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Abstract

We compute the eighth-order fermionic corrections involving two and three
closed massless fermion loops to the anomalous magnetic moment of the muon.
The required four-loop on-shell integrals are classified and explicit analytical results
for the master integrals are presented. As further applications we compute the corre-
sponding four-loop QCD corrections to the mass and wave function renormalization
constants for a massive quark in the on-shell scheme.
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1 Introduction

In the last about ten years several groups have been active in computing four-loop cor-
rections to various physical quantities. Among them are the order a? corrections to the
R ratio and the Higgs decay into bottom quarks [IH3], four-loop corrections to moments
of the photon polarization function [4H8] which lead to precise results for the charm and
bottom quark masses (see, e.g., Ref. [9]), and the free energy density of QCD at high
temperatures [I0]. The integrals involved in such calculations are either four-loop mass-
less two-point functions or four-loop vacuum integrals with one non-vanishing mass scale.
In this paper we take the first steps towards the systematic study of a further class of
four-loop single-scale integrals, the so-called on-shell integrals where in the loop massless
and massive propagators may be present and the only external momentum is on the mass
shell.

On-shell integrals enter a variety of physical quantities, where the anomalous magnetic
moments and on-shell counterterms are prominent examples. The first systematic study of
two-loop on-shell integrals needed for the evaluation of the on-shell mass and wave function
renormalization constants (Z9° and Z9%) for a heavy quark in QCD has been performed
in Refs. [IIl12]. Already a few years later, in 1996 the analytical three-loop corrections
to the lepton anomalous magnetic moment a; became available [13]. This result has been
checked in Refs. [T415]. In Refs. [I4[16] the three-loop on-shell integrals have been applied
to QCD, namely the evaluation of Z9% and Z9%. The calculation of Ref. [I4] has confirmed
the numerical result of [I7,[18] which has been available before. Both Z95 and Z9° have
also been computed in Ref. [15]. Further application of three-loop on-shell integrals are
discussed in Refs. [I9/20]. There is no systematic study of four-loop on-shell integrals
available in the literature. Nevertheless, some four-loop results to the anomalous magnetic
moment of the muon, a,, have been computed analytically, in particular contributions
from closed electron loops. E.g., the contribution where the photon propagator of the
one-loop diagram (see Fig. []) is dressed by higher order corrections has been considered
in several papers [21H27]. Four-loop corrections where one of the two photon propagators
of the two-loop diagram is dressed by higher orders has been considered in Ref. [2829].
Contributions where both photon propagators get one-loop electron insertions are still
missing. This gap will be closed in the present work. Let us mention that all four- and
even five-loop results for a; are available in the literature in numerical form [27,30H33]
(see also the review articles [341135]).

In this paper we take the first step towards the analytical calculation of four-loop on-shell
integrals by considering the subclass with two or three closed massless fermion loops,
which are marked by a factor n;. Thus we are concerned with four-loop terms proportional
to n} and n? which we consider for three physical quantities: the anomalous magnetic
moment of the muon, a,, the on-shell mass renormalization constant, 795 and the on-
shell wave function renormalization constant, Z9°, for a massive quark. For the latter
QCD corrections to the quark two-point functions are computed whereas for the former

muon-photon vertex diagrams have to be considered. Some sample Feynman diagrams are
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Figure 1: Sample Feyman diagrams for the photon-muon vertex contributing to a,. Wavy
and straight lines represent photons and fermions, respectively. In this paper we consider
the contribution where at least two of the closed loops correspond to massless fermions.
The last diagram in the second line is a representative of the so-called “light-by-light”
contribution.

given in Figs. [Mland 2l The precise definition of these quantities is provided in Sections
and [l

The outline of the paper is as follows: in the next section we provide details of the four-loop
on-shell integrals needed for our calculation. In particular, we identify all master integrals
and provide analytical results in Appendix A. The renormalization constants Z9% and Z9%
are discussed in Section B and Section [ is devoted to the anomalous magnetic moment of
the muon. We discuss the relation between the MS and on-shell fine structure constant
and provide analytical results for a,. Finally, we conclude in Section Bl Appendix B
contains the analytic results for the relation between the fine structure constant defined
in the MS and on-shell scheme.
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Figure 2: Sample Feynman diagrams for the QCD corrections to the fermion propagator
contributing to Z9% and Z95. Curly and straight lines represent gluons and fermions,
respectively. In this paper we consider the contribution where at least two of the closed
loops correspond to massless fermions.

2 Four-loop on-shell integrals

In this Section we present the setup used for the calculation and discuss the families of
four-loop on-shell integrals needed for the n? and n} corrections for Z9%, Z9% and a,.
Since all three cases reduce to the calculation of corrections to the fermion propagator we
consider in this Section the corresponding two-point function.

After the generation of the diagrams with QGRAF [36] we use gq2e [37.138] to translate the
output into a FORM [39] readable form. In a next step exp [37,138] is applied to map
the momenta to one of five families. During the evaluation of the FORM code we apply
projectors and take traces to end up with integrals which only contain scalar products in
the numerator and quadratic denominators.

In the next step we have to reduce all occurring integrals to a minimal set of master
integrals. This is done using two different programs in order to have a cross check for
the calculation. On the one hand we use crusher [40] and on the other hand the C++
version of FIRE[] Both programs implements Laporta’s algorithm [42] for the solution of
integration-by-parts identities [43]. We find complete agreement for the expressions where
the physical quantities are expressed in terms of master integrals.

Let us mention that we have performed our calculations for general gauge parameter
which drops out once the four-loop results for Z95, Z95 and a,, are expressed in terms of

!The Mathematica version of FIRE is publicly available [41].



master integralsﬁ

Altogether we end up with 13 master integrals. Seven of them (shown in Fig. B]) are
products of one- and two-loop integrals whereas the remaining six integrals (cf. Fig. M)
request a dedicated investigation. We calculate them using the Dimensional Recurrence
and Analyticity (DRA) method introduced in [44]. In order to fix the position and order
of the poles of the integrals, we use FIESTA [45/46]. The remaining constants are fixed
using the Mellin-Barnes technique [47H5I]. In order to express the results in terms of
the conventional multiple zeta values we apply the PSLQ algorithm [52] on high-precision
numerical results (with several hundreds of decimal digits)ﬁ

The analytic results for the integrals in Fig. [ are listed in Appendix A. Results in terms
of Gamma functions for the integrals in Fig. [3] are easily obtained recursively using the
formulae from the Appendix of Ref. [49]. For convenience also these results are given in
Appendix A.

All results have been cross-checked numerically with the help of FIESTA [46] where an
accuracy of at least four digits has been achieved.

3 Fermionic n} and n} contributions to Z0° and Z9"

Both Z9% and Z9% are obtained from the fermion two-point functions Y(g) which can be
cast in the form

Z(Qamq) = My Z1(q2>7nq) + (¢ _mq) Z2(C]2a7’nq)' (1)
Here m, represents a generic quark mass whereas bare, on-shell and MS quark masses are
denoted by my, M, and m,.

The derivation of ready-to-use formulae for Z9% and Z9% is discussed at length in Refs. [14]
[15]. Thus, let us for convenience only repeat the final formulae which are applied in our
calculations. They read

Z95 = 1+ 3(M2, M,), (2)

-1 0
(Z9%) = 1+2M§8—q221(q2,Mq) i

Sy (M2,M,). (3)

The expressions on the right-hand side are computed by introducing the momentum @

2Note that Z9% and a, have to be independent of the QCD gauge parameter { whereas we expect
that the nll and n;-independent terms of Z9° do depend on &.

3Let us mention that the numerical evaluation of the factorizable four-loop master integrals for a;
which reduce to the evaluation of the corresponding three-loop master integrals in higher orders of € was
undertaken in Ref. [53] as a warm-up before a future full four-loop calculation. This was done with the
method of [42] based on difference equations. The achieved accuracy of several dozen of decimal digits
was not enough for using PSLQ.
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Figure 3: Master integrals for the n} and n} contribution which are easily obtained by
applying one- and two-loop formulae, see e.g., Ref. [49]. Solid lines carry the mass M
and dashed lines are massless. For L; to Lg we have ¢> = M? where ¢ is the external
momentum; L7 is a vacuum integral.
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Figure 4: Non-trivial master integrals contributing to the n? contribution. The same
notation as in Fig. Bl has been used.



with Q* = M7 via ¢ = Q(1 4 t) which leads to the equation

+ M
Te{ D M | = B M) (0
q

Zl(q2a Mq)

?=

%)
= Si(M7, M)+ (2]\456—q2 Mg+22(MqQ, Mq)) t

+0O(t%). (4)
Hence, to obtain Z95 one only needs to calculate ¥ for ¢? = Mq2. To calculate Z9%, one
has to compute the first derivative of the self-energy diagrams. Note that the renormal-

ization of the quark mass is taken into account iteratively by explicitly calculating the
corresponding counterterm diagrams.

We write the perturbative expansion for Z9% in terms of the renormalized strong coupling
as (g is the Euler-Mascheroni number)

5\ —€ 2 E —2¢
705 = 14 @) (O spa | (@) )TN
4 41

s s ™

+ (as;u))g <%>_3E 52O 4 <#)4 (i_;) h 520+ 0 (af) . (5)

This allows us to take the ratio between the on-shell and MS [54H56] mass renormalization
constant which is given by

My (N) Zvons

Zr?zs(:“) - M ZMS
q m
2 3 1
_ 1+a5(,u)52$)+ (%(M) 520 | (as u)) 523 4 (O‘S_“)> 520
T @ d T
+0 (o) Y

The coefficients 524, are by construction finite.

In the case of Z95 we choose the bare coupling as expansion parameter which in many
applications turns out to be convenient. Furthermore, the dependence on p/M, can be
written in factorized form which leads to shorter expressions. Thus we have

708 _ 1 % () sz Qy e 57
2 * s (47r 2 s 4m 2

058 3 eVE —3e @) ag 4 eVE —4e @ o5
+(7) (H) 57} +<?) (E) 57} +(’)<(a5) ) (7)

ne

where each term 624" contains a factor (2 /M?)

We refrain from repeating the one-, two- and three-loop results for Z9% and Z9% since
analytical expressions for general colour coefficients are available in the literature [14-16].
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We split the four-loop coefficient according to the number of closed massless fermion loops

and write (i € {m,2})
67W = 5799 4 52%n, 4+ 67902 + 5703 |

with an analog notation for 5250,

(8)

In the following we present analytical results for 52&‘{2), 52%3), 5Z§42) and 52543) which

read
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8

(9)

)

)

31 , 103 ,  88a; 16as

(10)
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€
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where Iy = In p?/M;, ¢, is Riemann’s zeta function, a; = In2 and a,, = Li,(1/2) (n > 1).
In the case of QCD the colour factors take the values Cy = 3,Cp =4/3 and T'=1/2. In
Egs. (I0) and ([I2) the contributions from closed heavy quark loops are marked by n;, = 1
which has been introduced for illustration.

In order to get an impression of the numerical size of the newly calculated terms we
evaluate 2905 for y = M,. After inserting the numerical values for the colour factors we
obtain (A; = a(M,) /)

295 = 1 A,1.333 + A% (—14.229 — 0.104 ny, + 1.041 n)
+ A? (—197.816 — 0.827 nj, — 0.064 nj, + 26.946 1, — 0.022 nymy — 0.653 n7)
+ A; (—43.465n] — 0.017nyn; +0.678n) +...) + O (A2) | (13)

where the ellipses indicate n; independent contributions and terms proportional to n,
which have not been computed. One observes that the n? contribution at two loops and
the n? contribution at three loops are quite small. This is in contrast to the linear n;
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terms which can become quite sizeable. E.g., setting m; = 5, which corresponds to the
case of the top quark, we obtain (for n, = 1)

295 = 1 - A,1.333 + A% (—14.332 + 5.207,,)
+ A2 (~198.707 + 134.619,, — 16317, )

A (-1087.060,”2 1 84.768,5 + .. ) +0O (A7) (14)

At two-loop order the m; contribution is only a factor of three smaller than the n-
independent term, however, with an opposite sign. At three loops the linear-n; term
has almost the same order of magnitude than the constant contribution but again a dif-
ferent sign. It is remarkable that for n; = 5 the coefficient of the four-loop n} term is
more than a factor of five larger than the n;-independent term at order a?.

Let us finally compare our results with the approximate expressions obtained in Ref. [57]
in the large-f, approximation. In Ref. [57] one finds for the quantity M,/m,(m,) the
result (as = as(my)/m)

M,

— 1 = 1+a,1.333 4 a? (17.186 — 1.041n;)
mq(my)

large—g,
+ a? (177.695 — 21.539n; + 0.653n;)
+ a, (3046.294 — 553.872n; + 33.568n; — 0.678n}) ,  (15)

where for the renormalization scale y = m, has been chosen. The coefficients of Eq. (I5)
should be compared with our findings which read

M,
—2L = 1+a,1.333 + a2 (13.443 — 1.041n)
Mg (M)

+ a? (190.595 — 26.655n; + 0.653n;)

+ a; (co 4+ cimy + 43.396n; — 0.678n}) | (16)

where ¢y and ¢; are not yet known. By construction one finds agreement for the coefficient
of n? since it has been used as input in Ref. [57]. As far as the n? term is concerned the
exact coefficient is predicted with an accuracy of about 30%.

4 Fermionic n? and n? contributions to a
[ [ 1z

It is convenient to introduce the form factors F; and F5 of the photon-lepton vertex as

Fy(¢?)
v V7 1
on, e (17)

I"(q,p) = Fi(¢*)y" +
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where ¢ is the incoming momentum in the photon line and M; is the lepton mass. The
anomalous magnetic moment is given by

g—2

v - (552) - ro. a8

In Eq. (7) also the momentum p = (pi +p»)/2 has been introduced where pi = p3 = M
are the momenta flowing through the external fermion lines (see Fig. [l for the directions
of the momenta).

The evaluation of @; requires that I'*(q, p) is computed in the limit ¢ — 0. Due to the
factor ¢¥ in front of Fy in Eq. (IT) one has to perform an expansion of I'*(q, p) up to linear
terms in ¢ which can be written as

M(g,p) = X"(p)+aY"™ () +0(¢) . (19)

with p?> = M?. F, is conveniently obtained after the application of a projector given by
(see, e.g., Ref. [58])

1
_ T
“ T P -1)D-2)

D -2
2

(Ml27u — Dpup— (D — 1)Mlpu) X*

+ 2t 3 [ 6+ M) Y (20)

and thus a; is reduced to the evaluation of on-shell two-point functions as described in
Section

We define the loop expansion of ¢; in analogy to Eq. ({) (with ay replaced by the fine
structure constant) and introduce the same splitting according to the number of massless
lepton loops as in Eq. (8).

The Feynman diagrams contributing to a; respectively the coefficients of a™ and n} can
be subdivided to two classes: (i) the one where the external photon couples to the lepton
at hand and (ii) the one where it couples to a lepton present in a closed loop. Sample
diagrams are given in Fig. [l In the following we refer to the diagrams of class (ii) as
“light-by-light” contribution in analogy to the corresponding hadronic part.

In this paper four-loop corrections contributing to class (i) are evaluated which contain
two or three closed massless fermion loops. They are used in order to compute electron
loop contributions to a, neglecting terms of order M. /M,,.

For the diagrams in class (i) we can proceed as follows: In a first step we renormalize
the fine structure constant in the MS scheme, &(j). The corresponding renormalization
constant is easily obtained from the one for a; after specifying the colour factors to QED.
The MS scheme has the advantage that the electron mass can be set to zero (which is
not the case for the diagrams in class (ii)). After renormalizing the muon mass in the

11



on-shell scheme we obtain a finite expression for a, which shows an explicit dependence
on In(p?/M?).

In a next step we replace a(u) by its on-shell counterpart using the corresponding relation
up to three loops. It can best be calculated by considering the photon two point function

(@™ — P PN(P) = i / da ¢ (077 (2)7" ()]0} (21)

and employing the on-shell renormalization condition IT(¢? = 0) = 0. The form of the
renormalization condition reduces the problem to the calculation of two-scale vacuum
integrals at three loops. Note, that for the renormalization of the fermion masses in the
on-shell scheme the dependence on both masses has to be taken into account. In the limit

M, < M, we obtain (see also Refs. [25/27,[59])

o 3m 8 4 9

aN3 (L} L,L? 5L T9L, 695 w* (s 1
() (2_7+ 9 +24+144_@+5+6_4+”')+0(a8)

n 2|15 L,+ L, (L,+L,)>
M — 1—1-&([/“—0—[/6)—1—(%) [_+ Mian +( ut )

™

(22)

with L, = In(y?/M}) and L, = In(u®/M?). The ellipses in the coefficient of (a/m)?
indicate terms which we left out since they are irrelevant for the n? contribution discussed
in this paper. The complete result containing the exact dependence on M. /M, is presented
in Appendix B. Note that the result in Eq. ([22]) can be obtained from the one provided
in Ref. [27] where the relation between @(u) and « is given for one massive lepton.

Also in the case of a; we refrain from listing the lower-order results which can be found
in the literature [I3/B82H35]. Rather we concentrate on the new correction terms at four
loops. Adopting the notation from Eq. (8) we obtain the following results for the n}
contribution

g0 — Lys 2., (31T 26 257 8609
g BAHe 108 M T \324 T 27) M 9 162 5832
~ 7.19666, (23)

where L,. = In(M7/M?). The approximate results have been obtained with the help
of [60] M, /M. = 206.7682843(52). The result in Eq. (23] agrees with the one in Ref. [28]

29).
(42) (42)a>

In the case of the n? contribution we split a;~ into two parts. The first one (aj
corresponds to the diagrams containing two closed fermion loops and the second one
(aff‘z)b) originates from diagrams with three closed fermion loops where one of them is a
muon and two are electron loops. Thus, we have

aff‘z) _ aL42)a jLa/(fz)b’

12



with

5 a G 13 at 2a¢° ba; 79
e _ g2 (2f2 o) G 131 b e, 207 Sm 79
“ W{W <36 6)+4 24}+ R G B!

8ay 1zt 231 24}  bal o[ 4al 104}
_ 213 il It STt § et St §
3 <3+216+6] B T T T
2Bay G 595, L, ( Blay 403  d0as  16a; 37G,
548 162 540 3240 3 3 6
11167, 6833
1152 864
~ —3.62427, (24)
119 #? 72 61 47t 1372 7627
(42)b — -0 L2 s L o et
“u <108 9 ) pe F (27 162) e 35 a7 T 1044
~ 0.49405. (25)

" agrees with Ref. [28/29]. Analytical results for a/”" are not present in the literature

since corrections originating from diagrams as the third one in the first row of Fig. [[l have

not been considered yet. However, we can perform a numerical comparison with the
results from Refs. HZZE,BBﬂH which reads

aL42)a

—3.64204(112), (26)
There is a good agreement with the analytic result in Eq. (24). The deviation can be
explained by corrections of order M, /M, = 0.005 or (M, /M,,)? In* M, /M, = 0.004 28,29]
which are absent in our analytic expressions.

5 Conclusions

In this paper the first steps towards the evaluation of four-loop on-shell integrals have
been undertaken. As an application within QCD we have computed the contributions
involving two massless quark loops to the on-shell renormalization constants Z95 and
Z95. As an application in QED we have considered the contribution from four-loop
diagrams involving two or three closed electron loops to the anomalous magnetic moment
of the muon excluding, however, the light-by-light contribution.

We describe in some detail the techniques and the programs which have been used for the
calculation. We are confident that they are generic enough to be applied to the n] and
non-fermionic contribution. The only bottleneck might be the analytic evaluation of the
master integrals so that maybe numerical methods have to be applied.

4In in Ref. [33] the contributions from closed electron and muon loops are always added whereas in
our result at least two closed electron loops are present. We are deeply grateful to the authors of Ref. [33]
for providing us the results for the contributions containing only electron loops Eq. (24)).
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Appendix A: Analytic results for the master integrals

In this appendix we provide the analytic results of all master integrals where we assume
an integration measure d”k/(im)”/? with D = 4 — 2¢. Furthermore we write scalar
propagators of particles with mass M in the form 1/(—k? 4+ M?). For convenience we set
M =1 in the final result since the dependence on M can easily be restored.

The analytic results for the integrals in Fig. Bl read
r(5-32)r(1-2)r@2-2)r(2-1)"ren -9

le

(D — 2)2I(2D — 5) ’
L — I3 - D)r (2-2)°r (2 -1)" 2F(2D —5) | (27)
(D —2)2T (22 - 3)
(5 —2D)T (4—32)T (2 —1)"T(4D - 9)
ba = [(2D —4)T (32 - 5) ’ )
;. _TE-2D)F (5= 2)T (2~ §)°T (§ ~1)°T (% —4)T(4D — 11) 2
T (4 — D)I(D — 2)?T(2D — 5)T (32 —6) ’ (29)
(6 —2D)T(3—D)T (2 2) T (2 —1)°T(4D — 11) 20
- [ =2 (T 9T (- 0) -
T(7-2D)T (2—2)°1 (2 -1)°T(4D — 13)
bo = (D —2)°T (2 —7) ’ oy
_D(6-2D)0 (5 2)°T (2 §)°T (5~ 1)'T (% — 4)
b= (10 — 3D)I(D — 2)°T (2) ' (32)

The analytic results for the integrals in Fig. @l read
5 n 25 n 205 n 1772\ ., n 323 n 85> n 79C\ 4 n 55241
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with sg = S S (= 1) /(mBk) = 0.98744 . .. .

Appendix B: Relation between a(;) and «

In this Appendix we present the result for the relation between the fine structure constant
defined in the MS and on-shell renormalization scheme involving two massive leptons with
masses m; and mo. We label contributions from leptons with mass m; and ms by n;, and
ny, respectively. Our result reads

alp) 1. a |1 1., 5 [l 15 o\’
S = = 44 =1l 1 24 = =
o 32nlﬂ+{912nhnl—l—92nl + 4+16 ny -

1 1 5,2 79, T¢C w695
1303 4 212 2 2 (22 fH2 I P
+{272"l+912”h"l TS T T e T 0 s

+n _17_(2&_[_2_'_&_‘_5_71‘2_‘_1
\3" T 32 192 " 24 T BT6
79[15(32 7912 (31’2 — 8) 5[112 1 4 2 2
_ —— (—1282% — 1522 — 71)1
+""nl[ 334 1152 o1 gy (1280 1507 = T ()

1 1
+§ (—x4+x3+$—1)Liz(1—$)+§ (z* +2° + 2+ 1) Lisy(—2)
(528 + 32 + 322 + 5)

((Li2(1 — &) + Lis(—2)) In(x) — 2Liz(1 — z) — Lig(—x)>

25623
1, ., (52° + 3z + 32% + 5) In*(z) In(x + 1)
+ 3 (z*+2° +z+1)In(z) In(z + 1) + F13.5
40523(3 + 115272 (23 + x) — 59942% + 243x(3 — 5126 a\?
+ J—
10368 m

1
+{nh<—>nl,m1 Mo, T —},
T

with z = my/my, I = In(p?/m?) and a; = In 2.
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