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We obtain the all-loop worldsheet S matrix for fundamental excitations on AdS3 × S3 × T4 by
studying the off-shell symmetry algebra of the superspace action in lightcone gauge. The massless
modes, unaccounted for in earlier works, are automatically included in our treatment. Their exact
dispersion relation is found to be non-relativistic, of giant-magnon form and their scattering is
naturally well-defined. This opens the way to a complete investigation of AdS3/CFT2 integrability.
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INTRODUCTION

Recent years have witnessed remarkable progresses in
understanding the gauge/string correspondence using in-
tegrability methods; see [1–3] for reviews. Given the
power of these methods to study non-protected quantities
at any value of the coupling, it is particularly interest-
ing to apply them to the AdS3/CFT2 dual pairs. Such
pairs were amongst the first examples of holography [4].
They feature the infinite-dimensional Virasoro symme-
try algebra, allow for black hole solutions [5] and play an
important role in string-theoretical black-hole microstate
counting [6].

In string theory, AdS3 × S3 × T4 emerges from the
near-horizon limit of a system of D1 and D5 branes.
As a result, the gauge theory has fundamental as
well as adjoint matter fields. The dual pair has an
infinite-dimensional N = (4, 4) superconformal sym-
metry [7–10]. The background preserves relatively lit-
tle supersymmetry—sixteen supercharges—and can be
supported by a mixture of Ramond-Ramond (RR) and
Neveu-Schwarz-Neveu-Schwarz (NSNS) fluxes. While
the pure-NSNS background can be studied by worldsheet
CFT techniques [11, 12], it is the pure-RR one that natu-
rally emerges from the near-horizon limit of D-branes and
so is expected to give the description of the dual gauge
theory in the strongly-coupled planar limit. The RR and
NSNS descriptions are related by the non-perturbative
and non-planar string-theory S duality. Therefore, di-
rectly understanding the RR background is an important
goal in the study of AdS3/CFT2.

Classical integrability for string theory on AdS3×S3×
T4 was established in Refs. [13–15]. As was observed
in Ref. [13], the presence of flat directions in this back-
ground gives rise to massless string modes, which, at
first sight, cannot be analysed using integrability meth-
ods. Classically, this was addressed only recently [16],

while so far quantum integrability of the worldsheet the-
ory was probed only for massive modes [17–21]; see how-
ever Ref. [22] for a description of massless modes in the
weakly-coupled spin chain. Massless modes are notori-
ously problematic for integrable scattering [23, 24]. In
this letter we show how to incorporate massless modes
of pure-RR AdS3 × S3 ×T4 strings into the integrability
machinery by presenting the complete all-loop S matrix
for fundamental worldsheet excitations.

In 1 + 1 dimensions, quantum integrability manifests
itself as factorisation of the S matrix—any scattering pro-
cess decomposes into sequences of two-body ones [25].
Consistency of this decomposition requires a cubic iden-
tity for the two-body S matrix S, the celebrated Yang-
Baxter equation. Once S is known, the energy spectrum
of the theory can be found by Bethe ansatz techniques.
Here, the observable is the energy spectrum of closed
AdS3× S3×T4 strings in the planar limit. Therefore we
consider the non-linear σ model (NLSM) from the 1 + 1
dimensional worldsheet into AdS3×S3×T4, and compute
its worldsheet S matrix.

To this end, we first study the symmetries of the light-
cone gauge-fixed NLSM, in a limit where the closed-string
worldsheet cylinder decompactifies to a plane and S is
well-defined. Unlike what happens in AdS5×S5 [26, 27],
we cannot use the coset description, since after gauge
fixing massless fermions do not have a conventional
quadratic kinetic term. Instead we will work with the
Green-Schwarz action [28]. In this way we find the alge-
bra A of “off-shell” symmetries—i.e., the ones of S—and
use it to obtain the all-loop kinematics and S matrix. We
see in particular that massless modes are non-relativistic,
with a giant-magnon dispersion relation [29]. This facil-
itates our treatment and distinguishes it from the rela-
tivistic case [23]—in particular, no ad hoc scaling limit
needs to be taken. The more technical details of our
analysis will be presented elsewhere [30].
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OFF-SHELL SYMMETRY ALGEBRA

To find the algebra A we decompactify the world-
sheet and take the theory off shell by relaxing the
level matching condition. The superisometries of the
AdS3 × S3 × T4 string theory background form the al-
gebra psu(1, 1|2)L × psu(1, 1|2)R [31], where the labels L
and R refer to the left- and right-moving symmetries of
the dual CFT2. Only those charges that commute with
the gauge-fixed Hamiltonian H sit in A. This gives eight
supercharges and four central elements H, M, C and C,
as well as an so(4) = su(2)•×su(2)◦ algebra which arises
in the decompactified theory because the winding modes
on the torus decouple. The charge M is a combination
of angular momenta on AdS3 and S3. The relaxed level
matching condition yields the additional central charges
C and C, which are not part of the isometry algebra and
hence must vanish for physical on-shell states. At van-
ishing winding such states satisfy P |phys〉 = 0, where P
is the worldsheet momentum operator.

To proceed we need to gauge-fix the theory. We first
impose the lightcone κ-gauge

(Γ0 + Γ5) θI = 0 , I = 1, 2 , (1)

where X0 = t and X5 = φ parametrise the global time in
AdS3 and a great circle along S3, respectively, θI are 9+1-
dimensional Majorana-Weyl fermions of Type IIB string
theory and Γ are 32 × 32 Dirac gamma matrices. This
κ-gauge guarantees a conventional kinetic term for the
fermions, but is not compatible with the coset action [13].
We therefore have to work with the superspace action [28,
32, 33]. To determine the structure of A it is sufficient
to consider terms at most quadratic in the fermions, for
which explicit expressions are given in Ref. [32].

Before κ-gauge fixing, the string theory action on
AdS3 × S3 × T4 is invariant under constant shifts of 16
(suitably defined) fermions. The supercharges can be
found using the Noether procedure. Upon fixing the
lightcone κ-gauge, half of the shifts breaks the gauge-
fixing condition (1) and need to be combined with a com-
pensating κ-transformation, just like in flat space [34].
The eight supercharges in A are of this kind.

To fix the bosonic gauge symmetry we work in the first-
order formalism. Introducing the lightcone coordinates
X± = 1

2 (φ±t) and the conjugate momenta P± we impose
the uniform lightcone gauge [1, 35]

X+ = τ, P− = const., (2)

where τ is the worldsheet time. The Virasoro constraints
are used to determine X− and P+ as non-local expres-
sions in terms of the physical transverse fields. They are
related to H and P by

H = −
∫ +∞

−∞
dσ P+, P = 2

∫ +∞

−∞
dσ ∂σX

−. (3)

To carry out this procedure explicitly we need to redefine
the fermions θI to make them neutral under the U(1) iso-
metries generated by t and φ translations [36]. This yields
a non-local piece in the supercharges. The supercharges’
dependence on the massless fields Xµ, on the conjugate
momenta Pµ, and on the massless fermions χI is

Qµ =

∫ +∞

−∞
dσ e+Γ34X−

(Pµχ1 − ∂σXµχ2) ,

Q̃µ =

∫ +∞

−∞
dσ e−Γ34X−

(Pµχ2 − ∂σXµχ1) ,

(4)

where µ = 6, 7, 8, 9 runs over the T4 directions. This
gives us eight real supercharges. We can combine them
into two su(2)• doublets Q a

L and QRa and their complex
conjugates QLa = (Q a

L )† and Q a
R = (QRa)†. The L and

R labels indicate which psu(1, 1|2) superisometry algebra
the charges originate from. The supercharges satisfy the
psu(1|1)4

c.e. algebra

{QLa,Q
b

L } = 1
2δ
b
a(H + M), {QLa,Q

b
R } = δbaC,

{Q a
R ,QRb} = 1

2δ
a
b (H−M), {Q a

L ,QRb} = δabC,
(5)

The central charge C and its conjugate C arise from the
non-local exponential factor in (4) and are related to the
worldsheet momentum by

C =
ihζ

2
(eiP − 1) , (6)

where the phase ζ = e2iX−(−∞) depends on the bound-
ary conditions for the field X− [27] and h is the string
tension. For a single excitation, ζ can be absorbed by
a rescaling, but for multi-excitation states the relative
phases are relevant, as we will see later.

REPRESENTATIONS

The fundamental excitations of the string—eight
bosons and eight fermions—arrange themselves into short
multiplets of the off-shell symmetry algebra A, satisfying
the shortening condition

H2 = M2 + 4CC . (7)

Since C vanishes at zero momentum, the eigenvalue m
of M plays the role of a mass. There are two bosonic
and two fermionic excitations with mass m = +1, and
we refer to them as left-flavoured because on-shell they
transform only under the left supercharges. Similarly,
there are four right-flavoured excitations with m = −1,
and eight massless excitations with m = 0. The cor-
responding multiplets are depicted in figures 1 and 2.
There we see four psu(1|1)4

c.e. bifundamental representa-
tions, supplemented by the action of su(2)• and su(2)◦,
the latter acting on massless excitations only.
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FIG. 1. Each of the two (left and right) massive psu(1|1)4c.e.
multiplets consists of two bosons Y L,R, ZL,R and of two
fermions ηL,R

a , the latter carrying the fundamental su(2)• in-
dex a. For clarity we only indicate the supercharges that do
not vanish on shell.

The algebra (5) can be obtained from two copies of
psu(1|1)2

c.e.. This consists of four conjugate supercharges
q̄L,R = (qL,R)†, satisfying

{qL, q̄L} = 1
2

(
h + m

)
, {qL,qR} = c ,

{qR, q̄R} = 1
2

(
h−m

)
, {q̄L, q̄R} = c̄ .

(8)

We can then set Q 1
L = qL ⊗ 1, Q 2

L = 1 ⊗ qL for the
left flavour, QR1 = qR ⊗ 1, QR2 = 1 ⊗ qR for the right,
and similarly for their conjugates. The bifundamental
representations of psu(1|1)4

c.e. can be obtained from the
fundamental representations of psu(1|1)2

c.e.. One such
representation, which we denote by %L = (φL|ψL), is

qL |φL

p〉 = ap |ψL

p〉 , q̄L |ψL

p〉 = āp |φL

p〉 ,
qR |ψL

p〉 = bp |φL

p〉 , q̄R |φL

p〉 = b̄p |ψL

p〉 ,
(9)

where the representation coefficients depend on the exci-
tation momentum p. Another representation, %R can be
obtained by exchanging the action of left and right gener-
ators. Two more representations %̃L, %̃R, can be obtained
by exchanging bosons and fermions.

Using this, the left and right representations of figure 1
are given by %L ⊗ %L and %R ⊗ %R respectively. On the
former, the central charges are

H =
(
ap āp + bp b̄p

)
1 , C = ap bp 1 ,

M =
(
ap āp − bp b̄p

)
1 , C = āp b̄p 1 ,

(10)

while on the latter one should exchange ap ↔ bp, flipping
the sign of M. We then see that whole massive module
is invariant under relabelling L ↔ R, resulting in a Z2

left-right (LR) symmetry [17, 19].

The two massless psu(1|1)4
c.e. modules have a fermionic

highest weight, and up to a change of basis they can
equivalently be given by %L⊗ %̃L or %R⊗ %̃R [37], provided
that all representation parameters satisfy ap āp = bp b̄p,
i.e. that M vanishes. This is not only a semiclassical
input, but a consistency condition: su(2)◦ invariance re-
quires M to take the same value on both modules, while
crossing invariance requires M to take opposite values.

|χ1〉

|T 11〉 |T 21〉

|χ̃1〉

Q 1
L

QL1

QL2

−Q 2
L

J a
• J α

◦

|χ2〉

|T 12〉 |T 22〉

|χ̃2〉

Q 1
L

QL1

QL2

−Q 2
L

J a
•

FIG. 2. The two massless psu(1|1)4c.e. multiplets, in the repre-
sentation (%L ⊗ %̃L)⊕2. Overall we have four bosons T aα and
four fermions χα, χ̃α, where a and α are fundamental indices
of su(2)• and su(2)◦. Again we show only some supercharges.
Note that su(2)◦ relates the two psu(1|1)4c.e. modules.

The explicit form (6) of C,C and the shortening con-
dition (7) yield the dispersion relation

Ep =

√
m2 + 4h2 sin2 p

2
. (11)

In particular, for massless excitations the disper-
sion Ep = 2h | sin(p/2)| is non-analytic. This can be
resolved by treating worldsheet left- and right-movers
separately, as typical for massless two-dimensional ex-
citations. One may worry that masslessness is spoiled
by quantum corrections, as in other integrable models,
e.g. [38]. This is impossible unless some symmetry is
broken, since a dynamical mass would correct the eigen-
value of M.

We can construct the two-particle representations, on
which the S matrix acts, out of pairs of one-particle
ones. This introduces a non-local momentum dependence
through the phase ζ [26, 27]. In a Hopf-algebra language,
this amounts to defining a deformed coproduct [19, 27].

ALL-LOOP S MATRIX

The two-body S matrix S(p, q) must be invariant un-
der A. Furthermore, it must satisfy braiding and physi-
cal unitarity, crossing symmetry, and the aforementioned
Yang-Baxter equation [1, 3]. Here these conditions are
restrictive enough to fix S up to few scalar factors de-
noted by σ, which must obey non-trivial constraints.

Scattering processes involving massless particles may
appear ill-defined. In relativistic theories indeed mass-
less wave-packets travel at the speed of light, and in
1+1 dimension näıvely cannot scatter if they move in the
same direction [23]. Here, instead, the non-relativistic
dispersion (11) at zero mass yields the group veloc-
ity ∂Ep/∂p = ±2h cos(p/2). Therefore, massless wave-
packets with different momenta generically scatter.

The two-body S matrix naturally decomposes into the
massive (••), mixed (•◦, ◦•) and massless (◦◦) sectors,
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depending on the masses of the excitations scattering:

S =

(
S•• S◦•

S•◦ S◦◦

)
. (12)

In each sector it further breaks into several blocks, each
scattering psu(1|1)4

c.e. irreducible representations. Some
of the scalar factors multiplying each block are then re-
lated by LR or su(2)◦ symmetry. Exploiting the bifunda-
mental nature of the representations, we write the blocks
as graded tensor products of su(1|1)2

c.e.-invariant S matri-
ces. These were computed in Ref. [17] for the representa-
tions %L, %R at any value of the mass. We denote them by
SLL, SRR,SRL,SLR. The remaining S matrices involving
%L̃ are obtained from these by a similarity transformation
exchanging the boson and the fermion, yielding e.g. SL̃L.

Massive sector. We have four blocks

S•• =

(
σ•• SLL⊗̂SLL σ̃•• SRL⊗̂SRL

σ̃•• SLR⊗̂SLR σ•• SRR⊗̂SRR

)
, (13)

where ⊗̂ denotes the graded tensor product. On the di-
agonal we have left-left and right-right scattering. Owing
to LR symmetry the corresponding S matrices coincide.
On the anti-diagonal we have opposite-flavour S matri-
ces, also related by LR symmetry. There are then just
two independent scalar factors in the massive sector: σ••

and σ̃••. This agrees with Ref. [19], where the massive
sector was studied in a spin-chain framework [39].

Mixed sector. This involves massive-massless and
massless-massive scattering. In the former case we find

S•◦ = σ•◦
[(

SLL⊗̂SLL̃

)
⊕
(
SRL⊗̂SRL̃

)]⊕2

. (14)

The direct sum inside the square brackets corresponds
to scattering with either of two psu(1|1)4

c.e. massive
modules—left or right. These two S matrices are then
identified after imposing LR symmetry, which is possible
because the second excitation is massless. Since scat-
tering can occur with two different psu(1|1)4

c.e. massless
modules we have two copies of the expression inside the
square brackets. These must be equal by su(2)◦ symme-
try. Owing to these symmetries we are left with a single
undetermined scalar factor σ•◦. Similar considerations
apply to massless-massive scattering, yielding

S◦• = σ◦•
[(

SLL⊗̂SL̃L

)
⊕
(
SLR⊗̂SL̃R

)]⊕2

, (15)

where we have another scalar factor σ◦•.
Massless sector. Here the S matrix factorises as

S◦◦ = σ◦◦ Ssu(2) ⊗
(
SLL⊗̂SL̃L̃

)
, (16)

where the factors in brackets are fixed by the psu(1|1)4
c.e.

invariance. We have a single scalar factor σ◦◦ and an
su(2)◦-invariant S matrix

Ssu(2)(p, q) =
1

1 + i(wp − wq)
(Π + i(wp − wq)14) , (17)

with Π the permutation operator and wp a real function
of the momentum p. This is the Heisenberg-model S ma-
trix, where wp plays the role of a generalised rapidity.

Unitarity. The S matrix satisfies braiding and phys-
ical unitarity, which result in constraints on the scalar
factors. These are solved by taking σ••, σ̃•• and σ◦◦ to
be exponentials of anti-symmetric phases in a suitable
normalisation, and by simply relating σ•◦ to σ◦•.

Crossing symmetry. The crossing transformation
maps a representation to its conjugate, flipping the
sign of all central charges including momentum and en-
ergy. This requires analytic continuation to an un-
physical channel [1, 3, 40]. It is defined through the
charge conjugation matrix C , which decomposes on the
representations, C = C • ⊕ C ◦. The massive-sector
block C • was given in Ref. [19], and yields C ◦ by a
similarity transformation and by requiring compatibil-
ity with su(2)◦ [30]. Such transformation is momentum-
dependent, so that C ◦p depends discontinuously on the
worldsheet chirality through sign (sin(p/2))—a signature
of the massless modes. Crossing invariance of S requires

(1⊗ C−1
q ) · St2(p, q̄) · (1⊗ Cq ) · S(p, q) = 1⊗ 1, (18)

with t2 meaning transposition in the second space and q̄
analytic continuation. This matrix equation results in
five equations for the scalar factors. Two of them con-
strain σ•• and σ̃••, and were solved in Ref. [41]. Each of
the other three equations involves one of the remaining
scalar factors σ•◦, σ◦• and σ◦◦. Crossing also constrains
the function wp, setting wp̄ = wp − i.

OUTLOOK

In this letter we have determined, up to a number of
phases, the complete all-loop S matrix for fundamental
excitations of pure-RR AdS3 × S3 × T4 strings. An im-
mediate next step is solving the crossing equations for
σ◦•, σ•◦ and σ◦◦ as done for σ•• and σ̃•• in Ref. [41].
This will likely present us with new analytic structures
and may require further insights from perturbative cal-
culations. It would be also interesting to write down the
Bethe-Yang equations for the asymptotic spectrum and
to see how the N = (4, 4) symmetry is realised there.
Finding the bound-state spectrum and S matrix would
then lead to the string hypothesis and mirror thermo-
dynamical Bethe ansatz for the exact spectrum. The
success of the integrability approach on the AdS3 side
strongly suggests that an analogous description should
exists for the CFT2. It would be important to uncover
it, perhaps building on Ref. [42].

It should be possible to extend this approach to
consider orbifolds and integrable deformations of this
background—as it was successfully done for AdS5 ×
S5. This might lead to new insights into AdS3 black
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holes [5, 6]. The methods presented in this letter can also
be applied to AdS3×S3×S3×S1 superstrings [8, 17, 18],
whose dual CFT remains elusive [43, 44]. There, higher
spin theories were recently considered [45], and integra-
bility may help investigating their relation with strings.

Another interesting direction is to consider back-
grounds with mixed RR and NSNS fluxes [15, 20, 21].
This may offer new insights on the relation between the
infinitely-many conserved charges from integrability with
the Virasoro ones appearing in the worldsheet CFT—
perhaps along the lines of what happens in relativistic
models [24]—as well as on how S duality is implemented.

We are confident that there will be significant devel-
opment in these directions in the near future.
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