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Abstract
This paper enfolds a medius analysis for first-order nonconforming finite

element methods (FEMs) in linear elasticity named after Crouzeix-Raviart
and Kouhia-Stenberg, which are robust with respect to the incompressible
limit as the Lamé parameter λ tends to infinity. The new result is a best-
approximation error estimate for the stress error in L2 up to data-oscillation
terms. Even for very coarse shape-regular triangulations, two comparison
results assert that the errors of the nonconforming FEM are equivalent to
that of the conforming first-order FEM. The explicit role of the param-
eter λ in those equivalence constants leads to an advertisment of the ro-
bust and quasi-optimal Kouhia-Stenberg FEM in particular for non-convex
polygons. The proofs are based on conforming companions, a new dis-
crete Helmholtz decomposition, and a new discrete-plus-continuous Korn
inequality for Kouhia-Stenberg finite element functions. Numerical evi-
dence strongly supports the robustness of the nonconforming FEMs with
respect to the incompressibility locking and with respect to singularities and
underlines that the dependence of the equivalence constants on λ in the com-
parison of conforming and nonconforming FEMs cannot be improved. This
work therefore advertises the Kouhia-Stenberg FEM as a first-order robust
discretisation in linear elasticity in the presence of Neumann boundary con-
ditions.
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(a) CFEM (b) KS-NCFEM (c) CR-NCFEM

Figure 1.1: Three first-order FEMs for linear elasticity.
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1 Introduction
The textbook a priori error analysis of nonconforming finite element methods
considers an inconsistency term with the normal derivative of the exact solution
along edges and so requires H3/2+ε regularity of the exact solution for some pos-
itive ε. This regularity request fails to hold for certain mixed boundary value
problems in linear elasticity and leaves the impression that nonconforming finite
element methods (FEMs) may be more sensitive for “near singularities” than con-
forming FEM [Bra07, p.111 and the web supplement]. The medius analysis of
[Gud10, CPS12] does not rely on elliptic regularity at all and proves quasi op-
timality for the linear elastic model problem of this paper in the sense that the
total error is dominated by the approximation error. The medius analysis extends
to non-constant coefficients λ and µ and higher space dimensions, while the more
involved precise analysis of the singular functions in case of non-convex polygons
appears to be limited to the simple linear elastic model problem at hand.

For a polygonal, bounded Lipschitz domain Ω ⊂ R2 with closed Dirichlet
boundary ΓD of positive length and (relatively open) Neumann boundary ΓN :=
∂Ω \ ΓD with outer unit normal ν, the strong formulation of the Navier-Lamé
equations for volume forces f ∈ L2(Ω;R2) and applied tractions g ∈ L2(ΓN ;R2)
and homogeneous boundary conditions reads (in compact notation)

divCε(u) = f in Ω,

u = 0 on ΓD,

Cε(u)ν = g on ΓN .

The fourth-order elasticity tensor acts as CA := 2µA+ λ tr(A)12×2 for positive
Lamé parameters µ and λ and for any general input variable A ∈ R2×2 and the
linear Green strain is ε(u) := (Du+Du>)/2.

The conforming first-order finite element method of Figure 1.1a (also named
after Courant (CFEM)) converges, but suffers from the locking in the incompress-
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ible limit as λ→ ∞ [Bra07, BS08, Fal08]. This means for large values of λ that
the L2 error of the stresses shows the expected convergence rate for a very large
number of degrees of freedom only. To overcome this phenomenon, finite ele-
ment spaces should have good approximation properties for nearly incompress-
ible materials. One possibility is the choice of a higher polynomial degree of
the ansatz space (≥ 4) or the use of mixed methods. However, the lowest-order
conforming mixed method of Arnold and Winther [AW02] still has 30 degrees
of freedom per triangle. An alternative approach are the first-order nonconform-
ing methods of Crouzeix and Raviart [BS92] or of Kouhia and Stenberg [KS95],
which do not show such a locking phenomenon and are therefore of great inter-
est. This paper enfolds a medius error analysis for the nonconforming FEM of
Kouhia and Stenberg (KS-NCFEM) of Figure 1.1b in the sense that mathematical
arguments from an a posteriori error analysis lead to a priori error estimates. The
notion of medius analysis was introduced in [Gud10] and leads to results, which
rely on no extra regularity of the weak solution and hold for arbitrarily coarse
meshes with certain minimal conditions (a)–(d) of Subsection 2.3. In this point,
the error analysis of this paper is a refinement of the error analysis in [KS95].
The main result of this analysis is the best-approximation property of the discrete
stress σKS := CεNC(uKS) (εNC or DNC are the piecewise analogues of ε or D)
with respect to the exact stress σ := Cε(u) for the exact and discrete solutions
u ∈ H1(Ω;R2) and uKS ∈ KS(T ); that is

‖σ−σKS‖L2(Ω)

. min
vKS∈KS(T )

‖σ−CεNC(vKS)‖L2(Ω)+osc( f2,T )+osc(g2,E(ΓN)).

The definitions of the data-oscillations osc( f2,T ) and osc(g2,E(ΓN)) and the pre-
cise definition of the Kouhia-Stenberg FEM space KS(T ) follow in Section 2.
The notation A . B abbreviates an inequality A ≤ CB with some mesh-size and
λ-independent generic constant 0 <C < ∞. The constant may depend on the con-
stant α > 0 in the conditions (a)–(d) of Subsection 2.3 and on µ. Since the mul-
tiplicative constant (hidden behind .) does not depend on λ, the aforementioned
error estimate also holds in the incompressible limit λ→ ∞. In other words, the
quasi optimal convergence follows for the KS-NCFEM in the Stokes problem as
well.

The proof relies on a new discrete Helmholtz decomposition (Theorem 3.1), a
new discrete-plus-continuous Korn inequality (Theorem 4.1) and the conforming
cubic companion of the nonconforming discrete solution from Lemma 3.3. This
conforming companion J3vCR fulfils for all Crouzeix-Raviart functions vCR the
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integral mean properties
ˆ

T
(vCR− J3vCR)dx = 0 and

ˆ
T

DNC(vCR− J3vCR)dx = 0 for all T ∈ T

and some stability and approximation properties.
The nonconforming FEM of Crouzeix and Raviart (CR-NCFEM) [BS92] of

Figure 1.1c only allows a discretisation of the pure Dirichlet problem ΓD = ∂Ω,
in which the (non-physical) stress σ̃ := C̃Du := µDu+(λ+µ)div(u)12×2 appears
with its approximation σ̃CR := C̃DNCuCR in the Crouzeix-Raviart FEM. The best-
approximation result of this paper reads

‖σ−CεNC(uCR)‖L2(Ω) . ‖σ̃− σ̃CR‖L2(Ω) . ‖σ̃−Π0σ̃‖L2(Ω)+osc( f ,T ).

Recent comparison results [Bra09, CPS12] lead to equivalences of approxi-
mation classes for the Poisson model problem. The best-approximation results
and further analysis of this paper lead to comparison results between the three
considered FEMs of Figure 1.1 with explicit dependence on the Lamé parameter
λ in the equivalence constants. For the conforming discrete solution uC and the
discrete stress σC := Cε(uC), the comparison between KS-NCFEM and CFEM
reads

λ
−1 ‖σ−σC‖L2(Ω) . ‖σ−σKS‖L2(Ω)

. ‖σ−σC‖L2(Ω)+osc( f2,T )+osc(g2,E(ΓN)).
(1.1)

A detailed investigation of the gap in the dependence on λ, which is in fact sharp,
is included in Section 6. For the pure Dirichlet problem ΓD = ∂Ω the solutions of
CR-NCFEM and KS-NCFEM (with σ̃KS := C̃DNCuKS) exist and can be compared
by

‖σ−σCR‖L2(Ω) . ‖σ−σKS‖L2(Ω)+osc( f ,T ) and

‖σ̃− σ̃KS‖L2(Ω) . ‖σ̃− σ̃CR‖L2(Ω)+osc( f2,T ).

The paper focuses on the 2 dimensional case; the generalisation to higher di-
mensions is straight forward for CR-NCFEM and CFEM. The generalisation of
KS-NCFEM to 3D applies two nonconforming and one conforming FEM to the
three components or two conforming and one nonconforming; the mathematical
justification will be established in the near future [CH].

Within the scope of low-order methods, despite the equivalence results of this
paper, the explicit dependence on the Lamé parameter λ strongly suggests the us-
age of nonconforming discretisations for nearly incompressible materials. If Neu-
mann boundary conditions are present, this advertises the usage of KS-NCFEM
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which, therefore, is apparently far too underrated in the engineering community
despite striking numerical examples in [KS95, CF01a]. It may appear strange to
employ some scheme which depends on the choice of the coordinate system, but
(in the presence of Neumann boundary conditions) the KS-NCFEM is the only
known robustly quasi-optimal first-order scheme.

The outline of this paper is as follows. Section 2 introduces the precise no-
tation and states the main results, which imply the error estimates of this intro-
duction. Section 3 presents some preliminary results which include the definition
of the conforming companion and the new discrete Helmholtz decomposition.
Sections 4–5 prove the main results including the new discrete-plus-continuous
Korn inequality. Section 6 concludes the paper with numerical illustrations and
provides striking numerical evidence for the equivalence of the three first-order
methods and the claimed dependence on the equivalence constant as λ→ ∞.

Throughout this paper, standard notation on Lebesgue and Sobolev spaces and
their norms is employed and further notation can be found in the following table
for convenient reading.

A. B A≤CB with a mesh-size independent constant C
vk,v(k) the k-th component of v ∈ R2

A(k, j) the component k j of A ∈ R2×2

A(k) the k-th row (A(k,1),A(k,2)) of A ∈ R2×2

a ·b = ∑
2
j=1 a( j)b( j) for a,b ∈ R2

A : B = ∑ j,k=1,2 A( j,k)B( j,k) for A,B ∈ R2×2

12×2 unit matrix in R2×2

S set of symmetric matrices; S := {A ∈R2×2 |A = A>}
ε(u) Green strain (Du+(Du)>)/2
C elasticity tensor; CA = 2µA+λ tr(A)12×2 for

A ∈ R2×2

C̃ modified elasticity tensor;
C̃A = µA+(µ+λ) tr(A)12×2 for A ∈ R2×2

CD(Ω) (resp. CN(Ω)) space of continuous functions with homogeneous
boundary conditions on ΓD (resp. ΓN)

V V := {v ∈ H1(Ω;R2) |v|ΓD = 0}
Dv, ∇w, divv derivative (of a vector valued function v ∈V ),

gradient of a scalar-valued function w ∈ H1(Ω),
divergence of v

Curl Curlv = (∂v/∂x2,−∂v/∂x1) ∈ L2(Ω;R2) for
v ∈ H1(Ω),
Curlw = (Curlw(1);Curlw(2)) ∈ L2(Ω;R2×2) for
w ∈V
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T , N , E shape-regular triangulation with set of vertices N
and set of edges E , cf. Subsect. 2.2

N (ω) set of vertices in ω, N (ω) := N ∩ω

E(ω) = {E ∈ E |E ⊆ ω,E 6⊆ ∂ω}
|T |, |E| area of a triangle T , length of an edge E
Pk(T ;Rm) set of piecewise polynomials of degree ≤ k,

Subsect. 2.2
Π0 Π0 : L2(Ω;Rm)→ P0(T ;Rm), L2 projection on

piecewise constants, Subsect. 2.2
ΠE L2 projection onto E-piecewise constants,

Subsect. 2.2
hT piecewise constant mesh-size, hT |T := diam(T ) for

all T
[v]E jump along an edge E, Subsect. 2.2
osc( f ,T ), osc( f ,T ) oscillations of f , osc( f ,T ) := ‖hT ( f −Π0 f )‖L2(T ),

osc( f ,T ) := ‖hT ( f −Π0 f )‖L2(Ω)

osc(g,E(ΓN)) edge oscillations, Subsect. 2.2
DNC, ∇NC, divNC, CurlNC piecewise versions of D, ∇, div, Curl
VC(T ) conforming finite element space, cf. Subsect. 2.3
CR1

D(T ) nonconforming Crouzeix-Raviart space, cf.
Subsect. 2.3

VCR(T ) VCR(T ) := CR1
D(T )×CR1

D(T )
KS(T ) finite element space of KS-NCFEM;

KS(T ) =
(
P1(T )∩CD(Ω)

)
×CR1

D(T ), cf.
Subsect. 2.3

KS∗(T ) KS∗(T ) = CR1
N(T )× (P1(T )∩CN(Ω)), cf. Sect. 3

INC : V →VCR(T ) nonconforming interpolation operator with
(INCv)(mid(E)) =

ffl
E vds for all E ∈ E \E(ΓD)

(•,•)C−1 (σ,τ)C−1 :=
´

Ω
σ : C−1τdx for σ,τ ∈ L2(Ω;S)

2 Notation and Main Results
This section defines the linear elastic model problem, all the considered FEMs,
and states the main results.

2.1 Linear Elasticity
Recall that the elastic body occupies the bounded Lipschitz domain Ω with bound-
ary ∂Ω = ΓD ∪ ΓN . We assume that ΓD consists of finitely many parts which
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lie on the outer boundary of Ω (on the unbounded connectivity component of
R2 \Ω). The weak formulation based on the Green strain, seeks u ∈ V := {v ∈
H1(Ω;R2) |v|ΓD = 0} such that

a(v,u) :=
ˆ

Ω

ε(v) : Cε(u)dx =
ˆ

Ω

f · vdx+
ˆ

ΓN

g · vds for all v ∈V. (2.1)

For the pure Dirichlet problem, i.e., ΓD = ∂Ω, an integration by parts and the
commutation of the derivatives for C∞

0 (Ω;R2) functions shows that
ˆ

Ω

ε(•) : Cε(•)dx =
ˆ

Ω

D• : C̃D• dx

on V ×C∞
0 (Ω;R2). The denseness of C∞

0 (Ω;R2) in V implies that the two bilinear
forms are identical on V ×V . Thus, for the pure Dirichlet problem, the equivalent
weak formulation based on the full gradient seeks u ∈ H1

0 (Ω;R2) with
ˆ

Ω

Dv : C̃Dudx =
ˆ

Ω

f · vdx for all v ∈ H1
0 (Ω;R2). (2.2)

Define the energy norm |||•||| :=
√

a(•,•) in V and the scalar product

(σ,τ)C−1 :=
ˆ

Ω

σ : C−1
τdx for all σ,τ ∈ L2(Ω;S).

2.2 Triangulations
Let T denote some shape-regular triangulation of a polygonal bounded Lipschitz
domain Ω into triangles, i.e., Ω =

⋃
T and any two distinct triangles are either

disjoint or share exactly one common edge or one vertex. Let E denote the set of
edges of T and N the set of vertices. Define for ω⊂R2 the sets N (ω) := N ∩ω

and E(ω) := {E ∈ E | int(E)⊂ ω} for the relative interior int(E) of an edge E ∈
E . We assume that the boundary edges E(∂Ω) match the boundary conditions in
the sense that the boundary conditions change only at nodes ΓD∩ Γ̄N ⊆N . Let

Pk(T ;Rm) := {vk : T → Rm | ∀ j = 1, . . . ,m, the component
vk( j) of vk is a polynomial of total degree≤ k},

Pk(T ;Rm) := {vk : Ω→ Rm | ∀T ∈ T ,vk|T ∈ Pk(T ;Rm)}

denote the set of piecewise polynomials; Π0 : L2(Ω;Rm)→ P0(T ;Rm) denotes
the L2-projection onto T -piecewise constant functions or vectors, i.e., (Π0 f )|T =ffl

T f dx :=
´

T f dx/|T | for all T ∈ T with area |T | and all f ∈ L2(Ω;Rm). The
operator ΠE denotes the L2 projection onto E-piecewise constant functions or
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vectors, i.e., ΠE g|E =
ffl

E gds :=
´

E gds/|E| for all edges E ∈ E of length |E|.
The volume oscillations read

osc( f ,T ) := ‖hT ( f −Π0 f )‖L2(T ) and osc( f ,T ) := ‖hT ( f −Π0 f )‖L2(Ω)

while the edge oscillations read

osc(g,E(ΓN)) :=
√

∑
E∈E(ΓN)

‖h1/2
T (g−ΠE g)‖2

L2(E)

with the piecewise constant mesh-size hT ∈ P0(T ) with hT |T := diam(T ) for all
T ∈ T . The jump along an interior edge E ∈E(Ω) with adjacent triangles T+ and
T−, i.e., E = T+∩T−, is defined by [v]E := v|T+ − v|T− . Given the homogeneous
Dirichlet boundary conditions, the jump along boundary edges E ∈ E(ΓD) reads
[v]E := v|T+ for that triangle T+ ∈ T with E ⊂ T+.

For piecewise affine functions vNC ∈P1(T ;R2) the T -piecewise gradient DNCvNC
with (DNCvNC)|T =D(vNC|T ) for all T ∈T and, accordingly, εNC(vNC) and divNC(vNC),
exists and DNCvNC ∈ P0(T ;R2×2) and εNC(vNC) ∈ P0(T ;S) and divNC(vNC) ∈
P0(T ).

2.3 Discrete Spaces
CFEM. The Courant finite element space reads

VC(T ) :=
(
P1(T )∩CD(Ω)

)
×
(
P1(T )∩CD(Ω)

)
.

The corresponding (unique) Galerkin approximation uC ∈VC(T ) satisfies
ˆ

Ω

ε(vC) : Cε(uC)dx =
ˆ

Ω

f · vC dx+
ˆ

ΓN

g · vC ds for all vC ∈VC(T ).

CR-NCFEM. Define the P1 nonconforming space

CR1(T ) := {vCR ∈ P1(T ) | vCR is continuous at midpoints of interior edges}.

The nonconforming Crouzeix-Raviart space reads

CR1
D(T ) := {vCR ∈ CR1(T ) | vCR vanishes at midpoints of edges E ∈ E(ΓD)}.

Define for the discretisation of the pure Dirichlet problem ΓD = ∂Ω of linear elas-
ticity the space

VCR(T ) := CR1
D(T )×CR1

D(T ).
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νE

z ∈ ∂Ω

y ∈ ∂Ω

(a) A situation excluded by
condition (a).

ΓN ΓD

E

νE

(b) Triangulation which is ex-
cluded by condition (b).

z ∈ ∂Ωy ∈ ∂Ω

νE

ω1

ω2

ΓD

ΓD

(c) A possible patch, which fulfils the condi-
tion (c).

ΓN

ΓD ΓD

(d) A situation excluded by condi-
tion (d).

Figure 2.1: Illustrations of the conditions (a)–(d).

Since the kernel of εNC : VCR(T )→ P0(T ;R2×2) is in general not trivial, the weak
formulation based on the full gradient is in use for the discretisation and seeks
uCR ∈VCR(T ) with

ˆ
Ω

DNCvCR : C̃DNCuCR dx =
ˆ

Ω

f · vCR dx for all vCR ∈VCR(T ). (2.3)

Here, the piecewise gradient DNC replaces the weak differential operator.

KS-NCFEM. The Kouhia-Stenberg approximation uKS ∈ KS(T ) :=
(
P1(T )∩

CD(Ω)
)
×CR1

D(T ) satisfies
ˆ

Ω

εNC(vKS) : CεNC(uKS)dx =
ˆ

Ω

f · vKS dx+
ˆ

ΓN

g · vKS ds for all vKS ∈ KS(T ).

(2.4)
The following conditions (a)–(d) are given for completeness and replace the

assumptions on the sufficiently small mesh-size of T and the assumptions (AD)
and (AN) of [KS95]. These conditions are for example fulfilled if at least one
vertex of each triangle lies in the interior of the domain. The existence of α >
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0 which fulfils the conditions (a)–(d) ensures, that the inf-sup condition and a
discrete Korn inequality hold.

(a) For all E ∈ E(Ω) with N (E)⊆N (∂Ω) it holds |νE(2)| ≥ α.

(b) If ΓN 6= /0 it holds N ∩ΓN 6= /0 or there exists at least one E ∈ E(ΓN) with
|νE(2)| ≥ α.

(c) In the case that the two vertices of an interior edge E ∈ E(Ω) belong to
the boundary, i.e. N (E) ⊆ N (∂Ω), and |νE(1)| < α, consider z ∈ N (E).
For the nodal patch ωz := int

(⋃{T ∈ T | z ∈ T}
)

let ω1,ω2 ⊆ ωz denote
the two connected sets, which decompose the nodal patch in the upper and
lower part (i.e., ω1∩ω2 = E and ω1∪ω2∪ int(E) = ωz). Then there exist
edges Ek ∈E(∂ωk)∩E(ΓD) for k = 1,2 with |νEk(1)|>α (see Figure 2.1c).

(d) If the entire Dirichlet boundary is nearly horizontal, i.e., for all E ∈ E(ΓD)
it holds |νE(1)| < α, then there exist two adjacent edges on the Dirichlet
boundary, i.e., there exist E,F ∈ E(ΓD) with E 6= F and E ∩F 6= /0.

The generic multiplicative constants hidden in the notation . are allowed to de-
pend on α. Figure 2.1 illustrates the conditions (a)–(d).

2.4 Main Results
The main results below imply the statements of the introduction in Section 1.

Theorem 2.1 (best-approximation of KS-NCFEM). The exact and the discrete
stress σ =Cε(u) and σKS =CεNC(uKS) for the exact and discrete solutions u∈V
and uKS ∈ KS(T ) satisfy

‖σ−σKS‖L2(Ω)

. min
vKS∈KS(T )

‖σ−CεNC(vKS)‖L2(Ω)+osc( f2,T )+osc(g2,E(ΓN)).

Remark 2.2. As one key ingredient for the proof of Theorem 2.1, the error es-
timate of Theorem 4.4 from Section 4 estimates the stress error of KS-NCFEM
by some best-approximation error of the stress and the derivative in the piecewise
constant functions plus some data approximation terms.

Theorem 2.3 (best-approximation of CR-NCFEM). Let σ̃ := C̃Du for the exact
solution u ∈ H1

0 (Ω;R2). For the pure Dirichlet problem ΓD = ∂Ω the discrete
stress σ̃CR := C̃DNCuCR for the discrete solution uCR ∈VCR(T ) of (2.3) satisfies

‖σ̃− σ̃CR‖L2(Ω) . ‖σ̃−Π0σ̃‖L2(Ω)+osc( f ,T ).
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Theorem 2.4 (comparison of CFEM, CR-NCFEM and KS-NCFEM). The exact
stress σ = Cε(u) and the discrete stresses σC = Cε(uC) and σKS = CεNC(uKS)
satisfy

λ
−1 ‖σ−σC‖L2(Ω) . ‖σ−σKS‖L2(Ω)

. ‖σ−σC‖L2(Ω)+osc( f2,T )+osc(g2,E(ΓN)).

For the pure Dirichlet problem ΓD = ∂Ω the discrete stress σCR = CεNC(uCR)
satisfies

‖σ−σCR‖L2(Ω) . ‖σ−σKS‖L2(Ω)+osc( f ,T ).

In addition, the stress error of KS-NCFEM is comparable with the error of the
non-symmetric approximation σ̃ := C̃Du from (2.2) through

‖σ−σKS‖L2(Ω) . ‖σ̃− σ̃CR‖L2(Ω)+osc( f2,T ).

3 Preliminary Results
The following discrete Helmholtz decomposition and some properties of a con-
forming companion are required below; cf. [FM90] for a first decomposition of
this type. To this end, define

CR?(T ) := {vCR ∈ CR(T ) | vCR(mid(E1)) = vCR(mid(E2))

for E1,E2 edges of the same connectivity component of ΓN},
V ?

C(T ) := {vC ∈ P1(T )∩H1(Ω) | vC is constant along
each connectivity component of ΓN}.

Recall that the boundary conditions match the triangulation T of the possibly mul-
tiply connected planar Lipschitz domain Ω with ΓD ⊆ Γ0 for the outer boundary
Γ0 of Ω (Γ0 is defined as the boundary of the unbounded connectivity component
of R2 \Ω).

Theorem 3.1 (discrete Helmholtz decomposition). Let KS∗(T ) := CR?(T )×
V ?

C(T ). Then it holds

P0(T ;S) = CεNC(KS(T ))⊕
(

CurlNC(KS∗(T ))∩P0(T ;S)
)

and the sum is orthogonal with respect to the scalar product (•,•)C−1 :=
´

Ω
• :

C−1 • dx.

Remark 3.2. For any v∗KS ∈KS∗(T ), the assertion CurlNC v∗KS ∈P0(T ;S) is equiv-
alent to divNC v∗KS = 0.
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Proof of Theorem 3.1. For αKS ∈KS(T ) and βKS∗ ∈KS∗(T ) with CurlNC(βKS∗)∈
P0(T ;S) let αC ∈ P1(T )∩CD(Ω), αCR ∈ CR1

D(T ), βCR ∈ CR?(T ) and βC ∈
V ?

C(T ) with αKS = (αC,αCR) and βKS∗ = (βCR,βC). Then αKS and βKS∗ satisfy

(Cε(αKS),CurlNC βKS∗)C−1 =

ˆ
Ω

εNC(αKS) : CurlNC βKS∗ dx

=

ˆ
Ω

DNC(αKS) : CurlNC βKS∗ dx

=

ˆ
Ω

(
∇αC ·CurlNC βCR +∇NCαCR ·CurlβC

)
dx.

This and the L2 orthogonalities

∇
(
P1(T )∩CD(Ω)

)
⊥L2 CurlNC

(
CR?(T )

)
,

∇NC CR1
D(T )⊥L2 Curl

(
V ?

C(T )
) (3.1)

imply the orthogonality (with respect to the scalar product (•,•)C−1)

CεNC(KS(T ))⊥
(

CurlNC(KS∗(T ))∩P0(T ;S)
)
.

Given σh ∈ P0(T ;S), let αKS ∈ KS(T ) solve
ˆ

Ω

εNC(vKS) : CεNC(αKS)dx =
ˆ

Ω

εNC(vKS) : σh dx for all vKS ∈ KS(T ).

The j-th row τh( j) := (τh( j,1),τh( j,2)) ∈ P0(T ;R2) of τh := σh−CεNC(αKS) ∈
P0(T ;S) is piecewise constant for j = 1,2. The discrete Helmholtz decomposition
for Crouzeix-Raviart and conforming P1 functions [AF89] remains true for mixed
boundary conditions and interchanged discrete spaces as

P0(T ;R2) = ∇NC CR1
D(T )⊕CurlV ?

C(T );

P0(T ;R2) = ∇(P1(T ∩CD(Ω))⊕CurlNC CR?(T ).

(This can be proved, e.g., by the orthogonalities (3.1) and a dimension argument).
This guarantees the existence of pC ∈ P1(T )∩CD(Ω), pCR ∈ CR?(T ), qCR ∈
CR1

D(T ) and qC ∈V ?
C(T ) with

τh(1) = ∇pC +CurlNC pCR and τh(2) = ∇NCqCR +CurlqC.

(Here, ∇pC, CurlNC pCR, ∇NCqCR, and CurlqC are understood as row vectors.)
Since τh is orthogonal to CεNC(KS(T )) with respect to (•,•)C−1 and since τh ∈
P0(T ;S), the functions vC ∈ P1(T )∩CD(Ω) and vCR ∈ CR1

D(T ) satisfy
ˆ

Ω

(∇vC;∇NCvCR) : (τh(1);τh(2))dx =
ˆ

Ω

εNC(vC,vCR) : τh dx = 0.

12
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This implies the L2 orthogonalities

τh(1)⊥L2∇
(
P1(T )∩CD(Ω)

)
and τh(2)⊥L2∇NC CR1

D(T ).

This and the orthogonalities (3.1) lead to

‖∇pC‖2
L2(Ω) =

ˆ
Ω

∇pC · (∇pC− τh(1))dx = 0.

Analogue arguments prove ‖∇NCqCR‖2
L2(Ω) = 0. Hence,

τh = CurlNC(pCR,qC) ∈ CurlNC(KS∗(T )).

Lemma 3.3. There exists an operator J3 : CR1
D(T )→ (P3(T )∩CD(Ω)) with the

conservation properties
ˆ

T
(vCR− J3vCR)dx = 0 for all T ∈ T , (3.2.a)

ˆ
E
(vCR− J3vCR)dx = 0 for all E ∈ E (3.2.b)

and the approximation and stability properties∥∥∥h−1
T (vCR− J3vCR)

∥∥∥
L2(Ω)

≈ ‖∇NC(vCR− J3vCR)‖L2(Ω)

≈ min
ϕ∈H1(Ω)∩CD(Ω)

‖∇NC(vCR−ϕ)‖L2(Ω)

≤ ‖∇NCvCR‖L2(Ω) .

(3.3)

Remark 3.4. The conservation property along edges (3.2.b) and an integration by
parts reveal the conservation property of the gradients Π0∇J3 = ∇NC in the sense
that ˆ

T
∇J3vCR dx =

ˆ
T

∇NCvCR dx for all T ∈ T and all vCR ∈ CR1
D(T ).

Proof of Lemma 3.3. The design is based on three successive steps.
Step 1. The operator J1 : CR1

D(T )→ P1(T )∩CD(Ω) acts on any function
vCR ∈ CR1

D(T ) by averaging the function values at each node z ∈N (Ω∪ΓN)

J1vCR(z) = |T (z)|−1
∑

T∈T (z)
vCR|T (z) for all z ∈N (Ω∪ΓN) (3.4)

13
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with T (z) := {T ∈ T | z ∈ T}. (This operator is also known as enriching operator
in the context of fast solvers [Bre96].) The arguments of [CEHL12, Theorem 5.1]
prove the approximation property∥∥∥h−1

T (vCR− J1vCR)
∥∥∥

L2(Ω)
.
√

∑
E∈E(Ω∪ΓD)

|E|−1 ‖[vCR]E‖2
L2(E)

.
√

∑
E∈E(Ω∪ΓD)

|E|‖[∇NCvCR · τE ]E‖2
L2(E)

. min
v∈H1(Ω)∩CD(Ω)

‖∇NC(vCR− v)‖L2(Ω) .

(3.5)

This and an inverse estimate imply the stability property

‖∇NC(vCR− J1vCR)‖L2(Ω) . min
v∈H1(Ω)∩CD(Ω)

‖∇NC(vCR− v)‖L2(Ω) . (3.6)

Step 2. Given any edge E = conv{a,b} ∈ E(Ω∪ΓN) with nodal P1 conform-
ing basis functions ϕa, ϕb ∈ P1(T )∩C(Ω) (defined by ϕa(a) = 1 and ϕa(z) = 0
for z ∈N \{a}), the quadratic edge-bubble function

[E := 6ϕaϕb

has the support ωE and satisfies
ffl

E [E ds = 1. For any function vCR ∈CR1
D(T ) the

operator J2 : CR1
D(T )→ P2(T )∩CD(Ω) acts as

J2vCR := J1vCR + ∑
E∈E(Ω∪ΓN)

( 
E
(vCR− J1vCR) ds

)
[E .

An immediate consequence of this choice is
 

E
J2vCR ds =

 
E

vCR ds for all E ∈ E .

An integration by parts shows for the vertex PE ∈ N (T ) \E opposite to E ∈
E(T ) in the triangle T the trace identity

 
E
(vCR− J1vCR) ds

=

 
T
(vCR− J1vCR) dx+

1
2

 
T
(x−PE) ·∇NC (vCR− J1vCR) dx.

14
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The scaling ‖[E‖L2(Ω) . hT shows∥∥∥h−1
T ∑

E∈E(T )

( 
E
(vCR− J1vCR) ds

)
[E

∥∥∥
L2(T )

. ∑
E∈E(T )

∣∣∣∣ 
E
(vCR− J1vCR) ds

∣∣∣∣
. h−1

T ‖vCR− J1vCR‖L2(T )+‖∇NC(vCR− J1vCR)‖L2(T ).

This and (3.5)–(3.6) yield∥∥∥h−1
T (vCR− J2vCR)

∥∥∥
L2(Ω)

. min
v∈H1(Ω)∩CD(Ω)

‖∇NC(vCR− v)‖L2(Ω) . (3.7)

The stability property of J2 follows with an inverse estimate

‖∇NC(vCR− J2vCR)‖L2(Ω) .
∥∥∥h−1

T (vCR− J2vCR)
∥∥∥

L2(Ω)

. min
v∈H1(Ω)∩CD(Ω)

‖∇NC(vCR− v)‖L2(Ω) .
(3.8)

Step 3. On any triangle T = conv{a,b,c} with nodal basis functions ϕa, ϕb,
ϕc, the cubic volume bubble function reads

[T := 60ϕaϕbϕc ∈ H1
0 (T ).

and enjoys the scaling ‖∇[T‖L2(Ω) ≈ 1. Define

J3vCR := J2vCR + ∑
T∈T

( 
T
(vCR− J2vCR)dx

)
[T .

Then J3 fulfils the conservation properties (3.2) and∥∥∥∥ ∑
T∈T

( 
T
(vCR− J2vCR)dx

)
∇[T

∥∥∥∥2

L2(Ω)

≈ ∑
T∈T

∣∣∣∣( 
T
(vCR− J2vCR)dx

)∣∣∣∣2
.
∥∥∥h−1

T (vCR− J2vCR)
∥∥∥2

L2(Ω)
.

This and (3.7)–(3.8) imply

‖DNC(vCR− J3vCR)‖L2(Ω)

≤ ‖DNC(vCR− J2vCR)‖L2(Ω)+

∥∥∥∥ ∑
T∈T

( 
T
(vCR− J2vCR)dx

)
∇[T

∥∥∥∥
L2(Ω)

. min
v∈H1(Ω)∩CD(Ω)

‖∇NC(vCR− v)‖L2(Ω) .

This and some Poincaré inequality lead to (3.3).

15
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Lemma 3.5. Any vKS ∈ KS(T ) satisfies
ˆ

Ω

(Π0σ−σKS) : εNC(vKS)dx.
(
‖(σ−Π0σ)(2)‖L2(Ω)+osc( f2,T )

+osc(g2,E(ΓN))
)
‖∇NCvKS(2)‖L2(Ω) .

Proof. Given any vKS ∈ KS(T ) let vKS = (vC,vCR) be with vC ∈ P1(T )∩CD(Ω)
and vCR ∈ CR1

D(T ). Lemma 3.3 guarantees the existence of J3vCR ∈ P3(T )∩
H1(Ω)∩CD(Ω) with

ˆ
T
(vCR− J3vCR)dx = 0 =

ˆ
T

∇NC(vCR− J3vCR)dx for all T ∈ T

and ‖∇NC(vCR− J3vCR)‖L2(Ω) . ‖∇NCvCR‖L2(Ω) .
(3.9)

Since Π0σ is piecewise constant, the integral mean property (3.9) implies
ˆ

Ω

Π0σ :εNC(0,vCR)dx =
ˆ

Ω

Π0σ : εNC(0,J3vCR)dx

=

ˆ
Ω

(Π0σ−σ) : D(0,J3vCR)dx+
ˆ

Ω

σ : ε(0,J3vCR)dx.

Since σ is the stress of the exact solution and J3vCR ∈H1(Ω)∩CD(Ω), the Cauchy-
Schwarz inequality implies

ˆ
Ω

(Π0σ−σ) : D(0,J3vCR)dx+
ˆ

Ω

σ : ε(0,J3vCR)dx

≤ ‖(σ−Π0σ)(2)‖L2(Ω) ‖∇J3vCR‖L2(Ω)+

ˆ
Ω

f2 J3vCR dx+
ˆ

ΓN

g2 J3vCR ds.

The triangle inequality and the stability property (3.9) show

‖∇J3vCR‖L2(Ω) ≤ ‖∇J3vCR−∇NCvCR‖L2(Ω)+‖∇NCvCR‖L2(Ω)

. ‖∇NCvCR‖L2(Ω) .

The combination of the above inequalities yields
ˆ

Ω

Π0σ : εNC(0,vCR)dx

. ‖(σ−Π0σ)(2)‖L2(Ω) ‖∇NCvCR‖L2(Ω)+

ˆ
Ω

f2 J3vCR dx+
ˆ

ΓN

g2 J3vCR ds.

16
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Since σ and σKS are the stresses of the exact and the discrete solution, it followsˆ
Ω

(Π0σ−σKS) : εNC(vKS)dx

=

ˆ
Ω

(Π0σ−σKS) : εNC(0,vCR)dx

=

ˆ
Ω

Π0σ : εNC(0,vCR)dx−
ˆ

Ω

f2 vCR dx−
ˆ

ΓN

g2 vCR ds.

The combination of the previous displayed formulas provesˆ
Ω

(Π0σ−σKS) : εNC(vKS)dx

. ‖(σ−Π0σ)(2)‖L2(Ω) ‖∇NCvCR‖L2(Ω)

+

ˆ
Ω

f2(J3vCR− vCR)dx+
ˆ

ΓN

g2 (J3vCR− vCR)ds.

(3.10)

Since the integral mean of J3vCR− vCR vanishes on triangles, the trace inequality
[BS08, p.282] followed by a Poincaré inequality yields for E ∈E(ΓN) and T ∈ T
with E ∈ E(T )

‖h−1/2
T (J3vCR− vCR)‖L2(E)

. ‖h−1
T (J3vCR− vCR)‖L2(T )+‖∇NC(J3vCR− vCR)‖L2(T )

≤ ‖∇NC(J3vCR− vCR)‖L2(T ).

Since the integral mean of J3vCR− vCR vanishes on edges, this leads toˆ
E

g2 (J3vCR− vCR)ds. ‖h1/2
T (g2−ΠE g2)‖L2(E) ‖∇NC(J3vCR− vCR)‖L2(T ).

Since the integral mean of J3vCR− vCR vanishes on triangles, (3.10) impliesˆ
Ω

(Π0σ−σKS) : εNC(vKS)dx

.
(
‖(σ−Π0σ)(2)‖L2(Ω)+osc( f2,T )+osc(g2,E(ΓN))

)
‖∇NCvCR‖L2(Ω) .

This concludes the proof.

The nonconforming interpolation operator INC : V → VCR(T ) is defined by
(INCv)(mid(E)) =

ffl
E vds for all E ∈E \E(ΓD) and fulfils the integral mean prop-

erty DNCINC = Π0D in the sense that

DNCINCv|T =

 
T

Dvdx for all T ∈ T and all v ∈V. (3.11)

17
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Lemma 3.6. Any βKS∗ ∈ KS∗(T ) with CurlNC βKS∗ ∈ P0(T ;S) satisfies
ˆ

Ω

εNC(INCu−uKS) : CurlNC βKS∗ dx

. ‖(Du−Π0Du)(1)‖L2(Ω) ‖CurlNC βKS∗(1)‖L2(Ω) .

Proof. According to the definition, βKS∗(1)∈CR?(T ) and βKS∗(2)∈V ?
C(T ). The

orthogonalities (3.1) and CurlNC βKS∗ ∈ S show, for any φC ∈ P1(T )∩CD(Ω), that
ˆ

Ω

εNC(INCu−uKS) : CurlNC βKS∗ dx

=

ˆ
Ω

(∇NCINCu(1)−∇φC) ·CurlNC βKS∗(1)dx.

Since φC ∈ P1(T )∩CD(Ω) is arbitrary, this implies
ˆ

Ω

εNC(INCu−uKS) : CurlNC βKS∗ dx

≤ min
φC∈P1(T )∩CD(Ω)

‖∇NCINCu(1)−∇φC‖L2(Ω) ‖CurlNC βKS∗(1)‖L2(Ω) .

(3.12)
The integral mean property (3.11) of INC and [CEHL12, Theorem 5.1] show

min
φC∈P1(T )∩CD(Ω)

‖∇NCINCu(1)−∇φC‖L2(Ω) ≤ ‖∇u(1)−∇NCINCu(1)‖L2(Ω)

= ‖∇u(1)−Π0∇u(1)‖L2(Ω) .
(3.13)

The combination of (3.12)–(3.13) concludes the proof.

4 Proof of Theorem 2.1
The main step in the proof of Theorem 2.1 is the error estimate

‖σ−σKS‖L2(Ω) . ‖σ−Π0σ‖L2(Ω)+‖(Du−Π0Du)(1)‖L2(Ω)

+osc( f2,T )+osc(g2,E(ΓN)).

from Theorem 4.4 below. The discrete-plus-continuous Korn inequality from The-
orem 4.1 below allows the control of the non-symmetric term ‖Du−Π0Du‖L2(Ω)

in terms of the symmetric stress error ‖σ−CεNC(vKS)‖L2(Ω). This proves Theo-
rem 2.1.

The remaining parts of this section prove first Theorem 4.1 and then Theo-
rem 4.4.
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Theorem 4.1 generalises the discrete Korn inequality from [KS95] in that the
underlying function space is V +KS(T ) and not just KS(T ). The Remark 4.1.v
of [CF01b] gives the general warning that the Korn inequality in the form of the
following Theorem 4.1 is only stated but not proven completely in [BB98].

Theorem 4.1 (discrete-plus-continuous Korn inequality). For a triangulation T
which fulfils the conditions (c) and (d), any vNC ∈V +KS(T ) satisfies

‖DNCvNC‖L2(Ω) . ‖εNC(vNC)‖L2(Ω) .

Remark 4.2. The discrete-plus-continuous Korn inequality could be proven for
slightly weaker conditions as the conditions (c)–(d) from Subsection 2.3 as in the
situation of Figure 2.1d. In those situations, the proof of Theorem 4.1 considers
some larger neighbourhoods of the patches. In the situation of Figure 2.1d, it
is not guaranteed that those patches do not become arbitrarily large under some
refinement strategies and so the constant from the discrete Korn inequality is not
uniformly bounded. For the ease of this presentation and the sake of clarity, the
slightly stronger versions (c)–(d) are assumed.

The proof of Theorem 4.1 considers a set of vertices Z ⊆N defined by z ∈ Z
if and only if at least one of the following conditions (i)–(iii) is fulfilled with α> 0
from the conditions (c)–(d) of Subsection 2.3.

(i) z ∈N (Ω),

(ii) z ∈ N (∂Ω) with |νE(1)| > α for all E ∈ E(ωz) for the nodal patch ωz :=
int(

⋃{T ∈ T | z ∈ T}), and if |{E ∈ E(ΓD∩ωz)) | |νE(1)|< α}|= 1, then
|{E ∈ E(ΓD∩ωz)) | |νE(1)|> α}|> 0,

(iii) z ∈N (∂Ω) and there exists an edge E ∈ E(ωz) with N (E) ⊆N (∂Ω) and
|νE(1)| < α, which decomposes the patch ωz in the two domains ω1,ω2
(i.e., ω1,ω2 connected with ω1∩ω2 = E and ω1∪ω2∪ int(E) = ωz). For
each of the two domains ω1 and ω2 there exists E1 ∈ E(∂ω1)∩E(ΓD) and
E2 ∈ E(∂ω2)∩E(ΓD) on the Dirichlet boundary with |νE1(1)| > α and
|νE2(1)|> α as depicted in Figure 2.1c.

Recall that the generic multiplicative constants hidden in the notation . may de-
pend on α.

The set Z contains all interior nodes and some nodes on the boundary, for
which some local discrete Korn inequality holds on the nodal patches. The proof
of Theorem 4.1 below uses that under the conditions (c)–(d) of Subsection 2.3
the set Z is large enough to prove the theorem even if that set is empty and the
mesh is very coarse (without any interior node). The first step of this proof is the
subsequent lemma.
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(a) An excluded infinitesimal
rigid body motion.

z ∈ ∂Ω

(b) Situation of Figure 4.1a embed-
ded in a triangulation, excluded by
condition (c).

(c) Interior patch.

Figure 4.1: Illustration of critical situations for Lemma 4.3.

Lemma 4.3 (characterisation of rigid body motions). Let T be a triangulation
which fulfils the conditions (c)–(d) of Subsection 2.3 and define Z as above.
Then any vKS ∈ KS(T ) with εNC(vKS|ωz) = 0 on the nodal patch ωz for z ∈ Z
is continuous on ωz. For E ∈ E(Ω) with |νE(1)| ≥ α any vKS ∈ KS(T ) with
εNC(vKS|ωE ) = 0 on the edge-patch ωE := int

(⋃{T ∈ T | E ∈ E(T )}
)

is contin-
uous on ωE .

Proof. The critical situation concerns horizontal edges as depicted in Figure 4.1a.
For interior nodes the rigid body motions are fixed through two midpoints of those
horizontal edges (see Figure 4.1c). For nodes on the boundary condition (iii)
guarantees that the rigid body motions are fixed by the boundary conditions. In
the case of the edge-patches such critical situations are excluded.

Proof of Theorem 4.1. Define Γ̃D :=
⋃{E ∈ E(ΓD) | |νE(1)| > α or there exists

F ∈ E(ΓD) with F 6= E and F ∩E 6= /0}. The point of departure is the discrete
Korn inequality for piecewise H1 functions [Bre04, Equation (1.19)]

‖DNCvNC‖L2(Ω)

. ‖εNC(vNC)‖L2(Ω)+‖vNC‖L2(Γ̃D)
+

√
∑

E∈E(Ω)

|E|−1 ‖[vNC]E‖2
L2(E).
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For any vertex z ∈ Z set T (z) := {T ∈ T | z ∈ T} the set of all triangles with ver-
tex z and define Ez := {E ∈ E(Ω∪ Γ̃D) | z ∈ E and if E ∈ E(Γ̃D) and |νE(1)| <
α then |E(Γ̃D)|> 1} and let ωz := int(

⋃
T (z)) be the nodal patch. On KS(T (z)) :=

{vKS ∈ P1(T (z),R2) | ∃wKS ∈ KS(T ) s.t. vKS = wKS|ωz} the maps

ρ1(vKS) :=
√

∑
E∈Ez

|E|−1 ‖[vKS]E‖2
L2(E)

and ρ2(vKS) := inf
v∈V (ωz)

‖εNC(vKS− v)‖L2(ωz)
(4.1)

define two seminorms, where

V (ωz) := {w ∈ L2(ωz;R2) | ∃v ∈V with w = v|ωz}.

The triangle inequality implies that infimising sequences vn ∈ V (ωz) in (4.1)
are bounded in H1(ωz;R2). Since V (ωz) is a closed subspace of the reflexive
space H1(ωz;R2), there exists a subsequence vnk and a function v∞ ∈V (ωz) with
vnk ⇀ v∞. This and the weak lower semi continuity of the norm ‖ε(•)‖L2(ωz)

on
V (ωz) imply that the infimum is in fact a minimum.

If ρ2(vKS) = 0 for vKS ∈ KS(T (z)), then there exists some v ∈ V (ωz) with
εNC(vKS) = ε(v). Therefore, wKS := v− vKS ∈ P1(T (z);R2) is a piecewise rigid
body motion. This implies

v ∈ P1(T (z);R2)∩C(ωz;R2)⊂ KS(T (z))

and therefore wKS ∈ KS(T (z)). Lemma 4.3 implies that wKS ∈C(ωz;R2) is con-
tinuous. Hence, vKS = v−wKS ∈ C(ωz;R2) and vKS|E ≡ 0 for E ∈ Ez∪ Γ̃D and
therefore ρ1(vKS) = 0. Since ρ1 and ρ2 are seminorms on the finite dimensional
space KS(T (z)), there exists a constant C(T (z)), such that ρ1 ≤ C(T (z))ρ2. A
scaling argument shows, that the constant C(T (z)) is independent of the mesh-
size and depends on the minimal angle in T (z) and on α > 0 from the conditions
(c)–(d) only.

For E ∈E(Ω∪ Γ̃D) with |νE(1)| ≥ α, a similar argument shows the inequality
ρ1 . ρ2 for the two seminorms (of vKS ∈ KS(T (z)))

ρ1(vKS) := |E|−1/2 ‖[vKS]E‖L2(E) and

ρ2(vKS) := inf
v∈V (ωE)

‖εNC(vKS− v)‖L2(ωE)
.

Notice that for all E ∈ E(Ω∪ Γ̃D) with |νE(1)| < α, the conditions (c)–(d)
guarantee the existence of a node z ∈ Z with E ∈ Ez. Since the length of edges
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E ∈E(ΓD) on the Dirichlet boundary is bounded, |E|. 1, the sum over all vertices
z ∈ Z and the bounded overlap of the patches show

‖vKS‖L2(Γ̃D)
+

√
∑

E∈E(Ω)

|E|−1 ‖[vKS]E‖2
L2(E)

.
√

∑
E∈E(Ω∪Γ̃D)

|E|−1 ‖[vKS]E‖2
L2(E)

.
√√√√ ∑

E∈E(Ω∪Γ̃D)
|νE(1)|≥α

|E|−1 ‖[vKS]E‖2
L2(E)+ ∑

z∈Z
∑

E∈Ez

|E|−1 ‖[vKS]E‖2
L2(E)

. inf
v∈V
‖εNC(vKS− v)‖L2(Ω) .

(4.2)

For vNC ∈V +KS(T ) and v∈V and vKS ∈KS(T ) with vNC = v+vKS it holds
[vNC]E = [vKS]E and vNC|ΓD = vKS|ΓD . The inequality (4.2) implies

‖vNC‖L2(Γ̃D)
+

√
∑

E∈E(Ω)

|E|−1 ‖[vNC]E‖2
L2(E) . inf

w∈V
‖εNC(vKS−w)‖L2(Ω)

≤ ‖εNC(vNC)‖L2(Ω) .

The remaining part of this section proves Theorem 4.4.

Theorem 4.4. It holds

‖σ−σKS‖L2(Ω) . ‖σ−Π0σ‖L2(Ω)+‖(Du−Π0Du)(1)‖L2(Ω)

+osc( f2,T )+osc(g2,E(ΓN)).

Remark 4.5. It remains as an open question whether or not one can neglect the
term ‖(Du−Π0Du)(1)‖L2(Ω) in the upper bound in Theorem 4.4; it is not clear
how to control this term by the stress error.

The inf-sup-condition from Theorem 4.6 below plays an important role for the
independence from λ in the proof of Theorem 4.4.

Theorem 4.6 (inf-sup-condition, [KS95]). Let T satisfy the conditions (a)–(b).
Then it holds

‖p0‖L2(Ω) . sup
vKS∈KS(T )\{0}

´
Ω

p0 divNC vKS dx
‖DNCvKS‖L2(Ω)

(4.3)

for all p0 ∈ P0(T ) if ΓN 6= /0 and for all p0 ∈ P0(T ) with
´

Ω
p0 dx = 0 if ΓN = /0.
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Proof. The first paper [KS95] on this nonconforming finite element method aims
at an asymptotic result for sufficiently fine mesh-sizes and therefore reasonably
ignores the possibly pathological cases on coarse meshes. Following the argu-
ments of pp. 208–210 in [KS95], one can verify that the condition (a) is stronger
than the condition (AD) of p. 198 in [KS95] but avoids the modification of the
domain necessary in Step 4 of the proof in [KS95]. In fact, the proof in [KS95]
reduces the discrete stability to that on the continuous level but changing the mesh
results in changing the domain. One possible critics is that the change of the con-
tinuous inf-sup constant with respect to the change of the domain is neglected
without a detailed discussion in [KS95]. The conditions (a)–(b) of this paper are
sufficient to argue on the original domain in a way analogue to [KS95, p208–210].
Since there is no additional idea in the proof, further details of this technicallity
are omitted.

Proof of Theorem 4.4. The triangle inequality implies that it suffices to consider
the difference ‖Π0σ−σKS‖L2(Ω). The L2 orthogonal decomposition in the iso-
choric and deviatoric part reads

‖Π0σ−σKS‖2
L2(Ω)= ‖dev(Π0σ−σKS)‖2

L2(Ω)+(1/4)‖tr(Π0σ−σKS)12×2‖2
L2(Ω) .

For ΓN = /0 the homogeneous boundary conditions of u and uKS allow an integra-
tion by parts for the second term. The continuity condition

´
E [uKS]E ds = 0 for all

E ∈ E(Ω) leads to ˆ
Ω

tr(Π0σ)dx = 0 =

ˆ
Ω

tr(σKS)dx, (4.4)

i.e. tr(Π0σ−σKS) ∈ P0(T )/R. Theorem 4.6 guarantees for ΓN = /0 and ΓN 6= /0

the existence of vKS ∈ KS(T ) with ‖DNCvKS‖L2(Ω) = 1 and

‖tr(Π0σ−σKS)‖L2(Ω) .
ˆ

Ω

tr(Π0σ−σKS) divNC vKS dx

=

ˆ
Ω

(Π0σ−σKS) : DNCvKS dx−
ˆ

Ω

dev(Π0σ−σKS) : DNCvKS dx.

The application of Lemma 3.5 to the first term of the right-hand side yields

‖tr(Π0σ−σKS)‖L2(Ω) . ‖(σ−Π0σ)(2)‖L2(Ω)+osc( f2,T )+osc(g2,E(ΓN))

+‖dev(Π0σ−σKS)‖L2(Ω) .

It remains the analysis of ‖dev(Π0σ−σKS)‖L2(Ω). Algebraic manipulations show
devCA : devCA . A : CA for all A ∈ R2×2. Applied to the above situation this
reads

‖dev(Π0σ−σKS)‖2
L2(Ω) .

ˆ
Ω

(Π0σ−σKS) : εNC(INCu−uKS)dx. (4.5)
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The point is, that CdevA does not depend on λ. Theorem 3.1 guarantees the exis-
tence of αKS ∈ KS(T ) and βKS∗ ∈ KS∗(T ) with the property, that CurlNC βKS∗ ∈
P0(T ;S) and Π0σ−σKS = CεNC(αKS)+CurlNC βKS∗ . Lemma 3.5 and 3.6 yieldˆ

Ω

(Π0σ−σKS) : εNC(INCu−uKS)dx

=

ˆ
Ω

εNC(αKS) : (Π0σ−σKS)dx+
ˆ

Ω

CurlNC βKS∗ : εNC(INCu−uKS)dx

.
(
‖(Π0σ−σ)(2)‖L2(Ω)+osc( f2,T )+osc(g2,E(ΓN))

)
‖∇NCαKS(2)‖L2(Ω)

+‖(Du−Π0Du)(1)‖L2(Ω) ‖CurlNC βKS∗(1)‖L2(Ω) .
(4.6)

A similar argumentation as in the decomposition of Π0σ− σKS in the iso-
choric and the deviatoric part in the beginning of the proof bounds the term
‖CurlNC βKS∗(1)‖2

L2(Ω) by
(
CurlNC βKS∗,C−1 CurlNC βKS∗

)
C−1 . For this purpose

CurlNC βKS∗ is L2 orthogonal decomposed in the isochoric and the deviatoric part,
i.e.,

‖CurlNC βKS∗‖2
L2(Ω)

= ‖dev(CurlNC βKS∗)‖2
L2(Ω)+(1/4)‖tr(CurlNC βKS∗)12×2‖2

L2(Ω) .
(4.7)

For ΓN = /0 the function αKS satisfiesˆ
Ω

tr(CεNC(αKS))dx = (2µ+2λ)

ˆ
Ω

divNC(αKS)dx

= (2µ+2λ) ∑
E∈E

ˆ
E
[αKS]E νE ds = 0.

It follows with (4.4)
´

Ω
tr(CurlNC βKS∗)dx = 0. The inf-sup-condition for Kouhia-

Stenberg functions, Theorem 4.6, guarantees for ΓN = /0 and ΓN 6= /0 the existence
of vKS ∈ KS(T ) with ‖DNCvKS‖L2(Ω) = 1 and

‖tr(CurlNC βKS∗)‖L2(Ω) .
ˆ

Ω

tr(CurlNC βKS∗)divNC vKS dx.

It follows for βKS∗ = (βCR,βC) with βCR ∈CR1
N(T ) and βC ∈ P1(T )∩CN(Ω) and

vKS = (vC,vCR) with vC ∈ P1(T )∩CD(Ω) and vCR ∈ CR1
D(T ), that

‖tr(CurlNC βKS∗)‖L2(Ω)

.
ˆ

Ω

(CurlNC βKS∗−devCurlNC βKS∗) : DNCvKS dx

≤ ‖devCurlNC β‖L2(Ω) ‖DNCvKS‖L2(Ω)

+

ˆ
Ω

CurlNC βCR ·∇vC dx+
ˆ

Ω

CurlβC ·∇NCvCR dx.

(4.8)
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Since ∇vCτE vanishes on ΓD, an integration by parts leads to
ˆ

Ω

CurlNC βCR ·∇vC dx

= ∑
E∈E(Ω)

ˆ
E
[βCR]E ds ∇vC · τE + ∑

E∈E(ΓN)

ˆ
E

βCR ds ∇vC · τE = 0.

Since ∇βC · τE vanishes on E ∈ E(ΓN),
ˆ

Ω

CurlβC ·∇NCvCR dx

= ∑
E∈E(ΓD)

ˆ
E

vCR ds (∇βC · τE)+ ∑
E∈E(Ω)

ˆ
E
[vCR]E ds (∇βC · τE) = 0.

Together with (4.7)–(4.8) it follows

‖tr(CurlNC βKS∗)‖L2(Ω)+‖CurlNC βKS∗‖L2(Ω) . ‖devCurlNC βKS∗‖L2(Ω)

Since devCA : devCA. A : CA for all A ∈ R2×2 it follows as above

‖CurlNC βKS∗‖2
L2(Ω) . (CurlNC βKS∗,CurlNC βKS∗)C−1 .

Theorem 4.1 implies

‖∇NCαKS(2)‖2
L2(Ω) . ‖εNC(αKS)‖2

L2(Ω) . (CεNC(αKS),CεNC(αKS))C−1 .

The orthogonality of the decomposition Π0σ−σKS = CεNC(αKS)+CurlNC βKS∗

with respect to (•,•)C−1 implies together with the above estimate that

‖∇NCαKS(2)‖L2(Ω)+‖CurlNC βKS∗‖L2(Ω)

.
(ˆ

Ω

(Π0σ−σKS) : εNC(INCu−uKS)dx
)1/2

.

Inequality (4.6) proves(ˆ
Ω

(Π0σ−σKS) : εNC(INCu−uKS)dx
)1/2

. ‖(Π0σ−σ)(2)‖L2(Ω)+osc( f2,T )+osc(g2,E(ΓN))

+‖(Du−Π0Du)(1)‖L2(Ω) .

This and (4.5) conclude the proof of Theorem 4.4.
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5 Proof of Theorems 2.3 and 2.4
The first part of this section proves Theorem 2.3 while the second one proves
Theorem 2.4.

The proof of Theorem 2.3 is based on the following lemma. It corresponds to
Lemma 3.5 for Crouzeix-Raviart functions.

Lemma 5.1. vCR ∈VCR(T ) satisfiesˆ
Ω

(σ̃− σ̃CR) : DNCvCR dx.
(
‖σ̃−Π0σ̃‖L2(Ω)+osc( f ,T )

)
‖DNCvCR‖L2(Ω) .

Proof. Lemma 3.3 implies with a piecewise Poincaré inequality for J3 (applied
componentwise)ˆ

Ω

(σ̃− σ̃CR) : DNCvCR dx =
ˆ

Ω

(C̃(DNCINCu)− σ̃CR) : DNCvCR dx

=

ˆ
Ω

f · (J3vCR− vCR)dx+
ˆ

Ω

(C̃(DNCINCu)− σ̃) : DJ3vCR dx

≤ ‖hT ( f −Π0 f )‖L2(Ω) ‖(J3vCR− vCR)/hT ‖L2(Ω) (5.1)

+‖Π0σ̃− σ̃‖L2(Ω) ‖DJ3vCR‖L2(Ω)

. osc( f ,T )‖DNCvCR‖L2(Ω)+‖Π0σ̃− σ̃‖L2(Ω) ‖DNCvCR‖L2(Ω)

Proof of Theorem 2.3. The point of departure is an inequality of [CR12, Lemma
3.8],

‖σ̃− σ̃CR‖2
L2(Ω) .

ˆ
Ω

(σ̃− σ̃CR) : (Du−DNCuCR)dx+‖hT f‖2
L2(Ω) . (5.2)

Define the bubble function bT := (ϕT ,ϕT ) ∈ P3(T ;R2) with ϕT as in the proof of
Lemma 3.5. The property

´
T bT dx≈ |T | implies

‖hT f‖L2(T ) ≤ osc( f ,T )+‖hT Π0 f‖L(T )

≈ osc( f ,T )+
∣∣∣∣ˆ

T
bT ·Π0 f dx

∣∣∣∣ .
The scaling ‖bT‖L2(T ) ≈ hT |T and an integration by parts show∣∣∣∣ˆ

T
bT ·Π0 f dx

∣∣∣∣≤ ‖bT‖L2(T ) ‖ f −Π0 f‖L2(T )+

∣∣∣∣ˆ
T

bT · f dx
∣∣∣∣

. osc( f ,T )+
∣∣∣∣ˆ

T
DbT : (σ−Π0σ)dx

∣∣∣∣ .
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Since ‖DbT‖L2(T ) ≈ 1 and (A+A>) : (A+A>)≤ 4A : A it follows∣∣∣∣ˆ
T

DbT : (σ−Π0σ)dx
∣∣∣∣. ‖σ−Π0σ‖L2(T )

≤ ‖σ̃−Π0σ̃‖L2(T ) .

Altogether

‖hT f‖L2(T ) ≤ osc( f ,T )+‖σ̃−Π0σ̃‖L2(T ) .

This, (5.2) and Lemma 5.1 imply

‖σ̃− σ̃CR‖2
L2(Ω)

.
ˆ

Ω

(σ̃−Π0σ̃) : (Du−Π0Du)dx+
ˆ

Ω

(σ̃− σ̃CR) : DNC(INCu−uCR)dx

+osc2( f ,T )+‖σ̃−Π0σ̃‖2
L2(Ω)

. ‖σ̃−Π0σ̃‖2
L2(Ω)+osc2( f ,T )

+
(
‖σ̃−Π0σ̃‖L2(Ω)+osc( f ,T )

)
‖DNC(INCu−uCR)‖L2(Ω) ,

where the last inequality follows from ‖Du−Π0Du‖L2(Ω)≤‖σ̃−Π0σ̃‖L2(Ω). The
Young inequality 2ab≤ αa2 +α−1 b2 for α > 0 implies

(‖σ̃−Π0σ̃‖L2(Ω)+osc( f ,T )) ‖DNC(INCu−uCR)‖L2(Ω)

≤ 1/(4α)
(
‖σ̃−Π0σ̃‖L2(Ω)+osc( f ,T )

)2
+α‖DNC(INCu−uCR)‖2

L2(Ω) .

For sufficiently small α the last term is absorbed. It follows

‖σ̃− σ̃CR‖L2(Ω) . ‖σ̃−Π0σ̃‖L2(Ω)+osc( f ,T ).

The remaining parts of this section are devoted to the proof of Theorem 2.4,
which is based on the following proposition.

Proposition 5.2. For uKS ∈ KS(T ) and 1. λ it holds

min
vC∈VC(T )

|||uKS− vC|||NC . λ
1/2 min

v∈V
|||uKS− v|||NC.

Proof. The arguments of [CEHL12, Theorem 5.1] prove the crucial point, namely

min
vC∈VC(T )

‖DNC(vKS− vC)‖L2(Ω) ≈min
v∈V
‖DNC(vKS− v)‖L2(Ω) .
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(This is proven for scalar functions and the pure Dirichlet problem in [CEHL12]
but the local arguments in the proof are still valid for the weaker boundary condi-
tions and for two components.) The estimate

|||vKS|||NC . λ
1/2 ‖εNC(vKS)‖L2(Ω) ≤ λ

1/2 ‖DNCvKS‖L2(Ω)

and

‖DNC(vKS− v)‖L2(Ω) ≤ |||vKS− v|||NC

conclude the proof of the proposition.

Proof of Theorem 2.4. The proof follows in three steps.

Step 1. The inclusion VC(T )⊂ KS(T ) and Galerkin orthogonality show together
with Proposition 5.2

|||uKS−uC|||NC ≤ min
vC∈VC(T )

|||uKS− vC|||NC

. λ
1/2 min

v∈V
|||uKS− v||| ≤ λ

1/2|||u−uKS|||.

This implies the following inequality for the energy norm

|||u−uC||| ≤ |||u−uKS|||NC + |||uC−uKS|||NC . (1+λ
1/2)|||u−uKS|||NC.

Since |CA|2 . λ(A : CA) it follows

‖σ−σC‖L2(Ω) . λ
1/2|||u−uC|||. λ|||u−uKS|||NC . λ‖σ−σKS‖L2(Ω) .

Step 2. The inequalities

‖σ−σKS‖L2(Ω) . ‖σ−σC‖L2(Ω)+osc( f2,T )+osc(g2,E(ΓN)),

‖σ−σKS‖L2(Ω) . ‖σ̃− σ̃CR‖L2(Ω)+osc( f2,T ) (if ΓD = ∂Ω)

are direct consequences of Theorem 2.1 and 4.4.

Step 3. The inequality (A+A>) : (A+A>)≤ 4A : A implies

(σ−σCR) : (σ−σCR). (σ̃− σ̃CR) : (σ̃− σ̃CR).
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From Theorem 4.1 it follows for σ̃KS := C̃DNCuKS

‖σ̃− σ̃KS‖2
L2(Ω)

= µ2 ‖DNC(u−uKS)‖2
L2(Ω)

+
(
2µ(λ+µ)+(λ+µ)2)‖divNC(u−uKS)‖2

L2(Ω)

. 4µ2 ‖εNC(u−uKS)‖2
L2(Ω)+(4µλ+λ

2)‖divNC(u−uKS)‖2
L2(Ω)

= ‖σ−σKS‖2
L2(Ω) .

Altogether,

‖σ−σCR‖L2(Ω) . ‖σ̃− σ̃CR‖L2(Ω)

. ‖σ̃− σ̃KS‖L2(Ω)+osc( f ,T )

. ‖σ−σKS‖L2(Ω)+osc( f ,T ).

This concludes the proof of Theorem 2.4.

6 Numerical Investigations
This section provides numerical evidence that the claimed equivalence of σCR
and σKS is independent of the parameter λ for the pure Dirichlet problem in linear
elasticity and that the dependence of the equivalence constants in (1.1) on λ =
1.6×10k for k = 6,7,8,9 cannot be improved.

6.1 Preliminaries
Throughout this section, the elastic modulus is E = 105 and the Poisson ratio
varies between ν= 0.4,0.49,0.499,0.4999 with corresponding values of µ=E/(2(1+
ν)) and λ = Eν/((1+ν)(1−2ν)) = 1.6×10k for k = 6,7,8,9. The initial trian-
gulations T0 of all four numerical examples are depicted in Figures 6.1 and 6.3.
The discrete problems are solved on a sequence of triangulations T` obtained by
successive red-refinements; a red-refinement of a triangle subdivides each trianle
into four congruent sub-triangles via straight lines through the edges’ midpoints
as depicted in Figure 6.1a.

Since the error is known only in the first example, the averaging error esti-
mator defined in [CF01a, Eqn (2.17)] serves as an error indicator. Although the
proofs of efficiency and reliability from [CF01a] provide no information about the
efficiency and reliability constants, there is numerical evidence that the averaging
error estimator often yields results very close to the exact error [CF01a]. The first
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example confirms this observation and so partly justifies the use of this error esti-
mator for the further examples. Let |T | denote the area of a triangle T ∈ T and τE
the tangent of an edge E ∈ E . The residual error estimators

ηC(uC) :=

(
∑

T∈T

(
|T |‖ f‖2

L2(T )+ |T |1/2
∑

E∈E(T )\E(ΓD)

‖[σC]EνE‖2
L2(E)

))1/2

ηCR(uCR) :=

(
∑

T∈T

(
|T |‖ f‖2

L2(T )+ |T |1/2
∑

E∈E(T )\E(ΓN)

‖[DNCuCR]EτE‖2
L2(E)

))1/2

ηKS(uKS) :=

(
∑

T∈T

(
|T |‖ f‖2

L2(T )+ |T |1/2
∑

E∈E(T )\E(ΓN)

‖[DNCuKS]EτE‖2
L2(E)

+ |T |1/2
∑

E∈E(T )\E(ΓD)

‖(1,0) · ([σKS]EνE)‖2
L2(E)

))1/2

for CFEM, CR-NCFEM and KS-NCFEM are reliable and efficient [CF01a, CR12].
In contrast to [CF01a], the normal jump of the second component of the stress is
omitted for KS-NCFEM in the spirit of [DDP95].

A close investigation on the dependency on the parameter λ for ν = 0.4, 0.49,
0.499 and 0.4999 in the comparison result (1.1) considers the quotients

q(ν, `) :=
∥∥σν−σ

`,ν
C

∥∥
L2(Ω)

/
∥∥σν−σ

`,ν
KS

∥∥
L2(Ω)

for `= 1, . . . ,9. (6.1)

Here and in Subsection 6.2 and 6.4, σν denotes the exact stress for the Poisson
ratio ν and σ

`,ν
C and σ

`,ν
KS denote the discrete stresses of CFEM and KS-NCFEM

for the Poisson ratio ν and the `-th times red-refined triangulation T` := red(`)(T0).
(For the experiment from Subsection 6.4 the quotients are approximated by the
corresponding values of the averaging error estimator.)

6.2 Academic Example
Under homogeneous pure Dirichlet boundary conditions, the unit square Ω =
(0,1)2 is loaded with the applied force

f (x,y) =
(
−2µπ3 cos(πy) sin(πy)(2 cos(2πx)−1)
2µπ3 cos(πx) sin(πx)(2 cos(2πy)−1)

)
(written as a function of the coordinates x and y) so that (2.1) leads to the exact
smooth solution

u(x,y) =
(

πcos(πy) sin2(πx) sin(πy)
−πcos(πx) sin2(πy)sin(πx)

)
.
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(a) Red-refined triangle
0 1

0

1

(b) Initial triangulation T0 on
the unit square in Subsec-
tion 6.2.

Figure 6.1: Red-refined triangle and the initial triangulation T0 of Subsection 6.2.

Given the initial mesh T0 of Figure 6.1b with one interior node and 8 interior
edges, the three FEMs with the number ndof of degrees of freedom lead on each
triangulation T` to the discrete stresses σC,σCR,σKS; on the level zero, for in-
stance, ndof = 2 for CFEM, ndof = 16 for CR-NCFEM, and ndof = 9 for KS-
NCFEM. The convergence history plot of Figure 6.2 displays various errors and
error estimators versus the number of degrees of freedom (ndof) for the Poisson
ratios ν = 0.4 (red), 0.49 (blue), 0.499 (green), 0.4999 (cyan) for the three FEMs.

The graphs of the averaging error estimators and the exact error of CR-NCFEM
and KS-NCFEM for all values of ν lie on top of each other, as well as the values
of the residual error estimator for KS-NCFEM and also the values of the residual
error estimator for CR-NCFEM.

For the initial triangulation T0 of Figure 6.1b with two degrees of freedom
in CFEM, the averaging error estimator strongly underestimates and is omitted.
Apart from that case, the values of the averaging error estimator are very close
to the exact error. This example therefore serves as an empirical validation of
the averaging error estimator in the following examples where it is expected to
indicate the (unknown) errors in high accuracy.

Equivalent convergence rates are observed for all three FEMs with a strong
dependency on λ for CFEM while the errors in KS-NCFEM and CR-NCFEM
are of similar size. Table 6.1 displays the quotients (6.1) and reveals a linear
dependency on λ. This is clear numerical evidence that the dependence of λ in the
first estimate of (1.1) and in Theorem 2.4 is sharp.
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Figure 6.2: Estimated errors of CFEM (residual estimator (•), averaging estimator (4), and exact
error (◦)), CR-NCFEM (residual estimator (�), averaging estimator (�), and exact error (♦)), and
KS-NCFEM (residual estimator (∗), averaging estimator (×), and exact error (�)) for ν = 0.4
(red), 0.49 (blue), 0.499 (green), 0.4999 (cyan) on uniform red-refined meshes for the unit square
from Subsection 6.2.

Table 6.1: Quotient q(ν, `) from (6.1) for CFEM and KS-NCFEM in Subsection 6.2

ν = `= 1 2 3 4 5 6 7 8 9
0.4 0.8461 1.588 2.411 2.947 3.165 3.229 3.246 3.250 3.251

0.49 0.6717 3.327 9.667 17.95 24.84 28.46 29.71 30.05 30.14
0.499 0.6498 4.053 17.61 56.26 127.5 207.0 264.0 289.3 297.3

0.4999 0.6476 4.150 19.52 78.29 277.7 778.8 1556 2301 2755
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(a) Initial triangulation T0 on
the L-shaped domain in Sub-
sections 6.4–6.5.

0 48
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Γ
N

(b) Cook’s membrane and initial triangu-
lation T0 in Subsection 6.3.

Figure 6.3: Initial triangulations T0 in Subsections 6.3–6.5.

6.3 Cook’s Membrane Benchmark
This benchmark in linear elasticity concerns the domain Ω of Figure 6.3b with
the vertices (0,0), (48,44), (48,60), (0,44) and the Dirichlet boundary ΓD :=
conv{(0,0), (0,44)} and ΓN := ∂Ω \ΓD. The applied forces are f ≡ 0 in Ω and
g(x) = (0,1) if x(1) = 48 on the right vertical edge of ∂Ω while g ≡ 0 on the
remaining two parts of ΓN . The Neumann boundary of the problem excludes
CR-NCFEM. The estimated errors of CFEM and KS-NCFEM are plotted against
the number of degrees of freedom in Figure 6.4. For ν = 0.49,0.499,0.4999 the
values of the averaging error estimator for KS-NCFEM lie on top of each other,
as well as the values of the residual error estimator for KS-NCFEM.

The locking behaviour of CFEM and the robustness of KS-NCFEM (with re-
spect to λ) is clearly visible in the sense that the preasymptotic range for CFEM is
so big that it covers the full range of our computational feasibilities with the effect
that for ν = 0.4999 all the computational values are not even better than the initial
stress approximation (relative to the L2 norm).

Notice that the jump of the boundary conditions at the vertex (0,44) causes
a solution u 6∈ H2(Ω;R2) in agreement of the reduced convergence rates (under
uniform mesh-refinement) and, hence, the conditions of [KS95] are violated.

6.4 L-shaped Domain Without Locking
This example shows that the equivalence constant in the second inequality of (1.1)
cannot be replaced by any negative power of λ. The underlying domain of this
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Figure 6.4: Estimated errors of CFEM (residual estimator (•) and averaging estimator (4)) and
KS-NCFEM (residual estimator (∗) and averaging estimator (×)) for ν = 0.4 (red), 0.49 (blue),
0.499 (green), 0.4999 (cyan) on uniform red-refined meshes for Cook’s Membrane from Subsec-
tion 6.3.
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Table 6.2: Approximated quotient q(ν, `) from (6.1) for CFEM and KS-NCFEM in Subsection 6.4

ν = `= 1 2 3 4 5 6 7 8
0.4 1.123 1.502 1.762 1.931 2.037 2.097 2.123 2.118

0.49 1.348 2.057 2.705 3.291 3.807 4.252 4.641 4.989
0.499 1.371 2.130 2.790 3.342 3.869 4.393 4.882 5.334

0.4999 1.373 2.138 2.803 3.336 3.783 4.211 4.666 5.127

example is the L-shaped domain Ω := (−1,1)2 \ [0,1]× [−1,0] with ΓD = ∂Ω

and the initial mesh T0 of Figure 6.3a. The piecewise constant volume force f
reads

f (x,y) :=


(0,−1) if x≤ 0 and y≥ 0,
(1,−1) if x,y≥ 0,
(0,0) if x,y≤ 0.

Figure 6.5 displays the averaging and residual error estimators for a sequence
of red-refined triangulations against the number of degrees of freedom. For ν =
0.49,0.499,0.4999 the values of the averaging error estimator lie on top of each
other for all three FEMs, as well as the values of the residual error estimator. In
Table 6.2 the quotients from (6.1) are approximated by the corresponding values
of the averaging estimator. The values of these quotients are all of the same order
of magnitude; this indicates no dependency on λ in the second inequality of (1.1).

Since f is a gradient, we do not expect and do not observe the locking be-
haviour while λ increases over several orders of magnitude.

6.5 L-shaped Domain with Neumann Boundary Conditions
This example confirms our theoretical findings in case of a non-empty Neumann
boundary. The boundary conditions change type at the re-entering corner point.
This causes the fact that one cannot expect a regularity of H3/2+ε for some posi-
tive ε. The empirical convergence rate 1/6 of Figure 6.6 in terms of ndof clearly
indicates that u 6∈H3/2(Ω;R2). This situation excludes even a mathematical justi-
fication via a straight-forward though technical generalisation of the error analysis
from [KS95].

The domain Ω and the initial triangulation T0 is as in Subsection 6.4, while
the volume force f reads

f (x,y) :=


(0,0) if x≤ 0 und y≥ 0,
(0,1) if x,y≥ 0,
(1,0) if x,y≤ 0.
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Figure 6.5: Estimated errors of CFEM (residual estimator (•) and averaging estimator (4)), CR-
NCFEM (residual estimator (�) and averaging estimator (�)), and KS-NCFEM (residual estimator
(∗) and averaging estimator (×)) for ν = 0.4 (red), 0.49 (blue), 0.499 (green), 0.4999 (cyan) on
the L-shaped domain from Subsection 6.4.
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Figure 6.6: Estimated error for CFEM (residual estimator (•) and averaging estimator (4)) and
KS-NCFEM (residual estimator (∗) and averaging estimator (×) for ν = 0.4 (red), 0.49 (blue),
0.499 (green), 0.4999 (cyan) on the L-shaped domain from Subsection 6.5.

The boundary is divided in the Neumann boundary ΓN := {(x1,x2)∈ ∂Ω | x1 > 0}
with applied tractions g≡ 0 and the Dirichlet boundary ΓD = ∂Ω\ΓN . Figure 6.6
displays the estimated errors in terms of the number of degrees of freedom. For
ν = 0.499 and 0.4999, the values of the averaging error estimator for KS-NCFEM
lie on top of each other, as well as the values of the residual error estimator for KS-
NCFEM. The equivalence of KS-NCFEM and CFEM up to a multiplicative factor
which scales linearly in λ is visible also for this singular problem. The numerical
experiments provide striking empirical evidence for the robustness with respect to
the locking behaviour and to possible singularities and mark the superiority of the
somehow bizarre but simple and well-justified KS-NCFEM.
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