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Abstract

We consider the deformation of the Poincaré group in 2+1 dimensions into the quantum
double of the Lorentz group and construct Lorentz-covariant momentum-space formu-
lations of the irreducible representations describing massive particles with spin 0, 1/2
and 1 in the deformed theory. We discuss ways of obtaining non-commutative versions
of relativistic wave equations like the Klein-Gordon, Dirac and Proca equations in 2+1
dimensions by applying a suitably defined Fourier transform, and point out the rela-
tion between non-commutative Dirac equations and the exponentiated Dirac operator
considered by Atiyah and Moore.

1 Introduction

It is well-known that the important linear wave equations of relativistic physics can be ob-

tained by Fourier-transforming the irreducible representations of the Poincaré group. The

Klein-Gordon, Dirac and Proca equations, for example, are Fourier-transforms of momentum-

space constraints for, respectively, spin 0, 1/2 and 1 in Wigner’s classification of irreducible

Poincaré representations in terms of mass and spin [1, 2].

In this paper we discuss this picture for the case of 2+1 dimensional Minkowski space,

and then consider a deformation of it, where the Poincaré symmetry is deformed into a

non-cocommutative quantum group, namely the quantum double of the Lorentz group in

2+1 dimensions, or Lorentz double for short [3, 4, 5]. The deformation involves a parameter
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of dimension inverse mass, and deforms flat momentum space of ordinary special relativity

into anti-de Sitter space; in 2+1 dimensions, this happens to be isometric to the identity

component of the Lorentz group.

The Lorentz double plays an important role in (2+1)-dimensional quantum gravity [3, 5,

6, 7, 8]. In that context, the deformation parameter is related to Newton’s constant. We will

not discuss the gravitational interpretation much in this paper and refer to the review [9] for

details and references. We further note that deformations of momentum space to a curved

manifold are currently much studied in the context of ‘relative locality’ [10]. We expect our

results to be relevant in that context, too.

In the deformed theory, position coordinates, which are translation generators in momen-

tum space, no longer commute. Instead, they satisfy the Lie algebra of the Lorentz group in

2+1 dimensions and act on the Lorentz group-valued momenta by infinitesimal multiplication

(see [11] and [9] for a review and further references). One therefore expects that Fourier-

transforming the irreducible representations of the quantum double, whose elements are

functions on momentum spaces, will lead to covariant wave equations on non-commutative

spacetime.

In order to carry out this programme, we first need to write the unitary irreducible rep-

resentations (UIR’s) of the usual (2+1)-Poinaré group in a form that allows one to obtain

covariant wave equations via Fourier-transform. This is discussed in Section 2. Even though

the wave equations we obtain are the standard Klein-Gordon, Dirac and Proca equation in

2+1 dimensions, our method for obtaining them appears to be new.

Our discussion of the Poincaré UIR’s follows a similar treatment of the Euclidean situation

in [12], which is our main reference. However, the Lorentzian situation is considerably more

involved than the Euclidean case. A full classification the UIR’s of the Poincaré group in 2+1

dimensions was first given by Binegar in [13], where he also discusses the possibility – and

difficulties – of writing the UIR’s in terms of fields on Minkowski space obeying covariant

wave equations. A complete analysis of relativistic wave equations in 2+1 dimensions is

given in [14] from the point of view of generalised regular representations. Our approach

of adapting the Euclidean discussion of [12] gives a less general treatment of the Poincaré

UIR’s, but maintains the link via Fourier transform between momentum space and position

space. This is essential for our treatment of the Lorentz double.

In Section 3, we repeat the covariantisation procedure for the irreducible representations of

the Lorentz double, still following and adapting the treatment of the Euclidean situation in

[12]. In our final Section 4, we sketch how a Fourier transform adapted to quantum groups

[15] can be used to yield non-commutative wave equations. The ‘waves’ in this case are

elements of the Lorentz group. We also indicate how our treatment is linked to alternative

approaches based on ?-products on R3 [16, 17, 18, 19, 20, 21, 23], and point out an interesting

connection with the exponentiated Dirac operator proposed by Atiyah and Moore in [22].
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2 Relativistic wave equations in 2+1 dimensions

2.1 Conventions and notation

We denote 2+1 dimensional Minkowski space by R2,1 and use the ’mostly minus’ convention

for the Minkowski metric η = diag(1,−1,−1). We write elements of R2,1 as x, y, . . . with

x = (x0, x1, x2) and

η(x, y) = ηabx
ayb = x0y0 − x1y1 − x2y2. (2.1)

Latin indices range over 0, 1, 2 and summation over repeated indices is implied.

The group of linear transformations of R2,1 that leave η invariant is the Lorentz group

L3 = O(2, 1). It has four connected components. We are mainly interested in the identity

component – the subgroup of proper orthochronous Lorentz transformations, denoted L+↑
3 .

The group of affine transformations that leave the Minkowski distance η(x − y, x − y)

invariant is the semidirect product L3 n R3 of the Lorentz group with the abelian group of

translations. We call it the extended Poincaré group. Its identity component is the Poincaré

group, which we denote as

P3 = L+↑
3 nR3. (2.2)

For the semidirect product we use the conventions of [12], which allow for an easy extension

to the quantum group deformation in the next section but are different from those mostly

used in the physics literature. In our conventions, the product of (Λ1, a1), (Λ2, a2) ∈ P3 is

given by

(Λ1, a1)(Λ2, a2) = (Λ1Λ2,Λ2a1 + a2). (2.3)

One advantage of this convention is that the ordering of the elements can be interpreted as

a factorisation: (Λ, a) = (Λ, 0)(I, a), where I is the identity in O(2, 1).

The action of (Λ, a) ∈ P3 on the Minkowski space is then the right action

(Λ, a) : x 7→ x / (Λ, a) = Λx+ a. (2.4)

For a full classification of possible excitations in 2+1 dimensional relativistic physics, in-

cluding the anyonic ones, one needs to study the projective UIR’s of P3. These are given

by the ordinary UIR’s of the universal covering group ˜̃P3 of P3, which are studied in detail

in [24]. Wave equations for anyonic wave functions with infinitely many components are

investigated in [25]. In this paper, we work with the double cover SL(2,R) of L+↑
3 and hence

the double cover P̃3 = SL(2,R) nR3 of the Poincaré group. The main reason for this is the

convenience of working with 2 × 2 matrices, and an easier link with the existing literature

on the Lorentz double, which mostly uses a formulation based on SL(2,R). Note also that,

in 3+1, the double cover of the Poincaré group is the universal cover.

It turns out to be natural and convenient to interpret the translation group R3 as the

vector space sl(2,R)∗ dual to sl(2,R). Then P̃3 = SL(2,R)n sl(2,R)∗, where SL(2,R) acts
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on sl(2,R)∗ via the coadjoint action. The right-action of (g, a) ∈ P̃3 on Minkowski space

sl(2,R)∗ is then given by

(g, a) : sl(2,R)∗ 3 x 7→ x / (g, a) = Ad∗gx+ a. (2.5)

This action preserves the Minkowski metric η on sl(2,R)∗.1

The Lie algebra p3 = sl(2,R) n sl(2,R)∗ is six dimensional, with translation generators

P0, P1 and P2, rotation generator J0 and boost generators J1 and J2. They satisfy the

commutation relations:

[Ja, Jb] = εabcJ
c, [Ja, Pb] = εabcP

c, [Pa, Pb] = 0, (2.6)

where indices are raised via the inverse Minkowski metric ηab and εabc is the totally antisym-

metric tensor in three dimensions normalised such that ε012 = 1. We are using conventions

where the structure constants in the Lie algebra are real. This has the advantage that we

can exponentiate to obtain group elements without needing to insert the imaginary unit i.

However, it has the drawback that eigenvalues of generators are typically imaginary. Our

conventions differ from those in [12] in this respect.

The vector spaces sl(2,R) and sl(2,R)∗, which make up p3, are in duality, and the natural

pairing between them is invariant and non-degenerate. This pairing plays an important

role in the Chern-Simons formulation of 2+1 gravity [9, 26, 27], where it is normalised via

Newton’s constant in 2+1 dimensions:

〈Ja, Pb〉 =
1

8πG
ηab, 〈Ja, Jb〉 = 〈Pa, Pb〉 = 0. (2.7)

2.2 Irreducible unitary representations of P̃3

The UIR’s of P̃3 are classified in terms of SL(2,R) orbits in (sl(2,R)∗)∗ together with UIR’s

of associated stabiliser groups [2]. Since (sl(2,R)∗)∗ = sl(2,R), these orbits are nothing but

adjoint orbits of SL(2,R). The following is a convenient basis of sl(2,R), whose detailed

properties are summarised in Appendix A:

t0 =
1

2

(
0 1
−1 0

)
, t1 =

1

2

(
1 0
0 −1

)
, t2 =

1

2

(
0 1
1 0

)
. (2.8)

However, we need to be careful about normalisation. The normalisation of {ta}a=0,1,2 is fixed

by the commutation relations (A.3). The normalisation of the basis {P ∗a}a=0,1,2, which is

dual to the basis {Pa}a=0,1,2 used in (2.6), may be different. Therefore, we should allow

P ∗a = λta, a = 0, 1, 2, (2.9)

where λ is an arbitrary constant of dimension inverse mass. In Section 3 we use the invariant

pairing (2.7) to identify sl(2,R)∗ with sl(2,R) (and thus P ∗a with Ja). The commutation

relations (2.6) then fix λ = 8πG.

1We can think of η as being induced by the Killing form on the dual (sl(2,R)∗)∗, but this is not essential
in the following.
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We denote elements of momentum space sl(2,R) as p, which we expand as

p = paP
∗a = λpat

a. (2.10)

The adjoint action of SL(2,R) on sl(2,R) leaves invariant the inner product

− 2

λ2
tr(pq) = paq

a. (2.11)

In the following, we take p2 to mean pap
a, not the square of the matrix p.

The orbits of the SL(2,R) adjoint action on p ∈ sl(2,R) are labelled by the value of the

invariant inner product p2. The different cases are naturally distinguished by the spacelike

(S), timelike (T) or lightlike (L) nature of the elements p on a given orbit.

T: There are two distinct possibilities corresponding to the different possible signs of a real

parameter m 6= 0. Starting from the timelike representative element p̂ = λmt0, the orbits

OT±
m = {vλmt0v−1 | v ∈ SL(2,R)} = {λpata ∈ sl(2,R) | p2 = m2,±m > 0} (2.12)

are the ‘forward’ and ‘backward’ sheets of the two-sheeted mass hyperboloid. The associated

stabilisers are

NT = {exp(φt0) | φ ∈ [0, 4π)} ' U(1). (2.13)

The UIR’s are labelled by s ∈ 1
2
Z; the half-integer values arising because of the range of φ

for elements of the form eφt
0 ∈ SL(2,R).

The parameters |m| and s can be interpreted as the mass and the spin of a particle.

We allow m to be either positive or negative, corresponding to the cases of a particle or

antiparticle. Further note that, in contrast to the 3+1 dimensional case, the spin s can

also be either positive or negative. In fact, spin in 2+1 dimensions violates parity P and

time-reversal T unless two species with opposite spin are included in a theory [29].

S: Picking the spacelike representative element p̂ = λµt1, the resulting orbits

OS
µ = {vλµt1v−1 | v ∈ SL(2,R)} = {λpata ∈ sl(2,R) | p2 = −µ2 < 0} (2.14)

are single-sheeted hyperboloids. The real parameter µ is strictly positive. The associated

stabilisers are

NS = {± exp(ϑt1) | ϑ ∈ R} ' R× Z2 (2.15)

and their UIR’s are labelled by pairs (s, ε), with s ∈ R, ε = ±1. Empirically, particles with

spacelike momenta – so-called tachyons – do not exist in the physical 3+1 dimensions.

L: There are again two possibilities corresponding to the different possible signs of p0. Picking

the lightlike representative elements p̂ = ±E+ = ±(t0 + t2), we obtain the ‘forward’ and

‘backward’ light cones as orbits:

OL± = {±vE+v−1 | v ∈ SL(2,R)} = {λpata ∈ sl(2,R) | p2 = 0, ±p0 > 0}. (2.16)
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The stabiliser group in both cases is

NL = {± exp(zE+) | z ∈ R } ' R× Z2. (2.17)

Its UIR’s are again labelled by pairs (s, ε), with s ∈ R, ε = ±1.

V : The ‘vacuum’ orbit {0} consists solely of the origin and the associated stabiliser is the

whole group SL(2,R). The irreducible representations of SL(2,R) can, for instance, be

found in [30].

There are two standard ways of writing down the UIR’s of semidirect product groups like

P̃3, both using the orbits and stabiliser UIR’s listed above. One uses sections of bundles

over the homogeneous space SL(2,R)/N , where N denotes one of the stabiliser groups. The

group action on such section involves multipliers or cocycles, see [2] for details. The other

uses functions on SL(2,R) satisfying an equivariance condition. This is the formulation we

use here, referring the reader to [2, 5] for a translation between the two approaches.

For a given UIR of P̃3 labelled by an orbit O with representative element p̂, stabiliser group

N and UIR ς of N , on a vector space V , the carrier space is

VO,ς = {ψ : SL(2,R)→ V | ψ(vn) = ς−1(n)ψ(v),∀n ∈ N,∀v ∈ SL(2,R) }. (2.18)

We also have to impose some kind of integrability condition. An element (g, a) ∈ P̃3 acts on

ψ ∈ VP,ς via

πO,ς((g, a))ψ(v) = exp(ia(Adg−1v(p̂)))ψ(g−1v). (2.19)

As we will subsequently focus on the case of timelike momenta, we give the carrier space

for this case explicitly:

Vms = {ψ : SL(2,R)→ C | ψ(veαt
0

) = e−isαψ(v),∀(α, v) ∈ [0, 4π)× SL(2,R) }. (2.20)

The integrability condition is ∫
SL(2,R)/NT

|ψ|2(w) dν(w) <∞. (2.21)

Here, dν is the invariant measure on the homogeneous space SL(2,R)/NT (note that that

|ψ|2 only depends on w ∈ SL(2,R)/NT ).

An element (g, a) ∈ P̃3 acts on ψ ∈ Vms via

πms((g, a))ψ(v) = exp(ia(Adg−1v(λmt
0)))ψ(g−1v). (2.22)

If we introduce the notation

p = λmvt0v−1 (2.23)

for an orbit element, this further simplifies to

πms((g, a))ψ(v) = eia(Adg−1 (p))ψ(g−1v). (2.24)

6



2.3 Covariant momentum constraints

In a field theory, we are usually looking for wave functions that are defined on momentum

or position space and which transform covariantly under the action of the Poincaré group

[2, 13]. In our conventions, the required transformation behaviour reads

π((g, a))φ(p) = eia(Adg−1 (p))ρ(g)φ(g−1p), (2.25)

where ρ is a (preferably finite-dimensional) representation of the full group SL(2,R).

To obtain a covariant description, we employ the technique of [12]. In geometric terms, the

approach taken there can be described as follows. The formulation (2.18) defines elements

of the carrier space of an UIR as functions on the group obeying an equivariance condition.

Replacing SL(2,R) with a general Lie group G and considering a general stabiliser subgroup

N , this is nothing but the equivariant formulation of sections of vector bundles over G/N .

For G = SU(2) and H = U(1), these are the standard Hermitian line bundles over S2.

The trick used in [12] is to view them as subbundles of the trivial bundle S2 × Cn, where

Cn is the standard n-dimensional UIR of SU(2). In that way, sections become ordinary

functions S2 → Cn obeying a linear constraint. In this construction, the unitarity of the

SU(2) action on Cn is essential for obtaining Hermitian line bundles. By thinking of S2

as embedded in Euclidean (momentum) 3-space, one arrives at functions R3 → Cn obeying

a linear constraint. Applying an ordinary Fourier transform then produces functions on

Euclidean (position) 3-space obeying a linear differential equation.

We would like to treat the Lorentzian situation analogously. However, the standard n-

dimensional irreducible representations of SL(2,R), reviewed in Appendix A, are not unitary,

and therefore the procedure of [12] cannot be used to obtain all UIR’s of P̃3. We shall now

show that it can be implemented for the UIR’s (2.20) labelled by orbits containing timelike

momenta. In that case the stabiliser group is the U(1) subgroup of SL(2,R) generated by

t0.

For a given ψ in (2.20), we define the maps

φ̃± : OT±
m → C2|s|+1 (2.26)

via

φ̃±(p) = ψ(v)ρ|s|(v)||s|, s〉, (2.27)

where p is related to v via (2.23), and the states ||s|, k〉 form the basis (A.9) of the finite-

dimensional sl(2,R) irreducible representations in which t0 is diagonal. Clearly

ρ|s|(veαt
0

)||s|, s〉 = ρ|s|(v)ρ|s|(eαt
0

)||s|, s〉 = ρ|s|(v)eiαs||s|, s〉. (2.28)

This cancels the phase picked up by ψ under the right-multiplication by eαt
0
. Hence, φ̃±

only depends on p ∈ OT±
m , even though both ρ|s|(v) and ψ depend on v.

We now see why this procedure is generally not feasible for UIR’s (2.18) labelled by or-

bits containing spacelike or lightlike momenta, where the stabiliser groups are generated by
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spacelike and lightlike generators in sl(2,R). Under the right-multiplication by eαt
1

resp.

eαt
+

, the elements of (2.18) pick up a phase that cannot be compensated using one of the

finite-dimensional irreducible representations of SL(2,R), as ρ|s|(t1) has real eigenvalues and

ρ|s|(t+) has zero as the sole eigenvalue.

Similar restrictions were found in [13] for the existence of a finite-dimensional covariant

description. More general covariant descriptions are given in [14]. However, these are not ob-

tained directly from the standard UIR’s of the Poincaré group. Instead, they are constructed

using generalised regular representations.

The maps φ̃± defined in (2.27) satisfy the constraint(
iρ|s|(ta)pa +ms

)
φ̃±(p) = 0, (2.29)

as can be seen by writing (2.23) as pat
a = vmt0v

−1:

ρ|s|(ta)paφ̃
±(p) = ρ|s|(vmt0v−1)ρ|s|(v)ψ(v)||s|, s〉

= ψ(v)ρ|s|(v)mis||s|, s〉
= imsφ̃±(p),

as required. The equation (2.29) later becomes one of our wave equations and we refer to it

as the spin constraint.

Following the method of [12], we now consider extensions of the function φ̃, defined on

the Lie algebra sl(2,R). This will enable us to employ a standard Fourier transform for

switching from momentum to position space. We embed the timelike orbits OT±
m into the

Lie algebra sl(2,R) and define

Wms = { φ̃ : sl(2,R)→ C2|s|+1 | (iρ|s|(ta)pa +ms)φ̃(p) = 0, (p2 −m2)φ̃(p) = 0 }, (2.30)

which are representations of P̃3. We call the condition

(p2 −m2)φ̃(p) = 0 (2.31)

the mass constraint; we will see that it is implied by the spin constraint for the cases s =

±1
2
,±1.

To obtain irreducible representations of P̃3, we still need to impose that φ̃ has support

only on either OT+
m or OT−

m , i.e.

Θ(∓p0)φ̃ = 0, (2.32)

where Θ is the Heaviside step function. We call this condition the sign constraint. We remark

that though Wms are reducible representations of P̃3, they are irreducible representations of a

suitable double cover of the extended Poincaré group, which includes time reversal (mapping

OT+
m to OT−

m and vice versa).

The action of an element (g, a) ∈ P̃3 on φ̃ ∈ Wms is(
πms((g, a))φ̃

)
(p) = eia(Adg−1p)ρ|s|(g)φ̃(Adg−1p). (2.33)
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It commutes with the constraints (2.29) and (2.31), as required.

Before we can claim that this is an UIR, we need to define the inner product with respect

to which the representations are unitary. We will do this below for spin 1/2 and spin 1. For

a general discussion of the construction of the required invariant scalar product, see [2].

In the case s = 1
2
, the spin constraint (2.29) becomes the Dirac equation in momentum

space (
itapa +

1

2
m

)
φ̃(p) = 0. (2.34)

Applying (itapa− 1
2
m) to this and using (A.4), we see that (2.34) implies the mass constraint

(2.31) but not the sign constraint (2.32). However, φ̃ can be decomposed into positive and

negative frequency parts φ̃+ and φ̃− using a Foldy-Wouthuysen transformation; see [13] for

details. This is completely analogous to the situation in 3+1 dimensions.

To see that (2.34) is indeed the Dirac equation in momentum space, we note that in 2+1

dimensions, Clifford generators (gamma matrices) satisfying

{γa, γb} = γaγb + γbγa = 2ηab id. (2.35)

can be obtained from the sl(2,R) generators (2.8) via

γa = 2ita. (2.36)

Thus we can write (2.34) as

(γapa +m)φ̃(p) = 0. (2.37)

The invariant scalar product on the space Wm,s= 1
2

with constraints is(
φ̃1, φ̃2

)
=

∫
OT+
m ∪OT−

m

φ̃†1γ
0φ̃2

dp1dp2
|p0|

. (2.38)

The volume element is the standard Lorentz-invariant volume element on the mass shell.

The Lorentz invariance of φ̃†γ0φ̃2 follows from the KAN or Iwasawa decomposition of an

element g ∈ SL(2,R) into g = kv, where k is a rotation (generated by t0 and commuting

with γ0) and v is of the form

v =

(
r x
0 1

r

)
, r > 0, x ∈ R. (2.39)

It satisfies vtγ0v = γ0.

For s = 1, φ̃ = φ̃at
a takes values in the adjoint representation of sl(2,R). The constraint

(2.29) then gives the Proca equations in momentum space

(ipaad(ta) +m)φ̃(p) = 0, (2.40)
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or

[pat
a, φ̃(p)] = imφ̃(p). (2.41)

Taking the Minkowski product (2.11) with pdt
d gives

paφ̃a(p) = 0. (2.42)

The previous two equations together with the identity

[ξ, [η, ζ]] = (ξaζ
a)η − (ξaη

a)ζ, ξ, η, ζ ∈ sl(2,R), ξ = ξat
a etc. (2.43)

give the mass constraint (2.31). Like for spin 1/2, the equation (2.29) implies the mass

constraint (2.31) but not the sign constraint (2.32).

The invariant scalar product on the space Wm,s=1 is(
φ̃1, φ̃2

)
= −

∫
OT+
m ∪OT−

m

φ̃∗1aφ̃
a
2

dp1dp2
|p0|

. (2.44)

This is manifestly Lorentz invariant, but it may not be obvious that (2.44) is indeed positive

definite. This can be seen as follows: due to (2.42) φ̃ is spacelike, and η is negative definite

when restricted to spacelike vectors.

The wave equations for the cases s = −1
2

and s = −1 can be obtained from (2.37) and

(2.41) by changing the sign in front of m.

2.4 Fourier transform to position space

The momentum-space form of the UIR’s of P̃3 in the previous sections were designed to be

amenable to a standard Fourier transform. Defining

φ(x) =
1√

(2π)3

∫
eix(p)φ̃(p) d3p, (2.45)

the spin constraint (2.29) turns into the first order differential equation

(ρ|s|(ta)∂a +ms)φ(x) = 0. (2.46)

The mass constraint (2.31) becomes the Klein Gordon equation

(�+m2)φ = 0. (2.47)

These are the general wave equations for massive particles with spin s ∈ 1
2
Z in 2+1 dimen-

sions. An element (g, a) ∈ P̃3 acts on the wave function φ via

(πms((g, a))φ) (x) = ρ|s|(g)φ(Ad∗gx+ a). (2.48)

Specialising to spin 1/2, we obtain from (2.37) the Dirac equation in position space:

(iγa∂a −m)φ = 0. (2.49)
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The invariant scalar product (2.38) can also be Fourier transformed to obtain the usual form

[28]:

(φ1, φ2) =

∫
φ†1φ2 dx

1dx2. (2.50)

For spin 1, the condition (2.41) becomes the Proca equation

∂a[t
a, φ] = −mφ, (2.51)

and the constraint (2.42) becomes

∂aφa = 0. (2.52)

3 Deforming momentum space

3.1 Introduction and the quantum double D(SL(2,R))

We now repeat the analysis in the previous section for the case of the quantum double

D(SL(2,R)) of SL(2,R), or Lorentz double for short. Before summarising the defining

properties of the quantum double of a Lie group, we make a few qualitative remarks which

highlight the relation between the Lorentz double and the Poincaré group, following [5, 6].

The action (2.24) of a Poincaré group element on an element of one of its UIR’s shows that

pure translations act by a multiplication with a special function on the (linear) momentum

space sl(2,R), namely the plane wave ψa(p) = eia(p). In the Lorentz double, this is deformed

and generalised: the momentum space is exponentiated and extended to become the whole

group manifold SL(2,R). The space of functions on momentum spaces is generalised to a

suitably well-behaved class, for example the class of continuous functions [4]. This deforms

the translation part of the Poincaré group into something dual to the rotation/boost part:

translations are functions on SL(2,R) and rotations/boost are elements of SL(2,R). By

allowing linear combinations we obtain a Hopf algebra, consisting of two subalgebras which

are in duality.

Generally, the quantum double of a Lie group is an example of a quantum double, which

in turn is a special class of quantum groups [15, 33]. It can be defined in various ways.

Here we use the form given in [3, 4] for locally compact Lie groups. As a vector space, the

quantum double D(G) of a Lie group G is the space of continuous, complex-valued functions

C(G× G). Morally, one should think of this as the tensor product C(G)⊗ C(G), with the

first factor being the group algebra and the second factor being the function algebra on G.

The product in the first factor is by convolution and the product in the second factor is

pointwise, but twisted by the action of the first argument. The identity cannot be written

as an element of C(G×G). Strictly speaking it should be added as a separate element, but

it is convenient to formally express it as a delta-function.

In the conventions of [12] (which differ from those in [3, 4]), the product •, coproduct δ,

unit, co-unit, antipode and ∗-structure are as given below. The quantum double is quasitri-

angular [33], and the expression for the R-matrix can be found in [3, 4]. We do not require
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it here. In the equations below, all integrals over the group are with respect to the Haar

measure on the group.

(F1 • F2)(g, u) :=

∫
G

F1(z, zuz
−1)F2(z

−1g, u) dz,

1(g, u) := δe(g),

(∆F )(g1, u1; g2, u2) := F (g1, u1u2) δg1(g2),

ε(F ) :=

∫
G

F (g, e) dg,

(SF )(g, u) := F (g−1, g−1u−1g),

F ∗(g, u) := F (g−1, g−1ug).

(3.1)

3.2 Coordinates for SL(2,R)

We use two different kinds of coordinates for SL(2,R). On the one hand, we use the ex-

ponential map to coordinatise SL(2,R) in terms of its Lie algebra. The exponential map

exp : sl(2,R) → SL(2,R) is bijective for a sufficiently small neighbourhood of 0 resp. id,

this is not the case globally. In fact, it is neither injective nor surjective as we shall see in our

discussion of conjugacy classes below. As before, we write elements of sl(2,R) as p = λpat
a.

Using the fact that (λpat
a)2 = −λ2

4
p2 id, one finds:

exp(λpat
a) =


cos(λ

√
p2/2) id + pa√

p2/2
sin(λ

√
p2/2)ta, if p2 > 0,

id + λpat
a, if p2 = 0,

cosh(λ
√
−p2/2) id + pa√

−p2/2
sinh(λ

√
−p2/2)ta, if p2 < 0.

(3.2)

On the other hand, we can realise SL(2,R) as a submanifold of R4 and use Cartesian

coordinates on R4. Defining

u = P3 id + λPata =

(
P3 + 1

2
λP1

1
2
λP0 + 1

2
λP2

−1
2
λP0 + 1

2
λP2 P3 − 1

2
λP1

)
, (3.3)

where Latin indices still take values 0, 1, 2, the condition u ∈ SL(2,R) is equivalent to

detu = P2
3 +

λ2

4
PaPa = 1. (3.4)

We regard Pa as the independent coordinates with P3 = ±
√

1− λ2

4
PaPa valid for a patch

with PaPa < 4
λ2

. In the following, we refer to the subsets of SL(2,R) with P3 ≷ 0 as upper

and lower half.

Comparing (3.2) and (3.3), we can easily write down a relation between the two coordinate

systems on the intersections of their respective patches. The case p2 > 0 is particularly

important for us. Here one has

P3 = cos(λ
√
p2/2), Pa = pa

sin(λ
√
p2/2)

λ
√
p2/2

. (3.5)

12



Taking the limit λ→ 0 corresponds to the flattening out of momentum space SL(2,R) =

AdS3. It finally rips apart in the hyperplane of P3 = 0, producing not one but two copies of

flat Minkowski momentum space situated at P3 = ±1. They would be identified if we had

worked with L+↑
3 instead of SL(2,R). If, on the other hand, we had worked with the universal

covering group ˜SL(2,R), we would have found a countable set of copies. For a discussion of

L+↑
3 as momentum space in 2+1 dimensional gravity and 2+1 dimensional non-commutative

scalar field theories, see [20].

This property of momentum space is an important consequence of the transition to the

double cover or universal cover of P3, compounding the more widely known manifestation via

the spin of massive particles, which takes integer values in the case of P3, half-integer values

in the case of P̃3 and real values in the case of the universal cover ˜̃P3 (see our discussion in

Section 2.1).

3.3 Irreducible unitary representations of D(SL(2,R))

The Lorentz double D(SL(2,R)) is a special example of a transformation group algebra, and

its UIR’s can best be understood in that general context. As shown in [4], they are labelled

by conjugacy classes in SL(2,R) and UIR’s of the associated centraliser or stabiliser groups.

As emphasised in [5, 6], this should be seen as deformation of the picture for the semi-direct

product group P̃3. In both cases the UIR’s are labelled by SL(2,R) orbits in momentum

space and UIR’s of associated stabilisers. The difference is that momentum space is linear

for P̃3 and curved for D(SL(2,R)).

The conjugacy classes of SL(2,R) and their associated stabilisers have been classified in

[4] and we list them here in a notation adapted to our needs. From the defining property of

SL(2,R) = { g ∈ GL(2,R) | det(g) = 1 } it follows that the (generalised) eigenvalues λ1, λ2
of a given element multiply to one. They are thus either complex conjugate to each other or

both real. The set of conjugacy classes can be organised according to the different possible

eigenvalues. With important exceptions, the conjugacy classes can be obtained from the

adjoint orbits in the Lie algebra sl(2,R) by exponentiation. We have chosen a labelling of

the conjugacy classes which mimicks the conventions we used for the adjoint orbits in the Lie

algebra: we use the superscripts T, S and L for ‘timelike’, ‘spacelike’ and ‘lightlike’ to denote

conjugacy classes whose elements can be obtained via exponentiated timelike, spacelike or

lightlike elements of sl(2,R). Our list also includes the stabiliser group of a representative

element in each of the conjugacy classes.

L: For λ1 = ei
θ
2 , λ2 = e−i

θ
2 (0 < θ < 2π), there are two disjoint conjugacy classes, with

representative elements ĥ = exp(±θt0) which are exponentials of timelike sl(2,R) elements:

CT±(θ) = {v exp(±θt0)v−1 | v ∈ SL(2,R), θ ∈ (0, 2π)}. (3.6)

The stabiliser group is

NT = {exp(φt0) | φ ∈ [0, 4π)} ' U(1), (3.7)
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with UIR’s labelled by s ∈ 1
2
Z.

S: For λ1 = e
r
2 , λ2 = e−

r
2 (r ∈ R+), there is one conjugacy class, with representative element

ĥ = exp(2rt1) obtained by exponentiating a spacelike Lie algebra element:

CS(r) = {v exp(rt1)v−1 | v ∈ SL(2,R)}. (3.8)

It has stabiliser group

NS = {± exp(ϑt1) | ϑ ∈ R} ' R× Z2, (3.9)

with UIR’s labelled by pairs (b, ε), with b ∈ R, ε = ±1.

-S: For λ1 = −e r2 , λ2 = −e− r2 (r ∈ R+), there is likewise one conjugacy class: C−S(r), whose

elements are obtained from those of CS(r) by multiplication with -id; they cannot be written

as the exponential of a Lie algebra element. The stabiliser group is again NS.

L±, V: For λ1 = λ2 = 1, we distinguish three conjugacy classes CV , CL+ and CL−. The

‘vacuum’ conjugacy class CV = {id} has stabiliser SL(2,R), whose UIR’s are discussed in

[30]. The lightlike conjugacy classes have representative elements ĥ = exp(E±), which are

the exponentials of the lightlike elements E±:

CL± = {v exp(E±)v−1 | v ∈ SL(2,R)}. (3.10)

The stabiliser group in both cases is

NL = {± exp(zE+) | z ∈ R} ' R× Z2, (3.11)

with UIR’s labelled by pairs (b, ε), with b ∈ R, ε = ±1.

-L±, -V: For λ1 = λ2 = −1, we distinguish three conjugacy classes, which are obtained by

multiplying CV , CL+ and CL− by −id. They have the same stabiliser groups as CV , CL+

and CL−. Elements of CL+ and CL− cannot be obtained by exponentiation.

The carrier spaces of the irreducible representations of D(SL(2,R)), discussed in [4], are

again given in terms of functions on SL(2,R) satisfying an equivariance condition. The

equivariance condition only depends on the stabiliser group of a given conjugacy class, but

not directly on the conjugacy class. Since the same stabiliser groups arise for orbits in

sl(2,R) as for conjugacy classes in SL(2,R), the general form of the carrier spaces (2.18)

of UIR’s of P̃3 is unchanged when replacing P̃3 by D(SL(2,R)). However, the action of the

elements of D(SL(2,R)) is different, and does depend on the conjugacy class labelling the

representation.

Since we are only able to give covariant forms of momentum constraints in the case of

massive particles, i.e. timelike momenta, we restrict ourselves to the corresponding irreducible

representations of D(SL(2,R)). In the conventions of [12], an element F ∈ D(SL(2,R)) acts

on ψ ∈ Vms as

(Πms(F )ψ) (v) =

∫
SL(2,R)

F (z, z−1vemλt
0

v−1z)ψ(z−1v) dz. (3.12)
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In the next section, we adapt the covariantisation procedure of Section 2.3 to this represen-

tation.

3.4 Deformed covariant constraints

As in Section 2.3, we begin by trading the equivariant function ψ ∈ Vms for a map

φ̃± : CL±(λm)→ C2|s|+1 (3.13)

via

φ̃±(u) = ψ(v)ρ|s|(v)||s|, s〉, (3.14)

where the states ||s|, k〉 are again elements of the basis (A.9) and u = vemλt
0
v−1 ∈ CL±(λm).

These functions satisfy the analogue of the spin constraint (2.29),

(ρ|s|(u)− eiλms)φ̃±(u) = 0. (3.15)

This can be shown by a short calculation which is entirely analogous to that following (2.29).

Note that this is a rather natural condition: the value of the function φ̃± at u lies in the

eigenspace for eigenvalue eiλms of ρ|s|(u).

We now embed the conjugacy classes CS±(λm) into the group SL(2,R). They are char-

acterised by

P3 = cos

(
λm

2

)
, ±P0 > 0. (3.16)

As before, we refer to the first of these equations as the mass constraint and to the second

as the sign constraint. In terms of u, the mass constraint is(
1

2
tr(u)− cos

(
λm

2

))
φ̃(u) = 0. (3.17)

We thus define the carrier spaces

W̃ms = {φ̃ : SL(2,R)→ C2|s|+1 | (ρ|s|(u)− eimλs)φ̃(u) = 0,

(
1

2
tr(u)− cos

(
λm

2

))
φ̃(u) = 0},

(3.18)

and, as in the undeformed case, we will find that the mass constraint is actually implied by

the spin constraint for spin 1/2 and spin 1. An element F ∈ D(SL(2,R)) acts on φ̃ ∈ W̃ms

according to

(Πms(F )φ̃)(u) =

∫
SL(2,R)

F (z, z−1uz)ρ|s|(z)φ̃(z−1uz) dz. (3.19)

For spinless particles, the covariant description involves a function φ̃ : SL(2,R)→ C. The

spin constraint is empty, and we only have the mass constraint (3.17). Writing it in terms

of P3 as in (3.16) and applying (3.4), we arrive at

PaPaφ̃ =

(
sin(mλ/2)

λ/2

)2

φ̃. (3.20)
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This is our deformed Klein-Gordon equation in momentum space.

In the case s = 1
2
, we have functions φ̃ : SL(2,R)→ C2 and the constraint (3.15) becomes

simply

uφ̃(u) = e
i
2
λmφ̃(u). (3.21)

Inserting u = P3 id + λPata, this is equivalent to

λPataφ̃(u) = (e
i
2
λm − P3)φ̃(u). (3.22)

However, since the vector (P0, P1, P2) (like (p0, p1, p2)) is timelike in the case under consider-

ation, the Lie algebra element Pata is conjugate to a rotation and has imaginary eigenvalues.

Expanding e
i
2
λm = cos(λm/2) + i sin(λm/2), the real part of (3.22) is the promised mass

constraint P3φ̃ = cos(λm/2)φ̃, while the imaginary part is(
iPata +

1

2

sin(λm/2)

λ/2

)
φ̃(u) = 0. (3.23)

This is our deformed Dirac equation in momentum space. Using (2.36) to write it in terms

of γ-matrices, we find (
Paγa +

sin(λm/2)

λ/2

)
φ̃(u) = 0. (3.24)

Applying (Paγa − sin(λm/2)
λ/2

) to (3.24) gives PaPaφ̃ = sin2(λm/2)
λ2/4

φ̃, which is equivalent to the

squared version of the mass constraint. Note that the information whether the wave function

has support on the upper or lower half of SL(2,R) is thus no longer contained in the wave

equation.

For s = 1 we again work with the adjoint representation of SL(2,R) and think of φ̃ as

a map φ̃ : SL(2,R) → sl(2,R), so we can expand φ̃ = φ̃at
a. Hence, the constraint (3.15)

becomes

uφ̃(u)u−1 = eiλmφ̃(u). (3.25)

Expanding again u = P3 id + λPata, and using the ‘quaternionic’ multiplication rule (A.2)

of the generators ta, we deduce

λP3[Pata, φ̃]− λ2

2
(PaPa)φ̃+

λ2

2
(Paφ̃a)(Pbtb) = (eiλm − 1)φ̃, (3.26)

where the evaluation at u is understood everywhere. Taking the Minkowski product (2.11)

with Pbtb and using that(eiλm − 1) 6= 0, we conclude that

Paφ̃a = 0. (3.27)

Inserting this in (3.26) and applying (3.4) yields

λP3[Pata, φ̃] = (eiλm + 1− 2P2
3 )φ̃. (3.28)
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Again we can argue from the representation theory of sl(2,R) reviewed in Appendix A that

the eigenvalues of [Pata, ·] are imaginary. With P3 real and non-vanishing, we deduce that

(cos(λm) + 1− 2P2
3 )φ̃ = 0, (3.29)

which is the squared mass constraint(
P2

3 − cos2
λm

2

)
φ̃ = 0. (3.30)

Inserting P3 = ± cos λm
2

into (3.28), we finally arrive at

±i[Pata, φ̃] =
sin(λm/2)

λ/2
φ̃. (3.31)

This is the deformed Proca equation in momentum space.

The wave equations in momentum space for the cases s = −1
2

and s = −1 can again be

obtained by changing the sign in front of m in (3.24) and (3.31).

4 Towards non-commutative wave equations

The ordinary Fourier transform, as used in Section 2.4, takes the abelian algebra of functions

on a vector space (in our case, momentum space) to the abelian algebra of functions on its

dual (in our case, position space). It establishes the link between the UIR’s of the Poincaré

group and the fundamental wave equations of free, relativistic quantum theory.

In this paper we have taken the first steps towards establishing an analogous link for

the deformation of Poincaré symmetry in 2+1 dimensions into the quantum double of the

(double cover of the) Lorentz group, or Lorentz double. We succeeded in writing some of

the irreducible representations of the Lorentz double in terms of Cn-valued functions on the

deformed momentum space SL(2,R) obeying Lorentz-covariant constraints. The details are

trickier than in the Euclidean situation considered in [12], and many open problems remain.

This includes the extension to massless particles and to particles with spins other than 0,1/2

and 1. In particular, it would be interesting to consider anyonic excitations in this context.

They arise naturally in the context of 2+1 gravity, where the spin is quantised in units

which depend on the mass [5], and can only be understood in terms of the universal cover

of SL(2,R).

In this final section, we sketch different ways of implementing the Fourier transform in

the deformed setting. The approach followed in the Euclidean context in [5] is based on

a generalisation of Fourier transforms to Hopf algebras, where it takes elements of a given

Hopf algebra to elements of its dual Hopf algebra [15]. In the deformed theory studied here,

where momentum space is SL(2,R), the ‘algebra of momenta’ is the algebra C∞(SL(2,R))

of smooth functions on SL(2,R), with pointwise multiplication. This is a commutative but

not co-commutative algebra. The dual ‘position algebra’ can be taken to be a suitable class
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of functions on SL(2,R) with multiplication given by convolution (i.e. a suitable version of

the group algebra) or the universal enveloping algebra U(sl(2,R)), with generators x̂a = iλta

satisfying the sl(2,R) commutation relations

[x̂a, x̂b] = iλεabcx̂c. (4.1)

Arguments that this non-commutative ‘spin-spacetime’ arises in (2+1)-dimensional quan-

tum gravity date back to the papers [31] and [11], and also more recently arose in [16]. They

are naturally accommodated in the frame work of the Lorentz double, for which, in the

terminology of [32], U(sl(2,R)) is the ‘Schrödinger representation’.

In [32], the authors consider the Euclidean situation U(su(2)), and go on to develop a bi-

covariant calculus on U(su(2)) as well as the notion of a quantum group Fourier transform.

This was used in [12] to derive non-commutative linear differential equations in the Euclidean

setting.

The Lorentzian case has received less attention, but most of the results of [32] are purely

algebraic and carry over from the Euclidean to the Lorentzian setting without difficulty. The

key result of [32] is the formula for the partial derivatives of plane waves

ψ(p; x̂) = exp(−ipax̂a) = exp(λpat
a) ∈ SL(2,R), (4.2)

where x̂ = (x̂0, x̂1, x̂2). In our coordinates (3.3), we have ψ(p; x̂) = P3 + λPata and the

four-dimensional calculus in [32] would give

∂0ψ(p; x̂) =
1

λ
(P3 − 1), ∂aψ(p; x̂) = iPa, a = 0, 1, 2. (4.3)

To obtain the analogue of wave equations in U(sl(2,R)), we expand

φ(x̂) =

∫
SL(2,R)±

d3pJ(p)ψ(p; x̂) φ̃
(
eλpat

a)
, (4.4)

where SL(2,R)± is the ‘inside of the lightcone’, or the union

SL(2,R)± =
⋃

λm∈(0,2π)

CT+(λm) ∪
⋃

λm∈(−2π,0)

CT−(λm), (4.5)

and d3p J(p) is the Haar measure on SL(2,R) written in terms of the coordinatisation via

the exponential map (which covers precisely SL(2,R)±). The expression (4.4) is formal and

adapted from similar expressions for the Euclidean version used in [18]. Even in that context,

it has not been defined in a mathematically rigorous fashion.

Assuming the validity of the Fourier transform (4.4), non-commutative wave equations can

now easily be read off from our momentum constraints in Section 3.4. The constraint (3.20)

implies the non-commutative Klein Gordon equation(
∂a∂

a +

(
sin(mλ/2)

λ/2

)2
)
φ = 0. (4.6)
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The deformed spin 1/2 constraint (3.24) takes the from of a non-commutative Dirac equa-

tion (
i∂aγ

a − sin(λm/2)

λ/2

)
φ = 0, (4.7)

and the deformed Proca constraint (3.31) turns into the non-commutative Proca equation

±∂a[ta, φ] = −sin(λm/2)

λ/2
φ, (4.8)

which implies ∂aφa = 0.

A different approach to the Fourier transform maps functions on a Lie group G to functions

on the the dual of the Lie algebra g∗, equipped with a ?-product. This is studied in different

guises in [17, 18, 21, 34, 35] for the case of G being the rotation or Lorentz group in three

dimension. In the case of SL(2,R) and with our notation, the plane waves used for the

Fourier transform are

ψ?(u;x) = exp(iPaxa), (4.9)

where u ∈ SL(2,R) is again parametrised as in (3.3), and x ∈ sl(2,R)∗ as in Section 2.

They are ordinary C-valued functions on SL(2,R). The plane waves are multiplied with a

?-product

ψ?(u(1);x) ? ψ?(u(2);x) = ψ?(u(1)u(2);x), (4.10)

which implies

exp(iPa(1)xa) ? exp(iPa(2)xa) = exp(iPa1⊕2xa), (4.11)

where P a
1⊕2 is defined via

u(1)u(2) = P3
1⊕2 + λPa1⊕2ta. (4.12)

The Fourier transform with such plane wave is the conventional integral

φ?(x) =

∫
SL(2,R)±

duψ?(u;x) φ̃(u). (4.13)

The momentum space constraints (3.20), (3.23) and (3.31) on φ̃ imply formally the same

equation as (4.6), (4.7) and (4.8) for φ?(x), but with ∂a now denoting the usual partial

derivative ∂/∂xa.

There is a third way of carrying out a Fourier transform, which uses yet another form of

plane waves on the group SL(2,R). These waves fit into the general framework discussed

in [23], and apply to group elements which are in the image of the exponential map. For

u = exp(λpat
a) and x ∈ sl(2,R)∗∗ ' R3, we define the C-valued function

ψ??(p;x) = exp(ixapa). (4.14)

The Fourier transform now reads

φ??(x) =

∫
SL(2,R)±

d3pJ(p)ψ??(p;x)φ̃
(
eλpat

a)
. (4.15)
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The momentum constraints (3.20), (3.23) and (3.31) on φ̃ imply equations for φ??(x) involving

exponentiated differential operators. For spin 1/2, for example, the left hand side of (3.21)

produces

e−
λ
2
γa∂aφ??(x). (4.16)

The exponentiated Dirac operator appearing here was considered in a very different context

by Atiyah and Moore in [22]. The authors considered difference-differential versions of several

fundamental equations of physics, including the Dirac equation, allowing for advanced and

retarded as well as advanced-retarded versions. For spin 1/2, this involves in an essential way

the exponential of the Dirac operator. Their work stresses the relation between exponentiated

differential operators and difference equations, and explores the consequences of using such

equations in fundamental physics. With few exceptions [36], this point of view has not

received much attention in the context of generalised Fourier transforms and quantum groups.

We have seen three quite different approaches to translating the deformed momentum

constraint derived in this paper into equations in spacetime. The first involves the language

of quantum groups, the second a ?-product on spacetime and the third exponentials of

differential operators, thus leading to difference equations. The relation between the first

two approaches has been investigated in the literature, see e.g. [18]. The third point may

add interesting additional insights.
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Appendix

A Basis and finite-dimensional representations of sl(2,R)

In the main text, we use the the basis {ta, a = 0, 1, 2} of sl(2,R) with

t0 =
1

2

(
0 1
−1 0

)
, t1 =

1

2

(
1 0
0 −1

)
, t2 =

1

2

(
0 1
1 0

)
. (A.1)

The basis elements satisfy

tatb = −1

4
ηabid +

1

2
εabctc, (A.2)

where id denotes the 2 × 2 identity matrix. As a result we have the commutation relations

[ta, tb] = εabctc (A.3)

and the anticommutation relations

{ta, tb} = tatb + tbta = −1

2
ηabid. (A.4)
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Finally, we note the orthogonality relations

−2tr(tatb) = ηab. (A.5)

The representation theory of sl(2,R) is best studied in terms of raising and lowering

operators

H = t1, E+ = t2 + t0 =

(
0 1
0 0

)
, E− = t2 − t0 =

(
0 0
1 0

)
, (A.6)

with commutation relations

[H,E+] = E+, [H,E−] = −E−, [E+, E−] = 2H. (A.7)

It is well-known [1] that the finite-dimensional representations of the Lie algebra sl(2,R) are

parametrised by j ∈ 1
2
(N∪0). For each value of j there is a unique irreducible representation

ρj on Vj ' C2j+1. The standard basis {wj, wj−1, . . . w1−j, w−j} of Vj is such that

ρj(H)wk = kwk, ρj(E−)wk = (j + k)wk−1, ρj(E+)wk = (j − k)wk+1 (A.8)

These representations are not unitary. Only ρj(t0) has imaginary eigenvalues and exponen-

tiates to a unitary matrix. In the main text we work with an eigenbasis

{|j, j〉, |j, j − 1〉, . . . |j, 1− j〉, |j,−j〉} (A.9)

of ρj(t0) satisfying ρj(t0)|j, k〉 = ik|j, k〉.
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