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Abstract

We present a conjecture for the normalisation of the twist two conformal partial waves in a double
OPE limit of the four-point function of stress tensor multiplets in N = 4 super Yang-Mills theory
up to three loops. This contains information about the structure constants in the OPE.

Like the twist two anomalous dimensions our result is expressed as a linear combination of
harmonic sums whose argument is the spin of the exchanged operators.

To arrive at the result we derive asymptotic expansions for the twist two part of two unknown
three-loop integrals using the method of expansion by regions, complemented by some intuition
gained on the example of the ladder integrals up to three loops.



1 Introduction

In N = 4 super Yang-Mills theory the loop corrections to the four-point function of stress-energy
tensor multiplets take a factorised form: A superconformal invariant is multiplied by an x-space
function expressed in terms of finite conformal integrals [1, 2]. The one- and two-loop corrections
to the x-space part have been known for a while [3, 4, 5]. The three-loop contribution could
possibly still be calculated using the methods of [4] based on superconformal invariance and
N = 2 supergraphs, but such an endeavour would surely be rather cumbersome.

However, it is not necessary to start from off-shell Feynman graphs in order to construct the
loop corrections to the four-point correlator. One can rather sort the set of candidate scalar l-loop
conformal integrals into orbits under an enlarged permutation symmetry discovered in [2], and
then fix the overall coefficient of each orbit either by appealing to the correlator/amplitude duality
[6] or by independent criteria relating to the suppression of the highest logarithmic singularities
in accordance with the expected singular behaviour of the correlator in a Euclidean coincidence
limit or in a light-cone limit, c.f. [7]. In the latter paper the integrand of the four-point correlator
was constructed up to six loops relying on these criteria.

In a Euclidean double OPE limit in which the positions of the four operators approach each
other pairwise we can extract anomalous dimensions from a decomposition in terms of conformal
partial waves [8]. Here the two pairs of operators have an operator product expansion expressed
as an infinite series of other operators, and the four-point function is essentially reduced to
an infinite sum over the two-point function of these ”exchanged” operators. In this paper we
analyse the exchange of twist two operators. Their anomalous dimensions are given by a universal
function depending on the spin. More precisely, perturbative calculations up to three loops have
shown that this function is a linear combination of harmonic sums [9, 10]. This result has been of
fundamental importance for the construction of an integrable system describing the higher-loop
anomalous dimensions [11] in the so-called sl(2) or twist sector.

The double OPE limit of the four-point function equally contains information about the
structure constants in the OPE or equivalently the three-point functions 〈T T O(s)〉 where T is
the stress tensor multiplet and O(s) is any (twist) operator occurring in the OPE1. We show in
this article that up to three loops the structure constants of twist two operators are given by a
universal function written in terms of harmonic sums. Recently there has been rising interest in
an integrable systems explanation of structure constants [12]. We hope to foster this development
with the formulae here presented.

At one and two loops the quantum corrections to the four-point correlator are encoded in the
functions

F (1) = g(1, 2, 3, 4) , (1)

F (2) =
1

2
g(1, 2, 3, 4)2

(
x212x

2
34 + x213x

2
24 + x214x

2
23

)
(2)

+ 2 (h(1, 2; 3, 4) + h(1, 3; 2, 4) + h(1, 4; 2, 3)) .

1This picture does not require an explicit definition of the quantum corrected operators.
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At three-loop level we use the result from [2]

F (3) = 2 g(1, 2, 3, 4)
(
x212x

2
34 h(1, 2; 3, 4) + x213x

2
24 h(1, 3; 2, 4) + x214x

2
23 h(1, 4; 2, 3)

)
(3)

+ 6 l(1, 2; 3, 4) + 6 l(1, 3; 2, 4) + 6 l(1, 4; 2, 3) + 4E(1; 3, 4; 2) + 4E(1; 2, 4; 3) + 4E(1; 2, 3; 4)

+ (x213x
2
24 + x214x

2
23)H(1, 2; 3, 4) + (x212x

2
34 + x214x

2
23)H(1, 3; 2, 4) +

+ (x212x
2
34 + x213x

2
24)H(1, 4; 2, 3) .

This is the full answer; there are no non-planar corrections up to this order. The definition of
the integrals is

g(1, 2, 3, 4) =
1

4π2

∫
d4x5

x215x
2
25x

2
35x

2
45

,

h(1, 2; 3, 4) = x234
1

(4π2)2

∫
d4x5 d

4x6
(x215x

2
35x

2
45)x

2
56(x

2
26x

2
36x

2
46)

, (4)

l(1, 2; 3, 4) = x434
1

(4π2)3

∫
d4x5 d

4x6 d
4x7

(x215x
2
35x

2
45)x

2
57(x

2
37x

2
47)x

2
67(x

2
26x

2
36x

2
46)

,

E(1, 2; 3, 4) = x223x
2
24

1

(4π2)3

∫
d4x5 d

4x6 d
4x7 x

2
17

(x215x
2
25x

2
35)x

2
57(x

2
27x

2
37x

2
47)x

2
67(x

2
16x

2
26x

2
46)

,

H(1, 2; 3, 4) = x234
1

(4π2)3

∫
d4x5 d

4x6 d
4x7 x

2
56

(x215x
2
25x

2
35x

2
45)x

2
57(x

2
37x

2
47)x

2
67(x

2
16x

2
26x

2
36x

2
46)

.

In (3) we encounter two conformal non-ladder three-loop integrals E,H (for “easy” and “hard”)
which are not explicitly known. Fortunately, one can extract the twist two trajectory directly
from the integrals by the method of ”expansion by regions” [13]. To this end we move one
point to infinity — which is always possible due to conformal invariance — and then study an
expansion of the resulting three-loop integrals in terms of the remaining small distance of the
OPE limit. The procedure collapses the scalar three-point integrals to two-point tensor integrals.
We evaluate the genuine three-loop pieces by tensor reduction and an integration routine of the
Mincer system [14]. The information so obtained is not quite sufficient for our purpose so that
we have to supplement it by some intuition about the form of the results.

It is in principle possible to extend our analysis to higher twist but we would meet more and
more difficulties in extracting enough information from the integrals using Mincer.

The article is structured as follows: In Section 1 we derive an asymptotic expansion of the box
integrals in terms of harmonic sums with only positive indices. Section 2 discusses the method
of expansion by regions and our results for the twist two part of the unknown integrals E,H. In
Section 4 we discuss the conformal partial wave decomposition of the correlator.

2 Asymptotic expansion of the box-integrals

The massless L-loop boxes (equivalently the (L+ 1)-rung four-point ladder diagrams) have been
evaluated in [15]. They are conformal integrals given by the appropriate weight factor times
Φ(L)(x, y) with the functions

Φ(L)(x, y) = − 1

L!(L− 1)!

∫ 1

0

dξ

y ξ2 + (1− x− y) ξ + x
∗ (5)

logL−1(ξ)
(

log
(y
x

)
+ log(ξ)

)L−1 (
log
(y
x

)
+ 2 log(ξ)

)
.

3



The arguments are space time cross ratios. In a Euclidean coincidence limit x12, x34 → 0

v = 1− Y =
x214x

2
23

x213x
2
24

→ 1 , u =
x212x

2
34

x213x
2
24

→ 0 . (6)

and similar with x3 ↔ x4. Due to the x ↔ y reflection symmetry of Φ(L) we may analyse all
four such situations by considering the limit x→ 1, y → 0 of (5). Since we will be interested in
the y0 part of the expansion we can conveniently put y = 0 in the first factor (the denominator
under dξ) of the integrand; the parameter integrals remain well-defined. The simplest expansions
arise for g(1, 4, 2, 3), h(1, 4; 2, 3), l(1, 4; 2, 3) where we put x = 1/v, y = u/v. The ξ-integration
leads to Lin(−Y ) which is replaced by its Taylor series for small Y . To take the same limit on
h(1, 3; 2, 4), l(1, 3; 2, 4) we choose x = v, y = u. The integration then yields Lin(−Y/(1 − Y ))
which can also straightforwardly be expanded in Y .

The point exchange x3 ↔ x4 implies the transformation

u → u

1− Y
, Y → − Y

1− Y
(7)

on the cross ratios. Combined with a division by 1 − Y due to the outer weight factor this
exchanges the expansions of h(1, 4; 2, 3), l(1, 4; 2, 3) in the x12, x34 → 0 limit with those of
h(1, 3; 2, 4), l(1, 3; 2, 4), respectively. The one-loop box g1234 is totally symmetric, and indeed
the two choices for x, y yield the same series.

The third case, g(1, 2, 3, 4), h(1, 2; 3, 4), l(1, 2; 3, 4) corresponding to the choice

x =
1

u
, y =

v

u
(8)

(or its reflection) is mapped into itself. It cannot be analysed by the same simple manipulation
of the integrand in (5). For the fully symmetric one-loop box this poses no problem because the
series expansion must fall upon what we had before. In order to analyse this limit of the higher
box integrals we write the first factor of the integrand as

u

λ

(
dξ

ξ − ξ+
− dξ

ξ − ξ−

)
, ξ± =

2− Y − u± λ
2 (1− Y )

, λ =
√
−4u+ (Y + u)2 . (9)

Using
1

ξ±
= 1− x± , x± =

1

2
(Y + u± λ) (10)

we find

λ

u
Φ(2)(Y, u) = −6 (Li4(1− x+)− Li4(1− x−)) + 3 log(1− Y ) (Li3(1− x+)− Li3(1− x−))

−1

2
log2(1− Y ) (Li2(1− x+)− Li2(1− x−)) , (11)

λ

u
Φ(3)(Y, u) = −20 (Li6(1− x+)− Li6(1− x−)) + 10 log(1− Y ) (Li5(1− x+)− Li5(1− x−))

−2 log2(1− Y ) (Li4(1− x+)− Li4(1− x−))

+
1

6
log3(1− Y ) (Li3(1− x+)− Li3(1− x−)) . (12)
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We seek an asymptotic expansion in a Euclidean regime where Y, u > 0. In the coincidence limit,
Y 2 and u are of the same order in small quantities. Elementary trigonometry shows −4u+Y 2 ≤ 0
to leading order, so that the root λ is purely imaginary. Hence x± are complex with <(x±) > 0.
After expanding Lin(1− x±) in x± in this regime we treat the variables Y and u as independent
and further expand first in Y and then in u. The individual polylogarithm terms contribute
Y n/um at order n >= 0, with m = [n/2]+1/2, [n/2] , . . . up to positive powers of u, but negative
and half-integer powers of u cancel in the complete expressions for Φ(L). We retain only O(u0),
the twist two trajectory.

When the branch point is approached from the left the polylogarithms are described by the
following asymptotic series:

Li2(1− x) = ζ2 +
∞∑
1

xn

n

(
−
(

1

n
− log(x)

)
I0 + J1

)
,

Li3(1− x) = ζ3 +
∞∑
1

xn

n

(
−ζ2 Io −

(
1

n
− log(x)

)
I1 + J2

)
,

Li4(1− x) = ζ4 +
∞∑
1

xn

n

(
−ζ3 Io − ζ2 I1 −

(
1

n
− log(x)

)
I2 + J3

)
, (13)

Li5(1− x) = ζ5 +
∞∑
1

xn

n

(
−ζ4 Io − ζ3 I1 − ζ2 I2 −

(
1

n
− log(x)

)
I3 + J4

)
,

Li6(1− x) = ζ6 +
∞∑
1

xn

n

(
−ζ5 Io − ζ4 I1 − ζ3 I2 − ζ2 I3 −

(
1

n
− log(x)

)
I4 + J5

)
with the functions

I0 = 1 ,

I1 = −S1 ,

I2 = −1

2
S2 +

1

2
S2
1 , (14)

I3 = −1

3
S3 +

1

2
S1S2 −

1

6
S3
1 ,

I4 = −1

4
S4 +

1

3
S1S3 +

1

8
S2
2 −

1

4
S2
1S2 +

1

24
S4
1

and

J1 = 0 ,

J2 = S2 ,

J3 = S3 − S1S2 , (15)

J4 = S4 − S1S3 −
1

2
S2
2 +

1

2
S2
1S2 ,

J5 = S5 − S1S4 −
5

6
S2S3 +

1

2
S2
1S3 +

1

2
S1S

2
2 −

1

6
S3
1S2 .

In these formulae the range of the harmonic sums is from 1 to n, so they denote S1(n), S2(n) etc.
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The expansions are of pure transcendentality: A sum
∑

n x
n/nm = Lim(x) is obviously

assigned weight m. The more general expression
∑

n x
n/nm Sl(n) will be regarded as a weight

l + m object if Sl is any harmonic sum (or a product thereof) of total weight l. The redundant
symbols Io and J1 were introduced only to emphasize the pretty iterative pattern, by which the
coefficients of ζ-values in the asymptotic expansion of Lin(1− x) is known from the expansions
of Lim(1 − x) with m < n. The In, Jn functions that we display here have been matched on
Mathematica output. Unfortunately, Mathematica runs into problems when the order of the
expansion becomes too high. The iteration as well as the fact that In, Jn can apparently always
be expressed as products of simple ζ-values were observed on the lower examples in the list,
where the fits can contain only a very limited number of distinct structures. Once a fit has been
established it is a trivial matter to continue the original series up to very high orders.

The asymptotic expansions for the entire box integrals (the complete Φ(L) functions including
rational pre-factors) are all similar to (13). We have begun by analysing the highest logarithms
and/or ζ-value contributions to understand what type of object to fit to the series.

By the simple manipulation on the integrand of (5) skeched in the beginning of this section
we found at O(u0):

x413 g(1, 4, 2, 3) →
∞∑
n=1

Y n−1

n

[
− log(u) +

2

n

]
, (16)

x413 h(1, 4; 2, 3) →
∞∑
n=1

Y n−1

n

[
1

2
log2(u)

1

n
− log(u)

3

n2
+

6

n3

]
, (17)

x413 l(1, 4; 2, 3) →
∞∑
n=1

Y n−1

n

[
−1

6
log3(u)

1

n2
+

1

2
log2(u)

4

n3
− log(u)

10

n4
+

20

n5

]
. (18)

The limits of h(1, 3; 2, 4), l(1, 3; 2, 4) are of a more complicated form: The resulting series can be
fitted on linear combinations of harmonic sums with exclusively positive indices:

x413 h(1, 3; 2, 4) → (19)
∞∑
n=1

Y n−1

n

[
1

2
log2(u)S1 − log(u)

(
S1

n
+ 2S2

)
+

(
S1

n2
+

2S2

n
− S1S2 + 2S3 + 2S1,2

)]
,

x413 l(1, 3; 2, 4) → (20)
∞∑
n=1

Y n−1

n

[
−1

6
log3(u)

(
S2
1

2
+
S2

2

)
+

1

2
log(u)2

(
S2
1

2n
+
S2

2n
+ S1 S2 + S3 + S1,2

)
− log(u)

(
S2
1

2n2
+

S2

2n2
+
S1 S2

n
+
S3

n
+
S1,2

n
+ S2

2 + S1 S3 + 2S4 + 2S1,3 + S1,1,2 − S1,2,1

)
+

S2
1

2n3
+

S2

2n3
+
S1 S2

n2
+
S3

n2
+
S1,2

n2
+
S2
2

n
+
S1 S3

n
+

2S4

n
+

2S1,3

n
+
S1,1,2

n
− S1,2,1

n

+ 2S2 S3 + S1 S4 + 3S5 + 3S1,4 + S2,3 + 2S1,1,3 − 2S1,3,1 + S2,1,2 − S2,2,1 − S1,1,2,1 + S1,2,1,1

]
.

In these equations — like anywhere in this article — all harmonic sums have argument n unless
explicitly stated otherwise.
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The coincidence limit on the remainig cases h(1, 2; 3, 4), l(1, 2; 3, 4) requires the more compli-
cated procedure outlined above. We can match the results at O(u0) by the following expressions:

x413 h(1, 2; 3, 4) →
∞∑
n=0

Y n

n+ 1

[
6 ζ(3) + S1,2 − S2,1

]
, (21)

x413 l(1, 2; 3, 4) →
∞∑
n=0

Y n

n+ 1

[
20 ζ(5) + ζ(3)

(
S2
1 − S2

)
−S2,3 + S3,2 + S1,1,3 − S3,1,1 − S1,2,2 + S2,2,1 − S1,1,2,1 + S1,2,1,1

]
.

Although this is not manifest, these expansions — as well as the simple result for g(1, 4, 2, 3) —
are mapped onto themselves under the point exchange x3 ↔ x4.

3 Limits of E and H by Asymptotic Expansion

The non-ladder integrals in the three-loop correction to the four-point function are not yet
explicitly known. Fortunately, the method of ”asymptotic expansion of Feynman integrals”
[13] allows us to analyse Feynman diagrams in any limit; coincidence limits on finite Euclidean
integrals are almost the defining examples. Like in the case of the box integrals we will obtain
the leading terms of a power series in Y at u0 and seek a fit on harmonic sums.

Recall the definition

E(1, 3; 2, 4) =

∫
d4x5d

4x6d
4x7 x

2
23x

2
34x

2
17

x215x
2
16x

2
25x

2
27x

2
46x

2
47x

2
35x

2
36x

2
37x

2
57x

2
67

=
1

x213x
2
24

Φ(E) (u, v) (22)

where the second equality follows by conformal covariance. The integral representation is in-
variant under the exchange of points 2 and 4. As this exchanges u and v we conclude that
Φ(E)(u, v) = Φ(E)(v, u). Next, the exchange of points 1 and 3 has the same effect on the cross
ratios, whereby we can conclude that E(1, 3; 2, 4) = E(3, 1; 2, 4) despite of the apparent asym-
metry of the integrand between x1 and x3. All in all we are left with three cases to analyse:
E(1, 2; 3, 4) and E(1, 3; 2, 4), E(1, 4; 2, 3). In the limit x12, x34 → 0, the first case stays apart,
while the other two are related by the exchange of points 3 and 4.

3.1 E(1, 4; 2, 3) and E(1, 3; 2, 4)

Due to conformal covariance the integrals can be uniquely reconstructed from a limit where, say,
point 4 is moved to infinity by replacing

x212x
2
34 ↔ x212 , x213x

2
24 ↔ x213 , x214x

2
23 ↔ x223 . (23)

Note that in the limit

u → x212
x213

, v → x223
x213

= 1− 2(x12.x13)

x213
+ u . (24)

We consider

E(1; 2, 3) = lim
x4→∞

x24E(1, 4; 2, 3) =

∫
d4x5d

4x6d
4x7 x

2
17

x215x
2
16x

2
25x

2
27x

2
36x

2
37x

2
57x

2
67

(25)
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Thanks to translation invariance we may further put x1 = 0. Let us re-label x2 = p1, x3 =
p2, x5 = k1, x6 = k2, x7 = k3. The integral becomes

E(p1, p2) =

∫
d4k1d

4k2d
4k3 k

2
3

k21k
2
2(k1 − k3)2(k2 − k3)2(k1 − p1)2(k3 − p1)2(k2 − p2)2(k3 − p2)2

(26)

and we are interested in the limit p1 → 0. We might simply try to expand the integrand in p1
using

1

(k1 − p1)2
=

1

k21

∞∑
n1=0

(
2(k1.p1)− p21

k21

)n1

,
1

(k3 − p1)2
=

1

k23

∞∑
n2=0

(
2(k3.p1)− p21

k23

)n2

. (27)

These equations are only valid if k21, k
2
3 > p21, of course, and for example in calculations with

orthogonal polynomials one would indeed subdivide the integration domains according to the
validity of such expansions. Here we rather put the measure into D = 4 − 2 ε dimensions
in order to regularise the IR singularities 1/(k21)m1 and 1/(k23)m2 that arise by extending the
integration domain to the origin. We have expanded the integrand according to the formal
assigment k1, k2, k3 = O(p2) >> p1. We call this the ”top region”. In the ”bottom region” we
declare k1, k2, k3 = O(p1) << p2 and likewise employ the geometric series to expand the k2 − p2
and k3 − p2 propagators in k2, k3, respectively. Here we find UV poles arising from the part of
the integration domain where the momenta are large. The method of ”expansion by regions”
consists of evaluating not only the top and bottom regions, but the sum of all eight possibilities
arising from ki = O(p1) or O(p2). All singularities cancel and the logarithms combine into powers
of log u. The expansion by regions is equivalent to the ”expansion by subgraphs” which in turn
has been proven by renormalisation theory to yield valid asymptotic expansions [13].

In massless theories, in some regions one encounters ”no-scale” integrals
∫
dDk/(k2)α = 0.

In the case at hand we find non-vanishing contributions in the regions

R1 : k1, k2, k3 ∼ p2 , R2 : k2, k3 ∼ p2; k1 ∼ p1 , (28)

R3 : k2 ∼ p2; k1, k3 ∼ p1 , R4 : k1, k2, k3 ∼ p1 .

Here R1, R4 are the ”top” and ”bottom” problems mentioned in the last paragraph. Quite
generally, the top problem is an l-loop integral with very high indices (exponents) on some
propagators and therefore the hardest to solve. The bottom problem is often of the same topology
but the indices are all as in the original integral. The mixed cases break into an m-loop integral
depending on the small scale and an (l −m)-loop integral depending on the large scale.

The original integral E(1; 2, 3) has dimension [1/p2]. Let us consider the bottom problem R4:
To lowest order we put k2−p2, k3−p2 → p2. It follows that the corresponding three-loop integral
must go as p21. We conclude that the bottom problem does not contribute at order u0. The same
applies to R3: To lowest order we have 1/(k3 − p2)2 → 1/p22. We find a one-loop integral that
has dimension of 1/(p22)

1+ε, so once again the two-loop integral depending on p1 must produce
at least one power of u.

The leading term of the top problem has p-dependence 1/(p22)
1+3ε, that ofR2 is 1/((p22)

1+2ε(p21)
ε).

Since there are only two contributing regions we should find that the leading poles from R1, R2

are equal and of opposite sign. Further, a pole ε−n yields logarithms to the n-th power in the
finite part of the ε expansion. The logarithms from the two regions can only combine into log(u),
if the leading singularity is a simple pole.
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We are finally in a position to consider the top region R1 in detail. We can drop p21 from (27)
because we want to restrict to O(u0). We wish to calculate

E(p1, p2)
top
u0 =

∞∑
n1,n2=0

∫
dDk1d

Dk2d
Dk3 (2(k1.p1))

n1(2(k3.p1))
n2

(k21)2+n1(k1 − k3)2 k22 (k23)n2(k2 − k3)2(k2 − p2)2(k3 − p2)2
. (29)

In terms of the classification of three-loop propagator type integrals in [14] this integral is of
topology O2, the two-loop master T1 with a bubble insertion in an outer line. The k1 integration
(i.e. the momentum going around the bubble) can be executed using∫

dDk Ps(p)

(k2)α((k − p)2)β
=

1

(p2)α+β−D/2

[s/2]∑
i=0

G(α, β, s, i)

{
(k2)i

i!

(
�k

4

)i
Ps(k)

}
k=p

(30)

where Ps(k) is any polynomial of order s and �k = ∂2/∂kµ∂kµ. Last,

G(α, β, s, i) =
Γ(α + β + i−D/2) Γ(D/2− α + s− i) Γ(D/2− β + i)

Γ(α) Γ(β) Γ(D − α− β + s)
. (31)

In our case the numerator polynomial is kµ11 . . . k
µn1
1 , all contracted onto p1. In applying (30) to

(29) we discard terms with i > 0 since they yield p21. It follows

E(p1, p2)
top
u0 =

∞∑
n1,n2=0

G(2 + n1, 1, n1, 0)

∫
dDk2d

Dk3 (2(k3.p1))
n1+n2

k22 (k23)1+ε+n1+n2(k2 − k3)2(k2 − p2)2(k3 − p2)2
. (32)

The region R2 gives a very similar result: We expand 1/(k3 − p1)2 in p1 and 1/(k3 − k1)2 in k1.
Powers of k21/k

2
3 can be dropped because they vanish under the k1 integral, which is a one-loop

bubble with ingoing momentum p1. It multiplies a T1 topology depending on p2. Using (30) for
the bubble we find

E(p1, p2)
R2

u0 =
1

(p21)
ε

∞∑
n1,n2=0

G(1, 1, n1, 0)

∫
dDk2d

Dk3 (2(k3.p1))
n1+n2

k22 (k23)1+n1+n2(k2 − k3)2(k2 − p2)2(k3 − p2)2
. (33)

From the last two equations it is already clear that the leading poles will cancel:

G(2 + n1, 1, n1, 0)|ε−1 =
1

ε

1

n+ 1
= −G(1, 1, n1, 0)|ε−1 (34)

Recall that the first two arguments of the G function label the indices of the propagators in a
one-loop bubble integral, reflecting the fact that G(2 + n1, 1, n1, 0) has a pole of IR origin while
G(1, 1, n1, 0) contains a UV divergence. This is a very direct illustration of the cancellation of
singularities due to extension of the integration domains to the whole of Minkowski space. The
remaining two loop integrals in (32) and (33) are equal to leading order in ε. The traceless part
of the numerator (i.e. no p21) always leads to finite integrals so that the recombination of the
logarithms can take place as we had anticipated.

Summing up, conformal invariance has permitted to reduce a four-point integral to a (generic)
three-point one. The strategy of ”expansion by regions” makes it possible to extract a power
series in a small ingoing ”momentum” p1 = x21 whereby the three-point integral collapses to a
collection of two-point problems on the expense of introducing numerators with open indices.

Even if there are numerators, the ”rule of the triangle” [14] can be used to solve the two-loop
master topology T1 with all integer exponents as in (33) or one non-integer exponent on an outer
line as in (32). The triangle rule is an IBP identity2 which reduces the exponents of one of

2integration by parts
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the k2, k2 − k3, k2 − p2 lines in favour of increasing those of k3, k3 − p2. In the case at hand a
single application of the triangle rule would be sufficient because the lines involving k2 all have
exponent one. Hence one of them will be cancelled in every term upon which the integral can be
evaluated by iterated use of equation (30).

In practice we rather implement a different strategy: We will use tensor reduction in order to
pull p1 off the integrals and then apply the rule of the triangle to the resulting scalar integrals.
In the top and bottom problems of the expansion by regions in other limits on E and H we
encounter the three-loop FA topology which is implemented in the powerful ”Mincer” system
[14]. Since this programme only deals with scalar integrals we have to understand the tensor
reduction at any rate.

Let an l-loop integral depending on a single outer scale p2 have a numerator Nµ1...µs with s
open indices and some denominator D. Upon integration∫

dDk1 . . . d
DklN

µ1...µs

D
= P µ1...µs

0 (p2) I0(p2) + . . .+ P µ1...µs
[s/2] (p2) (35)

where

P µ1...µs
i (p2) =

(p22)
i

i!

(
�p2

4

)i
pµ12 . . . pµs2 . (36)

As in (30) the d’Alembertian replaces pµi2 p
µj
2 by ηµiµj in a totally symmetric fashion. Symbolic

differentiation gives a fast and simple algorithmic realisation of the tensor decomposition because
we need not explicitly symmetrise.

In order to determine the Ii in (35) we project the entire equation with P0(p2), . . . , P[s/2](p2)
obtaining

Ji = Mij Ij , Mij =

{
(k2)i

i!

(
�k

4

)i
(p22)

j

j!

(
�p2

4

)j
(k.p2)

s

}
k=p2

, (37)

Ji =

{
(k2)i

i!

(
�k

4

)i ∫
dDk1 . . . d

Dkl k
µ1 . . . kµs Nµ1...µs

D

}
k=p2

. (38)

The matrix Mij depends on the regulator because ∂p.p = D = 4 − 2 ε. However, the tensor
reduction procedure is well-defined also in exactly four dimensions, so that M must have a power
series expansion in ε. To construct the inverse up to and including ε3 we only have to invert the
lowest term and complete it by linear perturbation theory; in practice the whole procedure was
still fast up to spin 80 in the most straightforward implementation. In addition, we can limit our
scope to the construction of I0 because the trace terms in Pi(p2), i > 0 obviously yield powers
of u upon multiplication with p1. Finally, we point out that all steps of the algorithm can be
performed on the numerator N before calling any integration routine.

In our results we can finally replace p1, p2 by x21, x31, respectively, and then recover the
dependence on the fourth point by identifying 2(x12.x13)/x

2
13 = Y + O(u) and extending the

overall denominator to x213x
2
24, c.f. (23) and (24). The limit of E(1, 3; 2, 4) can be obtained from

this expansion by the transformation (7) corresponding to the exchange of points 3 and 4 and
division by (1 − Y ) owing to the overall denominator. The asymptotic series so obtained have
very much the same features as the limits of the box integrals. By a short Mathematica script
for the evaluation of the T1 integrals via the triangle rule we could easily generate the asymptotic
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expansion up to order Y 31, which is sufficient to determine all coefficients in fits on harmonic
sums with only positive indices (possibly divided by powers of their arguments):

x413E(1, 4; 2, 3) → (39)
∞∑
n=1

Y n−1

n

[
− log(u) ζ(3)

(
6S1

)
− log(u)

(
S2
1

n2
− S1 S2

n
− S1,3 + S3,1 + 2S1,1,2 − 2S2,1,1

)
+ ζ(3)

(
4S1

n
− 4S2

1 + 12S2

)
+

2S2
1

n3
+

2S1 S2

n2
− 2S2

2

n
− 2S1 S3

n
− 4S1,4 + 4S4,1 + 4S1,1,3 − 4S3,1,1 + 4S1,2,2 − 4S2,2,1

]
,

x413E(1, 3; 2, 4) → (40)
∞∑
n=1

Y n−1

n

[
− log(u) ζ(3)

(
6

n

)
− log(u)

(
2S1

n3
− S2

1

2n2
− S2

2n2
− 2S3

n
+
S1,2

n
− S2

2

2
− S1 S3

− 3S4

2
+ 3S1,3 − S1,2,1 + S2,1,1

)
+ ζ(3)

(
10

n2
+

4S1

n
− 2S2

)
+

8S1

n4
− 5S2

1

2n3
+

3S2

2n3

+
S1 S2

n2
− 3S3

n2
− S1,2

n2
− S2

2

n
+
S1 S3

n
− 8S4

n
+

4S1,3

n
+
S1,1,2

n
− 3S1,2,1

n
+

2S2,1,1

n

− 5S1 S4 − 4S2 S3 − 9S5 + 13S1,4 + 5S2,3 − 2S1,1,3 − 2S1,3,1 + 4S3,1,1

+S2,1,2 − S2,2,1 + S1,1,2,1 − S1,2,1,1

]
.

3.2 H(1, 2; 3, 4)

This is a single-log limit of the H integral. The derivation of an asymptotic expansion for the
twist two trajectory is very similar to the single-log limit of the E integral, just that here the
x3 ↔ x4 exchange maps the expansion to itself. In the limit x4 → ∞ we obtain the reduced
integral

H(1, 2; 3) = lim
x4→∞

x44H(1, 2; 3, 4) =

∫
d4x5d

4x6d
4x7 x

2
56

x215x
2
16x

2
25x

2
26x

2
35x

2
36x

2
37x

2
57x

2
67

(41)

We put x5 = k1, x6 = k2, x7 = k3, x1 = 0, x2 = p1, x3 = p2 as before and expand using the
geometric series according to which ”loop momenta” are supposed to be of order p1 (small)
or order p2 (large). There are two contributing regions: The top problem ki ∼ p2 and k1 ∼
p1, k2, k3 ∼ p2 (and symmetrically k1 ↔ k2). The bottom problem is non-vanishing but only
comes in at O(u).

The top region yields an FA topology, with high indices for two propagators (p4, p5 w.r.t.
the definitions of [14]). The second region yields a one-loop bubble times the two-loop master
T1 quite as R2 in the evaluation of E in the last section. The Mincer system could derive the
expansion of the top problem only up to and including O(Y 20). This may point to an installation
problem, but more likely this means that the recursion for the evaluation of the T1 master with a
non-integer exponent on the central line (which is internally encountered upon applying the rule
of the triangle to the FA topology) is not tabulated to sufficiently high orders. We obtain an
asymptotic series containing log(u) ζ(3), log(u), ζ(3) and purely rational terms. The coefficient
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of log(u) ζ(3) must have transcendentally weight two, and from the numerators we could in fact
easily recognise Y n−1S1(n)/(n+1). Fits of this type are quickly found also for the non-ζ log term
and the ζ(3) term without logarithm. However, the expansion up to spin 20 does not furnish
enough information to fix all 32 constants in our ansatz S1(n)/(n+ 1)5, . . . , S5(n)/(n+ 1), . . . for
the purely rational part (all sums were taken to have positive indices only).

To make progress we invoke invariance under x3 ↔ x4 acting on the expansion

lim
x2→x1

H(1, 2; 3) =
∞∑
n=1

Y n−1
(

log(u) an + bn

)
+O(u) . (42)

On the cross ratios we have the aforementioned transformation (7). It remains to divide by
(1 − Y )2, to re-expand in Y and to equate with the original series. The resulting system of
equations allows to express one half of the an, bn in terms of the others. We substitute the ansatz

an = c5,1
S4(n)

n+ 1
+ . . .+ c2,1 ζ(3)

S1(n)

n+ 1
, bn = c6,1

S5(n)

n+ 1
+ . . .+ c3,1 ζ(3)

S2(n)

n+ 1
+ . . . (43)

into the first, say, 60 such equations finding seven linear relations between the 15 constants c5,i,
one for three a3,i and fifteen equations on the set of 32 constants c6,i. The actual power series
derived from the integral is consistent with these conditions and now suffices to pin down the fit
at O(u0):

x413H(1, 2; 3, 4) → (44)
∞∑
n=1

Y n−1

n+ 1

[
− log(u) ζ(3)

(
24S1

)
− log(u)

(
−2S2

2 + 4S1 S3 + 2S4 − 4S1,3 + 4S1,1,2 − 4S1,2,1

)
+ ζ(3)

(
48S1

n+ 1
− 6S2

1 + 6S2

)
− 4S2

2

n+ 1
+

8S1 S3

n+ 1
+

4S4

n+ 1
− 8S1,3

n+ 1
+

8S1,1,2

n+ 1
− 8S1,2,1

n+ 1

+ 2S2 S3 + 8S1 S4 + 10S5 − 8S1,4 − 12S2,3 + 10S1,1,3 − 8S1,3,1 − 2S3,1,1

− 2S1,2,2 + 2S2,2,1 − 2S1,1,2,1 + 2S1,2,1,1

]
(45)

3.3 E(1, 2; 3, 4)

We send point 3 to infinity and identify x1 = p1, x2 = 0, x4 = p2, x5 = k1, x6 = k2, x7 = k3.
The integral to expand is

E(p1, p2) = p22

∫
dDk1d

Dk2d
Dk3 (k23 − 2 k3.p1 + p21)

k21 k
2
2 k

2
3(k1 − k3)2(k2 − k3)2(k1 − p1)2(k2 − p1)2(k1 − p2)2(k3 − p2)2

(46)

There are six contributing regions: The top and bottom problems, two regions with two integra-
tion momenta treated as large and one as small, and two for the opposite. One of the latter does
not contribute at O(u0). The top problem is of topology O2, the bottom one of topology FA and
the three other regions give (nested) bubble integrals. For the top problem and the trivial regions
we need not appeal to Mincer, for the bottom problem we used its inbuilt FA routine once again.
Unfortunately the programme was not able to go beyond Y 17. To make matters worse, the log3

part of the asymptotic expansion is easy to guess and one sees that there are series of the type
yn−1 S2(n)/n and yn−1 S2(n)/(n+ 1), whereby there are twice as many constants as before.
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On the other hand, the expansion by regions must make sense also if the three terms of the
numerator are treated separately: E(p1, p2) could be a generic three-point integral, for which
the strategy should be operational independently of the fact that it is a limit of a conformal
four-point integral. Interestingly we find that the k23 numerator is linked to the S(n)/(n+1) type
expansion while the other pieces cause the S(n)/n part. Consequently, running the expansion
by regions separately for the two parts of the numerator we can double the number of conditions
available from the integral itself.

The integral must have point exchange symmetry x1 → x2. This maps the S(n)/n part of
the fit to both pieces, but fortunately the S(n)/(n + 1) piece is sent onto itself. In this sector
we could solve up to five constants. Next, in all the combinations of harmonic sums that we
have encountered up to now the coefficients are integer or half integer. Using this knowledge one
can simply play through all values for the remaining undetermined coefficients in a typical range
and see where the dependent constants come out with denominator 1 or 2. Admittedly, this is a
somewhat experimental approach, but there is very clearly only one reasonable solution:

x413E(1, 2; 3, 4)→ (47)
∞∑
n=1

Y n−1

n

[
−1

6
log3(u)

(
2S1

n
− S2

1 − S2

)
+

1

2
log2(u)

(
4S1

n2
− 3S2

1

2n
+

3S2

2n
− S1 S2 − 3S1,2

)
− log(u)

(
6S1

n3
− 2S2

1

n2
+

4S2

n2
− 3S1 S2

n
+
S3

n
− 2S1,2

n
− 3S2

2

2
+

5S4

2

− 5S1,3 − S1,1,2 + 2S1,2,1 − S2,1,1

)
+ 20 ζ(5) + ζ(3)

(
−2S1

n
− S2

1 − 5S2

)
+

8S1

n4
− 5S2

1

2n3
+

13S2

2n3
− 5S1 S2

n2
+

2S3

n2
− S1,2

n2
− 2S1 S3

n
− 5S2

2

2n
+

3S4

2n
− 5S1,3

n

− 2S1,1,2

n
+

3S1,2,1

n
− S2,1,1

n
− S2 S3 + 9S5 − 4S1,4 − 4S2,3

−S1,1,3 + 4S1,3,1 − 3S3,1,1 + S1,2,2 − 2S2,1,2 + S2,2,1 + S1,1,2,1 − S1,2,1,1

]
+

∞∑
n=1

Y n−1

n+ 1

[
−1

6
log3

(
S2
1 + 3S2

)
+

1

2
log2(u)

(
2S2

1

n+ 1
+

6S2

n+ 1
+ 4S3 + 4S1,2

)
− log(u)

(
4S2

1

(n+ 1)2
+

12S2

(n+ 1)2
+

8S3

n+ 1
+

8S1,2

n+ 1
− 3S1 S3 + S2

2 + 2S4 + 8S1,3

+S1,1,2 − 2S1,2,1 + S2,1,1

)
+ ζ(3)

(
S2
1 + 3S2

)
+

8S2
1

(n+ 1)3
+

24S2

(n+ 1)3

+
16S3

(n+ 1)2
+

16S1,2

(n+ 1)2
− 6S1 S3

n+ 1
+

2S2
2

n+ 1
+

4S4

n+ 1
+

16S1,3

n+ 1

+
2S1,1,2

n+ 1
− 4S1,2,1

n+ 1
+

2S2,1,1

n+ 1
− 6S1 S4 − S2 S3 − 7S5 + 10S1,4 + 4S2,3

+S1,1,3 − 4S1,3,1 + 3S3,1,1 − S1,2,2 + 2S2,1,2 − S2,2,1 − S1,1,2,1 + S1,2,1,1

]
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3.4 H(1, 4; 2, 3) and H(1, 3; 2, 4)

The H integral enjoys the same type of flip symmetry as the ladder graphs and E. In order to
analyse H(1, 4; 2, 3) we may thus start from H(2, 3; 1, 4) instead. We send point 4 to infinity and
identify x1 = 0, x2 = p1, x3 = p2, x5 = k1, x6 = k2, x7 = k3. In momentum space notation:

H(p1, p2) =

∫
dDk1d

Dk2d
Dk3 (k21 − 2(k1.k2) + k22)

k21k
2
2k

2
3(k1 − k3)2(k2 − k3)2(k1 − p1)2(k1 − p2)2(k2 − p1)2(k2 − p2)2

(48)

If k1, k2 ∼ p2; k3 ∼ p1 or k1, k2 ∼ p1; k3 ∼ p2 we find no-scale integrals. The contributing
regions are thus the top and bottom problems — both of topology FA — and the two regions
R2 : k1, k3 ∼ p2; k2 ∼ p1 (and its mirror image with k1 ↔ k2), and R3 : k1, k3 ∼ p1; k2 ∼ p2
(and the same with k1 ↔ k2).

The leading 1/ε3 pole must be universal to all regions for the recombination of the logarithms
into powers of log(u) to happen. We can use the trivial cases R2, R3 to try and understand the
structure of a fit. Once again, the two types of numerator terms A = k21 + k22 and B = −2(k1.k2)
lead to different structures: The A terms give a series like Y n−1 S(n)/nm, the B term causes
Y n−1 S(n)/(n+1)m. The Mincer system is able to deal with the top problem up to and including
Y 19, thus we obtain 20 equations on the coefficients in an ansatz for each sector. It turns out
that in the logarithm terms and the ζ(3) bit of the A part only Y n−1 S(n)/n1 occurs, see below.
Imposing this for the rational terms at u0 as well we can comfortably fix all coefficients.

With some hindsight (S1,1,1,1, S1,1,1,1,1 and high powers of S1 do not occur) the ansatz for
the B part can be limited to 28 coefficients, for which there are 20 equations, so what can be
done? Exchanging x1 ↔ x2 is an active transformation mapping our case to H(1, 3; 2, 4). The
usual transformation (7) on the cross ratios must be followed by dividing out (1−Y )2 due to the
higher weight of the integral. This leads to different behaviour under the map: We find a single
series Y n−1 S(n)/(n + 1)m, where for the first time the m = 0 cases also occur. The resulting
ansatz for the rational terms is fairly large because there are many independent harmonic sums
(or products thereof) with positive indices adding up to total transcendentally weight six.

Hence a priori we cannot expect any constraint from point exchange. As a matter of fact the
simultaneous existence of the two expansions does impose a few conditions: We do not find any
condition on the coefficients for the B fit for the log3(u) terms of H(1, 4; 2, 3) = H(2, 3; 1, 4), but
one at log2(u), two at log(u) and three in the rational part. Hence we can restrict our ansatz for
the rational terms of the B series to five unknown constants. Supplemented by the guess that
all coefficients are integer multiples of eight it was not hard to play through the possibilities in a
likely range; again we find one solution, which is presented below. This ”diophantine” problem
may seem a weak constraint, yet the difference in complexity is absolutely striking between
the preferrred solution which we display and any other random try (where one puts integer or
half-integer guesses for the independent parameters and inspects the values of the dependent
parameters).

x413H(1, 4; 2, 3)→ (49)
∞∑
n=1

Y n−1

n

[
−1

6
log3(u)

(
2S2

1

)
+

1

2
log2(u) (8S1 S2)

− log(u)
(
8S2

2 + 16S1S3 + 4S4 − 8S1,3 + 8S1,1,2 − 8S2,1,1

)
+ ζ(3)

(
−16S2

1

)
+ 24S2 S3 + 32S1S4 + 16S5 − 32S1,4 + 16S1,1,3 − 16S3,1,1 + 16S1,2,2 − 16S2,2,1

]
+
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∞∑
n=1

Y n−1

n+ 1

[
−1

6
log3(u)

(
− 4S1

n+ 1
− 2S2

1 + 4S2

)
+

1

2
log2(u)

(
− 8S1

(n+ 1)2
− 4S2

n+ 1
− 8S1 S2 + 12S3

)
− log(u)

(
8S2

1

(n+ 1)2
− 24S2

(n+ 1)2
+

8S3

n+ 1
− 16S1,2

n+ 1
− 8S2

2 − 16S1 S3 + 20S4 + 8S1,3

− 8S1,1,2 + 8S2,1,1

)
+ ζ(3)

(
32S1

n+ 1
+ 16S2

1 − 32S2

)
+

64S1

(n+ 1)4
+

32S2
1

(n+ 1)3
− 64S2

(n+ 1)3
+

32S1 S2

(n+ 1)2
− 16S3

(n+ 1)2
− 64S1,2

(n+ 1)2
− 16S2

2

(n+ 1)
+

24S4

n+ 1

− 32S1,3

n+ 1
− 16S1,1,2

n+ 1
+

16S2,1,1

n+ 1
− 24S2 S3 − 32S1 S4 + 24S5 + 32S1,4 − 16S1,1,3 + 32S3,1,1

− 16S1,2,2 − 16S2,1,2 + 16S2,2,1

]
x413H(1, 3; 2, 4)→ (50)
∞∑
n=1

Y n−1
[
−1

6
log3(u)

(
− 4S1

(n+ 1)2
+

S2
1

n+ 1
+

S2

n+ 1
− 2S1 S2 + 2S3 + 2S1,2

)
+

1

2
log2(u)

(
− 8S1

(n+ 1)3
− 4S2

(n+ 1)2
+

4S1 S2

n+ 1
− 4S1 S3 + 12S4 + 2S1,2,1 − 2S2,1,1

)
− log(u)

(
− 4S2

1

(n+ 1)3
− 12S2

(n+ 1)3
+

8S1 S2

(n+ 1)2
− 8S3

(n+ 1)2
− 8S1,2

(n+ 1)2
+

2S2
2

n+ 1
+

14S1 S3

n+ 1

− 12S1,3

n+ 1
+

2S1,1,2

n+ 1
− 2S2,1,1

n+ 1
+ 4S2 S3 − 2S1 S4 + 42S5 − 14S1,4 − 10S2,3

+ 4S1,1,3 + 4S1,3,1 − 8S3,1,1 − 2S2,1,2 + 2S2,2,1 − 2S1,1,2,1 + 2S1,2,1,1

)
+ ζ(3)

(
32S1

(n+ 1)2
− 8S2

1

n+ 1
− 8S2

n+ 1
+ 16S1 S2 − 16S3 − 16S1,2

)
+

64S1

(n+ 1)5
− 16S2

1

(n+ 1)4
− 16S2

(n+ 1)4
+

16S1 S2

(n+ 1)3
− 32S3

(n+ 1)3
− 32S1,2

(n+ 1)3
+

44S1 S3

(n+ 1)2
− 12S4

(n+ 1)2

− 56S1,3

(n+ 1)2
+

4S1,1,2

(n+ 1)2
− 4S2,1,1

(n+ 1)2
+

16S2 S3

n+ 1
+

44S1 S4

n+ 1
+

20S5

n+ 1
− 52S1,4

n+ 1
− 28S2,3

n+ 1

+
8S1,1,3

n+ 1
− 8S3,1,1

n+ 1
− 4S2,1,2

n+ 1
+

4S2,2,1

n+ 1
+

2

3
S2
1 S

2
2 −

4

3
S2
3 + 22S2 S4 +

20

3
S1 S5

+ 108S6 − 48S1,5 − 56S2,4 +
52

3
S1,1,4 +

10

3
S1,4,1 −

62

3
S4,1,1

+
26

3
S1,2,3 −

4

3
S1,3,2 +

26

3
S2,1,3 +

38

3
S2,3,1 −

28

3
S3,1,2 +

14

3
S3,2,1

− 4S1,1,1,3 − 4S1,1,3,1 + 8S1,3,1,1 −
8

3
S1,1,2,2 −

2

3
S1,2,1,2 −

14

3
S1,2,2,1 −

2

3
S2,1,1,2

− 26

3
S2,1,2,1 +

4

3
S2,2,1,1 + 2S1,1,1,2,1 − 2S1,1,2,1,1

]
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4 CPWA analysis

At tree level, the correlation function is given by products of free scalar propagators:

G
(0)
4 (1, 2, 3, 4) =

(N2
c − 1)2

4 (4π2)4

[(
y212
x212

y234
x234

)2

+

(
y213
x213

y224
x224

)2

+

(
y241
x241

y223
x223

)2]
(51)

+
N2
c − 1

(4π2)4

(
y212
x212

y223
x223

y234
x234

y241
x241

+
y212
x212

y224
x224

y234
x234

y213
x213

+
y213
x213

y223
x223

y224
x224

y241
x241

)
,

The loop-corrections to G4 take a factorised form [1, 2]:

G
(l)
4 (1, 2, 3, 4) =

2 (N2
c − 1)

(4π2)4
×R(1, 2, 3, 4)× F (l)(xi) (for l ≥ 1) (52)

Here R(1, 2, 3, 4) is a universal, l−independent rational function of the space-time, xi, and har-
monic, yi, coordinates at the four external points 1, 2, 3, 4:

R(1, 2, 3, 4) =
y212y

2
23y

2
34y

2
14

x212x
2
23x

2
34x

2
14

(x213x
2
24 − x212x234 − x214x223)

+
y212y

2
13y

2
24y

2
34

x212x
2
13x

2
24x

2
34

(x214x
2
23 − x212x234 − x213x224)

+
y213y

2
14y

2
23y

2
24

x213x
2
14x

2
23x

2
24

(x212x
2
34 − x214x223 − x213x224)

+
y412y

4
34

x212x
2
34

+
y413y

4
24

x213x
2
24

+
y414y

4
23

x214x
2
23

, (53)

while F (`)(xi) are functions of xi only, which are explicitly stated up to three loops in terms of
the box integrals and E and H in formulae (2), (3) in the introduction.

In the OPE limit x2 → x1, x4 → x3 the weight 2 operators at points 1,2 and 3,4 respectively
fuse into an expansion in terms of operators ”exchanged” between the two halves of the four-
point function. The exchanged operators carry twist (dilatation weight - spin), spin and SU(4)
quantum numbers. Since we are fusing two operators in the 20’ representation, the exchanged
operators must carry one of the representations in the product 20′ × 20′ = 1 + 15 + 20′ + 84 +
105 + 175. The correlator as written in the last two formulae has six ”channels” distinguished
by the y variables pertaining to the internal symmetry group. It has been worked out in [16]
which linear combination of these channels correspond to the exchange of operators in a given
representation. In particular, if we label the channels according to

G4 = y412y
4
34A1 +y413y

4
24A2 +y414y

4
23A3 +y212y

2
34 y

2
13y

2
24A4 +y212y

2
34 y

2
14y

2
23A5 +y213y

2
24 y

2
14y

2
23A6 (54)

then the 20’ exchange corresponds to A2+A3+ 5
3
A4+ 5

3
A5+ 1

6
A6. Both at tree- and at loop-level

we find that the leading power singularity is 1/(x212x
2
34) coming from A4, A5:

lim
x12,x34→0

G20′

4 =
5(N2 − 1)

3 (4π2)4 x212x
2
34x

2
13x

2
24

∗ (55)((
1

1− Y
+ 1

)
+ 2

(
1

1− Y
− 1− Y

) ∞∑
l=1

lim
x12,x34→0

al F (l)(xi)

)
+O(u)
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where a is the effective coupling. Powers of u can be discarded because they correspond to
higher twist. On the other hand, the expansion in the Y variable is associated to the spin of the
exchanged twist two operators.

In terms of the elementary field the operators we discuss are schematically realised as O(s) =
tr(WD{µ1 . . . Dµs}W ). The positioning of the trace-free symmetrised Yang-Mills covariantised
derivatives Dµ = ∂µ + i g [Aµ, •] on the two W fields decides about the anomalous dimension
of the operators. All these composites have twist two because there are two scalar elementary
fields of dimension one carrying the derivatives. The spin 0 operator in this class is the protected
primary O. At spin one we only find ∂µO, a ”conformal descendent” of O. By tree-level
orthogonalisation one sees that there is one new primary operator at every even spin, all other
combinations of derivatives give descendents of operators with lower spin. The descendents do
show in the OPE, but their occurrence is statically linked to that of the primary field. One
can resum the contribution of the descendents into a ”conformal partial wave” labelled by the
primary operator, see [8, 16, 17] and references therein:

cpwa(s) = N(s) uγ/2 Y s
2F1

(
s+ 1 + γ/2, s+ 1 + γ/2, 2 + 2 s+ γ; Y

)
(56)

When expanding in the effective coupling a the cpwa furnish logarithms to be matched on those
of the F (l) in (56). Our task is thus to solve((

1

1− Y
+ 1

)
+ 2

(
1

1− Y
− 1− Y

) ∞∑
l=1

lim
x12,x34→0

al F (l)(xi)

)
=

∞∑
s=0

cpwa(s) (57)

for γ(s), N(s). As it should, the normalisation of the cpwa turns out to be zero if the spin is odd.
For even spin we find

N(s) = 2

(
Γ
(
s+ 1 + γ

2

)2
Γ (2 s+ 1 + γ)

− 1

4

∞∑
i=2

ζ(i) bi

)
(58)

∗
(

1 + a c1,2 + a2
(
ζ(3) c2,1 + c2,4

)
+ a3

(
ζ(5) c3,1 + ζ(3) c3,3 + c3,6

)
+ . . .

)
where

a =
g2N

4 π2
, b2 = − γ2 +

(
S1(2 s)− S1(s)

)
γ3 + . . . , b3 = γ3 + . . . . (59)

The bi cancel the explicit dependence of the Γ ratio on ζ values; the first factor in (58) is meant
to be purely rational. The anomalous dimension depends on the spin and has an expansion
γ = a γ1 + a2 γ2 + a3 γ3 + . . .

γ1 = 2S1 , (60)

γ2 = −S−3 − 2S−2 S1 − 2S1 S2 − S3 + 2S−2,1 , (61)

γ3 = 3S−5 + 8S−4 S1 + S2
−2 S1 + 6S−3 S

2
1 + S−3 S2 + 4S−2 S1 S2 + 2S1 S

2
2 (62)

+ 2S−2 S3 + 2S2
1 S3 + S2 S3 + 3S1 S4 + S5 − 6S−4,1 − 12S1 S−3,1 − 6S−3,2

− 4S2
1 S−2,1 − 2S2 S−2,1 − 10S1 S−2,2 − 6S−2,3 + 12S−3,1,1 + 16S1 S−2,1,1

+ 12S−2,1,2 + 12S−2,2,1 − 24S−2,1,1,1 .
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In these formulae all harmonic sums depend on the argument s. Our result is in complete
agreement with the literature [9, 10].

The tree-level normalisation is easily recognised to be the ratio 2 (s!)2/(2s)! which we take
out of the entire normalisation factor. A fit of the one-loop normalisation on harmonic sums is
then in fact possible, but only if in addition S(2s) are taken into account. The result for the
coefficients is compatible with promoting the the factorials at tree to the Γ functions in (58);
this mimics the Y dependent part of the cpwa. At two and three loops the Γ functions correctly
incorporate all S(2s) terms. Below we state our results for the coefficients in the second line of
(58). In these formulae all harmonic sums have argument s once again.

c1,2 = −S2 , (63)

c2,1 = 3S1 , (64)

c2,4 =
5

2
S−4 + S2

−2 + 2S−3 S1 + S−2 S2 + S2
2 + 2S1 S3 +

5

2
S4 − 2S−3,1 − S−2,2 − 2S1,3 , (65)

c3,1 = −25

2
S1 , (66)

c3,3 = − 3S−3 − 10S−2 S1 +
4

3
S3
1 − 6S1 S2 −

4

3
S3 + 6S−2,1 , (67)

c3,6 = − 11S−6 +
5

2
S2
−3 − 5S−4 S−2 −

41

2
S−5 S1 − S−3 S−2 S1 − 5S−4 S

2
1 − 2S2

−2 S
2
1 (68)

+
4

3
S−3 S

3
1 −

13

2
S−4 S2 −

3

2
S2
−2 S2 − 10S−3 S1 S2 − 2S−2 S

2
2 − S3

2 −
16

3
S−3 S3

− 8S−2 S1 S3 − 6S1 S2 S3 − 3S2
3 − 3S−2 S4 + 9S2

1 S4 − 4S2 S4 +
15

2
S1 S5 −

13

2
S6

+ 14S−5,1 + 11S1 S−4,1 + 9S−4,2 − 12S1 S−3,−2 + 10S−2 S−3,1 − 4S2
1 S−3,1

+8S2 S−3,1 + 4S1 S−3,2 + 9S−3,3 − 10S−3 S−2,1 + 14S−2 S1 S−2,1 −
8

3
S3
1 S−2,1

+ 4S1 S2 S−2,1 +
20

3
S3 S−2,1 + 10S2

−2,1 + 10S−2 S−2,2 − 6S2
1 S−2,2 + 6S2 S−2,2

+ 6S1 S−2,3 + 11S−2,4 − 6S2 S1,3 − 4S1 S1,4 − 4S1,5 + 4S1 S2,3 + 4S2,4 − 12S−4,1,1

+ 8S1 S−3,1,1 − 2S−3,1,2 − 2S−3,2,1 − 24S1 S−2,−2,1 − 20S−2 S−2,1,1 + 16S2
1 S−2,1,1

− 8S2 S−2,1,1 + 16S1 S−2,1,2 − 6S−2,1,3 + 16S1 S−2,2,1 + 4S−2,2,2 − 6S−2,3,1 − 4S1 S1,1,3

− 8S1,1,4 + 8S1,3,2 − 8S−3,1,1,1 − 48S1 S−2,1,1,1 − 20S−2,1,1,2 − 20S−2,1,2,1 − 20S−2,2,1,1

+16S1,1,1,3 + 64S−2,1,1,1,1

5 Conclusions

In a double concidence limit x2 → x1, x4 → x3, the four-point function of stress tensor multiplets
T is reduced to an OPE (operator product expansion) T (x1)T (x2) =

∑
s c(s, x)O(s)(x1), and

similarly at the other end, so that one obtains (the sum over) the square of the structure con-
stants c with the two-point function of the exchanged operator O(s). This is a scheme invariant
combination from which one can read off the structure constants if the two-point function in the
middle is assumed to be normalised to one.
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Not only the primary operators but also their conformal descendents (x-derivatives) are ex-
changed. The descendents are usually put together with the primary fields in conformal blocks
called ”conformal partial waves” (cpwa). We have derived explicit results for the twist two
operators in the 20’ representation of SU(4): Their anomalous dimensions come out as linear
combinations of harmonic sums in full agreement with the literature [9, 10]. What is more, also
the constants multiplying the twist two cpwa are elaborated in terms of harmonic sums.

We have stopped short of predicting the structure constants from these results because the
absolute normalisation of the cpwa is not known3. Our results for the constant terms naturally
factors into two pieces. It is tempting to associate the first of these factors with the normalisation
of the cpwa and the second with the structure constants.

The fact that the entire result is expressed in terms of harmonic sums is a clear hint at an
integrable systems explanation, c.f. [11, 12]. This issue will be addressed in future work; we are
confident that the normalisation question will be understood if such an interpretation is found.

The asymptotic expansion of the individual conformal integrals is given in terms of harmonic
sums with positive indices only, and products thereof with negative powers of their argument.
These results should help with the construction of an explicit expression for the unknown integrals
in terms of special functions of the polylogarithm type. Interestingly, the cpwa decomposition
leads to formulae in terms of harmonic sums only, but here the sums can have negative indices.
S−1 does not occur, and in most of the higher sums only the outermost index can be negative
(two exceptions).

In deriving the asymptotic series by expansion by regions we have met a number of structural
properties, i.e. that given numerator terms lead to expansions that can be matched on the
distinct structures Y n−1 S(n)/nm, Y n−1 S(n)/(n+ 1)m with or without the m = 0 case. We have
used conformal symmetry to make four-point integrals into three-point integrals. The latter are
generic by inspection; one may wonder whether any three-point integral can be written as a spin
expansion in terms of harmonic sums, or whether the examples here are somehow specific to the
N = 4 SYM theory.

Obviously, our work can be extended to the twist three, four, ... trajectories corresponding to
powers of the second cross ratio u. We expect that the coefficients will pick up a second parameter;
it remains open for the moment whether the rational number in front of each harmonic sum will
simply start to depend on the twist, whether each trajectory is completely different, or indeed if
the Euler-Zagier sums are not sufficient to express the complete expansion.

Last, on very many occasions — but not always — the coefficients of a set of harmonic sums
related by index permutations add up to zero in our formulae. This hints at the existence of a
special basis w.r.t. which the results would take a much simpler form.
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6 Appendix: The 20 channel in terms of harmonic sums

In the four-point correlation function at two and three loops the integrals come with very specific
rational factors depending on Y . It is an interesting question how the expansions in terms
of harmonic sums over powers of their arguments change by including the Y expansion of the
rational factors, and which type of expansion will lead to a similar result if multiplied by such
factors. In the 20’ channel we obtain a fit of the same type as for the asymptotic expansions of
the individual integrals even if the factor 1/(1−Y )−1−Y from the R polynomial projected onto
the 20’ representation is included. We display the result as an illustration of the universality of
the basis of harmonic sums we were using, but also in the hope that the formulae may be useful
in an attempt on deriving an explicit result for the correlation function in terms of harmonic
polylogarithms and related functions. The tree-level 1/(1 − Y ) + 1 + O(u) is thus followed by
the loop correction 2

∑∞
l=1 a

l f (l) +O(u) with the twist 2 contributions

f (1) =
∞∑
n=2

Y n

[
log(u)

(
− 1

2n
+

1

2
S1

)
+

1

n2
− S2

]
, (69)

f (2) =
∞∑
n=2

Y n

[
log2(u)C2;2 + log(u)C2,3 + C2,4 + ζ(3)D2,1

]
(70)

where

D2,1 = − 3

n
+ 3S1 , (71)

C2,2 = − 1

2n2
+

1

4
S2
1 +

1

4
S2 , (72)

C2,3 =
3

n3
− S1

2n2
+
S2

2n
− 3

2
S1 S2 −

3

2
S3 , (73)

C2,4 = − 6

n4
+
S1

n3
+

S2

2n2
+
S1 S2

n
− S3

2n
− 2S1,2

n
(74)

−S1 S1,2 +
1

4
S2
2 + 3S1 S3 +

13

4
S4 −

5

2
S1,3 + 3S1,1,2

and

f (3) =
∞∑
n=2

Y n

[
log3(u)C3;3 +log2(u)C3;4 +log(u)

(
C3;5 + ζ(3)D3;2

)
+C3;6 + ζ(3)D3;3 + ζ(5)D3;1

]
(75)

with

D3;1 =
25

n
− 25S1 , (76)

D3;2 = − 6

n2
+ 3S2

1 + 3S2 , (77)

D3;3 =
14

n3
− 10S1

n2
− 2S2

1

n
+

2S2

n
+

2

3
S3
1 − 8S2 S1 −

14

3
S3 + 8S1,2 , (78)
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C3;3 = − 1

2n3
+
S2

6n
+

1

12
S3
1 +

1

12
S1 S2 +

1

6
S1,2 , (79)

C3;4 =
6

n4
− S1

n3
− S2

1

4n2
− S2

4n2
+
S1 S2

2n
− S3

2n
− S1,2

2n
(80)

−S2
1 S2 − S1 S3 −

3

4
S2
2 −

3

4
S4 −

1

2
S1,3 ,

C3;5 = − 30

n5
+

6S1

n4
+

S2
1

2n3
+

5S2

2n3
+

5S1 S2

2n2
+

5S3

2n2
− 2S1,2

n2
− 3S1 S1,2

2n
(81)

+
3S2

1 S2

4n
+
S1 S3

2n
− 3S2

2

4n
+
S4

n
− 2S1,3

n
− 1

2
S2
1 S1,2 − S1 S1,3 − 2S2 S1,2

+
13

4
S2
1 S3 +

9

4
S1 S

2
2 +

29

4
S1 S4 +

17

4
S2 S3 + 6S5 − 5S1,4 + S2,3 −

5

2
S1,1,3

+S1,2,2 + 6S1,1,1,2 ,

C3;6 =
60

n6
− 12S1

n5
− 6S2

n4
− S2

1

n4
− 3S1 S2

n3
− 6S3

n3
+

4S1,2

n3
− S1 S1,2

n2
(82)

−3S2
2

2n2
+
S2
1 S2

2n2
− 6S1 S3

n2
− 8S4

n2
+

10S1,3

n2
+

6S2 S1,2

n
+

2S1 S1,3

n
− 5S1 S

2
2

2n

−S
2
1 S3

n
− 13S1 S4

2n
− 3S5

n
+

16S1,4

n
+

2S2,3

n
− 3S1,2,2

n
− 125

6
S6 +

13

12
S3
2

+ 3S1 S2 S1,2 +
21

2
S2 S1,3 + 2S3 S1,2 +

1

2
S2
1 S1,3 + 3S1 S1,4 − S1 S2,3 −

11

2
S2 S1,1,2

− 1

2
S2
1 S1,1,2 − S1 S1,1,3 − 3S1 S1,2,2 + 4S1 S1,1,1,2 −

1

4
S2
1 S

2
2 − 9S1 S2 S3 −

41

4
S2 S4

− 7

2
S2
3 −

17

4
S2
1 S4 − 19S1 S5 + S2

1,2 + 24S1,5 + 6S2,4 + 2S1,1,4 − S1,2,3

− 6S1,3,2 − 3S1,1,1,3 + S1,1,2,2 − 10S1,1,1,1,2 .
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