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Abstract

We derive the non-perturbative worldsheet S matrix for fundamental excitations of
Type IIB superstring theory on AdS3×S3×T4 with Ramond-Ramond flux. To this
end, we study the off-shell symmetry algebra of the theory and its representations.
We use these to determine the S matrix up to scalar factors and we derive the
crossing equations that these scalar factors satisfy. Our treatment automatically
includes fundamental massless excitations, removing a long-standing obstacle in
using integrability to study the AdS3/CFT2 correspondence. The present paper
contains a detailed derivation of results first announced in arXiv:1403.4543.
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1 Introduction

The AdS/CFT correspondence is a remarkable equivalence between quantum gauge and
gravity theories. In its simplest form it posits a strong/weak duality between superstring
theories on AdSd+1 ×M9−d, where M9−d is a (9−d)-dimensional compact space, and
d-dimensional Conformal Field Theories (CFTs) on the boundary of AdSd+1 [1–3]. This
conjecture has inspired important advances in our understanding of quantum gravity
and Quantum Field Theory (QFT). An intriguing feature of the AdS/CFT duality is the
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emergence of integrable structures in the ’t Hooft, or planar, limit [4] of certain classes
of dual theories. The prototypical example is the case of type IIB strings on AdS5 × S5

and the dual N = 4 Supersymmetric Yang-Mills (SYM) theory, see [5, 6] for a review.
Following the discovery of the ABJM Chern-Simons theory [7], integrability was found
also to underpin the duality between this CFT and Type IIA string theory on AdS4×CP3

in the planar limit.1 The key role of integrability in providing a quantitative handle on
both the AdS5/CFT4 and AdS4/CFT3 dualities is rather striking. It hints very strongly
that, for certain classes of dual pairs, integrability provides the right set of tools with
which to investigate the AdS/CFT correspondence. As a result, identifying other dual
pairs where integrable methods may be applicable is an important challenge in developing
a detailed understanding of the AdS/CFT correspondence.

Another set of classes where integrability emerges are strings on AdS3 ×M7 back-
grounds with 16 real supersymmetries. The AdS3/CFT2 correspondence is a partic-
ularly important example of gauge/string duality. Historically, gravity on AdS3 gave
rise to an early example of holography [9]. The gravity theory was found to have an
(infinite-dimensional) conformal symmetry on the boundary whose central charge could
be calculated. Further, black hole solutions could be constructed in the gravitational
theory [10, 11] and their entropy was understood using holography [12]. Moreover, the
D1-D5 brane system, whose near-horizon limit gives rise to the AdS3/CFT2 correspon-
dence, has played a central role in the string theory derivation of the black-hole entropy
formula [13]. At low energy, such a brane construction gives rise to a 1 + 1 dimensional
supersymmetric Yang-Mills theory with matter multiples in the fundamental and adjoint
representations, adding new features with respect to N = 4 SYM and ABJM theories.

In the context of string theory, it is natural to first consider AdS3 backgrounds with
maximal supersymmetry. Such backgrounds have 16 real supersymmetries and come in
two distinct types. String theory on AdS3 × S3 × T4 gives rise to the small N = (4, 4)
superconformal algebra [1, 14],2 while string theory on AdS3 × S3 × S3 × S1 leads to
the large N = (4, 4) superconformal algebra [15]. Both types of backgrounds can be
supported by a mixture of Ramond-Ramond (R-R) and Neveu-Schwarz-Neveu-Schwarz
(NS-NS) fluxes. In the case of pure NS-NS flux, much progress was made by studying the
worldsheet theory with two-dimensional CFT techniques [16–22]. These results can be
mapped onto the D1-D5 system via S duality 3, which however acts in a non-perturbative
and non-planar way. It is then natural to ask if backgrounds involving R-R fluxes can be
studied more directly [23]. In particular, developing a quantitative understanding of the
pure R-R string theory is essential in understanding generic unprotected properties of
the D1-D5 system, and a starting point to tackling more general AdS3/CFT2 dualities.

With this motivation in mind, it was realised that the equations of motion of type
II string theory on the pure R-R background are integrable [24]4 and that this extends

1See [8] for a review and a more complete list of references.
2String theory on AdS3 × S3 × K3 also leads to a small N = (4, 4) superconformal algebra. From

the point of view adopted in this paper this background can be viewed as a blow-up of an orbifold of
AdS3 × S3 × T4.

3In fact, S duality acts on mixed-flux background by swapping R-R with NS-NS fluxes.
4Integrable structures were also recently found from studying the Gubser-Klebanov-Polyakov “spin-

ning string” [25].
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to mixed fluxes as well [26]. This prompted an extensive investigation of the quantum
integrability properties of these backgrounds [24, 25, 27–48], mainly by means of the S-
matrix approach that proved successful in the case of AdS5/CFT4, see also [49] for a
review.

A new feature of the AdS3 backgrounds is the presence of massless fundamental
excitations on the worldsheet. Because massless modes are notoriously difficult to in-
corporate into integrability constructions [50–52], this presented an early challenge to
fully understanding the AdS3/CFT2 correspondence using integrable methods. On the
other hand, massive S-matrices and Bethe ansatz equations of AdS3 × S3 × T4 [34, 35]
and AdS3×S3×S3×S1 [32,33] are relatively well-understood in the pure R-R case;5 the gi-
ant magnon associated to the massive modes was also understood some time ago [55,56].
In [31] massless modes were incorporated in the weakly-coupled spin-chain picture. On
the string side, only very recently it has been shown how massless modes can be in-
cluded in the classical integrability machinery [57]. Both of these results demonstrate
that the real intricacies involved in understanding massless modes occur away from the
weakly-coupled string and spin-chain regimes.

The aim of this paper is to present in detail how massless excitations can be included
in the non-perturbative integrability picture, and how the non-perturbative asymptotic
worldsheet S matrix for all fundamental particles can be found in the case of pure R-R
AdS3 × S3 × T4 background. These results were first presented in [58].

Our analysis starts from the determination of the off-shell symmetry algebra A of the
theory. Before light-cone gauge fixing, the symmetries of AdS3 × S3 × T4 are given by
the AdS3×S3 superisometries6 psu(1, 1|2)L⊕psu(1, 1|2)R together with the T4 isometries.
Fixing light-cone gauge breaks some of these symmetries, and in particular halves the
supersymmetries. We are interested in the symmetry generators that are linearly realised
after gauge fixing, as the S matrix will have to commute with them. Such generators
will sit in A, together with some additional central charges which are expected from the
case of AdS5× S5 [59–61]. We will determine the form of these and find, as it should be,
that they have a non-trivial action only on states that do not satisfy the level-matching
constraint (i.e. off shell). Once the off-shell algebra of the theory is determined we will
use it to constrain the non-perturbative 2 → 2 S matrix, which will then satisfy the
Yang-Baxter equation.

Unlike what happened in AdS5/CFT4 [59–61], we cannot use the coset action [24,62–
64] for our calculations. The coset action requires the use of a particular kappa gauge [24],
which does not allow for a straightforward quantization of the massless modes; see [28] for
a discussion of the coset kappa gauge. We will therefore work with the Green-Schwarz
action [65], in light-cone gauge. Furthermore, we take the decompactification limit,
whereby the world-sheet cylinder becomes a plane and the asymptotic states can be
defined. It is interesting to note that our results give an example of integrability where
the fermionic degrees of freedom do not enter the dynamics through a coset action; similar

5The S-matrix for mixed R-R and NS-NS fluxes has also been studied [42,43], but remains somewhat
more puzzling, see [44]. Other integrable aspects of the mixed flux backgrounds have been investigated
in [53,54].

6The two copies of psu(1, 1|2) carry labels “L” (left) and “R” (right) corresponding to chiralities in
the dual CFT2.
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observations have recently been made in integrable AdS backgrounds which preserve even
less supersymmetry [66].

In this way, we are able to establish the off-shell symmetry algebra, including the non-
linear momentum-dependent central extension reminiscent of [60]. As expected, the light-
cone-gauge worldsheet theory is non-relativistic. Massive and massless excitations will
then have periodic dispersion relations, with the energy of the latter being linear in the
momentum for small values of it. Using these results, the two-body S matrix will follow
immediately by symmetry arguments, and is fixed up to some dressing factors, for which
crossing equations can be written down. As expected, the massive-sector S matrix of [34],
including the crossing-invariant dressing factors of [35] can be consistently embedded in
the full S matrix of the present paper.

This paper is structured as follows. In section 2 we consider the type IIB superstring
action for AdS3 × S3 × T4 in light-cone gauge, and derive its conserved supercurrents.
This is done at leading order in the fermions and at subleading order in the bosons.
In section 3 we study the symmetry algebra A and the representations that emerge
from the supercurrent analysis. We find three short irreducible representations of the
centrally extended psu(1|1)4 ⊕ so(4) algebra7: two massive representations of dimension
four, and one massless one of dimension eight. In section 4 we deform the representations
found perturbatively in order to reproduce the correct non-linear central extension and
shortening condition. We also comment on the possibility of quantum corrections to the
massless dispersion relation, arguing that they would break part of A. Using those exact
representations, in section 5 we construct an invariant S matrix for all of the superstring’s
excitations, including the massless ones, up to some dressing factors which we constrain
by crossing symmetry. We conclude in section 6. We relegate the more technical aspects
of our results to the appendices.

2 The off-shell symmetry algebra of superstrings on

AdS3 × S3 × T4

In this section we compute the algebra A of off-shell symmetries for classical Type IIB
superstring theory on AdS3×S3×T4. At first sight it may appear that the natural setting
for this would be the coset action [24, 62–64], since one can use the algebraic structure
of the coset to facilitate the computations. The coset action is obtained from a Green-
Schwarz action [65] by fully fixing the kappa symmetry to the so-called coset gauge.
While it is useful in the study of the classical integrability of this theory, the coset gauge
leads to a kinetic term for the massless fermions which contains no quadratic piece. As
a result, computing A using Poisson brackets is not straightforward in the coset gauge.
Instead, we will perform the calculations using the Green-Schwarz action in the BMN
light-cone kappa gauge. Explicit expressions up to quartic order in fermions have been
recently found [67], but we will only work up to quadratic order in fermions and so will

7The symbol ⊕ here and later indicates the direct sum of vector spaces, and not necessarily of
(super)algebras. To avoid introducing non-standard notation we will always explicitly detail the non-
vanishing (anti-)commutation relations of the (super)algebras considered.
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use the component action [68].
This section is divided into four parts. In section 2.1 we find the Killing spinors of

the background in the metric (2.1). In section 2.2 we write down explicitly the action for
Type IIB superstrings on AdS3×S3×T4, both before and after imposing the kappa gauge
along the BMN light-cone coordinates. In section 2.3 we write down the super-currents
for the A charges and in section 2.4 we compute the off-shell algebra A of the classical
theory. In appendix A we establish our conventions.

2.1 Killing spinors for type IIB supergravity on AdS3×S3×T4

In this sub-section we construct the Killing spinors for type IIB supergravity on AdS3×
S3 × T4. Expressions for these are well-known in the literature [69, 70]. We adapt these
well-known calculations to the metric

ds2 = ds2
AdS3

+ ds2
S3 + dXidXi , (2.1)

where

ds2
S3 = +

(1− y23+y24
4

1 +
y23+y24

4

)2

dφ2 +
( 1

1 +
y23+y24

4

)2

(dy2
3 + dy2

4) (2.2)

and

ds2
AdS3 = −

(1 +
z21+z22

4

1− z21+z22
4

)2

dt2 +
( 1

1− z21+z22
4

)2

(dz2
1 + dz2

2) , (2.3)

since this metric is well suited for expansion around the BMN ground state.
The ten-dimensional Killing spinor equations of Type IIB supergravity on AdS3 ×

S3 × T4 with R-R flux are

Dmε
1 +

1

24
/F /Emε

1 = 0, Dmε
2 − 1

24
/F /Emε

2 = 0, (2.4)

where the covariant derivative is given by

Dmε
I = (∂m +

1

4
/ωm)εI , (2.5)

and the R-R field strength by

/F = ΓABCFABC = 6(Γ012 + Γ345). (2.6)

As is shown in more detail in appendix C, these equations are solved by

ε1 = M̂ε1
0, , ε2 = M̌ε2

0, (2.7)

where εI0 are constant 9+1 dimensional Majorana-Weyl spinors8, which further satisfy

1

2
(1 + Γ012345)εI =

1

2
(1 + Γ012345)εI0 = 0 . (2.8)

8Our spinor and gamma matrix conventions are given in appendix B.
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The matrices M̂ and M̌ depend on the AdS3 × S3 coordinates and for later convenience
we seperate out the dependence on t and φ from the other coordinates by writing

M̂ = M0Mt, M̌ = M−1
0 M−1

t , (2.9)

where

M0 =
1√(

1− z21+z22
4

)(
1 +

y23+y24
4

)(1− 1

2
ziΓ

iΓ012
)(

1− 1

2
yiΓ

iΓ345
)
,

M−1
0 =

1√(
1− z21+z22

4

)(
1 +

y23+y24
4

)(1 +
1

2
ziΓ

iΓ012
)(

1 +
1

2
yiΓ

iΓ345
)
,

(2.10)

and
Mt = e−

1
2

(tΓ12+φΓ34), M−1
t = e+ 1

2
(tΓ12+φΓ34). (2.11)

2.2 Type IIB superstring action on AdS3 × S3 × T4

In this sub-section we write down the action for Type IIB superstring action on AdS3×
S3 ×T4. In section 2.2.1 we begin by introducing a set of bosonic vielbeins, particularly
adapted to the analysis in the remainder of this section, and expressing the bosonic
equations of motion in terms of these. In section 2.2.2 we write down the action to
quadratic order in fermions. By picking suitably defined fermionic fields, our action
realises the 16 unbroken supersymmetries of the background via linear shifts of the
massive fermionic fields. In section 2.2.3 we write down the BMN light-cone kappa gauge-
fixed action to quadratic order in fermions. Just as was done in [71], we find it useful to
redefine the fermions further so that they are neutral under the u(1) charges associated
with t and φ translations. The action is then re-expressed in first-order formalism and
fully gauge-fixed in the uniform light-cone gauge in section 2.2.4.

2.2.1 A suitable vielbein and bosonic equations of motion

The Lagrangian for the bosonic sigma model is given by

LB = −1

2
γαβEα

AEβ
BηAB, (2.12)

where Eα
A = Em

A∂αX
m denotes the pullback of the vielbein. LB is invariant under

SO(1, 9) rotations in tangent space. As a result, all vielbeins that describe the same
metric will lead to the same bosonic equations of motion, up to field redefinitions. Nev-
ertheless, picking a suitable vielbein may reduce substantially the computational com-
plexity of the analysis. Since we will be working with the metric (2.1), one seemingly
natural choice is to pick diagonal vielbeins Em

A given in equations (C.1) and (C.13). It
turns out that, for the purpose of understanding the realisation of supersymmetry in the
Green-Schwarz action, it is instead more conventient to use vielbeins K̂m

A and Ǩm
A,

which are related to the Em
A by orthogonal transformations

K̂m
A = M̂A

BEm
B, Ǩm

A = M̂A
BEm

B . (2.13)
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The matrices M̂ and M̌ are defined in equations (C.25), (C.16) and (C.5). They follow
from considering bilinears formed out of the Killing spinors εI , (cf. equation (C.24)).
As a result, as shown in equations (C.11) and (C.19), K̂m

A and Ǩm
A satisfy the Killing

vector equation (C.10) and generate the so(2, 2)⊕ so(4) = sl(2)⊕ sl(2)⊕ su(2)⊕ su(2)
isometry algebra of AdS3 × S3.

The bosonic equations of motion that follow from LB are

0 = ηAB

[
∂α(γαβEm

AEn
B∂βX

n)− 1

2
γαβ∂m(En

AEk
B)∂αX

n∂βX
k
]

= γαβ
[
−1

2

(
ωkABEn

A + ωnABEk
A
)
Em

B + ηABEm
A∂nEk

B
]
∂αX

n∂βX
k

+ ηABEm
AEn

B∂α(γαβ∂βX
n) ,

(2.14)

where in the second line we have used the fact that Em
A is covariantly constant. For

a generic vielbein the first term above is nonvanishing. However, the vielbeins K̂m
A

and Ǩm
A satisfy the Killing vector equation which makes it vanish, see (C.9). Hence

the equations of motion written in terms of the worldsheet pullbacks K̂α
A and Ǩα

A are
simply

∂α(γαβK̂β
A) = 0, ∂α(γαβǨβ

A) = 0 . (2.15)

This form of the equations of motion is not only particularly simple, but will prove to
be very useful in analysing the supersymmetries of string theory on this background.

2.2.2 Green-Schwarz action before kappa gauge fixing

In this sub-section we write down the Green-Schwarz action for a superstring propagating
in AdS3×S3×T4 up to quadratic order in fermions and construct supercharges preserving
the non-gauge-fixed action. The Green-Schwarz action for Type IIB superstrings in a
generic supergravity background was constructed in terms of superfields in [65], and
explicit expressions in terms of fields are known to quadratic [68] and quartic order [67]
in the fermions. We will perform a field redefinition of the conventional fermions [68] so
that the 16 real supersymmetries of this background are realised as linear shifts of the
massive fermions.9

The Green-Schwarz Lagrangian can be written as

L = LB + Lkin + LWZ. (2.16)

The bosonic Lagrangian LB was discussed in the previous sub-section. We have split the
fermionic Lagrangian into two terms: a term dependent on the worldsheet metric, Lkin,
and the Wess-Zumino term LWZ. In the background we are considering, the former term
is [68]

Lkin = −iγαβ θ̄I /Eα

(
δIJDβ +

1

24
σIJ3

/F /Eβ

)
θJ , (2.17)

9In a background described by a super-coset conventional fermions [68] correspond to picking the
super-coset element g = gbosgferm—see for example appendix B in [24]. The field redefinition we perform
would amount to picking a super-coset element of the form g = gfermgbos. Such changes of variable were
discussed in the context of the maximally supersymmetric type IIB plane-wave background in [72].
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where θ̄I = θ†IΓ
0 and we have redefined the fermions compared to Cvetič, Lü, Pope and

Stelle [68]

θ1 CLPS =
θ1 + θ2√

2
, θ2 CLPS =

θ1 − θ2√
2

, (2.18)

so that they enter diagonally in Lkin.
Next we define new fermions ϑ±I which are related to θI by

θ1 =
1

2
(1 + Γ012345)M̂ϑ+

1 +
1

2
(1− Γ012345)M̂ϑ−1 ,

θ2 =
1

2
(1 + Γ012345)M̌ϑ+

2 +
1

2
(1− Γ012345)M̌ϑ−2 ,

(2.19)

where the matrices M̂ and M̌ were given in (2.9). Inserting this into the Lagrangian and
using the relations in section C we find

Lkin = −iγαβ
[
ϑ̄−I /̂Kα∂βϑ

−
I + 2ϑ̄+

I
/̇Eα∂βϑ

−
I + ϑ̄+

I
/̂Kα∂βϑ

+
I

− 1

2
σ3
IJ ϑ̄

+
I Γ012ϑ+

J (K̂a
αK̂

b
βηab + Ė ȧ

αĖ
ḃ
βηȧḃ)

]
.

(2.20)

The definitions of the vielbeins appearing above are given in equations (2.13) and (C.26).
The Lagrangian LB + Lkin is invariant under the supersymmetry transformations

δϑ−I = εI , δϑ+
I = 0 , δK̂α

A = −iε̄IΓA∂αϑ−I , δĖα = 0 , (2.21)

where in the above equation the index A = 0, . . . , 5. By imposing the Majorana condition
on the fermions this gives us the expected 16 real supersymmetries of the background.

We now consider the Wess-Zumino term10

LWZ = +iεαβ
(
θ̄2 /Eα

(
Dβ +

1

24
/F /Eβ

)
θ1 + θ̄1 /Eα

(
Dβ −

1

24
/F /Eβ

)
θ2

)
(2.22)

After introducing the rotated fermions we find

LWZ = +iεαβ
(
ϑ̄−2 M̌

−1M̂ /̂Kα∂βϑ
−
1 + 2ϑ̄+

2 M̌
−1M̂ /̇Eα∂βϑ

−
1 + ϑ̄+

2 M̌
−1M̂ /̂Kα∂βϑ

+
1

+ ϑ̄−1 M̂
−1M̌ /̌Kα∂βϑ

−
2 + 2ϑ̄+

1 M̂
−1M̌ /̇Eα∂βϑ

−
2 + ϑ̄+

1 M̂
−1M̌ /̌Kα∂βϑ

+
2

− 1

2
ϑ̄+

2 M̌
−1M̂( /̂Kα

/̂Kβ + /̇Eα
/̇Eβ)Γ012ϑ+

1

+
1

2
ϑ̄+

1 M̂
−1M̌( /̌Kα

/̌Kβ + /̇Eα
/̇Eβ)Γ012ϑ+

2

)
.

(2.23)

This term is also invariant to quadratic order in the fermions under the supersymmetry
transformations (2.21). To see this we can use the identity

εαβ∂α
(
M̌−1M̂ /̂Kβ

)
(1− Γ012345) = 0 (2.24)

10We set ετσ = +1.
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to show that
εαβϑ̄−2 M̌

−1M̂ /̂Kα∂βϑ
−
1 = εαβϑ̄−1 M̂

−1M̌ /̌Kα∂βϑ
−
2 , (2.25)

up to a total derivative. In appendix D we prove (2.24). Together with an obvious
extension of the above argument to exressions involving Ǩ instead of K̂, the Lagrangian
LWZ can therefore be written in a form where ϑ−I only appears with a partial derivative
acting on it, making the symmetry under shifts of that fermion manifest.

2.2.3 Neutral fermions and the kappa gauge-fixed action

In this sub-section we impose the BMN light-cone kappa gauge on the Lagrangian ob-
tained in the previous sub-section. In addition, we will further redefine the fermions.
Recall that the tangent space rotations (2.19) introduced in the previous section were
useful for obtaining the supersymmetry transformations before fixing kappa gauge. How-
ever, K̂m

A and Ǩm
A, and therefore also the fermions ηK and χK , transform nontrivially

under shifts of the coordinates t and φ. When imposing uniform light-cone gauge it is
useful to work with fermions that are uncharged under these shifts [71], which motivates
the further re-definition of the fermions.11

To perform this field redefinition, recall that the rotation matrices M̂ and M̌ can be
written in terms of the matrices M0 and Mt (see equation (2.9)), where M0 is independent
of t and φ while Mt only depends on those two coordinates. In order to have fermions
that are uncharged under shifts of t and φ one needs to multiply the fermions ϑ±1 by
M−1

t and the fermions ϑ±2 with Mt. In other words, we define

θ1 =
1

2
(1 + Γ012345)M0χ1 +

1

2
(1− Γ012345)M0η1

θ2 =
1

2
(1 + Γ012345)M−1

0 χ2 +
1

2
(1− Γ012345)M−1

0 η2.
(2.26)

We also need to perform the corresponding rotation on the vielbeins defining new viel-
beins Ê and Ě,

/̂K = M−1
t
/̂EMt, /̌K = Mt

/̌EM−1
t . (2.27)

The components of the inverse vielbeins can easily be read off from equations (C.7)
and (C.18) by dropping the first t- and φ-dependent factor.

It is useful to introduce light-cone coordinates

E± =
1

2
(E5 ± E0), x± =

1

2
(φ± t). (2.28)

This leads to

E+
x+ = E−x− =

1

2

(
E5
φ + E0

t

)
, E−x+ = E+

x− =
1

2

(
E5
φ − E0

t

)
. (2.29)

The light-cone components of the tangent space metric are given by

η+− = η−+ = +
1

2
, η+− = η−+ = +2. (2.30)

11In a super-coset background this redefinition amounts to picking a coset representative of the form
g = gt,φgfermgbos′ , where gbos′ involves the (eight) bosonic coordinates transverse to t and φ.
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The bosonic Lagrangian then takes the form

LB = −1

2
γαβ
(
4E+

αE
−
β + Ei

αE
i
β + Ei

αE
i
β

)
. (2.31)

We will work in the BMN light-cone kappa gauge

Γ+ηI = 0, Γ+χI = 0, Γ± =
1

2

(
Γ5 ± Γ0

)
. (2.32)

The kappa gauge-fixed Lagrangian then takes the form

Lkin = −2iγαβ
(
η̄1Ê

+
α Γ−∂βη1 − η̄1Γ012η1Ê

+
α ∂βx

+ + η̄2Ě
+
α Γ−∂βη2 + η̄2Γ012η2Ě

+
α ∂βx

+

+χ̄1Ê
+
α Γ−∂βχ1 −

1

4
χ̄1Γ012χ1

( 5∑
A,B=0

ÊA
α Ê

B
β ηAB + Ėi

αĖ
i
β − 4Ê+

α ∂βx
−)

+χ̄2Ě
+
α Γ−∂βχ2 +

1

4
χ̄2Γ012χ2

( 5∑
A,B=0

ĚA
α Ě

B
β ηAB + Ėi

αĖ
i
β − 4Ě+

α ∂βx
−)). (2.33)

LWZ = +iεαβ
(
η̄2
/̌EαM

2
0∂βη1 + η̄2

/̌EαM
2
0 Γ12η1∂βx

+

+η̄1
/̂EαM

−2
0 ∂βη2 − η̄1

/̂EαM
−2
0 Γ12η2∂βx

+

+χ̄2
/̌EαM

2
0∂βχ1 − χ̄2

/̌EαM
2
0 Γ12χ1∂βx

− − 1

2
χ̄2( /̌Eα

/̌Eβ + /̇Eα
/̇Eβ)M2

0 Γ012χ1

+χ̄1
/̂EαM

−2
0 ∂βχ2 + χ̄1

/̂EαM
−2
0 Γ12χ2∂βx

− +
1

2
χ̄1( /̂Eα

/̂Eβ + /̇Eα
/̇Eβ)M−2

0 Γ012χ2

+2χ̄2
/̇EαM

2
0∂βη1 + 2χ̄2

/̇EαM
2
0 Γ12η1∂βx

+

+2χ̄1
/̇EαM

−2
0 ∂βη2 − 2χ̄1

/̇EαM
−2
0 Γ12η2∂βx

+
)
. (2.34)

2.2.4 First-order action and uniform light-cone gauge

To fix the bosonic gauge we will impose uniform light-cone gauge [73]. The simplest way
to introduce this gauge is to rewrite the action in a first-order formalism by introducing
coordinates xM

pM =
δS

δẋM
. (2.35)

From the definition of the light-cone coordinates x± we then have

p+ = pφ + pt, p− = pφ − pt. (2.36)

The isometries generated by shifts in t and φ lead to the conservation of the energy E
and angular momentum J

E = −
∫ +r

−r
dσ pt, J = +

∫ +r

−r
dσ pφ. (2.37)
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For the light-cone momenta we then find

P+ =

∫ +r

−r
dσ p+ = J − E, P− =

∫ +r

−r
dσ p− = J + E. (2.38)

The uniform light-cone gauge fixing is now obtained by setting12

x+ = τ, p− = 2. (2.39)

The above gauge condition sets p− to 2. To make the origin of various expressions
more clear we generally still write out factors of p−, unless this clutters our formulae
excessively. In any case, the correct factors of p− can be restored from dimensional
considerations.

To see how this gauge works let us consider the bosonic first-order action, which takes
the form

SB =

∫ +r

−r
dσ dτ

(
p+ẋ

+ + p−ẋ
− + piẋ

i + piẋ
i +

γ01

γ00
C1 +

1

2γ00
C2

)
, (2.40)

where
C1 = p+

′
x+ + p−

′
x− + pi

′
xi + pi

′
xi (2.41)

and

C2 = G++p+p+ + 2G+−p+p− +G−−p−p− +Gijpipj +Gijpipj

+G++
′
x+ ′x+ + 2G+−

′
x+ ′x− +G−−

′
x−

′
x− +Gij

′
xi
′
xj +Gij

′
xi
′
xj .

(2.42)

The equations of motion for the worldsheet metric leads to the Virasoro constraints
C1 = 0 and C2 = 0. Since

′
x+ = 0 we can solve the first constraint by

′
x− = − 1

p−

(
pi
′
xi + pi

′
xi
)
. (2.43)

Inserting this into the expression for C2 we can solve the second constraint for p+. The
gauge-fixed action can then be written as13

SB =

∫ +r

−r
dσ
(
piẋ

i + piẋ
i −HB

)
, (2.44)

with
HB = −p+. (2.45)

For the transverse fields we impose periodic boundary conditions14 xi(+r) = xi(−r) and
xi(+r) = xi(−r). Since we further assume there is no winding along the angle φ, we find
that a physical state should satisfy the level matching condition

∆x− = x−(+r)− x−(−r) =

∫ +r

−r
dσ

′
x− = 0. (2.46)

12Here we only consider string states with zero winding number. For more general states the gauge
fixing condition becomes x+ = τ + 1

2mσ, where m is the integer winding number along the angle φ.
13We have omitted the total derivative term p−ẋ

−.
14Here we also ignore possible winding modes along the T4 directions. See below for a further discus-

sion of these modes.
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The gauge-fixed action is invariant under worldsheet translations, which leads to the
conservation of the worldsheet momentum

pws = −
∫ +r

−r
dσ
(
pi
′
xi + pi

′
xi
)

= p−∆x−. (2.47)

From the level matching constraint we then find that a physical string in the zero winding
sector has to have vanishing total worldsheet momentum

pws = 0. (2.48)

In order to study the worldsheet S matrix we need to be able to create well-defined
asymptotic states to scatter. To do this we will from now on work in the decompactifi-
cation limit by sending the parameter r, which gives the circumference of the worldsheet
cylinder, to infinity. Note that after gauge fixing, the light-cone momentum P− is given
by

P− =

∫ +r

−r
dσ p− = 4r. (2.49)

Hence, in the large-r limit the light-cone momentum becomes infinite.
By imposing periodic boundary conditions on the T4 coordinates xi we are ignoring

winding modes on the torus. This is justified since we study local properties of the field
theory on the worldsheet and work in the decompactification limit. If we begin with a
string state in the zero winding sector and act on the state with a symmetry generator
that acts locally, there is no way to obtain a state with non-zero winding. Similarly, the
scattering of two excitations without any winding will not result in non-trivial winding
of the out-going states. In the zero-winding sector the u(1)4 shift isometries of the T4

are supplemented by an so(4) symmetry, which we will discuss in the next subsection
and will play an important role in A when we will use it to constrain the S matrix.

It is furthermore possible to check that, as long as we are in the decompactified theory
with P− =∞, the light-cone Hamiltonian takes the same form in any sector with finite
winding on T4. This indicates that the S matrix that we will find by this treatment
should be valid in any winding sector, and should not depend on the moduli of T4. The
dependence of the spectrum on winding numbers and torus moduli should then manifest
itself only at the level of the Bethe-Yang equations, as it happens in the case of orbifolds,
see e.g. [74, 75] for a review.

2.2.5 Gauge-fixed action with so(4)1 ⊕ so(4)2 bispinor fermions

The fermions appearing in the action (2.33), (2.34) are 32-component 9+1-dimensional
spinors. However, these spinors satisfy a number of projections: the 9+1-dimensional
Weyl projection, the kappa gauge condition (2.32) as well as equation (2.26). Because
of these, writing the fermions as 32 component spinors is rather redundant. In this
sub-section we will write down the fully gauge-fixed action in terms of non-redundant
physical spinors.

As a result of the above projections, the physical spinors ηI and χI are in fact bispinors
of so(4)1⊕ so(4)2 ⊂ so(8), with so(8) corresponding to rotations transverse to light-cone
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directions. The algebras so(4)1 and so(4)2 correspond to rotations along the non-light-
cone AdS3 × S3 and T4, directions, respectively.15 While the latter algebra remains
unbroken by the background, so(4)1 is in fact broken to so(2)⊕ so(2), as can be already
seen in the plane-wave limit [76,77]. We will see this breaking in the Lagrangian we write
down in this subsection. Nevertheless, it is still convenient to express the fermionic fields
that enter the Lagrangian as bispinors of so(4)1 ⊕ so(4)2. We will use the indices a, ȧ
(respectively, a, ȧ) to denote the positive and negative chirality so(4)1 (so(4)2) spinors.
Further, we introduce gamma matrices, γ̂i with i = 1, 2, 3, 4 and τ̂ i, i = 6, 7, 8, 9 for
so(4)1 and so(4)2 . We write these matrices as16

(γ̂i)aȧbḃ =

(
0 (γi)aḃ

(γ̃i)ȧb 0

)
, (τ̂ i)aȧbḃ =

(
0 (τ i)aḃ

(τ̃ i)ȧb 0

)
, (2.50)

with the Clebsch-Gordan coefficients for the decomposition of two so(4) Weyl spinors of
opposite chirality given by

γ1 = +σ3, γ2 = −i1, γ3 = +σ2, γ4 = +σ1, γ̃i = +(γi)†,

τ 6 = +σ1, τ 7 = +σ2, τ 8 = +σ3, τ 9 = +i1, τ̃ i = −(τ i)† .
(2.51)

The notation introduced above is purposefully reminiscent of the light-cone gauge in flat
space [78] but our exact conventions are slightly different to, for example, those in [79].
The matrices γ̂i and τ̂ i satisfy the Clifford algebra relations

{γ̂i, γ̂j} = +2δij, (γ̂i)t = +tγ̂it−1,

{τ̂ i, τ̂ j} = −2δij, (τ̂ i)t = −sτ̂ is−1,
(2.52)

where t = s = σ3 ⊗ σ2. We also introduce

(γij)ab =
1

2
(γiγ̃j − γj γ̃i)ab, (τ ij)ab =

1

2
(τ iτ̃ j − τ j τ̃ i)ab,

(γ̃ij)ȧḃ =
1

2
(γ̃γj − γ̃jγi)ȧḃ, (τ̃ ij)ȧḃ =

1

2
(τ̃ iτ j − τ̃ jτ i)ȧḃ,

(2.53)

so that the Lorentz generators take the form

γ̂ij =

(
γij 0
0 γ̃ij

)
, τ̂ ij =

(
τ ij 0
0 τ̃ ij

)
. (2.54)

Some useful relations involving these gamma matrices are collected in appendix E.
In order to obtain compact expressions for the gauge-fixed action we find it necessary

to perform a change of basis on the gamma matrices presented in appendix B. These
matrices are written as tensor products of five 2× 2 matrices. Our change of basis takes
the form

m1 ⊗m2 ⊗m3 ⊗m4 ⊗m5 → n1 ⊗ n2 ⊗ n3 ⊗ n4 ⊗ n5 (2.55)

15In the next section we will write the T4 part of this algebra as so(4)2 = su(2)• ⊕ su(2)◦.
16The matrices γi introduced here should not be confused with the three dimensional gamma matrices

for AdS3 and S3 used to express the Killing spinors in section 2.1 and in appendix B to construct the
ten dimensional gamma matrices. Since the two types of matrices never appear in the same setting we
hope that the meaning of γ is clear from the context it appears in.
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with

n1 = m1 , n2 ⊗ n3 = P (m3 ⊗m4)P−1 , n4 ⊗ n5 = m2 ⊗m5, (2.56)

and

P =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 . (2.57)

With this change of basis, so(4)1 and so(4)2 act non-trivially only on n2⊗n3 and n4⊗n5,
respectively, while the 9+1-dimensional Weyl projection acts only on n1. The kappa
gauge-fixed spinors satisfy

Γ1234χI = +χI , Γ6789χI = +χI , Γ1234ηI = −ηI , Γ6789ηI = −ηI . (2.58)

Since the action of Γ1234 and Γ6789 reduces to γ̂1234 and τ̂ 6789 when acting on ηI and χI
we see that χI and ηI carry indices

(χI)
ab, (ηI)

ȧḃ. (2.59)

Having introduced this notation we can now re-write Lkin in equation (2.33) as17

Lkin = −2iγαβ
[
Ê+
α η̄1∂βη1 + Ě+

α η̄2∂βη2 + Ê+
α χ̄1∂βχ1 + Ě+

α χ̄2∂βχ2

− ∂αx+
(
Ê+
β η̄1γ̃

34η1 + Ě+
β η̄2γ̃

34η2

)
− 1

4

( 5∑
A,B=0

ÊA
α Ê

B
β ηAB + Ėi

αĖ
i
β − 4Ê+

α ∂βx
−)χ̄1γ

34χ1

+
1

4

( 5∑
A,B=0

ĚA
α Ě

B
β ηAB + Ėi

αĖ
i
β − 4Ě+

α ∂βx
−)χ̄2γ

34χ2

]
.

(2.60)

Above, we have suppressed the spinor indices for compactness and defined

η̄I ≡ (ηI)
ḃḃεḃȧεḃȧ , χ̄I ≡ (χI)

bbεbaεba . (2.61)

Re-writing LWZ in equation (2.34) in terms of so(4)1 and so(4)2 bispinors one arrives at
a longer expression which we have relegated to appendix G.

The above Lagrangian still depends on the worldsheet metric. As discussed above,
one way to complete the light-cone gauge fixing is to go to first-order formalism and solve
the Virasoro constraints. Alternatively we can impose the condition p− = 2 by solving
for the worldsheet metric. Doing this we find that to the relevant order the metric is
diagonal with components

γ00 = −1 +
1

2
(z2 − y2) +

1

8
(z2 + y2)(ż2 +

′
z2 + ẏ2 +

′
y2 − (z − y)2),

γ11 = +1 +
1

2
(z2 − y2) +

1

8
(z2 + y2)(ż2 +

′
z2 + ẏ2 +

′
y2 + (z − y)2).

(2.62)

The derivatives of the nondynamic field x− can then be found from the Virasoro con-
straints.

17In appendix F we summarise the relations between the ΓA and the γ̂i and τ̂ i that are useful in
obtaining the following expressions.
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2.3 Supercurrents

In section 2.2.2 we wrote down an action which realised linearly all 16 supersymmetries
of our background. However, half of the supervariations (2.21) are incompatible with the
BMN light-cone kappa gauge choice (2.32). This is a well known aspect of the light-cone
gauge formalism [80]—it implies that such supervariations have to be combined with a
compensating kappa transformation in order to preserve the gauge choice (2.32). The
eight supercharges that commute with the Hamiltonian and form the fermionic part of
A are associated with variations of precisely of this form.

Since kappa gauge transformations are known explicitly [65], it is in principal possible
to find expression for such compensating kappa gauge transformations. The procedure
is however computationally involved. To simplify matters, we will write down the super-
currents corresponding to the A supercharges to first order in fermions and third order
in the transverse bosons. When computing the algebra A later in this section we will
only need these expressions.

For notational convenience, we split the full supercurrent into parts involving only
massless fields, only massive fields and a part involving a mix of massive and massless
fields,

jαI = jαI,massless + jαI,massive + jαI,mixed, I = 1, 2. (2.63)

The supercurrents are given by

jτ1,massless = e+x−γ34
(
ẋiγ34τ̃ iχ1 −

′
xiγ34τ̃ iχ2

)
,

jτ2,massless = e−x
−γ34

(
ẋiγ34τ̃ iχ2 −

′
xiγ34τ̃ iχ1

)
,

(2.64)

jτ1,mixed = e+x−γ34
(
− 1

2
(z2 − y2)(ẋiγ34τ̃ iχ1 +

′
xiγ34τ̃ iχ2) + ziyj

′
xiγ34γij τ̃ iχ2

+ 1
2
ẋ · ′x(zi − yi)γ34γiη2 + 1

4
(ẋ2 +

′
x2)(zi − yi)γ34γiη1

)
,

jτ2,mixed = e−x
−γ34

(
− 1

2
(z2 − y2)(ẋiγ34τ̃ iχ2 +

′
xiγ34τ̃ iχ1) + ziyj

′
xiγ34γij τ̃ iχ1

− 1
2
ẋ · ′x(zi − yi)γ34γiη1 − 1

4
(ẋ2 +

′
x2)(zi − yi)γ34γiη2

)
,

(2.65)

jτ1,massive = e+x−γ34
(

(żi − ẏi)γiη1 + (zi + yi)γ34γiη1 − (
′
zi − ′

yi)γiη2

)
,

jτ2,massive = e−x
−γ34

(
(żi − ẏi)γiη2 − (zi + yi)γ34γiη2 − (

′
zi − ′

yi)γiη1

)
.

(2.66)

jσ1,massless = −e+x−γ34
(
′
xiγ34τ̃ iχ1 − ẋiγ34τ̃ iχ2

)
,

jσ2,massless = −e−x−γ34
(
′
xiγ34τ̃ iχ2 − ẋiγ34τ̃ iχ1

)
,

(2.67)
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jσ1,mixed = −e+x−γ34
(

+ 1
2
(z2 − y2)(

′
xiγ34τ̃ iχ1 − ẋiγ34τ̃ iχ2) + ziyjẋiγ34γij τ̃ iχ2

+ 1
2
ẋ · ′x(zi − yi)γ34γiη1 + 1

4
(ẋ2 +

′
x2)(zi − yi)γ34γiη2

)
,

jσ2,mixed = −e−x−γ34
(

+ 1
2
(z2 − y2)(

′
xiγ34τ̃ iχ2 − ẋiγ34τ̃ iχ1) + ziyjẋiγ34γij τ̃ iχ1

− 1
2
ẋ · ′x(zi − yi)γ34γiη2 − 1

4
(ẋ2 +

′
x2)(zi − yi)γ34γiη1

)
,

(2.68)

jσ1,massive = −e+x−γ34
(

(
′
zi − ′

yi)γiη1 − (żi − ẏi)γiη2 − (zi + yi)γ34γiη2

)
,

jσ2,massive = −e−x−γ34
(

(
′
zi − ′

yi)γiη2 − (żi − ẏi)γiη1 + (zi + yi)γ34γiη1

)
.

(2.69)

Above, for the massive part of the supercurrents we have only written down the lowest-
order-in-bosons expression since it will be all we need later on. For compactness we have
also suppressed all spinor indices; re-instating these we have, for example,

γ34τ̃ iχ1 ≡ (γ34)ab(τ̃
i)ȧb(χ1)bb . (2.70)

Using the equations of motion, which are presented in appendix H, we have checked that
the currents satisfy the equation

∂τj
τ
I + ∂σj

σ
I = 0 , (2.71)

and hence are conserved.

2.4 The A algebra

In this sub-section we will compute the algebra A. Our computation will be done in a
field expansion discussed below. In particular, we will work to leading order in fermions
and sub-leading order in bosons. This is the same order to which the corresponding
algebra was computed for Type IIB strings on AdS5 × S5 [60]. Before describing the
details of the computations, let us pause briefly to make two general observations.

Firstly, on-shell A reduces to psu(1|1)4 extended by the Hamiltonian and a central
angular momentum and by the torus isometries. This is simply the part of superisome-
tries of the classical string theory on AdS3×S3×T4 that commutes with the Hamiltonian,
and amounts to psu(1|1)4⊕u(1)2⊕so(4). The important consistency check then is to see
that when going off-shell, by relaxing the level-matching condition, the algebra becomes
centrally extended in just the right way. In other words, the Poisson bracket between
two different supercharges should result in an expression of the form

{(Q1)aȧ, (Q2)bḃ}
PB

= −i Cab,ȧḃ, (2.72)

where the matrix on the right-hand side can be decomposed into the two central charges
extending the symmetry algebra.
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Secondly, we note that the massive (yi, zi and ηI) and the massless fields (xi and
χI) each form a consistent closed sector of the equations of motion of the theory. In the
classical theory the massive sector is isomorphic to a closed sub-sector of the Type IIB
string on AdS5 × S5.18 As a result, the off-shell computation of A in the massive sub-
sector is identical to the computation performed in [60] and so we will not repeat it here.
Instead, we will perform two types of computations that are new to Type IIB strings
on AdS3 × S3 × T4. In section 2.4.1 we restrict to the massless sector of the theory and
compute the off-shell algebra A; as anticipated in the previous paragraph, we explicitly
see that on-shell the algebra does indeed reduce to psu(1|1)4 ⊕ u(1)2. In section 2.4.3,
we compute, off-shell, in the full massive and massless theory the relation (2.72).

We only determine the part of the central charges that depend on the bosonic fields.
Since the central charges have to vanish for zero total worldsheet momentum this is
enough to reconstruct the full charges. As we will see, the momentum dependence of
the central charges comes in through the nonlocal and nondynamic field x−. To capture
this dependence we employ a “hybrid” expansion similar to what was used in AdS5× S5

in [60]. This means that we expand the action in the transverse fields to quadratic order
in fermions and quartic order in the transverse bosons, but keep any explicit factors of
x− unexpanded. This allows us to capture the full momentum dependence of the central
charges. It is worth noting at this point that central extensions of the on-shell algebra
of this kind had been studied for the plane-wave limit of AdS3 × S3 × T4 in [76].

The fermions in the Lagrangian (2.60) and (G.6) do not have a canonical kinetic term
and so will not have a conventional Poisson bracket. It is possible to further redefine
the fermionic fields order by order in the field expansion to correct this. However, for
our purpose it will be simpler to work with the non-canonical Poisson bracket for the
fermions that follows from the Lagrangian (2.60) and (G.6). The Poisson bracket of the
fermions ηI and χI is presented below.

2.4.1 The massless sub-sector

As we have noted above, the equations of motion of our system are such that it is
consistent to set the transverse massive excitations to zero. In this sub-section we focus
on computing A in the purely massless sector. This sector turns out to have a number of
simplifying features compared to the full theory and so serves as a good warm-up exercise.
We will therefore repeat some of the steps discussed above in more detail. What is more,
this sector is not described by a semi-symmetric space coset and so understanding how it
enters the integrable machinery is one of the central results of this paper. The massless

18This is a consequence of the fact that the kappa gauge-fixed massive sector of Type IIB strings on
AdS3×S3×T4 can be described in terms of a super-coset. In turn it is easy to see that that super-coset
is a sub-super-coset of the kappa gauge-fixed Type IIB strings on AdS5 × S5.
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part of the gauge fixed Lagrangian is given by

L
(m)
B = −1

2
γαβ
(

4∂αx
+∂βx

− + ∂αx
i∂βx

i
)

L
(m)
kin = −2iγαβ

(
χ̄I∂αχI∂βx

+ − 1

4
σ3
IJ χ̄Iγ

34χJ∂αx
i∂βx

i
)
,

L
(m)
WZ = −2iεαβ

(
σ1
IJ χ̄I∂αχJ∂βx

+ + εIJ
1

4
χ̄Iγ

34τ ijχJ∂αx
i∂βx

j
)
.

(2.73)

The massless parts of the supercurrents were given in equations (2.64) and (2.67). Notice
that to this order in fermions the supercurrents do not contain a term cubic in the bosons,
and are in fact the same as they would be in flat space.19 The non-linear terms in the
equations of motion for the fermions are exactly cancelled by the nonlocal exponential
part of the supercurrents.

We now want to calculate the algebra A obtained by taking Poisson brackets between
the supercharges obtained from the currents. To do this we write the action in first-order
formalism. The conjugate momenta are of the bosonic fields are given by

p− =
δS

δẋ−
= −2γ0β∂βx

+,

p+ =
δS

δẋ+
= −2γ0β∂βx

− − 2iγ0βχ̄I∂βχI + 2iσ1
IJ χ̄I

′
χJ ,

pi =
δS

δẋi
= −γ0β∂βx

i + iγ0βσ3
IJ χ̄Iγ

34χJ∂βx
i − iεIJ χ̄Iγ34τ ijχJ

′
xj.

(2.74)

Inserting this into the Lagrangian we get

L(m) = p−ẋ
− + piẋ

i + ip−χ̄I χ̇I +
γ01

γ00
C1 +

1

2γ00
C2, (2.75)

with the constraints given by

C1 = p−
′
x− + pi

′
xi + ip−χ̄I

′
χI ,

C2 = p+p− + pipi +
′
x2 − 2ip−σ

1
IJ χ̄I

′
χJ + iσ3

IJ χ̄Iγ
34χJ(pipi −

′
x2)

+2iεIJ χ̄Iγ
34τ ijχJpi

′
xj.

(2.76)

By solving the constraint C1 = 0 we obtain

′
x− = − 1

p−
pi
′
xi − iχ̄I

′
χI . (2.77)

Up to quadratic order in the fermions the massless Hamiltonian density H(m) = −p+ is
given by

H(m) =
1

p−

(
pipi +

′
x2 − 2ip−σ

1
IJ χ̄I

′
χJ

+ iσ3
IJ χ̄Iγ

34χJ(pipi −
′
X2) + 2iεIJ χ̄Iγ

34τ ijχJpi
′
xj
)
.

(2.78)

19We expect this to be only true because we are working to lowest order in fermions. There does not
appear to be an obvious reason for the term quartic in fermions in the action to vanish. Such a term
would likely lead to corrections to the supercurrents that are cubic in fermions. Such terms are however
absent in the free theory.
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From the kinetic term of the action we can read off the (canonical) Poisson brackets

[xi(σ), pj(σ
′)]

PB
= δijδ(σ − σ′),

{(χI)aa(σ), (χJ)bb(σ′)}
PB

= − i

2p−
εabεabδ(σ − σ′) .

(2.79)

Using results from appendix J one can check that the supercharge densities

Q1 = e+γ34x−
(
piτ̃

iχ1 −
′
xiτ̃ iχ2

)
≡ e+γ34x−Q(2)

1 , (2.80)

Q2 = e−γ
34x−

( ′
xiτ̃ iχ1 − piτ̃ iχ2

)
≡ e−γ

34x−Q(2)
2 (2.81)

both lead to conserved charges

[Q1, H
(m)]

PB
= [Q2, H

(m)]
PB

= 0 . (2.82)

Next we note that up to integrating by parts20

{(Q(2)
1 )aȧ, (Q(2)

1 )bḃ}
PB

= +
i

2p−
εabεȧḃ

(
pipi +

′
x2 − 2ip−σ

1
IJ χ̄I

′
χJ

)
. (2.83)

The last term in the expression in the bracket is exactly the quadratic Hamiltonian in
the massless sector. So up to quadratic order in excitations we find

{(Q1)aȧ, (Q1)bḃ}PB
= +

i

2

∫ +∞

−∞
dσ
(
e+γ34x−

)a
c

(
e+γ34x−

)b
dε
cdεȧḃH(m)

= +
i

2
εabεȧḃH(m) .

(2.84)

Similarly we can calculate the commutator between two different supercharges

{(Q(2)
1 )aȧ, (Q(2)

2 )bḃ}
PB

=

(
i

p−
pi
′
xi − χ̄I

′
χI

)
εabεȧḃ

= −i ′x−εabεȧḃ.
(2.85)

At quadratic order we then find

{(Q1)aȧ, (Q2)bḃ}
PB

= −i
∫ +∞

−∞
dσ
(
e+γ34x−

)a
c

(
e−γ

34x−
)b
dε
cdεȧḃ

′
x−

= − i
2

∫ +∞

−∞
dσ ∂σ

(
e+2γ34x−γ34ε

)ab
εȧḃ

= − i
2

(
e+2γ34x−(+∞) − e+2γ34x−(−∞)

)a
c(γ

34ε)cb εȧḃ

= − i
2

(
e+2γ34x−(−∞)

)a
c

(
e+2γ34∆x− − 1

)c
d(γ

34ε)db εȧḃ

= − i
2

(
e+2γ34x−(−∞)

)a
c

(
e

+ 2
p−

γ34pws − 1
)c
d(γ

34ε)db εȧḃ.

(2.86)

20Here it is useful to note the identities (E.2).
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Hence, the central charge takes the form21

C =
iζ

2
(e+ipws − 1), (2.87)

with ζ = exp(+2ix−(−∞)). This is exactly the form found in [60] for AdS5 × S5, which
as we argued coincides with what we must have in our massive sector, as can be seen by
an appropriate truncation of the supercoset [49].

To summarize, in this sub-section we have worked in the massless subsector of the full
string theory. We have constructed the supercharges and hamiltonian of the theory in
the first-order formalism and have shown that they satisfy the commutation relations of
A. We have also found that in the off-shell theory the central extension C takes precisely
the form expected for A.

2.4.2 Fermionic Poisson brackets

Having found the central charges of A in the massless sector we now want to perform
the same calculation again but now including both massive and massless fields. To the
order that we will be working in, we only need the dependence of the central charges
on the bosonic fields. As explained below, we will in fact only need to consider terms
up to quadratic order in both the massless and massive fields, so that the only bosonic
quartic terms that we will be interested in contain fields of both masses. Each term in
the supercharges contains at least one fermionic field. Since we are only interested in the
bosonic field dependence of the central charge, we only need the contribution from the
Poisson bracket of two supercharges that comes from the Poisson bracket between two
fermions. Any other term will be higher order in fermions.

Since we only need to calculate Poisson brackets between fermionic fields, we do
not need to introduce canonical momenta for the bosons. The kinetic terms for the
fermions is quite complicated which leads to an involved Poisson structure. We relegate
the calculation to appendix I and simply state the non-zero Poisson brackets here

{η1, η1}
PB

= − i
4

(1 + A11)εε , {η1, η2}
PB

= − i
4
A12εε , {η1, χ2}

PB
= − i

4
A14εε

{η2, η2}
PB

= − i
4

(1 + A22)εε , {η2, χ1}
PB

= − i
4
A23εε ,

{χ1, χ1}
PB

= − i
4

(1 + A33)εε , {χ1, χ2}
PB

= − i
4
A34εε ,

{χ2, χ2}
PB

= − i
4

(1 + A44)εε . (2.88)

The bi-spinor valued matrices Aij are given in equation (I.6) and we have suppressed the
bispinor indices in the above so as not to over-clutter the notation.22

21The Poisson bracket between the charges Q1 and Q2 contains both the charge C and its conjugate
C. In section 3 we will write the full algebra A in a more convenient form. Here we report the expression
corresponding to the charge C.

22The reader should note that the epsilon symbols appearing in the Poisson brackets carry different
kinds of indices depending on which particular fermions’ Poisson bracket one is computing.
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2.4.3 Computing the central charge C in the full theory

To establish the off-shell symmetry algebra of Type IIB string theory on AdS3×S3×T4 we
need to check whether the commutation relation (2.72) holds in the full theory. Above,
we have demonstrated such a relation in the massless sector of the theory (that is, when
massive fields are turned off). Since, as we argued, a similar calculation for the massive
sector follows directly from [60], all that we need to worry about now are the mixed-
mass terms. In this sub-section, we will indeed establish (2.72) by taking into account
mixed-mass terms the supercharges expanded to linear order in fermions and cubic order
in bosons. To this order we will be showing that such a relation holds with the central
charge C taken to zeroth order in fermions and quartic order in bosons.

Using the Poisson brackets given in equation (2.88), we find the Poisson bracket
between two supercharges∫

dσ dσ′ {jτ1 (σ), jτ2 (σ′)}
PB

=− i

p−

∫
dσ e+2γ34x−

(
(ż · ′z + ẏ · ′y + ẋ · ′x)εε

+(z · ′z − y · ′y)γ34εε
)

+
i

2

∫
dσ (zi

′
yj +

′
ziyj)γ34γijεε .

(2.89)

The details of the calculation are given in appendix K. The last line above is a total
derivative and can be dropped with a suitable choice of boundary conditions. By partially
integrating the second line and again dropping the total derivative we find that the
remaining integrand takes the form

ż · ′z + ẏ · ′y + ẋ · ′x+ (z2 − y2)
′
x− = ż · ′z + ẏ · ′y + ẋ · ′x− 1

2
(z2 − y2)(ẋ · ′x), (2.90)

up to terms that are quartic in the massive fields. The last expression is equal to −p−
′
x−

and so we may write∫
dσ dσ′ {jτ1 (σ), jτ2 (σ′)}

PB
= + i

∫
dσ e+2γ34x− ′

x−εε

=− i

2

∫
dσ ∂σ

(
e+2γ34x−

)
γ34εε

=− i

2

(
e+2γ34x−(+∞) − e+2γ34x−(−∞)

)
γ34εε

=− i

2
e+2γ34x−(−∞)

(
e+2γ34∆x− − 1

)
γ34εε

=− i

2
e+2γ34x−(−∞)

(
e+γ34pws − 1

)
γ34εε .

(2.91)

Hence, the central charge takes the form

C =
iζ

2
(e+ipws − 1), (2.92)

with ζ = exp(+2ix−(−∞)), in agreement with the expression found the previous sub-
section.
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3 Symmetry algebra

In the previous section we have found the off-shell symmetry algebra A for type IIB
superstrings on AdS3 × S3 × T4 . We showed that A is given by a central extension of
psu(1|1)4 ⊕ so(4)2, where so(4)2 comes from the torus coordinates.23

In this section we will first review how this algebra can be constructed by tensoring
two copies of su(1|1)2

c.e.. Then, in subsection 3.2 we will investigate the representations
of A in the near-plane wave limit. This can be read-off from the supercurrents obtained
in section 2.3 but we collect the results here to set up the notation and conventions that
we will use in later sections.

As a preliminary step, it is convenient to rewrite A in components, using the notation
introduced in appendix L. We then find the anti-commutation relations take the form

{Q ȧ
L ,QLḃ} =

1

2
δȧ
ḃ
(H + M), {Q ȧ

L ,QRḃ} = δȧ
ḃ
C,

{QRȧ,Q
ḃ

R } =
1

2
δ ḃ
ȧ (H−M), {QLȧ,Q

ḃ
R } = δ ḃ

ȧ C,
(3.1)

where we introduced labels “L” and “R” (left and right) for the supercharges in psu(1|1)4.
These are inherited from the superisometry algebra su(1, 1|2)L ⊕ su(1, 1|2)R, where they
refer to the chirality in the dual CFT2. Note that in the leading-order expansion of
appendix L, the central charges C,C were linear functions of the worldsheet momentum,
C = C = −1

2
P. This is indeed the leading order term in the expansion of the non-linear

relation

C = +
iζ

2
(e+iP − 1), C = −iζ̄

2
(e−iP − 1), (3.2)

found in the previous section, cf. (2.92). The so(4)2 subalgebra arising from the torus
directions can be decomposed into su(2)• ⊕ su(2)◦, satisfying

[J•ȧ
ḃ,J•ċ

ḋ] = δḃċ J•ȧ
ḋ − δḋȧ J•ċ

ḃ, [J◦a
b,J◦c

d] = δbc J◦a
d − δda J◦c

b, (3.3)

The supercharges Qj L,R are in the fundamental representation of su(2)•. Indices are

therefore raised and lowered by the antisymmetric tensor εȧḃ and its inverse, so that
charges with upper indices transform in the anti-fundamental representation. We then
have

[J•ȧ
ḃ,Qċ] = δḃċQȧ −

1

2
δ ḃ
ȧ Qċ, [J•ȧ

ḃ,Qċ] = −δ ċ
ȧ Qḃ +

1

2
δ ḃ
ȧ Qċ, (3.4)

where Q is any supercharge in the appropriate representation. All of the generators
of the centrally extended psu(1|1)4 commute with su(2)◦. The u(1) charges of A are
therefore given by the Hamiltonian H, the angular momentum M, two Cartan elements
coming from the two su(2)’s and the central elements C,C.

The centrally extended psu(1|1)4 superalgebra appeared already in the study of the
massive sector of the theory in [34], and as discussed there it could be obtained from two
copies of the centrally extended su(1|1)2. In the next subsection we briefly review that
construction.

23As discussed at the end of section 2.2.4, such so(4)2 is unbroken as long as we are in the decom-
pactification limit P− =∞.
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3.1 From su(1|1)2c.e. to psu(1|1)4c.e.
Let us consider su(1|1)L ⊕ su(1|1)R, given by

{QL,QL} = HL, {QR,QR} = HR. (3.5)

Physically, if we intend to couple these two systems, it is natural to define the positive-
define combination of the two central charges to be the Hamiltonian, while the other one
will be an angular momentum:

H = HL + HR, M = HL −HR . (3.6)

Let us consider a central extension of su(1|1)2 by setting

{QL,QR} = C , {QL,QR} = C . (3.7)

If we now consider a tensor product of two copies of the above algebra, we have

Q 1
L = QL ⊗ 1, QL1 = QL ⊗ 1, Q 2

L = 1⊗QL, QL2 = 1⊗QL,

QR1 = QR ⊗ 1, Q 1
R = QR ⊗ 1, QR2 = 1⊗QR, Q 2

R = 1⊗QR,
(3.8)

and for the central elements

H 1
L = HL ⊗ 1, H 2

L = 1⊗HL, C1 = C⊗ 1, C2 = 1⊗C,

H 1
R = HR ⊗ 1, H 2

R = 1⊗HR, C1 = C⊗ 1, C2 = 1⊗C.
(3.9)

If we now identify the central charges as

H 1
L = H 2

L , H 1
R = H 2

R , C1 = C2, C1 = C2, (3.10)

and consequently drop the indices 1, 2, we are left precisely with (3.1). Constructing
psu(1|1)4

c.e. as a tensor product of two su(1|1)2
c.e. as described above will be particularly

useful in the study of its representations below [34,49].

3.2 Representations in the near-plane-wave limit

We expect the fundamental excitations of the GS string to transform in two distinct (not
necessarily irreducible) representations of A, for massive and massless particles24, with
the corresponding modules having the same dimension. This constrains the dimension of
the representations of psu(1|1)4

c.e. ⊂ A that may appear. Since long representations are
at least sixteen-dimensional, our representations must instead be short, i.e. they must
satisfy the shortening condition [32,34]

HL HR = C C , (3.11)

24This follows from the fact that the Hamiltonian H takes different values on massless and massive
excitations.
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which can be recast in the form of a dispersion relation

H2 = M2 + 4 C C , (3.12)

in which the eigenvalues of M play the role of a mass term25.
In section 2.3 we obtained the representation of A in terms of the fields. In order

study it more easily, it is useful to go to momentum-space and introduce oscillators. It
will be enough to consider the leading-order in the field expansion of the supercharges,
which coincides with the leading order in a near-plane-wave [76] or BMN expansion [81].

Let us introduce bosonic creation and annihilation operators, that schematically take
the form

a†(p) ≈
∫

dσ√
ω(p,m)

(
ω(p,m)X − iP

)
e+ipσ,

a(p) ≈
∫

dσ√
ω(p,m)

(
ω(p,m)X + iP

)
e−ipσ,

(3.13)

where ω(p,m) is the dispersion, and fermionic ones

d†(p) ≈
∫

dσ√
ω(p,m)

(
f(p,m) η − ig(p,m)η̄

)
e+ipσ,

d(p) ≈
∫

dσ√
ω(p,m)

(
f(p,m) η + ig(p,m)η̄

)
e−ipσ,

(3.14)

where f(p,m), g(p,m) are wavefunction parameters. We will have eight such pairs of
operators for bosons and eight for fermions, whose precise form is given in appendix L.
We can use them to construct the module of the representation, which is then given by
the eight massive states

|ZL,R〉 = a†L,R z |0〉 , |Y L,R〉 = a†L,R y |0〉 , |ηLȧ〉 = d ȧ†
L |0〉 , |ηR

ȧ〉 = d†
Rȧ |0〉 , (3.15)

and the eight massless ones

|T ȧa〉 = aȧa† |0〉 , |χa〉 = da † |0〉 , |χ̃a〉 = d̃a † |0〉 . (3.16)

Since at this order all excitations are relativistic, we have

ω(p,m) =
√
m2 + p2, f(p,m) =

√
ω(p,m) + |m|

2
, g(p,m) =

−p
2f(p,m)

, (3.17)

see also equations (L.14–L.17). Note that formulæ depend on the eigenvalue m of M,
which can take value ±1 for massive excitations and 0 for massless ones. It will be
convenient to denote ωp = ω(p,±1), ω̃p = ω(p, 0), and similarly for f and g.

25Recall that the central charges C,C are functions of the momentum p and vanish at p = 0.
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|Y L〉

|ηL1〉 |ηL2〉

|ZL〉

Q 1
L ,Q

1
R

QL1,QR1

QL2,QR2

Q 2
L ,Q

2
R

J a
•

|ZR〉

|ηR
1〉 |ηR

2〉

|Y R〉

QR2,QL2

Q 2
R ,Q

2
L

Q 1
R ,Q

1
L

QR1,QL1

J a
•

Figure 1: The left and right psu(1|1)4
c.e. multiplets consists of two bosons Y L,R, ZL,R and of

two fermions ηL,R
ȧ , corresponding to transverse directions on AdS3 × S3. The fermions carry

an index ȧ of the fundamental representation of su(2)•. Note that off-shell any excitation is
charged under all supercharges, whereas on-shell left (respectively right) excitations are charged
only under left (respectively right) supercharges. We indicate the supercharges whose action
corresponds to the outermost arrows of the diagram. The innermost ones follow by Hermitian
conjugation.

In terms of the ladder operators the supercharges take a very transparent form,
whence their action can be easily read off:

Q ȧ
L =

∫
dp

[
(d ȧ †

L aLy + εȧḃ a†LzdLḃ)fp + (a†Ryd
ȧ

R + εȧḃ d†
Rḃ
aRz)gp

+
(
εȧḃ d̃a †aḃa + aȧa †da

)
f̃p

]
,

QRȧ =

∫
dp

[
(d†

RȧaRy − εȧḃ a
†
Rzd

ḃ
R )fp + (a†LydLȧ − εȧḃ d

ḃ †
L aLz)gp

+
(
da †aȧa − εȧḃ a

ḃa †d̃a

)
g̃p

]
,

(3.18)

where we suppressed the dependence of a†, a and d†, d on the momentum p. Similarly,
the Hamiltonian H and the angular momentum M read

H =

∫
dp
[
(a†LzaLz + a†LyaLy + d ȧ†

L dLȧ + a†RzaRz + a†RyaRy + d ȧ†
R dRȧ)ωp

+ (a†ȧaa
ȧa + da†da + d̃a†d̃a) ω̃p

]
,

M =

∫
dp
[
(a†LzaLz + a†LyaLy + d ȧ†

L dLȧ)− (a†RzaRz + a†RyaRy + d ȧ†
R dRȧ)

]
.

(3.19)

This sixteen-dimensional module will split in several irreducible ones, which we will
describe below one by one. We can label them by the eigenvalue of the angular momen-
tum M.
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3.2.1 Left representation

One representation of dimension four (two bosons and two fermions) has eigenvalue +1
under M, and consists only of excitations labelled “L”. These correspond to half of
the transverse modes on AdS3 × S3, and it can be represented as in the left panel of
figure 1. This is a bi-fundamental representation of psu(1|1)4

c.e., supplemented by the
action of su(2)• on the fermions. In particular, the fermions are in the fundamental
representation

J ḃ
•ȧ |ηLċ〉 = −δ ċ

a |ηLḃ〉+
1

2
δ ḃ
ȧ |ηLċ〉 . (3.20)

It is interesting to see what happens if we consider the representation on-shell, i.e.
(since we are dealing with a single-particle representation) at zero momentum. Observ-
ing that one of the fermion wave-function parameters vanishes then, gp=0 = 0, greatly
simplifies the action of the supercharges (3.18). In fact, only left supercharges act non-
trivially. For this reason we call this representation left, which explains the name of
the corresponding excitations, which then can be thought of as left-movers in the dual
CFT2. Of course this is only true for an on-shell one-particle state—generally, all states
are charged under the whole psu(1|1)4

c.e..

3.2.2 Right representation

We have a similar representation with eigenvalue −1 under M, which is depicted in the
right panel of figure 1, and consists of “R” excitations. This is again a bi-fundamental
representation, closely resembling the left one. We see however that if we take the S3

excitation |Y L〉 to be the highest weight state in the left-representation, we must take
the AdS3 excitation |ZR〉 to be the highest weight state here. The reason is that we cannot
take e.g. Q 1

L and QR1 to be both lowering operators, if we want the central charge C
to be non-vanishing. Instead, we should take e.g. Q 1

L and Q 1
R . This in turn forces the

choice of different highest weight states in the two representations. The fermions ηR
ȧ are

in the anti-fundamental of su(2)•.
In the same way as earlier, taking the representation to be on-shell makes it charged

under the right supercharges only.

3.2.3 Massless representation

We expect the remaining eight particles (four bosons and four fermions) to be all massless,
at least in this semi-classical analysis. This is indeed the case, and we can check that the
massless particles arrange themselves into two irreducible representations of psu(1|1)4

c.e.,
both with fermionic highest weight states, see figure 2. Additionally, note that these
representations seem to be left by the argument above. This should be taken with
a pinch of salt, because we are considering the situation when the eigenvalue of M
precisely vanishes, which as we will see makes the left and right representations practically
equivalent.

We have to take the action of so(4)2 into account. Under this, all of the torus
bosons are obviously charged. In our su(2) decomposition we see that the two psu(1|1)4

c.e.

modules are rotated one into another by the action of su(2)◦. We then conclude that
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|χ1〉

|T 11〉 |T 21〉

|χ̃1〉

Q 1
L ,Q

1
R

QL1,QR1

QL2,QR2

Q 2
L ,Q

2
R

J a
• J α

◦

|χ2〉

|T 12〉 |T 22〉

|χ̃2〉

Q 1
L ,Q

1
R

QL1,QR1

QL2,QR2

Q 2
L ,Q

2
R

J a
•

Figure 2: The eight massless excitations form two psu(1|1)4
c.e. multiplets. The four bosons T ȧa

are charged both under su(2)• and su(2)◦, while the four fermions χa, χ̃a are in the fundamental
representation of su(2)◦ only. Again we indicate the charges whose action corresponds to the
outermost arrows of the diagram, while the innermost ones follow by Hermitian conjugation.
Note how su(2)◦ relates the two psu(1|1)4

c.e. modules, yielding a single irreducible representation
of A, denoted by a box.

the massless particles transform into a single irreducible representation of the symmetry
algebra A.

4 Exact representations

In the previous section we constructed representations of A that are valid in the near-
plane-wave limit, when C = C = −1

2
P. On the other hand, we know that instead C 6= C

should be non-linear functions of the world-sheet momentum P given by equation (3.2).
In this section, we will show that the representations of section 3.2 can be deformed in
such a way so as to satisfy (3.2) together with the shortening condition (3.12) without
resorting to any perturbative expansions.

To do this, it will be sufficient to suitably deform the representation parameters ωp, fp
and gp. In fact, since the Hamiltonian follows from the central charges, ωp will be
fixed in terms of the fermion wave-function parameters. In order to find the central
charges C 6= C, which will now be complex and conjugate to each other, we must
introduce complex representation coefficients. Hence, fp will be replaced by ap or its
conjugate āp, and gp by bp or b̄p. These will also suitably depend on the mass m. When
expanded in the near-BMN limit, ap and āp reduce to fp (or f̃p if m = 0) while bp and
b̄p to gp (or g̃p).

We will proceed as follows. Since the representations of A discussed above must
in particular be bi-fundamental representations of psu(1|1)4

c.e., and these can be ob-
tained [32, 49] from fundamental representations of su(1|1)2

c.e., we will focus on these
first. In subsection 4.1 we will construct the most general su(1|1)2

c.e. short fundamental
representations. In subsections 4.2 and 4.3 we will show how from these we can find
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massive and massless psu(1|1)4
c.e. representations, respectively, and comment on their

properties. Then in subsection 4.4 we write down the deformed representation param-
eters ap, bp for the massive and massless case, and finally in subsection 4.5 we will rule
out quantum corrections to the massless dispersion relation by a symmetry argument.

4.1 Short representations of su(1|1)2 c.e.

In [32] short representations of the centrally extended psu(1|1)L ⊕ psu(1|1)R algebra
were considered. Denoting a boson and fermion excitation of definite momentum p by
|φL
p〉 , |ψL

p〉 respectively, the fundamental representation %L is given by

%L :

QL |φL

p〉 = ap |ψL

p〉 , QL |ψL

p〉 = 0,

QL |φL

p〉 = 0, QL |ψL

p〉 = āp |φL

p〉 ,
QR |φL

p〉 = 0, QR |ψL

p〉 = bp |φL

p〉 ,
QR |φL

p〉 = b̄p |ψL

p〉 , QR |ψL

p〉 = 0.

(4.1)

Our choice of the representation coefficients ensures that the left- and right-Hamiltonians
are positive definite. Furthermore, when we reduce to an one-particle on-shell represen-
tation, it must be bp=0 = b̄p=0 = 0. In this sense, this representation is a left one.

We can consider a right representation %R. The module consists of two excitations
|φR
p 〉 and |ψR

p 〉 transforming as

%R :

QR |φR

p 〉 = ap |ψR

p 〉 , QR |ψR

p 〉 = 0,

QR |φR

p 〉 = 0, QR |ψR

p 〉 = āp |φR

p 〉 ,
QL |φR

p 〉 = 0, QL |ψR

p 〉 = bp |φR

p 〉 ,
QL |φR

p 〉 = b̄p |ψR

p 〉 , QL |ψ̄p〉 = 0.

(4.2)

Comparing with (4.1), we see that the two representations are related by exchanging the
labels L↔R.

It we will also be useful to consider a representation %̃L,

%̃L :

QL |ψ̃L

p〉 = ap |φ̃L

p〉 , QL |φ̃L

p〉 = 0,

QL |ψ̃L

p〉 = 0, QL |φ̃L

p〉 = āp |ψ̃L

p〉 ,
QR |ψ̃L

p〉 = 0, QR |φ̃L

p〉 = bp |ψ̃L

p〉 ,
QR |ψ̃L

p〉 = b̄p |φ̃L

p〉 , QR |φ̃L

p〉 = 0.

(4.3)

This representation differs from %L by the choice of the highest weight state, which is
fermionic here rather than bosonic. In a similar way, one can construct a %̃R representa-
tion. It is easy to check that any short representation of psu(1|1)4

c.e. for which H has real
eigenvalues takes the form of one of %L, %R, %̃L, %̃R. We will use graded tensor products
of these representations to construct short representations of psu(1|1)4

c.e..

30



4.2 psu(1|1)4c.e. representations for massive excitations

We now want to take the massive near-plane-wave representations discussed in section 3.2
and deform them in such a way as to reproduce the non-linear relation (3.2). We will then
see how these can indeed be thought of as coming from the tensor product of suitable
pairs of the su(1|1)2

c.e. representations that we just constructed.
If we restrict to on-shell one-particle states, only left (respectively right) supercharges

have a non-trivial action on left (respectively right) excitations, of the form

%L ⊗ %L :

Q ȧ
L |Y L

p 〉 = ap |ηLȧ
p 〉 , Q ȧ

L |ηLḃ
p 〉 = εȧḃ ap |ZL

p 〉 ,

QLȧ |ZL

p 〉 = −εȧḃ āp |η
Lḃ
p 〉 , QLȧ |ηLḃ

p 〉 = δ ḃ
ȧ āp |Y L

p 〉 ,

QRȧ |Y R

p 〉 = εȧḃ ap |η
Rḃ
p 〉 , QRȧ |ηRḃ

p 〉 = δ ḃ
ȧ ap |ZR

p 〉 ,

Q ȧ
R |ZR

p 〉 = āp |ηRȧ
p 〉 , Q ȧ

R |ηRḃ
p 〉 = −εȧḃ āp |Y R

p 〉 ,

(4.4)

where we anticipated the tensor-product structure in the formula label. Off shell, by
virtue of the central extension this is supplemented by the action of left supercharges on
right-moving states and vice-versa:

%R ⊗ %R :

Q ȧ
L |ZR

p 〉 = bp |ηRȧ
p 〉 , Q ȧ

L |ηRḃ
p 〉 = −εȧḃ bp |Y R

p 〉 ,

QLȧ |Y R

p 〉 = εȧḃ b̄p |η
Rḃ
p 〉 , QLȧ |ηRḃ

p 〉 = δ ḃ
ȧ b̄p |ZR

p 〉 ,

QRȧ |ZL

p 〉 = −εȧḃ bp |η
Lḃ
p 〉 , QRȧ |ηLḃ

p 〉 = δ ḃ
ȧ bp |Y L

p 〉 ,

Q ȧ
R |Y L

p 〉 = b̄p |ηLȧ
p 〉 , Q ȧ

R |ηLḃ
p 〉 = εȧḃ b̄p |ZL

p 〉 .

(4.5)

4.2.1 Bi-fundamental structure

The above left and right psu(1|1)4 representations can be constructed by tensoring the
fundamental representation of (4.1,4.2). To this end, it is sufficient to identify the exci-
tations as

Y L = φL ⊗ φL, ηL1 = ψL ⊗ φL, ηL2 = φL ⊗ ψL, ZL = ψL ⊗ ψL,

Y R = φR ⊗ φR, ηR

1 = ψR ⊗ φR, ηR

2 = φR ⊗ ψR, ZR = ψR ⊗ ψR,
(4.6)

where indices have been appropriately raised and lowered. The left psu(1|1)4 module is
then isomorphic to %L ⊗ %L, while the right one to %R ⊗ %R.

4.2.2 Left-right symmetry

It is clear that consistency with the string theory picture requires considering both the
left and right representations26. On the other hand, “left” and “right” are just labels
that can be swapped without affecting the description. This results in a Z2 left-right

26As we will see, this is also required if we want the worlsheet theory to be crossing-invariant.
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symmetry (LR-symmetry) [32, 34, 49]. In particular, this relates left and right massive
excitations as

Y L ←→ Y R, ZL ←→ ZR, ηLȧ ←→ ηR

ȧ, (4.7)

which is compatible with (L.22).

4.3 psu(1|1)4c.e. representations for massless excitations

Similarly to the previous subsection, we now deform the massless near-plane-wave rep-
resentations and show how they also enjoy a tensor-product structure. We know that
massless bosons transform in the fundamental representation of both su(2)• and su(2)◦,
while fermions are singlets of su(2)• and are in the fundamental of su(2)◦. All these
indices correspond to the fundamental representation of equation (3.20) The action of
the supercharges on the massless excitations is

(%L ⊗ %̃L)⊕2 :

Q ȧ
L |T ḃap 〉 = εȧḃap |χ̃ap〉 , Q ȧ

L |χap〉 = ap |T ȧap 〉 ,

QLȧ |χ̃ap〉 = −εȧḃāp |T
ḃa
p 〉 , QLȧ |T ḃap 〉 = δ ḃ

ȧ āp |χap〉 ,

QRȧ |T ḃap 〉 = δ ḃ
ȧ bp |χap〉 , QRȧ |χ̃ap〉 = −εȧḃbp |T

ḃa
p 〉 ,

Q ȧ
R |χap〉 = b̄p |T ȧap 〉 , Q ȧ

R |T ḃap 〉 = εȧḃb̄p |χ̃ap〉 .

(4.8)

Masslessness of the excitations is encoded in the fact that they are annihilated by M,
which due to the shortening condition (3.12) plays the role of mass. This results in a
constraint on the representation coefficients

|ap|2 = |bp|2. (4.9)

4.3.1 Bi-fundamental structure

The above representation of A can be constructed out of two bi-fundamental psu(1|1)4
c.e.

representations. To see this we note that the massless excitations can be re-written as

T 1a =
(
ψL ⊗ ψ̃L

)a
, χ̃a =

(
ψL ⊗ φ̃L

)a
, χa =

(
φL ⊗ ψ̃L

)a
, T 2a =

(
φ⊗ φ̃L

)a
, (4.10)

where the two copies are labelled by an su(2)◦ index a = 1, 2. Note that we used two
modules of the form (%L ⊗ %̃L)⊕ (%L ⊗ %̃L), in agreement with the fact that for massless
representations the highest weight state is fermionic.

4.3.2 Equivalent descriptions

It may appear strange that massless excitations come from left representations only.
Actually, there are several ways to obtain the massless excitations out of tensor product
of su(1|1)2 modules. Let us introduce rescaled excitations27

|χ̃ap〉 = −ap
bp
|χ̃ap〉 , |χap〉 =

bp
ap
|χap〉 , (4.11)

27As we will see in the next subsection, the ratio
ap
bp

appearing here is essentially the sign of the

momentum, due to the massless condition (4.9).
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which gives the following action of the supercharges

(%R ⊗ %̃R)⊕2 :

Q ȧ
L |T ḃap 〉 = −εȧḃbp |χ̃αp 〉 , Q ȧ

L |χap〉 = bp |T ȧap 〉 ,

QLȧ |χ̃ap〉 = εȧḃb̄p |T
ḃa
p 〉 , QLȧ |T ḃap 〉 = δ ḃ

ȧ b̄p |χap〉 ,

QRȧ |T ḃap 〉 = δ ḃ
ȧ ap |χap〉 , QRȧ |χ̃ap〉 = εȧḃap |T

ḃa
p 〉 ,

Q ȧ
R |χap〉 = āp |T ȧap 〉 , Q ȧ

R |T ḃap 〉 = −εȧḃāp |χ̃ap〉 ,

(4.12)

where we used (4.9). Thanks to this change of basis, we can identify a different tensor
product structure, given by

T1a =
(
ψR ⊗ ψ̃R

)
a
, χ̃a =

(
φR ⊗ ψ̃R

)
a
, χa =

(
ψR ⊗ φ̃R

)
a
, T2a =

(
φR ⊗ φ̃R

)
a
. (4.13)

This amounts to considering two modules of the form (%R⊗ %̃R)⊕(%R⊗ %̃R), i.e. to obtain
the massless representation out of the massless limit of two right modules, rather than
of two left ones. Yet another possibility is to perform the rescaling (4.11) only on one of
the psu(1|1)4

c.e. representations, for instance setting

|χ̃1
p〉 = |χ̃1

p〉 , |χ1
p〉 = |χ1

p〉 , |χ̃2
p〉 = −ap

bp
|χ̃2
p〉 , |χ2

p〉 =
bp
ap
|χ2
p〉 , (4.14)

on the fermions. In this way, the massless modules have the form (%L ⊗ %̃L)⊕ (%R ⊗ %̃R),
where the former term in the direct sum corresponds to a = 1 and the latter to a = 2.

The conclusion is that any of the two psu(1|1)4 modules describing the massless
excitations can be equivalently taken to be right or left, up to an inessential change
of basis.28 Therefore, we can think of our representation as coming from any of these
choices depending on what is most convenient, as we will discuss in the next subsection.

4.3.3 Left-right symmetry

We have seen that the massive sector should be invariant under exchanging the “left” and
“right” labels. This imposes a discrete symmetry on the S-matrix in that sector [32,34].
When we include massless excitations and consider two-particle states as it is necessary
for the S-matrix, a consistency condition arises. One should give a prescription on how
the massless excitations transform when exchanging L↔R in the massive sector.

Let us start from the case where the massless excitations are in the representation
(%L⊗ %̃L)⊕ (%R⊗ %̃R). Then, a natural extension of LR symmetry is exchanging the L and
R labels in the massless sector too. Following the discussion of the previous subsection,
it is clear that those labels are somewhat artificial, because the left and right massless
representation are in fact equivalent.

In what follows we will find it more convenient to describe massless excitations using
the (%L⊗%̃L)⊕(%L⊗%̃L) representation. This is because the action of the su(2)◦ raising and
lowering operators is simpler in this case (in the mixed case, one finds additional factors

28This is true only when (4.9) holds, which is not surprising: if that is not the case, left and right
representations have opposite, non-vanishing charge under M and therefore cannot be equivalent.
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of ap/bp). Even in this case, we can consistently implement LR symmetry, by combining
the previous prescription with the change of basis (4.14), see also equation (L.23). This
gives the prescription

|T ȧa〉 ←→ |Tȧa〉 , |χ̃a〉 ←→ +
bp
ap
|χa〉 , |χa〉 ←→ −ap

bp
|χ̃a〉 , (4.15)

where we suppressed the momentum label on the excitations for clarity. Note that the
symmetry now depends on the momentum of the particles through the combination ap

bp
.

We will comment on the interpretation of these ubiquitous coefficients in the next section.

4.4 Representation coefficients

The representations we constructed can be labelled by the values of the central charges,
in terms of which the representation coefficients ap, bp and their conjugates must be
determined. There are essentially two independent charges: the angular momentum M,
whose absolute value plays the role of the mass, and the central charge C (together with
its conjugate C). Their eigenvalues on a one-particle off shell representation are

M |Xp〉 = m |Xp〉 , C |Xp〉 = Cp |Xp〉 , C |Xp〉 = C̄p |Xp〉 , (4.16)

In section 2 we have found their expressions in terms of the momentum p and the coupling
constant h to be

m =

{
±1 massive

0 massless
, Cp = h

i

2
(eip − 1) ζ, (4.17)

where we explicitly extracted the dependence on the coupling constant h, and ζ = e2iξ

characterizes the representation. From the shortening condition (3.12) we immediately
find the dispersion relation

Ep =

√
m2 + 4h2 sin2 p

2
. (4.18)

For m2 = 1, this dispersion relation, strongly reminiscent of the AdS5 × S5 case [82],
was first found in this context from the study of giant magnons on AdS3 × S3 [56]. The
parametrisation

ap = ηpe
iξ, āp = ηpe

−ip/2e−iξ, bp = − ηp
x−p
e−ip/2eiξ, b̄p = − ηp

x+
p

e−iξ, (4.19)

with

ηp = eip/4
√
ih

2
(x−p − x+

p ) , (4.20)

satisfies equation (4.16) if the Zhukovski parameters x± satisfy

x+
p +

1

x+
p

− x−p −
1

x−p
=

2i |m|
h

,
x+
p

x−p
= eip. (4.21)
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As for the value of ξ, as discussed at length in [61] we can take it to vanish on the one-
particle representation, but it plays an important role in the multi-particle ones. When
constructing the two-particle representation out of the tensor product of two one-particle
ones, we see that to reproduce the correct value of the central charges we cannot take
ξ1 = ξ2 = 0 for both of the constituent particles. In fact, imposing that on a two-particle
state C gives

C |X1X2〉 = h
i

2
(ei(p1+p2) − 1) |X1X2〉 . (4.22)

we see that the parameter ξ must be non-vanishing in one of the representations, resulting
in a non-trivial coproduct. [83–85] We solve this condition by setting

ξ1 = 0 , ξ2 =
p1

2
. (4.23)

We see that the case m = 1 does not introduce any new feature with respect to the
treatment of [34]. However, at m = 0 something new happens already at the level of the
representation parameters, in terms of the non-analyticities

Ep = 2h
∣∣∣sin p

2

∣∣∣ , x±p = e±
i
2
p sign

(
sin

p

2

)
. (4.24)

This is typical in a theory featuring massless excitations, and naturally leads to distin-
guish left- and right-movers on the worldsheet. Indeed the combination

ap
bp

= −sign
(

sin
p

2

)
, (4.25)

which appears in the formulation of (target-space) left-right symmetry or in the action of
the su(2)◦ raising and lowering operators, shows that excitations have different transfor-
mation properties depending on the sign of their momentum. A way to consistently get
rid of the non-analyticities is to treat worldsheet left- and right-movers as two genuinely
different species of particles, with dispersion

Ep =

{
Eleft = +2h sin p

2
0 < p 6 π

2
,

Eright = −2h sin p
2

−π
2
6 p < 0 .

(4.26)

If we take both massless psu(1|1)4
c.e. modules to be in the representation %L⊗ %̃L, we find

that worldsheet left-movers (respectively right-movers) transform in a definite represen-
tation of su(2)◦. On the other hand, by virtue of (4.15), the LR symmetry transformation
also swaps worldsheet left- and right-moving fermions. In the representation %L ⊗ %̃R,
instead, the situation is reversed as can be seen from (4.11). LR symmetry preserves the
worldsheet chirality, while su(2)◦ rotates worldsheet left- and right-moving fermions into
each other.

4.5 Corrections to the massless dispersion relation

As we have seen in the previous section (see for example equation (4.26)), the massless
modes have rather different properties to the massive ones. One may wonder whether the
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massless modes could receive corrections which would give them masses in the quantum
theory. Even in integrable theories, it may happen that quantum corrections dress the
particle with a mass,29 and it is interesting to investigate whether this can be the case
here. As we are about to show, this is impossible unless part of the so(4)2 invariance is
also broken.

We have seen that the massless module is constructed out of two bi-fundamental
psu(1|1)4

c.e. ones. Each of them can be equivalently left (L) or right (R), giving the
possibilities

LL: (%L ⊗ %̃L)⊕ (%L ⊗ %̃L), RR: (%R ⊗ %̃R)⊕ (%R ⊗ %̃R),

LR: (%L ⊗ %̃L)⊕ (%R ⊗ %̃R), RL: (%R ⊗ %̃R)⊕ (%L ⊗ %̃L).
(4.27)

However, only when the representation coefficients satisfy |a2
p| = |bp|2, all of these cases

are equivalent, up to a rescaling of the basis vectors. If we think of deforming the
representations to switch on a mass ε > 0 (coming from e.g. quantum corrections), these
four choices will no longer be equivalent, and will lead to different deformations, which
we will consider separately. The non-vanishing masses will appear in particular in the
matrix representation of M. This will read either

LL/RR : M =


+14 0 0 0

0 −14 0 0
0 0 ±ε14 0
0 0 0 ±ε14

 , (4.28)

where we used a block form and the ± signs correspond to LL/RR, or

LR/RL : M =


+14 0 0 0

0 −14 0 0
0 0 ±ε14 0
0 0 0 ∓ε14

 . (4.29)

In this notation each block corresponds to a bi-fundamental representation, with the two
upper blocks being the massive left and right representations of [34].

We can immediately establish that the choice of (4.28) is incompatible with crossing
invariance. In fact, charge conjugation will flip the sign of all the u(1) charges, see also
equation (5.42) below. Therefore, a necessary condition for crossing invariance is that
each representation appears together with its conjugate, which is indeed the case in the
massive sector, as one can easily read-off from the first two diagonal entries of M above.
This is not the case when we choose to deform the LL (or RR) representation for ε > 0:
both representations will have positive (or negative) eigenvalues of modulus ε. On the
other hand, the choice of equation (4.29) is compatible with crossing symmetry, but
does not respect the so(4) invariance. In fact, all of the supercharges should commute
with su(2)◦, and therefore so should M. But su(2)◦ rotates the two mass-ε representa-
tions into each other, so that its raising and lowering operators cannot commute with
M when ε 6= 0. This also clearly shows how both obstructions disappear at ε = 0.

29A prototypical example being the Gross-Neveu model [86].
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5 S matrix

In the previous section we have constructed the representations of A valid for arbitrary
values of the momentum and of the coupling constant h, as long as we are in the decom-
pactification limit. The mere fact that the two-particle S matrix should commute with
the off-shell symmetry algebra will allow us to fix it almost completely, up to a small
number of functions—the dressing factors.

In subsection 5.1 we recall the construction of the su(1|1)2
c.e. invariant S matrices

of [32]. By tensoring these in a suitable way, in subsection 5.2 we obtain the A-invariant
S matrix up to the dressing factors. In subsection 5.3 we show that these dressing factors
can in turn be constrained by unitarity. In subsection 5.4 we show that the S matrix
satisfies the Yang-Baxter equation, and therefore can be used to define an integrable
theory. Finally, in subsection 5.5, we constrain the dressing factors by crossing symmetry.

The S-matrix scattering two fundamental particles is an operator—in fact, a finite-
dimensional matrix—that relates in- and out-states. Schematically,

S |X (in)
p Y(in)

q 〉 = |Y(out)
q X (out)

p 〉 (5.1)

where outgoing momenta are permuted. Due to the presence of massless excitations,
defining a scattering matrix may appear problematic. In the familiar relativistic case,
the equivalent of the dispersion relation (4.26) is linear in p. Therefore, the group velocity
of a wave-packet is

vrel =
∂Ep
∂p

= ±const , (5.2)

i.e., massless relativistic particles move at a constant velocity—the speed of light. Par-
ticles with the same worldsheet chirality then cannot scatter, regardless of the value
of their momentum.30 In the case of interest to the present paper however, factorised
massless scattering appears to be simpler than in the relativistic case. In fact, from
equation (4.26) we find the group velocity

vnon-rel = ±h cos
(p

2

)
. (5.3)

We see then that massless excitations of different momenta have different velocity, so that
we can expect them to scatter in the usual way. It could be interesting to investigate
the near-plane-wave limit of our S matrix, in which the theory becomes approximately
relativistic.

The two-particle S-matrix has to satisfy a number of consistency conditions. The
first requirement, is that S commutes with all the generators of A acting on two-particle
excitations

S(12)(p, q) Q(12)(p, q) = Q(12)(q, p)S(12)(p, q). (5.4)

Additionally, braiding unitarity is the requirement that acting twice with the S-matrix
is equivalent to acting with the identity operator

S(12)(q, p)S(12)(p, q) = 1 (5.5)

30Nevertheless, in the relativistic case, a formal treatment of factorised scattering matrices is still
possible [50–52, 87]. To this end, it is necessary to introduce appropriate rapidity variables and take
suitable limits of them.
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and physical unitarity demands that S is unitary as a matrix

S(12)(p, q)
(
S(12)(p, q)

)†
= 1. (5.6)

Furthermore, as we will see our S-matrix will satisfy the Yang-Baxter equation, meaning
that it can consistently be used to define multi-particle scattering. In what follows, it
will be useful to define, by means of the permutation matrix Π,

S = ΠS , (5.7)

which then satisfies

S(12)(p, q) Q(12)(p, q) = Q(21)(q, p) S(12)(p, q), S(21)(q, p) S(12)(p, q) = 1. (5.8)

Conservation of energy and of the other central charges implies that the scattering can
be broken down in several sectors, consistently with our discussion of the representations.
We naturally find purely massive scattering, which is the one that was already discussed
in [34], purely massless scattering, and finally mixed massive-massless scattering. In
each of these parts we will construct the S matrix as one that describes the scattering
of suitable su(1|1)4

c.e. modules. In fact, in view of our discussion of these modules, it
is convenient to first consider suitable su(1|1)2

c.e. invariant S matrices that will serve as
building blocks of the full S matrix.

5.1 The su(1|1)2c.e. invariant S matrices

In section 4.1 we constructed the short representations of psu(1|1)2, namely %L, %R, %̃L, %̃R.
The scattering of these leads to distinct S matrices. We start by discussing the case in
which both excitations are left ones, which allows for four different S matrices:

SLL |φL

pφ
L

q〉 = ALL

pq |φL

qφ
L

p〉 , SLL |φL

pψ
L

q 〉 = BLL

pq |ψL

qφ
L

p〉+ CLL

pq |φL

qψ
L

p〉 ,
SLL |ψL

pψ
L

q 〉 = F LL

pq |ψL

qψ
L

p〉 , SLL |ψL

pφ
L

q〉 = DLL

pq |φL

qψ
L

p〉+ ELL

pq |ψL

qφ
L

p〉 ,
(5.9)

S L̃L̃ |φ̃L

pφ̃
L

q〉 = −F LL

pq |φ̃L

q φ̃
L

p〉 , S L̃L̃ |φ̃L

pψ̃
L

q 〉 = DLL

pq |ψ̃L

q φ̃
L

p〉 − ELL

pq |φ̃L

q ψ̃
L

p〉 ,
S L̃L̃ |ψ̃L

p ψ̃
L

q 〉 = −ALL

pq |ψ̃L

q ψ̃
L

p〉 , S L̃L̃ |ψ̃L

p φ̃
L

q〉 = BLL

pq |φ̃L

q ψ̃
L

p〉 − CLL

pq |ψ̃L

q φ̃
L

p〉 ,
(5.10)

SLL̃ |φL

pφ̃
L

q〉 = BLL

pq |φ̃L

qφ
L

p〉 − CLL

pq |ψ̃L

qψ
L

p〉 , SLL̃ |φL

pψ̃
L

q 〉 = ALL

pq |ψ̃L

qφ
L

p〉 ,
SLL̃ |ψL

p ψ̃
L

q 〉 = −DLL

pq |ψ̃L

qψ
L

p〉+ ELL

pq |φ̃L

qφ
L

p〉 , SLL̃ |ψL

p φ̃
L

q〉 = −F LL

pq |φ̃L

qψ
L

p〉 ,
(5.11)

S L̃L |φ̃L

pφ
L

q〉 = DLL

pq |φL

q φ̃
L

p〉+ ELL

pq |ψL

q ψ̃
L

p〉 , S L̃L |φ̃L

pψ
L

q 〉 = −F LL

pq |ψL

q φ̃
L

p〉 ,
S L̃L |ψ̃L

pψ
L

q 〉 = −BLL

pq |ψL

q ψ̃
L

p〉 − CLL

pq |φL

q φ̃
L

p〉 , S L̃L |ψ̃L

pφ
L

q〉 = ALL

pq |φL

q ψ̃
L

p〉 .
(5.12)

As indicated by their labels, the S matrices above scatter particles in the representations
%L ⊗ %L, %̃L ⊗ %̃L, %L ⊗ %̃L and %̃L ⊗ %L. The four S matrices are related by simple changes
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of bases. Their different structures account for the fact that a pair of highest- or lowest-
weight states should scatter diagonally.

The ratios BLL
pq /A

LL
pq , C

LL
pq /A

LL
pq , . . . , F

LL
pq /A

LL
pq are fixed by (5.4). However, that linear

relation allows for an arbitrary prefactor in each S matrix. Such prefactors, until we take
non-linear constraints such as unitarity and crossing symmetry into account, are merely
a matter of convention. The explicit parametrisation of the S-matrix element is given in
appendix M, with a convention that slightly differs from the original one of [32].

When the two excitations do not have the same LR flavor we find S-matrices such as

SLR |φL

pφ
R

q 〉 = ALR

pq |φR

qφ
L

p〉+BLR

pq |ψR

q ψ
L

p〉 , SLR |φL

pψ
R

q 〉 = CLR

pq |ψR

q φ
L

p〉 ,
SLR |ψL

pψ
R

q 〉 = ELR

pq |ψR

q ψ
L

p〉+ F LR

pq |φR

qφ
L

p〉 , SLR |ψL

pφ
R

q 〉 = DLR

pq |φR

qψ
L

p〉 ,
(5.13)

SRL |φR

pφ
L

q〉 = ARL

pq |φL

qφ
R

p 〉+BLR

pq |ψL

qψ
R

p 〉 , SRL |φR

pψ
L

q 〉 = CRL

pq |ψL

qφ
R

p 〉 ,
SRL |ψR

pψ
L

q 〉 = ERL

pq |ψL

qψ
R

p 〉+ F RL

pq |φL

qφ
R

p 〉 , SRL |ψR

pφ
L

q〉 = DRL

pq |φL

qψ
R

p 〉 ,
(5.14)

S L̃R |φ̃L

pφ
R

q 〉 = +DLR

pq |φR

q φ̃
L

p〉 , S L̃R |φ̃L

pψ
R

q 〉 = −ELR

pq |ψR

q φ̃
L

p〉 − F LR

pq |φR

q ψ̃
L

p〉 ,
S L̃R |ψ̃L

pψ
R

q 〉 = −CLR

pq |ψR

q ψ̃
L

p〉 , S L̃R |ψ̃L

pφ
R

q 〉 = +ALR

pq |φR

q ψ̃
L

p〉 −BLR

pq |ψR

q φ̃
L

p〉 ,
(5.15)

SRL̃ |φR

p φ̃
L

q〉 = +CRL

pq |φ̃L

qφ
R

p 〉 , SRL̃ |φR

p ψ̃
L

q 〉 = +ARL

pq |ψ̃L

qφ
R

p 〉 −BRL

pq |φ̃L

qψ
R

p 〉 ,
SRL̃ |ψR

p ψ̃
L

q 〉 = −DRL

pq |ψ̃L

qψ
R

p 〉 , SRL̃ |ψR

p φ̃
L

q〉 = −ERL

pq |φ̃L

qψ
R

p 〉+ F RL

pq |ψ̃L

qφ
R

p 〉 .
(5.16)

The S matrices above scatter particles in the representations %L⊗%R, %R⊗%L and %̃L⊗%R,
%R⊗ %̃L. The former pair was one of the main results of [32], while the latter corresponds
to the so-called second central extension in appendix D in the same reference. Note that
we could write down four more S matrices corresponding to scattering processes where
one of the excitations is in the representation %̃R. We will not be needing their explicit
form, which in any case follows from similar changes of bases. The S-matrix elements
obey a constraint due to left-right symmetry, which simply reads

ARL = ALR, BRL = BLR, CRL = CLR,

DRL = DLR, ERL = ELR, F RL = F LR.
(5.17)

The explicit expression of these S-matrix elements is also given in appendix M. The
case where we scatter particles in the representations %R ⊗ %R, %̃R ⊗ %R, etc. follows
from equations (5.9)-(5.12) by LR symmetry.

5.2 The S-matrix from a tensor product

As discussed in section 4, the excitations of the AdS3 × S3 × T4 superstring transform
in four bi-fundamental representations of psu(1|1)4

c.e., two massive (%L ⊗ %L and %R ⊗ %R)
and two massless ones (both of the form %L ⊗ %̃L). The corresponding S matrices can
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be obtained from graded tensor products of the ones introduced in the previous section,
which takes the general form

Spsu(1|1)4 ≈ Ssu(1|1)2 ⊗̂ Ssu(1|1)2 , (5.18)

up to a prefactor. The tensor product ⊗̂ is graded, i.e. it takes into account the signs
arising from fermion permutations(

A ⊗̂B
)KK′,LL′
MM ′,NN ′

= (−1)εM′εN+εL′εK AKL
MN BK′L′

M ′N ′ , (5.19)

where the symbol ε is one for fermions and zero for bosons. We collect explicit expres-
sions for the graded tensor products used in the construction of the S-matrix blocks in
appendix N. Each of the psu(1|1)4

c.e.-invariant blocks that we obtain in this way should
be multiplied by a (dressing) scalar factor. A priori these may all differ, but as we will
see some of those are in fact related by additional symmetries, namely left-right symme-
try and su(2)◦. To describe these blocks it is convenient to split the S-matrix in three
sectors: massive, massless, and mixed-mass. Schematically

S =

(
S•• S◦•

S•◦ S◦◦

)
, (5.20)

where S•• scatters two massive particles, S◦◦ scatters two massless ones, and the remain-
ing blocks describe mixed-mass scattering.31

Below, we will construct the S matrix block by block, having particular care to keep
track of the number of independent scalar factor that we should allow for. We will come
back to those factors at the end of the discussion.

5.2.1 Massive sector (••)

In the massive sector, the psu(1|1)4
c.e. modules are %L⊗%L and %R⊗%R, which we labelled

“left” and “right” depending on their eigenvalues under M. The S matrix that scatters
two left-modules is then

left - left: SLL ⊗̂SLL . (5.21)

In a similar way, the matrix scattering a left excitation with a right one is

left - right: SLR ⊗̂SLR . (5.22)

These two matrices can in principle be multiplied by two arbitrary scalar factors con-
taining the dressing factors, which we call σ•• and σ̃•• respectively. The two remaining
blocks (RR and RL) can be obtained in a similar way, and moreover are related to the
LL and LR blocks by left-right symmetry. In particular, this symmetry constrains the
RR and RL scalar factors in terms of σ•• and σ̃••.

The massive fermions are also charged under su(2)•. It is easy to see that invariance
under such transformations is guaranteed by the tensor product structure, so that no

31The use of the • and ◦ symbols here to denote massive and massless excitations respectively is
reminiscent of the notation introduced for the algebras su(2)• and su(2)◦. In fact, only massive fermions
are charged under su(2)•, and all massless excitations are charged under su(2)◦.
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additional requirement should be imposed on S••. Therefore, the massive sector of our
S-matrix is given precisely by the matrix proposed in [34], and schematically reads

S•• =

(
σ•• SLL⊗̂SLL σ̃•• SRL⊗̂SRL

σ̃•• SLR⊗̂SLR σ•• SRR⊗̂SRR

)
, (5.23)

5.2.2 Mixed-mass sector (•◦ and ◦•)

In the mixed-mass sector we scatter one massive particle with one massless one, or vice
versa. Let us focus on the former possibility. Massive excitations are given by %L⊗%L

or %R⊗%R, while massless ones consist of two identical modules32 of the form %L⊗%̃L,
which together form a doublet of su(2)◦. Let us consider first the case where the massive
particles have left flavor. Then we find two blocks (one for each %L⊗%̃L module), each of
the form

massive (left) - massless: SLL ⊗̂SLL̃ . (5.24)

The relative coefficient between the blocks is fixed by su(2)◦ action.
If instead we started from a right massive particle, we would have found two blocks

of the form
massive (right) - massless: SRL ⊗̂SRL̃ , (5.25)

which again form a doublet of su(2)◦.
The two pairs of blocks of (5.24) and (5.25) are related to each other by left-right

symmetry. Therefore, we are left only with a single undetermined scalar factor for the
scattering of a massive particle with a massless one, i.e. for the whole S•◦. We denote
the corresponding dressing phase as σ•◦, and we have

S•◦ = σ•◦
[(

SLL⊗̂SLL̃
)
⊕
(
SRL⊗̂SRL̃

)]⊕2
. (5.26)

If we now consider the scattering of a massless particle with a massive one, analogous
considerations yield the S◦• up to a dressing factor σ◦•,

S◦• = σ◦•
[(

SLL⊗̂SL̃L
)
⊕
(
SLR⊗̂SL̃R

)]⊕2
. (5.27)

5.2.3 Massless sector (◦◦)

We are left with the scattering of massless particles, each transforming in two copies
of %L⊗%̃L. Constructing the S-matrix for these psu(1|1)4

c.e. modules would lead to 16
seemingly unrelated blocks. However, each of the modules is part of a su(2)◦ doublet.
As a result, the blocks must arrange themselves in an su(2)◦ covariant expression. In
other words we may decompose S◦◦ as

Ssu(2) ⊗
(
SLL ⊗̂ SL̃L̃

)
, (5.28)

32Recall that we could equivalently (up to a change of basis) obtain either or both of these two modules
from the massless limit of %L⊗%̃L or %R⊗%̃R. For definiteness, we take the former representation for all
massless particles.
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and the su(2) invariant S-matrix takes the familiar form33

Ssu(2)(p, q) =
1

1 + ςpq

(
Π + ςpq1

)
, (5.29)

in terms of the permutation operator Π and of an undetermined function ςpq which we
will constrain later. The action of Ssu(2) can be represented in a block matrix form,
whereby the whole S◦◦ takes the form

SLL⊗̂SL̃L̃ 0 0 0
0 ςpq

1+ςpq
SLL⊗̂SL̃L̃ 1

1+ςpq
SLL⊗̂SL̃L̃ 0

0 1
1+ςpq

SLL⊗̂SL̃L̃ ςpq
1+ςpq

SLL⊗̂SL̃L̃ 0

0 0 0 SLL⊗̂SL̃L̃

 (5.30)

up to an overall coefficient containing the dressing factor σ◦◦.

5.2.4 Normalisation of the sectors

Before moving on to discuss the non-linear constraints on the S matrix it is convenient to
fix its normalisation. There is some arbitrariness in doing so because, as we mentioned,
any of the blocks discussed above can be multiplied by an arbitrary prefactor.

Here we chose these prefactors in such a way as to reproduce scattering elements
that are compatible with perturbative results (in the massive sector, where there exists
a proposal for the dressing factors [35]) and make their symmetry properties as manifest
as possible. In particular, we dictate the form of the following boson-boson processes

〈Y L

q Y
L

p | S |Y L

p Y
L

q 〉 =
x+
p

x−p

x−q
x+
q

x−p − x+
q

x+
p − x−q

1− 1
x−p x

+
q

1− 1
x+p x

−
q

1(
σ••pq
)2 ,

〈Y R

q Y
L

p | S |Y L

p Y
R

q 〉 =
x+
p

x−p

x−q
x+
q

1− 1
x+p x

−
q

1− 1
x+p x

+
q

1− 1
x−p x

+
q

1− 1
x−p x

−
q

1(
σ̃••pq
)2 ,

(5.31)

〈T ȧaq Y L

p | S |Y L

p T
ȧa
q 〉 =

(
1− 1

x+p x
−
q

1− 1
x+p x

+
q

1− 1
x−p x

+
q

1− 1
x−p x

−
q

)1/2

1(
σ•◦pq
)2 ,

〈Y L

q T
ȧa
p | S |T ȧap Y L

q 〉 =

(
1− 1

x+p x
−
q

1− 1
x+p x

+
q

1− 1
x−p x

+
q

1− 1
x−p x

−
q

)1/2

1(
σ◦•pq
)2 ,

(5.32)

〈T ȧaq T ȧap | S |T ȧap T ȧaq 〉 =
1(
σ◦◦pq
)2 . (5.33)

In the massive sector, this is the same normalisation used in [34,35]. The necessary pref-
actors by which the formulae of appendix M must be multiplied are given in appendix O.

33Recall that in our notation the matrices S do not permute the excitations, cf. equation (5.7).
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5.3 Physical and braiding unitarity

We have already mentioned that braiding and physical unitarity are necessary properties
for the self-consistency of our construction. It is easy to see that they result in (mild)
constrains on the five scalar factors, i.e.

σ••qp =
(
σ••pq
)∗

=
1

σ••pq
, σ̃••qp =

(
σ̃••pq
)∗

=
1

σ̃••pq
, σ◦◦qp =

(
σ◦◦pq
)∗

=
1

σ◦◦pq
,

σ•◦qp =
(
σ•◦pq
)∗

=
1

σ◦•pq
, σ◦•qp =

(
σ◦•pq
)∗

=
1

σ•◦pq
,

(5.34)

together with a constrain on the undetermined function ςpq appearing in the su(2) S-
matrix,

ςqp =
(
ςpq
)∗

= −ςpq , (5.35)

where ∗ denotes complex conjugation.

5.4 The Yang-Baxter equation

A necessary condition for our S-matrix to describe an integrable system is that the
Yang-Baxter equation (YBE) holds. In a matrix language, this is a cubic equation on a
three-particle vector space

1⊗ S(p, q) · S(p, r)⊗ 1 · 1⊗ S(q, r) = S(q, r)⊗ 1 · 1⊗ S(p, r) · S(p, q)⊗ 1 . (5.36)

Since our S-matrix decomposes into a tensor-product structure, so does the Yang-
Baxter equation, which therefore can be checked directly for the fundamental S-matrices
of section 5.1 together with the su(2) S-matrix of section 5.2. While the former au-
tomatically satisfy the YBE, the latter in general does not. In fact, it is well known
from the study of the Heisenberg model that, for the su(2)-invariant S-matrix (5.29) to
be integrable, the relative coefficient between between the identity and the permutation
operator cannot be arbitrary. In our normalisation, the YBE imposes

ς(p, q)− ς(p, r) + ς(q, r) = 0 . (5.37)

Therefore, ςpq must be the difference of two appropriately defined rapidities,

ς(p, q) = i
(
wp − wq

)
, (5.38)

which together with equation (5.33) implies that w(p) is real.

5.5 Crossing invariance

Another natural requirement on our S-martrix is crossing invariance [88]. The crossing
transformation involves analytic continuation of the S-matrix to an unphysical channel,
so that momentum and energy flip signs

p→ −p, ωp → −ωp . (5.39)
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In string-theory discussions of crossing it is useful to introduce a complex variable z that
takes values in a “rapidity torus”,34 so that the dispersion relations are uniformised [35,
49, 88, 89]. The analytic continuation amounts to z → z + ω2, where ω2 is half of the
imaginary period of the torus. In terms of the Zhukovski parameters x± and of the
function η this gives

x±(z + ω2) =
1

x±(z)
, η(z + ω2) =

i

x+(z)
η(z). (5.40)

In order to impose crossing symmetry on the S-matrix, one needs to find the matrix Cp

that implements the crossing transformation on the one-particle states. In general Cp is
momentum dependent and it turns out that we will need this dependence for massless
fermions. The charge conjugation matrix Cp acts on the su(2) charges as

J•ḃ
ȧ = −Cp J•ȧ

ḃ C −1
p , J◦b

a = −Cp J◦a
b C −1

p , (5.41)

and flips the sign of the central charges, giving in particular

H = −CpH C −1
p , M = −CpM C −1

p . (5.42)

while the supercharges one has

Q ȧ
L (z + ω2)st = −e−

i
2
pC (z) Q ȧ

L (z) C −1(z),

QRȧ(z + ω2)st = −e−
i
2
pC (z) QRȧ(z) C −1(z),

QLȧ(z + ω2)st = −e+ i
2
p C (z) QLȧ(z) C −1(z),

Q ȧ
R (z + ω2)st = −e+ i

2
p C (z) Q ȧ

R (z) C −1(z).

(5.43)

Here st denotes supertransposition, defined as Qst = Qt Σ. The diagonal matrix Σ is the
fermion-sign matrix, taking values +1,−1 on bosons and fermions respectively.

If we work in the basis

{Y L, ηL1, ηL2, ZL} ⊕ {Y R, ηR1, ηR2, ZR} ⊕ {T 11, T 21, T 12, T 22} ⊕ {χ̃1, χ1, χ̃2, χ2}, (5.44)

then the matrix for the crossing transformation can be written as35

Cp =



0 0 0 0 1 0 0 0

0 0 0 0 0 0 −i 0

0 0 0 0 0 i 0 0

0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0

0 0 i 0 0 0 0 0

0 −i 0 0 0 0 0 0

0 0 0 1 0 0 0 0


⊕



0 0 0 1 0 0 0 0

0 0 −1 0 0 0 0 0

0 −1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −iapbp
0 0 0 0 0 0 i

bp
ap

0

0 0 0 0 0 i
ap
bp

0 0

0 0 0 0 −i bpap 0 0 0


. (5.45)

34In this sub-section we use z to denote this rapidity. We trust this causes no confusion with zi used
to denote the tranverse AdS3 massive boson fields used in other sections of this paper.

35The solution for Cp is not unique, due to the fact that we are dealing with several irreducible
representations of the symmetry algebra. Nevertheless the crossing equations that we will derive do not
depend on this ambiguity.
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The crossing equations can be derived in a standard way [5,49] and are most simply
expressed in terms of the matrix S, and read

C (zp)⊗ 1 · St1(zp + ω2, zq) · C −1(zp)⊗ 1 · S(zp, zq) = 1⊗ 1,

1⊗ C −1(zq) · St2(zp, zq − ω2) · 1⊗ C (zq) · S(zp, zq) = 1⊗ 1.
(5.46)

In fact, taking the symmetry properties of the scalar factors into account, it will be
sufficient to consider the crossing equation in either variable, e.g. the first. Such a
matrix equation automatically yields a left-hand side which is proportional to the identity
matrix, and constrains the normalisation of certain products of S-matrix elements to be
one. In appendix P we write down such constraints in components. They are equivalent
to the following equations for the scalar factors

(
σ••pq
)2 (

σ̃••p̄q
)2

=

(
x−q
x+
q

)2
(x−p − x+

q )2

(x−p − x−q )(x+
p − x+

q )

1− 1
x−p x

+
q

1− 1
x+p x

−
q

,

(
σ••p̄q
)2 (

σ̃••pq
)2

=

(
x−q
x+
q

)2

(
1− 1

x+p x
+
q

)(
1− 1

x−p x
−
q

)
(

1− 1
x+p x

−
q

)2

x−p − x+
q

x+
p − x−q

,

(5.47)

(
σ•◦p̄q
)2 (

σ•◦pq
)2

=
x+
p

x−p

x−p − x+
q

x+
p − x+

q

1− 1
x+p x

+
q

1− 1
x−p x

+
q

,

(
σ◦•p̄q
)2 (

σ◦•pq
)2

=
x+
q

x−q

x+
p − x−q
x+
p − x+

q

1− 1
x+p x

+
q

1− 1
x+p x

−
q

(5.48)

(
σ◦◦p̄q
)2 (

σ◦◦pq
)2

=
ςpq − 1

ςpq

1− 1
x+p x

+
q

1− 1
x+p x

−
q

1− 1
x−p x

−
q

1− 1
x−p x

+
q

, (5.49)

ςp̄q = ςpq − 1, (5.50)

where we indicate the crossed momenta by a bar,

p̄ = p(z + ω2). (5.51)

The equations in (5.47) are the crossing equations for the scalar factors in the massive
sector. They were already derived in [34] and a solution to them was proposed in [35].
Equation (5.49) contraints the scalar factor of the massless sector, while (5.48) gives the
crossing equations for massive-massless and massless-massive scalar factors. Finally, if
we use the fact that the scalar factor ςpq is given by the difference of two rapidities as in
equation (5.38), we have that its crossing symmetry simply amounts to the well-known
equation

w(p̄) = w(p) + i . (5.52)
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6 Discussion and outlook

In this paper we have given a detailed exposition of the results announced in [58]. We
have found the symmetries of type IIB AdS3 × S3 ×T4 superstrings with R-R flux from
the light-cone gauge-fixed action, and illustrated how they can be used to fix the exact
non-perturbative worldsheet S matrix up to five crossing-symmetric dressing factors. We
have also written down the crossing relations that these dressing factors satisfy.

Our results provide a comprehensive framework for investigating the AdS3/CFT2

correspondence using integrability tools. In particular, we have shown how to include
the massless modes into the non-perturbative worldsheet S matrix of the theory, thus
solving this long-standing obstacle.

The next natural step in this investigation is to determine the form of such factors:
so far, a proposal [35] exists only for the ones related to scattering processes in the
massive sector, i.e. σ•• and σ̃••. Finding the remaining factors will likely require new
insights into the analytic structure of the rapidity curve for massless excitations, as well
as guidance from perturbative calculations [40].

Another interesting direction would be to write down the Bethe-Yang equations de-
scribing the asymptotic spectrum and thereby extending the results presented for the
massive modes in [34] to the complete theory. While diagonalising the S matrix is
a relatively straightforward task, it would be very interesting to see how the asymp-
totic N = (4, 4) symmetry is realised on the spectrum. It will be particularly interest-
ing to see how the AFS phase [90] generalises to the massless modes setting and how
the semi-classical features such as finite gap equations [91, 92] or Landau-Lifshitz equa-
tions [93–98] emerge in this setting. The former would then need to be compared to the
recent proposal for the finite-gap equations of [57].

Since the massless dispersion relation is reminiscent of the ones of giant magnons [82],
it is natural to look for similar classical solitonic solution in the massless sector. It appears
however that such solutions cannot be straightforwardly constructed only out of bosonic
fields, as the related equations of motions are essentially free.

Additionally, note that our description is valid even in the presence of non-trivial
winding on the torus because we are in the strict decompactification limit. At the
level of the Bethe-Yang equations we should instead be able to distinguish the winding
sectors and torus moduli. It would also be very interesting if a similar set of Bethe
ansatz equations could be extracted from the dual CFT, perhaps by techniques similar
to the ones described in [29]. Further, given the advances in the thermodynamical Bethe
Ansatz/quantum spectral curve program [99–105], it would be interesting to see how
massless modes will appear in that setting.

Let us remark that the methods presented here should be applicable to more general
cases. One is the AdS3×S3×S3×S1 background, which is also classically integrable [24]
and whose massive-sector S matrix and Bethe-Yang equations were found in refs. [32,33].
While this case is somewhat more complicated that the AdS3 × S3 × T4 one—the dual
CFT is still to be precisely identified [106,107]—the presence of so-called large N = (4, 4)
symmetry yields a rich algebraic structure, which was fruitfully employed in the study
of higher spin theories [108].

It would also be interesting to consider the case where AdS3 backgrounds are sup-
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ported by a mixture of R-R and NS-NS fluxes. These are also classically integrable [26],
and interpolate between the pure R-R superstrings described here and supersymmetric
WZW models [20–22]. Recently, considerable effort was put into studying the massive
sector of the mixed-flux AdS3 × S3 × T4 background, both in terms of their world-sheet
S matrix [42,43,48] and by semi-classical techniques [44,47]. The study of their off-shell
symmetries and representations could shed new light on the structure of the massive
sector and of the massless one, which at this time remains quite obscure.

Finally, the prospect of studying deformations and orbifolds of these backgrounds—
as it was done for AdS5 × S5, see e.g. [74, 75] for a review—is extremely appealing,
as they include BTZ-like black-hole backgrounds [10], and also appear to be classically
integrable [109, 110]. This may allow to put, for the first time, an integrability handle
on string theory in black-hole backgrounds.

We are confident that we will witness significant progress in these directions in the
near future, and we hope to report on some of these topics soon.
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A Index conventions

In this appendix we collect our index conventions. Indices α, β, . . . = τ, σ are used for
worldsheet coordinates. Indices m,n, . . . = 0, . . . , 9 are used for spacetime coordinates;
the coordinates m = 0, 5 will form the light-cone directions and are denoted as t and
φ, respectively. Indices A,B, . . . = 0, . . . , 9 are used for so(1, 9) tangent indices. Indices
I, J, . . . = 1, 2 denote the two sets of spacetime spinors.

We will often write expressions in so(4)1 × so(4)2 notation. so(4)1 corresponds to
rotations along the AdS3 × S3 directions transverse to the light-cone directions t and φ.
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This is not a symmetry of the theory; nevertheless it will be useful to write the theory
in terms of this algebra. so(4)2 corresponds to rotations along T4. Underlined indices
will always refer to so(4)1. Indices a, b, . . . = 1, 2 and ȧ, ḃ, . . . = 1, 2 are used for the two
Weyl spinors of so(4)1, while i, j, . . . = 1, . . . , 4 are used for the vector of so(4)1. Further,
throughout the paper i, j, . . . = 1, 2 will denote the two directions of AdS3 transverse
to t; the corresponding coordinates will be denoted as zi, with the understanding that
z3 ≡ z4 ≡ 0. Similarly, i, j, . . . = 3, 4 will denote the two directions of S3 transverse to
φ; the corresponding coordinates will be denoted as yi, with y1 ≡ y2 ≡ 0. By a slight
abuse of notation we will sometimes write expressions like εijzi∂αzj or εijyi∂αyj with the
understanding that

εijzi∂αzj ≡ z1∂αz2 − z2∂αz1 , εijyi∂αyj ≡ y3∂αy4 − y4∂αy3 . (A.1)

Indices a, b, . . . = 1, 2 and ȧ, ḃ, . . . = 1, 2 are used for the two Weyl spinors of so(4)2 while
i, j, . . . = 1, . . . , 4 are used for the vector of so(4)2. We raise and lower the spinor indices
using epsilon symbols which we normalize by

ε12 = −ε12 = +1. (A.2)

B Spinor and Gamma matrix conventions

For AdS3 and S3 we consider the three-dimensional gamma matrices36

γ0 = −iσ3, γ1 = σ1, γ2 = σ2, γ3 = σ1, γ4 = σ2, γ5 = σ3. (B.1)

We further define
γ6 = σ1, γ7 = σ2, γ8 = σ3. (B.2)

The ten-dimensional gamma matrices are then given by

ΓA = +σ1 ⊗ σ2 ⊗ γA ⊗ 1 ⊗ 1 , A = 0, 1, 2,

ΓA = +σ1 ⊗ σ1 ⊗ 1 ⊗ γA ⊗ 1 , A = 3, 4, 5,

ΓA = +σ1 ⊗ σ3 ⊗ 1 ⊗ 1 ⊗ γA, A = 6, 7, 8,

Γ9 = −σ2 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1 .

(B.3)

We then have
Γ05 = −1 ⊗ σ3 ⊗ σ3 ⊗ σ3 ⊗ 1 ,

Γ012 = +σ1 ⊗ σ2 ⊗ 1 ⊗ 1 ⊗ 1 ,

Γ345 = +iσ1 ⊗ σ1 ⊗ 1 ⊗ 1 ⊗ 1 ,

Γ012345 = + 1 ⊗ σ3 ⊗ 1 ⊗ 1 ⊗ 1 ,

Γ1234 = − 1 ⊗ 1 ⊗ σ3 ⊗ σ3 ⊗ 1 ,

Γ6789 = + σ3 ⊗ σ3 ⊗ 1 ⊗ 1 ⊗ 1 ,

Γ = Γ0123456789 = +σ3 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1 .

(B.4)

36Our conventions are the same as those of [24], except for the definition of γ0 and γ2.
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The gamma matrices satisfy

(ΓA)t = −TΓAT−1, (ΓA)† = −CΓAC−1, (ΓA)∗ = +BΓAB−1, (B.5)

where
T = −iσ2 ⊗ σ2 ⊗ σ2 ⊗ σ2 ⊗ σ2, C = Γ0, B = −Γ0 T. (B.6)

It is useful to note the relations

T †T = C†C = B†B = 1, Bt = TC†,

T † = −T = +T t, C† = −C = +Ct, B† = +B = +Bt,

T = −Γ01479, C = −iσ1 ⊗ σ2 ⊗ σ3 ⊗ 1⊗ 1,

B = +σ3 ⊗ 1⊗ σ1 ⊗ σ2 ⊗ σ2 = −Γ1479,

BΓB† = Γ∗.

(B.7)

The Majorana spinors satisfy the conditions

θ∗ = Bθ, θ̄ = θ†C = θtT. (B.8)

C Killing spinors and a preferred choice of vielbeins

In this appendix we collect some of the computational details that are useful for the
calculation of Killing spinors done in section 2.1. We begin by presenting solutions
of the Killing spinor equation on S3 and AdS3 and, using these, we construct Killing
spinors in the full AdS3 × S3 × T4 geometry. In parallel with this construction, we also
introduce a particular choice of vielbeins for the geometries in question. Such a choice
is of course in some sense arbitrary and can be gauged away. However, many of the
detailed computations performed in this paper simplify significantly in this frame.

Killing spinors on S3. The S3 metric (2.2) can be written in terms of a diagonal
dreibein37

Em
A =


1

1+
y23+y

2
4

4

0 0

0 1

1+
y23+y

2
4

4

0

0 0
1− y

2
3+y

2
4

4

1+
y23+y

2
4

4

 (C.1)

37We denote the tangent space directions for S3 with A = 3, 4, 5.
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and the spin connection

ωy3 AB =
1

2


0 − y4

1+
y23+y

2
4

4

0

+ y4

1+
y23+y

2
4

4

0 0

0 0 0

 ,

ωy4 AB =
1

2


0 + y3

1+
y23+y

2
4

4

0

− y3

1+
y23+y

2
4

4

0 0

0 0 0

 ,

ωφAB =


0 0 + y3

1+
y23+y

2
4

4

0 0 + y4

1+
y23+y

2
4

4

− y3

1+
y23+y

2
4

4

− y4

1+
y23+y

2
4

4

0

 .

(C.2)

The S3 Killing spinors satisfy [70]

∂mη
I
S3 +

1

4
ωABm γABη

I
S3 +

i

2
Em

AγAσ
IJ
3 ηJS3 = 0. (C.3)

These equations are solved by

η̃1
S3 =

1√
1 +

y23+y24
4

(
1− iy3

2
γ3 − iy4

2
γ4
)
e−

iφ
2
γ5η1

0 ≡ M̂S3η1
0,

η̃2
S3 =

1√
1 +

y23+y24
4

(
1 +

iy3

2
γ3 +

iy4

2
γ4
)
e+ iφ

2
γ5η1

0 ≡ M̌S3η1
0,

(C.4)

where ηI0 are constant spinors with two complex components.
Let us consider the first of these solutions. We note that

M̂−1
S3 γA M̂S3 EA

m = γA M̂A
BE

B
m, M̌−1

S3 γA M̌S3 EA
m = γA M̌A

BE
B
m, (C.5)

where M̂AB and M̌AB are orthogonal matrices. Using these matrices we can introduce
new dreibeins, obtained by a rotation in tangent space

K̂A
m = M̂A

B Em
B , Ǩm

A = M̌A
BEm

B . (C.6)

The components of the inverse dreibein are given by a fairly compact expression and can
be written in the factorized form

K̂A
m =

+ cosφ + sinφ 0
− sinφ + cosφ 0

0 0 1




1 +
y23−y24

4
+y3y4

2
− y4

1−
y23+y

2
4

4

+y3y4
2

1− y23−y24
4

+ y3

1−
y23+y

2
4

4

+y4 −y3 1

 ,

ǨA
m =

+ cosφ − sinφ 0
+ sinφ + cosφ 0

0 0 1




1 +
y23−y24

4
+y3y4

2
+ y4

1−
y23+y

2
4

4

+y3y4
2

1− y23−y24
4

− y3

1−
y23+y

2
4

4

−y4 +y3 1

 .

(C.7)
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Like all vielbeins, the K̂n
A are covariantly constant

D̂mK̂n
A = ∂mK̂n

A − ΓkmnK̂k
A + ω̂m

A
BK̂

B
n = 0 . (C.8)

Here, ω̂mAB is the spin connection in the rotated tangent space. K̂m
A and ω̂mAB further

satisfy the relation
ω̂m

A
BK̂n

B + ω̂n
A
BK̂m

B = 0 , (C.9)

which is not true for generic vielbeins and spin-connections. Equations (C.8) and (C.9)
together give the relation

D̂mK̂n
A + D̂nK̂m

A = ∂mK̂n
A + ∂nK̂m

A − 2ΓkmnK̂k
A = 0. (C.10)

This is the Killing vector equation; similar equations hold for Ǩn
A.

The vectors K̂m
A and Ǩm

A together generate the so(4) = su(2) ⊕ su(2) isometry
algebra of S3,

[K̂A, K̂B] = +2εAB
CK̂C , [ǨA, ǨB] = −2εAB

CǨC , [K̂A, ǨB] = 0. (C.11)

Killing spinors on AdS3. We consider the AdS3 metric

ds2
AdS3 = −

(1 +
z21+z22

4

1− z21+z22
4

)2

dt2 +
( 1

1− z21+z22
4

)2

(dz2
1 + dz2

2), (C.12)

with the diagonal dreibein38

Em
A =


1+

z21+z
2
2

4

1−
z21+z

2
2

4

0 0

0 1

1−
z21+z

2
2

4

0

0 0 1

1−
z21+z

2
2

4

 . (C.13)

The AdS3 Killing spinors satisfy [69,70]

∂αε
I
AdS3

+
1

4
ωABα γABε

I
AdS3

+
1

2
Eα

AγAσ
IJ
3 εJAdS3

= 0, (C.14)

These equations have the solutions

ε̃1AdS3
=

1√
1− z21+z22

4

(
1− z1

2
γ1 − z2

2
γ2
)
e+ t

2
γ0ε10 ≡ M̂AdS3ε

1
0,

ε̃2AdS3
=

1√
1− z21+z22

4

(
1 +

z1

2
γ1 +

z2

2
γ2
)
e−

t
2
γ0ε20 ≡ M̌AdS3ε

2
0,

(C.15)

where εI0 are constant spinors.

38For AdS3 we denote the tangent space directions A = 0, 1, 2.
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Like we did for the S3 we introduce matrices M̂A
B and M̌A

B

M̂−1
AdS3

γA M̂AdS3 E
A
m = γA M̂A

BE
B
m, M̌−1

AdS3
γA M̌AdS3 E

A
m = γA M̌A

BE
B
m, (C.16)

These matrices are orthogonal with respect to a metric of signature (−1,+1,+1). The
rotated dreibeins are defined by

K̂m
A = M̂A

BEm
B, Ǩm

A = M̌A
BEm

B, (C.17)

are their inverses can be written in components as

K̂A
m =

1 0 0
0 + cos t + sin t
0 − sin t + cos t




+1 +z2 −z1

+ z2

1+
z21+z

2
2

4

1− z21−z22
4

− z1z2
2

− z1

1+
z21+z

2
2

4

− z1z2
2

1 +
z21−z22

4

 ,

ǨA
m =

1 0 0
0 + cos t − sin t
0 + sin t + cos t




+1 −z2 +z1

− z2

1+
z21+z

2
2

4

1− z21−z22
4

− z1z2
2

+ z1

1+
z21+z

2
2

4

− z1z2
2

1 +
z21−z22

4

 .

(C.18)

Like in the S3 case these dreibeins are Killing vectors satisfying the so(2, 2) = sl(2)⊕sl(2)
algebra

[K̂A, K̂B] = +2εAB
CK̂C , [ǨA, ǨB] = −2εAB

CǨC , [K̂A, ǨB] = 0. (C.19)

Killing spinors on AdS3 × S3 × T4. The above constructions of Killing spinors on
AdS3 and S3 can readily be used to show that the spinors (2.7) satisfy the Killing spinor
equations (2.4). Writing the Killing spinors in the penta-spinor notation used to define
the gamma matrices in appendix B, we have

ε1 =

(
1
0

)
⊗
(

0
1

)
⊗ ε̃1AdS3

⊗ η̃1
S3 ⊗ ψ1

0 = M̂
[(1

0

)
⊗
(

0
1

)
⊗ ε10 ⊗ η1

0 ⊗ ψ1
0

]
,

ε2 =

(
1
0

)
⊗
(

0
1

)
⊗ ε̃2AdS3

⊗ η̃2
S3 ⊗ ψ2

0 = M̌
[(1

0

)
⊗
(

0
1

)
⊗ ε20 ⊗ η2

0 ⊗ ψ2
0

]
,

(C.20)

where εI0, ηI0 and ψI0 are constant two-component spinors. In this basis, the matrices M̂
and M̌ are given by

M̂ = 1⊗ 1⊗ M̂AdS3 ⊗ M̂S3 ⊗ 1, M̌ = 1⊗ 1⊗ M̌AdS3 ⊗ M̌S3 ⊗ 1, (C.21)

and satisfy

M̂ tT = M̂−1 T, M̌ tT = M̌−1 T, M̂ †Γ0 = M̂−1 Γ0, M̌ †Γ0 = M̌−1 Γ0. (C.22)

One can easily check that the Killing spinors εI are chiral in the 5+1 and 9+1 dimensional
sense

1

2
(1 + Γ012345)ε̃I = 0,

1

2
(1− Γ0123456789)ε̃I = 0 . (C.23)
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Again we introduce orthogonal matrices M̂AB and M̌AB satisfying

M̂−1ΓAM̂ = ΓBM̂B
A, M̌−1ΓAM̌ = ΓBM̌B

A. (C.24)

These matrices are block diagonal,

M̂ = M̂AdS3 ⊕ M̂S3 ⊕ 14, M̌ = M̌AdS3 ⊕ M̌S3 ⊕ 14 , (C.25)

and are used in equation (2.13) to define a preferred set of vielbeins K̂m
A and Ǩm

A

used in much of the paper. The tangent space rotations above only affect the AdS3× S3

directions A = 0, . . . , 5 but leave the T4 directions i = 6, . . . , 9 untouched. It is therefore
convenient to introduce the contractions

/̄Em =
5∑

A=0

Em
AΓA, /̂Km =

5∑
A=0

K̂m
AΓA, /̌Km =

5∑
A=0

Ǩm
AΓA, /̇Em =

9∑
i=6

Em
iΓi,

(C.26)
of the various vielbeins in the two subspaces.

After performing the tangent space rotations we find new spin connections ω̂mAB and
ω̌mAB, and corresponding covariant derivatives D̂m and Ďm satisfying

D̂m ≡ M̂−1Dm M̂ = M̂−1
(
∂m +

1

4
ωABm ΓAB

)
M̂ = ∂m +

1

4
ω̂ABm ΓAB, (C.27)

and similar for Ďm. The spin connections can be written as

1

4
/̂ωm = −1

4
/̂Km(Γ012 + Γ345)− 1

4
(Γ012 + Γ345) /̂Km,

1

4
/̌ωm = +

1

4
/̌Km(Γ012 + Γ345) +

1

4
(Γ012 + Γ345) /̌Km,

(C.28)

which leads to

∂m +
1

4
/ωm +

1

24
/F /Em = M̂

(
∂m −

1

4

(
/̂Km + /̇Em

)
Γ012

(
1 + Γ012345

))
M̂−1,

∂m −
1

4
/ωm +

1

24
/F /Em = M̌

(
∂m +

1

4

(
/̌Km + /̇Em

)
Γ012

(
1 + Γ012345

))
M̌−1.

(C.29)

D Proof of the identity (2.24)

To prove the identity (2.24) we write

εαβ∂α
(
M̌−1M̂ /̂Kβ

)
(1− Γ012345) = εαβ∂αX

m∂βX
n
[
∂m
(
M̌−1 /EnM̂

)]
(1− Γ012345). (D.1)

The expression in the square brackets is antisymmetrized in m and n. By multiplying it
from the left and the right by M̌ and M̂−1 we get

M̌∂[m

(
M̌−1 /̄En]M̂

)
M̂−1 = ∂[m /̄En] +

(
M̌∂[mM̌

−1
)
/̄En] + /̄E[m

(
M̂∂m]M̂

−1
)
. (D.2)
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Using the relations

1

4
/ωm =

1

4
M̂ /̂ωmM̂

−1 + M̂∂mM̂
−1 =

1

4
M̌ /̌ωmM̌

−1 + M̌∂mM̌
−1 (D.3)

we find

M̌∂[m

(
M̌−1 /̄En]M̂

)
M̂−1 = ∂[m /̄En] +

1

4

(
/ω[m

/̄En] + /̄E[m/ωn]

)
− 1

4
M̌ /̌ω[m

/̌Kn]M̌
−1 − 1

4
M̂ /̂K [m /̂ωn]M̂

−1.
(D.4)

The first term on the right-hand side can be shown to be zero using the covariant con-
stancy of the vielbein. Using the expressions for the spin connection in section C we
can check that the second term is proportional to the projector (1 + Γ0123456). Hence the
expression appearing in (2.24) vanishes.

E Useful identities for so(4) gamma matrices

The following identities involving blocks of the so(4) gamma matrices γ̂i and τ̂ i are useful

γiγ̃j = +δij + γij, τ iτ̃ j = −δij + τ ij,

γ̃iγj = +δij + γij, τ̃ iτ j = −δij + τ ij,

γiγ̃jγk = +εijklγl + δijγk − δikγj + δjkγi,

γ̃iγj γ̃k = −εijklγ̃l + δij γ̃k − δikγ̃j + δjkγ̃i,
(E.1)

γiγ̃jγkγ̃l = δjkδil − δjlδik + δklδij + εijkl − εjklmγim + δjkγil − δjlγik + δklγij,

γ̃iγj γ̃kγl = δjkδil − δjlδik + δklδij − εijkl + εjklmγ̃im + δjkγ̃il − δjlγ̃ik + δklγ̃ij,

τ̃ kτ ij = εkijlτ̃l − δkiτ̃ j + δkj τ̃ i .

We also use the relations

(τ̃ i)ȧaε
ab(τ̃ j)ḃb = −δijεȧḃ + (τ̃ ij)ȧḋ ε

ḋḃ, (τ̃ i)ȧa (τ̃ i)ḃb = +2εȧḃεab. (E.2)

F Relations between ΓA and so(4)1⊕ so(4)2 gamma

matrices

Let us relate the action on the fermions of the ten dimensional gamma matrices of
appendix B with the action of the so(4)1 ⊕ so(4)2 gamma matrices introduced in sec-
tion 2.2.5. The chiral spinors ηI and χI have eigenvalue +1 under Γ0123456789. Here
we write the action of the gamma matrices that preserve this chirality. Performing the
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change of basis (2.55) we find the decomposition

TΓ0 = − σ3 ⊗ 1 ⊗ σ1 ⊗ σ2 ⊗ σ2 → −
(

+ε 0
0 +ε

)
⊗
(

+ε 0
0 +ε

)
TΓ1 = +iσ3 ⊗ 1 ⊗ σ3 ⊗ σ2 ⊗ σ2 → −i

(
0 +εγ1

−εγ̃1 0

)
⊗
(

+ε 0
0 +ε

)
,

TΓ2 = − σ3 ⊗ 1 ⊗ 1 ⊗ σ2 ⊗ σ2 → −i
(

0 +εγ2

−εγ̃2 0

)
⊗
(

+ε 0
0 +ε

)
,

TΓ3 = + σ3 ⊗ σ3 ⊗ σ2 ⊗ σ3 ⊗ σ2 → −i
(

0 +εγ3

−εγ̃3 0

)
⊗
(

+ε 0
0 −ε

)
,

TΓ4 = +iσ3 ⊗ σ3 ⊗ σ2 ⊗ 1 ⊗ σ2 → −i
(

0 +εγ4

−εγ̃4 0

)
⊗
(

+ε 0
0 −ε

)
,

TΓ5 = − σ3 ⊗ σ3 ⊗ σ2 ⊗ σ1 ⊗ σ2 → +

(
+ε 0
0 −ε

)
⊗
(

+ε 0
0 −ε

)
,

TΓ6 = − σ3 ⊗ σ1 ⊗ σ2 ⊗ σ2 ⊗ σ3 → −i
(

+εγ34 0
0 −εγ̃34

)
⊗
(

0 −ετ 6

+ετ̃ 6 0

)
,

TΓ7 = −iσ3 ⊗ σ1 ⊗ σ2 ⊗ σ2 ⊗ 1 → −i
(

+εγ34 0
0 −εγ̃34

)
⊗
(

0 −ετ 7

+ετ̃ 7 0

)
,

TΓ8 = + σ3 ⊗ σ1 ⊗ σ2 ⊗ σ2 ⊗ σ1 → −i
(

+εγ34 0
0 −εγ̃34

)
⊗
(

0 −ετ 8

+ετ̃ 8 0

)
,

TΓ9 = +i1 ⊗ σ2 ⊗ σ2 ⊗ σ2 ⊗ σ2 → −i
(

+εγ34 0
0 −εγ̃34

)
⊗
(

0 −ετ 9

+ετ̃ 9 0

)
,

(F.1)

where the arrows indicate a restriction to the upper left 16× 16 block. We further find

TΓ012 = −σ3 ⊗ 1 ⊗ σ2 ⊗ σ2 ⊗ σ2 → +

(
+εγ34 0

0 −εγ̃34

)
⊗
(

+ε 0
0 +ε

)
,

TΓ345 = −σ3 ⊗ σ3 ⊗ σ2 ⊗ σ2 ⊗ σ2 → +

(
+εγ34 0

0 −εγ̃34

)
⊗
(

+ε 0
0 −ε

)
,

(F.2)

and
Γ1234 = −1 ⊗ 1 ⊗ σ3 ⊗ σ3 ⊗ 1 → +σ3 ⊗ 1 ⊗ 1 ⊗ 1 ,

Γ6789 = +σ3 ⊗ σ3 ⊗ 1 ⊗ 1 ⊗ 1 → +1 ⊗ 1 ⊗ σ3 ⊗ 1 ,

Γ05 = −1 ⊗ σ3 ⊗ σ3 ⊗ σ3 ⊗ 1 → +σ3 ⊗ 1 ⊗ σ3 ⊗ 1 .

(F.3)

It is also useful to note that

Γ12 → +γ̂12 ⊗ 1,

Γij → +γ̂ij ⊗ τ̂ 6789, for i = 1, 2, j = 3, 4,

Γ34 → +γ̂34 ⊗ 1,

Γij → −1⊗ τ̂ ij .

(F.4)
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G LWZ in so(4)1 ⊕ so(4)2 components

In this appendix we write down the expression for LWZ in terms of so(4)1 ⊕ so(4)2

bispinors introduced in section 2.2.5. In order to do this notice first that the matrix M0,
when written after the basis change (2.55), is of the form

M0 = 12 ⊗m0 ⊗ 14 , (G.1)

where m0 is a 4×4 matrix. In other words it acts non-trivially only on so(4)1. Explicitly
we find

m0 =
1√(

1− z2

4

)(
1 + y2

4

)(1−
iεijzi

2

(
0 +γj
−γ̃j 0

))(
1−

iεklyk
2

(
0 +γl

+γ̃l 0

))
(G.2)

and it is also useful to note

m2
0 =


(

1+ z2

4

)(
1− y

2

4

)
−εijεklziykγjl(

1− z2
4

)(
1+ y2

4

) −i
(

1+ z2

4

)
εijyiγj+

(
1− y

2

4

)
εijziγj(

1− z2
4

)(
1+ y2

4

)
−i
(

1+ z2

4

)
εijyiγ̃j−

(
1− y

2

4

)
εijziγ̃j(

1− z2
4

)(
1+ y2

4

) (
1+ z2

4

)(
1− y

2

4

)
+εijεklziykγ̃jl(

1− z2
4

)(
1+ y2

4

)
 . (G.3)

The above matrices are written in block form, with the blocks having the same index
structure as that given in equation (2.50). Using this block structure we define

m2
0 ≡

(
(m2

0)ab (m2
0)aḃ

(m2
0)ȧb (m2

0)ȧḃ

)
. (G.4)

It is straightforward to check that

m−2
0 ≡

(
(m2

0)ab −(m2
0)aḃ

−(m2
0)ȧb (m2

0)ȧḃ

)
. (G.5)

Equipped with these observations, it is now straightforward though laborious to ex-
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press LWZ given in equation (2.34), in terms of so(4)1 ⊕ so(4)2 bispinor fermions,

LWZ = εαβ
(

2iĚ+
α η̄2m

2
0∂βη1 + 2iÊ+

α η̄1m
2
0∂βη2 + 2iĚ+

α χ̄2m
2
0∂βχ1 + 2iÊ+

α χ̄1m
2
0∂βχ2

+
∑
i=1,2

(
Êi
αη̄1γ̃

im2
0∂βη2 − Ěi

αη̄2γ̃
im2

0∂βη1 + Ěi
αχ̄2γ

im2
0∂βχ1 − Ěi

αχ̄1γ
im2

0∂βχ2

)
+
∑
i=3,4

(
Ěi
αη̄2γ̃

im2
0∂βη1 − Êi

αη̄1γ̃
im2

0∂βη2 + Ěi
αχ̄2γ

im2
0∂βχ1 − Ěi

αχ̄1γ
im2

0∂βχ2

)
− 2Ei

α

(
χ̄2γ

34m2
0τ

i∂βη1 − χ̄1γ
34m2

0τ
i∂βη2

)
− 2i

(
Ê+
α χ̄1m

2
0γ

34χ2 − Ě+
α χ̄2m

2
0γ

34χ1

)
∂βx

−

− 2i
(
Ê+
α η̄1m

2
0γ̃

34η2 − Ě+
α η̄2m

2
0γ̃

34η1

)
∂βx

+

+
(
Ěi
αχ̄2γ

im2
0γ

34χ1 + Êi
αχ̄1γ

im2
0γ

34χ2

)
∂βx

−

−
∑
i=1,2

(
Ěi
αη̄2γ̃

im2
0γ̃

34η1 + Êi
αη̄1γ̃

im2
0γ̃

34η2

)
∂βx

+

+
∑
i=3,4

(
Ěi
αη̄2γ̃

im2
0γ̃

34η1 + Êi
αη̄1γ̃

im2
0γ̃

34η2

)
∂βx

+

− 2Ei
α

(
χ̄2γ

34m2
0γ̃

34τ iη1 + χ̄1γ
34m2

0γ̃
34τ iη2

)
∂βx

+

+
i

2
Ei
αE

j
β

(
χ̄2γ

34m2
0τ

ijχ1 − χ̄1γ
34m2

0τ
ijχ2

)
∂βx

+

− 2iĚ+
α Ě

−
β χ̄2γ

34m2
0χ1 + 2iÊ+

α Ê
−
β χ̄1γ

34m2
0χ2

+ 2
(
Ě+
α Ě

i
βχ̄2γ

iγ̃34m2
0χ1 − Ê+

α Ê
i
βχ̄1γ

iγ̃34m2
0χ2

)
− i

2

(
Ěi
αĚ

j

βχ̄2γ
ijγ34m2

0χ1 − Êi
αÊ

j

βχ̄1γ
ijγ34m2

0χ2

))
. (G.6)

As expected, many of the terms above break the so(4)1 explicitly.

H Equations of motion

In this appendix we write down the bosonic and fermionic equations of motion for the
physical fields of the fully gauge-fixed theory to leading order in fermionic fields and
sub-leading order in bosonic fields. The bosonic equations of motion are

z̈i =
′′
zi − zi + (z2 − y2)

′′
zi + (2z · ′z − y · ′y)

′
zi − y · ẏ żi

+
1

2

(
y2 − ẏ2 − ′

y2 − 2
′
z2 − ẋ2 − ′

x2
)
zi + · · · , (H.1)

ÿi =
′′
yi − yi + (z2 − y2)

′′
yi + (z · ′z − 2y · ′y)

′
yi + z · ż ẏi

+
1

2

(
ż2 +

′
z2 − z2 + 2

′
y2 + ẋ2 +

′
x2
)
yi + · · · , (H.2)

ẍi =
′′
xi + (z2 − y2)

′′
xi + (z · ′z − y · ′y)

′
xi + (z · ż − y · ẏ)ẋi + · · · . (H.3)
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The fermionic equations of motion are

2η̇1 =− 2
′
η2 − 2γ̃34η1 + εij(zi

′
zj − yi

′
yj)

′
η1 +

(
y · ′y − z · ′z + (yi

′
zj − zi

′
yj)γ̃

ij
)
η2

+
(
y2 − z2 + (żi + ẏi)(zj − yj)γ̃34γ̃iγj

) ′
η2 +

(
y · ′y − z · ′z + (zi

′
yj − yi

′
zj)γ̃

34γ̃ij
)
η̇2

+ (zi − yi)
′
xiγ̃

iτ̃ iχ̇2 − (zi − yi)ẋiγ̃iτ̃ i
′
χ2

+
(
(żi − ẏi)

′
xi − (

′
zi −

′
yi)ẋi + (zi − yi)ẋiγ̃34

)
γ̃iτ̃ iχ2 + · · · , (H.4)

2η̇2 =− 2
′
η1 + 2γ̃34η2 − εij(zi

′
zj − yi

′
yj)

′
η2 +

(
y · ′y − z · ′z + (yi

′
zj − zi

′
yj)γ̃

ij
)
η1

+
(
y2 − z2 − (żi + ẏi)(zj − yj)γ̃34γ̃iγj

) ′
η1 −

(
y · ′y − z · ′z + (zi

′
yj − yi

′
zj)γ̃

34γ̃ij
)
η̇1

− (zi − yi)
′
xiγ̃

iτ̃ iχ̇1 + (zi − yi)ẋiγ̃iτ̃ i
′
χ1

−
(
(żi − ẏi)

′
xi − (

′
zi −

′
yi)ẋi − (zi − yi)ẋiγ̃34

)
γ̃iτ̃ iχ1 + · · · , (H.5)

4χ̇1 =− 4
′
χ2 + 2εij(yi − zi)

′
xiγ

jτ iη2 − 2(yi − zi)
′
xiγ

jτ iη̇2 + 2(yi − zi)ẋiγiτ i
′
η2

+ εij(zi
′
zj − yi

′
yj)

′
χ1 + (ẋ2 + ẏ2 + ż2 − ′

x2 − ′
y2 − ′

z2 − y2 − z2)γ34χ1

+ 2
(
ẋi
′
xjγ

34τ ij + 1
2
εij(ẏi

′
yj − żi

′
zj) + (yi − zi)(

′
yj +

′
zj)γ

j γ̃i − (ẏi
′
zj + żi

′
yj)γ

34γji
)
χ2

+ 2
(
y2 − z2 − (zi − yi)(żj − ẏj)γ34γj γ̃i

) ′
χ2

+
(
y · ′y + z · ′z − 2(zi

′
yj +

′
zjyi)γ

ij
)
γ34χ̇2 + · · · , (H.6)

4χ̇2 =− 4
′
χ1 + 2εij(yi − zi)

′
xiγ

jτ iη1 + 2(yi − zi)
′
xiγ

jτ iη̇1 − 2(yi − zi)ẋiγiτ iη′1
− εij(zi

′
zj − yi

′
yj)

′
χ2 − (ẋ2 + ẏ2 + ż2 − ′

x2 − ′
y2 − ′

z2 − y2 − z2)γ34χ2

− 2
(
ẋi
′
xjγ

34τ ij + 1
2
εij(ẏi

′
yj − żi

′
zj)− (yi − zi)(

′
yj +

′
zj)γ

j γ̃i − (ẏi
′
zj + żi

′
yj)γ

34γji
)
χ1

+ 2
(
y2 − z2 + (zi − yi)(żj − ẏj)γ34γj γ̃i

) ′
χ1

−
(
y · ′y + z · ′z − 2(zi

′
yj +

′
zjyi)γ

ij
)
γ34χ̇1 + · · · . (H.7)

I Poisson bracket for ηI and χI

In this appendix we compute the Poisson brackets for ηI and χI . To do this let us write
all the terms in the action that have a τ -derivative acting on the fermions up to quadratic
order in transverse bosons. Keeping only the terms up to the order in the number of
fields that we require, Lkin gives rise to two such terms

−2iγ00
(
η̄1Ê

+
τ Γ−η̇1 + χ̄1Ê

+
τ Γ−χ̇1

)
≈ 2i

(
η̄1η̇1 + χ̄1χ̇1

)(
1 + 1

2
(εijziżj − εijyiẏj)

)
,

−2iγ00
(
η̄2Ě

+
τ Γ−η̇2 + χ̄2Ě

+
τ Γ−χ̇2

)
≈ 2i

(
η̄2η̇2 + χ̄2χ̇2

)(
1− 1

2
(εijziżj − εijyiẏj)

)
.

(I.1)

From LWZ we get additional terms

−iη̄1
/̌EσM

−2
0 η̇2 ≈ +iη̄1γ̃

34η̇2(z · ′z − y · ′y)− iη̄1γ̃
34γ̃ij η̇2(zi

′
yj + zi

′
yj),

−iη̄2
/̂EσM

+2
0 η̇1 ≈ −iη̄2γ̃

34η̇1(z · ′z − y · ′y) + iη̄2γ̃
34γ̃ij η̇1(zi

′
yj + zi

′
yj),

−iχ̄1
/̂EσM

−2
0 χ̇2, ≈ −iχ̄1γ

34χ̇2(z · ′z + y · ′y)− iχ̄1γ
34γijχ̇2(zi

′
yj −

′
ziyj),

−iχ̄2
/̌EσM

+2
0 χ̇1, ≈ +iχ̄2γ

34χ̇1(z · ′z + y · ′y) + iχ̄2γ
34γijχ̇1(zi

′
yj −

′
ziyj),

(I.2)
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as well as terms that mix massless and massive fields,

−iη̄1
/̇EσM

−2
0 χ̇2 ≈ −iη̄1γ̃

iτ̃ iχ̇2(zi − yi)
′
xi,

−iη̄2
/̇EσM

+2
0 χ̇1 ≈ +iη̄2γ̃

iτ̃ iχ̇1(zi − yi)
′
xi,

−iχ̄1
/̇EσM

−2
0 η̇2 ≈ −iχ̄1εγ

iτ iη̇2(zi − yi)
′
xi,

−iχ̄2
/̇EσM

+2
0 η̇1 ≈ +iχ̄2γ

iτ iη̇1(zi − yi)
′
xi.

(I.3)

These terms can be diagonalised by a field redefinition. Let us introduce a new set of
spinors ψa, a = 1, . . . , 4 by

η1 = ψ1 + 1
2
A1aψa, η2 = ψ2 + 1

2
A2aψa, χ1 = ψ3 + 1

2
A3aψa, χ2 = ψ4 + 1

2
A4aψa. (I.4)

The kinetic term then take the canonical form

2iψaεεψ̇a, (I.5)

provided the coefficients Aab are chosen as

+A11 = −A22 = +A33 = −A44 = −1
2
εij(ziżj − yiẏj),

+A12 = −A21 = −1
2
γ̃34(z · ′z − y · ′y) + 1

2
γ̃34γ̃ij(zi

′
yj +

′
ziyj),

+A34 = −A43 = +1
2
γ34(z · ′z + y · ′y) + 1

2
γ34γij(zi

′
yj −

′
ziyj),

A13 = A31 = A24 = A42 = 0,

+A14 = −A23 = +1
2
γ̃iτ̃ i(zi − yi)

′
xi,

+A41 = −A32 = −1
2
γiτ i(zi − yi)

′
xi.

(I.6)

It is useful to note that the coefficients satisfy

Aab = (εε)Atba(εε). (I.7)

The fermions ψa have canonical Poisson brackets

{ψa, ψb}
PB

= − i
4
δabεε. (I.8)

The Poisson brackets for the ηi and χI then follow immediately and are given in equa-
tion (2.88).
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J Some Poisson brackets used in section 2.4.1

To calculate the Poisson bracket between the exponential factor in Q and H we need the
relations

[x−(σ), xi(σ′)]
PB

= +
1

p−

∫ σ

−∞
ds

′
xi(s)δ(s− σ′)

= +
1

p−

′
xi(σ′)ε(σ − σ′),

[x−(σ),
′
xi(σ′)]

PB
= +

1

p−

∫ σ

−∞
ds ∂σ′(

′
xi(s)δ(s− σ′)

= +
1

p−

′′
xi(σ′)ε(σ − σ′)− 1

p−

′
xi(σ′)δ(σ − σ′),

[x−(σ), pi(σ
′)]

PB
= − 1

p−

∫ σ

−∞
ds pi(s)∂sδ(s− σ′)

= +
1

p−

′
pi(σ

′)ε(σ − σ′)− 1

p−
pi(σ)δ(σ − σ′).

(J.1)

Using these relations we find

[x−(σ), 1
2
(p2(σ′) +

′
x2(σ′))]

PB
= +

1

p2
−
∂σ′
[(
p2(σ′) +

′
x2(σ′)

)
ε(σ − σ′)

]
− 1

p2
−

(
p2(σ′) +

′
x2(σ′)

)
δ(σ − σ′)

(J.2)

For the Poisson bracket between the Hamiltonian and the quadratic supercharge we note

[pi(σ)τ̃ iχ1(σ), 1
2

′
x2(σ′)]

PB
= − ′xi(σ′)τ̃ iχ1(σ)∂σ′δ(σ − σ′),

[
′
xi(σ)τ̃ iχ2(σ), 1

2
p2(σ′)]

PB
= +pi(σ

′) τ̃ iχ2(σ)∂σδ(σ − σ′),

[pi(σ)τ̃ iχ1(σ), χ1(σ′)εε
′
χ2(σ′)]

PB
= − i

2p−
pi(σ)τ̃ i

′
χ2(σ′)δ(σ − σ′),

[pi(σ)τ̃ iχ1(σ), χ2(σ′)εε
′
χ1(σ′)]

PB
= +

i

2p−
pi(σ)τ̃ iχ2(σ′)∂σ′δ(σ − σ′),

(J.3)

and

[piτ̃
iχ1, χ1(εγ34)εχ1]

PB
= − i

p−
piγ

34τ̃ iχ1,

[
′
xiτ̃

iχ2, χ2(εγ34)εχ2]
PB

= − i

p−

′
xiγ

34τ̃ iχ2,

[pkτ̃
kχ1, χ1(εγ34)(ετ ij)χ2]

PB
= − i

2p−
pkγ

34τ̃ kτ ijχ2,

[
′
xkτ̃

kχ2, χ2(εγ34)(ετ ij)χ1]
PB

= − i

2p−

′
xkγ

34τ̃ kτ ijχ1.

(J.4)

We also collect here some formulas that are useful in deriving equation (2.82). First,
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note that for a constant α

eαx
−(σ)[Q2(σ), H]

PB
= +

2

p−
∂σ
(
eαx

−
(
′
xiτ̃

iχ1 − piτ̃ iχ2)
)

− 2

p2
−
eαx

−(
pi
′
xiγ34 + αp−

′
x−
)
(
′
xiτ̃

iχ1 − piτ̃ iχ2)

+
1

p2
−
eαx

−
(p2 +

′
x2)γ34(piτ̃

iχ1 −
′
xiτ̃

iχ2)

(J.5)

and

Q2(σ)[eαx
−(σ), H]

PB
=− 1

p2
−
eαx

−(σ)α(p2(σ) +
′
x2(σ))(piγ

34τ̃ iχ1 −
′
xiτ̃

iχ2). (J.6)

Putting this together we find, up to total derivatives of expressions that vanish at ±∞,

[eαx
−Q2, H]

PB
=− 2

p2
−

∫ +∞

−∞
dσ eαx

−
pi
′
xi(γ34 − α)(

′
xj τ̃

jχ1 − pj τ̃ jχ2)

− 1

p2
−

∫ +∞

−∞
dσeαx

−
(
′
x2 + p2)(γ34 − α)(piτ̃

iχ1 −
′
xiτ̃

iχ2).

(J.7)

Hence, if we set
α = γ34 (J.8)

the expression eαx
−Q2 gives a conserved charge.
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K Derivation of equation (2.89)

In this appendix we give the details of the how equation (2.89) is derived. The various
terms in {j1, j2}

PB
are given by

2ip−{j1,massless, j2,massless}
PB

= + 2ẋ · ′xεε

+ εij(ziżj − yiẏj)ẋi
′
xjετ̃

ijε

− 1
2
(z · ′z + y · ′y)(ẋ2 − ′

x2)γ34εε

− 1
2
(zi

′
yj −

′
ziyj)(ẋ

2 − ′
x2)γijγ34εε,

2ip−{j1,massless, j2,massive}
PB

=− 1
2
(zi − yi)(żj − ẏj)ẋi

′
xjγ

34γiγ̃jετ̃ iτ jε

− 1
2
(zi − yi)(zj + yj)ẋi

′
xjγ

34γiγ̃jγ34ετ̃ iτ jε

− 1
2
(zi − yi)(

′
zj −

′
yj)

′
x2γ34γiγ̃jεε,

2ip−{j1,massive, j2,massless}
PB

=− 1
2
(żi − ẏi)(zj − yj)

′
xiẋjγ

iγ̃jγ34ετ̃ iτ jε

− 1
2
(zi + yi)(zj − yj)

′
xiẋjγ

34γiγ̃jγ34ετ̃ iτ jε

− 1
2
(
′
zi −

′
yi)(zj − yj)

′
x2γiγ̃jγ34εε,

2ip−{j1,massive, j2,mixed}
PB

=− 1
2
(żi − ẏi)(zj − yj)ẋ ·

′
xγiγ̃jγ34εε

− 1
2
(zi + yi)(zj − yj)ẋ ·

′
xγ34γiγ̃jγ34εε

+ 1
4
(
′
zi −

′
yi)(zj − yj)(ẋ2 +

′
x2)γiγ̃jγ34εε,

2ip−{j1,mixed, j2,massive}
PB

=− 1
2
(zi − yi)(żj − ẏj)ẋ ·

′
xγ34γiγ̃jεε

− 1
2
(zi − yi)(zj + yj)ẋ ·

′
xγ34γiγ̃jγ34εε

+ 1
4
(zi − yi)(

′
zj −

′
yj)(ẋ

2 +
′
x2)γ34γiγ̃jεε,

2ip−{j1,massless, j2,mixed}
PB

=− (z2 − y2)ẋi
′
xjετ̃

ijε

+ ziyjẋi
′
xjγ

ijετ̃ iτ jε,

2ip−{j1,mixed, j2,massless}
PB

= + (z2 − y2)ẋi
′
xiετ̃abε

− ziyj
′
xiẋjγ

ijετ̃ iτ jε,

2ip−{j1,massive, j2,massive}
PB

= + 2(ż · ′z + ẏ · ′y)εε

+ 2(z · ′z − y · ′y)γ34εε

− 2(zi
′
yj +

′
ziyj)γ

34γijεε.

(K.1)
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Putting this together we find

2ip−{j1, j2}
PB

= +2e+γ34x−
(

(ż · ′z + ẏ · ′y + ż · ′z)εε+ (z · ′z − y · ′y)γ34εε

− (zi
′
yj +

′
ziyj)γ

34γijεε
)
e−γ

34x−

= +e+γ34x−
(

2(ż · ′z + ẏ · ′y + ż · ′z)εε+ ∂σ(z2 − y2)γ34εε

− ∂σ(ziyj)γ
34γijεε

)
e−γ

34x− .

(K.2)

L Oscillator algebra

As a preliminary step to facilitate the study of non-perturbative representations, let us
rewrite the supercurrents in components and expand them in terms of oscillators in a
momentum-basis. In this way, it will be easier to read off the form of the representations,
and to deform their dependence on the momentum. In order to elucidate the structure of
the representations it will be sufficient to consider their leading order in a field expansion.

We introduce complex coordinates

Z = −z2 + i z1 , Z̄ = −z2 − i z1 , Y = y3 + i y4 , Ȳ = y3 − i y4 , (L.1)

and the corresponding conjugate momenta PZ , PZ̄ and PY , PȲ so that the variables satisfy
canonical commutation relations

[Z(σ1), PZ̄(σ2)] = [Z̄(σ1), PZ(σ2)] = i δ(σ1 − σ2) ,

[Y (σ1), PȲ (σ2)] = [Ȳ (σ1), PY (σ2)] = i δ(σ1 − σ2) .
(L.2)

Similarly, for T4 coordinates we introduce

X12 = x6 + i x7 , X21 = −x6 + i x7 , X11 = x8 + i x9 , X22 = x8 − i x9 , (L.3)

and canonical momenta satisfying

[X ȧa(σ1), Pḃb(σ2)] = i δȧ
ḃ
δab δ(σ1 − σ2) . (L.4)

It will also be useful to expand the fermions in components. For the massive ones we
have(

η1

)
ȧȧ

=

(
−e+iπ/4 η̄L1 −e+iπ/4 η̄L2

e−iπ/4 η 2
L −e−iπ/4 η 1

L

)
,

(
η2

)
ȧȧ

=

(
−e−iπ/4 ηR2 e−iπ/4 η 1

R

−e+iπ/4 η̄ 1
R −e+iπ/4 η̄R2

)
,

(L.5)
where we introduced a rotation of e±iπ/4 for later convenience. Similarly, we have(
χ1

)
aa

=

(
e+iπ/4χ̄−2 −e+iπ/4χ̄−1

e−iπ/4χ 1
− e−iπ/4χ 2

−

)
,

(
χ2

)
aa

=

(
−e−iπ/4χ 1

+ −e−iπ/4χ 2
+

e+iπ/4χ̄+2 −e+iπ/4χ̄+1

)
.

(L.6)
On the right-hand side of the above expressions for ηI (respectively χI) the indices 1, 2
correspond to the unbroken su(2)• (respectively su(2)◦), and complex conjugation is
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indicated by a bar. We write superscript su(2)• indices for left massive fermions and
subscript indices for right massive fermions (the opposite for their conjugates) because
they transform in the fundamental and anti-fundamental representations, respectively.
The canonical anti-commutation relations take the form

{η̄Lȧ(σ1), η ḃ
L (σ2)} = {η̄ ḃ

R (σ1), ηRȧ(σ2)} = δ ḃ
ȧ δ(σ1 − σ2),

{χ̄+a(σ1), χb+(σ2)} = {χ̄−a(σ1), χb−(σ2)} = δ b
a δ(σ1 − σ2),

(L.7)

Using these expressions, we can write the leading order expression of the charges,
recalling that we take ε12 = −ε12 = +1,

Q ȧ
L = e−

π
4
i

∫
dσ

(
1

2
PZη

ȧ
L − iZ ′η̄ ȧ

R + iZη ȧ
L − εȧḃ

( i
2
PȲ η̄Lḃ − Ȳ

′η
Rḃ + Ȳ η̄

Lḃ

)
− 1

2
εȧḃPḃaχ

a
+ − i(X ȧa)′ χ̄−a

)
,

QRȧ = e−
π
4
i

∫
dσ

(
1

2
PZ̄ηRȧ − iZ̄ ′η̄Lȧ + iZ̄ηRȧ + εȧḃ

( i
2
PY η̄

ḃ
R − Y ′η ḃ

L + Y η̄ ḃ
R

)
+

1

2
Pȧaχ

a
− − iεȧḃ(X

ḃa)′ χ̄+a

)
,

(L.8)

while their Hermitian conjugates can be found directly by

QLȧ = (Q ȧ
L )†, Q ȧ

R = (QRȧ)
†. (L.9)

We can now introduce ladder operators satisfying canonical (anti-)commutation rela-
tions. Let us define the wavefunction parameters

ω(p,m) =
√
m2 + p2, f(p,m) =

√
ω(p,m) + |m|

2
, g(p,m) = − p

2f(p,m)
, (L.10)

satisfying

ω(p,m) = f(p,m)2 + g(p,m)2, |m| = f(p,m)2 − g(p,m)2, (L.11)

and the short-hand notation

ωp = ω(p,±1) fp = f(p,±1), gp = g(p,±1),

ω̃p = ω(p, 0), f̃p = f(p, 0), g̃p = g(p, 0).
(L.12)
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Then, for the massive bosons we have

aLz(p) =
1√
2π

∫
dσ
√
ωp

(
ωpZ̄ +

i

2
PZ̄

)
e−ipσ,

aRz(p) =
1√
2π

∫
dσ
√
ωp

(
ωpZ +

i

2
PZ

)
e−ipσ,

aLy(p) =
1√
2π

∫
dσ
√
ωp

(
ωpȲ +

i

2
PȲ

)
e−ipσ,

aRy(p) =
1√
2π

∫
dσ
√
ωp

(
ωpY +

i

2
PY

)
e−ipσ,

(L.13)

while for the massive fermions

dLȧ(p) = +
e+iπ/4

√
2π

∫
dσ
√
ωp

εȧḃ

(
fp η

ḃ
L + igp η̄

ḃ
R

)
e−ipσ,

d ȧ
R (p) = −e

+iπ/4

√
2π

∫
dσ
√
ωp

εȧḃ (fp ηRḃ + igp η̄Lḃ) e
−ipσ.

(L.14)

The corresponding creation operators are found by taking the complex conjugate of the
above expressions, and raising and lowering the su(2) indices by the tensor ε, yielding

[a†L z(p1), aL z(p2)] = [a†R z(p1), aR z(p2)] = δ(p1 − p2) ,

[a†L y(p1), aL y(p2)] = [a†R y(p1), aR y(p2)] = δ(p1 − p2) ,

{d ȧ †
L (p1), d

Lḃ(p2)} = {d †
Rḃ

(p1), d ȧ
R (p2)} = δ ȧ

ḃ
δ(p1 − p2) .

(L.15)

For the massless bosons we have

aȧa(p) =
1√
2π

∫
dσ√
ω̃p

(
ω̃pXȧa +

i

2
Pȧa

)
e−ipσ. (L.16)

and for the massless fermions

d̃a(p) =
e−iπ/4√

2π

∫
dσ√
ω̃p

(
f̃pχ̄+a + ig̃p εabχ

b
−

)
e−ipσ,

da(p) =
e+iπ/4

√
2π

∫
dσ√
ω̃p

(
f̃p εabχ

b
+ + ig̃p χ̄−a

)
e−ipσ.

(L.17)

The commutators for the creation and annihilation operators are then

[a†ȧa(p1), aḃb(p2)] = δ ḃ
ȧ δ

b
a δ(p1 − p2) ,

{d̃a †(p1), d̃b(p2)} = {d a †(p1), db(p2)} = δ a
b δ(p1 − p2) .

(L.18)

We define states by acting with the creation operators on the vacuum. We have eight
massive excitations

|ZL,R〉 = a†L,R z |0〉 , |Y L,R〉 = a†L,R y |0〉 , |η ȧ
L 〉 = dȧ†L |0〉 , |ηRȧ〉 = d†

Rȧ |0〉 , (L.19)
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and eight massless ones

|T ȧa〉 = aȧa † |0〉 , |χa〉 = da † |0〉 , |χ̃a〉 = d̃a † |0〉 . (L.20)

The same notation is used in the main text for the states on which the non-perturbative
S matrix acts.

Finally, the supercharges in terms of ladder operators take the form

Q ȧ
L =

∫
dp

[
(d ȧ †

L aLy + εȧḃ a†LzdLḃ)fp + (a†Ryd
ȧ

R + εȧḃ d†
Rḃ
aRz)gp

+
(
εȧḃ d̃a †aḃa + aȧa †da

)
f̃p

]
,

QRȧ =

∫
dp

[
(d†

RȧaRy − εȧḃ a
†
Rzd

ḃ
R )fp + (a†LydLȧ − εȧḃ d

ḃ †
L aLz)gp

+
(
da †aȧa − εȧḃ a

ḃa †d̃a

)
g̃p

]
.

(L.21)

Note that these supercharges are manifestly covariant under so(4)2 = su(2)• ⊕ su(2)◦,
and furthermore enjoy a discrete “left/right” symmetry under

aLz ←→ aRz, aLy ←→ aRy, dLȧ ←→ d ȧ
R , (L.22)

and

aaȧ ←→ aaȧ, d̃a ←→ +
g̃p

f̃p
da, da ←→ −

f̃p
g̃p
d̃a, (L.23)

where we also used the fact that f̃ 2 = g̃2.

M Parametrisation of su(1|1)2
c.e. S-matrix elements

Here we give an explicit parametrisation of the su(1|1)2
c.e. invariant S-matrix elements.

We use the Zhukovski variables introduced in equation (4.21). In the left-left sector we
have

ALL

pq = 1, BLL

pq =

(
x−p
x+
p

)1/2
x+
p − x+

q

x−p − x+
q

,

CLL

pq =

(
x−p
x+
p

x+
q

x−q

)1/2
x−q − x+

q

x−p − x+
q

ηp
ηq
, DLL

pq =

(
x+
q

x−q

)1/2
x−p − x−q
x−p − x+

q

,

ELL

pq =
x−p − x+

p

x−p − x+
q

ηq
ηp
, F LL

pq = −
(
x−p
x+
p

x+
q

x−q

)1/2
x+
p − x−q
x−p − x+

q

,

(M.1)
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while in the left-right sector

ALR

pq =

(
x+
p

x−p

)1/2 1− 1
x+p x

−
q

1− 1
x−p x

−
q

, CLR

pq = 1,

BLR

pq = −2i

h

(
x−p
x+
p

x+
q

x−q

)1/2
ηpηq
x−p x

+
q

1

1− 1
x−p x

−
q

, DLR

pq =

(
x+
p

x−p

x+
q

x−q

)1/2 1− 1
x+p x

+
q

1− 1
x−p x

−
q

,

F LR

pq =
2i

h

(
x+
p

x−p

x+
q

x−q

)1/2
ηpηq
x+
p x

+
q

1

1− 1
x−p x

−
q

, ELR

pq = −
(
x+
q

x−q

)1/2 1− 1
x−p x

+
q

1− 1
x−p x

−
q

.

(M.2)

Note that for convenience we normalise these S-matrices in a different way from what
was done in [32]. In particular, in order to satisfy unitarity one would need to multiply
them by an appropriate scalar factor.

N Explicit form of the S-matrix elements

For the reader’s convenience we write the explicit form of the S-matrix in the different
sectors. To this end, we introduce the graded tensor product ⊗̌ for the matrices S so
that up to prefactors

Spsu(1|1)4 ≈ Ssu(1|1)2 ⊗̌ Ssu(1|1)2 , (N.1)

defined by

(A⊗̌B)
KK′,LL′

MM ′,NN ′ = (−1)εM′εN+εLεK′ AKLMN BK
′L′

M ′N ′ , (N.2)

see (5.19) for comparison with the case of S.

N.1 The mixed-mass sector

In the following we write the S-matrix in the case of a massive excitation that scatters
with a massless excitation. We write only the matrix part of it. These elements need to
be multiplied by the appropriate scalar factors introduced in (O.1). In the case of left
massive excitations that scatter with massless excitations transforming in the %L ⊗ %̃L
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representation of psu(1|1)4
c.e. we find

SLL⊗̌SLL̃ |ZL

pT
ȧa
q 〉 =− F LL

pq D
LL

pq |T ȧaq ZL

p 〉 − F LL

pq E
LL

pq |χ̃aqηLȧ
p 〉 ,

SLL⊗̌SLL̃ |Y L

p T
ȧa
q 〉 = + ALL

pqB
LL

pq |T ȧaq Y L

p 〉 − ALL

pqC
LL

pq |χaqηLȧ
p 〉 ,

SLL⊗̌SLL̃ |ηLȧ
p χ̃

a
q〉 = + F LL

pq B
LL

pq |χ̃aqηLȧ
p 〉+ F LL

pq C
LL

pq |T ȧaq ZL

p 〉 ,

SLL⊗̌SLL̃ |ηLȧ
p χ

a
q〉 =− ALL

pqD
LL

pq |χaqηLȧ
p 〉+ ALL

pqE
LL

pq |T ȧaq Y L

p 〉 ,

SLL⊗̌SLL̃ |ZL

p χ̃
a
q〉 = + F LL

pq F
LL

pq |χ̃aqZL

p 〉 ,

SLL⊗̌SLL̃ |Y L

p χ
a
q〉 = + ALL

pqA
LL

pq |χaqY L

p 〉 ,

SLL⊗̌SLL̃ |ZL

pχ
a
q〉 = +DLL

pqD
LL

pq |χaqZL

p 〉+ ELL

pqE
LL

pq |χ̃aqY L

p 〉+DLL

pqE
LL

pq εȧḃ |T
ȧa
q ηLḃ

p 〉 ,

SLL⊗̌SLL̃ |Y L

p χ̃
a
q〉 = +BLL

pqB
LL

pq |χ̃aqY L

p 〉+ CLL

pqC
LL

pq |χaqZL

p 〉+BLL

pqC
LL

pq εȧḃ |T
ȧa
q ηLḃ

p 〉 ,

SLL⊗̌SLL̃ |ηLȧ
p T

ḃa
q 〉 = +DLL

pqB
LL

pq |T ȧaq ηLḃ
p 〉 − ELL

pqC
LL

pq |T ḃaq ηLȧ
p 〉

+DLL

pqC
LL

pq ε
ȧḃ |χaqZL

p 〉+ ELL

pqB
LL

pq ε
ȧḃ |χ̃aqY L

p 〉 .

(N.3)

When we scatter a right excitation with a massless one we can write the S-matrix elements
as39

SRL⊗̌SRL̃ |ZR

p T
ȧa
q 〉 =−DLR

pqE
LR

pq |T ȧaq ZR

p 〉+DLR

pq F
LR

pq |χaqηRȧ
p 〉 ,

SRL⊗̌SRL̃ |Y R

p T
ȧa
q 〉 = + ALR

pqC
LR

pq |T ȧaq Y R

p 〉 −BLR

pq C
LR

pq |χ̃aqηRȧ
p 〉 ,

SRL⊗̌SRL̃ |ηRȧ
p χ

a
q〉 =−DLR

pqA
LR

pq |χaqηRȧ
p 〉+DLR

pqB
LR

pq |T ȧaq ZR

p 〉 ,

SRL⊗̌SRL̃ |ηRȧ
p χ̃

a
q〉 = + ELR

pq C
LR

pq |χ̃aqηRȧ
p 〉 − F LR

pq C
LR

pq |T ȧaq Y R

p 〉 ,

SRL⊗̌SRL̃ |ZR

p χ
a
q〉 = +DLR

pqD
LR

pq |χaqZR

p 〉 ,

SRL⊗̌SRL̃ |Y R

p χ̃
a
q〉 = + CLR

pq C
LR

pq |χ̃aqY R

p 〉 ,

SRL⊗̌SRL̃ |ZR

p χ̃
a
q〉 = + ELR

pq E
LR

pq |χ̃aqZR

p 〉 − F LR

pq F
LR

pq |χaqY R

p 〉+ F LR

pq E
LR

pq εȧḃ |T
ȧa
q ηRḃ

p 〉 ,

SRL⊗̌SRL̃ |Y R

p χ
a
q〉 = + ALR

pqA
LR

pq |χaqY R

p 〉 −BLR

pq B
LR

pq |χ̃aqZR

p 〉 −BLR

pq A
LR

pq εȧḃ |T
ȧa
q ηRḃ

p 〉 ,

SRL⊗̌SRL̃ |ηRȧ
p T

ḃa
q 〉 = +BLR

pq F
LR

pq |T ȧaq ηRḃ
p 〉 − ALR

pqE
LR

pq |T ḃaq ηRȧ
p 〉

−BLR

pq E
LR

pq ε
ȧḃ |χ̃aqZR

p 〉+ ALR

pqF
LR

pq ε
ȧḃ |χaqY R

p 〉 .

(N.4)

After taking into account a proper normalisation (see (O.1)), the S-matrix elements for
left-massless and right-massless scattering can be related by LR symmetry. In order to
do so one needs to implement it on massive and massless excitations as in equations (4.7)
and (4.15).

39To be rigorous we should write the right massive fermion with a lower su(2) index, since the identifi-
cation with right psu(1|1)2 representations is correctly implemented only in that case, see equation (4.6).
To write the S-matrix we decide to raise this index with εab to have a better notation.
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N.2 The massless sector

We write the non-vanishing entries of the two-particle S matrix in the massless sector.
First we focus on the structure fixed by the psu(1|1)4 invariance. For this reason we omit
the indices corresponding to su(2)◦.

SLL⊗̌S L̃L̃ |T ȧp T ḃq 〉 =− CLL

pqE
LL

pq |T ȧq T ḃp 〉+BLL

pqD
LL

pq |T ḃq T ȧp 〉

+ εȧḃ
(
CLL

pqD
LL

pq |χqχ̃p〉+BLL

pqE
LL

pq |χ̃qχp〉
)
,

SLL⊗̌S L̃L̃ |T ȧp χ̃q〉 =−BLL

pqF
LL

pq |χ̃qT ȧp 〉 − CLL

pq F
LL

pq |T ȧq χ̃p〉 ,

SLL⊗̌S L̃L̃ |χ̃pT ȧq 〉 =− F LL

pq D
LL

pq |T ȧq χ̃p〉 − F LL

pq E
LL

pq |χ̃qT ȧp 〉 ,

SLL⊗̌S L̃L̃ |T ȧp χq〉 =−BLL

pqF
LL

pq |χqT ȧp 〉 − CLL

pq F
LL

pq |T ȧq χp〉 ,

SLL⊗̌S L̃L̃ |χpT ȧq 〉 =− F LL

pq D
LL

pq |T ȧq χp〉 − F LL

pq E
LL

pq |χqT ȧp 〉 ,

SLL⊗̌S L̃L̃ |χ̃pχ̃q〉 =− ALL

pqA
LL

pq |χ̃qχ̃p〉 ,

SLL⊗̌S L̃L̃ |χpχq〉 =− ALL

pqA
LL

pq |χqχp〉 ,

SLL⊗̌S L̃L̃ |χ̃pχq〉 =−DLL

pqD
LL

pq |χqχ̃p〉 − ELL

pqE
LL

pq |χ̃qχp〉 − ELL

pqD
LL

pq εȧḃ |T
ȧ
q T

ḃ
p 〉 ,

SLL⊗̌S L̃L̃ |χpχ̃q〉 =−DLL

pqD
LL

pq |χ̃qχp〉 − ELL

pqE
LL

pq |χqχ̃p〉+ ELL

pqD
LL

pq εȧḃ |T
ȧ
q T

ḃ
p 〉 .

(N.5)

The structure fixed by the su(2)◦ symmetry is as follows

Ssu(2) |X a
p Ybq〉 =

1

1 + ςpq

(
ςpq |Y ′bqX ′

a
p〉+ |Y ′aqX ′

b
p〉
)
, (N.6)

where we use X ,Y ,X ′,Y ′ to denote any of the excitations that appear above. The
full S matrix in the massless sector is then found by combining the structures fixed by
psu(1|1)4

c.e. and su(2)◦ and multiplying each element by the scalar factor as in (O.1).
This S-matrix automatically satisfies the LR-symmetry, where this is implemented on
massless excitations as in (4.15).

O Normalization of S-matrix elements

In order to obtain the normalisation of section 5.2.4 we can can multiply each block of
the S matrix by the following prefactors

LL, RR:
x+
p

x−p

x−q
x+
q

x−p − x+
q

x+
p − x−q

1− 1
x−p x

+
q

1− 1
x+p x

−
q

1(
σ••pq
)2 ,

LR, RL:

(
x+
q

x−q

)−1 1− 1
x−p x

+
q

1− 1
x+p x

−
q

ζ2
pq

1(
σ̃••pq
)2 ,

(O.1)
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•◦ :

(
x+
p

x−p

)−1/2
(

1− 1
x−p x

+
q

1− 1
x+p x

−
q

)1/2

ζpq
1(
σ•◦pq
)2 ,

◦• :

(
x+
q

x−q

)1/2
(

1− 1
x−p x

+
q

1− 1
x+p x

−
q

)1/2

ζ−1
pq

1(
σ◦•pq
)2 ,

(O.2)

◦◦ :

(
x+
p

x−p

x−q
x+
q

)1/2
x−p − x+

q

x+
p − x−q

1(
σ◦◦pq
)2 , (O.3)

where we defined

ζpq =

(
1− 1

x−p x
−
q

1− 1
x+p x

+
q

)1/2

. (O.4)

P Crossing equations for the S-matrix elements

For completeness we present the crossing equations also in terms of the S-matrix elements.
To obtain simpler expressions we choose to focus on processes involving the highest weight
states of the left, right and massless modules, which are enough to constrain all of the
dressing factors. We then rewrite the crossing equations in terms of these scattering
processes and the ones with the conjugates of the highest weight states.

For example, in the massive sector we can consider

A••pq ≡ 〈Y L

q Y
L

p | S |Y L

p Y
L

q 〉 , B••pq ≡ 〈Y L

q Y
R

p | S |Y R

p Y
L

q 〉 ,
Ã••pq ≡ 〈ZR

q Y
L

p | S |Y L

p Z
R

q 〉 , B̃••pq ≡ 〈ZR

q Y
R

p | S |Y R

p Z
R

q 〉 .
(P.1)

The two crossing equations are then equivalent to imposing

A••pqB••p̄q = 1, Ã••pqB̃••p̄q = 1. (P.2)

Similarly, in the mixed-mass sector one can look at the processes

A•◦pq ≡ 〈χaqY L

p | S |Y L

p χ
a
q〉 , B•◦pq ≡ 〈χaqY R

p | S |Y R

p χ
a
q〉 ,

A◦•pq ≡ 〈Y L

q χ
a
p| S |χapY L

q 〉 , B◦•pq ≡ 〈Y L

q χ̃a p| S |χ̃a pY L

q 〉 ,
(P.3)

and obtain the corresponding crossing equations by imposing

A•◦pqB•◦p̄q = 1, A◦•pqB◦•p̄q = 1. (P.4)

To conclude, in the massless sector we can choose

A◦◦pq ≡ 〈χaqχap| S |χapχaq〉 , B◦◦pq ≡ 〈χaq χ̃a p| S |χ̃a pχaq〉 , (P.5)

and rewrite the crossing equations for σ◦◦pq and wp as

A◦◦pqB◦◦p̄q = 1. (P.6)
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