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Abstract

The demand of combining circuit simulation directly with complex device mod-
els to refine critical circuit parts becomes more and more important, since the
classical circuit simulation can no longer supply sufficiently accurate results.
The simulation of such coupled problems leads to large systems and therefore
to high computing times. We consider a set of differential-algebraic equations,
which arise from an electric circuit modeled by the modified nodal analysis cou-
pled with electromagnetic devices. While the normal circuit elements are zero
dimensional elements the electromagnetic devices are given by a three dimen-
sional model. Therefore the number of variables can easily go beyond millions, if
we refine the spatial discretization. We analyze the structure of the discretized
coupled system and present a way to transform it into a semi-explicit system
of differential-algebraic equations. In the process we make use of a new decou-
pling method for DAEs which results from a mix of the strangeness index and
the tractability index. After this remodeling the electromagnetic part of the
equation will be a system of ordinary differential equations with sparse matrices
only. It will be shown that the topological index conditions for this coupled
system are analogous to the conditions for an ordinary electric circuit.

Keywords: Differential-Algebraic Equation, Index analysis, Electromagnetic
Device, Electric Circuit

˚Corresponding author
Email address: lejansen@math.hu-berlin.de (Lennart Jansen)

Preprint submitted to Journal of comp. and applied mathematics January 21, 2013



1. Introduction

Consider an electric circuit consisting of capacitors, resistors, inductors and
independent voltage and current sources. We use the modified nodal analysis
(MNA) to model this circuit with a set of differential-algebraic equation (DAE).
There are many index concepts which classify DAE by assigning an integer to
them which is called the index of the DAE. The index of a DAE measures its
complexity in comparison to an ordinary differential equation. One of the well
established index concepts is the tractability index. It was mainly developed by
März, see [GM86, Mär02, LMT13]. The index of an electric circuit consisting of
the basic elements mentioned before can be calculated by its topology only, see
[Tis99]. In realistic applications the basic elements are not capable of simulating
all needed effects. Therefore more complex elements like electromagnetic devices
are added to an electric circuit, see [Gün01, Ben06, Sch11, Bau12]. To extend the
topological index result to a circuit including electromagnetic devices we intro-
duce a mixed index concept based on the tractability index and the strangeness
index, which was firstly established by Kunkel and Mehrmann, see [KM06]. We
call this mixed concept the tractability-strangeness index. The extension of the
topological index conditions will be accomplished in three steps. First the known
index result for electric circuits will be verified by the tractability-strangeness
index. Afterwards the model of the electromagnetic device will be discussed.
As the third step the index result will be extended to circuits including electro-
magnetic devices.

2. Basic Electrical Circuits

The first section is divided into three parts. First it introduces the standard no-
tation of electrical circuits and it presents the modified nodal analysis. Second
the tractability-strangeness index will be introduced as a mixed index concept
based on the tractability index and the strangeness index. After these introduc-
tions the known topological index result for electrical circuits will be shown by
the tractability-strangeness index.

2.1. Modified Nodal Analysis

A circuit is modeled by a directed graph G :“ pN,Eq, where the edges are
arbitrarily orientated. The quantities of an electric circuit are the currents over
the edges and the electric potentials at the nodes. In order to get a unique
solution we need to choose one node as a reference node. The potential of this
reference node will be fixed, in general it can be chosen to be zero. We call this
reference node the mass node. Then the network topology for elements with
two contacts is retained by the incidence matrix A P t´1, 0, 1up|N |´1qˆ|E|. The
matrix A describes the relation between all edges and all nodes except the mass
node. The incidence matrix is defined by:
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pAqij :“

$

’

&

’

%

1 , if the edge j leaves node i,

´1 , if the edge j enters node i,

0 , else.

The classical MNA deals with capacitors, resistors, inductors, voltage and cur-
rent sources as electric elements, see [CL75, CDK87, DK84]. To put these
elements in a network framework the network edges are sorted in such a way
that the incidence matrix A forms a block matrix with blocks describing the
different types of network elements, that is,

A “
`

AC AR AL AV AI
˘

.

Then the well known MNA can be formulated based on Kirchhoff’s current law,
Kirchhoff’s voltage law and the physical element relations, see [Tis99].

ACq
1
CpA

T
Ce, tq `ARgRpA

T
Re, tq `ALjL `AV jV `AI isptq “ 0 (2.1)

φ1LpjL, tq ´A
T
Le “ 0 (2.2)

ATV e´ vsptq “ 0 (2.3)

with t P I and I a compact time interval. Here e are the node potentials while
jL are the currents over the inductors and jV are the currents over the voltage
sources. Further qC , gR and φL are the characteristic functions of the capaci-
tors, resistors and inductors. The function qC resembles the electric charges of
the capacitors, φL stands for the magnetic flux of the inductors and gR is the
conductance of the resistors. The jacobians BqC

BvC
, BgR
BvR

and BφL

BjL
are assumed to be

positive definite. This assumption can be physically interpreted as the passivity
of these elements. Passivity here means that these elements do not emit energy
by themselves. We consider independent voltage and current sources, i.e. the
source terms can be modeled by functions depending only on time. Furthermore
we assume that the circuit is connected and not shorted, i.e. AV has full column
rank and

`

AC AR AL AV
˘

have full row rank.

2.2. Tractability-Strangeness Index

Now we will introduce the mixed index concept which will be used to analyze
the MNA (2.1). The analysis of DAEs is strongly affected by the choice of
the index concept. There are many different index concepts, for example the
differentiation index [Cam87], the perturbation index [HLR89], geometrical in-
dex [RR90, RR02], the strangeness index [KM06] and the tractability index
[LMT13]. All of these concepts have their own strength and drawbacks. We
now introduce a mixed index concept based on the strangeness index and the
tractability index. In contrast to the tractability index this mixed index will
provide a forward decoupling of the variables. This mixed concept will later on
allow us to extend the known result for the classical MNA with little effort to
circuits which include electromagnetic devices. We restrict ourselves to the fol-
lowing class of differential-algebraic equations since we are dealing with circuit
applications.
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Definition 2.1. (Differential-algebraic equation with leading term)
Let I Ă R be a compact interval and let D Ă Rn be open and connected. For
px, tq P D ˆ I observe the following equation

Ad1px, tq ` bpx, tq “ 0 (2.4)

with d P C1pD ˆ I,Rmq, A P Rnˆm and b P CpD ˆ I,Rnq. Furthermore
the partial derivative bx exists and is continuous. We call (2.4) a semi-linear
differential-algebraic equation with nonlinear leading term.

It is possible that parts of im dx lie in kerA or that parts of cokerA lie in coim dx,
with cokerApx, tq :“ im AT px, tq and coimApx, tq :“ kerAT px, tq defined point-
wise for a matrix function A P CpD ˆ I,Rmˆnq. To avoid these unnecessary
gaps and overlaps we only consider DAEs with properly stated leading term,
see [LMT13].
To establish a mixed index concept based on the tractability and the strangeness
index consider M P CpD ˆ I,Rmˆnq such that there are constant bases of the
subspaces cokerMpx, tq, im Mpx, tq, kerMpx, tq and coimMpx, tq. Thereby
there are integers nx, ny, nv P N and nw P N such that

nx “ dimpcokerMpx, tqq, ny “ dimpkerMpx, tqq,
mv “ dimpimMpx, tqq, mw “ dimpcoimMpx, tqq @px, tq P D ˆ I.

We choose four matrix functions

p : D ˆ I Ñ Rnˆnx , q : D ˆ I Ñ Rnˆny ,
v : D ˆ I Ñ Rmˆmv , w : D ˆ I Ñ Rmˆmw

such that the columns of the matrix functions are bases of the subspaces
cokerMpx, tq, im Mpx, tq, kerMpx, tq and im Mpx, tq, respectively. We call
p, q, v and w the associated basis functions of M and we say M has constant
subspaces.
We now construct the tractability-strangeness index up to an index of two under
the assumption that all involved matrices have constant subspaces.
Similar to the tractability index we build a chain of matrices starting with
Dpx, tq :“ dxpx, tq, G0px, tq “ ADpx, tq and Bpx, tq “ bxpx, tq. Let p, q, v and
w be the associated basis functions of G0 and define with their help

G1px, tq :“ vTG0px, tqp, Bv
xpx, tq :“ vTBpx, tqp, Bv

ypx, tq :“ vTBpx, tqq,
Bw
x px, tq :“ wTBpx, tqp, Bw

y px, tq :“ wTBpx, tqq.

Let py , qy , vy ,wy be the four associated basis functions of Bw
y px, tq and let

px , qx be the associated basis functions of wTyB
w
x px, tq with respect to the kernel

and the cokernel. Furthermore let vx ,wx be the associated basis functions of
Bv
ypx, tqqy with respect to the image and the coimage.

With the help of these matrices and basis functions we define the tractability-
strangeness index.
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Definition 2.2. (Tractability-Strangeness Index)
Let G Ă D ˆ I. We say (2.4) has tractability-strangeness index 0 on G if
G0px, tq is non-singular for all px, tq P G. If the tractability-strangeness index
is not 0 but wTBpx, tqq is non-singular for all px, tq P G the DAE (2.4) has
tractability-strangeness index 1 on G. If the tractability-strangeness index is
neither 0 nor 1 but wTxG1px, tqqx is non-singular for all px, tq P G the DAE (2.4)
has tractability-strangeness index 2 on G.

2.3. Topological Index Conditions

The purpose of this section is to investigate the index behavior of the MNA
equations. Therefore we define

A :“

¨

˝

AC 0
0 I
0 0

˛

‚, dpx, tq :“

ˆ

qCpA
T
Ce, tq

φLpjL, tq

˙

and

bpx, tq :“

¨

˝

ARgRpA
T
Re, tq ` ALjL `AV jV ` AI isptq

´ATLe
´ATV e ` vsptq

˛

‚

with the variables x “
`

e jL jV
˘T
. With this notation the MNA can be

written as a DAE in the form (2.4). Now we can construct the matrix chain of
the tractability-strangeness index. We start by defining

Dpx, tq :“

ˆ

CpATCe, tqA
T
C 0 0

0 LpjL, tq 0

˙

,

Bpx, tq :“

¨

˝

ARGpA
T
Re, tqA

T
R AL AV

´ATL 0 0
´ATV 0 0

˛

‚

and therefore we get

G0px, tq :“ ADpx, tq “

¨

˝

ACCpA
T
Ce, tqA

T
C 0 0

0 LpjL, tq 0
0 0 0

˛

‚.

To continue the chain we need basis functions related to the incidence matrices.
Let pC and qC be the basis function associated to the co-kernel and the kernel
of ATC . Then we call

AC̄X :“ qTCAX , X P tV,R,L, Iu

the C-reduced incidence matrix of the voltage sources, resistors, inductors or
current sources, respectively. Further denote the full set of associated basis
function of AT

C̄V
by pC̄V , qC̄V , vC̄V and wC̄V . Analogously we call

AC̄V̄ X :“ qTCV qTCAX , X P tR,L, Iu
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the CV-reduced incidence matrix of the resistors, inductors or current sources,
respectively. At last we obtain the basis function pC̄V̄ R and qC̄V̄ R associated
to the co-kernel and the kernel of AT

C̄V̄ R
and denote by

AC̄V̄ R̄X :“ qTC̄V̄ RqTC̄V qTCAX , X P tL, Iu

the CVR-reduced incidence matrix of the inductors or current sources, respec-
tively.
We can now define the associated basis function of G0 by

p “ v :“

¨

˝

pC 0
0 I
0 0

˛

‚, q “ w :“

¨

˝

qC 0
0 0
0 I

˛

‚

with the help of the basis functions of ATC . The basis functions for the kernel
and the co-image and the basis functions for the image and the co-kernel are
equal since G0 is symmetric. Carrying on to the next stage of the matrix chain
we get

G1px, tq “ vTG0px, tqp “

ˆ

pTCACCpA
T
Ce, tqA

T
CpC 0

0 LpjL, tq

˙

,

Bv
xpx, tq “ vTBpx, tqp “

ˆ

pTCARGpA
T
Re, tqA

T
RpC pTCAL

´ATLpC 0

˙

,

Bv
ypx, tq “ vTBpx, tqq “

ˆ

pTCARGpA
T
Re, tqA

T
C̄R

pTCAV
´AT

C̄L
0

˙

,

Bw
x px, tq “ wTBpx, tqp “

ˆ

AC̄RGpA
T
Re, tqA

T
RpC AC̄L

´ATV pC 0

˙

,

Bw
y px, tq “ wTBpx, tqq “

ˆ

AC̄RGpA
T
Re, tqA

T
C̄R

AC̄V
´AT

C̄V
0

˙

and obtain the basis functions

py “ vy :“

ˆ

pC̄V qC̄V pC̄V̄ R 0
0 0 vC̄V

˙

, qy “ wy :“

ˆ

qC̄V qC̄V̄ R 0
0 wC̄V

˙

associated to Bw
y . Write

wTyB
w
x px, tq “

ˆ

0 AC̄V̄ R̄L
´wT

C̄V
ATV pC 0

˙

,

Bv
ypx, tqqy “

ˆ

0 pTCAV wC̄V
´AT

C̄V̄ R̄L
0

˙
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and get with pLI , qLI the associated basis functions of the co-kernel and kernel
of AC̄V̄ R̄L and pCV , qCV the associated basis functions of the co-kernel and
kernel of wT

C̄V
ATV pC the last basis functions of the chain:

px “ vx :“

ˆ

pCV 0
0 pLI

˙

, qx “ wx :“

ˆ

qCV 0
0 qLI

˙

.

Notice here again that px “ vx and qx “ wx due to the symmetry of wTyB
w
x px, tq

and Bv
ypx, tqqy . For the further index investigation we only need the three

matrices G0px, tq, B
w
y px, tq and

wTxG1px, tqqx “

ˆ

qTCV pTCACCpA
T
Ce, tqA

T
CpCqCV 0

0 qTLILpjL, tqqLI

˙

.

With the help of these three matrices we can prove the following topological
index theorem for electrical circuits.

Theorem 2.3.
The MNA has tractability-strangeness index

(i) 0, if and only if there is a spanning tree in the circuit consisting only of
capacitors and there are no voltage sources in the circuit.

(ii) 1, or lower if there are no loop consisting of capacitors and voltage sources
with at least one voltage source and no cutsets consisting of inductors and
current sources.

(iii) 2, else.

Proof. As long as wTxG1px, tqqx is non-singular the index is 2 at most. We know
that CpATCe, tq and LpjL, tq are positive definite and that ATCpC , qCV and qLI
have full column rank and thereby follows (iii).
The topological index-1 conditions yield im AC X im AV “ t0u and that
`

AC AR AV
˘

has full row rank. The first condition yields that AC̄V has
full column rank since AV has full column rank and im AC “ ker qTC . The
second index-1 condition provides the full row rank of AC̄V̄ R since qTC and qT

C̄V
have full row rank.
Define the non-singular matrix

T px, tq “

ˆ

pC̄V qC̄V 0
0 0 I

˙

.

Then Bw
y px, tq is non-singular since

TT px, tqBw
y px, tqT px, tq

“

¨

˝

pT
C̄V

AC̄RGpA
T
Re, tqA

T
C̄R

pC̄V pT
C̄V

AC̄RGpA
T
Re, tqA

T
C̄V̄ R

pT
C̄V

AC̄V
AC̄V̄ RGpA

T
Re, tqA

T
C̄R

pC̄V AC̄V̄ RGpA
T
Re, tqA

T
C̄V̄ R

0
´AT

C̄V
pC̄V 0 0

˛

‚
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is non-singular because GpATRe, tq is positive definite, AC̄V̄ R has full column
rank and pT

C̄V
AC̄V is non-singular. Therefore (ii) holds. Next observe G0 under

the assumption that there are no voltage sources

G0px, tq “

ˆ

ACCpA
T
Ce, tqA

T
C 0

0 LpjL, tq

˙

.

The index 0 condition also states that there is a spanning tree in the circuit
consisting only of capacitors and therefore ATC has full column rank. With
CpATCe, tq and LpjL, tq positive definite again G0 is non-singular.

The topological index result with respect to the tractability index can be found
in [Tis99].

3. Electromagnetic Device

After verifying the topological index conditions for basic network elements we
introduce a more advanced element: the electromagnetic device. This new ele-
ment will be based on Maxwell’s laws formulated on a three dimensional domain.
As the first section this one is also split into three subsections. First the con-
tinuous three dimensional model will be discussed. Second we obtain a discrete
version of the model with the help of the finite integration technique. And
thirdly we will classify this discrete model in the classes of the basic elements.

3.1. Maxwell’s Laws

Let Ω Ă R3 be a connected domain and let I Ă R be a compact time interval.
The electric and magnetic field is given by E ,H : Ωˆ I Ñ R3 while the electric
and magnetic induction is given by D,B : Ωˆ I Ñ R3. The conduction current
density is described by JC : Ωˆ I Ñ R3.
With these quantities the Maxwell-Ampere law and Maxwell-Faraday law read:

∇ˆH “ JC `
B

Bt
D

∇ˆ E “ ´ B
Bt

B

Depending on the material there are three relations between the electromag-
netic quantities. The electric permittivity is given by ε : Ω Ñ R, the electric
conductivity σ : Ω Ñ R and the magnetic reluctivity ν : Ω ˆ R3 Ñ R describe
these relations by

D “ εE , JC “ σE , H “ νpBqB

Inserting these material relations into the Maxwell-Ampere law we obtain a
formulation of the Maxwell’s equations in the electric field and the magnetic
induction:

∇ˆ νpBqB “ σE ` ε B
Bt

E
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∇ˆ E “ ´ B
Bt

B.

Before adding boundary conditions to the system we need to reformulate the
Maxwell equations in the potential formulation. Therefore we introduce the
scalar potential ϕ : Ωˆ I Ñ R and the vector potential A : Ωˆ I Ñ R3 which
are uniquely defined by the two potential equations

E “ ´∇ϕ´ B

Bt
A

B “ ∇ˆA

and the Coulomb gauge equation 0 “ ∇ ¨ A. The gauge equation is only a
auxiliary equation needed for the uniqueness of the vector and scalar potential.
If we add these three equations to the Maxwell equations we end up with the
potential formulation

∇ˆ νpBqB “ σE ` ε B
Bt

E

E “ ´∇ϕ´ B

Bt
A

B “ ∇ˆA
0 “ ∇ ¨A.

We dropped the Maxwell-Faraday law since it is implied by the potential equa-
tions. We separate the boundary of Ω into BΩ “ BΩ̄YΓjE with BΩ̄XΓjE “ H.
We call ΓjE the contact areas of the electromagnetic device. The contact areas
ΓjE may consist of several disjunct sets, such that ΓjE “

Ťn
i“1 ΓijE with nΓ the

number of contact areas. Now we are able to connect the Maxwell equations
in an easy way to the quantities of an electric circuit. These quantities are the
electric currents jE P RnΓ and voltages uE P RnΓ at the contact areas. First we
couple the conduction current density to the current of the electric circuit with
the help of the following current coupling equation:

jE “

ż

ΓjE

Jt ¨ ~nKdF

This means that the electric current is the sum of the conduction current density
at the contact areas. With the help of the Maxwell-Faraday law and the material
relations we can again express this part in terms of B. Therefore we introduce
the total and displacement current Jt and Jd with the properties Jd “ B

BtD and
Jt “ JC ` Jd and write

Jt “ JC ` Jd “ JC `
B

Bt
D Maxwell

“
Faraday

∇ˆH Material
“

relation
∇ˆ νpBqB.

So we can write the current coupling equation as

jE “

ż

ΓjE

∇ˆ νpBqB ¨ ~nKdF.
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The boundary conditions are used to couple the electric potential to the Maxwell
equations. The scalar potential is set equal to the electric potential at the con-
tact areas ϕ|ΓjE

“ uE and otherwise homogeneous Dirichlet boundary condition
are used. Together we obtain the system

jE “

ż

ΓjE

∇ˆ νpBqB ¨ ~nKdF

ε
B

Bt
E ` σE “ ∇ˆ νpBqB

B

Bt
A “ ´∇ϕ´ E

B “ ∇ˆA
0 “ ∇ ¨A

with ϕ|ΓjE
“ uE .

3.2. Spatial Discretization

For spatial discretization we choose the finite integration technique (FIT). The
FIT discretization is an established tool to discretize electromagnetic devices
which was was developed and formulated by Thomas Weiland [Wei77, TW96,
CW01]. For detailed information on the FIT discretization we refer to pages
60–90 in [Bau12] or pages 5–14 in [Sch11]. We call the discretized electric field
E P R3n and the discretized magnetic density B P R3n with n depending on the
refinement of the FIT discretization. Further we call a P R3n and φ P Rn the
discretized vector and scalar potential while Mε,Mσ,Mν P R3nˆ3n represent
for the three material properties, respectively. The discretized versions of the
differential operators are notated with G P R3nˆn in the case of the gradient,
GT P R3ˆ3n in the case of the divergence and C P R3nˆ3n in the case of the rota-
tion operator. Last we define the excitation matrix Λ P R3nˆnΓ which represents
the boundary operator meaning Λ indicates if a point of the discretization grid
belongs to the contact areas. Note that due to the FIT discretization the trans-
posed excitation matrix ΛT P RnΓˆ3n represents the integral over the contact
areas.
The discretized operators and matrices of the FIT discretization fulfill a set
of important properties, see [Bau12, Sch11]. The discretized material relations
Mε and Mν are positive definite diagonal matrices while Mσ is a positive semi-
definite diagonal matrices. Furthermore CΛ has full column rank and the equal-
ity ∇ˆ∇ “ 0 is inherited by the discretized operators CG “ 0 and also it holds
that the kernel of C and GT are disjunct, i.e. kerC X kerGT “ t0u
With the FIT discretization we can write the Maxwell equations in the potential
formulation like

jE “ ΛTCTMνpBqB (3.1)

MεE
1 `MσE “ CTMνpBqB (3.2)

a1 “ ´Gφ` ΛuE ´ E (3.3)
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B “ Ca (3.4)

0 “ GTa. (3.5)

Previously we introduced the potential equation to connect the quantities of the
electromagnetic device to the electric circuit via boundary conditions. After the
spatial discretization these boundary conditions are wrapped up in the equations
with the help of the excitation Λ. In the following we will show that the potential
equation is not needed any more and that we are able to decouple them from
the rest of the equations again.
For that matter multiply equation (3.3)

a1 “ ´Gφ` ΛuE ´ E

from the left by C and GT , respectively. It holds that kerCXkerGT “ t0u and
hence we get the equivalent system

pCaq1 “ ´CGφ` CΛuE ´ CE

pGTaq1 “ ´GTGφ`GTΛuE ´G
TE.

Insert B “ Ca, CG “ 0 and GTa “ 0 into these equations and obtain

B1 “ CΛuE ´ CE (3.6)

0 “ ´GTGφ`GTΛuE ´G
TE. (3.7)

If we replace (3.3) in the discretized Maxwell equations with (3.6) we get

jE “ ΛTCTMνpBqB

MεE
1 `MσE “ CTMνpBqB

B1 “ CΛuE ´ CE

0 “ ´GTGφ`GTΛuE ´G
TE

B “ Ca

0 “ GTa.

The variables φ and a do not appear in the first three equations anymore.
Therefore the potential equations can be dropped again.
We call

jE “ ΛTCTMνpBqB (3.8)

MεE
1 `MσE “ CTMνpBqB (3.9)

B1 “ CΛuE ´ CE (3.10)

the discretized Maxwell equations in standard formulation. The discretized
Maxwell equations include the discretized current coupling equation, the dis-
cretized Maxwell-Ampere’s law with inserted material relations and the dis-
cretized Maxwell-Faraday’s law with inserted potential boundary conditions.
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3.3. Electromagnetic Inductor

In the following part the space discretized model will be classified as an inductor-
like electric element. Therefore consider an electric inductor with a linear con-
stant inductance L. If jL is the current flowing through the inductor and uL
is the voltage over the inductor then an electric inductor describes a relation
Lj1L “ uL between the derivative of its current and its voltage. Before the
inductor-like behavior of the electromagnetic device will be verified with the
model equations we motivate this objective by an example. Consider a simple
coil made out of copper. We apply a voltage on this electromagnetic device
and observe the resulting current. At the same time we apply the same voltage
on a suitable linear resistor as a reference. While the resistor is influenced by
a change in the voltage directly the electromagnetic device seems to be more
inertial, see Figure 3.1. If we focus on the middle part we can clearly see a
direct relation between the value of the voltage and the slope of the current.
Next we also want to verify this behavior with the help of the model equa-

Figure 3.1: The electromagnetic device compared to a resistor

tions. To accomplish that we need to assume the reluctivity of the material in
a neighborhood around the contact areas is constant, i.e.

ΛTCTMνpBq “ ΛTCTMν .

In applications we can assume that we will find electrical wires at the contact
areas since these are the places where the device is connected to the electric
circuit. Electrical wires are made of copper or aluminum and these two material
have in fact a constant reluctivity hence the assumption is reasonable.
With this assumption we consider the following system

jE “ ΛTCTMνB

MεE
1 `MσE “ CTMνpBqB

B1 “ CΛuE ´ CE.

For the classification we take a special interest in the current coupling equation

jE “ ΛTCTMνB.

12



Differentiate the current coupling equation to work out the relation between j1E
and uE :

j1E “ ΛTCTMνB
1

Insert the discretized Maxwell-Faraday’s law into the derived current coupling
equation and get

j1E “ ΛTCTMνB
1

ôj1E “ ΛTCTMνpCΛuE ´ CEq

ôj1E “ ΛTCTMνCΛuE ´ ΛTCTMνCE.

Remember that CΛ has full column rank and Mν is positive definite. Therefore
ΛTCTMνCΛ is also positive definite. Define LE :“ pΛTCTMνCΛq´1 and VE :“
LEΛTCTMνC and write

j1E “ L´1
E uE ´ ΛTCTMνCE

ôLEj
1
E “ uE ´ LEΛTCTMνCE

ôLEj
1
E ´ uE ` VEE “ 0

This equation reminds us of the characteristic equation of a linear electric in-
ductor

Lj1L ´ uL “ 0.

Hence we end up with the following set of equations

LEj
1
E ´ uE ` VEE “ 0 (3.11)

MεE
1 `MσE ´ C

TMνpBqB “ 0 (3.12)

B1 ` CE ´ CΛuE “ 0, (3.13)

which we call the electromagnetic inductor equations.

4. Coupled Circuit/Field Problem

In the last section we want to add the electromagnetic inductor to the electrical
circuit and afterwards extend the topological index theorem to this more general
case.

4.1. Extended Modified-Nodal-Analysis

Remember the equations of the MNA (2.1) which describe an electrical circuit
with capacitors, resistors, inductors and current and voltage sources. We want
to include the electromagnetic inductor to this framework. To illustrate this
procedure consider the following example.
We have two interlocking copper half loops with two contact areas per half
loop. There is a resistor connected directly to the contact areas of the first

13



Figure 4.1: Two interlocking copper half loops connected to an electrical circuit.

half loop while a current source and a resistor are connected to the contact
areas of the other one. As in the example each electromagnetic device has
a number of contact areas. To include the electromagnetic devices into the
network framework we add one edge to the circuit graph for every contact area
of every device. Each of these edges is connected to one node and the mass
node. The nodes, except the mass node, which are connected to the new edges
are the ones which are connected to the contact areas of the device.

EM deviceR2

I

R1

–

E1

E2

E3

E4
R2

I

R1

If a current flows into or out of an electromagnetic device this current leaves or
enters the circuit. To reconcil this fact with the conservation of energy the other
end of the added edges is connected to the mass node. By choice all new edges
are directed to the mass node. Due to this modeling strategy the incidence
matrix A can now be split into

A “
`

AC AR AL AE AV AI
˘

.

This allows us to formulate the coupled circuit/field problem with an extended
version of the MNA:

ACq
1
CpA

T
Ce, tq `ARgRpA

T
Re, tq `ALjL `AEiE `AV jV `AI isptq “ 0

φ1LpjL, tq ´A
T
Le “ 0

14



LEj
1
E ´A

T
Ee` VEE “ 0

ATV e´ vsptq “ 0

MεE
1 `MσE ´ C

TMνpBqB “ 0

B1 ` CE ´ CΛATEe “ 0

This set of equations is a combination of (2.1) and (3.11).

Remark 4.1. It is possible to understand the electromagnetic device as a com-
bination of linear constant inductors and controlled voltage sources. To realize
that we reorder the current coupling equation of the electromagnetic inductor
equations

LEj
1
E ´ uE ` VEE “ 0 ô

$

’

&

’

%

LEj
1
E ´ u

1
E “ 0

u2
E “ VEE

u1
E ` u

2
E “ uE

.

Now we got as many linear inductors with inductance LE and controlled voltage
sources as we got contact areas. The voltage sources are controlled by the electric
field which means they are indirectly controlled by the potential at the contact
node of the device since these potentials serve as input functions for the Maxwell
equations. With this perception we can redraw the circuit of the example and
obtain:

L1

V1

L2

V2

L3

V3

L4

V4R2

I

R1

Again the similarity of a classic nonlinear inductor and the electromagnetic
inductor attracts attention. In the remark we even saw that the electromagnetic
inductor can be assembled with the help of constant inductors. With

jL “

ˆ

jL
jE

˙

, AL “
`

AL AE
˘

, φLpjL, tq “

ˆ

φLpjL, tq
LEjE

˙

and

ΛL “
`

0 Λ
˘

, VL “

ˆ

0
VE

˙

we join these two classes of inductors into a general inductor class.
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With this general inductor class the extended MNA reads:

ACq
1
CpA

T
Ce, tq `ARgRpA

T
Re, tq `ALjL `AV jV `AI isptq “ 0

φ1LpiL, tq ´A
T
Le` VLE “ 0

ATV e´ vsptq “ 0

MεE
1 `MσE ´ C

TMνpBqB “ 0

B1 ` CE ´ CΛLA
T
Le “ 0

4.2. Extended Topological Index Conditions

In this last part we generalize Theorem 2.3 to the extended MNA. Therefore we
need to calculate the matrix chain again. We start by defining

Bpx, tq :“

¨

˚

˚

˚

˚

˝

ARGpA
T
Re, tqA

T
R AL AV 0 0

´ATL 0 0 VL 0
´ATV 0 0 0 0

0 0 0 Mσ KνpBq
´CΛLA

T
L 0 0 C 0

˛

‹

‹

‹

‹

‚

and

G0px, tq “

¨

˚

˚

˚

˚

˝

ACCpA
T
Ce, tqA

T
C 0 0 0 0

0 LpiL, tq 0 0 0
0 0 0 0 0
0 0 0 Mε 0
0 0 0 0 I

˛

‹

‹

‹

‹

‚

with KνpBq :“ ´ B
BB pC

TMνpBqBq. Similar to the the matrix chain of the
classical MNA we get

p “ v :“

¨

˚

˚

˚

˚

˝

pC 0 0 0
0 I 0 0
0 0 0 0
0 0 I 0
0 0 0 I

˛

‹

‹

‹

‹

‚

, q “ w :“

¨

˚

˚

˚

˚

˝

qC 0
0 0
0 I
0 0
0 0

˛

‹

‹

‹

‹

‚

and therefore

G1px, tq “ vTGpx, tqp “

¨

˚

˚

˝

pTCACCpA
T
Ce, tqA

T
CpC 0 0 0

0 LpiL, tq 0 0
0 0 Mε 0
0 0 0 I

˛

‹

‹

‚

and

Bv
xpx, tq “ vTBpx, tqp “

¨

˚

˚

˝

pTCARGpA
T
Re, tqA

T
RpC pTCAL 0 0

´ATLpC 0 VL 0
0 0 Mσ KνpBq

´CΛLA
T
LpC 0 C 0

˛

‹

‹

‚

,
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Bv
ypx, tq “ vTBpx, tqq “

¨

˚

˚

˝

pTCARGpA
T
Re, tqA

T
RqC pTCAV

´AT
C̄L 0

0 0
´CΛLA

T
C̄L 0

˛

‹

‹

‚

,

Bw
x px, tq “ wTBpx, tqp “

ˆ

AC̄RGpA
T
Re, tqA

T
RpC AC̄L 0 0

´ATV pC 0 0 0

˙

,

Bw
y px, tq “ wTBpx, tqq “

ˆ

AC̄RGpA
T
Re, tqA

T
C̄R

AC̄V
´AT

C̄V
0

˙

.

Again we compute

wTyB
w
x “

ˆ

0 AC̄V̄ R̄L 0 0
´wT

C̄V
ATV pC 0 0 0

˙

,

Bv
yqy “

¨

˚

˚

˝

0 pTCAV wC̄V
´AT

C̄V̄ R̄L 0
0 0

´CΛLA
T
C̄V̄ R̄L 0

˛

‹

‹

‚

to obtain the basis functions

qx :“

¨

˚

˚

˝

qCV 0 0 0
0 qLI 0 0
0 0 I 0
0 0 0 I

˛

‹

‹

‚

and wx :“

¨

˚

˚

˝

qCV 0 0 0
0 qLI 0 ´ΛTLC

T

0 0 I 0
0 0 0 I

˛

‹

‹

‚

.

The chain then ends with

wTxG1px, tqqx

“

¨

˚

˚

˝

qTCV pTCACCpA
T
Ce, tqA

T
CpCqCV 0 0 0

0 qTLILpiL, tqqLI 0 0
0 0 Mε 0
0 ´CΛLLpiL, tqqLI 0 I

˛

‹

‹

‚

.

Analogously to the previous theorem there are topological index conditions for
the extended version of the MNA.

Theorem 4.2.
The extended MNA has tractability-strangeness index

(i) 0, if and only if there is a spanning tree in the circuit consisting only of
capacitors and there are no voltage sources in the circuit.

(ii) 1, or lower if there are no loop consisting of capacitors and voltage sources
with at least one voltage source and no cutsets consisting of general in-
ductors and current sources.

(iii) 2, else.
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Proof. The proof follows the lines of Theorem 2.3 except for the addition that
Mε and I are non-singular.

Due to the classification of the electromagnetic device as an inductor-like and
the framework of the tractability-strangeness index we are able to canonically
generalize the index conditions.

5. Conclusion and Outlook

We saw that the known topological index conditions for electrical circuits also
hold for the tractability-strangeness index. In the framework of this mixed index
concept it was possible to extend these topological index conditions to circuits
including electromagnetic devices in a canonically way.
The next step will be to classify semiconductor devices as capacitor-like elements
and extend the topological index conditions once more.
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