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Abstract

This paper introduces a novel lowest-order discontinuous Petrov Galerkin (dPG) finite element method (FEM) for the
Poisson model problem. The ultra-weak formulation allows for piecewise constant and affine ansatz functions and
for piecewise affine and lowest-order Raviart-Thomas test functions. This lowest-order discretization for the Poisson
model problem allows for a direct proof of the discrete inf-sup condition and a complete a priori and a posteriori
error analysis. Numerical experiments investigate the performance of the method and underline the quasi-optimal
convergence.
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1. Introduction

The discontinuous Petrov Galerkin (dPG) finite element method (FEM) was introduced by [1, 2, 3, 4] for particular
choices of polynomial degrees, namely the lowest-order case with piecewise constant and affine trial functions and
piecewise first-order Raviart-Thomas and quadratic test functions in 2D. A refined analysis is presented in [5]. The
novel low-order variant of this paper reduces the test-function space dramatically to piecewise zero-order Raviart-
Thomas and affine functions and still allows for a stable and quasi-optimal scheme.

The dPG finite element method uses a mixture of ideas from the least-squares and mixed finite element method-
ology and started with the search of an optimal test-function space.

Given F ∈ Y∗, seek x ∈ X with
b(x, y) = F(y) for all y ∈ Y. (1.1)

For a quite general functional setting, i.e., X, Y reflexive Banach spaces, well-posedness requires the inf-sup condition

0 < β := inf
x∈S (X)

sup
y∈S (Y)

b(x, y). (1.2)

Here and throughout the paper, the unit sphere of a normed linear space (W, ‖·‖W ) is denoted by S (W) = {w ∈
W | ‖w‖W = 1}. A closer look at (1.2) reveals that

1. The larger Y , the better chances we have to guarantee (1.2).

2. The inf-sup condition gives rise to an a posteriori error estimate for conforming discretizations. Provided (1.2),
any xh ∈ Xh ⊂ X satisfies

‖x − xh‖X ≤
1
β
‖F − b(xh, ·)‖Y∗ . (1.3)

The dPG method was originally thought of as a method to exploit those two aspects by a minimization of the right-
hand side of (1.3) for Xh ⊂ X. The idealized dPG (idPG) method seeks

xh ∈ arg min
xh∈Xh

‖F − b(xh, ·)‖Y∗
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and is not practical because the norm of the dual space Y∗ is, in general, not computable as a supremum over an infinite-
dimensional space Y . The (practical) dPG method is the least squares minimization with the finite-dimensional dual
space Y∗h and seeks xh ∈ Xh such that

xh ∈ arg min
xh∈Xh

‖F − b(xh, ·)‖Y∗h .

The finite-dimensional spaces Xh ⊂ X and Yh ⊂ Y form conforming approximations of the Banach spaces X and Y
where X , Y in general. In the discrete setting, this may lead to an unbalancy of dimension meaning that dimXh <
dimYh. The dPG method can be, therefore, regarded as either a finite element method with nonstandard test spaces,
or, as least-squares finite element method minimizing the residual in a nonstandard norm.

This paper proposes a lowest-order dPG finite element discretization for an elliptic model problem and proves its
stability and optimal approximation properties. The notation is fixed for two space dimensions in order to simplify
the presentation. Nevertheless, all the analysis and the proofs directly carry over to three dimensions.

The paper is organized as follows. In Section 2 the ultraweak formulation of the model problem along with nec-
essary notation of regular triangulations and nonstandard function spaces is introduced. Section 3 is concerned with
the dPG method for the Hilbert space case. The discussion includes results about a priori as well as a posteriori prop-
erties of the dPG solution. The paper is concluded by numerical experiments of the lowest-order dPG discretization
presented in Section 4.

Throughout the paper standard notation on Lebesgue and Sobolev spaces is employed and ‖•‖ abbreviates ‖•‖L2(Ω).
The dot denotes the scalar product of two one-dimensional lists of reals of the same length. The notation a . b
abbreviates a ≤ Cb for a positive generic constant C that may depend on the domain Ω but not on the mesh-size. The
notation a ≈ b stands for a . b . a. The measure |·| is context-sensitive and refers to the number of elements of
some finite set or the length of an edge or the area of some domain and not just the modulus of a real number or the
Euclidean length of a vector.

2. Ultraweak formulation of the Poisson model problem

The idea behind the ultraweak formulation is to enlarge the test function space. This means that one gives up on
global continuity properties of the test functions at the expense of explicit discretization of traces on the interfaces
of simplices. Different from conventional methods, the triangulation is inextricably linked with the functional setting
even on the continuous level.

2.1. Triangulation of the domain

Given a regular triangulation T of the polygonal Lipschitz domain Ω ⊂ R2 into simplices, the set of faces of a
simplex T is denoted F (T ); F (resp. F (Ω)) denotes the set of all faces in T (resp. interior faces of T ). The union of
all faces F is called the skeleton ∂T regarding it as the set of all the boundaries ∂T of the simplices T ∈ T , i.e.,

∂T :=
⋃
T∈T

⋃
F∈F (T )

F .

We further use some notational convention for the unit normal vector fields. The unit normal vector field along
the boundary ∂T of a fixed simplex T ∈ T is denoted by νT or, when it is clear from the context, simply by ν.

Each interior face is attributed a unique unit normal vector νF by fixing one of the two possible orientations. On
the faces which lie on the boundary ∂Ω, the exterior direction is selected.

Let Π0 denote the L2 projection onto piecewise constant functions with respect to T ; the same notation applies
component-wise to vector-valued functions. Let for any T ∈ T its barycenter be denoted by mid(T ) and define the
piecewise constant function mid(T ) : Ω→ R2 via mid(T )|K := mid(K) for any K ∈ T .
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2.2. Function spaces
Besides Sobolev spaces H1 and H(div), we consider functions which exhibit certain (piecewise) regularity prop-

erties only on the isolated simplices in T . Those function spaces are

H(∇NC ,T ) := {v ∈ L2(Ω) : ∀T ∈ T , v|T ∈ H1(T )},

H(divNC ,T ) := {τ ∈ L2(Ω;R2) : ∀T ∈ T , τ|T ∈ H(div,T )}.

Throughout this paper, divNC and ∇NC denote the piecewise application of the differential operators div and ∇.
Let us consider a simplex T ∈ T with outer unit normal vector ν and recall that the trace operators

γ0 : H1(T )→ H1/2(∂T ), γ0v := v|∂T for all v ∈ H1(T ),

γν : H(div,T )→ H−1/2(∂T ), γνq := q · νT |∂T for all q ∈ H(div,T )

are surjective with continuous right inverses. Thus, the local regularity of functions in the above spaces allows for the
definition of traces on the skeleton ∂T and we set

H1/2
0 (∂T ) := {w ∈

∏
T∈T

H1/2(∂T ) : ∃ ũ ∈ H1
0(Ω)∀T ∈ T , w|∂T = γ0 (ũ|T )},

H−1/2(∂T ) := {t ∈
∏
T∈T

H−1/2(∂T ) : ∃ σ̃ ∈ H(div,Ω)∀T ∈ T , t|∂T = γν (σ̃|T )}.

We conclude this section with two remarks on the spaces H1/2
0 (∂T ) and H−1/2(∂T ) as well as their duality relation.

Remark 2.1. Each w ∈ H1/2
0 (∂T ) may be identified with some ũ ∈ H1

0(Ω). Such ũ is an extension of the skeleton
trace w on ∂T . In a finite element discretization, ũ must be discretized by globally H1(Ω)-conforming finite element
functions to render γ0 well defined.

Similarly, each t ∈ H−1/2(∂T ) may be identified with some σ̃ ∈ H(div,Ω). Such σ̃ is an extension of the skeleton
trace t := σ · ν on ∂T . In a finite element discretization, σ̃ must be discretized by globally H(div,Ω)-conforming finite
element functions to render γν well defined.

Remark 2.2. Locally we know that H−1/2(∂T ) is the realization of the dual space H1/2(∂T )? with L2(T ) as pivot space.
This means that the duality 〈•, •〉∂T is an extension of the L2(∂T ) scalar product taking into account the boundary
∂T as a whole and not the single faces F ∈ F (T ). In conclusion, the skeleton spaces H1/2

0 (∂T ) and H−1/2(∂T ) are
related by duality with

∀w ∈ H1/2
0 (∂T )∀t ∈ H−1/2(∂T ) 〈t,w〉∂T :=

∑
T∈T

〈
w
∣∣∣
∂T , t

∣∣∣
∂T

〉
∂T
. (2.1)

2.3. Model problem
In this section, the ultraweak formulation of a second-order model problem is presented. Let Ω be a polygonal

bounded Lipschitz domain in R2 with closed boundary ∂Ω. The starting point is the boundary value problem

− div∇u = f in Ω and γ0u = 0 on ∂Ω

and the equivalent system of first-order equations

− divσ = f in Ω,
σ − ∇u = 0 in Ω,

γ0u = 0 on ∂Ω.
(2.2)

For any right-hand side f ∈ L2(Ω) there exist some unique u ∈ H1
0(Ω) and σ ∈ H(div,Ω) with (2.2). The weak

formulation of both first order equations in (2.2) leads to a bilinear form b : X × Y → R where X and Y are the
following Hilbert spaces

X := L2(Ω) × L2(Ω;R2) × H1/2
0 (∂T ) × H−1/2(∂T ),

Y := H(∇NC ,T ) × H(divNC ,T )
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(with natural norms discussed below). For x = (u, σ,w, t) ∈ X and y = (v, τ) ∈ Y , recall (2.1) and define

b(x, y) :=
∫

Ω

σ · ∇NCv dx − 〈t, γ0v〉∂T

+

∫
Ω

σ · τ dx +

∫
Ω

u divNC τ dx − 〈γντ,w〉∂T . (2.3)

For all y = (v, τ) ∈ Y , the right-hand side in (2.2) defines the linear functional

F(y) :=
∫

Ω

f v dx with |F(y)| ≤ ‖y‖Y‖ f ‖ . (2.4)

Remark 2.3. In contrast to the weak formulation based on the space H1
0(Ω), the triangulation T enters explicitly in

the definition of the infinite-dimensional spaces X and Y.

2.4. Equivalent formulation

Note that in Remark 2.1 it has been proposed a strategy how to remove the duality pairings from the ultraweak
formulation. Consider any ũ ∈ H1

0(Ω) with w = γ0ũ and any σ̃ ∈ H(div,Ω) with t = γνσ̃. Note that the right-hand
sides do not depend on the values of ũ and σ̃ on Ω \ ∂T and, thus, (2.3) equivalently reads

b(x, y) =

∫
Ω

(σ − σ̃) · ∇NCv dx −
∫

Ω

v div σ̃ dx

+

∫
Ω

(σ − ∇ũ) · τ dx +

∫
Ω

(u − ũ) divNC τ dx.
(2.5)

The identifications of skeleton traces with globally defined functions as in Remark 2.1 specify the norm topologies
of X and Y via

X = L2(Ω) × L2(Ω;R2) × H1/2
0 (∂T ) × H−1/2(∂T )

≡ L2(Ω) × L2(Ω;R2) × H1
0(Ω) × H(div,Ω)

‖x‖2X : = ‖u‖2 + ‖σ‖2 + ‖ũ‖2 + ‖∇ũ‖2 + ‖σ̃‖2 + ‖div σ̃‖2,

Y = H(∇NC ,T ) × H(divNC ,T ;R2)

‖(v, τ)‖2Y : = ‖v‖2 + ‖∇NCv‖2 + ‖τ‖2 + ‖divNC τ‖
2.

Remark 2.4 (well-posedness). The bilinear form b : X × Y → R is bounded

|b(x, y)| . ‖x‖X‖y‖Y . (2.6)

For any x ∈ X it holds b(x, •) ∈ Y∗ and, thus, the ultraweak problem is well-posed in the continuous case and it reads:
Seek x ∈ X such that

b(x, y) = F(y) for all y ∈ Y .

The stability of the problem was proven in [2].

Lemma 2.5 (inf-sup condition, Theorem 4.2 of [2]). The constant

0 < β := inf
x∈S (X)

sup
y∈S (Y)

b(x, y)

depends on the domain Ω but is independent of the triangulation T .
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3. Lowest-order dPG FEM

The following two subsections are concerned with the numerical analysis of the dPG finite element method. The
starting point is the ultraweak formulation with the bilinear form b : X × Y → R from (2.5).

The introduction of the finite element spaces is followed by an a priori result stating that the dPG solution possesses
best-approximation properties.

The dPG method is a mixed finite element formulation. This means that solvability and stability of the method
is captured by the inf-sup condition. With this idea in mind the lowest-order dPG method for the Poisson problem is
investigated and proved to be a stable numerical method.

3.1. Discretization and a priori error estimates

The finite-dimensional subspaces Xh ⊂ X and Yh ⊂ Y are spaces of piecewise polynomial functions. For k ≥ 0,
the spaces of piecewise polynomial functions read as

Pk(T ) := {vk ∈ L∞(T ) : vk is polynomial on T of degree ≤ k},

Pk(T ) := {vk ∈ L∞(Ω) : ∀T ∈ T , vk |T ∈ Pk(T )},

Pk(T ;R2) := {qk ∈ L∞(T ;R2) : each component of qk belongs to Pk(T )},

Pk(T ;R2) := {qk ∈ L∞(Ω;R2) : ∀T ∈ T , vk |T ∈ Pk(T ;R2)}.

The space of lowest-order discontinuous Raviart-Thomas vector fields is defined as

RT0(T ) := {q0 ∈ L∞(T ;R2) : ∀T ∈ T ∃(a, b, c) ∈ R3, q0|T (x) =
( a

b
)

+ cx}.

Define Xh ⊂ X and Yh ⊂ Y as

Xh := P0(T ) × P0(T ;R2) × (P1(T ) ∩C0(Ω)) × (RT0(T ) ∩ H(div,Ω)) ,
Yh : = P1(T ) × RT0(T ).

The discretization is based on the equivalent formulation described in Subsection 2.4. Since the normal traces
of (RT0(T ) ∩ H(div,Ω)) are exactly the piecewise constant functions on the edges P0(F ) and since the traces of
(P1(T ) ∩C0(Ω)) are equivalent to the continuous piecewise affines on F that vanish on the boundary, the proposed
scheme corresponds to a direct discretization of the formulation based on the bilinear form (2.3). The following two
lemmas show that also the involved norms are equivalent.

Lemma 3.1. Given ũ1 ∈ P1(T ) ∩ C0(Ω). The trace γ0ũ1 on the skeleton ∂T is a unique function in H1/2(∂T ). The
norm of w := γ0ũ1 is defined as follows

‖w‖H1/2(∂T ) := inf
v ∈ H1

0 (Ω)
γ0v = w

‖v‖H1(Ω) = inf
v ∈ H1

0 (Ω)
γ0v = w

√
‖v‖2 + ‖∇v‖2.

It holds the equivalence of norms
‖w‖H1/2(∂T ) ≈ ‖ũ1‖H1(Ω).

Proof. For the proof of the non-trivial direction ‖ũ1‖
2
H1(Ω) . ‖w‖

2
H1/2(∂T ), note that any v ∈ H1

0(Ω) with γ0v = w satisfies
on each K ∈ T that

∇ũ1
∣∣∣
K = |K|−1

∫
K
∇ũ1 dx = |K|−1

∫
∂K
νw dx = |K|−1

∫
K
∇v dx .

Hence, ∇ũ1 = Π0∇v which implies
‖∇ũ1‖ = ‖Π0∇v‖ ≤ ‖∇v‖ ≤ ‖v‖H1(Ω).

The Friedrichs inequality states ‖ũ1‖H1(Ω) . ‖∇ũ1‖. The claimed equivalence follows from infimizing over v ∈
H1

0(Ω).
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Lemma 3.2. Given σ̃0 ∈ RT0(T ) ∩ H(div,Ω). The trace γνσ̃0 on the skeleton ∂T is a unique function in H−1/2(∂T ).
The norm of t = γνσ̃0 is defined as follows

‖t‖H−1/2(∂T ) := inf
v ∈ H(div,Ω)

γνv = t

‖v‖H(div,Ω) = inf
v ∈ H(div,Ω)

γνv = t

√
‖v‖2 + ‖div v‖2

It holds the equivalence of norms
‖t‖H−1/2(∂T ) ≈ ‖σ̃0‖H(div,Ω)

Proof. To prove the non-trivial direction ‖σ̃0‖ . ‖t‖H−1/2(∂T ), consider v ∈ H(div,Ω) with γνv = t. Since v and σ̃0 have
the same normal trace on the boundary of each K ∈ T with t ∈ P0(∂T ) it follows

div σ̃0
∣∣∣
K = |K|−1

∫
K

div σ̃0 dx = |K|−1
∫
∂K

t dx = |K|−1
∫

K
div v dx .

Hence,
‖div σ̃0‖ = ‖Π0 div v‖ ≤ ‖div v‖.

Recall that σ̃0 ∈ RT0(T ) ∩ H(div,Ω), i.e., there exist c1 ∈ P0(T ;R2) and c2 ∈ P0(T ) with

σ̃0
∣∣∣
K(x) = c1 + c2(x −mid(K)) = ∇

(
c1 · x +

c2

2
‖x −mid(K)‖2)

)
and, therefore, for any K ∈ T , σ̃0|K = ∇αK is the gradient of some αK ∈ H1(K) which solves the local Neumann
problem

∆αK = div σ̃0 in K

γναK = t on ∂K∫
K
αK dx = 0.

As αK has integral mean zero, we can apply the Poincaré inequality with the Poincaré constant CP and the diameter
hK := diam(K) and obtain

‖∇αK‖
2
K =

∫
K
∇αK · ∇αK dx

= −

∫
K
αK div σ̃0 dx +

∫
∂K

t αK ds

= −

∫
K
αK div σ̃0 dx +

∫
K
αK div v dx +

∫
K

v · ∇αK dx

≤ hKCP‖∇αK‖K‖div σ̃0‖K + hKCP‖∇αK‖K‖div v‖K + ‖∇αK‖K‖v‖K .

Recall the estimate from above, then it holds

‖∇αK‖K ≤ 2 hKCP‖div v‖K + ‖v‖K

and summing up both local results we obtain after infimizing over v that

‖σ̃0‖H(div,Ω) . ‖t‖H−1/2(∂T ).

Recall that the main issue for mixed finite element methods is the proof of the discrete inf-sup condition, that is
the existence of βh > 0 such that

0 < βh = inf
xh∈S (Xh)

sup
yh∈S (Yh)

b(xh, yh). (3.1)

Note that for Xh and Yh as above it holds dimXh < dimYh. For the analysis of unique solvability of the dPG
formulation, consider the closed subspace Nh where b degenerates, namely

Nh := {yh ∈ Yh : b(xh, yh) = 0 for all xh ∈ Xh} ⊂ Yh.

Furthermore, define Mh := N⊥h as the orthogonal complement of Nh with respect to the scalar product in Yh.
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Theorem 3.3 (abstract a priori error estimate). Provided the spaces Xh and Yh satisfy the discrete inf-sup condition
(3.1), then for any F ∈ Y∗ there exists a unique solution xh ∈ Xh to the problem

b(xh, yh) = F(yh) for all yh ∈ Mh. (3.2)

It holds quasi-optimal convergence

‖x − xh‖X ≤
‖b‖
βh

distX(x, Xh). (3.3)

Proof. The orthogonal projection Ph onto Mh satisfies Ph : Yh → Mh, ‖Ph‖ = 1. This and the discrete inf-sup
condition (3.1) reveal for any ξh ∈ Xh that

‖b(ξh, •)‖Y∗h = sup
yh∈S (Yh)

b(ξh, yh) = sup
yh∈S (Yh)

b(ξh, Phyh)

≤ sup
yh∈S (Mh)

b(ξh, yh) = ‖b(ξh, •)‖M∗h .

This implies the following discrete inf-sup condition for Mh

βh ≤ inf
xh∈S (Xh)

sup
yh∈S (Mh)

b(xh, yh).

Since b is non-degenerate on Mh, the classical Babuška-Brezzi theory proves that problem (3.2) has a unique solution
xh ∈ Xh which satisfies (3.3). The constant ‖b‖

/
βh in the error estimate can be obtained (in the present case of a Hilbert

space) from the fact that the discrete solution operator x 7→ xh is a nontrivial oblique projection.

Remark 3.4 (convergence rate). The error estimate (3.3) shows that the proposed scheme is of first order: Provided
the exact solution allows for the smoothness u ∈ H2(Ω) and and the data f is piecewise smooth, standard approxima-
tion results prove that the error ‖x − xh‖X converges as O(h).

The remaining part of this section is devoted to the proof of the discrete inf-sup condition.

Theorem 3.5 (discrete inf-sup condition). Let CF ≤ width(Ω)/π denote the Friedrichs constant and let hmax :=
maxT∈T diam(T ) ≤ diam(Ω) denote the maximum mesh-size in T . The bilinear form b satisfies the discrete inf-sup
condition (3.1) with the constant βh equal to

(1 + h2
max)−1/2 min

{
(1 + 2C2

F(5 + 3C2
F) + 2h2

max(6 + 3C2
F))−1/2,

(2 + 4(6 + 3C2
F))−1/2

}
.

The inf-sup constant βh ≈ 1 exclusively depends on the diameter of the domain Ω.

Proof. Recall the L2 projection Π0 onto piecewise constants and the definition of mid(T ) from Subsection 2.1. Given
xh = (u0, σ0, ũ1, σ̃0) ∈ Xh, define yh = (v1, τ0) ∈ Yh by

τ0 := (σ0 − ∇ũ1) +
1
2

(u0 − Π0ũ1)(• −mid(T )),

v1 := − div σ̃0 + (σ0 − Π0σ̃0) · (• −mid(T )).

The design of yh shows that

b(xh, yh) =

∫
Ω

(σ0 − ∇ũ1) · τ0 dx +

∫
Ω

(u0 − ũ1) divNC τ0 dx

+

∫
Ω

(σ0 − σ̃0) · ∇NCv1 dx −
∫

Ω

div σ̃0 v1 dx

= ‖σ0 − ∇ũ1‖
2 + ‖u0 − Π0ũ1‖

2 + ‖σ0 − Π0σ̃0‖
2 + ‖div σ̃0‖

2.
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This and direct calculations with the orthogonality of • − mid(T ) onto the piecewise constants and the estimate
‖ • −mid(T )‖L∞ ≤ hmax show

‖yh‖
2
Y ≤ ‖σ0 − ∇ũ1‖

2 + h2
max/4 ‖u0 − Π0ũ1‖

2 + ‖u0 − Π0ũ1‖
2

+ ‖ div σ̃0‖
2 + h2

max‖σ0 − Π0σ̃0‖
2 + ‖σ0 − Π0σ̃0‖

2

≤ (1 + h2
max)b(xh, yh).

The Friedrichs, Young, and triangle inequalities imply

‖xh‖
2
X ≤ ‖div σ̃0‖

2 + ‖σ̃0‖
2 + ‖σ0‖

2 + (1 + C2
F)‖∇ũ1‖

2 + ‖u0‖
2

≤ ‖div σ̃0‖
2 + 2‖σ̃0 − ∇ũ1‖

2 + 2‖σ0 − ∇ũ1‖
2

+ (5 + 3C2
F)‖∇ũ1‖

2 + 2‖u0 − Π0ũ1‖
2.

(3.4)

Even for multiply connected domains, the Helmholtz decomposition shows that there exist unique α ∈ H1
0(Ω) and

r ∈ H(div,Ω) with div r = 0 such that

σ̃0 − ∇ũ1 = ∇α + r and ‖∇α‖2 + ‖r‖2 = ‖σ̃0 − ∇ũ1‖
2.

Since σ̃0 ∈ H(div,Ω) and −∆(α + ũ1) = div σ̃0 ∈ L2(Ω), the Friedrichs inequality implies that

‖∇(α + ũ1)‖2 =

∫
Ω

div σ̃0(α + ũ1)dx ≤ CF‖div σ̃0‖‖∇(α + ũ1)‖ .

In other words,
‖∇(α + ũ1)‖ ≤ CF‖div σ̃0‖.

This plus the triangle inquality and the aforementioned stability of the Helmholtz decomposition reveal

‖∇ũ1‖ ≤ ‖∇α‖ + ‖∇(α + ũ1)‖ ≤ ‖σ̃0 − ∇ũ1‖ + CF‖div σ̃0‖.

The combination with (3.4) and the triangle and Young inequalities lead to

‖xh‖
2
X ≤ (1 + 2C2

F(5 + 3C2
F))‖div σ̃0‖

2 + 2(6 + 3C2
F)‖σ̃0 − ∇ũ1‖

2

+ 2‖σ0 − ∇ũ1‖
2 + 2‖u0 − Π0ũ1‖

2.

Since σ̃0|T = Π0σ̃0 + div σ̃0(• −mid(T ))/2 on any T ∈ T , the triangle inequality and Young inequalities lead to

‖σ̃0 − ∇ũ1‖
2 ≤ h2

max‖div σ̃0‖
2 + ‖Π0σ̃0 − ∇ũ1‖

2

≤ h2
max‖div σ̃0‖

2 + 2‖σ0 − Π0σ̃0‖
2 + 2‖σ0 − ∇ũ1‖

2.

The combination of the foregoing two displayed inequalities results in

‖xh‖
2
X ≤ (1 + 2C2

F(5 + 3C2
F) + 2h2

max(6 + 3C2
F))‖div σ̃0‖

2

+ (2 + 4(6 + 3C2
F))‖σ0 − ∇ũ1‖

2

+ 2‖u0 − Π0ũ1‖
2 + 4(6 + 3C2

F)‖σ0 − Π0σ̃0‖
2

≤ max
{
1 + 2C2

F(5 + 3C2
F) + 2h2

max(6 + 3C2
F), 2 + 4(6 + 3C2

F)
}

b(xh, yh).

The product of the two resulting estimates ‖xh‖
2
X . b(xh, yh) and ‖yh‖

2
Y . b(xh, yh) concludes the proof.

The validity of (3.1) implies that Xh and Mh define a stable pair for mixed finite elements and, by Theorem 3.3,
the lowest-order dPG solution of the Poisson problem is quasi-optimal.

8



3.2. A posteriori analysis
Recall that Ph denotes the orthogonal projection onto Mh in the Hilbert space Y .

Lemma 3.6 (reliability). Let b be a continuous bilinear form on X × Y with (1.2) and let F ∈ Y∗ be a given linear
functional. Suppose that finite-dimensional subspaces Xh ⊂ X and Yh ⊂ Y are specified. Then, any xh ∈ Xh satisfies

β‖x − xh‖X ≤ ‖F − b(xh, •)‖Y∗h + ‖F ◦ (1 − Ph)‖Y∗ .

Proof. The proof is contained in [6] and repeated here for convenient reading. The inf-sup condition for b guarantees

β‖x − xh‖X ≤ ‖F − b(xh, •)‖Y∗ .

The argument in the norm of the right hand side reads

F(y) − b(xh, y) = F(Phy) − b(xh, Phy) + F(y − Phy) − b(xh, y − Phy).

Any y ∈ S (Y) satisfies
|F(y) − b(xh, y)| ≤ ‖Ph‖‖F − b(xh, •)‖Y∗h +‖F ◦ (1 − Ph)‖Y∗ .

Thus,
β‖x − xh‖X ≤ ‖F − b(xh, •)‖Y∗h +‖F ◦ (1 − Ph)‖Y∗ . �

Remark 3.7 (a posteriori error control). The estimate in the previous lemma makes clear that the error is controlled
by two terms. The first is the residual which is minimized by the dPG method. The second term measures how well the
right hand side was approximated. If the data approximation is efficient, the error behaves quantitatively as the first
term. In this context, note that for any xh ∈ Xh and y ∈ S (Y) it holds

(F ◦ (1 − P))(y) = F(y − Py) = b(x, y − Py) = b(x − xh, y − Py)
≤ ‖b‖‖x − xh‖X‖1 − P‖ .

4. Numerical results

This section presents numerical experiments on three domains with Dirichlet and Neumann boundary conditions
and investigates the error in the norm ‖ · ‖Xh and the errors in the the single components of xh = (u0, σ0, ũ1, σ̃0) as well
as the convergence behaviour of the a posteriori error estimator on uniform and adaptive meshes.

4.1. Adaptive Algorithm
The a posteriori error estimate from Subsection 3.2 motivates an adaptive algorithm based on local residuals. The

fact that the test functions in Yh are discontinuous allows to choose an element-by-element basis with local supports
on one element only which leads to a decoupled mass matrix of block-diagonal type. The restriction of Yh to a single
element reads

Yh(T ) := span{yh ∈ Yh | supp yh ⊆ T }.

The local error estimator contributions read

η2(T ) := ‖F − b(xh, ·)‖2Yh(T )? for any T ∈ T

and sum up to the global error estimator η :=
(∑

T∈T η
2(T )

)1/2.
The adaptive algorithm with Dörfler marking runs the following loop.

Input: Initial triangulation T0, bulk parameter 0 < θ ≤ 1.
for ` = 0, 1, 2, . . .

Solve. Compute discrete solution x` to (3.2) with respect to T`.
Estimate. Compute local contributions of the error estimator

(
η2
` (T )

)
T∈T` .

Mark. Choose a minimal subsetM` ⊆ T` such that θη2
` (T`) ≤ η

2
` (M`).

Refine. Generate T`+1 from T` andM` with newest-vertex bisection.
end for
Output: Triangulations (T`)` and discrete solutions (x`)`.
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Figure 1: Convergence history for the square domain under uniform and adaptive mesh-refinement.

4.2. Square Domain
The exact solution of the Poisson model problem on the unit square Ω := (0, 1)2 reads

u(x, y) = x(x − 1)y(y − 1) exp(−100(x − 1/2)2 − (y − 117)2/104)

and specifies the right-hand side f = −∆u. Figure 1 displays the convergence history on uniform and adaptive
meshes. The L2 error ‖u − ũ1‖L2(Ω) converges at rate 1 with respect to the number of degrees of freedom, whereas the
energy error ‖∇(u− ũ1)‖L2(Ω), the total error ‖x− xh‖Xh and the error estimator converge at rate 1/2. These convergence
rates are observable starting from 800 degrees of freedom. For coarser meshes, the oscillatory right-hand side f might
not be resolved accurately by the finite element meshes. The error estimator η = ‖F − b(xh, ·)‖Y?

h
is reliable and

efficient in that it converges at the same rate as the ‖x − xh‖Xh . Moreover, η seems to be a close approximation to
‖∇(u − ũ1)‖L2(Ω).

4.3. L-shaped domain
The L-shaped domain Ω = (−1, 1)2\[−1, 0]2 is treated with mixed boundary conditions. On the Dirichlet boundary

ΓD := conv{(0,−1), (0, 0)} ∪ conv{(0, 0), (1, 0)}, zero boundary conditions are imposed. The Neumann condition on
ΓN := ∂Ω \ ΓD is set according to the exact solution, which reads in polar coordinates (r, θ) as

u(r, θ) = r2/3 sin(2(θ + π/2)/3).

Figure 2 displays the convergence history under uniform and adaptive mesh-refinement. The generic singularity leads
to the suboptimal convergence rate of 1/3 for the error estimator η, the gradient approximation ‖∇u−σ0‖L2(Ω) and the
total error ‖x − xh‖Xh for uniform refinement.

As in the previous example, the L2 error ‖u−ũ1‖L2(Ω) shows the double rate of convergence. For all error quantities,
the convergence rate is observed for less than 100 degrees of freedom. As in the previous example, the a posteriori
error estimator η appears to be a close approximation to ‖∇(u − ũ1)‖L2(Ω). Adaptive mesh-refinement can recover the
optimal convergence rates.
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Figure 2: Convergence history for the L-shaped domain under uniform and adaptive mesh-refinement.
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