
Induced Markov Chains for the Encoding of
Graph-based Data

Stefan P. Müller
Institute of Mathematics

Humboldt-Universität zu Berlin
Email: stefan.mueller@math.hu-berlin.de

Abstract—Graph-based data occurs in various applications,
e.g. finite-element simulations and computer-generated imagery.
There are several techniques to compress these data sets with
prediction methods and encoding of the residual. The focus of
these methods is almost always on the prediction rather than on
encoding. We present a new encoding scheme based on induced
Markov chains (iMc) reflecting the underlying distribution of
graph-based data. For this purpose, we define transition proba-
bilities between the occurring values that are dependent on the
topology of the graph. The basic idea is to transform a topological
relation into a value-based one. The transition probabilities along
with an initial distribution can be interpreted as a Markov chain,
the so-called iMc. The topology combined with the transition
probabilities can be used as side information for an encoder.
Additionally we combine the iMc encoding scheme with tree and
time differences as prediction methods, since some correlations
cannot be entirely removed neither by the prediction methods,
nor by the iMc by its own.

I. INTRODUCTION

Data compression is nowadays an essential component
for the storage and transmission of all kinds of data. Our
motivating application field is the simulation of car crashes,
which began in the early 1980s [1]. It is a central component in
the development and quality management of automakers. Due
to safety regulations and quality management, a portion of the
simulations is stored for some months up to several years. This
leads, on the one hand, to a huge number of stored datasets.
On the other hand, the simulation results increase in size as
the engineers want to improve the accuracy of the simulation
results, e.g. by refining the model. Overall, this leads to an
steadily increasing need of storage and bandwidth.
The main requirements on a compression method of simulation
results is that the assigned mesh has to be stored losslessly
and of course the decompression has to be fast. The first
requirement prohibits the use of remeshing methods and we
can therefore assume that the mesh exists in the decompression
stage.
The simulation results consist of various data sets like header,
initial components like connectivities, and time dependent data
like coordinates, velocity, and stresses. The time dependent
data will be calculated numerically, and thus it is only precise
up to a certain accuracy. This justifies a lossy compression
up to a respective precision. Moreover, these data sets are
usually defined on elements of a mesh, e.g. nodes, edges, or
finite elements. Hence, we may assume that the correlation of
the data can be expressed by the topology of the underlying

graph, see [2].
We investigate how to encode the values that are associated
with the nodes of a finite graph in a performant way. If the
node values are floating point numbers, we apply a quantiza-
tion as we want to ensure that the node values are integers
in the iMc encoding process. In the case of quantization, we
will apply a certain absolute quantization with precision q.
Additionally, it is possible that some variables are multidimen-
sional, like e.g. the coordinates. In this case, we only consider
one coordinate direction at a time. Furthermore we suppose
that the investigated graph is connected. Otherwise we handle
each connected component by its own. Hence, it is overall
sufficient to confine ourself to the case of one dimensional
integer node values that are defined on a connected graph.
After some statistical basics in Section II, we introduce the
model of induced Markov chains for graph-based data in
Section III. We call this technique induced Markov chain
(iMc) and will use its statistics as side information for an
arithmetic encoder. We propose the application of the iMc as
the statistical model in an encoder in the following way:

• Determine a tree that contains all nodes of the graph.
• Determine an iMc based on the observed node values v

and the spanning tree.
• Arithmetic coding of the values v regarding the statistics.
• Encode the statistics needed for the decoding stage.

We will use a deterministic way to find a tree only on base of
the topology of the graph. Therefore, we do not have to store
the tree.
With this setup, the iMc encoding scheme fits well in the
method “topological surgery” of Taubin and Rossignac [3] as
they establish a spanning tree for the prediction of the node
positions.
The strategy to use the topology of a general graph for a
specialized encoding scheme on node values is otherwise only
considered in Markov random fields (MRF). But in the MRF
case the time complexity of generating the statistics prevents
the application in situations, where the alphabet is large, see
Section VI and [4].
In a car crash simulation, we are often confronted with a
high redundancy in the data, e.g. when we consider the sheet
metal parts, so-called shell-elements. For a good compression
rate, it is crucial to eliminate these redundancies. This task
can be tackled in two ways. The first one is to predict the

data in a way that the resulting variables are independent
or at least close to independent. The second one is to find
and use dependencies in the data, which will be done by
the iMc. A prediction usually modifies the distribution of
a data set. We will investigate a combination of these two
approaches, which will lead to the best compression rates in
our test case, see Section VII. For the prediction part, we
will use an iterative application of tree differences as well
as time differences, which will be specified in Section IV.
Regarding the remaining dependencies, we propose a two-pass
universal method based on coding and sending empirical data
measurements, see Section V, rather than a coding method
based on an a priori probability model.

II. STATISTICAL MODEL

In this section, we will introduce the transition probabilities
of node values defined on a connected graph and motivate their
application by identifying the node values as a results of a
random walk with certain transition probabilities. Afterwards,
we use the Kullback-Leibler divergence [5] to measure, if the
distribution of the underlying graph and the one of the random
walk fit together.
Usually, a graph of a finite element simulation as well as
in computer-generated imagery is undirected. Since we are
interested in how probable it is to be at a node with a certain
value and go to a neighbor with a possible different value, it
is necessary to know the direction of the edge. If we have an
undirected connected graph Gu = (N,Eu), we will construct
a directed graph G = (N,E) by duplicating each edge of
Eu and orient them both ways. Let the number of nodes be
n = #N and the number of directed edges be e = #E. Fur-
thermore, let the finite set of node values be A = {a1, ..., am},
and a node value vector v = (v1, ..., vn) ∈ An be given. We
call A the alphabet and assume that all elements of A will
be part of the node value vector v. This will not be necessary
for the algorithm, but simplifies the notation afterwards.
Let (N,P(N),PN) be the Laplace probability space of order
n [6], where all n elementary events are equiprobable, i.e.
PN [ni] = 1

n . As A is finite, the tuple (A,P(A)) is a
measurable space. We define a random variable Y : N → A
with Y : ni 7→ al that maps a node to the value of the
alphabet, which is defined by an entry of the node value
vector v. We identify v as a result of the random process
and assume for now that the empirical probabilities fit to the
underlying distribution. The probability mass function (pmf)
for the random variable is defined by PY = PN ◦Y −1 and so

PY [al] = PN [{ni ∈ N : Y (ni) = al}]

=
1

n
#{ni ∈ N : Y (ni) = al}. (1)

We obtain the empirical probabilities as the pmf of the
random variable Y . The distribution coincides with the relative
frequencies of the node values in A.
We define a second Laplace probability space of order e
as (E,P(E),PE). Furthermore we define a two-dimensional
random variable X : E → A×A with X : ei 7→ (ak, al). The

pmf for the random variable is defined by PX = PE ◦ X−1
and so

PX [(ak, al)] = PE [{ei ∈ E : X(ei) = (ak, al)}]

=
1

e
#{ei ∈ E : X(ei) = (ak, al)}. (2)

With the help of the two distributions PY and PX , we can
imagine the statistical model in the following way. We start
with a graph with no node values and pick one at random with
an uniform distribution. Then we assign this node a value from
the alphabet dependent on the relative frequency of the node
values, cp. (1). In the next step, we will start a random walk
at the selected node with the chosen node value. For a random
walk on a connected graph, every edge is equiprobable if the
first edge was chosen equiprobable. If this is not the case, the
distribution converges with the number of steps of the random
walk to an uniform distribution [7]. Therefore, we also use
a Laplace probability space for the transitions from one node
value to another. In the following we assign each node a value
dependent on the transition probabilities of the given graph G,
which will be specified next.
Based on the structure of the graph, we can determine how
often a node will be reached in a random walk on the graph and
so how often a certain value of the alphabet will be reached.
For a random walk on a graph with equiprobable edges the
probability to be on node ni is P[ni] = deg(ni)

e , whereby
deg(ni) represents the degree of the node ni [7]. Hence, the
probability for a certain value to be the first entry of a directed
edge value tuple is

PZ [ak] =
1

e

∑
ni:Y (ni)=ak

deg(ni)

=
∑
al∈A

PX [ak, al]. (3)

If the measure PX is seen as a joint distribution of two times
the random variable Y with pmf PY , the equation (3) also
represents the marginal distribution for a certain starting node
and all possible end node values in A.
Based on the joint distribution (2) and the marginal distribution
(3) we can determine the conditional probabilities of a certain
value of an ending node while starting at a node whose value
is known:

PX|Z [(ak, al)|ak] =
PX [(ak, al)]

PZ [ak]

=
#{(i, j) ∈ E|vi = ak ∧ vj = al}

#{(i, ·) ∈ E|vi = ak}
. (4)

We introduce the transition probabilities based on a graph with
node values by the relative frequency of letter pairs as:

Pkl := PX|Z [(ak, al)|ak] (5)

for all k, l ∈ {1, ...,m}. For an example, see Figure 1. We store
the probabilities Pkl in the transition probability matrix P . The
initial distribution ν is defined by the relative frequency of the

node values:

νi := PY [ai] =
#{k ∈ N |vk = ai}

n
. (6)

After the definition of the transition probabilities, we want
to investigate if the distribution of the random walk and the
one of the underlying graph fit together. For that purpose we
compare the distribution of the node values induced by the
transition probabilities (6) with the relative frequencies (1) of
the given graph using the Kullback-Leibler divergence (KLD):

KL(PY ,PZ) =
∑
a∈A

PY [a] log2

(
PY [a]

PZ [a]

)
(7)

In general PZ and PY are different and so the KLD is greater
than zero. In the special case of a k-regular graph, where each
node has k neighbours, the distributions are identical.
The KLD of these two distributions can be interpreted as a
measure for additional bits per symbol required to encode
values distributed by PY but using a code based on PZ . If
the distributions are very similar, the transition probabilities
will depict the distribution of the graph very well. We can
interpret PY as the initial distribution and PZ as the stationary
distribution for a random walk on a graph with node values
in A.
In this section, we introduced the underlying statistical model
more generally for a connected graph instead of confining to
a tree in the first step. One reason behind this approach is
that the generality is needed for some applications, which will
be listed in a short outlook in Section VIII. Furthermore, we
stated the formula of the KLD to compare PY and PZ , and
use it in Section VII to show that these two distributions are
similar at least for the investigated example.

III. INDUCED MARKOV CHAINS

In this section, we will define the iMc.
Let X0, X1, ... be a sequence of random variables with values
in S, which is a finite set with m elements s1, ..., sm, the so-
called state space. A discrete Markov chain M is a sequence of
these Xi satisfying the Markov property for all t0, ..., tk ∈ S:

P[Xk+1|X0 = t0, ..., Xk = tk] = P[Xk+1|Xk = tk],∀k ∈ N.

A Markov chain M is called time homogeneous, if for all
k ∈ N and all s, t ∈ S, it holds:

P[Xk = s|Xk−1 = t] = P[X1 = s|X0 = t].

A stochastic matrix is a matrix whose rows are distributions.
The transition probability matrix P = (Pij)i,j=1,...,m with
Pij = P[X1 = sj |X0 = si] is a special case of a stochastic
matrix.

Lemma 3.1 ([8]): The tuple (P, ν) of a stochastic matrix
P and a distribution ν defines a finite state space, time
homogeneous Markov chain M with transition probabilities
given in P and an initial distribution ν.

P[X0 = si] = νi, P[Xk+1 = sj |Xk = si] = Pij , ∀s, t ∈ A.

We introduce the induced Markov chain (iMc) as the Markov
chain from Lemma 3.1 with transition probabilities defined
by Formula (5) and initial distribution defined by (6). For an
example, see again Figure 1.

IV. TREE AND TIME DIFFERENCES

In this section, we want to explain shortly the prediction we
will use to decorrelate the data.
Let T = (N,Et) be a tree with each edge oriented in the
direction pointing to the leafs. We predict all values vi for all
nodes i ∈ {n1, ..., nn}\{nroot} by the value of its predecessor.
This reduces the correlation of the data regarding the tree.
Hereby, the value of the root cannot be predicted. [3]
When we have the data of several points of time in a simulation
result, we can also predict the data in time. The easiest way
is to predict a time step with its previous one. Again the
first time step cannot be predicted, and therefore can only
be decorrelated by the tree differences.
We exclude the non-predicted values, i.e. the root nodes as
well as the first time step, from the statistics on the one hand
to reduce the size of the statistics and on the other hand to
adapt them as good as possible to the underlying data set.
Of course, there are more sophisticated prediction methods
possible.

V. THE IMC ENCODER

In this section, we introduce the iMc encoder.
The modeling of graph-based data as an iMc can be used in an
arithmetic encoder that uses the connectivities and statistics as
side information. A possible implementation is to establish the
graph, then define a tree, and use the transition probabilities
while we walk from the root to the leafs. When we confine
the graph to a tree, we can consider the tree as a directed
graph with the direction of all edges from the root to the
leafs. We can determine the transition probabilities on basis
of the directed tree and the distribution is optimal for encoding
regarding the chosen tree.
In the case of only a few time steps, we store the root value
for every time step without encoding. For non-root elements
of the tree, we have the information about its predecessor,
and therefore, we can apply the transition probabilities that
are specialized for the given tree, cp. Figure 2. This leads
to an encoding scheme, whereby the applied distribution is
depending on the current node value and therefore will gen-
erally change from one node to another. Arithmetic encoders
can handle this situation [9].
There are several possibilities to find a tree of a graph, like e.g.
breadth-first search and depth-first search (DFS) [10]. Since
we use a deterministic strategy, we will not store the structure
of the tree.
Assuming that the mesh and the node values are available, the
main steps of the encoding algorithm are:

1) Construct the adjacency matrix in CRS format.
2) Finding a tree by DFS.
3) Build the adjacency matrix of the tree.

1 3 5

0 2 4

2 3 4

0

1

2

3

4

5

2
3

1
3

1
3

1
2

1
2

1
6

1
2

1
2

1
5

1
6

1
2

1
6

1
5

1
2

1
6

1
5

2
5

Fig. 1. Mesh with node values and the induced Markov chain with transition probabilities calculated by Formula (5).

4) Set root values and apply tree and time differences
(optional).

5) Determine transition frequencies.
6) Cumulate the transition frequencies (for the application

in an arithmetic coder).
7) Determine a map matrix (for a faster access due to the

CRS format).
8) Arithmetic coding.
9) Encoding of the transition frequency matrix.

The first two steps of encoding and decoding procedures are
the same. Assuming that the coded values are available, the
main steps of the decoding algorithm are:

3) Decode transition frequency matrix.
4) Cumulate transition frequencies.
5) Arithmetic decoding.
6) Tree and time sums (if necessary).

We compress the iMc statistics losslessly by exploiting that
in an arithmetic encoder we use integers, i.e. the frequencies,
to describe the probabilities. For the structure of the transition
probability matrix, we use the Compressed Sparse Row (CSR)
format. All integer arrays are decorrelated and encoded with
the zlib [12] afterwards.
When we save the distribution, we do not use the knowledge

2 3 4 4 5

1 1 0 1

0 −1 1
P0,−1 P−1,1

Fig. 2. Snippet of a tree for the example from Figure 1 with two tree
differences. The bold-framed values, and the two transition probabilities have
to be provided to an iMc encoder as side information.

about the transitions we have already applied in the encoding
phase as well as in the decoding phase. We can use this
knowledge by adapting the distribution by deleting the already
processed transitions from the distribution. This is an opposing
application of the adaptive arithmetic coding in [9].

TABLE I
TIME COMPLEXITY OF THE IMC ENCODER AND DECODER.

Initialization
1. Adjacency matrix of graph O(e+ n)
2. Finding tree O(n+ l)

Compression
3. Adjacency matrix of tree O(n)
4. Prediction O(n · r)
5. Transition frequencies O(e · r + g · log2(g))
6. Cumulate frequencies O(p)
7. Construct map matrix O(p)
8. Arithmetic encoding O(e · r · log2(d))
9. Encoding statistics O(n+ p)

Decompression
3. Decode Statistics O(n+ p)
4. Cumulate frequencies O(p)
5. Arithmetic decoding O(e · r · log2(d))
6. Reverse prediction O(n · r)

VI. TIME COMPLEXITY OF IMC GENERATION

In this section, we estimate the time complexity of the iMc
encoder introduced in the last section and compare the effort
of generating the statistics with those of the MRF.
Let the maximal degree of a node in G be denoted by d, the
number of nodes by n, the number of edges by e, the number
of nonzero elements of the adjacency matrix by l, the number
of nonzero elements of the transition probability matrix by p,
the number of points in time stored in the simulation result file
by r, the maximum number of entries per line in the transition
probability matrix by g, and the size of the compressed dataset
by c. The time complexity for the encoding stage is

O((e · r · log2(d)) + n · r + 2p+ g log2(g))

and for the decoding stage, it is

O((e · r · log2(d)) + n · r + p+ c),

see Table I. For a part with shell elements, the average number
of neighbors is approximately four. The maximal degree of a
node d is usually be bounded by ten. Thus, d can be neglected.
The effort of generating the statistics in the iMc case can be
found as the fifth point ”Transition frequencies” in Table I. If
we only consider one point in time, the time complexity can

be bound by O(e+ g · log2(g)), whereby the variable g is by
construction at most m. Therefore, iMc encoding is applicable
in the case of a large alphabet, especially when the number
of possible transitions from one value to another one is small.
When we consider an entropy encoding scheme with MRFs
on a spanning tree for one variable and one point in time,
the time complexity of generating the statistics is O(n ·m2)
[4]. Thus, it is mostly used in situations where the size of the
alphabet is very small, e.g. black/white images.
The comparison of the time complexities shows that, in
opposite to the MRF case, the iMc can be applied in cases
where the alphabet is large.

VII. RESULTS

In this section, we list and discuss the results of applying
the iMc encoder on graph-based data. We compare the results
on the one hand with those regarding to encoding with gzip
1.6 [11] and on the other hand with those using the relative
frequencies of Equation (6) as statistics for an arithmetic en-
coder. We call the second approach relative frequency coding
(rfc). For the iMc as well as the rfc case we encode unsigned
32 bit integers as opposed to the unsigned 8 bit encoding of
gzip. Due to the 32 bit coding, we store the statistics in the
rfc case and do not use an adaptive arithmetic coder like in
[9].
In the gzip case, we apply a quantization and the same
prediction steps like in the iMc case, i.e. time and tree
differences. Afterwards, we use gzip 1.6 on the predicted data
set. For the iMc case, we have to store the transition frequency
matrix P for the statistics as side information, the root values
for the prediction, and the encoded data.
To compare the three methods, we investigate the coordinates
of the biggest part in a variation of the Dodge Neon model
[13] with a refined mesh. It is a underbody part with cardan
tunnel, has a shell element mesh with 78869 nodes, and the
ranges for the x, y, and z coordinates are [−4016,−1900],
[697, 629], and [108, 550] millimeter (mm), respectively. The
model was simulated with Pam-Crash [14], where 25 points
in time were recorded.
In Table II, III, and IV, we list the bit per symbol (bps)
dependent on the precision of the quantization in mm and on
the number of applied tree differences. The bps were averaged
over the x, y, and z coordinate.
Table II shows that the iMc generates better compression
rates than gzip for the first time step, especially for a coarse
quantization. Interestingly, the rfc case performs better with
two tree differences than with one and outperforms the iMc
encoding for the finest investigated case of 0.01mm. Since
the results suggest to use one tree difference in the iMc
case, this combination will be better than rfc encoding for
0.1mm and 1mm quantization. In Table III, the compression
of the second to 25th time step is stated, which are predicted
with time differences. Again, for all combinations the iMc
encoder generates distinct better compression rates than the
gzip encoding. Moreover, all compression rates are smaller
for the iMc encoder compared to the rfc encoder.

TABLE II
COMPRESSION RATES (BPS) FOR THE IMC ENCODER, RFC ENCODER, AND

GZIP FOR THE FIRST POINT IN TIME OF THE DODGE NEON MODEL.

Absolute Number of tree iMc rfc gzip
precision differences (bps) (bps) (bps)

0.01
0 14.41 17.81 17.01
1 8.28 9.29 11.00
2 8.76 7.21 10.72

0.1
0 8.04 12.95 12.47
1 4.97 5.93 7.36
2 5.19 5.13 7.71

1.0
0 3.42 11.75 6.41
1 2.64 5.05 3.99
2 2.76 4.56 4.53

TABLE III
COMPRESSION RATES (BPS) FOR THE IMC ENCODER, RFC ENCODER, AND

GZIP FOR THE SECOND TO 25TH POINT IN TIME OF THE DODGE NEON
MODEL.

Absolute Number of tree iMc rfc gzip
precision differences (bps) (bps) (bps)

0.01
0 3.04 10.14 6.20
1 2.53 3.05 4.09
2 2.61 2.96 4.54

0.1
0 0.89 6.82 1.95
1 0.84 0.97 1.40
2 0.91 1.19 1.79

1.0
0 0.17 3.67 0.42
1 0.18 0.19 0.33
2 0.20 0.30 0.45

TABLE IV
COMPRESSION RATES (BPS) FOR THE IMC ENCODER, RFC ENCODER, AND

GZIP FOR THE FIRST POINT IN TIME COMBINED WITH THE
TIME-PREDICTED SECOND TO 25TH POINT IN TIME OF THE DODGE NEON

MODEL.

Absolute Number of tree iMc rfc gzip
precision differences (bps) (bps) (bps)

0.01
0 3.50 10.44 6.64
1 2.76 3.30 4.37
2 2.86 3.13 4.78

0.1
0 1.17 7.07 2.37
1 1.00 1.17 1.64
2 1.09 1.35 2.02

1.0
0 0.30 3.89 0.66
1 0.27 0.30 0.47
2 0.30 0.42 0.61

Table IV shows that the iMc encoding generates better com-
pression rates than gzip for the combination of the first time
step and the time predicted second to 25th time step. Again,
the iMc encoder outperforms the rfc encoder in all investigated
cases. The combination of time differences and an initial time
step is a possible strategy for the compression of a whole
simulation result. The compression rate for a realistic precision
of 0.1mm, time differences, and one tree difference is about
1 bps for the iMc case compared to 1.17 bps for rfc encoding
and 1.64 bps for gzip encoding, respectively.

After the short discussion of the compression rates, we want
to investigate how good the Markov chain approach fits to the
compression of node values. For this purpose, we stated the
Kullback-Leibler divergence (KLD), see (7). Table V contains
the values of the KLD for the first time step of the x coordinate

TABLE V
KULLBACK-LEIBLER DIVERGENCE FOR THE FIRST TIME STEP, x

COORDINATE, AND ONE TREE DIFFERENCE.

Absolute
KL(PY ,PZ) KL(PZ ,PY)Precision

Graph
0.01 3.50E-04 3.58E-04
0.1 1.39E-04 1.41E-04
1 8.62E-05 8.77E-05

Tree
0.01 – 1.68E-03
0.1 1.51E-04 1.54E-04
1 1.42E-05 1.48E-05

that are predicted by one tree difference. Here, we distinguish
the case where we calculate the stationary distribution PZ on
base of the tree and on base of the whole graph, respectively.
Since we want to compress the node values and no random
walk itself, we assume that PY is the distribution we want
to approximate by PZ . The elements of Table V can be
interpreted as a measure for additional bps required to code
values distributed by PY but using a code based on PZ . Table
V shows that the expense is very small. For an absolute
precision of 0.01 and the stationary distribution determined
for a tree, the KLD is not defined as at least one value
ai ∈ A exists with PZ [ai] = 0 and PY [ai] 6= 0. This is
the case if ai only occurs on leafs of the tree. This does not
influence the coding algorithm but prevents to compare the
two distributions. Therefore, we listed additionally the KLD
KL(PZ ,PY) to show that the influence of the leaf values is
small.

VIII. CONCLUSION

We investigated the compression of graph-based data using a
new strategy, the so-called iMc encoding. For that, we defined
a Markov chain on base of transition probabilities that are
dependent on the node values of neighbors in the graph and
interpret the node values as a result of a random walk on the
graph. The size of the Kullback-Leibler divergence showed,
that the stationary of the iMc, which reflects the probability to
be at a certain value in the k-th step, k � 1, of a random walk,
is very similar to the initial distribution for the investigated
model. Additionally, we could determine the number of bits
we give away by using the transition probabilities instead of
the unknown underlying distribution. Therefore, at least for
this case, the iMc can reasonably be applied.
The results show that even after the application of tree and
time differences, the data is not yet fully decorrelated. This
can be exploited by an encoder that uses the connectivities
and the iMc statistics as side information. Especially, if the
number of different values can be reduced by time differences
or a coarse quantization, this leads to significantly better
compression rates. Since we assume that the connectivities
have to be stored in the compressed file we can combine the
iMc with a connectivity compression method like topological
surgery [3], the TG coder [2], or the Cut Border Machine [15].
One big advantage of the iMc is, that it can be employed on
general graphs and is not limited to a certain regularity of the
mesh.

The statistics of the iMc encoder cause a certain overhead.
This has to be compensated by a better encoding. Therefore
the application of iMc encoding is suggested for graphs with
at least 500 nodes.
There are several additional strategies to use the iMc statistics.
In [16], it was shown that in some cases, it can be useful to
store the tree. In this case we can determine the transition
probabilities of the whole graph and identify each edge ej =
(ns, nt) ∈ E of G with an edge weight wj = − log2(Pkl),
whereby the node value on ns is ak and on nt is al. Afterwards
we can determine the arborescence of the weighted graph, e.g.
by the Edmonds’ algorithm [17].
Another way of applying the iMc is to use a general directed
acyclic graph, which can consist of one half of all directed
edges of the graph, instead of just a tree. Moreover, with the
iMc, we can calculate the entropy for a data set and determine
if it can reasonably be compressed by the iMc encoder.
A possible way to improve the speed of encoding and decoding
is to encode the points of time in parallel. If we do not use
the opposing adaptive approach, we expect a good scaling as
the procedures are independent for each time step.

ACKNOWLEDGMENT

The author would like to thank Rudolph Lorentz, Martin
Weiser, Caren Tischendorf, Lennart Jansen, and Matthew
Reyes for many productive discussions and the Berlin Math-
ematical School for conference travel support.

REFERENCES

[1] E. Haug, Engineering safety analysis via destructive numerical exper-
iments, EUROMECH 121, Polish Academy of Sciences, Engineering
Transactions 29(1), p. 3949, 1981.

[2] C. Touma, C. Gotsman, Triangle mesh compression, Proc. Graphics
Interface ’98, p. 26-34, 1998.

[3] G. Taubin, J. Rossignac, Geometric compression through topological
surgery, ACM Trans. Graph., vol. 17, no. 2, p. 84-115, 1998.

[4] M. Reyes, Cutset Based Processing and Compression of Markov Random
Fields, Ph.D. dissertation, University of Michigan, 2010.

[5] S. Kullback, R. Leibler, On Information and Sufciency, The Annals of
Mathematical Statistics, vol. 22, no. 1, p. 79-86, 1951.

[6] H. Bauer, Probability theory, de Gruyter, Berlin, Germany, 1996.
[7] L. Lovász, Random Walks on Graphs: A Survey, Combinatorics, Paul

Erdös is Eighty, János Bolyai Mathematical Society, p. 353-398, Bu-
dapest, Hungary, 1996.

[8] D. Stroock, An Introduction to Markov Processes, Springer, Graduate
texts in mathematics, Berlin, Germany, 2005.

[9] D. Salomon, Data Compression, Springer, London, England, 2007.
[10] T. Cormen, C. Leiserson, R. Rivest, C. Stein, Introduction to algorithms,

The MIT Press, Cambridge, Massachusetts, 2001.
[11] J. Gailly, M. Adler gzip 1.6, http://www.gzip.org, 2013.
[12] G. Roelofs, J. Gailly, M. Adler zlib 1.2.8, http://www.zlib.net, 2013.
[13] National Crash Analysis Center, Dodge Neon, Detailed model (272,485

elements), http://www.ncac.gwu.edu/vml/models.html, 2006.
[14] ESI Group, PAM-Crash, http://virtualperformance.esi-

group.com/applications-structural-crash, 2014.
[15] S. Gumhold, W. Straßer, Real time compression for triangle mesh

connectivity, SIGGRAPH ’98, p. 133-140, 1998.
[16] M. Rettenmeier, Data Compression for Fluid Dynamics on Irregular

Grids, Logos Verlag Berlin, Germany, 2012.
[17] H. Gabow, Z. Galil, T. Spencer, R. Tarjan, Efficient algorithms for

finding minimum spanning trees in undirected and directed graphs,
Combinatorica, vol. 6, no. 2, Springer-Verlag, p. 109-122, 1986.

