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Abstract. We show that the γi-deformation, which was proposed as candidate gauge
theory for a non-supersymmetric three-parameter deformation of the AdS/CFT corre-
spondence, is not conformally invariant due to a running double-trace coupling – even
in the ’t Hooft limit. Moreover, this cannot be cured when we extend the theory by
adding at tree-level arbitrary multi-trace couplings that obey certain minimal consis-
tency requirements. Our findings suggest a possible connection between this break-
down of conformal invariance and a puzzling divergence recently encountered in the
integrability-based descriptions of two-loop finite-size corrections for the single-trace
operator of two identical chiral fields. We propose a test for clarifying this.
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1 Introduction and summary

1.1 General setup

The AdS/CFT correspondence [1–3] predicts dualities between certain string theories
in anti-de Sitter (AdS) space and conformal field theories (CFTs). Its most prominent
example concerns type II B string theory in AdS5×S5 with N units of five-form flux and
the four-dimensional maximally (N = 4) supersymmetric Yang-Mills (SYM) theory
with gauge group SU(N). It is most accessible in the ’t Hooft limit [4], where N → ∞
and the Yang-Mills coupling constant gYM → 0 such that the t’ Hooft coupling λ =
g2
YM
N is kept fixed: the string theory becomes free, and in the gauge theory non-planar

vacuum diagrams are suppressed.1

By applying discrete orbifold projections [5,6] or continuous deformations [7–10] to
this setup, further examples for such dualities with less (super)symmetries have been
constructed; see [11] for a review.

In [7], Lunin and Maldacena formulated a deformation of the maximally supersym-
metric duality, introducing one complex deformation parameter. When restricted to a
real parameter, the deformed string background can be obtained by applying a TsT
transformation, i.e. a combination of a T-duality, a shift (s) of an angular variable and
another T-duality, to the S5 factor of the AdS5×S5 background. This breaks the isom-
etry group SO(6) of the S5 to its U(1) × U(1)× U(1) Cartan subgroup. One specific
combination of the latter becomes the R-symmetry of the preserved simple (N = 1)
supersymmetry. The gauge-theory dual has been identified as a particular case of the
Leigh-Strassler deformations [12] of N = 4 SYM theory. This theory is called the
β-deformation, where β refers to the single real deformation parameter.

In order to break also the remaining supersymmetry and hence obtain a non-super-
symmetric example of the AdS/CFT correspondence, Frolov [9] generalized the above
construction by applying three TsT transformations to the string background, each
depending on an individual angular shift parameter γi, i = 1, 2, 3. He proposed that
the dual gauge theory should be given by the so-called γi-deformation of the N = 4
SYM theory. In a subsequent paper [10], Frolov, Roiban, and Tseytlin made the gauge
theory and the matching with the string theory more explicit. In the special case where
all parameters assume a common value γi = −πβ, i = 1, 2, 3, N = 1 supersymmetry is
restored and the β-deformation is recovered.

Both deformed gauge theories can be formulated via a non-commutative ∗-product
that introduces a phase depending on the three U(1)×U(1)×U(1) Cartan charges of
the respective fields.

1.2 Conformal invariance

The AdS5 factor of the string background has SO(2, 4) as isometry group, which –
according to the AdS/CFT correspondence – must also be present in the gauge theory.
Since SO(2, 4) is the conformal group in four dimensions, the dual gauge theory should
be a conformal field theory. In the maximally supersymmetric example this is indeed
the case: the classical N = 4 SYM theory is trivially conformal. Even more important,

1Subtleties for diagrams with external legs will be discussed below.
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the conformal symmetry is preserved in the quantized theory. The coupling constant
is not renormalized and the β-function hence vanishes exactly such that no scale is
introduced by quantum corrections. In fact, the N = 4 SYM theory is finite [13, 14],
i.e. its observables are free of divergences.2 The aforementioned orbifold projections
and TsT transformations only act in the S5 directions, keeping the AdS5 factor and
thus its SO(2, 4) isometry group intact.

Therefore, the respective dual orbifold gauge theories as well as the β- and γi-
deformation of N = 4 SYM theory should be conformal field theories as well, at least
if the resulting string background is stable and the AdS5-factor is exact.

The statement of conformal invariance has to be made more precise. First, we recall
that the N = 4 SYM action only contains interactions in which the representation
matrices of the gauge algebra appear in commutators and the contractions of their
indices form a single trace. The U(1) component of a field transforming under the U(N)
gauge group decouples from these commutator interactions, and hence the theories with
SU(N) and U(N) gauge group are essentially the same.

When orbifolds or deformations are applied, these single-trace contributions trans-
form into respective new single-trace terms. Moreover, new multi-trace couplings can
occur. They are constructed from the twisted sectors of the orbifolds [15] or ∗-deformed
commutators. The latter are no longer antisymmetric under an exchange of their ar-
guments and therefore distinguish between SU(N) and U(N) gauge groups [10]. This
emerges e.g. for single-trace operators of two different chiral or anti-chiral scalars in the
β-deformation: for SU(N) and U(N) gauge groups they respectively have vanishing
and non-vanishing one-loop anomalous dimensions [16]. More importantly, quantum
corrections involving the single-trace couplings may induce counter terms for double-
and even higher multi-trace couplings in the SU(N) and U(N) theories, respectively.
The presence of such counter terms demands that the respective couplings are consid-
ered already at tree level. Indeed, for a Z2 orbifold projection one-loop contributions
to double-trace couplings were found in [17].

The coefficients of the multi-trace couplings are subleading in N . Hence, in the
’t Hooft limit there is no backreaction to the original cubic and quartic single-trace
terms in the action. In case of the orbifold projections it was shown in [18, 19] that
the properties of the single-trace terms are inherited from the parent N = 4 SYM
theory. In case of the β- and γi-deformation the inheritance of the finiteness of the
single-trace couplings in the ’t Hooft limit was proven respectively in [20] and [21]. The
argumentation closely follows the proof of finiteness of the N = 4 SYM theory [13,14].
One is hence tempted to draw the conclusion that the respective theories are conformal,
at least in the ’t Hooft limit, where the multi-trace couplings appear to be negligible.
This conclusion is, however, premature. The decision whether a diagram contributes
in the ’t Hooft limit can a priori only be made for diagrams in which all color lines are
closed, i.e. external lines have to be connected to external states. This subtlety already
occurred in the context of finite-size (wrapping) corrections, and was analyzed in detail
in [22]. In the notation of [22], a diagram with external legs and without external
states (composite operators) is called planar if it contributes at leading order in the 1

N

expansion after a color-ordered contraction of its external legs with a single-trace vertex.
Besides these diagrams, in the ’t Hooft limit there may be contributions from non-

2Divergences do occur if gauge invariant composite operators are introduced as external states.
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planar diagrams, which effectively are multi-trace interactions.3 The reason for this is
that in diagrams with multi-trace couplings theN -power is enhanced if one of the traces
in the product is fully contracted with a trace of the same length in another coupling
or external state, i.e. gauge invariant composite operator. In this way the multi-trace
couplings can contribute at the leading (planar) order in 1

N
, even if their coefficients

are of lower power in N compared to the ones of the single-trace couplings. Therefore,
the t’ Hooft limit is sensitive to the seemingly suppressed multi-trace couplings. Since
their properties are not inherited from the parent theory [18, 19], they may have non-
vanishing β-functions, implying the breakdown of conformal invariance [24] – also in
the ’t Hooft limit.4 It is hence very important to extend the analysis of conformal
invariance to the induced multi-trace couplings.

For orbifold theories, the β-functions of induced double-trace couplings were ana-
lyzed at one loop in [15]. If the orbifold projections preserve some supersymmetry, the
β-functions may have fixed points that are functions of the t’ Hooft coupling constant,
defining a fixed line passing through the origin of the coupling constant space [15].
In contrast to this, for the non-supersymmetric orbifold projections no example was
found in which all β-functions have fixed points [15]. These findings amounted to a
no-go theorem that no non-supersymmetric orbifold exists with such a perturbatively
accessible fixed line [26]. Isolated Banks-Zaks fix points [27] might still exist, i.e. the
two-loop corrections to the β-functions might cancel the one-loop contributions at a
perturbative real value of gYM. The running of the double-trace couplings was related
to the emergence of tachyons in the twisted sectors of the string theory [26], similar to
earlier relations in the context of non-commutative field theories in [28]. The running
of the double-trace couplings is also connected to dynamical symmetry breaking [29].

The occurrence of subleading double-trace operators in the orbifold examples rises
the question whether similar terms are also generated in the β- and γi-deformation
as posed earlier in [26]. If at least one of the couplings of such operators is running
without a fix point, then this implies the breakdown of conformal invariance. Note that
the renormalization of such couplings is not captured by the proofs in [20] and [21] of
all-order finiteness. These proofs only consider planar diagrams and thus single-trace
couplings; they neglect non-planar diagrams – in particular those also contributing
in the ’t Hooft limit. Furthermore, the applied prescription of replacing ordinary
products by ∗-products is only well defined inside of color traces with vanishing net
U(1)×U(1)×U(1) charge.5 In particular, it cannot be applied to multi-trace couplings
with charged individual trace factors. These are the couplings which are not captured
by the non-planar inheritance principle formulated in [30].

At least in the supersymmetric β-deformed case with gauge group SU(N) there are
no running doube-trace couplings induced,6 and hence the theory is conformal. This
follows immediately from the fact that the theory is a special case of the conformal
Leigh-Strassler deformations [12]. Note that a non-vanishing coupling to an F-term-

3Note that propagators in the SU(N) theory themselves contain double-trace terms. This will be
discussed in detail in our upcoming publication [23].

4In a different context, concerns about the occurrence of multi-trace terms have been expressed
earlier in [25].

5For i 6= j, tr(φiφj) = tr(φjφi) but tr(φi ∗ φj) 6= tr(φj ∗ φi).
6For at most quartic interactions, triple- or quadruple-trace couplings cannot occur if the gauge

group generators are traceless.
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type double-trace operator is present, but it has a vanishing β-function. This double-
trace term appears when the component action is derived from the β-deformed N = 1
superfield action: it is generated when the auxiliary F-term fields of the superpotential
are integrated out. If instead one considers a U(N) gauge group in the deformed theory
and then integrates out the auxiliary fields, the double-trace coupling is absent at tree
level. However, the coupling to the U(1) field components is irrelevant, and hence
the theory flows to the SU(N) theory in the IR [31], making only the SU(N) theory
conformal.

1.3 Our setup and conclusions

Obviously, the supersymmetry-based arguments of [12] that guarantee conformal in-
variance cannot be applied to the non-supersymmetric γi-deformation of the Frolov
setup. Hence, one has to explicitly check whether the β-functions of all multi-trace
couplings that are required for quantum consistency identically vanish or at least have
(perturbatively accessible) fix-points. In this paper we will find that this is not the
case. We will identify a double-trace coupling with non-vanishing β-function. Even
if one generalizes the γi-deformation by adding additional (tree-level) multi-trace cou-
plings and considers either SU(N) or U(N) gauge group, this β-function cannot be
forced to vanish.

Our setup consists of the original γi-deformed action as proposed in [9], either with
SU(N) or U(N) as gauge group, but supplemented by a priori arbitrary multi-trace
couplings that obey the following requirements:

1. renormalizability by power counting,

2. existence of the ’t Hooft limit (no proliferation of N -power above the planar
order),

3. preservation of the three global U(1) charges,

4. reduction to the supersymmetric β-deformation in the special case γ1 = γ2 = γ3.

Moreover, we want to avoid that the differences between the γi-deformation and the
β-deformation are postponed to the next loop order. Hence, we demand that at least
one difference γi− γj, i 6= j, of two of the deformation angles must not be of the order
of the coupling constant

g =

√
λ

4π
, λ = g2

YM
N . (1.1)

We investigate the one-loop corrections to the multi-trace couplings. Their renor-
malizations receive contributions from the UV divergent one-particle irreducible (1PI)
vertex corrections and wave function renormalization. Setting the respective combi-
nations to zero yields the conditions for vanishing one-loop β-functions and hence of
conformal invariance. These conditions form a system of coupled equations that are
non-linear in the coupling tensors. We identify a particular component of the double-
trace coupling given in (4.1), and reading e.g. for i = 1

− g2
YM

N
Q11

F 11 tr(φ̄1φ̄1) tr(φ
1φ1) , (1.2)
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for which the respective equation in the system cannot be solved, i.e. which has the
non-vanishing one-loop β-function given in (4.10). With the rearranged Yang-Mills
coupling (1.1) the β-function for U(N) as well as SU(N) gauge group assumes the
form

βQ11
F 11

= 4g2
(

(cos γ2 − cos γ3)
2 + (Q11

F 11)
2
)

. (1.3)

The expression in (1.3) is non-vanishing for generic γi and any choice of the real
tree-level double-trace coupling Q11

F 11. Hence, the γi-deformed theory, even if extended
by multi-trace couplings, is not conformal – not even in the ‘t Hooft limit. This leads
to the following possibilities compatible with the AdS/CFT correspondence:

1. The string background is not stable because of the emergence of closed string
tachyons. These should be related to the multi-trace operators with running
coupling, as was found in the non-supersymmetric orbifold setups in [26]. In
γi-deformed flat space tachyons were found in [32], but a clean connection with
the instabilities of the γi-deformation has not yet been established.7

2. The Frolov background receives string corrections that deform the AdS5 part
such that the SO(2, 4) symmetry is broken and hence the dual gauge theory is
not a conformal field theory. Should the AdS5 factor of the Frolov background
turn out to be exact, then it might also be possible that the gauge theory dual to
the Frolov background is not yet found. However, our results exclude all natural
candidates and it may be that the dual CFT does not even have a Lagrangian
description with the field content of N = 4 SYM theory.

3. The deformation angles are functions of the t’ Hooft coupling and agree at zero
coupling, γi − γj = O(g). This is reminiscent of the situation in the ABJM and
ABJ correspondences [33,34] and in the interpolating quiver gauge theory of [35],
where finite functions of the couplings were respectively found in [36–38] and [39].
It is hard to exclude this possibility, since by adjusting the deformation angles
the non-vanishing of the β-function (1.3) can always be postponed to the next
order.

It is of high importance to determine which of these possible outcomes is correct.8 To
this end, it would be particularly interesting to compute the one-loop corrections to
the string background.

1.4 Integrability

An important consequence of the conformal symmetry in the gauge theory is that the
(anomalous) scaling dimensions of gauge invariant composite operators become observ-
ables: since the β-functions of all couplings are zero, the anomalous dimensions are
not renormalization-scheme dependent and can be measured as eigenvalues of the gen-
erator of dilatations, known as the dilatation operator. The AdS/CFT correspondence

7We thank Radu Roiban for this comment.
8It would also be interesting to extend the calculation to two loops and investigate whether the γi-

deformed theory exhibits Banks-Zaks fix-points [27]. Note that besides (1.3) there exist two analogous
β-functions for i = 2, 3 each of which depends on different angles γi. Hence, due to the three conditions
for their vanishing, the form of a possible fix-point in gYM is highly restricted.
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predicts that these scaling dimensions should match with the energies of respective
string states in the gravitational theory. This has been a direction of intense studies in
the last decade. In particular, in the ’t Hooft limit the eigenvalue-problem shows signs
of integrability, and this has led to enormous progress in testing and understanding
the AdS/CFT correspondence, see the review collection [40] for a comprehensive list
of references. Single-trace operators of length L, i.e. those containing L elementary
fields, are mapped to cyclic spin chains of the same length. The dilatation opera-
tor is identified with the integrable Hamiltonian acting on these chains. Integrability
was found not only in the original correspondence involving the N = 4 SYM theory,
but also for the orbifold constructions and the Lunin-Maldacena and Frolov setups –
see [11] for a review. In the deformed theories the composite single-trace operators
of L ≥ 3 chiral scalar fields, one of which has a different field flavor than all the
others, are not protected.9 Such single-impurity operators map to cyclic spin chains
with a single magnon. This magnon has non-vanishing momentum and hence a non-
vanishing energy, corresponding to a non-vanishing anomalous dimension of the whole
state, due to the twisted boundary conditions in the Bethe equations of the deformed
theories [8, 46, 47]. The twisted boundary conditions can also be understood in terms
of a twisted S-matrix [48].

In the supersymmetric β-deformation the leading wrapping corrections to the anoma-
lous dimensions of the aforementioned operators with three or more fields have been
calculated in [49]. In the integrability-based descriptions these finite-size effects are
captured in terms of Lüscher corrections, Y-system and thermodynamic Bethe ansatz
(TBA) – see [50], [51] and [52] for reviews. By employing these descriptions the results
of [49] were reproduced in [53] for β = 1

2
and in [54] and [55] for generic β. At β = 1

2
,

the finite size-correction for a single-trace operator of two different chiral scalars was
determined in [56] up to six loops. The work [55] also provides higher-order wrapping
corrections, also in various orbifold theories. For composite operators of two chiral
scalar fields of different flavor, a logarithmic divergence is found in the leading finite-
size correction. Such a divergence was encountered earlier in the expressions for the
ground state energy of the TBA [57].

In the non-supersymmetric case, not only operators corresponding to single-magnon
states acquire an anomalous dimension. Also the operators that are built from chiral
(or anti-chiral) fields of a single flavor are no longer protected and acquire anomalous
dimensions by finite-size effects, which were determined including also double-wrapping
corrections [58]. Again, a logarithmic divergence was found for the first wrapping
correction for an operator of two identical chiral scalar fields.

The meaning of the aforementioned divergences in the equations of TBA, Lüscher
and Y-system at L = 2 is still unclear.10 Based on our observations we will now de-
scribe a possible pathway for their investigation. The integrability-based TBA, Lüscher
and Y-system equations should describe the β- and γi-deformations with U(N) gauge
group, since the Bethe ansatz and dilatation operator of [47] are restricted to the U(N)
case [10]. As we have explained before, both, the β- and γi-deformations, distinguish

9Corresponding operators exist also in the orbifold theories [41–45].
10In [59] it was found that the divergent ground-state energy vanishes in the undeformed theory

when a regulating twist is introduced in the AdS5 directions. This regularization extends to the
ground state of the supersymmetric deformations. We thank Sergey Frolov for this comment.
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between U(N) and SU(N) gauge groups – unlike the N = 4 SYM theory. In par-
ticular, the (induced) double-trace couplings with charged individual trace factors are
sensitive to the choice between the two types of gauge groups. This is most striking in
the β-deformed case, where the F-term-type double-trace coupling breaks or preserves
the conformal invariance in the U(N) or SU(N) case, respectively. In Subsection 1.2
we have argued that composite L = 2 operators receive quantum corrections from these
double-trace couplings in the ’t Hooft limit. Among the ones composed only of chiral
scalar fields, the L = 2 operators are in fact the only ones receiving such corrections.11

In order to also describe the L = 2 operators of the SU(N) theories, one should mod-
ify the integrability-based equations for the U(N) theories. In the β-deformation, this
modification should remove the divergence at L = 2, not affecting any other results for
the operators composed of two kinds of chiral scalars. Then the analogous procedure
should be applied in the γi-deformation. If the divergence is removed also there, it
seems reasonable to identify the missing incorporation of this new finite-size effect12

as the origin of the divergences. If, however, a divergence persists in the γi-deformed
case, this suggests that the divergences are associated with the breakdown of conformal
invariance in both the U(N) β- and U(N) as well as SU(N) γi-deformations. Note that
the correct integrability-based descriptions must reproduce the vanishing anomalous
dimensions for the operators with L = 2 chiral scalar fields in the β-deformation with
SU(N) gauge group. In the γi-deformation with SU(N) gauge group, however, even if
the divergences are removed the results need not match the finite field theory results13.
The reason is that due to the breaking of conformal invariance the anomalous dimen-
sions become scheme-dependent beyond one loop. One might hence have to engineer a
matching for the finite parts in order to fix a scheme, and then test this scheme choice
by comparing with further data coming e.g. from other types of composite operators
in the theory.

1.5 Organization of this paper

In Section 2, we start our analysis with the presentation of a brief argument that
double-trace couplings in the SU(N) β-deformation are already present at tree-level.
We then introduce in Section 3 such couplings for the SU(N) γi-deformation, and also
further multi-trace couplings for the respective U(N) gauge theory, which obey the
restrictions 1.-4. listed in Subsection 1.3. In Section 4, we identify a particular set
of double-trace couplings that acquire UV-divergent one-loop corrections and hence
have non-vanishing β-functions – implying the breakdown of conformal invariance for
generic deformation parameters γi, i = 1, 2, 3. Several appendices contain the action
(A), the Feynman rules (B), and auxiliary results necessary for the calculation (C–D)
as well as a short derivation of the β-function (E).

11A test of the leading wrapping corrections in the γi-deformation will be presented in [60].
12This effect, which we call prewrapping, is caused by double-trace couplings as will be explained

in the upcoming work [23].
13For operators built from L = 2 identical chiral scalars the anomalous dimensions will be presented

in [60].
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2 Double-trace couplings in the β-deformation

In this section we will demonstrate that in the β-deformation with SU(N) gauge group
double-trace couplings are already present at tree-level.14 We start from the action in
terms of N = 1 superfields, which are multiplied by a superspace ⋆-product containing
the deformation. Expanding the superfields and ⋆-product in components and inte-
grating out the auxiliary fields generates a double-trace coupling in the SU(N) case,
where no U(1) component is present.

The part of the Euclidean action of the β-deformed theory that depends on the
N = 1 chiral and anti-chiral superfields Φi and Φ̄i assumes the form

Smatter =

∫

d4x d4θ tr(e−gYMV Φ̄i e
gYMV Φi) +

∫

d4x d2θW +

∫

d4x d2θ̄ W̄ , (2.1)

where the superpotential is given by

W =
i

3!
gYMǫijk tr

(

Φi[Φj ⋆,Φk]
)

. (2.2)

It involves a non-commutative ⋆-product of two superfields Φi and Φj . When the
products are expanded in terms of the fermionic coordinates of the superspace, the
superfields expand in their respective component fields and the superspace ⋆-product
introduces phase factors, which can be obtained from Appendix A by setting γ1 =
γ2 = γ3 = −πβ. These phase factors can be captured in terms of the component field
∗-product (A.4).

Fixing the supergauge to the Wess-Zumino gauge, the component expansion of the
action in (2.1) contains the following terms

S =

∫

d4x tr
[

· · ·+ F̄iF i+ · · ·+ i

2
gYMǫijkF

i[φj ∗, φk]+
i

2
gYMǫ

ijkF̄i[φ̄j ∗, φ̄k]+ . . .
]

, (2.3)

where φi and φ̄i are chiral and anti-chiral scalar fields. The first term stems from the
first term in (2.1), while the second and third term are generated by the superpotential
(2.2) and its complex conjugate, respectively.

In the next step, we integrate out the auxiliary fields and obtain15

S =

∫

d4x
[

· · ·+ g2
YM

4
ǫijkǫilr tr(T

a[φ̄j ∗, φ̄k]) tr(T
a[φl ∗, φr]) + . . .

]

=

∫

d4x
[

· · ·+ g2
YM

2

(

tr([φ̄i ∗, φ̄j][φ
i ∗, φj ])− s

N
tr([φ̄i ∗, φ̄j]

)

tr
(

[φi ∗, φj])
)

+ . . .
]

,

(2.4)
where the adjoint index a = s, . . . , N2 − 1 is summed over, starting from s = 1 for
SU(N) and s = 0 for U(N) gauge group. In the second line we have used the second
of the following relations for the gauge group generators Ta:

tr(Ta Tb) = δab ,

N2−1
∑

a=s

(Ta)ij(T
a)kl = δilδ

k
j −

s

N
δijδ

k
l . (2.5)

14The action including this double-trace terms can also be found in [30]. We thank Radu Roiban
for pointing this out.

15The first line of this equation can be found in [16].
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The first term in (2.4) is the quartic F-term interaction of the component action. The
second term is the double-trace term. It is present in the SU(N) theory, while it is
absent in the U(N) theory, at least at tree level. This leads to a difference between
the SU(N) and U(N) theory: the one-loop anomalous dimensions of operators of two
different chiral or anti-chiral scalar fields vanish in the SU(N) and are non-zero in the
U(N) case [16]. The double-trace coupling also vanishes in the N = 4 SYM theory,
where the non-commutative ∗-product reduces to the ordinary matrix product. In this
case, the antisymmetry of the commutator is restored and its trace vanishes.

3 Multi-trace deformations

In the previous section we have demonstrated in brief that in a component expansion of
the β-deformed N = 4 SYM action with SU(N) gauge group, double-trace couplings
are present already at tree-level. Moreover, quantum corrections may lead to UV-
divergent multi-trace terms. In this case, one is forced to introduce counter terms for
these multi-trace couplings and also add respective tree-level couplings. In this section
we present the possible tensor structures which obey the conditions 1.-4. formulated
in Subsection 1.3.

For gauge group SU(N), where all generators are traceless, the only possible multi-
trace structure is a product of two length-two traces, such that the terms assume the
form16

− g2
YM

N

[

Qij
F kl tr(φ̄iφ̄j) tr(φ

kφl) +Qij
D kl tr(φ̄iφ

k) tr(φ̄jφ
l)
]

. (3.1)

The condition of a real action in Euclidean space imposes the relations

(Qij
F kl)

∗ = Qkl
F ij , (Qij

D kl)
∗ = Qkl

D ij . (3.2)

In the U(N) case the U(1) generator is not traceless, and this allows us to supple-
ment the action with cubic as well as further quartic multi-trace couplings. The cubic
Yukawa-type couplings can be written as

gYM

N

[

ρψ iBA tr(ψαA) tr(φiψBα ) + ρφ iBA tr(φi) tr(ψαBψAα )

+ (ρ† i
ψ̄
)BA tr(ψ̄α̇A) tr(φ̄iψ̄α̇ B) + (ρ† i

φ̄
)BA tr(φ̄i) tr(ψ̄

α̇
Bψ̄α̇ A)

+ ρ̃BAψ̄ i tr(ψ̄
α̇
A) tr(φ

iψ̄α̇ B) + ρ̃BAφ̄ i tr(φi) tr(ψ̄α̇Bψ̄α̇ A)

+ (ρ̃† iψ )BA tr(ψαA) tr(φ̄iψ
B
α ) + (ρ̃† i

φ̄
)BA tr(φ̄i) tr(ψ

αBψAα )
]

+
gYM

N2

[

ρ3 i BA tr(ψαA) tr(φi) tr(ψBα ) + (ρ† i3 )BA tr(ψ̄α̇A) tr(φ̄i) tr(ψ̄α̇ B)

+ ρ̃BA3 i tr(ψ̄α̇A) tr(φ
i) tr(ψ̄α̇ B) + (ρ̃† i3 )BA tr(ψαA) tr(φ̄i) tr(ψ

B
α )

]

.

(3.3)

Moreover, quartic interactions can be added, in which one or more traces with a single

16The signs of these quartic couplings are chosen such that a negative β-function corresponds to
asymptotic freedom. The factor g2

YM
is chosen for convenience in order to match the coupling depen-

dence of the quartic single-trace interactions in the action (A.1).

10



field occur. They read

− g2
YM

N

[

Qij

φ̄ kl
tr(φ̄i) tr(φ̄jφ

kφl) +Qij
φ kl tr(φ

k) tr(φ̄iφ̄jφ
l)
]

− g2
YM

N2

[

Qij

φ̄φ̄ kl
tr(φ̄i) tr(φ̄j) tr(φ

kφl) +Qij
φφ kl tr(φ

k) tr(φl) tr(φ̄iφ̄j)

+Qij

φ̄φ kl
tr(φ̄i) tr(φ

k) tr(φ̄jφ
l)
]

− g2
YM

N3
Qij

4 kl tr(φ̄i) tr(φ̄j) tr(φ
k) tr(φl) .

(3.4)

In the above combinations we have explicitly separated all U(1) fields from SU(N)
fields: each U(1) component is written as a trace over the respective U(N) field, whereas
traces of more than one field are understood to contain only the SU(N) components.
The condition of a real action in Euclidean space imposes the following relations for
the coupling tensors:

(Qij
φ kl)

∗ = Qkl
φ̄ ji , (Qij

φ̄φ kl
)∗ = Qkl

φ̄φ ij , (Qij
φφ kl)

∗ = Qkl
φ̄φ̄ ij , (Qij

4 kl)
∗ = Qkl

4 ij .

(3.5)
Note that the requirement 2. of Subsection 1.3 restricts the N -powers of the multi-

trace couplings: a coupling with n traces must be suppressed by a factor of at least
N1−n relative to a single-trace coupling. The reason for this is that a color-ordered
contraction of each individual trace in the product with an external state of the same
length yields a factor of N for each of the n traces. A single-trace vertex only has one
such factor for its single trace.

4 Running double-trace couplings

In this section we investigate the one-loop correction to a particular double-trace cou-
pling that is contained in the F-term-type interaction of (3.1) and yields a vertex of
four scalars with identical field flavor. The relevant term that enters the action reads

− g2
YM

N
Qii

F ii tr(φ̄iφ̄i) tr(φ
iφi) , (4.1)

where i assumes one of the three different values i = 1, 2, 3 and is not summed over.
Below, we will first show that the couplings of these three individual terms are renor-
malized and hence running in the SU(N) case. This cannot be avoided by extending
the gauge group to U(N), adding also the multi-trace terms (3.3), (3.4) to the ac-
tion. For notational simplicity, we will abbreviate color traces with free adjoint indices
a1, . . . an = s, . . . , N2 − 1 as

tr(Ta1 . . .Tan) =
(

a1 . . . an
)

. (4.2)

4.1 SU(N) gauge group

As mentioned in the previous section, in case of an SU(N) gauge group, the only
interactions that may supplement the γi-deformed action are the quartic double-trace
terms (3.1) with two scalar fields in each trace. We use that in the N = 4 SYM theory
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all divergent contributions to the double-trace couplings vanish. This allows us to
consider only those diagrams that are sensitive to the deformation and hence deviate
from their N = 4 SYM theory counterparts. The deformation-dependent terms in the
action of the γi-deformation (A.1) are the cubic Yukawa-type fermion-scalar couplings
(A.8) and the quartic F-term-type couplings of chiral and anti-chiral scalars (A.10).
The only one-loop diagrams that depend on these couplings and that contribute at
leading N -power to the interaction (4.1) are displayed in Figure 1.

a b

cd

(I)

a b

d c

(II)

a b

cd

(III)

a b

cd

(IV)

a b

cd

(V)

a b

cd

(VI)

a b

cd

(VII)

a b

cd

(VIII)

a b

cd

(IX)

Figure 1: Complete list of contributions (up to conjugation) to φ̄ai φ̄
b
iφ
i,cφi,d

(

ab
)(

cd
)

that
deviate from the ones in the undeformed N = 4 SYM theory. The diagrams are displayed in
double-line notation with central plain and dashed flavor lines for scalar and fermionic fields
respectively. Flavor-neutral gauge boson lines appear without central line. (I), (II): diagrams
with two F-term-type single-trace interactions; (III): diagram with two F-term-type double-
trace interactions; (IV): diagram with one F-term-type double-trace and one D-term-type
single trace interaction; (V), (VI): F-term-type double-trace interaction with gauge boson
exchange; (VII), (VIII), (IX): fermion box with four Yukawa-type interactions.
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Using the Feynman rules of Appendix B with unspecified gauge-fixing parameter α,
these diagrams evaluate to

(I) = (II) = g4
YM
I1

3
∑

r=1

F ir
riF

ir
ri

(

ab
)(

cd
)

,

R|[(I)] = R|[(II)] = g4
YM
I1

3
∑

r=1

F ri
ir F

ri
ir

(

ab
)(

cd
)

,

(III) = 4g4
YM
I1

3
∑

r,s=1

Qii
F rs(Q

sr
F ii +Qrs

F ii)
(

ab
)(

cd
)

,

(IV) = 4g4
YM
I1Q

ii
F ii

(

ab
)(

cd
)

,

(V) = (VI) = 2αg4
YM
I1Q

ii
F ii

(

ab
)(

cd
)

,

(VII) = (VIII) = −2g4
YM
I1
[

tr
(

(ρ†i)T(ρ̃†i)Tρ̃iρi
)

+ tr
(

(ρ̃†i)T(ρ†i)Tρiρ̃i
)](

ab
)(

cd
)

,

(IX) = −2g4
YM
I1
[

tr
(

(ρ†i)Tρi(ρ
†i)Tρi

)

+ tr
(

(ρ̃†i)Tρ̃i(ρ̃
†i)Tρ̃i

)](

ab
)(

cd
)

,
(4.3)

where F ij
lk and ρi, ρ̃i are tensors of the quartic scalar F-term-type and cubic Yukawa

couplings of the γi-deformed action (A.1), respectively. The operator R| acts on a
diagram by reflecting it at the vertical axis, and restoring the original ordering of the
labels at its external legs. Similarly, some diagrams occur with factors of two since
an identical result coming from the diagram reflected at the horizontal axis has to be
considered. All contributions depend on a single scalar one-loop integral I1 that is
given by

I1 =

∫

dDl

(2π)D
1

l2(p− l)2
, K[I1] =

1

(4π)2ε
. (4.4)

In the second equality we have extracted the UV divergence of the integral by applying
an operator K. In dimensional reduction in D = 4−2ε dimensions the UV divergences
appear as poles in ε.

Summing up the diagrams with only scalar interactions, with scalar and gauge-
boson interactions and with a fermion loop separately, yields

(1 + R|)[ (I) + (II) ] + (III) + 2 (IV) = 8g4
YM
I1

(

cos2 ǫijkγj + cos2 ǫijkγk − 1

+
3

∑

r,s=1

Qii
F srQ

sr
F ii +Qii

F ii

)

(

ab
)(

cd
)

,

2((V) + (VI)) = 8αg4
YM
I1Q

ii
F ii

(

ab
)(

cd
)

,

(1 + R|)(IX) = −16g4
YM
I1 cos ǫijkγj cos ǫijkγk

(

ab
)(

cd
)

,
(4.5)

where in the first and last line we have made use of the relations (C.7) and (C.4). Note
that Einstein’s summation convention should not be applied in the above expressions.
Instead, the resulting expressions that contain ǫijk have to be evaluated fixing i, j,
k to one of the three cyclic permutations (i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}. We
still have to reconstruct the divergent contributions to the double-trace coupling (4.1)
that come from the neglected deformation-independent diagrams. To this purpose we
use the aforementioned fact that in the N = 4 SYM theory the sum of all divergent
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contributions to (4.1) has to vanish. Sending to zero the deformation parameters γi
and the tree-level couplingsQii

F ii, the deformation-independent diagrams are not altered
and the deformation-dependent contributions in (4.5) reduce to the respective N = 4
SYM results. This yields 8g4

YM
I1 for the diagrams with two quartic scalar vertices and

−16g4
YM
I1 for the diagrams with a fermion-loop. The complete contribution from all

diagrams in the γi-deformation that correctly vanishes in the N = 4 SYM theory is
obtained by subtracting these results from the sum of all expressions in (4.5). The UV
divergence of this result then yields the counter term, and it is given by

δQii
F ii =

1

4
K











ia ib

icid











∣

∣

∣

∣

∣

∣

∣

∣

∣

g2
YM
N

(ab)(cd)

= 2
g2
YM
N

(4π)2ε

(

(cos ǫijkγj − cos ǫijkγk)
2 +

3
∑

r,s=1

Qii
F rsQ

sr
F ii − (1 + α)Qii

F ii

)

,

(4.6)

where the vertical bar indicates that the coefficient of the specified expression is taken.
Together with the respective tree-level coupling the counter term enters the action as

− g2
YM

N
(Qii

F ii + δQii
F ii) tr(φ̄iφ̄i) tr(φ

iφi) . (4.7)

In order to obtain the renormalization of the corresponding coupling, we have to
add contributions from wave function renormalization, as reviewed in Appendix E.
More precisely, we first have to add half of the sum of the diagrams that involve a tree-
level quartic scalar vertex with a self-energy correction at one of its external legs and
yield double-trace terms. In these diagrams the only sources for double-trace terms are
the quartic scalar double-trace couplings themselves. This follows from the fact that
a self-energy correction at one of the external legs of a quartic vertex cannot generate
traces of two fields by itself. Connecting the divergent diagrams of the self-energy
corrections (D.1) to the vertex (4.1), the relevant diagrams contribute as

1

4
K











ia ib

icid

+

ia ib

icid

+

ia ib

icid

+

ia ib

icid











∣

∣

∣

∣

∣

∣

∣

∣

∣

g2
YM
N

(ab)(cd)

= K
[ ] 1

p2

ia ib

icid

∣

∣

∣

∣

∣

∣

∣

∣

∣

g2
YM
N

(ab)(cd)

= −4δφiQ
ii
F ii = 4(1 + α)

g2
YM
N

(4π)2ε
Qii

F ii ,

(4.8)
where δφi is the wave function renormalization counter term for the SU(N) components
of the scalar fields, explicitly given in (D.2). According to (E.2) and (E.4), the coupling
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renormalization is given by the following combination of (4.6) and (4.8)

Qii
F iiδQii

F ii
= δQii

F ii − 2δφiQ
ii
F ii = 2

g2
YM
N

(4π)2ε

(

(cos ǫijkγj − cos ǫijkγk)
2 +

3
∑

r,s=1

Qii
F srQ

sr
F ii

)

,

(4.9)
where the dependence on the gauge-fixing parameter α has cancelled as required. The
above result agrees with unpublished results of [61].17,18 Since the conditions (3.2)
hold, the second term in parenthesis is positive, as is the first one, and the coupling
is not renormalized only if all γi, i = 1, 2, 3 are identical up to signs. Hence, for
generic angles γi subject to the conditions formulated in Subsection 1.3, the one-loop
coupling renormalization leads to a non-vanishing β-function, and conformal invariance
is broken. Using the expression (E.9), the β-function for the coupling Qii

F ii reads

βQii
F ii

= εgYM

∂

∂gYM

δQii
F iiδQii

F ii
= 4

g2
YM
N

(4π)2

(

(cos ǫijkγj − cos ǫijkγk)
2 +

3
∑

r,s=1

Qii
F srQ

sr
F ii

)

.

(4.10)

4.2 U(N) gauge group

In case of the U(N) gauge group, the additional couplings (3.3), (3.4) could in principle
alter (4.9) and hence (4.10) such that a non-running double-trace coupling for the
SU(N) components is possible.

The additional Feynman diagrams are given by replacing the vertices in Figure 1
by the respective ones obtained from (3.3), (3.4), keeping the double-trace structure of
the external lines intact. The reader may convince himself that all these diagrams are
suppressed by powers of 1

N
, since the vertices with enhanced numbers of traces cannot

increase the number of internal color loops but come with additional factors of 1
N
.

Thus, in the ’t Hooft limit, the results in Subsection 4.1 for the coupling (4.1)
are not affected by the additional couplings (3.3) and (3.4); they remain valid for the
SU(N) components in the U(N) theory.
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A The action of γi-deformed N = 4 SYM theory

In this appendix we present the γi-deformation as well as our notation and conventions.
The gauge-fixed action of (γi-deformed) N = 4 SYM theory in Euclidean space can be
written as19

S =

∫

d4x
[

tr
(

− 1

4
F µνFµν −

1

2α
(∂µAµ)

2 − (Dµ φ̄i) Dµ φ
i + ψ̄α̇AiDα̇

αψAα

+ gYM(ρ̃
BA
i ψ̄α̇Aφ

iψ̄α̇ B + (ρ̃† i)BAψ
αAφ̄iψ

B
α )

+ gYM(ρi BAψ
αAφiψBα + (ρ† i)BAψ̄α̇Aφ̄iψ̄α̇ B) + c̄∂µDµ c

)

+ g2
YM

(

− 1

4
tr([φ̄i , φ

i][φ̄j , φ
j]) + F ij

lk tr(φ̄iφ̄jφ
kφl)

− s

N
F ij
lk tr(φ̄iφ̄j) tr(φ

kφl)
)]

,

(A.1)

where we have adopted the conventions of [62], in particular the ones for raising, low-
ering and the contractions of spinor indices. The covariant derivatives act respectively
on the chiral and anti-chiral scalar fields φi and φ̄i (i = 1, 2, 3), vectors Aµ, ghosts c
and spinors ψAα (A = 1, 2, 3, 4), as

Dµ = ∂µ + i
gYM√
2
[Aµ , · ] ,

Dα̇
αψAα = (σ̃µ)α̇

α
(

∂µψAα + i
gYM√
2
[Aµ , ψAα ]

)

,
(A.2)

where (σ̃µ)α̇
α = (−iσ2, iσ3,1,−iσ1)α̇α in terms of the identity 1 and the Pauli matrices

σi, i = 1, 2, 3. The covariant derivatives determine the Yang-Mills field strength as
follows:

Fµν = −i
√
2

gYM

[ Dµ , Dν ] = ∂µAν − ∂νAµ + i
gYM√
2
[Aµ , Aν ] . (A.3)

All fields in the action (A.1) transform in the adjoint representation of the SU(N) or
U(N) gauge group. The representation matrices obey the relations (2.5).

The Yukawa and quartic scalar F-term-type couplings in the action (A.1) are subject
to the γi-deformation which introduces phase factors depending on the three deforma-
tion angles γi, i = 1, 2, 3 into the couplings.

As mentioned in Section 2, the deformed action (A.1) is obtained from the N = 4
SYM action in component fields by replacing all products of fields by ∗-products before
integrating out the auxiliary fields. The ∗-products of two component fields A and B
reads

A ∗B = e
i
2
qA∧qB , (A.4)

where the antisymmetric product of the two charge-vectors qA and qB is given by

qA ∧ qB = (qA)
TCqB , C =





0 −γ3 γ2
γ3 0 −γ1
−γ2 γ1 0



 . (A.5)

19 Note that we have included a double-trace term that can be absorbed into the coupling (4.1).
With this coupling the action reduces to the one of the conformal β-deformation if γ1 = γ2 = γ3 = −πβ
and the gauge group is SU(N), see Section 2.
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The U(1)× U(1) × U(1) charges qA = (q1A, q
2
A, q

3
A)

T of the component fields are given
by

A ψ1
α ψ2

α ψ3
α ψ4

α Aµ φ1 φ2 φ3

q1A +1
2

−1
2

−1
2

+1
2

0 1 0 0

q2A −1
2

+1
2

−1
2

+1
2

0 0 1 0

q3A −1
2

−1
2

+1
2

+1
2

0 0 0 1

. (A.6)

Respective relations hold for the anti-fields with reversed charge vectors. We define
the following abbreviations for the independent components:

Γi4 = qψi ∧ qψ4 =
1

4

3
∑

j,k=1

ǫijk(γj − γk) =
1

2
ǫijk(γj − γk) ,

Γij = qψi ∧ qψj = −1

2

3
∑

k=1

ǫijk(γi + γj) = −1

2
ǫijk(γi + γj) ,

Γ+
ij = qφi ∧ qφj = −ǫijkγk ,

(A.7)

where we will interpret the expressions on the r.h.s. without Einstein’s summation
convention, i.e. the index i = 1, 2, 3 is fixed and j and k assume the values of the
corresponding cyclic permutation (i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}.

In terms of the fermionic phase tensor ΓAB, the Yukawa coupling tensors in the
action (A.1) are explicitly given by

ρi AB = iǫ4iAB e
i
2
ΓAB , ρ̃ABi = (δA4 δ

B
i − δB4 δ

A
i ) e

i
2
ΓAB , (A.8)

and they obey the conjugation relations

(ρ†i)AB = (ρi BA)
∗ = ρi AB , (ρ̃†i)AB = (ρ̃BAi )∗ = −ρ̃ABi . (A.9)

Moreover, the deformation enters the F-term coupling tensor via the bosonic phase
tensor Γ+

ij as follows:

F ij
lk = δikδ

j
l − δilδ

j
k +Qij

lk , Qij
lk = δikδ

j
l (e

iΓ+

ij −1) , (A.10)

where we have split the coupling tensor into the F-term tensor of the undeformed
N = 4 SYM theory and a tensor Qij

lk carrying the deformation. Reality of the action
requires that the tensor F ij

lk (and hence also Qij
lk) obeys the conjugation relation

(F ij
lk )

∗ = (F lk
ij ) . (A.11)

B Feynman rules

In this appendix we list the Feynman rules of the γi-deformation. The propagators are
given as the negative of the inverse kernels as extracted from the terms in (A.1) that
are quadratic in the fields. In our conventions, a transformation to momentum space
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is simply performed by replacing i∂µ → pµ when pµ leaves the vertex. One obtains the
expressions

p
νb µa = 〈Aµa(−p)Aνb(p)〉 = 1

p2

(

gµν − (1− α)
pµpν

p2

)

δab ,

p
jb ia = 〈φia(−p)φ̄bj(p)〉 =

1

p2
δijδ

ab ,

p
β̇Bb αAa= 〈ψAaα (−p)ψ̄β̇bB (p)〉 = −δABδab

pα
β̇

p2
,

p
a b = 〈ca(−p)c̄b(p)〉 = 1

p2
δab .

(B.1)

The vertices are obtained by taking the functional derivatives w.r.t. the correspond-
ing fields. We obtain for the cubic vertices

VAAA =

µa

νb

ρc
r

p
q

=
gYM√
2

[

(p− q)ρgµν + (q − r)µgνρ + (r − p)νgρµ
](

a[b , c]
)

,

Vφ̄Aφ =

ia

νb

kc

r

p
q

= −gYM√
2
(p− r)νδ

i
k

(

a[b , c]
)

,

Vψ̄Aψ =

α̇Aa

νb

γCc

r

p
q

= −gYM√
2
(σ̃ν)α̇

γδAC
(

a[b , c]
)

,

Vψφψ =

αAa

jb

γCc

r

p
q

= gYMδα
γ
[

ρj CA
(

abc
)

+ ρj AC
(

acb
)]

,

Vψ̄φ̄ψ̄ =

α̇Aa

jb

γ̇Cc

r

p
q

= gYMδα̇
γ̇
[

(ρ† j)CA
(

abc
)

+ (ρ† j)AC
(

acb
)]

,

Vψφ̄ψ =

αAa

jb

γCc

r

p
q

= gYMδα
γ
[

(ρ̃† j)CA
(

abc
)

+ (ρ̃† j)AC
(

acb
)]

,

Vψ̄φψ̄ =

α̇Aa

jb

γ̇Cc

r

p
q

= gYMδα̇
γ̇
[

ρ̃CAj
(

abc
)

+ ρ̃ACj
(

acb
)]

,

Vc̄Ac =

a

νb

c
r

p
q

= −gYM√
2
pν
(

a[b , c]
)

,

(B.2)
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where we have use the abbreviation (4.2) for color traces. Labels are read off clockwise
starting with the leg in the upper left corner and all momenta are directed such that
they leave the vertices. Thus, for particles the momenta are directed against the charge
flow that is indicated by the arrows on the lines. The quartic vertices read

VAAAA =

µa νb

ρcσd

=
g2
YM

2

[

(2gµρgνσ − gµσgνρ − gµνgρσ)
(

[a , b][c , d]
)

+ (2gµνgρσ − gµσgνρ − gµρgνσ)
(

[a , c][b , d]
)]

,

VAφ̄Aφ =

µa ib

νcjd

=
g2
YM

2
gµνδ

i
j

[(

[a , b][c , d]
)

+
(

[a , d][c , b]
)]

,

Vφ̄φφ̄φ =

ia jb

kcld

= −g
2
YM

2

[

(δijδ
k
l + δilδ

k
j )
((

abcd
)

+
(

adcb
))

− δijδ
k
l

((

abdc
)

+
(

acdb
))

− δilδ
k
j

((

acbd
)

+
(

adbc
))

+
4

N

(

Qik
D jl

(

ab
)(

cd
)

+Qik
D lj

(

ad
)(

cb
))]

,

Vφ̄φ̄φφ =

ia jb

kcld

= g2
YM

[

F ij
lk

(

abcd
)

+ F ji
kl

(

adcb
)

+ F ij
kl

(

abdc
)

+ F ji
lk

(

acdb
)

− s

N
(F ij

lk + F ij
kl + F jl

lk + F ji
kl )

(

ab
)(

cd
)

− 4

N
Qij

F kl

(

ab
)(

cd
)

]

,

(B.3)
where we have kept the parameter s, which we set to its respective value s = 0 and
s = 1 in the U(N) and SU(N) theory, see Section 2. Moreover, we have included the
multi-trace couplings (3.1) that are the only possible extension in the SU(N) theory.
The Feynman rules for the remaining multi-trace couplings, introduced in Section 3,
that can occur in the U(N) theory follow analogously.

The signs from permuting fermions within the Wick contractions are determined in
analogy to the superspace case [62]:

1. Write down all factors from the vertices involving external (uncontracted) spinor
indices in the same ordering as they appear within the correlation function.

2. Write down all other factors involving spinor indices (e.g. propagators) carefully

keeping their internal ordering of indices, e.g. α is left of β̇ in pα
β̇.

3. Eliminate δα
β, δα̇

β̇ and bring contracted index pairs into canonical ordering, i.e.
the index that is on the left side within the contracted pair is an upper index and
the right one is a lower one.

4. Draw vertical parallel lines from the external indices downwards.
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5. Connect contracted index pairs by lines. They cross the vertical lines and other
lines of contracted index pairs. Count the number n of intersections of the lines
and put a factor (−1)n in front of the expression.

6. Reshuffle the product and change the up-down positions of contracted indices at
your convenience, considering a factor −1 for each position-flip within contracted
index pairs.

C Tensor identitites

In this appendix we explicitly evaluate the tensor combinations that are encountered
in the Feynman diagram analysis in Section 4. We recall that i, j, k = 1, 2, 3 and
A,B,C = 1, 2, 3, 4. After introducing the transverse Kronecker delta

τBA = δiAδ
B
i = δBA − δ4Aδ

B
4 , (C.1)

we find for certain contractions of the Yukawa-type couplings (A.8) the expressions

(ρiρ
† j)A

B = ρi AC(ρ
† j)CB =

∑

C 6=A,B,i,j,4

(δji τ
B
A − δjAδ

B
i e

i
2
(ΓAC−ΓBC)) ,

((ρ† i)Tρj) = (ρi(ρ
† j)T)∗ ,

(ρi(ρ
† j)T)A

B = ρi AC(ρ
† j)BC = −

∑

C 6=A,B,i,j,4

(δji τ
B
A eiΓAC −δjAδBi e

i
2
(ΓAC+ΓBC)) ,

(ρ̃iρ̃
† j)AB = ρ̃ACi (ρ̃† j)CB = δA4 δ

4
Bδ

j
i + δAi δ

j
B e

i
2
(Γi4−Γj4) ,

((ρ̃† i)Tρ̃j) = (ρ̃i(ρ̃
† j)T)∗ ,

(ρ̃i(ρ̃
† j)T)AB = ρ̃ACi (ρ̃† j)BC = −δA4 δ4Bδji eiΓ4i −δAi δjB e

i
2
(Γi4+Γj4) .

(C.2)

For traces of two Yukawa coupling tensors, which appear in the one-loop self-energies,
we then find

tr(ρiρ
† j) = ρi AC(ρ

† j)CA =
∑

A 6=i,4

∑

C 6=A,i,4

(δji τ
B
A − δjAδ

A
i ) = 2δji ,

tr(ρi(ρ
† j)T) = ρi AC(ρ

† j)AC = −
∑

A 6=i,4

∑

C 6=A,i,4

δji e
iΓAC = −2δji cos

1
2
ǫikl(γk + γl) ,

tr(ρ̃iρ̃
† j) = ρ̃ACi (ρ̃† j)CA =

∑

A

(δA4 δ
4
Aδ

j
i + δAi δ

j
A) = 2δji ,

tr(ρ̃i(ρ̃
† j)T) = ρ̃ACi (ρ̃† j)AC = −δji eiΓ4i −δji eiΓi4 = −2δji cos

1
2
ǫikl(γk − γl) ,

(C.3)

where Einstein’s summation convention should not be applied: the index i = 1, 2, 3 is
fixed and j and k assume the values of the corresponding cyclic permutation (i, j, k) ∈
{(1, 2, 3), (2, 3, 1), (3, 1, 2)}.

Moreover, for the evaluation of the fermion box contribution to the renormalization
of the double-trace couplings (4.1), we need some traces of four Yukawa coupling tensors
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with identical (not summed) bosonic index i:

tr
[

ρi(ρ
†i)T(ρ̃†i)Tρ̃i

]

= 0 ,

tr
[

ρ̃i(ρ̃
†i)T(ρ†i)Tρi

]

= 0 ,

tr
[

ρi(ρ
†i)Tρi(ρ

†i)T
]

=
∑

A,C 6=i,4

e2iΓAC =
∑

A,C 6=i,4

cos 2ΓAC

=
∑

j,k 6=i,4

cos ǫijk(γj + γk) = 2 cos ǫijk(γj + γk) ,

tr
[

ρ̃i(ρ̃
†i)Tρ̃i(ρ̃

†i)T
]

= e2iΓ4i +e2iΓi4 = 2 cos 2Γ4i = 2 cos ǫijk(γj − γk) .

(C.4)

The one-loop interaction of four scalars with identical field flavors via two F-term-
type interactions requires the evaluation of the following expression

3
∑

r=1

F ir
riF

ir
ri = 2 +

3
∑

r=1

(2 +Qir
ri)Q

ir
ri = 2 +

3
∑

r=1

(2(eiΓ
+

ir −1) + (eiΓ
+

ir −1)2)

= 2
3

∑

r=1
r 6=i

eiΓ
+

ir cos Γ+
ir − 2 ,

(C.5)

which, using (A.11), immediately yields

3
∑

r=1

F ri
ir F

ri
ir =

3
∑

r=1

(F ir
riF

ir
ri )

∗ = 2

3
∑

r=1
r 6=i

e−iΓ
+

ir cos Γ+
ir − 2 . (C.6)

For the combined sums of the first two lines in (4.3) we hence obtain the result

3
∑

r=1

(F ir
riF

ir
ri + F ri

ir F
ri
ir ) = 4

3
∑

r=1
r 6=i

cos2 Γ+
ir − 4 = 4(cos2 ǫijkγj + cos2 ǫijkγk − 1) . (C.7)

D One-loop self-energies

Using the relations (C.3), the UV divergences of the one-loop self-energy contributions
to the scalar propagators are determined as

K
[

ia jb

]

= −2p2
g2
YM

(4π)2ε
δji
[

N
(

ab
)

− cos 1
2
ǫikl(γk − γl)

(

a
)(

b
)]

,

K
[

ia jb

]

= −2p2
g2
YM

(4π)2ε
δji
[

N
(

ab
)

− cos 1
2
ǫikl(γk + γl)

(

a
)(

b
)]

,

K
[

ia jb

]

= p2
g2
YM

(4π)2ε
δji (3− α)

[

N
(

ab
)

−
(

a
)(

b
)]

,

(D.1)
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for external momentum p2. The single-trace coefficient of the sum of the expressions
yields the counter term of the wave function renormalization for the SU(N) fields. It
reads

δφi =
1

p2
K
[

ia jb

]∣

∣

∣

δ
j
i (ab)

= − g2
YM
N

(4π)2ε
(1 + α) . (D.2)

E Coupling renormalization and β-functions

In this appendix we review the definition of the β-functions and how they are obtained
from renormalized couplings and fields. The coupling (4.1) written in terms of bare
coupling constants and bare fields has to be identified with (4.7), i.e. the respective cou-
pling and counter term in renormalized perturbation theory in D = 4−2ε dimensions.
This yields

− g2
YM 0

N
Qii

0F ii tr(φ̄0 iφ̄0 i) tr(φ
i
0φ

i
0) = −µ

2εg2
YM

N
(Qii

F ii + δQii
F ii) tr(φ̄iφ̄i) tr(φ

iφi) , (E.1)

where we have introduced the ’t Hooft mass µ that rescales the unrenormalized Yang-
Mills coupling gYM 0 = µεgYM. The renormalized couplings and fields are given in terms
of the renormalization constants and bare quantities as20

Qii
F ii = Z−1

Qii
F ii

Qii
0 F ii , ZQii

F ii
= 1 + δQii

F ii
,

φi = Z− 1

2

φi
φi0 , Zφi = 1 + δφi .

(E.2)

Inserting these expressions in (E.1) we obtain

ZQii
F ii

= (1 + (Qii
F ii)

−1δQii
F ii

)

Z−2
φi

. (E.3)

At leading order in the coupling constant this yields

δQii
F ii

=
1

Qii
F ii

(δQii
F ii − 2Qii

F iiδφi) . (E.4)

The β-functions are defined as

βgYM
= µ

d

dµ
gYM , βQii

F ii
= µ

d

dµ
Qii

F ii . (E.5)

The independence of the bare coupling constants from µ implies the following relations

0 = µ
d

dµ
gYM 0 =

(

µ
∂

∂µ
+ βgYM

∂

∂gYM

)

µεgYM = µε(ǫgYM + βgYM
) ,

0 = µ
d

dµ
Qii

0F ii = Qii
F ii

(

βgYM

∂

∂gYM

+ βQii
F ii

∂

∂Qii
F ii

)

ZQii
F ii

+ ZQii
F ii
βQii

F ii
.

(E.6)

The first equation determines the β-function for gYM,

βgYM
= −εgYM , (E.7)

20As in (E.1), the scalar field is restricted to its SU(N) components.
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which in the four-dimensional theory, i.e. for ε = 0 vanishes. This is expected since
gYM is not renormalized. Inserting this result, the second equation determines the
β-function for the coupling Qii

F ii as

0 = Qii
F ii

(

− εgYM

∂

∂gYM

+ βQii
F ii

∂

∂Qii
F ii

)

lnZQii
F ii

+ βQii
F ii

. (E.8)

At lowest order, where the second term in the above equation does not contribute, we
find after inserting (E.2) and (E.4)

βQii
F ii

= Qii
F iiεgYM

∂

∂gYM

lnZQii
F ii

= εgYM

∂

∂gYM

Qii
F iiδQii

F ii
. (E.9)
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Lett.Math.Phys. 99 (2012) 277–297, [arXiv:1012.3994].

[51] Z. Bajnok, Review of AdS/CFT Integrability, Chapter III.6: Thermodynamic Bethe Ansatz,
Lett.Math.Phys. 99 (2012) 299–320, [arXiv:1012.3995].

[52] N. Gromov and V. Kazakov, Review of AdS/CFT Integrability, Chapter III.7: Hirota Dynamics
for Quantum Integrability, Lett.Math.Phys. 99 (2012) 321–347, [arXiv:1012.3996].

[53] J. Gunnesson, Wrapping in maximally supersymmetric and marginally deformed N = 4
Yang-Mills, JHEP 0904 (2009) 130, [arXiv:0902.1427].

[54] N. Gromov and F. Levkovich-Maslyuk, Y-system and β-deformed N = 4 Super-Yang-Mills, J.
Phys. A44 (2011) 015402, [arXiv:1006.5438].

[55] G. Arutyunov, M. de Leeuw, and S. J. van Tongeren, Twisting the Mirror TBA, JHEP 02

(2011) 025, [arXiv:1009.4118].

[56] Z. Bajnok and O. el Deeb, 6-loop anomalous dimension of a single impurity operator from
AdS/CFT and multiple zeta values, JHEP 1101 (2011) 054, [arXiv:1010.5606].

[57] S. Frolov and R. Suzuki, Temperature quantization from the TBA equations, Phys.Lett. B679

(2009) 60–64, [arXiv:0906.0499].

[58] C. Ahn, Z. Bajnok, D. Bombardelli, and R. I. Nepomechie, TBA, NLO Luscher correction, and
double wrapping in twisted AdS/CFT, JHEP 1112 (2011) 059, [arXiv:1108.4914].

[59] M. de Leeuw and S. J. van Tongeren, The spectral problem for strings on twisted AdS5 × S5,
Nucl.Phys. B860 (2012) 339–376, [arXiv:1201.1451].

[60] J. Fokken, C. Sieg, and M. Wilhelm, A piece of cake: the ground-state energies in γi-deformed
N = 4 SYM theory at leading wrapping order, .to appear.

[61] A. Dymarsky and R. Roiban., unpublished.

[62] S. J. Gates, M. T. Grisaru, M. Rocek, and W. Siegel, Superspace, or one thousand and one
lessons in supersymmetry, Front. Phys. 58 (1983) 1–548, [hep-th/0108200].

25

http://xxx.lanl.gov/abs/1105.3487
http://xxx.lanl.gov/abs/1012.3982
http://xxx.lanl.gov/abs/hep-th/0204147
http://xxx.lanl.gov/abs/hep-th/0311073
http://xxx.lanl.gov/abs/hep-th/0408014
http://xxx.lanl.gov/abs/hep-th/0409315
http://xxx.lanl.gov/abs/hep-th/0510209
http://xxx.lanl.gov/abs/hep-th/0405215
http://xxx.lanl.gov/abs/hep-th/0505187
http://xxx.lanl.gov/abs/1010.3229
http://xxx.lanl.gov/abs/0811.4594
http://xxx.lanl.gov/abs/1012.3994
http://xxx.lanl.gov/abs/1012.3995
http://xxx.lanl.gov/abs/1012.3996
http://xxx.lanl.gov/abs/0902.1427
http://xxx.lanl.gov/abs/1006.5438
http://xxx.lanl.gov/abs/1009.4118
http://xxx.lanl.gov/abs/1010.5606
http://xxx.lanl.gov/abs/0906.0499
http://xxx.lanl.gov/abs/1108.4914
http://xxx.lanl.gov/abs/1201.1451
http://xxx.lanl.gov/abs/hep-th/0108200

	1 Introduction and summary
	1.1 General setup
	1.2 Conformal invariance
	1.3 Our setup and conclusions
	1.4 Integrability
	1.5 Organization of this paper

	2 Double-trace couplings in the -deformation
	3 Multi-trace deformations
	4 Running double-trace couplings
	4.1 SU(N) gauge group
	4.2 U(N) gauge group

	A The action of gamma(i)-deformed N=4 SYM theory
	B Feynman rules
	C Tensor identitites
	D One-loop self-energies
	E Coupling renormalization and -functions

