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L2 Best-Approximation of the Elastic Stress
in the Arnold-Winther FEM

C. Carstensen ∗ D. Gallistl ∗ M. Schedensack ∗

Abstract

The first part of this paper enfolds a medius analysis for mixed finite
element methods (FEMs) and proves a best-approximation result in L2

for the stress variable independent of the error of the Lagrange multiplier
under the abstract conditions (LBB), condition (C) and efficiency (E).
The second part applies the general result to the FEM of Arnold and
Winther for linear elasticity: The stress error in L2 is controlled by the
L2 best-approximation error of the true stress by any discrete function
plus data oscillations. The analysis is valid without any extra regularity
assumptions on the exact solution and also covers coarse meshes and
Neumann boundary conditions. Further applications include Raviart-
Thomas finite elements for the Poisson and the Stokes problem. The
result has consequences for nonlinear approximation classes related to
adaptive mixed finite element methods.

Keywords mixed finite element methods, medius analysis, linear elasticity, Arnold-
Winther finite element Stokes problem, pseudostress
AMS subject classification 65M12, 65M60, 65N30

1 Introduction

Given bilinear forms a : X × X → R and b : X × Y → R in (real) Hilbert
spaces X and Y and a given right-hand side (G,F ) ∈ X? × Y ?, the typical
mixed formulation seeks (x, y) ∈ X × Y with

a(x, ξ) + b(ξ, y) = G(ξ) for all ξ ∈ X,
b(x, η) = F (η) for all η ∈ Y.

(1.1)

The discretisation of this formulation is preferred if constraints have to be
enforced, but also if the main interest is in a proper approximation of the
stress variable x ∈ X [Bra07, BF91].
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Mixed FEMs

Let X ⊆ H be embedded into a Hilbert space H with a possibly weaker
norm ‖•‖H (such as the L2 norm rather than the H(div) norm) and let there
exist a (possibly mesh-dependent) norm |||•|||h on a finite-dimensional subspace
Yh of Y . Given a finite-dimensional subspace Xh ⊆ X with discrete solution
xh ∈ Xh, this paper identifies the abstract conditions (LBB), (C), and (E) that
lead to the best-approximation result in the weaker norm ‖ • ‖H independent
of the approximation error of the Lagrange multiplier,

‖x− xh‖H . min
ξh∈Xh

‖x− ξh‖H + data approximation. (1.2)

Here and throughout this paper, A . B abbreviates A ≤ CB for some positive
generic constant C which solely depends on the constants involved in (LBB),
(C), and (E) and is, in particular, independent of the mesh-size or the Lamé
parameter λ.

The condition (LBB) is the stability from the Brezzi splitting lemma [Bra07]
for the discrete system with respect to the non-standard norms ‖•‖H and |||•|||h.
The compatibility condition (C) for Xh, Yh and b is condition (C) from [Bra07]
and, in the case of the Stokes equations, equivalent to pointwise mass conser-
vation of a finite element method. The condition (E) is the efficiency estimate

sup
ηh∈Yh\{0}

(F (ηh)− b(ξh, ηh))
/
|||ηh|||h . ‖x− ξh‖H + data approximation.

This combination of arguments from the a posteriori and a priori error analysis
is called medius analysis [Gud10, CPS12] and leads to results which rely on
no extra regularity of the weak solution x ∈ X and hold on arbitrarily coarse
meshes. The motivation for an L2 theory of stress approximations stems from
the concept of nonlinear approximation classes in the optimality analysis of
adaptive mesh-refinement algorithms. Such a result was obtained by [HX12]
for the Raviart-Thomas finite element discretisation of the Poisson equation
for this purpose.

The prime goal of this paper is the medius analysis of the Arnold-Winther
finite element method for the linear elasticity problem. The second part of
this paper carries out the application of the abstract theory to this method.
Let Ω ⊆ Rn for n = 2 or n = 3 be a bounded polyhedral Lipschitz domain
with (closed) Dirichlet boundary ΓD ⊆ ∂Ω of positive surface measure and the
(possibly empty) Neumann boundary ΓN = ∂Ω\ΓD with outer unit normal ν.
Given a volume force f ∈ L2(Ω;Rn), applied surface tractions g ∈ L2(ΓN ;Rn),
and boundary data uD ∈ H1(Ω;Rn), the linear elasticity problem (in its strong
form) seeks u ∈ H1(Ω;Rn) and σ ∈ H(div,Ω;S) := H(div,Ω)n∩L2(Ω; S) with

−div σ = f in Ω,

σ = Cε(u) in Ω,

u|ΓD
= uD on ΓD,

σν|ΓN
= g on ΓN .

(1.3)
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Mixed FEMs

Figure 1: Illustration of the 30 degrees of freedom of the Arnold-Winther FEM for the lowest-
order case k = 1 and n = 2 for the stress (left) and displacement (right). The three dots at
the three vertices of the triangle (left) represent point evaluations while the three dots in the
interior denote the integral means of the three components of τAW. The arrows represent
the moments of order ≤ 1 of τAWνE . The dots in the interior of the right triangle indicate
the degrees of freedom for the two components of the P1 displacement approximation.

Here and throughout the paper, S := {A ∈ Rn×n | A = A>} denotes the space
of symmetric n× n matrices; the linear Green strain reads

ε(u) := (Du+ (Du)>)/2,

and, for Lamé parameters µ > 0 and λ > 0, the elasticity tensor C acts on
A ∈ Rn×n as

CA := 2µA+ λ(trA)1n×n.

For nearly incompressible materials, the Poisson ratio λ/(2(λ+µ)) is close
to 1/2 and standard low-order conforming finite element methods (FEMs)
are known to suffer from locking. The error shows the expected convergence
rate only for very fine meshes with an impractically large number of degrees
of freedom. The difficulty for mixed FEMs consists in finding an appropri-
ate FEM space for the pointwise symmetric stress approximation. The sim-
plest pointwise symmetric mixed FEM (conforming in H(div)) is the FEM
of Arnold and Winther [AW02, AAW08] with numerical benchmark compu-
tations in [CEG11, CGP12, CGRT08]. For the exact solution (σ, u) of (1.3)
and its approximation (σAW, uk), the error analysis of [AW02, AAW08] proves
quasi-optimal convergence

‖σ − σAW‖H(div,Ω) + ‖u− uk‖L2(Ω)

. min
τAW∈AWk(T,gk+n)

‖σ − τAW‖H(div,Ω) + inf
vk∈Pk(T;Rn)

‖u− vk‖L2(Ω).

The constants hidden in the notation . are independent of the mesh-size and
the Lamé parameter λ but may depend on the parameter µ, on the domain
Ω, as well as on the minimal angle of the shape-regular triangulation T with
piecewise polynomials Pk(T;Rn). Details of the Arnold-Winther FEM space
AWk(T, gk+n) and the embedded treatment of the applied traction forces fol-
low in Section 4. The abstract result of this paper proves the quasi-optimal
estimate with respect to the L2 norm of the stress

‖σ − σAW‖L2(Ω) . min
τAW∈AWk(T,gk+n)

‖σ − τAW‖L2(Ω) + osck(f,T). (1.4)
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Mixed FEMs

For the definition of the (k-th order) data oscillations osck(f,T) see Subsec-
tion 3.3. The main result (1.4) may be contrasted with the well-established
refined estimate

‖σ − σAW‖C−1 ≤ ‖σ − IFσ‖C−1 (1.5)

from [AW02, unlabeled displayed formula between (5.4) and (5.5)] with the
Fortin operator IF (called Πh in [AW02, (3.3)–(3.5)]). It is not difficult to
generalise this estimate (1.5) to

‖σ − σAW‖C−1 ≤ min
τAW∈AWk(T,gk+n)

div τAW=−Πkf

‖σ − τAW‖C−1 (1.6)

with a minimum over all discrete test functions τAW with prescribed divergence
div τAW = div σAW = −Πkf . The point is that the minimum in (1.4) is free from
this restriction on the divergence in (1.6). On the expense of the extra data ap-
proximation term in (1.4) and the multiplicative generic constant, the estimate
(1.4) states some approximation result as (1.6) without the side condition on
the divergence of τAW. The main mathematical argument is the stability of the
discrete mixed system with respect to the norms ‖·‖L2(Ω) and |||·|||h rather than
‖·‖H(div,Ω) and ‖·‖L2(Ω), where the mesh-dependent norm |||·|||h involves the
inter-element jumps of a piecewise smooth function. Similar mesh-dependent
norms were previously considered in [BOP80, BV96, BDW99, LS06, HX12].

The analysis of this paper applies to the case k = 1, 2 and carefully explores
the transformation behaviour of the local shape functions with a detailed anal-
ysis of the Piola transformation described in [AW02, AAW08]. The difficulty
for a possible generalisation to k ≥ 3 is that the local degrees of freedom are
not preserved under the Piola transformation, cf. Subsection 5.2 for more de-
tails. Further applications include the mixed finite element discretisation of
the Poisson and the Stokes equations.

The remaining parts of this paper are organised as follows. Section 2 states
the precise abstract problem and proves the abstract result. Section 3 intro-
duces the notation on the Navier-Lamé equations and regular triangulations.
Section 4 gives an application of the abstract result to the Arnold-Winther
FEM. Section 5 concludes the paper with some comments on extensions to
the nonconforming Arnold-Winther FEM, a nonconforming treatment of Neu-
mann data, the pure Dirichlet and Neumann problem, the application to the
pseudostress FEM for the Stokes equations, and the equivalence of two approx-
imation classes. Appendix A gives the necessary details on the basis functions
and local degrees of freedom for the Arnold-Winther FEM.

2 Abstract Result

Let (H, ‖•‖H) and (Y, ‖•‖Y ) be Hilbert spaces and X ⊆ H. Let a : H×H → R
and b : X ×Y → R be bilinear forms and F : Y → R and G : X → R be linear
and bounded. Let X(0) ⊆ X be some subspace of X and X(g) = σg+X(0) for
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Mixed FEMs

σg ∈ X an affine subspace of X to model boundary conditions. The abstract
problem seeks (x, y) ∈ X(g)× Y with

a(x, ξ) + b(ξ, y) = G(ξ) for all ξ ∈ X(0),

b(x, η) = F (η) for all η ∈ Y.
(2.1)

Let Xh ⊆ X, Xh(0) := Xh ∩X(0) and Yh ⊆ Y denote some finite-dimensional
subspaces of X, X(0) and Y and set Xh(g) := σh,g+Xh(0) for some σh,g ∈ Xh.
The discrete problem seeks (xh, yh) ∈ Xh(g)× Yh with

a(xh, ξh) + b(ξh, yh) = G(ξh) for all ξh ∈ Xh(0),

b(xh, ηh) = F (ηh) for all ηh ∈ Yh.
(2.2)

The bilinear form B : (Xh × Yh)× (Xh × Yh)→ R associated with the system
(2.2) reads, for any xh, ξh ∈ Xh and yh, ηh ∈ Yh, as

B((xh, yh), (ξh, ηh)) := a(xh, ξh) + b(xh, ηh) + b(ξh, yh).

Define the kernel

Z := {ξ ∈ X(0) | ∀η ∈ Y, b(ξ, η) = 0}

and its discrete counterpart

Zh := {ξh ∈ Xh(0) | ∀ηh ∈ Yh, b(ξh, ηh) = 0}. (2.3)

Suppose that the subsequent hypotheses (LBB), (C) and (E) are valid. In
applications, the term dapx(F,G) will measure the approximation of the given
data F and G.

Let αh, Ccont,Mh, γh and Ceff be positive real constants in the abstract con-
ditions (LBB), (C), and (E) sufficient for best-approximation in H. The condi-
tion (LBB) consists of the standard conditions (LBB1a), (LBB1b), (LBB2a),
(LBB2b) from the Brezzi splitting lemma [BF91, Bra07] which characterise the
stability of the discrete system (2.2) with respect to the norms ‖·‖H and |||·|||h.

(LBB1a) 0 < αh = inf
ξh∈Zh\{0}

sup
ρh∈Zh\{0}

a(ρh, ξh)
/

(‖ρh‖H‖ξh‖H);

(LBB1b) ∀ρ ∈ X ∀ξh ∈ Xh(0) a(ρ, ξh) ≤ Ccont ‖ρ‖H ‖ξh‖H ;

(LBB2a) ∀ξh ∈ Xh(0) ∀ηh ∈ Yh b(ξh, ηh) ≤Mh‖ξh‖H |||ηh|||h;

(LBB2b) 0 < γh = inf
ηh∈Yh\{0}

sup
ξh∈Xh(0)\{0}

b(ξh, ηh)
/

(‖ξh‖H |||ηh|||h).

The compatibility of Xh and Yh of [Bra07, Def. 4.6] reads

(C) Zh ⊆ Z.

The efficiency of the residual F − b(ξh, ·) in the dual norm of (Yh, |||·|||h) up to
some data approximation term dapx(F,G) reads
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Mixed FEMs

(E) ∀ξh ∈ Xh(g) sup
ηh∈Yh\{0}

F (ηh)− b(ξh, ηh)

|||ηh|||h
≤ Ceff(‖x− ξh‖H + dapx(F,G)).

Theorem 2.1 (best-approximation in H). Suppose (LBB), (C), (E). Any
solution (x, y) ∈ X(g)×Y to (2.1) and the discrete solution (xh, yh) ∈ Xh(g)×
Yh to (2.2) and any x?h ∈ Xh(g) satisfy

‖x− xh‖H ≤ Capx

(
‖x− x?h‖H + dapx(F,G)

)
.

The constant Capx ≈ 1 depends on αh, γh, Mh, Ccont, Ceff from (LBB) and
(E).

The proof of Theorem 2.1 departs from an alternative formulation of con-
dition (C).

Lemma 2.2. Condition (C) is equivalent to

∀η ∈ Y ∃η?h ∈ Yh ∀ξh ∈ Xh(0) b(ξh, η
?
h) = b(ξh, η). (2.4)

Proof. For the proof that condition (C) implies (2.4), consider the linear map
L : Yh → (Xh(0))∗, yh 7→ b(•, yh) with dual L∗ : Xh(0) → Y ∗h . The closed
range theorem for the finite-dimensional image L(Yh) leads to

b(•, Yh) = L(Yh) = (kerL∗)0 ≡ {φ ∈ (Xh(0))∗ | ∀ξh ∈ kerL∗, φ(ξh) = 0}

(cf. [Bra07] for more details on the polar set (kerL∗)0). Hence, it suffices to
show that for all y ∈ Y and all xh ∈ kerL∗ it holds b(xh, y) = 0. Since
kerL∗ = Zh, condition (C) states kerL∗ ⊆ Z. This proves (2.4).

For the proof of the converse implication, assume (2.4) and let ξh ∈ Zh. For
any η ∈ Y , (2.4) implies the existence of η?h such that b(ξh, η) = b(ξh, η

?
h) = 0.

Hence, ξh ∈ Z.

Proof of Theorem 2.1. The condition (C) and Lemma 2.2 imply that there
exists y?h ∈ Yh with b(ξh, y − y?h) = 0 for all ξh ∈ Xh(0). Let x?h ∈ Xh(g).
The condition (LBB) and the Brezzi splitting lemma [BF91, Bra07] imply the
existence of (ξh, ηh) ∈ Xh(0)× Yh with ‖ξh‖2H + |||ηh|||2h = 1 and

‖xh − x?h‖H + |||y?h − yh|||h ≤ CstabB((xh − x?h, yh − y?h), (ξh, ηh)). (2.5)

The constant Cstab ≈ 1 depends on αh, γh,Mh, Ccont from (LBB). The contin-
uous and discrete equations (2.1)–(2.2) plus Xh(0) ⊆ X(0) and Yh ⊆ Y show
that

B((xh − x?h, yh − y?h), (ξh, ηh)) = B((x− x?h, y − y?h), (ξh, ηh))

= a(x− x?h, ξh) + F (ηh)− b(x?h, ηh) + b(ξh, y − y?h).
(2.6)

The design of y?h implies that the last term vanishes. This, the conditions
(LBB1b), (E), plus ‖ξh‖2H + |||ηh|||2h = 1 imply

B((xh − x?h, yh − y?h), (ξh, ηh)) ≤ (Ccont + Ceff)
(
‖x− x?h‖H + dapx(F,G)

)
.

The triangle inequality concludes the proof.
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Mixed FEMs

Remark 2.3 (Nonconforming FEM). This remark explains why nonconforming
methods with Xh 6⊆ X are excluded from the analysis of Theorem 2.1. For
the sake of this exposition, assume homogeneous boundary conditions in the
sense that X(0) = X(g) and Xh(0) = Xh(g) as well as G = 0 throughout this
remark. Then some nonconforming variant of (2.5)–(2.6) reads

C−1
stab

(
‖xh − x?h‖H + |||y?h − yh|||h

)
≤ B((xh − x?h, yh − y?h), (ξh, ηh))

= a(x− x?h, ξh) + F (ηh)− b(x?h, ηh)− a(x, ξh)− b(ξh, y).

The nonconformity ξh 6∈ X implies that the additional terms at the end, namely

a(x, ξh) + b(ξh, y) (2.7)

do not vanish. Two examples for the Arnold-Winther FEM in Subsection 5.3
illustrate how (2.7) may lead to sub-optimal convergence rates in practical
applications.

3 Preliminaries

This section provides the necessary preliminaries and notation on the Navier-
Lamé equations and regular triangulations.

3.1 General Notation

Throughout the paper, standard notation on Lebesgue and Sobolev spaces and
their norms applies and (•, •)L2(Ω) denotes the scalar product in L2(Ω) (or
L2(Ω;Rn) or L2(Ω;Rn×m)). The subspace of L2(Ω;Rm×n) of functions with
divergence in L2(Ω;Rm) is H(div,Ω;Rm×n). For any measurable subset ω ⊆
Ω,

ffl
ω • dx denotes the integral mean on ω with respect to the n-dimensional

Lebesgue measure. For 1 ≤ k < n and some k-dimensional faceG,
ffl
G • ds is the

integral mean over G with respect to the k-dimensional surface measure. The
duality pairing of H−1/2(∂Ω;Rn) with H1/2(∂Ω;Rn) is denoted by 〈•, •〉∂Ω.
The trace of a matrix A ∈ Rn×n is denoted by tr(A) and the deviatoric part
of A reads devA := A − tr(A)1n×n/n. The dot denotes the product of two
one-dimensional lists of the same length while the colon denotes the Euclidean
product of matrices. The discrete norm |||•|||h for piecewise polynomial L2

functions is defined in (4.1) below. The measure |•| refers to the Euclidean
norm of a vector or a matrix or, for a domain in Rn, to its n-dimensional
Lebesgue measure or its (n− 1)-dimensional surface measure.

3.2 Weak Mixed Formulation of Linear Elasticity

For the sake of this exposition assume that both ΓD 6= ∅ and ΓN 6= ∅ have a
positive (n− 1) dimensional surface measure; the results of this paper remain
true both for the pure Dirichlet problem ΓD = ∂Ω and for the pure Neumann
problem ΓN = ∂Ω with the necessary modifications from Section 5.1.
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Mixed FEMs

The weak mixed formulation of (1.3) is based on the spaces

X(g) := {τ ∈ H(div,Ω; S) | τν|ΓN
= g} for the stress;

Y := L2(Ω;Rn) for the displacement.

Define the bilinear forms a : H(div,Ω;S)×H(div,Ω;S)→ R and b : H(div,Ω;S)×
Y → R by

a(τ, ρ) := (C−1τ, ρ)L2(Ω) and b(τ, v) := (div τ, v)L2(Ω)

for any τ, ρ ∈ H(div,Ω;S) and v ∈ Y . Recall the duality pairing 〈·, ·〉∂Ω of
H−1/2(∂Ω;Rn) with H1/2(∂Ω;Rn). The mixed formulation of the elasticity
problem seeks σ ∈ X(g) and u ∈ Y with

a(σ, τ) + b(τ, u) = 〈τν, uD〉∂Ω for all τ ∈ X(0),

b(σ, v) = − (f, v)L2(Ω) for all v ∈ Y.
(3.1)

The unique solvability of (3.1) is well known [BF91, Bra07].

3.3 Triangulations

Let T denote some shape-regular simplicial triangulation of the bounded poly-
hedral Lipschitz domain Ω, i.e., Ω = ∪T and T is regular in the sense that any
two distinct simplices are either disjoint or share exactly one common node,
edge or face (for n = 2 the edges coincide with the faces). For any simplex
T ∈ T, F(T ) is the set of faces and N(T ) is the set of vertices of T . Let F

denote the set of faces of T and N the set of vertices. Assume that T resolves
the boundary conditions in the sense that ΓD = ∪{F ∈ F | F ⊆ ΓD}. For
ω ⊆ Rn define the sets N(ω) := N ∩ ω and F(ω) := {F ∈ F | int(F ) ⊆ ω}
for the relative interior int(F ) of a face F ∈ F (e.g. the interior nodes are
denoted by N(Ω) and the interior faces by F(Ω)). The jump along an inte-
rior face F ∈ F(Ω) with adjacent simplices T+ and T−, i.e., F = T+ ∩ T−, is
defined by [v]F := v|T+ − v|T− . The jump along boundary faces F ∈ F(ΓD)
reads [v]F := v|T+ for that simplex T+ ∈ T with F ⊆ T+. In this situation,
let νF denote the outer unit normal of T+ on F . Given a simplex T ∈ T, let
νT denote the outer unit normal of T . For a face F ∈ F, the patch ωF reads
ωF := int(∪{T ∈ T | F ∈ F(T )}).

Define the piecewise polynomials by

Pk(T ;Rm) := {p ∈ L2(T ;Rm) | ∀j = 1, . . . ,m, the j-th component
pj of p is a polynomial of total degree ≤ k},

Pk(T;Rm) := {pk ∈ L2(Ω;Rm) | ∀T ∈ T, pk|T ∈ Pk(T ;Rm)}.

Furthermore, let Pk(T ; S) (resp. Pk(T;S)) denote the polynomials (resp. piece-
wise polynomials) with values in S. For any vertex z ∈ N, the piecewise affine
and globally continuous function with 1 at z and 0 at all other vertices of N
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defines the conforming P1 nodal basis function ϕz. The piecewise affines (into
the R2) with respect to F(ΓN ) read P1(F(ΓN );R2).

The L2 projection Πk : L2(Ω;Rm)→ Pk(T;Rm) onto piecewise polynomials
reads

Πkf := argmin
pk∈Pk(T;Rm)

‖f − pk‖L2(Ω).

The oscillations of order k of f are defined as osck(f,T) := ‖hT(1−Πk)f‖L2(Ω)

for the piecewise constant mesh-size hT ∈ P0(T;R), i.e., hT|T = diam(T ) for
all T ∈ T. The diameter of a face F ∈ F is denoted by hF .

Let εNC and DNC denote the piecewise action of ε := symD and the deriva-
tive D with respect to the triangulation T, i.e., for a piecewise polynomial
function pk ∈ Pk(T;Rn), let εNC(pk)|T := ε(pk|T ) and (DNCpk)|T := D(pk|T )
for all T ∈ T. For a piecewise polynomial tensor field τk ∈ Pk(T;Rn×n) the
piecewise action of the divergence is defined via (divNC τk)|T := divNC(τk|T ) for
all T ∈ T.

4 L2 Best-Approximation of Arnold-Winther FEM

This section defines the Arnold-Winther FEM, and states the main result in
Subsection 4.1 with the proof of (LBB), (C) and (E) in Subsections 4.2–4.4 for
space dimensions n = 2, 3. Recall that A . B abbreviates A ≤ CB for some
positive generic constant C which may depend on the shape regularity of T
and the Lamé parameter µ but neither on λ nor on the mesh-size.

4.1 Arnold-Winther FEM

For the degree k = 1, 2, the approximation of the displacement of the Arnold-
Winther FEM reads

Yh := Pk(T;Rn).

The local Arnold-Winther finite element space reads

AWk(T ) := {τAW ∈ Pk+n(T ; S) | div τAW ∈ Pk(T ;Rn)} .

Let the function gk+n define some suitable approximation of g by traces of
piecewise AWk(T ) functions which are globally in H(div,Ω;S). In the case
of smooth consistent Neumann data, gk+n can be defined via the degrees of
freedom of the Arnold-Winther finite element (see Figure 1 for n = 2 and k =
0). For inconsistent Neumann data, a modification at the vertices is required
(as described in [CGRT08]). Throughout this paper, we merely impose the
following condition.

(N) For all v1 ∈ P1(F(ΓN );R2)∩H1(ΓN ;R2) it holds
´

ΓN
(g−gk+n)·v1 ds = 0.

The stress is approximated in

AWk(T, gk+n) := {τAW ∈ X(gk+n) | ∀T ∈ T, τAW|T ∈ AWk(T )} ⊆ X(gk+n).
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The approximation properties of AWk(T, gk+n) depend in a delicate way on
the choice of gk+n. However, the main result in Theorem 4.1 requires only the
condition (N) and AWk(T, gk+n) 6= ∅.

Define a discrete norm on Yh by

|||vh|||2h := ‖εNC(vh)‖2L2(Ω)+
∑

F∈F(Ω∪ΓD)

h−1
F ‖[vh]F ‖2L2(F ) for any vh ∈ Yh. (4.1)

(In fact, if |||vh|||h = 0, then vh is continuous and a rigid body motion with
vh|ΓD

= 0 and, hence, the Korn inequality [Bra07, p. 298] implies vh ≡ 0.)
The discrete mixed problem seeks σAW ∈ AWk(T, gk+n) and uk ∈ Yh such

that

a(σAW, τAW) + b(τAW, uk) = 〈τAWν, uD〉∂Ω for all τAW ∈ AWk(T, 0),

b(σAW, vh) = − (f, vh)L2(Ω) for all vh ∈ Yh.
(4.2)

The following theorem states the L2 best-approximation result for the
Arnold-Winther FEM with

Xh(0) := AWk(T, 0) ⊆ X(0) ⊆ H := L2(Ω; S),

Xh(g) := AWk(T, gk+n),

Yh := Pk(T;Rn) ⊆ Y := L2(Ω;Rn)

and right-hand sides G(τ) := 〈τν, uD〉∂Ω and F (v) = −(f, v)L2(Ω) for all τ ∈
X(0) and v ∈ L2(Ω;Rn).

The following main result implies (1.4).

Theorem 4.1 (L2 best-approximation for Arnold-Winther FEM). Suppose
that gk+n satisfies the condition (N). Then any τAW ∈ AWk(T, gk+n) satisfies

‖σ − σAW‖L2(Ω) + |||Πku− uk|||h . ‖σ − τAW‖L2(Ω) + osck(f,T).

The condition (C) follows immediately from div AWk(T, 0) ⊆ Pk(T;Rn).
The conditions (LBB) and (E) are verified in the remaining subsections. This
and Theorem 2.1 conclude the proof of Theorem 4.1.

4.2 Proof of (LBB1)

The following modification of [BF91, Proposition 7 in Section IV.3] follows
from [CD98, Theorem 4.1].

Lemma 4.2 (tr-dev-div lemma). Let Σ0 be a closed subspace of H(div,Ω;Rn×n)
which does not contain the constant tensor 1n×n. Then any τ ∈ Σ0 satisfies

‖tr(τ)‖L2(Ω) . ‖dev τ‖L2(Ω) + ‖div τ‖L2(Ω).

10
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Proof. The stated inequality is proven [CD98, Theorem 4.1] for the case n = 2.
The generalisation to n ≥ 3 follows directly with the arguments of [CD98] and
[ASV88, ADM06].

Recall the definition of the discrete kernel Zh from (2.3).

Lemma 4.3 ((LBB1)). The bilinear form a is continuous and Zh-elliptic with
respect to the norm ‖·‖L2(Ω). The respective constants do not depend on λ or
the mesh-sizes in T, but possibly on the shape-regularity of T.

Proof. The continuity follows from |C−1A| . |A| for all A ∈ Rn×n. Let τAW ∈
AWk(T, 0) with

´
Ω vh div τAW dx = 0 for all vh ∈ Yh. Since div τAW ∈ Yh, this

leads to div τAW = 0. Since AW(T, 0) is a closed subspace of H(div,Ω;Rn×n)
which does not contain the constant tensor 1n×n, Lemma 4.2 yields

‖ tr τAW‖L2(Ω) . ‖ dev τAW‖L2(Ω) + ‖div τAW‖L2(Ω).

Since div τAW = 0, this and |devA|2 . A : C−1A conclude the proof.

4.3 Proof of (LBB2)

The stability involves the mesh-dependent norm |||·|||h from (4.1).

Lemma 4.4 ((LBB2a)). The discrete bilinear form b is continuous with respect
to the norms ‖·‖L2(Ω) and |||·|||h, in the sense that

b(τAW, vh) . ‖τAW‖L2(Ω)|||vh|||h for all (τAW, vh) ∈ AWk(T, 0)× Yh.

Proof. An integration by parts and trace [DE12, Lemma 1.49] and inverse
inequalities [DE12, Lemma 1.44] lead to

(div τAW,vh)L2(Ω) = −(τAW, DNCvh)L2(Ω) +
∑

F∈F(Ω∪ΓD)

ˆ
F

[vh]F · (τAWνF ) ds

. ‖εNC(vh)‖L2(Ω)‖τAW‖L2(Ω) +
∑

F∈F(Ω∪ΓD)

h
−1/2
F ‖[vh]F ‖L2(F )‖τAW‖L2(ωF )

. ‖τAW‖L2(Ω)|||vh|||h.

Theorem 4.5 ((LBB2b)). The bilinear form b satisfies the inf-sup condition

1 . β ≤ inf
vh∈Yh\{0}

sup
τAW∈AWk(T,0)\{0}

b(τAW, vh)

‖τAW‖L2(Ω) |||vh|||h
.

Proof. Let vh ∈ Yh and define τAW ∈ AWk(T, 0) by the specification of the
degrees of freedom in such a way that the volume moments of degree ≤ k − 1
coincide with those of −εNC(vh) and the moments of the faces of degree k
coincide with the moments of weighted jumps of [vh]F . Precisely (with the
notation of Appendix A) set the volume degrees of freedom as

LT,`(τAW) = −LT,`(εNC(vh)) for ` ∈ Ivol,1(T ),

11
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and the face degrees of freedom as

LT,(F,η,α)(τAW) = h−1
F eα ·

( 
F

n−1∏
j=1

(ϕzj − ϕzn)ηj [vh]F ds

)
for (F, η, α) ∈ Ifaces(T ) with F = conv{z1, . . . , zn} ∈ F (Ω ∪ ΓD) and set the
remaining degrees of freedom as

LT,`(τAW) = 0 for ` ∈ Inodes(T ) ∪ Ivol,2(T ) ∪ Iedges(T )

for all T ∈ T. See Subsection A.1 for the precise definition of these functionals.
An integration by parts yields

(vh, div τAW)L2(Ω) = −(DNCvh, τAW)L2(Ω) +
∑

F∈F(Ω∪ΓD)

ˆ
F

[vh]F · (τAWνF ) ds.

The definition of τAW proves

−(DNCvh, τAW)L2(Ω) = ‖εNC(vh)‖2L2(Ω).

The hyper-face contributions satisfy, for any F ∈ F(Ω ∪ ΓD), thatˆ
F

[vh]F · (τAWνF ) ds = h−1
F ‖[vh]F ‖2L2(F ).

This leads to

b(τAW, vh)L2(Ω) = |||vh|||2h. (4.3)

Let T ∈ T and let σ` ∈ AWk(T ) for ` ∈ Ivol,1(T ) ∪ Ifaces(T ) denote the shape
functions of the volume degrees of freedom and the face degrees of freedom on
T . Then, the representation of τAW|T with respect to the shape functions reads

τAW|T =
∑

`∈Ivol,1(T )∪Ifaces(T )

LT,`(τAW)σ`.

The triangle inequality and the scaling of the L2 norm of the shape functions
of Theorem A.7 show

‖τAW‖L2(T ) . |T |1/2
∑

`∈Ivol,1(T )∪Ifaces(T )

|LT,`(τAW)|.

Since |ϕzj − ϕzn |≤ 1 in Ω, a Cauchy inequality leads, for ` ∈ Ivol,1(T ), to

|LT,`(τAW)| ≤
 
T
|εNC(vh)| dx ≤ |T |−1/2 ‖εNC(vh)‖L2(T ).

The same arguments reveals, for ` ∈ Ifaces(T ), that

|LT,`(τAW)| ≤ h−1
F |F |

−1/2 ‖[vh]F ‖L2(F ).

The shape regularity implies |T |1/2 h−1
F |F |−1/2 ≈ h

−1/2
F . The combination of

the previous inequalities and the sum over all simplices results in

‖τAW‖L2(Ω) . |||vh|||h.

This and (4.3) imply ‖τAW‖L2(Ω)|||vh|||h . b(τAW, vh). This concludes the proof.

12
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4.4 Proof of (E)

This subsection is devoted to the proof of (E) for the Arnold-Winther FEM
based on the following three lemmas.

Lemma 4.6 (efficiency). Any τAW ∈ AWk(T, gk+n) satisfies

‖hT(f + div τAW)‖L2(Ω) . ‖σ − τAW‖L2(Ω) + osck(f,T).

Proof. This follows from the well-established arguments of [Ver96].

Lemma 4.7 (discrete Korn inequality). Any vh ∈ Yh satisfies

‖DNCvh‖L2(Ω) . |||vh|||h.

Proof. It follows from [Bre04, Eqn (1.19)] that

‖DNCvh‖2L2(Ω) . ‖vh‖
2
L2(ΓD) + ‖εNC(vh)‖2L2(Ω) +

∑
F∈F(Ω)

h−1
F ‖[vh]F ‖2L2(F ).

Since hF . 1, the boundary terms are controlled as∑
F∈F(ΓD)

‖vh‖2L2(F ) .
∑

F∈F(ΓD)

h−1
F ‖vh‖

2
L2(F ) ≤ |||vh|||

2
h.

Let T(z) := {T ∈ T | z ∈ T} and define the enrichment operator J1 :
P0(T;Rn)→

(
P1(T;Rn) ∩H1(Ω;Rn)

)
for v0 ∈ P0(T;Rn) by

J1v0(z) = (cardT(z))−1
∑

T∈T(z)

v0|T (z)

for all z ∈ N(Ω ∪ ΓN ) and J1v0(z) = 0 for all z ∈ N(ΓD) followed by linear
interpolation on all simplices.

Lemma 4.8 (approximation and stability estimates). Any vh ∈ Yh satisfies

|||Π0vh|||h . |||vh|||h. (4.4)

Any v0 ∈ P0(T;Rn) satisfies

‖h−1
T (1− J1)v0‖L2(Ω) + ‖DNCJ1v0‖L2(Ω) . |||v0|||h. (4.5)

Proof. For F ∈ F(Ω) let T+, T− ∈ T with F = T+ ∩ T−. Define the two
seminorms ρ1, ρ2 on Pk({T+, T−};Rn) for wh ∈ Pk({T+, T−};Rn) by

ρ1(wh) := h
−1/2
F ‖[Π0wh]F ‖L2(F ),

ρ2(wh) := ‖DNCwh‖L2(ωF ) + h
−1/2
F ‖[wh]F ‖L2(F ).

If ρ2(wh) = 0, then wh is constant and continuous on ωE . This implies
Π0wh|T+ = Π0wh|T− and, hence, ρ1(wh) = 0. Since ρ1 and ρ2 are seminorms,

13
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there exists a constant C > 0 with ρ1 ≤ Cρ2. A scaling argument proves that
C ≈ 1 is independent of the mesh-size. This proves

h
−1/2
F ‖[Π0wh]F ‖L2(F ) . ‖DNCwh‖L2(ωF ) + h

−1/2
F ‖[wh]F ‖L2(F ). (4.6)

The same arguments apply for F ∈ F(ΓD) and prove (4.6) for ωF := int(T+)
for the one simplex T+ ∈ T with F ⊆ T+. The sum over all edges and the
bounded overlap of ωF yield for any vh ∈ Yh that∑
F∈F(Ω∪ΓD)

h−1
F ‖[Π0vh]F ‖2L2(F ) . ‖DNCvh‖2L2(Ω) +

∑
F∈F(Ω∪ΓD)

h−1
F ‖[vh]F ‖2L2(F ).

This and Lemma 4.7 prove (4.4).
For the proof of (4.5), note that v0 ∈ P0(T;Rn) implies for z ∈ F ∈ F(ΓD)

that

|v0(z)|2 ≈ h−(n−1)
F ‖[v0]F ‖2L2(F ).

This and the arguments of [BS08, Lemma (10.6.6), p. 296] prove

‖h−1
T (v0 − J1v0)‖2L2(Ω) .

∑
F∈F(Ω∪ΓD)

h−1
F ‖[v0]F ‖2L2(F ).

An inverse inequality proves

‖DNCJ1v0‖L2(Ω) . ‖h−1
T (v0 − J1v0)‖L2(Ω).

This concludes the proof.

The proof of (E) concludes this subsection.

Lemma 4.9 ((E)). Any vh ∈ Yh with |||vh|||h = 1 and any τAW ∈ AWk(T, gk+n)
satisfy

(f + div τAW, vh)L2(Ω) . ‖σ − τAW‖L2(Ω) + osck(f,T).

Proof. Let vh ∈ Yh with |||vh|||h = 1 and consider

(f + div τAW, vh)L2(Ω)

= (f + div τAW, (1−Π0)vh)L2(Ω) + (f + div τAW,Π0vh)L2(Ω).
(4.7)

The piecewise Poincaré inequality, Lemma 4.6 and the discrete Korn inequality
from Lemma 4.7 control the first term of on the right-hand side of (4.7) as

(f + div τAW, (1−Π0)vh)L2(Ω) . ‖hT(f + div τAW)‖L2(Ω)‖DNCvh‖L2(Ω)

. ‖σ − τAW‖L2(Ω) + osck(f,T).

Lemma 4.8 implies for the second term on the right-hand side of (4.7) that

(f + div τAW,Π0vh)L2(Ω)

= (f + div τAW, (1− J1)Π0vh + J1Π0vh)L2(Ω)

. ‖hT(f + div τAW)‖L2(Ω) + (f + div τAW, J1Π0vh)L2(Ω).

(4.8)
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An integration by parts, −div σ = f , and Lemma 4.8 reveal for the last con-
tribution in (4.8) that

(f + div τAW, J1Π0vh)L2(Ω) = (σ − τAW, ε(J1Π0vh))L2(Ω) . ‖σ − τAW‖L2(Ω).

In the integration by parts, the boundary term
´

ΓN
((σ − τAW)ν) · J1Π0vh ds

does not arise because gk+n fulfills the condition (N). The combination of the
foregoing displayed inequalities with Lemma 4.6 concludes the proof.

5 Comments

This section discusses possible generalisations of Theorem 4.1 as well as appli-
cations to other finite element methods.

5.1 Pure Dirichlet and Pure Neumann Problem

The pure Dirichlet problem ΓD = ∂Ω involves the stress space

X :=
{
τ ∈ H(div,Ω;S)

∣∣ ´
Ω tr τ dx = 0

}
.

The arguments for the proof of Theorem 4.1 remain valid and, hence, Theo-
rem 4.1 also holds in the case of pure Dirichlet boundary conditions.

The pure Neumann problem ΓN = ∂Ω specifies the displacement up to
rigid-body motions only. Hence, the space of the displacements reads

Y := L2(Ω;Rn)
/

RM and Yh := Pk(T;Rn) ∩ Y

with the space of rigid-body motions RM on Ω. The discrete solution (σAW, uk)
to (4.2) and the exact solution (σ, u) satisfy the L2 best-approximation of
Theorem 4.1. The proof follows that of Section 4 with the analogue [Bre04,
Eqn (1.18)] of Lemma 4.7.

5.2 Arnold-Winther FEM for k ≥ 3

For k ≥ 3, the analogues to the volume degrees of freedom from Section A.1.2
read

ffl
T τAW : φdx for φ ∈ ε(Pk(T ;Rn)). For k ≥ 3 it holds ε(Pk(T ;Rn)) $

Pk−1(T ;S). For a shape function σAW of a face degree of freedom with
ffl
T σAW :

φdx = 0 for all φ ∈ ε(Pk(T ;Rn)), it is not obvious that the term
ffl
T̂
σ̂AW : φ̂ dx

for φ̂ ∈ ε(Pk(T̂ ;Rn)) scales in the correct way or even vanishes. This disables
the analysis of Theorem A.7 and, hence, k ≥ 3 is excluded in Theorem 4.1.

5.3 Nonconforming Arnold-Winther FEM

This subsection supports the conjecture that the analysis of Theorem 4.1 does
not hold for the nonconforming Arnold-Winther FEM. The nonconforming
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symmetric finite element spaces of [AW03] for the pure Dirichlet problem and
n = 2 for the stresses read

XNC :=

{
τ ∈ P2(T;S)

∣∣∣∣ ∀F ∈ F, νF · (τνF ) ∈ P1(F ) and
∀F ∈ F ∀v ∈ P1(F ;R2),

´
F v · [τ ]F νF ds = 0

}
and bNC(τNC, vh) := (divNC τNC, vh)L2(Ω) for τNC ∈ XNC and vh ∈ P1(T;R2).
The discrete mixed system seeks (σNC, uk) ∈ XNC × P1(T;R2) such that

a(σNC, τNC) + bNC(τNC, uk) = 0 for all τNC ∈ XNC,

bNC(σNC, vh) = −(f, vh)L2(Ω) for all vh ∈ P1(T;R2).
(5.1)

The stability of the discrete system (5.1) with respect to the norms ‖·‖L2(Ω) and
|||·|||h follows from the arguments in Section 4. The additional term from (2.7)
reads |a(σ, ρh)+bNC(ρh, u)|. This additional term disables a best-approximation
result as in Theorem 4.1 for the nonconforming Arnold-Winther FEM. This
is in accordance with the numerical experiments of [CEG11] where it was ob-
served that the approximation of σ by σNC is only of first order. The same
observation on reduced convergence rates is also valid for the reduced noncon-
forming finite element of [AW03].

5.4 Nonconforming Treatment of Neumann Data

Although the proof of (E) in Subsection 4.4 requires only the condition (N) on
the Neumann data, the abstract result in Theorem 2.1 relies the conformity
in the strong form Xh(0) ⊆ X(0). One possibility of circumventing the nodal
interpolation of possibly inconsistent Neumann data is to fix only the moments
of order k of τAWν|F for all F ∈ F(ΓN ) as in [CGRT08]

AWk,NC(T, g) = {τAW ∈ H(div,Ω;S) | ∀T ∈ T, τAW ∈ AWk(T ) and

∀vk ∈ Pk(F(ΓN );Rn),

ˆ
ΓN

(g − τAWν) · vk ds = 0}.

The discrete problem seeks σAW ∈ AWk,NC(T, g) and uk ∈ Pk(T;Rn) such that

a(σAW, τAW) + b(τAW, uk) = 〈τAWν, uD〉∂Ω for all τAW ∈ AWk,NC(T, 0),

b(σAW, vk) = − (f, vk)L2(Ω) for all vk ∈ Pk(T;Rn).

The conditions (LBB), (C), and (E) can be verified with the methodology of
Section 4. However, since AWk,NC(T, 0) 6⊆ X(0), a direct application of The-
orem 2.1 is not possible. The following extension explains the sub-optimal
convergence observed in the numerical experiments of rates in [CGRT08, Sub-
section 3.2]. For a smooth solution u ∈ H2(Ω;Rn) (resp. H3(Ω;Rn)), the
approximation error of the theorem below is merely O(h) (resp. O(h3/2)) in
accordance with all numerical experiments in [CGRT08].

Theorem 5.1. Any τAW ∈ AWk,NC(T, 0) and any v1 ∈ P1(F(ΓN );Rn) satisfy

‖σ − σAW‖L2(Ω) . ‖σ − τAW‖L2(Ω) + osck(f,T) + ‖h−1/2
T (u− v1)‖L2(ΓN ).
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Proof. As pointed out in Remark 2.3, the nonconformity in the discretisation
of the Neumann data results in the additional term (2.7) which reads (with
ξh = ρAW)

a(σ, ρAW) + b(ρAW, u)

for some ρAW ∈ AWk,NC(T, 0) with ‖ρAW‖L2(Ω) ≤ 1. The integration by parts
and the boundary condition of ρAW show for any v1 ∈ P1(F(ΓN );R2) that this
equals

a(σ, ρAW) + b(ρAW, u) =

ˆ
ΓN

u · (ρAWν) ds =

ˆ
ΓN

(u− v1) · (ρAWν) ds.

A trace and an inverse inequality show that this is controlled as

a(σ, ρAW) + b(ρAW, u) . ‖h−1/2
T (u− v1)‖L2(ΓN ) ‖ρAW‖L2(Ω).

The remaining terms are analysed in the proof of Theorem 2.1. Hence, further
details are omitted.

5.5 Equality of Approximation Classes

The notion of optimality of adaptive FEM in the literature is based on the
concept of an approximation class [CKNS08, BDD04]. Given some s > 0 and
an initial regular triangulation T0, the set T(N) of admissible triangulations T
with card(T) ≤ card(T0) +N leads to the following seminorms

|(σ, f)|As,AWFEM := sup
N∈N

min
T∈T(N)

N s
√
‖σ − σAW‖2 + osc(f,T)2, (5.2)

|(σ, f)|As,bapx := sup
N∈N

min
T∈T(N)

N s min
τAW∈AW(T,gn+k)

√
‖σ − τAW‖2 + osc(f,T)2

with the approximation classes

AAWFEM
s,gk+n

:=
{

(σ, f) ∈ H(div,Ω;S)× L2(Ω;Rn)
∣∣|(σ, f)|As,AWFEM <∞

}
,

Abapx
s,gk+n

:=
{

(σ, f) ∈ H(div,Ω;S)× L2(Ω;Rn)
∣∣ |(σ, f)|As,bapx

<∞
}
.

The set AAWFEM
s,gk+n

concerns the approximation by the Arnold-Winther FEM and
σAW in (5.2) is the finite element solution with respect to the mesh T and the
data f , while Abapx

s,gk+n describes the approximability of σ by arbitrary functions
in AWk(T, gn+k) (independent of any scheme). The approximation properties
of functions in AWk(T, gn+k) may be sensitive to the utilised approximation
of the Neumann data g by gn+k.

Theorem 5.2 (Abapx
s = AAWFEM

s ). Given any f ∈ L2(Ω;Rn), g ∈ L2(ΓN ;Rn)
and uD ∈ H1(Ω;Rn) with the exact solution (σ, u) to (3.1), then, for any s > 0,

(σ, f) ∈ AAWFEM
s if and only if (σ, f) ∈ Abapx

s

and |(σ, f)|As,AWFEM ≈ |(σ, f)|As,bapx
. The equivalence constants depend on

the domain Ω and on the shape-regularity of the triangulation T.

Proof. This is an immediate consequence of the best-approximation result of
Theorem 4.1.
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5.6 Stokes Equations

Theorem 2.1 immediately applies to the Arnold-Winther FEM of [CGP12] for
the Stokes equations which corresponds to the formal limit λ→∞ with C−1σ
replaced by the deviatoric part dev σ. This section therefore focuses on the
pseudostress-velocity formulation of the Stokes problem of [CTVW10, CW07,
CWZ10, CKP11],

div σ + f = 0 and dev σ = Du in Ω, u = uD on ΓD.

This leads to (2.1) with the spaces

H := L2(Ω;Rn×n),

X := {τ ∈ H(div,Ω;Rn×n) |
´

Ω tr τ dx = 0},
Y := L2(Ω;Rn).

For any τ, ρ ∈ X and v ∈ Y , the bilinear forms read

a(τ, ρ) := (dev τ, ρ)L2(Ω) and b(τ, v) := (div τ, v)L2(Ω).

Given uD ∈ H1(Ω;Rn) and f ∈ L2(Ω;Rn), setG(τ) := 〈τν, uD〉∂Ω and F (v) :=´
Ω f · v dx. It is well-established that the system (2.1) has a unique solution

(σ, u) ∈ X × Y . With the well-known Raviart-Thomas finite element space of
degree k ≥ 0 from [BF91, Bra07, BS08] let Xh := RTk(T)n ∩ X and Yh :=
Pk(T;Rn).

Theorem 5.3 (L2 best-approximation for the Stokes equations). The pseu-
dostress σ ∈ X and its approximation σh ∈ Xh satisfy the L2 error estimate

‖σ − σh‖L2(Ω) . inf
τh∈Xh

‖σ − τh‖L2(Ω) + osck(f,T).

Proof. The proof follows from (LBB), (C) and (E) and Theorem 2.1 for the
norms ‖•‖H = ‖•‖L2(Ω) and |||•|||h given, for any vh ∈ Yh, by

|||vh|||2h := ‖DNC(vh)‖2L2(Ω) +
∑

F∈F(Ω∪ΓD)

h−1
F ‖[vh]F ‖2L2(F ). (5.3)

The ellipticity condition (LBB1a) is a direct consequence of Lemma 4.2;
the continuity (LBB1b) follows from the Cauchy inequality. For any τh ∈ Xh

and vh ∈ Yh, a piecewise integration by parts proves that

b(τh, vh) = −(τh, DNCvh)L2(Ω) +
∑

F∈F(Ω∪ΓD)

ˆ
F

[vh]F · (τhνF ) ds.

As in the proof of Lemma 4.4, the trace and inverse inequalities control the
term b(τh, vh) by ‖τh‖L2(Ω) |||vh|||h. This leads to the proof of the continuity
(LBB2a).
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n = 2, n = 2, n = 3, n = 3,
k = 1 k = 2 k = 1 k = 2

nodal dofs 9 9 24 24
volume dofs 3 9 6 24
face dofs 12 18 36 72
add. volume dofs - 1 6 21
add. edge dofs - - 90 120
sum 24 37 162 261

Table A.1: The numbers of degrees of freedom.

For the proof of the inf-sup condition (LBB2b), it is stated in [BV96,
Lemma 2.1], [LS06, Lemma 2.1] that for any vh ∈ Yh there exists some τ̃h ∈
RTk(T)n with

b(τ̃h, vh) = |||vh|||2h and ‖τh‖L2(Ω) . |||vh|||h.

Set τh := (τ̃h−n−1(
´

Ω tr τh dx) 1n×n) ∈ Xh and observe that b(τh, vh) = |||vj |||2h
and ‖τh‖L2(Ω) ≤ ‖τ̃h‖L2(Ω). This establishes the inf-sup condition (LBB2b).
The bubble function technique due to [Ver96] allows the proof of the efficiency
estimate

‖hT(f + div τh)‖L2(Ω) . ‖σ − τh‖L2(Ω) + osck(f,T)

for all τh ∈ Xh. The techniques of Lemmas 4.8–4.9 prove condition (E).

Theorem 5.3 allows the following refinement of [CGS13, Thm. 3.5] where
n = 2 and k = 0: That theorem holds for a nonlinear approximation class (in
the notation of [CGS13])

A′′s :=
{

(σ, f, g) ∈H(div,Ω;R2×2)/R× L2(Ω;R2)

×
(
H1(Ω;R2) ∩H1(E(∂Ω);R2)

) ∣∣ |(σ, f, g)|A′′s <∞
}

with |(σ, f, g)|A′′s :=

sup
N∈N

N s inf
T∈T(N)

inf
τPS∈PS(T)

(
‖dev(σ−τPS)‖2L2(Ω)+osc2(f,T)+osc2

(∂g
∂s
,E(∂Ω)

))1/2
.

The refinement is that τPS in the preceding definition of the seminorm is opti-
mal in the L2 norm while in [CGS13, Thm. 3.5] it is the finite element solution
with respect to T.

A Local Degrees of Freedom of AW-MFEM

This appendix discusses the scaling of the shape functions of the Arnold-
Winther-FEM. Subsection A.1 first recalls the local degrees of freedom.
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A.1 Definition of the Local Degrees of Freedom

This subsection recalls the local degrees of freedom for the two-dimensional case
n = 2 and the three-dimensional case n = 3 from [AW02, AAW08]. There it is
proven that the local degrees of freedom are linearly independent functionals
on the space AWk(T ). The number of the different degrees of freedom can be
found in Table A.1.

Let ej := (δjk|k ∈ {1, . . . , n}) ∈ Rn denote the canonical unit vectors for
j ∈ {1, . . . , n} and set ejk := ej ⊗ ek := eje

>
k ∈ Rn×n. The indices for the

upper triangle part of an n× n matrix read as

H := {(j, k) ∈ {1, . . . , n}2 | j ≤ k}.

For T ∈ T, the local degrees of freedom are defined via the following groups of
linear functionals for any τAW ∈ AWk(T ).

A.1.1 Nodal Degrees of Freedom

The first group of degrees of freedom are the nodal values of τAW. Define the
index set Inodes(T ) := N(T )×H. The functional LT,` is defined by

LT,`(τAW) := τAW(z) : eαβ for ` = (z, (α, β)) ∈ Inodes(T ).

A.1.2 Volume Degrees of Freedom

The second group of degrees of freedom concerns volume moments. Define

Ivol,1(T ) :=

{
{0} ×H if k = 1,

{0, . . . , n} ×H if k = 2.

For T = conv{z1, . . . , zn+1} the moments of degree zero read

LT,`(τAW) := eαβ :

 
T
τAW dx for ` = (0, (α, β)) ∈ Ivol,1(T )

and for k = 2 and 1 ≤ j ≤ n, the moments of degree one read

LT,`(τAW) := eαβ :

 
T

(ϕzj − ϕzn+1) τAW dx for ` = (j, (α, β)) ∈ Ivol,1(T ).

Remark A.1. The volume degrees of freedom for k ≥ 2 are defined in [AW02,
AAW08] as the moments

´
T τAW : φdx for φ ∈ ε(Pk(T ;Rn)). Note that for

k = 2 it holds ε(P2(T ;Rn)) = P1(T ; S) on each simplex T .

A.1.3 Face Degrees of Freedom

The third group of functionals consists of the face moments of τAW. Define

Ifaces(T ) :=

(F, η, α) ∈ F(T )× Nn−1
0 × {1, . . . , n}

∣∣∣∣∣∣
n−1∑
j=1

ηj ≤ k

 .
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For F = conv{z1, . . . , zn} the moments of degree 0 ≤
∑n−1

j=1 ηj ≤ k read

LT,`(τAW) := eα·

 
F

n−1∏
j=1

(ϕzj − ϕzn)ηjτAW ds

 νF , for ` = (F, η, α) ∈ Ifaces(T ).

A.1.4 Additional Volume Degrees of Freedom

Let Ivol,2(T ) := {1, . . . ,dim(Mk(T ))} (with the convention {1, . . . , 0} := ∅)
and

Mk(T ) := {τ ∈ Pk+n(T ;S) | div τ = 0 and τνT = 0 on ∂T} .

In the lowest-order case k = 1 for n = 2, Mk(T ) = {0} [AW02, AAW08]. Let
(φj)j∈Ivol,2 be a basis of Mk(T ) and define the functionals

LT,j(τAW) :=

 
T
τAW : φj dx for j ∈ Ivol,2(T ).

A.1.5 Additional Edge Degrees of Freedom

There exists additional degrees of freedom for the edges of T for n = 3. Let
E(T ) denote the set of edges of T and define

Iedges(T ) :=
{

(E, j, α, β) ∈ E(T )× {0, . . . , k + 1} × {1, 2}2
∣∣ (α, β) 6= (2, 1)

}
∪
(
F(T )× E(T )× {0, . . . , k + 1}

)
.

For an edge E = conv{a, b} of T ⊆ R3 let ν1 and ν2 be linearly independent
normal vectors of E. The moments of degree j of the normal directions read

LT,`(τAW) :=

 
E

(ϕa − ϕb)j ν>α τAW νβ ds for ` = (E, j, α, β) ∈ Iedges(T ).

For a face F ∈ F(T ) with edge E, let sE denote a unit tangent along E. The
moments of degree j of the tangent-normal directions read

LT,`(τAW) :=

 
E

(ϕa − ϕb)j s>E τAW νF ds for ` = (F,E, j) ∈ Iedges(T ).

A.2 Scaling of Shape Functions

This subsection studies the dependence of the L2 norm of shape functions of
AWk(T ) on the mesh-size. Let T ∈ T and T̂ some reference simplex and let Ψ :
T̂ → T be an affine transformation with Ψ(x) = Bx+ b. This transformation
does not map AWk(T ) to AWk(T̂ ) in general. Therefore, the Piola transform is
employed for B−> := (B>)−1: Given σAW ∈ AWk(T ), its Piola transformation
reads

σ̂AW = B−1(σAW ◦Ψ)B−>.

The following Lemmas A.2–A.6 discuss the transformation of the local de-
grees of freedom under the Piola transform.
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Lemma A.2. Let z ∈ N(T ) be a vertex of the simplex T . If LT,`(σAW) = 0

for all ` ∈ Inodes, then LT̂ ,`(σ̂AW) = 0 for all ` ∈ Inodes(T̂ ).

Proof. This follows from (σAW ◦Ψ)(Ψ−1(z)) = 0.

Lemma A.3. Given (j, (α, β)) ∈ Ivol,1(T̂ ), the transformation of the volume
degrees of freedom reads

L
T̂ ,(j,(α,β))

(σ̂AW) = eαβ :

(
B−1

( ∑
(γ,δ)∈H

LT,(j,(γ,δ))(σAW)eγδ

)
B−>

)
.

Proof. This follows from a transformation to T .

Lemma A.4. The transformation of the face degrees of freedom for F = Ψ(F̂ )
and (F̂ , η, α) ∈ Ifaces(T̂ ) reads

L
T̂ ,(F̂ ,η,α)

(σ̂AW) = |B>νF |−1eα ·

B−1
n∑
γ=1

LT,(F,η,γ)(σAW)eγ

 .

Proof. The transformation to F = conv{z1, . . . , zn} yields

L
T̂ ,(F̂ ,η,α)

(σ̂AW) = eα ·

 
F

n−1∏
j=1

(ϕzj − ϕzn)ηj (B−1σAW) ds

B−>ν
F̂
.

Since B−>ν
F̂
is orthogonal to F and |B>νF | = |B−>νF̂ |

−1, this leads to

L
T̂ ,(F̂ ,η,α)

(σ̂AW) = |B>νF |−1 eα ·

 
F

n−1∏
j=1

(ϕzj − ϕzn)ηj (B−1σAW) ds

 νF

= |B>νF |−1 eα ·

B−1

 
F

n−1∏
j=1

(ϕzj − ϕzn)ηjσAW ds

 νF


= |B>νF |−1eα ·

B−1
n∑
γ=1

LT,(F,η,γ)(σAW)eγ

 .

Lemma A.5. If LT,j(σAW) = 0 for all j ∈ Ivol,2(T ), then L
T̂ ,j

(σ̂AW) = 0 for

all j ∈ Ivol,2(T̂ ).

Proof. Let φ̂j denote the basis function of Mk(T̂ ) associated with L
T̂ ,j

. A
transformation and a calculation reveal

L
T̂ ,vol,j

(σ̂AW) =

 
T
σAW : (B−>(φ̂j ◦Ψ−1)B−1) dx.

A further calculation reveals div((B−>(φ̂j ◦ Ψ−1)B−1)) = 0 if div φj = 0

[AW02, AAW08]. Let F ∈ F(T ) be a face of T and F̂ = Ψ−1(F ) ∈ F(T̂ )
with normal ν̂

F̂
. Since B−1ν̂

F̂
is orthogonal to F , the symmetry of (B−>(φ̂j ◦

Ψ−1)B−1) proves (B−>(φ̂j ◦ Ψ−1)B−1) ∈ Mk(T ). This proves L
T̂ ,j

(σ̂AW) =
0.
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The following lemma concerns only the case n = 3.

Lemma A.6. If n = 3 and LT,`(σAW) = 0 for all ` ∈ Iedges(T ), then L
T̂ ,`

(σ̂AW) =

0 for all ` ∈ Iedges(T̂ ).

Proof. Let (E, j, α, β) ∈ Iedges(T ) and Ê = Ψ−1(E) = conv{c, d} with normals
ν̂1, ν̂2 associated to the edge degrees of freedom of T̂ . The definition of the
Piola transform and a transformation yield

L
T̂ ,(Ψ−1(E),j,α,β)

(σ̂AW) =

 
E

(ϕΨ(c) − ϕΨ(d))
j ν̂>α (B−1(σAW ◦Ψ)B−>)ν̂β ds

=

 
Ê

(ϕΨ(c) − ϕΨ(d))
j(B−>ν̂α)>σAW(B−>ν̂β) ds.

Since B−>ν̂γ is orthogonal to E for γ = α, β and LT,(E,j,α,β)(σAW) = 0, this
vanishes. The same arguments prove (with the normal ν̂Ψ−1(F ) of Ψ−1(F ) and
the tangent ŝ

Ê
of Ê)

L
T̂ ,(Ψ−1(F ),Ψ−1(E),j)

(σ̂AW)

=

 
Ê

(ϕΨ(c) − ϕΨ(d))
`(B−>ŝ

Ê
)>σAW(B−>ν̂Ψ−1(F )) ds.

(A.1)

Since B−>νF is orthogonal to Ψ−1(F ) and B−>ŝ
Ê
∈ span{sE , ν1, ν2}, (A.1)

vanishes as well.

For the remaining part of this section, let σAW ∈ AWk(T ) be a shape
function of a volume degree of freedom and τAW ∈ AWk(T ) a shape function of
a face degree of freedom for some simplex T ∈ T, i.e., there exists `0 ∈ Ivol,1(T )
and `1 ∈ Ifaces(T ) with

LT,`(σAW) = δ`0` and LT,`(τAW) = δ`1`

for ` ∈ Inodes(T ) ∪ Ivol,1(T ) ∪ Ifaces(T ) ∪ Ivol,2(T ) ∪ Iedges(T ). The following
theorem proves that the shape functions scale in the expected way.

Theorem A.7. The above degrees of freedom with the aforementioned shape
functions σAW and τAW on T ∈ T satisfy

‖σAW‖L2(T ) + ‖τAW‖L2(T ) . |T |1/2.

Proof. Let σ̂AW and τ̂AW as above denote the Piola transform of σAW and τAW.
Let σ` ∈ AWk(T̂ ) for ` ∈ Ivol,1(T̂ ) ∪ Ifaces(T̂ ) denote the shape functions of
the volume degrees of freedom and the face degrees of freedom on T̂ . Since
the Piola transform preserves the polynomial degree and the symmetry of
σAW and τAW and the polynomial degree of their divergence, σ̂AW ∈ AWk(T̂ )
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and τ̂AW ∈ AWk(T̂ ) are Arnold-Winther functions on the reference simplex.
Lemmas A.2–A.6 then prove

σ̂AW =
∑

`∈Ivol,1(T̂ )

L
T̂ ,`

(σ̂AW)σ`

=
∑

`=(j,(α,β))∈Ivol,1(T̂ )

eαβ :

B−1

 ∑
(γ,δ)∈H

LT,(j,(γ,δ))(σAW)eγδ

B−>

σ`.

This and ‖σ`‖L2(T̂ )
. 1 yield

‖σ̂AW‖L2(T̂ )
. |B−1|2.

The combination with |B| ≈ |B−1|−1 plus a transformation lead to

‖σAW‖L2(T ) = |T |1/2 ‖σAW ◦Ψ‖
L2(T̂ )

= |T |1/2 ‖B σ̂AWB>‖
L2(T̂ )

. |T |1/2.

The same arguments and |B>νF |−1 . |B−1| prove ‖τAW‖L2(T ) . |T |1/2.

Remark A.8. Theorem A.7 can alternatively be proven by the explicit compu-
tation of the local mass matrix in [CGRT08] for n = 2 and k = 1.
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