polynomial equation solving  pseudo-polynomial complexity  degeneracy locus  degree of varieties Degeneracy loci and polynomial equation solving Bernd Bank Bank Bernd Marc Giusti Giusti Marc Joos Heintz Heintz Joos Gregoire Lecerf Lecerf Gregoire Guillermo Matera Matera Guillermo Pablo Solerno Solerno Pablo Institut für Mathematik, Humboldt-Universität zu Berlin (ISSN 0863-0976), 2013-08

Degeneracy loci and polynomial equation solving

Bernd Bank , Marc Giusti , Joos Heintz , Gregoire Lecerf , Guillermo Matera , Pablo Solerno

Preprint series: Institut für Mathematik, Humboldt-Universität zu Berlin (ISSN 0863-0976), 2013-08

MSC 2000

14M10 Complete intersections
14M12 Determinantal varieties
14Q20 Effectivity
14P05 Real algebraic sets
68W30 Symbolic computation and algebraic computation

Abstract
Let $V$ be a smooth equidimensional quasi-affine variety of dimension $r$ over $\C$ and let $F$ be a $(p\times s)$-matrix of coordinate functions of $\C[V]$, where $s\ge p+r$. The pair $(V,F)$ determines a vector bundle $E$ of rank $s-p$ over $W:=\{x\in V | \rk F(x)=p\}$. We associate with $(V,F)$ a descending chain of degeneracy loci of $E$ (the generic polar varieties of $V$ represent a typical example of this situation).\\ The maximal degree of these degeneracy loci constitutes the essential ingredient for the uniform, bounded error probabilistic pseudo-polynomial time algorithm which we are going to design and which solves a series of computational elimination problems that can be formulated in this framework.\\ We describe applications to polynomial equation solving over the reals and to the computation of a generic fiber of a dominant endomorphism of an affine space.


This document is well-formed XML.