98, Joh98, DM98, BCJ02,
Ain04, Kim07, AR08, Bra09].

The Helmholtz decomposition allows a split of the error in the broken energy norm

llellke < n* + | Resxc 3.

The first term 7 on the right-hand side involves contributions of the data f and is dir-
ectly computable (up to quadrature errors); cf. (3.1) for an explicit representation. The
second term || Resnc ||« in the upper error bound is the weighted dual norm of some residual
which can indeed be estimated by a posteriori error estimators for Poisson problems such
as equilibration error estimators [AO00, LW04, Bra07, CM10, CDN10, Voh11], least-square
error estimators [Rep08| or localisation error estimators [CF99]; another class of possible
estimators exploits the identity
: 1/2
IResxc [l = min - [|=(Vivc ucr = Vo)ll )
v=up on 02

of [Ain04, Car05] and Theorem 3.1.b below. Those upper bounds of || Resnc ||« compute
some test functions vyy, € H*(Q) with u = up on Q2 and evaluate

[l Resnc |||« < H%1/2(VNC ucr — V Uxyz) HLZ(Q)'

Three explicit designs in Subsection 4.1-4.2 provide estimators from pa after [Ain04] and
pap2 after [Voh07, Ain08, Bra09], plus novel error estimators pnpireD(0) and ppyMrED While
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global minimisation in some discrete subspace leads in Subsection 4.3 to uyp1, uvpiRED and
HMP2-

This paper concerns the Poisson model interface problem: Given a right-hand side f €
L?(€2), the Dirichlet data up € H'(Q) and some bounded, piecewise constant diffusion
coefficient

(1.1) 0<x<xu(zx)<m<ow forae €
in the domain €, seek u € H'(Q) with
(1.2) —div(>Vu)=fin Q and uw=wup on .

The primal variable u will be discretised with nonconforming Crouzeix-Raviart FEMs on
some regular triangulation 7 of {2 into triangles.

TABLE 1. Benchmark Poisson examples and subsection references.

] Ref. \ Short name \ Problem data \ Feature ‘
7.1 | L-shaped domain | f =0,up # 0,x =1 corner singularity
7.2 | Slit domain f=Lup#0,x=1 slit singularity
7.3 | Square domain fe&P(T),up=0,2=1 | oscillations
7.4 | 3/4-Disk domain | f ¢ Po(T), up =0,c=1 | osc. & corner sing.
7.5 | Square domain f=0up #0,x #1 diffusion jumps
7.6 | Oktagon domain | f =0,up # 0,2 # 1 diffusion jumps

TABLE 2. Classes of a posteriori error estimators in this paper.

’ No \ Classes of error estimators \ Class representatives
1 | interpolation A, IMP1RED(0)s TPMRED, TIAP2
2 | minimisation IMP1, TTMP1RED(k)> "IMP2
3 | equilibration B, MW
4 | least-square TRepin
5 | localisation NCF

In this paper, the a posteriori error estimators of Table 2 compete in the 6 benchmark
problems of Table 1. The 11 error estimators also give rise to adaptive mesh-refinement
strategies with the overall experience that all lead to comparable mesh refinement that
recovers the optimal convergence rate. Numerical evidence supports the superiority of the
novel error estimator npyrep from Subsection 4.2 and nape for adaptive a posteriori error
control with efficiency indices in the range of 1.2 to 1.5. Since the overhead by 7 leads to
only little overestimation of around 15 percent, it is indeed worth to utilise a more costly and
more accurate evaluation of || Res|||.. In examples with constant coefficients, three iterations
of some preconditioned conjugated gradient scheme with initial value pypireD(0) leads to
a cheap and highly efficient error estimator pnpirED(3) close to the optimum pnp1RED(w);
in examples with discontinuous coefficients the improvement after three iterations is less
significant.

The remaining parts of this paper are outlined as follows. Section 2 introduces the neces-
sary notation and preliminaries. Section 3 presents the a posteriori error analysis. Section
4 gives details on the realisations of upper bounds of [|Resnc [[|«. Section 5 deals with
modifications in case of inhomogeneous boundary conditions. The novel application of equi-
libration techniques for a posteriori error control of nonconforming finite element methods
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is introduced in Section 6. In Section 7 all estimators of Table 2 are compared with the
six benchmark problems from Table 1. Section 8 draws some conclusions on the numerical
experiments and adds some overall remarks.

2. NOTATION AND PRELIMINARIES

2.1. Crouzeix-Raviart finite element spaces. Given a regular triangulation 7 of the
bounded Lipschitz domain € R%, d = 2,3, into triangles with edges £, nodes A and free
nodes M, the midpoints of all edges are denoted by mid(£) := {mid(E)|E € £} and the
boundary edges along 09 are denoted by £(0€) := {E € £| E < 00} while £(Q) := E\E(IN).

With the elementwise first-order polynomials P;(7), the nonconforming Crouzeix-Raviart
finite element space reads

CRYT) := {ve P(T) | v is continuous at mid(£)},
CRY(T) := {ve CRY(T) |VE € £(69Q), v(mid(E)) = 0}.

The Crouzeix-Raviart finite element space forms a subspaces of the broken Sobolev functions
HYT):={ve L*(Q)|VT € T, v|p € HY(T)} with piecewise gradient (Vncv)|r = Vv|p for
ve H'(T) and T € T. The tangential component ;(v) of some vector v € R? with respect
to some normal vector v reads

() v-(0,-1;1,0)v ifd=2,
v) =
T VXV if d =3.

2.2. Discrete problem. The discrete nonconforming formulation of Problem (1.2) employs
s € Py(T) from (1.1) and the bilinear form anc : HY(T) x HY(T) — R,

anc(u,v) := fg(%VNC u) - Vnovdr := Z JT(%VU) -Vudz.
TeT

The (broken) energy norm || - ||xc := anc(-,-)"/? is indeed positive definite on CR§(7T) x
CRY(T). The right-hand side F' : L*(Q) — R for f € L*(Q) reads

F(v) := J fodz for all ve L3(Q).
Q
The elementwise integral mean of f is denoted by
frir = ][ fdx:= f fdz/|T| forTeT.
T T
The discrete solution ucg € CR!(T) satisfies the boundary conditions ucgr(mid(E)) =
fpup ds for E € £(6Q2) and
a(UCR, UCR) = F(UCR) for all vcg € CR[I)(T)

2.3. Helmholtz decomposition. The error e = u — ucg is measured in the (discrete or
broken) energy norm |ef|nc = H%l/Q Ve eHLQ(Q). To consider d = 2,3 at the same time,

set k:=1for d =2 and k := 3 in case of d = 3. One key ingredient of the error analysis is
the Helmholtz decomposition of the error

Vnc e :=Vu—Vncucr
with the Curlv € L2(Q; R?) for some v € H(Q;R*) defined by
Curlv :=(0,—1;1,0) Vv for d = 2 and Curlv :=V x v for d = 3.
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Theorem 2.1 (Helmholtz decomposition, [GR86]). Let 2 be a bounded (simply- or multiply-
connected) Lipschitz domain. Given any p € L?(Q;RY), there exist some unique o € HE ()
and B € H'(Q;RF)/R with

np = %V a+ Curl 5.
This split is orthogonal in the sense of

J (5ep) - Vvdwzf (2Va)-Vodz foralve H(Q),
Q Q

J p - Curlwdzx :f (st Curl B) - Curlwdz for all w e HY(Q;RF).
) Q

Proof. The Lax-Milgram lemma yields a unique solution o € Hg(Q) for the first orthogon-
ality. The remainder ¢ = »(p — Va) is divergence-free. Standard results in higher analysis
such as Theorem 3.1 of [GR86] ensure the existence of § € H'(Q; R¥) with ¢ = Curl 3. An
integration by parts yields the claimed orthogonalities. O

2.4. Adaptive mesh refinement algorithm and notation. This section introduces our
adaptive mesh-refinement algorithm.

Algorithm (ACRFEM). INPUT coarse mesh To and £ := 0.
For level £ = 0,1,2,... until termination do

SOLVE discrete problem on Ty with ndof degrees of freedom.

ESTIMATE for every triangle T € T with its set of edges E(T) and the edge patch wg
compute

nr(T)? = [T Hing(T) + |72 2 H%HLI‘(WE)H[’Yt(VNCUCR)]EHiz(E)-
Ee&(T)

MARK a minimal subset My of Ty such that
0 Y m(M)?*< Y, m(T)

TeTy TeM,
REFINE T, by red-refinement of elements in My and red-green-blue-refinement of further

elements to avoid hanging nodes and compute Tpi1. od
OUTPUT Sequence of meshes Ty, T1, ... with sequence of discrete solutions.
Remark 2.2. For a proof of optimality of this algorithm refer to [Rab10, MZS10].
Remark 2.3. The remaining sections are devoted to different a posteriori error estimators
which motivate different refinement indicators 7y, (T") specified in Sections 4-6.
3. A POSTERIORI ERROR ESTIMATION FOR POISSON PROBLEMS

This section is devoted to the a posteriori error analysis of the Poisson problem and a
general reliabilty result which involves esentially two ingredients. The first one contains the
right-hand side f and the elementwise oscillations of s 1/2f,

osc(yfl/Qf7 T):= HhT%fl/Q(f - fT)HLQ(Q)’
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with the piecewise integral mean f7 and the piecewise constant mesh-size hy, hy|p := hyp :=
diam(7T) for T € T. It reads

(3.1) n:i= H%il/QfT/d (o — mid(T))HL2(Q) +1/7 osc(%*1/2f, 7).
The second ingredient derives from the dual norm of the residual
| Resnc |« := sup  Resnc(v)/|s 2 CurlvHL2(Q),
ve H(;R*)
Curl v#£0
where, for any test function v € H'(€; RF),

Resnc(v) := J

o092
Theorem 3.1. (a) Reliability of n + || Resnc ||« holds in the sense of

v -y (Vup)ds — J Vnc ucr - Curlv dz.
Q

llelike = llall® + | Resne 12 < 7% + || Resxc I3

where o € HE(Q) stems from the Helmholtz decomposition of Ve =V a + » 1 Curl 8 from
Theorem 2.1.

(b) There exists an alternative characterisation of || Resnc || «,
lIResnc [[« = min — [fucr = vl[xe < [leflnc
veH1(Q)
v=up on Q)

(c¢) Efficiency holds in the sense of
N 5 |lellRc +osc(z 2 £, T)%.

Remark 3.2. For every triangle T € T with set £(T) of edges and s? := 2uEes(T) B, it
holds

)H2 ST d!
LAT) — (d+2)(d+ 1)

This allows for a direct calculation of the leading quantity in (3.1).

| @ — mid(T

Remark 3.3. The theorem is a collection of already known results extended to inhomogen-
eous Dirichlet conditions to cover the benchmark examples. The idea to use a Helmholtz
decomposition to split up the error as in (a) dates back to [DDPV96]. The identifica-
tion of the nonconforming part of the error as a residual is due to the unified approach
[Car05]. The efficiency proof of the conforming part 7 in (c) involves bubble functions as
in [Ver96, Ain04, Bra09]. A further control of ||«|| different from the overhead term 7 is
possible with the approach in [DM98, VHS11]. It even can be rewritten as the dual norm
el = SUDye 11 (0) Res(v)/||v]| of the residual

Res(v) := J fvdx —J »xVncucr - Vvdr for v e H}(Q).
Q Q

Any known error estimator for Poisson problems can be applied to estimate the dual norm.
Since in our experiments || Res ||« is smaller than || Resnc ||+, we here concentrate on a sharp
estimation of the latter residual.

Proof. Step 1. Helmholtz decomposition. Consider first the Riesz representation e* €
HE(Q) of e with

JVe*-Vvda:zijce-Vvdx for all v e H ().
Q Q
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Theorem 2.1 implies the existence of some a € H}(Q2) and B € H'(Q;R*)/Py(Q) with
»xVnce=»xVa+ Curl 8

and, with the energy norm | - ||| := H%1/2 \% -HLQ(Q), the error decomposition
llell%c = f (>Va)-Vncedz +J Vnce- Curl Bdz = ||af? + ||~/ CurlﬁHizm).
Q Q

Step 2. Proof of ||a|| < 1. Consider the nonconforming interpolation axc € CRY(T) of a
defined by

anc(mid(E)) := ][

ads ::J ads/|E| forall E€é.
E E

An integration by parts yields

(3.2) J V(e —anc)de =0 forall TeT.
T

Notice that (3.2) yields

| V(e — OZNC)Hi2(T) B L Vol dz -2 L Ve vanedrs JT Vexel do

2 2 2
:fT|Vo¢| daz—fT|V0ch| dx < HVQHLQ(T).
This allows for the estimation of the first term

J (xVa) - Vncedr = J (%Va)-Vuda:—f (3 V anc) - VNc ucr dz
Q Q Q
ZJ fla—anc)dx
Q
= f (f = fr)(a —anc) dx +J Jr{a—anc) du.
Q Q

An integration by parts and (e — mid(7T)) - v € Py(E(T)) show
_ f (z — mid(T)) - V(a — axc) do
T

= J (a — anc) div(z — mid(T)) dz — J (a — anc)(x —mid(T)) - vds
T oT

- L d(a — axc) dz.

The orthogonality of f — fr onto Py(7T) allows the subtraction of the piecewise integral mean
vy of v := o — anc. An elementwise Poincaré inequality with Payne-Weinberger constant
diam(T") /7 [PW60, Beb03] and a Cauchy inequality in RI7! yield

| G=peds= 3 | (£ =00 =)o

TeT YT

= > hr/w|] 2(f - fT)HLQ(T)H%1/2VUHLQ(T)
TeT

< 1/m osc(s V2 £, T)|vllnc-
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The last three estimates result in

]| = L(”W Ve ds

= f (f = fr)(a—axc)dz —1/d J fr(z —mid(T)) - V(o — anc) dzx
Q Q

<o = axcll (1/m osc( 2L, T) + ||~ 2 fr/d (o = mid(T))| 120
<l

This leads to the assertion ||| < 7. O

Step 3. Proof of H%_1/2 CurlﬁHLQ(Q) = || Resnc [|«- The notation from Step 1, Theorem

2.1, some rotation of Curl, and an integration by parts lead, for any v € H'(Q;R¥), to

Resnc(v) = J

v -y (Vup)ds — J Vnc ucr - Curlv dx
oQ Q

= f (2 Vnce) - (3% Curlv) da
Q
= f (Y2 Curl B) - (3 Y2 Curlw) da
Q
—1/2 —1/2
< H% / CurlﬁHLz(Q)H% / CurlvHLQ(Q).
This implies || Resnc ||« < || /2 Curlne 8| 12(q) Moreover, v = B leads to equality. O

Step 4. Proof of

[5¢72 Curl 8] g = UEIE}I(]%J #2(Vncuor = V)| 2y
v=up on

Given any v € H(Q) with u — v = 0 on 09, Theorem 2.1 yields

H%_1/2 Curlﬁ”iz(m = J Curl 8- Vncedr = J Curl 5 - (Vncucr — V) dx
Q Q

-1/2 1/2
< | / Cuﬂﬁ“m(g)”}‘/ (VNcucr — V”)HLZ(Q)'
Therefore
-1/2 . 1/2
H% / Curl,BHLQ(Q) <vellgl¥(l§2) H%/ (VNc ucr — VU)HLQ(Q).
v=up on N

There exists a unique minimiser in the right-hand side that equals v := u — « such that
2 Vncucr — %2V = — 12 Curl 8. In fact, this is the nature of the Helmholtz
decomposition and concludes the proof. O

Step 5. Proof of ? < [|e||%+osc(s 2 f, T)2. For a proof refer to [Bra09, Lemma 1]. O

4. REALISATIONS OF UPPER BOUNDS FOR || Resnc ||«

Seven designs for v and the estimation of || Resnc ||« via (3.1) will be discussed in the
subsequent Subsections 4.1-4.3.
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4.1. Interpolation after Ainsworth. This subsection introduces the interpolation after
Ainsworth [Ain04] that designs some piecewise linear va € H'(£2) with respect to the original
triangulation 7 by averaging on node patches T(z) := {T'e€ T |z € T},

va(2) = up(z) if ze N\M,
S (ZTeT(z) sl 2UCR|T(2)) / (ZTGT(Z) s/ 2) if z€ M.

The error estimator reads

2

i =07+ || (

(VNcucr — Vva) Hi2(9)

The na-driven ACRFEM algorithm in Subsection 2.4 replaces nr (T)? by

(T 1= |72 fr/d (o = mid(T)) || oy + B3/ |37 20 = )| Loy
+ H%I/Q (VNC ucr — V UA) Hiﬂ(T)

For a proof of the efficiency of na refer to [Ain04, Theorem 6.4].

An improved interpolation from [Voh07, Ain08, Bra09] employs the auxiliary function
00 := ucr — frv/2 € Po(T) with ¢(z) := |o — mid(T)| /2— £, |y — mid(T)| dy forz € T e T
An averaging as above leads to some piecewise quadratic and continuous function vaps €

PQ(T) N C(Q)v
" up(2) if z € (M umid(€)) n 09,
vap2(2) = <ZT€’T(z) %;/2v0|T(2)) / (ZTeT(Z) %;/2> if z e (M umid(€)) \ mid(£(09)).

The napz-driven ACRFEM algorithm in Subsection 2.4 replaces ngr (7)? by

7’]Ap2(T)2 = H%71/2f7-/d (¢ —mid(7T HL2 + hT/7T2 H% 1/2 (f = fr) HL2 (T)
+ 52 (Vnc ucr — Vvaps) HLQ

4.2. Modified interpolation operator. This subsection introduces an improved inter-
polation that designs some piecewise linear vgrgp € H((£2) with respect to the red-refined
triangulation red(7). For simplicity, the design here restricts to d = 2 dimensions. A similar
design for d = 3 dimensions is more involved. The nodes of red(7) consists of the nodes N
and the edge midpoints mid(€) of 7. At the boundary the interpolation equals the nodal
interpolation of up and on all edge midpoints it equals ucg,

ucr(z) for z € mid(€)\ mid(E(02)),
vreD(2) := { up(z) for z € (N U mid(€)) n 09,
U, for z € M.

In this way, the interpolation equals ucyr on all central subtriangles like Ty in Figure 4.2
and it remains to determine the values v, at free nodes z € M. They may be chosen as in the
design of va, but we suggest to choose them locally optimal as follows. Consider the node
patch &, with respect to the red-refined triangulation as in Figure 4.1. Then minimise the
contribution H%1/2 (Vncucr — VU)HLQ@Z) amongst v € Py (red(7)) n C(&,) under the side
condition of the fixed values at the edge midpoints @); of the adjacent edges. The value v,
at z remains the only degree of freedom in this local problem. The complete error estimator
reads

1/2

MRED =1 + [|¢"% (Ve ucr — V vrED) Hiz(g)'
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P =Fs

FIGURE 4.1. Interior Patch

FIGURE 4.2. Central subtriangle T = conv{mid(&(T))}in red(T") for T € T.

The nrep-driven ACRFEM algorithm in Subsection 2.4 replaces nr(7)? by

men (1) 1= |22 fr/d (o = mid(T)|[ Loy, + /2 |20 = 57|20y
+ ||5% (Vnc ucr — V vreD) Hiz(T)-

We distinguish between the optimal version npymrED, Where v, is chosen patchwise minimal
(PM) as described above, and "\MPIRED(0) With the suboptimal choice v, as in Subsection 4.1.
This can be seen as a modification vypireD(0) Of vA at the edge midpoints.

4.3. Optimal choices. The optimal v € P;(T)n C(Q2) is attained at the solution uc of the
conforming formulation of the Poisson problem, since the nodal basis functions are included
in CRY(T) and hence

J fvodx = J (3 Vncucr) - Ve dx
Q Q
= f (%xVuc)-Vucdr for all ve € P(T) n HY Q).
Q
For comparison, we also compute the optimal vvpirep € Pi(red(7)) n C(2) on the red-

refined triangulation red(7) and the optimal piecewise quadratic vype € Po(T) n C(£).
Note that they do not have to equal the corresponding conforming solutions. To reduce
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the computational costs of vypirED One might use vypirED(0) @8 an initial guess for some
iterative solver to draw near the optimal value. We use a preconditioned conjugate gradients
algorithm and stop at the third iterate vypirep(3)- For the preconditioner we use the
diagonal of the system matrix also known as Jacobi preconditioner. The associated error
estimators n\ip1RED(0)> IMP1; IMP2; IMPIRED and nyvpirep(3) and adaptive algorithms based
on local refinement indicators 7yy, (T’ )2 are defined in the same manner as for 7.

5. INHOMOGENEOUS BOUNDARY CONDITIONS

The designs of the test function v of Section 4 illustrate that inhomogeneous boundary
data up may not be resolved exactly. Hence, let v = vp on 992 and extend the boundary
values wp = up —vp on 52 to some function wp € H'(Q) after [BCDO4]. Since wp satisfies
u— (v+wp) € HH(Q),

[Resnc l« = min  [lucr — 9Ine < JJuck — (v +wp)|Ine < [ucr — vl|ne + [lwpl-
veH(Q)
D=up on OS2

The term ||wp|| can be computed and may be of higher order for a reasonable choice of vp.

Theorem 5.1. Assume that up € H'(0Q) n C(09Q) satisfies up € H*(E) for all E € £(08)
and set vp = Zup := ZzeN\M up(z)p,. Let 6§uD/632 denote the edgewise second surface

derivative of up along 8Q. Then there exists wp € H'(Q) and some constant

w0 + hg
= TOTRE ) <
1 Ele%?g(z) (772\/2hEg) ~
(where 0 := maxyep |x — mid(Tg)| and ¢ := dist(E, mid(Tg)) of the adjacent triangle Tg of
E € £(0Q2) depend only on interior angles in T ) with

wplog =up —vp and |wpl| < Clthﬂ%lﬂag“D/aszHL2(aQ)'

Proof. The proof employs an explicit construction of wp from [BCDO04] and is repeated
here to calculate C' for guaranteed error control for d = 2. The case d = 3 allows similar
arguments. Consider a triangle T = conv{Py, P>, P3s} € T with a Dirichlet edge E :=
conv{ Py, P} € £(092). The connection between the center of gravity mid(7g) and the three
vertices of T results in three subtriangles of the same area depicted in Figure 5.1. Let Kg
denote the subtriangle of Figure 5.1 with E = 0 KgndTg. For every point z € Kg\{mid(Tg)}
there exist some unique (; € F and 0 < A\, < 1, with z = (1 — A\;) mid(Tg) + A\z(;- Then,

_ JAe(up(C) —vp(())  for € Kp\{mid(Tk)},
wD($)|KE -

0 else.
On all other triangles wp is set to zero.
Without loss of generality, we assume mid(Tg) = 0 € R2. Polar coordinates yield the
parameterisation

Kp = {z = (rcos(p), rsin(p)) [a <o < B, 0 <r < R(p) := |(ul}
where a and [ are the angles at the points P, and Ps, respectively. For x € Kg and
(x = ovg + sTp with normal vector vg, tangential vector 75 and height ¢ = dist(mid(Tg), F),
it holds R(p)? = |Gu|* = 0 + s2. Furthermore, for g(¢) := up((s) — vp(Cy), it holds
wp(z) = r/R(p)g(p) and
IV wp(r, @)* = |owp/or|* + |owp /0| /r?

= 9(¢)/R(¢))* + |R(2)d'(2) — R'g(e)|" /R ().
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Py

FIGURE 5.1. Visualisation of notation for the construction of wp in the proof
of Theorem 5.1.

The expressions

R(p) = o/ cos(¢ —x) and s(p) = gtan(p — Xx),

where Y is the angle of theperpendicular point F', depicted in Figure 5.1, yield the differentials

R'(p) = s(@)R(p)/o, () = 0/cos’(¢ —x),

_990s _ 0

9/(90) = %990 = 2s R(‘P)Q/Q-

Hence,

) 8 R(e) 9 1 (B ) 5, 9
| et as= ||V unto) P rards = 5 | o+ (5 Jo - as/2)” de.
E (¢4 «

The transformation dy = cos?(¢ — x) ds/o = 0ds/(0* + s%) yields

2] b
J g9()? dep = f 9(s)%0/(¢* + 5%) ds < /o |9| 12 y-

« a

The same transformation and the Young inequality for some A > 0 in the second summand
show

Lﬁ (R*g'/o _gS/Q)2 dp = Jb (}fgg _ gs/g)2 0/(® + s2) ds

a

b R2 [dg\? s 9
< - -~ a9 o~ .
\L(1+>\) . (as) +(1+1/)\)Q(Q2+52)g ds

The estimate s2/(o(0? + s%)) < 1/p results in

8
Ja (R%'Jo— gs/o)” dp < (1+ A) max R(¢)*/o }Iag/as}lizw) +(1+1/N)/e HgHiz(E).
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For vp := Zup the Friedrichs inequality for g € H}(E) and the Poincaré inequality for dg/ds

yield

(14 X) max,
20

_ ((1 +AN)6% (24 1/Nhg

=\ 2hpm2o 270

2+1/A
20

/A

R 2
JK ]pr(x)\2 dx (©) Hag/aSHQm(E) + HQHEQ(E)
E

) UL 0705

Elementary calculations lead to the optimal A = hg/(7d) and the claimed constant C;. Since
» € Py(T) is constant on Kp < T it acts as an global constant that can be easily multiplied
to both sides. This concludes the proof. O

Remark 5.2. For right isosceles triangles and optimal A numerical calculations suggest the
constant C = .6388. If v|5q is the nodal interpolation of up on the red-refined triangulation,
wp can be designed on the red-refined triangulation with halfed edge lengths and the constant
reduces to C} = .6388/2%/2 = .2258.

Remark 5.3. Due to the inhomogeneous boundary conditions all error estimators nzyz in
Section 4 have to be replaced by

3/2 2
772 + <H%1/2 (VNC UCR — vnyz) HLQ(Q) + Ch th/ %l/zaguD/aS2HL2(aﬂ))
The refinement indicators 1y, (T)? are accordingly replaced by

3/2 2
Ny2(T)? + 012Hh€/ %1/2a§uD/aSQHL2(aTmaQ)‘

6. EQUILIBRATION ESTIMATORS

This section concerns the application of equilibration techniques known from Poisson
problems to compute upper bounds for || Resnc ||« At this point we only discuss the case
d =2 and k =1 as the modifications to d = 3 are more involved.

6.1. Introduction of equilibration. Given some ¢ € H(div,{2), an integration by parts
leads, for any v € H'(Q), to

Resnc(v) = J v % (Vup)ds — f Curlyc ucr - Vodz
o2 Q
(6.1) = J diqud:v—i—f v(%(Vup) —q-v) ds—l—J (¢ — Curlyc ucr) - Vode.
Q o0 Q

A careful but straightforward estimation of (6.1) proves the following a posteriori error
control. The Friedrichs constant is given as

CF = Sup{HfHLZ(Q) L feHy(Q) & HVfHL2(Q) = 1}'
Theorem 6.1. Given q € H(div, ) with
(6.2) JE(%(VUD) —q-v)ds =0 forall E€&(0N)
and Cy := /2/(dr) + 1/7% max geg(aq) diam(wg)/ lwg| Y2, it holds
[l Resnc [+ < Crl[5 div || 2 gy + [|%(g — Curlnc ucr)| g

+ Ca|(he )" (1(Vup) — g ) L2(a0)
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Proof. Set g := v(Vup) — ¢ - v and select one adjacent triangle Wg := conv{{P} u E} for
every boundary edge E € £(89Q). Given v € HY(Q), fix vg := wa vdz. The trace identity
(from an integration by parts and div(z) = d) reads

2
o= v = JE@_UEWS
_ 1Bl
wE|

—v 2 X |E’ T — . v—v 2 X
0 -v)de+ g | (= P) V(0 - )

It holds
J (x — P)-V((v —vg)?) dr < 2diam(wg) J (v—vg)V(v—vg)dx

wWE

<2diam(wE)H”—UEHL2 HV I

(wg) L2(wEg)"

Together with a Poincaré inequality this yields
2 . 2
v — UEHL2(E) < diam(wg)? |E|/ lwg| (2/(dr) + 1/7%) || VUHL2(
We use §,gds =0 for E € £(0Q) to estimate the second term in (6.1) by

_ j (v - vp)

EeE(09)

D et P Eea e CRe o)) e,
BeE(09)

< C2H(h5%)1/2(7t(qu) —q- V)HLQ(aQ) H%_1/2VUHL2(Q)

< C?|E| }|WH§Z(WE).

wEg)

f (1 (Vup) — - )
o0

N

The Friedrichs inequality in the first term of (6.1) gives
J;) div g dz < Crl|se!/2 div || 2 g |27 290 2 -

The last two estimates plus a Poincaré inequality in the second term of (6.1) conclude the
proof. O

Equilibration estimators techniques for Poisson problems [AO00, LW04, Bra07, CM10,
CDN10, Vohl1], least-square methods [Rep08] or mixed methods [GR86, Bra07] compute
q € H(div, Q) where

q-v =~y (Vup) along 09

acts as Neumann boundary conditions on ¢. The particular choice ¢-vg|g := f5z %(Vup) ds
for FE € £(09) leads to boundary oscillations of /2~ (Vup),

OS‘C(J{I/2 ’Yt(qu)7 g(aQ)) = H (hg%)1/2(7t(qu) —q- VE) HL2(6Q)’
Three possible designs are given in Subsections 6.2-6.5.

Remark 6.2. For triangulations that consist only of rectangular triangles, it holds Co <
1/m + 1/m? = 1.2956. This constant is used for all numerical computations of Section 7.

Remark 6.3. To guarantee the solvability of local problems for certain a posteriori error
estimators one has to check that the nodal basis functions ¢, for all z € A/ (also the nodes at
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the boundary to impose Neumann conditions on ¢ at the Dirichlet boundary) are included
in the kernel of Resyc. In fact, an elementwise integration by parts shows

Resnc(pz) = f ¢, - v (Vup) ds — J Vucg - Curl g, dx
o0 Q

= 2 J uDCurlgoz-l/ds—J ucgr Curl p, - vy ds
Ter Joaner oT

Z Z (][ up ds — ucr(mid(E )J Curl ¢, - v ds.
ONE

TeT Ee&(T)

All contributions on inner edges are zero, because ucg is continuous in edge midpoints,
Curl g, - v = 0 along dw,, and Curl ¢, has no normal jumps. Since

ucr (mid(E)) = ][ upds for all E € E(0Q),
E

the contributions on boundary edges £(02) vanish. Hence Resnc(p.) = 0.

6.2. Equilibration after Luce and Wohlmuth. The technique by Luce and Wohlmuth
[LW04] employs the dual triangulation 7* which connects each mid(T") with adjacent nodes
and edge midpoints and so devides every T'e T into (d + 1)! triangles of area |T'| /6.

Consider some node z € N(T) and its nodal basis function ¢} with the fine patch w} :=
{3 > 0} of the dual triangulation 7* and its neighbouring triangles 7*(z) := {T* € T* |z €
N*(T*)} and adjacent edges £*(z) = {E € £*|z € E}. Since Curlncucr € Po(T;R?) is
continuous along dws NT for any T € T, q-v = Curlyc ucr - v € Po(E*(0w?})) is well-defined
on the boundary edges £*(0w?) of w}. The original Luce-Wohlmuth design does not involve
Neumann boundary conditions, but they may be easily included by some interpolation g* €
Py(E*(092)) of (Vup) defined by

9 g = 2J 0. w(Vup)ds /|E| for ze N(0Q),E € £E*(dw,) n E*(2).
E
This leads to the bound
LQ(%(VUD) g*)vds < Col|(hes)*(%(Vup) — 9| 200 10

with the calculated constant C5 from Remark 6.2. The modified Luce-Wohlmuth estimator
similar to [Voh11] computes the minimiser

vl = s [0 = )
TheQ(T*(2)) :
in the set
Q(T*(z)) := {Th € RTy(T* (= ‘ divr, =0 in w} & 73, - v = Curlyc ucr - v along dw;\oS2

& 11, - v = g* along dw} N 69}.
The Luce-Wohlmuth error estimator reads

1/2

2
77LW = 77 + <H%1/2 qLw — CurlNc UCR)HLQ(Q) + CQH(hg%) (%(Vup) — qLwW Z/)HLQ(aﬂ)) .

The nrw-driven ACRFEM algorithm in Subsection 2.4 replaces nr(T)? by
mw (1) := |[3 2 fr/d (o = mid(T)|[ 2y + /7 22 = 7)oy

+ ||5*(quw — Curlyc ucr HLz +02|| he o) ((Vup) — quw - v HiQ(aTm?Q)‘
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6.3. Equilibration after Braess. Braess [Bra07] designs patchwise broken Raviart-Tho-
mas functions r; € RT_1(T(2)) := {q € L*(w:) | q|r € RTy(T) for any T € T(z)} that satisfy
divg, =0,

[72 - vElp = —[Curlnc ucr - vE|E/2 on E e &(z) n E(0N),
rev=_0 along 0w \E(09),
T,V = f 01 (Vup)ds along dw, N E(0N).

E

The solution r, of these problems is unique up to multiplicatives of Curl ¢, and may be chosen
such that H%l/ 2r, ) is minimal. Eventually, the quantity g := Curlnc ucr + 2 ,ep 7= €

RTy(T) satisfies

HLQ(w

| 1 (Vup) — g8 - VHLg(aQ) < Chose(3e? 4 (Vup), E(0)).
The estimator reads
ng o= 0" + ([[%(g8 — Curlyc ucn)|| o q) + C2 0se(/2 1(Vup), £(60)))".

The np-driven ACRFEM algorithm in Subsection 2.4 replaces ng (T)? by

nB(T)? i= || 2 fr/d (o = mid(T)) ||y + /7> 567 2(F = £ 2y

+ H%1/2 (¢ — Curlyc ucr HLQ(T) + O3 osc(5'/? 'yt(VuD),E( ) E(69Q))%

6.4. Least-square estimator after Repin. Following Repin [Rep08], we seek the best
qRepin € RTo(T") with (6.2) and a priori unconstrained divergence via a series of least square
problems that minimises

qe]r%%“ior(lT) (CFH div qHLZ(Q) + H%1/2 QRepin — Curlnc UCR) HLQ(Q)> ,

avlea=(v(Vup))e@)

with Friedrichs’ constant Cr := sup,ep\ o} HUHLQ(Q)/\HMH (or any upper bound of it). See

[Val09] for details on the following algorithm for the computation of ¢r¢. For any 5 > 0, the
Young inequality yields

2
(H%1/2(QRepin — Curlne ucr)|| 2y + Cr | dival| 2 Q))

1+/8 H% QRepln_CurlNCuCR HL2 +CF(1+1/5 HdlquL2 ::M(’B’q)'
Therefore,
I Resyell. <mip min  M(3,q)""

and we now have to minimise the quadratic functional M(f3,q). For some fixed ¢ the optimal
choice for S is

Crl| ddiHLQ(Q)

(6.3) 8=

H%I/Q(qRepin — Curlnc ucr) HL2(Q) .

Given an initial 8 > 0, compute the optimal gz € RTy(T). Then, use (6.3) to update S for the
next minimisation of gg. After three iterations we arrive at (some very good approximation
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of) grepin- The estimator reads

g = 1+ (Cr 208 gy + i — Corc i)
+ Cy0s¢(3¢'% v (Vup), 5(69)))2.
The 7Repin-driven ACRFEM algorithm in Subsection 2.4 replaces nr(T)? by

MRepin(T)? = [|5¢” 2 fr/d (o = mid(T)) || gy + 12/ 1222 (f = ) | oy
+ CIZT‘H div QRepinHQLQ(T) + “%1/2(QRepin — Curlnc ucr) HiQ(T)
+ CZ osc(5 2 7 (Vup), E(T) n E(69))2.

6.5. Localisation after Carstensen and Funken. The partition of unity property of the
nodal basis functions yields the residual split

Resno(v) = )| Resno(#:v)
zeN

and since Resnc(p,) = 0 for 2 € A there exists an unique solution w, € W, := {v € Hlloc(wz) ‘
H”il/Q‘PiﬂVQ}HB(wZ) < 0} /R such that

(6.4) J 0. (3 'Vw,) - Vodr = Resnc(p,v)  for all v e W,.

It holds (see [CF99])

1/2
| Reswe ||+ < (;f}lz‘l/%i/zw\\;(wz)) :

In the actual computations, the local problems (6.4) are solved with fourth-order polynomi-
als. The final error estimator reads

e HR D S PPl 2 S
ZEN

The ncp-driven ACRFEM algorithm in Subsection 2.4 replaces nr(7)? by

e (D) = | V2 7 d (o = mid(T) | gy + B/ 620 = )|y

_ 2
+1/3 Z |2 1/2g0i/2szHL2(wz).
2eN(T)
6.6. Link between interpolation and equilibration. The interpolation error estimators

from Section 4 design piecewise polynomial interpolations v € P;(7T)nC(Q) of ucr. However,
the rotation of their gradients Vv results in some divergence-free ¢ := Curlv € RTy(7T) with

lucr — v||nc = H%1/2(CurlNc UCR — Curlv)HLz(Q).

The arguments of Subsection 6.1 on equilibration techniques apply to the aforementioned
q and result in Theorem 6.1 which is equivalent to the outcome from Theorem 3.1.b for
homogeneous Dirichlet data. This explains the comparable performance of s and 7 in the
numerical experiments of Section 7.
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6.7. Further postprocessing. Some postprocessing in the spirit of [CMx3] simply replaces
q in (6.1) by g + Curlw for any w € H}(Q). Since Curlw is zero along the boundary and has
zero divergence, Theorem 6.1 immediately leads to

[l Resnc [+ < CFH%1/2 div qHL2(Q) + H%l/Q(q — Curlnc ucr — Curlw)HL2(Q)
+ Ca|(he )" (1(Vup) = ¢+ 1) 1250)-

The design of w employs the red-refinement 7 := red(7) (or the dual mesh 7 := T* in case
of grw) and approximates

argmin, c p 3 o)k H%1/2(q — Curlyc ucr — Curl w) HLQ(Q).

Following our experiences from [CMx3], we use a Jacobi-preconditioned cg scheme with
initial value 0 and stop after one single iteration. This defines some w®) and

2
nzyz(m) = 7]2 + (H%I/Q(quz — Curlyc ucr — Curlw(l))HLQ(Q) + 77Db)

(with some non-changing contribution 7npy that reflects the influence of the inhomogeneous
boundary conditions) or, for 7 = T*,

By = 1+ (2w — Curlyc o — Curtuw®)|| g,
+Gs|(he30) V2 (3 (Tup) = a1 - )| 2 o0) ™

Since the quantity ¢ = CurlvypirRED(w0) 18 already the best-approximation amongst Curl(
Pi(red(T)) nC(Q)), nvpiRED(w) acts as a lower bound for all postprocessed quantities based

on ¢ € RTy(red(T)) and 7 = red(T). Of course, more red-refinements lead to better accuracy
but also more costly computations.

7. NUMERICAL EXPERIMENTS

This section is devoted to some numerical experiments to report on the efficiency of the
estimators in the benchmark examples from Table 1.

7.1. Numerical example on L-shaped domain with corner singularity. The first
benchmark problem employs f = 0,3 = 1 and inhomogeneous Dirichlet data up given by
the exact solution
u(r, @) = r?/3 sin(2¢/3)

on the L-shaped domain = (—1,1)%\([0,1] x [~1,0]). The problem involves a typical
corner singularity and shows an empirical convergence rate of 1/3 related to the degrees of
freedom for uniform mesh refinement. Since the source term is zero, the overhead contribu-
tion n of the estimator vanishes. Adaptive mesh refinement with any described estimators
improves the convergence rate to the optimal value 0.5 (see Figure 7.3). Figures 7.1 and 7.2
compare the efficiency indices of all estimators for uniform and adaptive mesh refinement,
respectively. The efficiency indices vary between 1.1 for nype and 1.6 for na and ng. The
improved estimators mpirep(0) and npvrep perform slightly better than na for uniform
mesh refinement, but significantly better for adaptive mesh refinement. Here, the overestim-
ation decreases under 35 percent which is even better than nyp1 or fRepin. The estimator
nuw performs similar but slightly worse compared to nypirep(o). The efficiency of the error
estimator naps is even comparable to the postprocessed quantities NRepin(r,1)s MA(r,1) OF MB(r,1)
for adaptive mesh refinement.
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FIGURE 7.1. History of efficiency indices 7xy,/||e||nc of various a posteriori
error estimators 7y, labelled zyz in the figure as functions of the number of
unknowns on uniform meshes in Subsection 7.1.
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FIGURE 7.2. History of efficiency indices 7xy,/||e||nc of various a posteriori
error estimators 7y, labelled xyz in the figure as functions of the number of
unknowns on adaptive meshes in Subsection 7.1.

7.2. Numerical example on slit domain with slit singularity. Our second benchmark
problem employs f = 1, = 1 and up matching the exact solution u(r, ¢) = /2 sin(p/2) —
(1/2)(rsin(p))? on the slit domain

Q= {(z,y) € R*[ |z] + [y < 1)\ ([0,1] x {0}).
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FiGure 7.3. Convergence history of the energy error for uniform and ad-
aptive mesh-refinements in Subsection 7.1.

Figures 7.4 and 7.5 show similar efficiency histories of the estimators as in the first Ex-
ample. The large pre-asymptotic range of the efficiency indices of some estimators indicate
an influence of the oscillations of the inhomogeneous boundary data. Estimator like nypo,
IMPIRED; IMPIRED(0) OF 7PMRED With more degrees of freedom along 02 (due to the employ-
ment of P;(red(7)) or P>(T) elements) are less affected by these oscillations. The proportion
n/|lellnc decreases from 30 percent on the initial triangulation to below 3 percent. Hence,
the overhead term does not dominate the upper bound.
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FIGURE 7.4. History of efficiency indices 7xy,/||e||nc of various a posteriori
error estimators 7y, labelled xyz in the figure as functions of the number of
unknowns on uniform meshes in Subsection 7.2.
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FIGURE 7.5. History of efficiency indices 7xy,/||e||nc of various a posteriori
error estimators 7y, labelled xyz in the figure as functions of the number of
unknowns on adaptive meshes in Subsection 7.2.

7.3. Numerical example on square domain with oscillations [LWO04]. The third
benchmark problem employs homogeneous boundary data up = 0, > = 1, and an oscillating
source term f that matches the exact solution u(z,y) = z(z — 1)y(y — 1) exp(—100(z —
1/2)2 — 100(y — 117/1000)2) on the square domain © = (0,1)2. Since the solution is smooth,
there is no improvement of the convergence rate by adaptive mesh refinement, but there is
a significant reduction of the pre-asymptotic range. The overall efficiency of all estimators
is very good (below 1.5) and similar for uniform and adaptive mesh refinement, see Figures
7.6 and 7.7. Our improved estimator n\pirep(o) and npmrep perform better than napo,
nw and na which is already quite optimal in comparison with nypi. The influence of the
overhead term 7 is more significant than in the other examples before, n/||el|nc arrives at
values around 0.6. However, the other contribution H Vncucr — V nyzH £2(0) is still crucial
for the sharpness of the upper bound.

7.4. Numerical example on 3/4-disk domain with corner singularity [Ain04]. The
fourth problem employs up = 0 and f matching the exact solution u(r,¢) = (r%/3 —
7?) sin(2¢/3) on the sector domain

Q= {z = (rcosp,rsing) € B(0,1)| ¢ € [0,37/2]}.

As in the L-shape example from Subsection 7.1, we have a singularity due to a reentrant
corner. Since the domain is not matched exactly, | J7 < Q requires extra considerations
for ucr extended by zero outside of | J7 such that ucg = 0 along 09Q. The reflection of
boundary triangles of Figure 7.8 yields an extended triangulation T with Q < U7AV The
new triangles involve only Dirichlet nodes and so the design of v from Section 4 on T or
red(7) can be extended H'(2)-conformly by vy, = 0 on T\T or red(7\T). Since the

normal fluxes of ¢ are zero along d| 7 for any design from Section 6, also ¢ can be extended
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FIGURE 7.6. History of efficiency indices 7xy,/||e||nc of various a posteriori
error estimators 7y, labelled xyz in the figure as functions of the number of
unknowns on uniform meshes in Subsection 7.3.
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FIGURE 7.7. History of efficiency indices nxy./||e[|nc of various a posteriori
error estimators 7).y, labelled xyz in the figure as functions of the number of
unknowns on adaptive meshes in Subsection 7.3.

H(div, Q)-conformly by ¢xy, = 0 on ’7A'\7'. This leads to the guaranteed upper bound

~ ~ 2
(71 lellfe < ([#7207/d (o = mid(T)|| a7, + 0521, T)/7) " + by

For simplicity, the overhead term 7 in (7.1) is calculated on U'f instead on ). This may
result in some unnecessary overestimation on coarse meshes, but the effect decreases with
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FIGURE 7.8. Triangulation 7 (left, solid lines) and extended triangulation
T (right, solid lines) with | J7 € ©Q < [ JT for the sector domain €2 (dashed
lines) from Section 7.4.

an increasing number of degrees of freedom. Qualitatively the performance of the error
estimators is similar to the first examples.
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FIGURE 7.9. History of efficiency indices 7xy./||e[|nc of various a posteriori
error estimators 7).y, labelled xyz in the figure as functions of the number of
unknowns on uniform meshes in Subsection 7.4.

7.5. Numerical example on square domain with discontinuous diffusion [Ain04].
Our fifth benchmark involves f = 0 and up matches the exact quadratic function u(x,y) =
(22 — y?) /3¢ on the square domain Q = (—1,1)2. The diffusion parameter » assumes the
values 1,100, 10000 on subdomains depicted in Figure 7.11. Since u € Po(T) n C(£2), the
error estimator mpo is almost exact as depicted in Figures 7.12 and 7.13. There is only a
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FIGURE 7.10. History of efficiency indices nxy,/||e[|nc of various a posteriori
error estimators 7y, labelled zyz in the figure as functions of the number of
unknowns on adaptive meshes in Subsection 7.4.

7

FIGURE 7.11. Distribution of s = 1 (white) and » = 1000 (lightgray) in
octagon domain of Subsection 7.6 (left) and distribution of » = 1 (white),
» = 100 (lightgray) and » = 10000 (darkgray) in square domain of Subsec-
tion 7.5.

small reliability-effiency gap due to the inhomogeneous boundary conditions. The two equi-
libration error estimator np and 7a show extremely large efficiency gaps on coarse meshes.
Additionaly, Figure 7.14 shows that the adaptive mesh-refinement by ng, g and n — LW
on coarse meshes is slightly worse in the beginning. These effects are possibly related to
the jumps in the diffusion coefficients. All other error estimators perform similar as in the
previous experiments with »c = 1, but in this example naps is very close to the optimal nyips.

7.6. Numerical example on octagon domain with discontinuous diffusion [HHW96].
The last benchmark problem employs f = 0 and up matching the exact solution u(z,y) =
((az? — y*)(ay® — 2?)) /5 with a = tan((37)/8)? on the oktagon domain

Q2 = conv {(cos((2j + 1)7/8),sin((2j + 1)7/8)), 7 =0,1,..,7}.

The diffusion coefficients s take alternately the values 1 and 1000 as depicted in Figure 7.11.
The results from Figure 7.15 and 7.16 are similar to the results from Subsection 7.6.
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unknowns on uniform meshes in Subsection 7.6.

8. REMARKS AND CONCLUSIONS

8.1. On improved interpolation operators. The novel interpolation vypireD(0) from
Subsection 4.2 performs far better than va in all numerical experiments of Section 7, espe-
cially in problems with jumping diffusion coefficients (Subsections 7.5 and 7.6) and all ex-
amples with adaptive mesh refinement. The further improvement of vy\pireDp(0) Py YPMRED
is significant and its efficiency is is comparable to that of nape in most examples.
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FIGURE 7.16. History of efficiency indices nxy,/||e[|nc of various a posteriori
error estimators 7y, labelled xyz in the figure as functions of the number of
unknowns on adaptive meshes in Subsection 7.6.

8.2. On global minimisation. The optimal estimators mp1, 7vpirED and Mavps involve
the solution of high-dimensional linear systems of equations. The truncated iterative solve
via a preconditioned conjugate gradients scheme based on the initial value vypirED(0) Of
Subsection 4.2 leads to mpireD(3)- The truncation after three iterations is highly efficient
in Subsections 7.1-7.4, but not for the examples with jumping coefficients of Subsections 7.5-
7.6. The P, interpolation vapo allows a very efficient estimator but with a large gap to the
optimal P» function vype. This may motivate its use for an initial value for some iterative
approximation of vyps.

8.3. On other error estimators. Equilibration or localisation techniques after [LW04,
Rep08, CF99] lead to accurate error control with efficiency indices between those of na and
TMPIRED(0) i most examples of Section 7. The overhead term 7 neither dominates the upper
bound nor pollutes the efficiency of the sharper estimators like nyps.

8.4. On postprocessing. The postprocessing of Subsection 6.7 leads to more accurate error
estimators which are competitive even with 7yp1RED(c0)-

8.5. On adaptive mesh refinement. The steering of the adaptive mesh refinements can be
based on each of the 11 estimators from Table 2. In all numerical examples the convergence
of the error in the energy norm is quite comparable for all these cases. There is no particular
strategy of superior convergence — any of 7a, IMPIRED(0), TPMRED:; - - - Will do. For discon-
tinuous coefficients, the equilibration error estimators ng and nrw and the residual-based
error estimator nr lead to slightly worse results than the other error estimators on coarse
meshes.
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