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Abstract This paper analyzes a water pipe network model. In contrast to works
existing so far, the underlying model equation for the pipe flow is not stationary
but quasi-stationary. In exchange, the model is kept simple in terms of considered
control devices. The model gives rise to a differential-algebraic equation (DAE),
for which an index analysis, a decoupling and a proof of global unique solvability
is established. Two important concepts to analyze DAEs are the Tractability In-
dex [9] and the Strangeness Index [8]. In this paper, we make use of the mixed
Tractability-Strangeness Index (TSI), introduced in greater detail in [6, 7]. It allows
for a topological decoupling of the model DAE.

1 Introduction

As the permanent availability of clean water is of high importance for human so-
cieties, water distribution systems have to be run reliably. The circulation of a fair
amount of water at any time and a certain pressure at extraction points have to be
assured. At the same time, energetic costs caused by pumps and other control de-
vices in the system should be minimized. A good modeling and simulation of the
dynamics in a water distribution system is indispensable for an efficient control of
it.
Hydraulic dynamics in a water pipe can be modeled by means of the equation of
motion and the continuity equation. Depending on the degree of dynamics occurring
in the pipe, it is appropriate to use different model levels. This work focuses on a
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quasi-stationary model level, which is based on [11]. In this quasi-stationary model
level, the system of equations arising in the network model is a differential-algebraic
equation (DAE).
For an index analysis and a decoupling of the DAE, we make use of the topology
of the network. This topological approach, which is presented in greater detail in
[6, 7], additionally permits a considerable reduction of the nonlinear equations to
solve. Furthermore, we prove that there is a unique solution of the model DAE over
an arbitrary compact time interval.
The structure of this paper is as follows. In the section 2, we introduce the topologi-
cal approach for the numerical analysis of DAEs. The network model and the arising
DAE is established in section 3. Section 4 presents theoretical graph preparations,
which will be used in section 5. The index analysis, the decoupling and the proof of
the global unique solvability of the model DAE are presented in section 5.
Numerous works have already investigated water network analysis problems. We
name only few of them here. [13] and [15] have introduced the Global Gradient Al-
gorithm (GGA). The GGA is the hydraulic algorithm for EPANET, a public-domain
water distribution system modeling software which has become the standard in wa-
ter distribution network analysis. More recent works can be found in [4, 12, 14].
While [12] investigates topological index conditions, in [14] an extension of the
Global Gradient Algorithm is developed and [4] deals with numerical convergence
issues. These three papers are based on the network model of [1, 2], which consists
of tanks, pumps, valves and a static pipe model. In contrast to this network model
we only deal with pipes, but the pipe model is not static.

2 DAEs and the Tractability-Strangeness Index

As we will see in the next section, the presented network model gives rise to a DAE.
Therefore this section provides definitions and theorems required for DAE analysis.

Definition 1 (Semi-Linear DAE with Constant Leading Coefficients)
Let I ⊂ R be a compact interval and let D ⊂ Rn be open and connected. A semi-
linear differential-algebraic equation (DAE) with constant leading coefficients is an
equation of the form

A(Dz(t))′+b(z(t), t) = 0 (1)

with t ∈I , A ∈ Rn×m, D ∈ Rm×n and b ∈C1(D×I ).

We want the matrices A and D to match each other, i.e. the product AD should
not cut off information neither from A nor from D. Therefore, we define properly
formulated DAEs.

Definition 2 (Properly Formulated DAE)
A DAE (1) is properly formulated, if
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ker A⊕ im D = Rm.

With the next definition we want to fix a splitting of Rn and Rm with respect to a
matrix function M ∈C(D×I ,Rm×n). Therefore define the direct difference. Let V
be a vector space and W be a subspace of V . Then U := V 	W is a subspace of V
such that U⊕W =V .

Definition 3 (Basis Functions)
Let I ⊂ R be a compact interval and D ⊂ Rn be open and connected. Let M ∈
C(D×I ,Rm×n) be a matrix function. Define integers nx, ny, mv and mw ∈N such
that

ny = dim(ker M(z, t)), nx = dimRn−ny,

mw = dim(ker MT (z, t)), mv = dimRm−mw.

Choose four matrix functions

P : D×I → Rn×nx , Q : D×I → Rn×ny ,

V : D×I → Rm×mv , W : D×I → Rm×mw

such that the columns of P(z, t) are a basis of a space Rn	 ker M(z, t), the columns
of Q(z, t) are a basis of ker M(z, t), the columns of V (z, t) are a basis of a space
Rm	 ker MT (z, t) and the columns of W (z, t) are a basis of ker MT (z, t) ∀(z, t) ∈
D× I.
We refer to P as the complementary kernel function of M, to Q as the kernel function
of M, to V as the complementary transposed kernel function and to W as the trans-
posed kernel function. The four matrix functions together are called the associated
basis functions of M.

Remark 2.1
If M is a constant function, i.e. M(z, t) ≡ M, the associated basis functions are
constant as well and we refer to them as the associated basis matrices. Furthermore
it holds nx +ny = n, mv +mw = m and nx = mv in general.

For the analysis of DAEs, several index concepts can be used. Two important ones
among them are the Tractability Index [9] and the Strangeness Index [8]. For our
purposes, it is convenient to make use of a mixed index concept the index of which is
called Tractability-Strangeness Index (TSI), see [6, 7]. In the following, we present
the construction of the matrix chain of the TSI up to index 2. We denote the Jacobian
of the non-linear function b(z, t) in equation (1) by

B(z, t) :=
∂

∂ z
b(z, t)

and define

G0 := AD.
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Let P, Q, V and W be the associated basis matrix functions of G0, see Definition 3.
Since G0 is constant, P, Q, V and W are also constant. We denote

G1 := V T ADP, BV
x1
(z, t) := V T B(z, t)P, BV

y1
(z, t) := V T B(z, t)Q,

BW
x1
(z, t) := W T B(z, t)P, BW

y1
(z, t) := W T B(z, t)Q.

For the next step, let Qy1(z, t) and Wy1(z, t) be the kernel basis function and the
transposed kernel function of BW

y1
(z, t), let Qx1(z, t) be the kernel basis function of

W T
y1
(z, t)BW

x1
(z, t) and let Wx1(z, t) be the transposed kernel function of G1Qx1(z, t).

We define

BW
y2
(z, t) :=W T

x1
(z, t)BV

y1
(z, t)Qy1(z, t)

and the characteristic values r0, r1 and r2 of the DAE (1) such that

r0 := rk AD ,r1 := r0 + rk BW
y1
(z, t), r2 := r1 + rk BW

y2
(z, t)

under the assumption that all defined associated basis functions are continuous and
have constant rank. With the help of the matrix chain we define the TSI up to 2.

Definition 4 (Tractability-Strangeness Index (TSI))
Let the DAE (1) be properly formulated and let G ⊂D×I be open and connected.
Then the DAE (1) is

(i) regular with TSI 0 on G , if r0 = n,
(ii) regular with TSI 1 on G , if r0 < r1 = n,

(iii) regular with TSI 2 on G , if r1 < r2 = n

We still have to show that the TSI is well defined, i.e. the index must be independent
of the choice of the basis functions.

Theorem 2.2 (Rank Independence)
Let the DAE (1) be properly formulated and let G ⊂D×I be open and connected.
For a given µ ∈ N, let exist a basis function sequence associated to the DAE. Then
the characteristic values r0, r1, r2 and the TSI itself are independent of the choice
of the involved basis functions.

A proof is given in [7].

3 Quasi-Stationary Network Model

A water pipe network consists of several different elements, such as nodes, pipes,
valves, pumps and tanks. In order to reduce the complexity, the model analyzed in
the following takes into account just nodes and pipes. All other elements are not
regarded here. The nodes are either pressure nodes, where the pressure is set ex-
ternally and known, or demand nodes, where the demand, i.e. the extraction out of



3. QUASI-STATIONARY NETWORK MODEL 5

the system, is set externally and known. For the nodes, we establish the mass bal-
ance, which is analogous to Kirchhoff’s first law in electrical networks, and obtain
an algebraic system of equations containing information about the flows, i.e. the
condition that the sum of the flows mi through the pipes incident to node v must be
equal to the demand qs at the node:

∑
i∈Iin

mi(t)− ∑
i∈Iout

mi(t) = qs(t) (2)

Iin is the set of pipes incident to v and directed towards v, Iout is the set of pipes
incident to v and directed away from v. In Iin, a flow towards node v is considered
positive, a flow away from the node is considered negative. In Iout , a flow towards
node v is considered negative, a flow away from the node is considered positive.
For the pipes, we have the equations of motion to get information about the pres-
sure loss between two nodes. We assign a direction to every pipe and a number to
every node and every pipe in the network. Figure 3 shows an example network. The
dots represent the nodes, while the lines between the nodes represent pipes. The
arrowheads describe the direction of the pipes.

1212 1 2 3 4 5

6 7 8 1313 9

10 11 1414
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1617

Fig. 1 Example network. The pressure nodes are red and unfilled and the demand nodes are blue
and solid.

We assume the water network to be dominated by laminar flows, which allows us
to consider the water motion as a one-dimensional flow along the length of the
pipes. Furthermore we assume a network with significant time-dependent changes
of flow, but without hydraulic shocks. These assumptions cause a pipe model called
the quasi-stationary model level, which will be presented in the following
We consider an arbitrary water pipe of the network. Let t ∈ [t0,T ] =: I denote the
time and x ∈ [0,L] =: Ω denote the space. We define the functions

m : I ×Ω 7→ R, p : I ×Ω 7→ R,
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with m(t,x) the water flow and p(t,x) the water pressure. The rigid water column
model (see [11]) yields the continuity equation

∂m
∂x

(t,x) = 0, (3)

i.e. the water is assumed to be incompressible. Thus m(t,x) = m(t). For the equation
of motion, we obtain with [11] the PDE

dm
dt

(t)+A
∂ p
∂x

(t,x)+ρAgsinα +
1
ρ

λ

2DA
m(t) |m(t)|= 0, (4)

with ρ the water density, g the gravity constant and A, α, λ and D constant pipe
characteristics. More precisely, for a specific pipe, A denotes the cross-sectional
area, α the angle of elevation, λ the Darcy friction factor and D the diameter.
We see that ∂ p

∂x (t,x) is constant with respect to x as the other terms in the equation

do not depend on x. As a consequence, the difference quotient p(t,x+h)−p(t,x)
h is an-

alytically exact for any pair (x,h) such that x, (x+ h) ∈ Ω . Our aim is to find the
pressure at the nodes, formally speaking p(t,0) and p(t,L). Therefore, we set x = 0
and h = L and obtain

∂ p
∂x

(t,0) =
p(t,L)− p(t,0)

L
(5)

Inserting equation (5) into the pipe equation (4) and multiplying by L
A yields the

ODE

L
A

m′(t)+ p(t,L)− p(t,0)+Lρgsinα +
L
ρ

λ

2DA2 m(t) |m(t)|= 0,

with m′(t) := dm
dt (t). For a compact notation, we define S := L

A , H := −Lρgsinα ,
c := L

ρ

λ

2DA2 and the function g : R 7→ R, g(x) := cx |x| and we obtain the pipe equa-
tion

Sm′(t)+ p(t,L)− p(t,0)+g(m(t)) = H. (6)

At this point we can already see that the node equations (2) together with the pipe
equations (6) yield a DAE for a complete network.

3.1 Representing a Water Pipe Network by a Graph

We want to establish the pipe equation (6) and the node equation (2) for the whole
network. Therefore, it is convenient to use some common graph theoretical defi-
nitions and notation. We define a connected oriented graph G = (N,E) (see [5])
representing the pipe network. The set of nN nodes is denoted by N(G) = N =
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{v1,v2, . . . ,vnN} and the set of nE edges is denoted by E(G) = E = {e1,e2, . . . ,enE}.
A particular edge ei represents a particular pipe, referred to as the i-th pipe. As we
consider oriented graphs, any edge is given an arbitrary but fixed direction. Flows
against the edge direction are taken into account negatively, flows with the edge di-
rection are taken into account positively. It is useful to split the node set into disjoint
sets Np and Nq such that Np tNq = N, here t denote the disjoint intersection of
two sets. Np represents the set of pressure nodes and Nq represents the set of de-
mand nodes. We order the nodes as follows: The demand nodes Nq are numbered
v1, ...,vnNq

and the pressure nodes are numbered vnNq+1, ...,vnN . The graph G can be
identified with a (complete) incidence matrix Ac = Ac(G) ∈ RnE×nN , defined as

(Ac)i, j :=


1, if v j is the end node of ei

−1, if v j is the start node of ei

0, else

Based on Ac, we can define the reduced incidence matrix Ar ∈ RnE×nNq and the
complementary reduced incidence matrix Ap

r ∈ RnE×nNp such that(
Ar Ap

r
)

:= Ac.

The columns of Ar correspond to demand nodes and the columns of Ap
r correspond

to pressure nodes.

3.2 Network Model DAE

Considering the whole pipe network, we can establish the pipe equation (6) for every
pipe and the node equation (2) for every demand node in the network. That yields a
system of n := nE +nNq equations.
For the purpose of a compact representation we modify the notation of the previous
sections. Henceforth, m(t) ∈ RnE , p(t) ∈ RnNq , qs(t) ∈ RnNq and H ∈ RnE denote
vectors:

m(t) =


...

mi(t)
...

 , p(t) =


...

pi(t)
...

 , qs(t) =


...

qsi(t)
...

 , H =


...

−ρgLisin(αi)
...

 ,

where mi denotes the flow through the i-th pipe represented by the edge ei, pi de-
notes the pressure at demand node vi and qsi denotes the demand at demand node
vi. Furthermore, Li denotes the length of the i-th pipe and αi its angle of elevation.
We define the vector ps ∈ RnNp such that
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ps(t) =


...

psi(t)
...


and psi is the pressure at pressure node vnNq+i. The function g is henceforth defined
as follows:

g : RnE → RnE , g(m) :=


...

cimi |mi|
...


where

ci :=
Li

ρ

λi

2DiA2
i

(7)

and the subscript i points to pipe i. Finally, S ∈ RnE×nE is defined as a diagonal ma-
trix such that Sii := Li

Ai
. Putting the node equations and the pipe equations together,

we obtain the n-dimensional system of network model equations

Sm′(t)+Ar p(t)+g(m(t)) = H−Ap
r ps(t) (8a)

AT
r m(t) = qs(t) (8b)

Note that m and p are unknown and to be found, whereas everything else is known.
The system is non-linear due to non-linearity of g. In the stationary model level, the
derivative vanishes and we obtain

Ar p(t)+g(m(t)) = H−Ap
r ps(t) (9a)

AT
r m(t) = qs(t). (9b)

An analysis of the algebraic equation (9) arising in the stationary model level, no-
tably a proof of the global unique solvability of the equation, can be found in [10].

Defining z(t) :=
(

m(t)
p(t)

)
∈ Rn and

A :=
(

InE

0

)
∈ Rn×nE ,

D :=
(
S 0
)
∈ RnE×n,

B̃ :=
(

0 Ar
AT

r 0

)
∈ Rn×n,

f (z(t), t) :=
(

g(m(t))
0

)
−
(

H−Ap
r ps(t)

qs(t)

)
∈ Rn,

b(z(t), t) := B̃z(t)+ f (z(t), t) ∈ Rn,
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yields the following equation which is equivalent to (8):

A(Dz(t))′+b(z(t), t) = 0. (10)

This is a semi-linear DAE with constant leading coefficients as in Definition 2. For
the index analysis and the decoupling of this DAE, we need the associated basis
functions of Definition 3. The network topology will help us to find such basis func-
tions. The next section will provide the essential definitions and results on the net-
work topology.

4 Analysis of the Network Topology

We use the graph theoretical terms spanning tree, fundamental cycle, subgraph, path
and forest. For a definition of these terms see [5]. In the connected directed graph
G(N,E), we choose a spanning tree T . We call an edge e ∈ E(G) \E(T ) a cycle
edge and denote the set of nC cycle edges by Ered(T ). By construction, it holds

E(T )tEred(T ) = E(G).

We denote the set of fundamental cycles of T by CT =
{

C1, . . . ,CnCT

}
and we assign

an orientation to every fundamental cycle Ci, i = 1, . . . ,nCT . Next, we define Z as a
subgraph of T with nE(T )− (nNp −1) edges such that Z does not contain any paths
between pressure nodes vi ∈ Np, called pressure paths. An edge e ∈ E(T ) \E(Z)
is called pressure path edge and the set of nP pressure path edges is denoted by
Ered(Z). By construction, it holds

E(Z)tEred(Z) = T.

Adding a pressure path edge e ∈ Ered(Z) to Z induces a unique pressure path in
Z. We call such an inducible pressure path a fundamental pressure path of Z and
denote the set of fundamental paths by PZ =

{
P1, . . . ,PnPZ

}
. We assign a direction

to every fundamental pressure path Pi, i = 1, . . . ,nPZ , which yields a start node and
an end node for each of them. As Ered(T ) only contains elements of E(G) \E(T )
and Ered(Z) only contains elements of E(T ), it holds Ered(Z)∩Ered(T ) = /0. We
define

Ered(T,Z) := Ered := Ered(T )tEred(Z)

In the following, speaking about the sets E and N, we always refer to E(G) and
N(G). For any tree T of a graph G it holds

nN(T )−1 = nE(T ) = nE −nEred(T ). (11)

Moreover, we know that for any subgraph Z of T defined as above, it holds
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nEred(Z) = nNp −1. (12)

We can conclude that

n(E\Ered) = nE −nEred(T )−nEred(Z) = nN(T )−1− (nNp −1) = nNq . (13)

For an easier definition of some matrices later on, we renumber the edges E =
(E \Ered)tEred(Z)tEred(T )) such that

E = {e1, . . . ,enNq︸ ︷︷ ︸
∈ E\Ered

,enNq+1, . . . ,enNq+nPZ︸ ︷︷ ︸
∈ Ered(Z)

,enNq+nPZ +1, . . . ,en︸ ︷︷ ︸
∈ Ered(T )

}

Figure 2 shows the example network of Figure 1 with the renumbered edges. Note
that the choice of cycle edges Ered(T ) and pressure path edges Ered(Z) is not unique,
but the number nC of cycle edges and the number nP of pressure path edges are
invariant under the choice.
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Fig. 2 Renumbered example network. The pressure nodes are red and unfilled and the demand
nodes are blue and solid. The cycles edges are green and dashed while the pressure path edges are
red and dotted.

Now we can define three important matrices. The matrix At ∈RnNq×nE is defined as

At := (InNq
0)

with InNq
the identity matrix in RnNq×nNq . The cycle matrix AC ∈RnCT ×nE of a span-

ning tree T in G is defined as

(AC)i, j :=


1, if e j is directed as the orientation of cycle Ci

−1, if e j is directed opposite to the orientation of cycle Ci

0, if e j /∈ E(Ci)
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The pressure path matrix AP ∈ RnPZ×nE of Z is defined as

(AP)i, j :=


1, if e j is directed as pressure path Pi

−1, if e j is directed opposite to pressure path Pi

0, if e j /∈ E(Pi)

We define (
AP
AC

)
:= APC ∈ R(nEred×nE ).

The proof of the next lemma can be found in [3].

Lemma 4.1
Let T be a tree with one pressure node. Then, the reduced incidence matrix of T is
non-singular.

With the help of Lemma 4.1 we prove the following results.

Lemma 4.2
For the matrices At , Ar and APC hold:

(i) R :=
(

At
APC

)
∈ RnE×nE and AtAr ∈ RnNq×nNq are non-singular.

(ii) APCAr = 0.

PROOF:
(i) To show that R is non-singular, we show that it is of the form


E \Ered Ered(Z) Ered(T )

At R1 0 0
AP ∗ R2 0
AC ∗ ∗ R3

= R

with Ri non-singular and ∗ arbitrary matrices. At is of the form (R1 0 0) with
R1 = InNq

by construction. Coming to AP, we firstly note that by construction every
edge ei ∈ Ered(Z) is element of exactly one fundamental pressure path Pi, and two
different edges ei,e j ∈ Ered(Z) can not be element of the same fundamental pres-
sure path. Thus, the columns of R2 are pairwise independent positive or negative
unit vectors and R2 is non-singular. Furthermore, we remember that

Ered(T )∩E(T ) = /0

by definition of Ered(T ). Thus, an edge ei ∈ Ered(T ) can not be element of a fun-
damental pressure path Pi since the fundamental paths Pi are defined as subgraphs
of T . The third constituting matrix block of AP is hence a zero matrix. Analogously
to R2, the matrix R3 is non-singular because every edge ei ∈ Ered(T ) is element of
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exactly one fundamental cycle Ci, and two different edges ei,e j ∈ Ered(T ) can not
be element of the same fundamental cycle.
Now we show the regularity of AtAr. By construction of At , the matrix AtAc ∈
RnNq×nN is an incidence matrix corresponding to the graph Gred , with

Gred := (N,Ered)

Gred is a forest F with nNp trees by construction of Ered . Each of these trees contains
exactly one pressure node. We renumber the edges and nodes of Gred such that the
incidence matrix ÃtA of the renumbered graph is of the form

ÃtA =

∗
1

. . .
∗k


with ∗i the incidence matrices of the trees of the forest F . Then, the reduced inci-
dence matrix of the renumbered graph is of the form

(̃AtA)r =

∗
1
r

. . .
∗k

r

 ,

with ∗i
r, i = 1, . . . ,k the reduced incidence matrices of the trees of the forest F . The

matrices ∗i
r, i = 1, . . . ,k are non-singular with Lemma 4.1. Thus, (̃AtA)r is non-

singular. Since renumbering of a graph involves only changes of rows and columns
of the corresponding (reduced) incidence matrix, it does not have an impact singu-
larity or non-singularity of the matrix. Thus (AtA)r = AtAr is non-singular.
(ii) Firstly, we prove that ACAr is a zero matrix. We consider an arbitrary entry

(ACAr)i, j =
nE

∑
k=1

(AC)i,k(Ar)k, j, with i ∈ nC, j ∈ nNq

and show that it is zero.
(AC)i,k is non-zero if and only if ek ∈ E(Ci). Hence we only have to consider k such
that ek ∈ E(Ci).
We consider the cases v j /∈ N(Ci) and v j ∈ N(Ci) separately.

(a) If v j /∈ N(Ci), then (Ar)k, j = 0 because v j can be neither the start node nor the
end node of ek ∈ E(Ci).

(b) If v j ∈ N(Ci), there are exactly two k ∈Ci, say k1 and k2, such that (Ar)k1, j and
(Ar)k2, j are non-zero. ek1 and ek2 are the edges of Ci joining in v j. If the edges
ek1 and ek2 are directed the same way in Ci, (AC)i,k1 and (AC)i,k2 have the same
algebraic sign and (Ar)k1, j and (Ar)k2, j have opposite algebraic signs. In this
case,
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(ACAr)i, j = (AC)i,k1(Ar)k1, j +(AC)i,k2(Ar)k2, j = 0.

If ek1 and ek2 are directed opposite to each other, (AC)i,k1 and (AC)i,k2 have
opposite algebraic signs and (Ar)k1, j and (AC)k2, j have the same algebraic sign.
Again,

(ACAr)i, j = (AC)i,k1(Ar)k1, j +(AC)i,k2(Ar)k2, j = 0.

Finally, we show that APAr = 0 is a zero matrix. As in the proof for ACAr, consider
an arbitrary entry

(APAr)i, j =
nE

∑
k=1

(AP)i,k(Ar)k, j = 0, with i ∈ nP, j ∈ nNq .

Substituting paths for cycles, we obtain (APAr)i, j = 0 for j such that v j is neither
the start node nor the end node of Pi analogously to the proof of ACAr = 0. But
as both the start node and the end node considered here are pressure nodes, the
corresponding columns are omitted in Ar and hence we do not have to take them
into account. 2

We close this section with the following corollary:

Corollary 4.3
The matrix Ar has full column rank.

PROOF:
By construction of At , AtAr arises from Ar when the last nEred rows are omitted, i.e.
the columns of AtAr are ’truncated’ columns of Ar. AtAr has full row rank since
it is non-singular with Lemma 4.2 and thus the ’truncated’ columns are linearly
independent. Then, the ’non-truncated’ columns of Ar must be linearly independent
as well and AtAr has full column rank. 2

5 Index Analysis an Global Solvability

This section is split into three parts. First the index of the DAE (10) is analyzed,
then we will provide a topologically motivated decoupling procedure and last we
will prove the global unique solvability of the (10).
We undertake an index analysis of the DAE (10) using topological matrices for
the matrix chain. Firstly, we check if the DAE (10) is properly formulated. The
matrix A=

(
InE 0

)T ∈Rn×nE has full column rank and thus ker A= {0}. The matrix
D =

(
S 0
)
∈ RnE×n has nE linearly independent rows since S is a positive definite

diagonal matrix and thus im D = RnE . Consequently, ker A⊕ im D = RnE and the
DAE (10) is properly formulated. For the index analysis, we need the Jacobian of b
with respect to z. That is
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B(z) := bz(z) =



. . .

2ci |mi| Ar
. . .

AT
r 0

 ∈ Rn×n.

Throughout this section, we might drop the argument t if that yields a better view.

Theorem 5.1 (Index Analysis)
Let the network be connected and let there be at least one pressure node and one de-
mand node in the network. Then the resulting DAE (10) has Tractability-Strangeness
Index 2.

PROOF:
We start with the matrix

G0 = AD =

(
S 0
0 0

)
∈ Rn×n.

S ∈ RnE×nE is a positive definite diagonal matrix. Thus,

r0 = rk G0 = nE < n

and the TSI is at least 1. By symmetry of G0, it holds ker G0 = ker GT
0 and we can

choose

Q =W =

(
0

InNq

)
∈ Rn×nNq ,

as kernel matrix and transposed kernel matrix of G0 and

P =V =

(
InE

0

)
∈ Rn×nE

as complementary kernel matrix and transposed complementary kernel matrix of
G0. For the first sequence of matrices, we obtain

G1 =V T G0P = S,

BV
x1
(z) =V T B(z)P = gz(z),

BV
y1
=V T B(z)Q = Ar,

BW
x1
=W T B(z)P = AT

r ,

BW
y1
=W T B(z)Q = 0nNq

∈ RnNq×nNq

Since rk BW
y1
= 0, we obtain
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r1 = r0 + rk BW
y1
= nE < n

and the TSI is at least 2. To check if it is exactly 2 or bigger, we have to determine
rk BW

y2
(z). Therefore, we need a kernel matrix Qy1 and a transposed kernel matrix

Wy1 of BW
y1
= 0nNq

. We can choose

Wy1 = Qy1 = InNq
.

It follows

W T
y1

BW
x1
= AT

r .

Now we need a kernel matrix Qx1 of W T
y1

BW
x1

= AT
r . With Lemma 4.2(ii), we can

choose

Qx1 = AT
PC ∈ RnE×nEred .

Finally, Wx1 is a transposed kernel matrix of G1Qx1 = SAT
PC. Without determining

Wx1 explicitly, we show that W T
x1

Ar is non-singular. Firstly, we note that(
AT

r
APC

)(
SAT

PC Ar
)
=

(
∗ AT

r Ar
APCSAT

PC 0

)
is a non-singular matrix since APC and AT

r have full row rank with Lemma 4.2(i) and
Corollary 4.3 and thus APCSAT

PC and AT
r Ar are positive definite and therewith non-

singular. It follows that
(
Ar AT

PC
)T and

(
SAT

PC Ar
)

are both non-singular since they
are quadratic. Without determining the transposed complementary kernel matrix Vx1
of G1Qx1 = SAT

PC, we know by construction that(
V T

x1
W T

x1

)
∈ RnE×nE

is non-singular. Thus, (
V T

x1
W T

x1

)(
SAT

PC Ar
)
=

(
∗ ∗
0 W T

x1
Ar

)
is non-singular as the product of non-singular matrices. That implies that W T

x1
Ar ∈

RnNq×nNq is non-singular and

rk W T
x1

Ar = nNq .

By definition,

BW
y2
(z) =W T

x1
(z)BV

y1
Qy1(z) =W T

x1
(z)Ar
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and thus rk BW
y2
= nNq . Consequently,

r2 = r1 + rk BW
y2
= r1 + rk Ar = nE +nNq = n

and the TSI is 2. 2

Next we presents a decoupling of the model DAE (8). We consider the matrix(
AT

t AT
PC
)
∈ RnE×nE , which consists of the columns of the complementary kernel

matrix AT
t ∈ RnE×nNq and the kernel matrix AT

PC ∈ RnE×nEred of AT
r ∈ RnNq×nE .(

AT
t AT

PC
)

is non-singular with Lemma 4.2(i). Thus we transform the coordinates:

m =
(
AT

t AT
PC
)(m1

m2

)
= AT

t m1 +AT
PCm2 (14)

with m1 ∈ RnNq and m2 ∈ RnEred . Note that m 6=
(

m1
m2

)
in general.

Lemma 5.2 (Decoupling)
Let the network be connected and let there be at least one pressure node and one
demand node in the network. With the coordinate transformation (14) the DAE (10)
can be transformed into the following form:

m1 = (AT
r AT

t )
−1qs (15a)

m′2 = (APCSAT
PC)
−1(APC(r−SAT

t m′1−g(AT
t m1 +AT

PCm2))) (15b)

p = (AtAr)
−1(At(r−S(AT

t m1 +AT
PCm2)

′−g(AT
t m1 +AT

PCm2))) (15c)

PROOF:
Inserting (14) into equation (8b) yields

AT
r m = AT

r (A
T
t m1 +AT

PCm2) = AT
r AT

t m1 = qs

as AT
r AT

PC = 0 with Lemma 4.2(ii).
AT

r AT
t ∈ RnNq×nNq is a non-singular matrix with Lemma 4.2(i) and thus we obtain

m1 by solving a system of linear equations. In the next step, we multiply
(

At
APC

)
from the left to equation (8a) and insert the transformed coordinates (14):

Sm′+Ar p+g(m) = H−Ap
r ps

⇔

{
AtS(AT

t m1 +AT
PCm2)

′+AtAr p+Atg(AT
t m1 +AT

PCm2) = At(H−Ap
r ps)

APCS(AT
t m1 +AT

PCm2)
′+APCAr p+APCg(AT

t m1 +AT
PCm2) = APC(H−Ap

r ps)

⇔

{
(AtAr)p = At(H−Ap

r ps−S(AT
t m1 +AT

PCm2)
′−g(AT

t m1 +AT
PCm2))

(APCSAT
PC)m

′
2 = APC(H−Ap

r ps−SAT
t m′1−g(AT

t m1 +AT
PCm2))



5. INDEX ANALYSIS AN GLOBAL SOLVABILITY 17

For a convenient notation, we define r := H −Ap
r ps. The matrix AtAr ∈ RnNq×nNq

is non-singular with Lemma 4.2(i). Since S is a positive definite diagonal matrix
and APC has full column rank with Lemma 4.2(i), APCSAT

PC ∈ RnEred×nEred is non-
singular, too. That means we can solve the DAE (10) by solving the equations in the
following order:

m1 = (AT
r AT

t )
−1qs

m′2 = (APCSAT
PC)
−1(APC(r−SAT

t m′1−g(AT
t m1 +AT

PCm2)))

p = (AtAr)
−1(At(r−S(AT

t m1 +AT
PCm2)

′−g(AT
t m1 +AT

PCm2)))

2

AT
r AT

t is the incidence matrix of a forest. If the graph is sorted in a convenient way,
AT

r AT
t is an upper triangular matrix with diagonal elements aii =±1 and for exactly

one non-diagonal element per row it holds ai j =±1. All other components are zero.
Therefore, we obtain m1 with relatively low computing costs in practice.
In our renumbered example network 4, AT

r AT
t is the incidence matrix of the graph

containing every node of the network and every edge which is neither a cycle edge
nor a path edge, i.e. the graph contains exactly the edges drawn in black. The system
of ODEs (15b) has dimension nEred , which equals the number of cycle edges (drawn
in green) plus the number of path edges (drawn in red).
In the next part we prove the global unique solvability of equation (10).

Theorem 5.3 (Unique Solvability)
Let the network be connected and let there be at least one pressure node and one
demand node in the network. Furthermore let, on a compact time interval I =
[t0,T ], the demand input functions qs(t) be continuously differentiable and let the
pressure input functions ps(t) be continuous. Then for every initial value of the flow
components m(t0) which fulfills AT

r m(t0) = 0 the DAE (16) has a global unique
solution (m?(t), p?(t)) on I with m?(t) being continuously differentiable and p?
being continuous.

PROOF:
With Lemma 5.2 it is sufficient to show that there is a global unique solution of (15).
With the assumption that the initial value m(t0) fulfills AT

r m(t0) = 0 and equation
(15a) we obtain a global unique solution m1(t) ∈C1(I ).
If there is a global unique solution m2 for the non-linear ODE (15b), then we can
insert m1 and m2 into equation (15c) and obtain the global unique solvability of p.
Hence we have to show the global unique solvability of (15b). Notice here that the
initial values of the pressures p are algebraically determined.
For a more compact notation, we define a(t) := APC(r(t)− SAT

t m′1(t)) and s(t) :=
AT

t m1(t). Then, equation (15b) is equivalent to

m′2(t) = (APCSAT
PC)
−1(a(t)−APCg(s(t)+AT

PCm2(t))). (16)

The right hand side function of the ODE (16),
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h : RnEred ×R→ RnEred , (x, t) 7→ (APCSAT
PC)
−1(a(t)−APCg(AT

PCx+ s(t))),

is continuously differentiable as the composition of continuously differentiable
functions. Hence, h is locally Lipschitz-continuous for all t ∈ I with respect to
x. Firstly, we show that any possible solution x∗ of (16) is bounded on I by means
of an a-priori estimate. Before we can start our estimate, we need some preparation.
We use the notation

‖x‖p,M := ‖Mx‖p

with M a compatible matrix with full column rank. We define S
1
2 such that S

1
2 S

1
2 = S

with S
1
2 being positive definite and obtain

1
2

d
dt

∥∥∥S
1
2 AT

PCx
∥∥∥2

2
=

1
2

d
dt
(S

1
2 AT

PCx)T (S
1
2 AT

PCx)

= (S
1
2 AT

PCx)T (S
1
2 AT

PCx)′ = xT APCSAT
PCx′

Furthermore,

ca := max
i


...

maxt |ai(t)|
...

 and cs := max
i


...

maxt |cisi(t)|
...

 , (17)

with ci the pipe characteristics defined in equation (7), exist as a and s are continuous
functions on I .
Now we are ready for the estimate. Remember that x, a and s are functions on I .
The following relations hold pointwise for all t ∈I .

1
2

d
dt

∥∥∥S
1
2 AT

PCx
∥∥∥2

2

=xT APCSAT
PCx′

=xT (a−APCg(AT
PCx+ s)

)
=xT a−

n

∑
i=1

(
ci(AT

PCx)2
i
∣∣(AT

PCx+ s)i
∣∣+(AT

PCx)icisi
∣∣(AT

PCx+ s)i
∣∣)

≤xT a−
n

∑
i=1

(AT
PCx)icisi

∣∣(AT
PCx+ s)i

∣∣
≤

n

∑
i=1
|xiai|+

n

∑
i=1

∣∣(AT
PCx)i

∣∣ |cisi|
(∣∣(AT

PCx)i
∣∣+ |si|

)
(17)
≤ ca

n

∑
i=1
|xi|+ cs

n

∑
i=1

(
(AT

PCx)2
i + cs

∣∣(AT
PCx)i

∣∣)
=ca ‖x‖1 + cs ‖x‖2

2,AT
PC
+ c2

s ‖x‖1,AT
PC
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Equivalence of norms on Rn yields the existence of constants c̃, c̃s, c̄ > 0 such that

d
dt

∥∥∥S
1
2 AT

PCx
∥∥∥2

2
≤ 2c̃‖x‖2 +2c̃s ‖x‖2

2 ≤ 2c̄(‖x‖2 +‖x‖
2
2).

We define I> and I< such that

‖x‖ ≥ 1 on I>
‖x‖< 1 on I<

and obtain by integrating∥∥∥S
1
2 AT

PCx
∥∥∥2

2

≤c̄
∫ t

t0
(‖x‖2 +‖x‖

2
2)ds+

∥∥∥S
1
2 AT

PCx(t0)
∥∥∥

2

=c̄
∫

I<
(‖x‖2 +‖x‖

2
2)ds+ c̄

∫
I>
(‖x‖2 +‖x‖

2
2)ds+

∥∥∥S
1
2 AT

PCx(t0)
∥∥∥

2

≤c̄
∫

I<
2ds+ c̄

∫
I>
(‖x‖2 +‖x‖

2
2)ds+

∥∥∥S
1
2 AT

PCx(t0)
∥∥∥

2

≤2c̄(T − t0)+2c̄
∫ t

t0
(‖x‖2

2)ds+
∥∥∥S

1
2 AT

PCx(t0)
∥∥∥

2

=2c̄
∫ t

t0
‖x‖2

2 ds+ k̄,

with k̄ := 2c̄(T − t0)+
∥∥∥S

1
2 AT

PCx(t0)
∥∥∥

2
. Exploiting the equivalence of norms again

yields

‖x‖2
∞
≤ ĉ

∫ t

t0
‖x‖2

∞
ds+ k̂.

At this point, we can see that the conditions for the Gronwall-inequality are met and
we obtain the a-priori estimate for any possible solution x∗ of (16)

‖x∗(t)‖2
∞
≤ k̂eĉ(t−t0)

and thus

‖x∗(t)‖
∞
≤ kec(t−t0) (18)

with c = 1
2 ĉ and k =

√
k̂. We define

R := I × [−kec(T−t0),kec(T−t0)]nEred .

The estimate (18) ensures that any possible solution x∗(t) cannot cross the limits
of R for t ∈ I . Since the right hand side function is locally Lipschitz-continuous
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with respect to x for all t ∈I , the theorem of Picard-Lindelöf yields existence and
uniqueness of a solution x∗ = m2 ∈ C1([t0, t1]) with t0 < t1 < T . By means of the
a-priori-estimate, this solution can be extended uniquely to the limits of the time
interval I , i.e. there is a solution x∗ = m2 ∈C1(I ). 2

Remark 5.4
Notice that the initial values of the pressure variables can not be chosen freely.

6 Conclusions

In this paper, we have shown global unique solvability of a water network model
with quasi-stationary models for the pipe equation. We have analyzed the resulting
DAE with the Tractability-Strangeness Index, which allows for a topological de-
coupling. By means of this decoupling, we reduce the non-linear equations to solve
substantially. i.e. the reduced system has the size of the of the quantity of cycles
in the system plus the quantity of pressure nodes minus one. Furthermore, we have
shown that the index of the model DAE is 2.
The considered model takes into account only nodes and pipes, whereas [12] has
shown global unique solvability for a more complex model with respect to the con-
sidered control devices. But the model level of [12] is stationary with respect to
the underlying pipe equation. The challenge arising naturally is to ’combine’ the
results of this paper and [12], i.e. to show global unique solvability for complex
models in the quasi-stationary model level. Thereafter, an extension to the dynamic
model level being able to model hydraulic shocks in a pipe appropriately would be
desirable.
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