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Abstract

Blind deconvolution problems arise in many imaging modalities, where both the under-
lying point spread function, which parameterizes the convolution operator, and the source
image need be identified. In this work, a novel bilevel optimization approach to blind decon-
volution is proposed. The lower-level problem refers to the minimization of a total-variation
model, as is typically done in non-blind image deconvolution. The upper-level objective takes
into account additional statistical information depending on the particular imaging modality.
Bilevel problems of such type are investigated systematically. Analytical properties of the
lower-level solution mapping are established based on Robinson’s strong regularity condi-
tion. Furthermore, several stationarity conditions are derived from the variational geometry
induced by the lower-level problem. Numerically, a projected-gradient-type method is em-
ployed to obtain a Clarke-type stationary point and its convergence properties are analyzed.
We also implement an efficient version of the proposed algorithm and test it through the
experiments on point spread function calibration and multiframe blind deconvolution.

Keywords: Image processing, blind deconvolution, bilevel optimization, mathematical programs
with equilibrium constraints, projected gradient method.

AMS subject classification: 49J53, 65K10, 90C30, 94A08.

1 Introduction

Image blur is widely encountered in many application areas; see, e.g., [5] and the references
therein. In astronomy, images taken from a telescope appear blurry as light travels through a
turbulent medium such as the atmosphere. The out-of-focus blur in microscopic images com-
monly occurs due to misplacement of the focal planes. Tomographic techniques in medical
imaging, such as single-photon emission computed tomography (SPECT), are possibly prone
to resolution limits of imaging devices or physical motion of patients, which both lead to blur-
ring artifacts in final reconstructed images. In practice, the blurring operator, which can be
modeled as the convolution with some point spread function (PSF) provided that the blurring
is shift-invariant, is often not available beforehand and needs to be identified together with
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the underlying source image. Such a problem, typically known as blind deconvolution [30, 31],
represents an ill-posed inverse problem in image processing, more challenging than non-blind
deconvolution owing to the coupling of the PSF and the image.

There exists a diverse literature on blind deconvolution, which roughly divides into two cat-
egories: direct methods and iterative methods. The direct methods, such as the APEX method
by Carasso [6, 7, 8, 9], typically assume a specific parametric structure on either the blurring
kernel itself or its characteristic function, and are provably effective for specific applications.
Among the iterative methods, some use simple fixed-point type iterations, e.g. the Richardson-
Lucy method [16], but their convergence properties and robustness against noise are difficult
to analyze. Others proceed by formulating a proper variational model involving regularization
terms on the image and/or the PSF. In [48] H1-regularizations are imposed on both the im-
age and the PSF, and in [12, 20] total-variation regularizations on the image and the PSF are
utilized and yield better results than H1-regularizations for certain PSFs. We also mention
that nonconvex image priors are considered for blind deconvolution in the work [1], which are
favorable for certain sparse images [13, 25, 26]. The convergence analysis of an alternating min-
imization scheme for such double-regularization based variational approaches in appropriately
chosen function spaces is carried out in [4, 28]. An exception of variational approaches to blind
deconvolution is [29], where the optimality condition is “diagonalized” by Fourier transform and
thus can be solved by some non-iterative root-finding algorithm. Although we shall focus our-
selves only on spatially invariant PSFs in this work, we remark that blind deconvolution with
spatially varying PSFs might be advantageous in certain applications such as telescopic imaging;
see, e.g., [3].

Nevertheless, most existing variational approaches to blind deconvolution are “single-level”,
in the sense that both unknowns, i.e. the image and the PSF, appear in a single objective to
be minimized. In this work, we are interested in a class of blind deconvolution problems where
additional statistical information on the image (and possibly also on the PSF) is available. For
instance, in microscopic imaging the blurring is nearly stationary and an artificial reference image
can be inserted into the imaging device for obtaining a trial blurry observation of the reference
image. In telescopic imaging, the target object, considered to be stationary, is photographed by
multiple cameras within an instant, leading to highly correlated blurry observations. To exploit
such additional image statistics, we propose a bilevel optimization framework. In essence, in
the lower level the total-variation (TV) model (also known as the Rudin-Fatemi-Osher model
[42]) is imposed as the constraint that the underlying source image must comply with, as is
typically done in non-blind deconvolution [2, 11]. In the upper level, we minimize a suitable
objective which incorporates the statistical information on the image and the PSF. Notably,
bilevel optimization of similar structures has been recently applied to image processing for
parameter/model learning tasks in [32, 14].

Due to nonsmoothness of the objective in the (convex) TV-model, the sufficient and nec-
essary optimality condition for the lower-level problem can be equivalently expressed as ei-
ther a variational inequality, a nonsmooth equation, or a set-valued (or generalized) equation.
This prevents us from applying the classical Karush-Kuhn-Tucker theory to derive a necessary
optimality condition (or stationarity condition) for the overall bilevel optimization, and thus
distinguishes our bilevel optimization problem from classical constrained optimization. Such
difficulty is also typical in mathematical programming with equilibrium constraints (MPEC);
see the monographs [34, 37] for comprehensive introductions on the subject. In this paper,
we tackle the total-variation based bilevel optimization problem in the fashion of MPEC. For
the lower-level problem, we justify the so-called strong regularity condition by Robinson [39]
and then establish the B(ouligand)-differentiability of the solution mapping. Based on this,
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we derive the M(ordukhovich)-stationarity condition for the bilevel optimization problem. Yet,
the C(larke)-stationarity, slightly weaker than the M-stationarity, is pursued numerically by a
hybrid projected gradient method and its convergence is analyzed in detail. In the numerical
experiments, we implement a simplified version of the hybrid projected gradient method and
demonstrate some promising applications on point spread function calibration and multiframe
blind deconvolution.

The rest of the paper is organized as follows. We formulate the bilevel optimization model
in section 2. In section 3, the lower-level solution mapping is studied in detail with respect
to its existence, continuity, and differentiability. Different notions of stationarity conditions are
introduced in section 4, where their relations are also discussed. Section 5 develops and analyzes
a hybrid projected gradient method for pursuing a C-stationary point of the bilevel problem.
Numerical experiments based on a simplified project gradient method are presented in section
6.

2 A bilevel optimization model

Let u(true) ∈ R|Ωu| be the underlying source image over some two-dimensional (2D) index domain

Ωu. Assume the following image formation model for a blurry observation z ∈ R|Ωu|:

z = K(h(true))u(true) + noise. (1)

Here the noise is assumed to be white Gaussian noise. We denote by L(R|Ωu|) the set of all
continuous linear maps from R|Ωu| to itself and assume that K : h ∈ Qh 7→ K(h) ∈ L(R|Ωu|)
is a given continuously differentiable mapping over a convex and compact domain Qh in Rm.
In our theoretical and algorithmic development each K(h) is only required to be a continuous
linear operator on R|Ωu|, while in our numerics we focus on the cases where K(h) represents a
2D convolution with some point spread function h, denoted by K(h)u := h ∗ u. Thus, our task
is to restore both unknowns, u(true) and h(true), from the observation z.

Whenever h is given, restoration of u (as non-blind deconvolution) can be carried out by
solving the following variational problem:

minimize
µ

2
‖∇u‖2 +

1

2
‖K(h)u− z‖2 + α‖∇u‖1 over u ∈ R|Ωu|, (2)

for some manually chosen parameters α > 0 and 0 ≤ µ � α. Here ∇ : R|Ωu| →
(
R|Ωu|

)2
is

the discrete gradient operator, and we shall denote the discrete Laplacian by ∆ := −∇>∇.

Besides, ‖ · ‖ is the Euclidean norm in R|Ωu| or
(
R|Ωu|

)2
, and ‖ · ‖1 is the `1-norm defined by

‖p‖1 :=
∑

j∈Ωu
|pj | for p ∈

(
R|Ωu|

)2
where each |pj | is the Euclidean norm of the vector pj ∈ R2.

We also denote by 〈·, ·〉 the standard inner product in R2, R|Ωu|, or
(
R|Ωu|

)2
.

The variational model (2) represents a discrete version of the Hilbert-space approach [27, 23]
to total variation (TV) image restoration:

minimize

∫
Ω

(
µ

2
|∇u|2 +

1

2
|K(h)u− z|2 + α|∇u|

)
dx over u ∈ H1

0 (Ω).

Throughout the paper, we shall assume for all feasible h ∈ Qh that

Ker∇∩KerK(h) = {0}, (3)

3



or equivalently that −µ∆ + K(h)>K(h) is positive definite. This assumption indicates that
K(h), for any h ∈ Qh, does not annihilate constant vectors, as is indeed the case for the
convolution with commonly encountered point spread functions. Provided that (3) holds true,
the problem (2) always admits a unique global minimizer due to the strict convexity of the
objective, for which the sufficient and necessary optimality condition is given by the following
set-valued equation:

0 ∈ F (u, h) +G(u), (4)

where F : R|Ωu| ×Qh → R|Ωu| and G : R|Ωu| ⇒ R|Ωu| are respectively defined as

F (u, h) = (−µ∆ +K(h)>K(h))u−K(h)>z, (5)

G(u) =

{
α∇>p : p ∈ (R|Ωu|)2,

{
pj =

(∇u)j
|(∇u)j | if j ∈ Ωu, (∇u)j 6= 0

|pj | ≤ 1 if j ∈ Ωu, (∇u)j = 0

}
. (6)

We remark that in the original work by Robinson [39] the term generalized equations was used
for set-valued equations.

In this work, we propose a bilevel optimization approach to blind deconvolution. In an
abstract setting, the corresponding model reads

minimize (min) J(u, h)
subject to (s.t.) 0 ∈ F (u, h) +G(u),

u ∈ R|Ωu|, h ∈ Qh.
(7)

Here the TV model (2) represents the lower-level problem equivalently formulated as the first-
order optimality condition (4), while in the upper-level problem we minimize a given objective
J : R|Ωu| × Qh → R known to be continuously differentiable and bounded from below. In this
context, the set-valued equation (4) may be referred to as the state equation for the bilevel
optimization (7), which implicitly induces a parameter-to-state mapping, i.e. h 7→ u.

3 Solution mapping for lower-level problem: existence, conti-
nuity, and differentiability

In this section, we investigate the solution mapping associated with the lower-level problem
in (7). To begin with, we establish the existence of such a solution mapping and its Lipchitz
property by following Robinson’s approach to set-valued equations [39]. In this context, the
notion of the strong regularity condition [39] plays an important role. Essentially, the strong
regularity condition for set-valued equations generalizes the invertibility condition in the classical
implicit function theorem (for singled-valued equations), and thus allows the application of
Robinsons generalized implicit function theorem; see [39, 15]. In Theorem 3.1, we justify the
strong regularity condition at any feasible point and its consequence turns out to be far-reaching.
In what follows, we write DuF (u, h) for the (partial) differential of F with respect to u.

Theorem 3.1 (Strong regularity and implicit function). The strong regularity condition [39]
holds at any feasible solution (u0, h0) of (4), i.e. the mapping w ∈ R|Ωu| 7→ {u ∈ R|Ωu| : w ∈
F (u0, h0) + DuF (u0, h0)(u − u0) + G(u)} is (globally) singled-valued and Lipschitz continuous.
Consequently, there exists a locally Lipschitz continuous solution mapping S : h 7→ u such that
u = S(h) satisfies the set-valued equation (4) for all h.
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Proof. Due to Theorem 2.1 in [39], it suffices to show that the mapping w 7→ {u ∈ R|Ωu| : w ∈
F (u0, h0) +DuF (u0, h0)(u− u0) +G(u)} is globally singled-valued and Lipschitz continuous.

First, note that F (u0, h0) + DuF (u0, h0)(u − u0) = (−µ∆ + K(h0)>K(h0))u − K(h0)>z.
Then the single-valuedness follows directly from the fact that the mapping

0 ∈ (−µ∆ +K(h0)>K(h0))u−K(h0)>z − w +G(u)

is the sufficient and necessary condition for the (strictly) convex minimization

min
u

µ

2
‖∇u‖2 +

1

2
‖K(h0)u− z‖2 − 〈w, u〉+ α‖∇u‖1,

which admits a unique solution.
To prove the Lipschitz property, consider pairs (u1, w1) and (u2, w2) that satisfy

0 ∈ (−µ∆ +K(h0)>K(h0))u1 −K(h0)>z − w1 +G(u1),

0 ∈ (−µ∆ +K(h0)>K(h0))u2 −K(h0)>z − w2 +G(u2).

Then there exist subdifferentials p1 ∈ ∂‖ · ‖1(∇u1) and p2 ∈ ∂‖ · ‖1(∇u2) such that

0 = (−µ∆ +K(h0)>K(h0))u1 −K(h0)>z − w1 + α∇>p1,

0 = (−µ∆ +K(h0)>K(h0))u2 −K(h0)>z − w2 + α∇>p2.

It follows from the property of subdifferentials in convex analysis, see e.g. Proposition 8.12 in
[41], that

‖∇u2‖1 ≥ ‖∇u1‖1 + 〈p1,∇u2 −∇u1〉,
‖∇u1‖1 ≥ ‖∇u2‖1 + 〈p2,∇u1 −∇u2〉,

which further implies that
〈p1 − p2,∇u1 −∇u2〉 ≥ 0.

Thus, we have

0 = 〈(−µ∆ +K(h0)>K(h0))(u1 − u2)− (w1 − w2) + α∇>(p1 − p2), u1 − u2〉
≥ 〈(−µ∆ +K(h0)>K(h0))(u1 − u2), u1 − u2〉 − 〈w1 − w2, u1 − u2〉,

and therefore the following Lipschitz property holds, i.e.

‖u1 − u2‖ ≤ 1

λmin(−µ∆ +K(h0)>K(h0))
‖w1 − w2‖,

where λmin(·) denotes the minimal eigenvalue of a matrix. This completes the proof.

In view of Theorem 3.1, we may conveniently consider the reduced problem

min Ĵ(h) := J(u(h), h)
s.t. h ∈ Qh,

(8)

which is equivalent to (7). It is immediately observed from (8) that there exists a global mini-
mizer for (8) and thus also for (7).
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Note that the state equation (4) can be expressed in terms of (u, h, p) as follows:{
F (u, h) + α∇>p = 0,

(u, α∇>p) ∈ gphG,
(9)

where p is included as an auxiliary variable lying in the set

Qp :=
{
p ∈ (R|Ωu|)2 : |pj | ≤ 1 ∀j ∈ Ωu

}
,

and gphG denotes the graph of the set-valued mapping G, i.e. gphG = {(u, v) : u ∈ R|Ωu|, v ∈
G(u)}. We call the triplet (u, h, p) a feasible point for (7) if (u, h, p) satisfies (9).

In the following, we briefly introduce notions from variational geometry such as tangent/normal
cones and graphical derivatives. The interest reader may find further details in Chapter 6 of the
monograph [41].

Definition 3.2 (Tangent and normal cones). The tangent (or contingent) cone of a subset Q
in R|Ωu| at u ∈ Q, denoted by TQ(u), is defined by

TQ(u) =
{
v ∈ R|Ωu| : tk → 0+, vk → v, u+ tkvk ∈ Q ∀k

}
. (10)

The (regular) normal cone of Q at u ∈ Q, denoted by NQ(u), is defined as the (negative) polar
cone of TQ(u), i.e.

NQ(u) =
{
w ∈ R|Ωu| : 〈w, v〉 ≤ 0 ∀v ∈ TQ(u)

}
.

In our context, the tangent and normal cones of gphG can be progressively calculated as:

TgphG(u, α∇>p) =

{
(δu, α∇>δp) :

|(∇u)j |δpj = (∇δu)j − 〈(∇δu)j , pj〉pj if (∇u)j 6= 0,

(∇δu)j = 0, δpj ∈ R2 if |pj | < 1,

(∇δu)j = 0, 〈δpj , pj〉 ≤ 0, or

(∇δu)j = cpj (c ≥ 0), 〈δpj , pj〉 = 0 if (∇u)j = 0, |pj | = 1.

}
, (11)

NgphG(u, α∇>p) =

{
(α∇>w,−v) :

wj = ξj − 〈ξj , pj〉pj , (∇v)j = |(∇u)j |ξj (ξj ∈ R2) if (∇u)j 6= 0,

wj ∈ R2, (∇v)j = 0 if |pj | < 1,

〈wj , pj〉 ≤ 0, (∇v)j = cpj (c ≤ 0) if (∇u)j = 0, |pj | = 1.

}
. (12)

The directional differentiability of the solution mapping S invokes the following notion.

Definition 3.3 (Graphical derivative). Let S : V ⇒ W be a set-valued mapping between two
normed vector spaces V and W . The graphical derivative of S at (v, w) ∈ gphS, denoted by
DS(v, w), is a set-valued mapping from V to W such that gphDS(v, w) = TgphS(v, w), i.e.

δw ∈ DS(v, w)(δv) if and only if (δv, δw) ∈ TgphS(v, w).

Notably, when S is single-valued and locally Lipchitz near (v, w) ∈ gphS and DS(v, w) is
also singled-valued such that δw = DS(v, w)(δv), one infers that S is directionally differentiable
at v along δv with the directional derivate S′(v; δv) = δw; see, e.g., [33]. The directional
differentiability of the lower-level solution mapping S is asserted in the following theorem.
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Theorem 3.4 (Directional differentiability). Let S : Qh → R|Ωu| be the solution mapping in
Theorem 3.1 and (u, h, p) be a feasible solution satisfying the state equation (9). Then S is
directionally differentiable at h along any δh ∈ TQh

(h). Moreover, the directional derivative
δu := S′(h; δh) is uniquely determined by the following sensitivity equation:{

DuF (u, h)δu+DhF (u, h)δh+ α∇>δp = 0,

(δu, α∇>δp) ∈ TgphG(u, α∇>p).
(13)

Proof. By [45, Theorem 4.1], the following estimate on the graphical derivative of S holds true:

DS(h, u)(δh) ⊂
{
δu ∈ R|Ωu| : 0 ∈ DuF (u, h)δu+DhF (u, h)δh+DG(u,−F (u, h))(δu)

}
. (14)

With the introduction of the auxiliary variables p and δp such that (u, h, p) satisfies (9) and
(δu, α∇>δp) ∈ TgphG(u, α∇>p), the relation (14) is equivalent to

DS(h, u)(δh) ⊂
{
δu ∈ R|Ωu| : (δu, δh, δp) satisfies the sensitivity equation (13)

}
. (15)

Let δh ∈ TQh
(h) be arbitrarily fixed in the following.

We first show that the set DS(h, u)(δh) is nonempty. Following the definition of a tangent
cone in (10), there exists ti → 0+, δhi → δh such that h+ tiδhi ∈ Qh for all i. Then we have

lim sup
i→∞

‖S(h+ tiδhi)− S(h)‖
ti

≤ κ‖δh‖,

where κ is the Lipschitz constant for S near h. As a result, possibly along a subsequence, we
have

lim
i→∞

S(h+ tiδhi)− S(h)

ti
= δu

for some δu ∈ R|Ωu|. Thus, we assert that (δh, δu) ∈ TgphS(h, u), or equivalently δu ∈
DS(h, u)(δh).

Next we show that δu must be unique among all solutions (δu, δp) for (13). Fixing h ∈ Qh,
let (δu1, δp1) and (δu2, δp2) be two solutions for (13). Then we have

DuF (u, h)(δu1 − δu2) + α∇>(δp1 − δp2) = 0,

which further implies

〈δu1 − δu2, DuF (u, h)(δu1 − δu2)〉+ α〈∇δu1 −∇δu2, δp1 − δp2〉 = 0.

We claim that 〈∇δu1 − ∇δu2, δp1 − δp2〉 ≥ 0. Indeed, we component-wisely distinguish the
following three cases.

(1) Consider j ∈ Ωu where |pj | < 1. Then it follows immediately from (11) that (∇δu1)j −
(∇δu2)j = 0.

(2) Consider j ∈ Ωu where (∇u)j 6= 0. Then from (11) we have

〈(∇δu1)j − (∇δu2)j , δp
1
j − δp2

j 〉

= 〈(∇δu1)j − (∇δu2)j ,
1

|(∇u)j |
(I − pjp>j )((∇δu1)j − (∇δu2)j)〉

≥ 1

|(∇u)j |
(1− |pj |2)|(∇δu1)j − (∇δu2)j |2 ≥ 0.
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(3) The last case where j ∈ Ωu with (∇u)j = 0 and |pj | = 1 further splits into three subcases.

(3a) Consider (∇δu1)j = 0, 〈δp1
j , pj〉 ≤ 0 and (∇δu2)j = 0, 〈δp2

j , pj〉 ≤ 0. Then as in case

(1) we have (∇δu1)j − (∇δu2)j = 0.

(3b) Consider (∇δu1)j = c1pj (c1 ≥ 0), 〈δp1
j , pj〉 = 0 as well as (∇δu2)j = c2pj (c2 ≥

0), 〈δp2
j , pj〉 = 0. Then 〈(∇δu1)j − (∇δu2)j , δp

1
j − δp2

j 〉 = (c1− c2)〈pj , δp1
j − δp2

j 〉 = 0.

(3c) Consider (∇δu1)j = 0, 〈δp1
j , pj〉 ≤ 0 and (∇δu2)j = cpj (c ≥ 0), 〈δp2

j , pj〉 = 0. Then

we have 〈(∇δu1)j − (∇δu2)j , δp
1
j − δp2

j 〉 = 〈−cpj , δp1
j − δp2

j 〉 ≥ 0. The analogous

conclusion holds true if we interchange the upper indices 1 and 2.

Altogether, our claim is proven. Moreover, since DuF (u, h) is strictly positive definite, we arrive
at δu1 = δu2.

Thus, the equality holds in (15) with both sides being singletons, which concludes the proof.

Thus, it has been asserted that the solution mapping S : h 7→ u(h) for the lower-level problem
is B(ouligand)-differentiable [40], i.e. locally Lipschitz continuous and directionally differentiable,
everywhere on Qh such that, with δu(h; δh) = S′(h; δh), we have

u(h+ δh) = u(h) + δu(h; δh) + o(‖δh‖) as δh→ 0.

Furthermore, according to the chain rule, the reduced objective Ĵ : h→ R is also B-differentiable
such that

Ĵ(h+ δh) = J(u(h), h) +DhJ(u(h), h)δh+DuJ(u(h), h)δu(h; δh) + o(‖δh‖) as δh→ 0. (16)

4 Stationarity conditions for bilevel optimization

Our bilevel optimization problem (7) is a special instance of a mathematical program with
equilibrium constraints (MPEC). The derivation of appropriate stationarity conditions is a
persistent challenge for MPECs; see [34, 37] for more backgrounds on MPECs. Very often,
the commonly used constraint qualifications like linear independence constraint qualification
(LICQ) or Mangasarian-Fromovitz constraint qualification (MFCQ) are violated for MPECs
[47], and therefore a theoretically sharp and computationally amenable characterization of the
variational geometry (such as tangent and normal cones) of the solution set induced by the
lower-level problem becomes a major challenge. In this vein, various stationarity concepts are
introduced in [43] when the lower-level problems are so-called complementarity problems. These
stationarity concepts have been further developed and extended during the past decade; see, e.g.,
[34, 37, 35, 43, 46, 21, 24]. This research field still remains active in its own right.

In our context of the bilevel optimization problem (7), it is straightforward to deduce from
the expansion formula (16) that

DhJ(u(h), h)δh+DuJ(u(h), h)δu(h; δh) ≥ 0 ∀δh ∈ TQh
(h) (17)

must hold at any local minimizer (h, u(h)) for (7). In fact, condition (17) is referred to as
B(ouligand)-stationarity; see [34]. However, such “primal” stationarity is difficult to realize
numerically, since the mapping δh 7→ δu(h; δh) need not be linear. For this reason, we are moti-
vated to search for stationarity conditions in “primal-dual” form, as they typically appear in the
classical KKT conditions for constrained optimization. Based on the strong regularity condition
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proven in Theorem 3.1 above and the Mordukhovich calculus (see the two-volume monograph
[35] for reference), we shall derive the M(ordukhovich)-stationarity for (7) in Theorem 4.2. There
the Mordukhovich (or limiting) normal cone of gphG will appear in the stationarity condition,
which is defined as follows.

Definition 4.1 (Mordukhovich normal cone). The Mordukhovich normal cone of a subset Q in

R|Ωu| at u ∈ Q, denoted by N
(M)
Q (u), is defined by

N
(M)
Q (u) = {w ∈ R|Ωu| : wk → w, uk → u, wk ∈ NQ(uk) ∀k}. (18)

In particular, one has N
(M)
Q (·) = NQ(·) whenever Q is convex. Following (11) and (12), the

Mordukhovich normal cone of gphG can be calculated as:

N
(M)
gphG(u, α∇>p) =

{
(α∇>w,−v) :

wj = ξj − 〈ξj , pj〉pj , (∇v)j = |(∇u)j |ξj (ξj ∈ R2) if (∇u)j 6= 0,

wj ∈ R2, (∇v)j = 0 if |pj | < 1,

wj ∈ R2, (∇v)j = 0, or

〈wj , pj〉 = 0, (∇v)j = cpj (c ∈ R), or

〈wj , pj〉 ≤ 0, (∇v)j = cpj (c ≤ 0) if (∇u)j = 0, |pj | = 1.

}
. (19)

We are now ready to present the M-stationarity condition for (7). Given that the strong
regularity condition is satisfied at any feasible solution (u, h, p) as justified in Theorem 3.1,
M-stationarity of a local minimizer for (7) follows as a direct consequence of Theorem 3.1 and
Proposition 3.2 in [38]. The proof for this result in [38] used the strong regularity condition as
a proper constraint qualification.

Theorem 4.2 (M-stationarity). Let (u, h, p) ∈ R|Ωu| ×Qh ×Qp be any feasible point satisfying
(9). If (u, h) is a local minimizer for the bilevel optimization problem (7), then the following

M-stationarity condition must hold true for some (w, v) ∈
(
R|Ωu|

)2 × R|Ωu|:
DuJ(u, h)> + α∇>w +DuF (u, h)>v = 0,
0 ∈ DhJ(u, h)> +DhF (u, h)>v +NQh

(h),

(α∇>w,−v) ∈ N (M)
gphG(u, α∇>p),

(20)

where N
(M)
gphG is the Mordukhovich normal cone of gphG given in (19).

Though theoretically sharp, the M-stationarity condition in the above theorem is in general
not guaranteed by numerical algorithms. Instead, we resort to a Clarke-type stationarity, termed
C-stationarity in the following corollary. The C-stationarity is slightly weaker than the M-

stationarity due to the relation N
(M)
gphG(u, α∇>p) ⊂ N (C)

gphG(u, α∇>p), but can be guaranteed by
a projected-gradient-type algorithm proposed in section 5 below.

Corollary 4.3 (C-stationarity). Let (u, h, p) ∈ R|Ωu| ×Qh ×Qp be any feasible point satisfying
(9). If (u, h) is a local minimizer for the bilevel optimization problem (7), the following C-

stationarity condition must hold true for some (w, v) ∈
(
R|Ωu|

)2 × R|Ωu|:
DuJ(u, h)> + α∇>w +DuF (u, h)>v = 0,
0 ∈ DhJ(u, h)> +DhF (u, h)>v +NQh

(h),

(α∇>w,−v) ∈ N (C)
gphG(u, α∇>p),

(21)
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where

N
(C)
gphG(u, α∇>p) =

{
(α∇>w,−v) :

wj = ξj − 〈ξj , pj〉pj , (∇v)j = |(∇u)j |ξj (ξj ∈ R2) if (∇u)j 6= 0,

wj ∈ R2, (∇v)j = 0 if |pj | < 1,

(∇v)j = cpj (c ∈ R), 〈wj , (∇v)j〉 ≥ 0 if (∇u)j = 0, |pj | = 1.

}
. (22)

We say that strict complementarity holds at a feasible point (u, h, p) whenever the biactive
set is empty, i.e.

{j ∈ Ωu : (∇u)j = 0, |pj | = 1} = ∅. (23)

Under strict complementarity, one immediately observes the equivalence of M- and C-stationarity

as N
(M)
gphG(u, α∇>p) = N

(C)
gphG(u, α∇>p). The scenarios of strict complementarity are studied in

detail in section 5.1, where it will become evident to the reader that all B-, M-, and C-stationarity
concepts are equivalent under the strict complementarity; see Corollary 5.3.

5 Hybrid projected gradient method

This section is devoted to the development and the convergence analysis of a hybrid projected
gradient algorithm to compute a C-stationary point for the bilevel optimization problem (7).
Most existing numerical solvers for MPECs adopt regularization/smoothing/relaxation on the
complementary structure in the lower-level problem, see e.g. [18, 44, 17], even though the com-
plementary structure induced by (9) is more involved than those in the previous works due to the
presence of nonlinearity. Motivated by the recent work in [24], here we devise an algorithm which
avoids redundant regularization, e.g., when the current iterate is a continuously differentiable
point for the reduced objective Ĵ .

5.1 Differentiability given strict complementarity

In this subsection, we assume that strict complementarity, i.e. condition (23), holds at a feasible
point (u, h, p). In this scenario, the sensitivity equation (13) is fully characterized by the following
linear system: [

DuF (u, h) α∇>
(−I + pp>)∇ diag(|∇u|e)

] [
δu
δp

]
=

[
−DhF (u, h)δh

0

]
. (24)

Here e is the identity vector in
(
R|Ω|

)2
, i.e. ej = (1, 1) for all j ∈ Ωu, and diag(|∇u|e) denotes

a diagonal matrix with its diagonal elements given by the vector |∇u|e. As a special case in
Theorem 3.4, for any given δh ∈ TQh

(h), the linear system (24) always admits a solution (δu, δp)
which is unique in δu. Thus, the differential mapping δu

δh(h) : δh 7→ δu defined by equation (24)

is a continuous linear mapping, and therefore the reduced objective Ĵ in (8) is continuously
differentiable at h. On the other hand, the adjoint of the differential δu

δh(h), denoted by δu
δh(h)>,

is required when computing DhĴ(h). This will be addressed through the adjoint equation in
Theorem 5.2 below.

Lemma 5.1. Assume that (u, h, p) is a feasible point satisfying (9) and strict complementarity
holds at (u, h, p). Let Πδu be a canonical projection such that Πδu(δu, δp) = (δu, 0) for all

(δu, δp) ∈ R|Ωu| ×
(
R|Ωu|

)2
. Then the following relations hold true:
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(i) Ker

[
DuF (u, h)> ∇>(−I + pp>)

α∇ diag(|∇u|e)

]
⊂ Ker Πδu.

(ii) Ran Πδu ⊂ Ran

[
DuF (u, h)> ∇>(−I + pp>)

α∇ diag(|∇u|e)

]
.

Proof. We first prove (i). For this purpose, let[
DuF (u, h)> ∇>(−I + pp>)

α∇ diag(|∇u|e)

] [
v
η

]
=

[
0
0

]
,

which implies

0 = 〈v,DuF (u, h)>v〉+ 〈∇v, (−I + pp>)η〉

= 〈v,DuF (u, h)>v〉+
1

α
〈|∇u|η, (I − pp>)η〉

= 〈v,DuF (u, h)>v〉+
1

α

∑
j∈Ωu

|(∇u)j |(|ηj |2 − |〈pj , ηj〉|2).

Owing to the strict positive definiteness of DuF (u, h) as well as the non-negativity of the second
term in the above equation, we verify that v = 0.

To justify (ii), in view of the fundamental theorem of linear algebra, it suffices to prove

Ker

[
DuF (u, h) α∇>

(−I + pp>)∇ diag(|∇u|e)

]
⊂ Ker Πδu.

For this purpose, consider[
DuF (u, h) α∇>

(−I + pp>)∇ diag(|∇u|e)

] [
δu
δp

]
=

[
0
0

]
. (25)

Then we have
〈δu,DuF (u, h)δu〉+ α〈δp, pp>∇δu〉+ α〈δp, |∇u|δp〉 = 0. (26)

Due to the strict complementarity, only two possible scenarios may occur. If (∇u)j 6= 0, then the
second row of equation (25) yields δpj = 1

|(∇u)j |(I−pjp
>
j )(∇δu)j , and thus 〈δpj , pjp>j (∇δu)j〉 ≥ 0.

If |pj | < 1, then (∇u)j = 0 and 0 = |(I − pjp>j )(∇δu)j | ≥ (1 − |pj |2)|(∇δu)j |, which implies

〈δpj , pjp>j (∇δu)j〉 = 0. Altogether, we have shown 〈δp, pp>∇δu〉 ≥ 0. Moreover, since the

third term in (26) is also non-negative and DuF (u, h) = −µ∆ +K(h)>K(h) is strictly positive
definite, we must have δu = 0. Thus, (ii) is proven.

Theorem 5.2. As in Lemma 5.1, assume that (u, h, p) is a feasible point satisfying (9) and strict
complementarity holds at (u, h, p). Then δu

δh(h)> is a linear mapping such that δu
δh(h)> : ζ 7→

DhF (u, h)>v with (ζ, v, η) ∈ R|Ωu| × R|Ωu| ×
(
R|Ωu|

)2
satisfying the following adjoint equation:[

DuF (u, h)> ∇>(−I + pp>)
α∇ diag(|∇u|e)

] [
v
η

]
=

[
−ζ
0

]
. (27)

Proof. It follows from Lemma 5.1 that ζ 7→ v is a continuous linear mapping and, therefore, so
is δu

δh(h)>. To show the adjoint relation between δu
δh(h) and δu

δh(h)>, consider an arbitrary pair

11



(δu, δh, δp) which satisfies (24), i.e. δu = δu
δh(h)δh, and (ζ, v, η) which satisfies (27). Then we

derive that〈
ζ,
δu

δh
(h)δh

〉
= −

〈[
δu
δp

]
,

[
DuF (u, h)> ∇>(−I + pp>)

α∇ diag(|∇u|e)

] [
v
η

]〉
= −

〈[
DuF (u, h) α∇>

(−I + pp>)∇ diag(|∇u|e)

] [
δu
δp

]
,

[
v
η

]〉
= 〈v,DhF (u, h)δh〉 = 〈DhF (u, h)>v, δh〉 =

〈
δu

δh
(h)>ζ, δh

〉
,

which concludes the proof.

As a consequence of Theorem 5.2, at a feasible point (u, h, p) where the strict complemen-
tarity holds, the gradient of the reduced objective can be calculated as

DhĴ(h)> = DhJ(u, h)> +
δu

δh
(h)>DuJ(u, h)> = DhJ(u, h)> +DhF (u, h)>v, (28)

where (v, η) satisfies the adjoint equation (27) with ζ = DuJ(u, h)>. For the sake of our
convergence analysis in section 5.3, we also introduce an auxiliary variable w defined by

w :=
1

α
(−I + p(p)>)η, (29)

which parallels the auxiliary variable wγ later in (39) for the smoothing case. To conclude
section 5.1, we point out that one can readily deduce from (28) the equivalence among the B-,
M-, and C-stationarity under strict complementarity.

Corollary 5.3 (Stationarity under strict complementarity). If strict complementarity holds at
a feasible point (u, h, p), then B-stationarity (17), M-stationarity (20), and C-stationarity (21)
are all equivalent.

5.2 Local smoothing at a non-differentiable point

The solution mapping h 7→ u for the lower-problem in (7) is only B-differentiable (rather than
continuously differentiable) at a feasible point (u, h, p) where the biactive set {j ∈ Ωu : (∇u)j =
0, |pj | = 1} is nonempty. In this scenario, continuous optimization techniques are not directly
applicable. Instead, we utilize a local smoothing approach by replacing the Lipschitz continuous

function ‖ · ‖1 in (2) by a C2-approximation ‖ · ‖1,γ :
(
R|Ωu|

)2 → R, which is defined for each
γ > 0 by ‖p‖1,γ :=

∑
j∈Ωu

ϕγ(pj) with

ϕγ(s) =

{
− 1

8γ3 |s|4 + 3
4γ |s|

2 if |s| < γ,

|s| − 3γ
8 if |s| ≥ γ.

(30)

The first-order and second-order derivatives of ϕγ can be calculated as

ϕ′γ(s) =

{
( 3

2γ −
1

2γ3 |s|2)s if |s| < γ,
1
|s|s if |s| ≥ γ.

(31)

and

ϕ′′(s) =

{
( 3

2γ −
1

2γ3 |s|2)IR2 − 1
γ3 ss

> if |s| < γ,
1
|s|IR2 − 1

|s|3 ss
> if |s| ≥ γ.

(32)
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We remark that the same smoothing function was used in [32] for parameter learning, but other
choices are possible as well.

The resulting smoothed bilevel optimization problem appears as

min J(uγ , h)

s.t. uγ = arg minu
µ

2
‖∇u‖2 +

1

2
‖K(h)u− z‖2 + α‖∇u‖1,γ ,

uγ ∈ R|Ωu|, h ∈ Qh.
(33)

The corresponding Euler-Lagrange equation for the lower-level problem in (33) is given by

r(uγ ;h, γ) := (−µ∆ +K(h)>K(h))uγ −K(h)>z + α∇>(ϕ′γ(∇uγ)) = 0, (34)

which induces a continuously differentiable mapping h 7→ uγ(h) according to the (classical)
implicit function theorem. Moreover, the sensitivity equation for (34) is given by(

DuF (uγ , h) + α∇>ϕ′′γ(∇uγ)∇
)
Dhu

γ(h) = −DhF (uγ , h). (35)

Analogous to (8), we may also reformulate the smoothed bilevel problem (33) in the reduced
form as

min J̆γ(h) := J(uγ(h), h)
s.t. h ∈ Qh.

(36)

The gradient of J̆γ can be calculated as

DhJ̆γ(h)> = DhJ(uγ , h)> +DhF (uγ , h)>vγ , (37)

where vγ satisfies the adjoint equation(
DuF (uγ , h)> + α∇>ϕ′′γ(∇uγ)∇

)
vγ = −DuJ(uγ , h)>. (38)

Thus, any stationary point (uγ , h) of the smoothed bilevel optimization problem (33) must
satisfy the following stationarity condition

F (uγ , h) + α∇>pγ = 0,
pγ = ϕ′γ(∇uγ),

DuF (uγ , h)>vγ + α∇>wγ = −DuJ(uγ , h)>,
wγ = ϕ′′γ(∇uγ)∇vγ ,
0 ∈ DhJ(uγ , h)> +DhF (uγ , h)>vγ +NQh

(h),

(39)

for some pγ ∈
(
R|Ωu|

)2
, wγ ∈

(
R|Ωu|

)2
, and vγ ∈ R|Ωu|.

We remark that finding a stationary point of the (smooth) constrained minimization problem
(36) can be accomplished by standard optimization algorithms; see [36]. As a subroutine in
Algorithm 5.5 below, we adopt a simple projected gradient method whose convergence analysis
can be found in [19]. The following theorem establishes the consistency on how a stationary
point of the smoothed bilevel problem (33) approaches a C-stationary point of the original bilevel
problem (7) as γ vanishes.

Theorem 5.4 (Consistency of smoothing). Let {γk} be any sequence of positive scalars such
that γk → 0+. For each γk, let (uk, hk) ∈ R|Ωu| × Qh be a stationary point of (33) such that

condition (39) holds for some (pk, wk, vk) ∈
(
R|Ωu|

)2× (R|Ωu|
)2×R|Ωu|. Then any accumulation

point of {(uk, hk, pk, wk, vk)} is a feasible C-stationary point for (7) satisfying (9) and (21).
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Proof. Let (u∗, h∗, p∗, w∗, v∗) be an arbitrary accumulation point of {(uk, hk, pk, wk, vk)}. Then
the first condition in (9) and the first condition in (21) immediately follow from continuity. The
second condition in (21) also follows due to the closedness of the normal cone mapping NQh

(·);
see, e.g., Proposition 6.6 in [41].

For those j ∈ Ωu where (∇u∗)j 6= 0, we have for all sufficiently large k that pkj =
(∇uk)j
|(∇uk)j |

,

and therefore p∗j =
(∇u∗)j
|(∇u∗)j | . On the other hand, p∗j ∈ Qp clearly holds if (∇u∗)j = 0. Altogether,

the feasibility of (u∗, h∗, p∗) is verified.

It remains to show (α∇>w∗,−v∗) ∈ N (C)
gphG(u∗, α∇>p∗), for which the proof is divided into

three cases as follows.

(1) If (∇u∗)j 6= 0, then we have for all sufficiently large k that |(∇uk)j | ≥ γk and therefore

wkj =
1

|(∇uk)j |
(∇vk)j −

1

|(∇uk)j |
〈(∇vk)j , pkj 〉pkj .

Passing k →∞, the first condition in (22) is fulfilled with ξj = 1
|(∇u∗)j |(∇v

∗)j .

(2) If |p∗j | < 1, then we have for all sufficiently large k that |pkj | < 1 and, therefore, |(∇uk)j | <
γk. This implies (∇u∗)j = 0. Let qj ∈ R2 be an arbitrary accumulation point of the
uniformly bounded sequence {(∇uk)j/γk}. We obviously have |qj | ≤ 1. Then it follows
from pk = ϕ′

γk
(∇uk) that p∗j = (3/2 − |qj |2/2)qj . Since |p∗j | < 1, we must have |qj | < 1.

Since wk = ϕ′′
γk

(∇uk)∇vk, we have

γkwkj =

(
3

2
− |(∇u

k)j |2

2(γk)2

)
(∇vk)j −

〈
(∇vk)j ,

(∇uk)j
γk

〉
(∇uk)j
γk

.

Passing k →∞, we obtain

3− |qj |2

2
(∇v∗)j − 〈qj , (∇v∗)j〉qj = 0,

which indicates that (∇v∗)j = cqj for some c ∈ R. Thus it follows that 3
2(1−|qj |2)(∇v∗)j =

0, and thus (∇v∗)j = 0 as requested by the second condition in (22).

(3) Now we investigate the third condition in (22) where (∇u∗)j = 0 and |p∗j | = 1 under the
following two circumstances.

(3a) There exists an infinite index subset {k′} ⊂ {k} such that (∇uk′)j ≥ γk
′

for all k′.
Then it holds for all k′ that|p

k′
j | = 1,

wk
′
j =

1

|(∇uk′)j |
(∇vk′)j −

1

|(∇uk′)j |
〈(∇vk′)j , pk

′
j 〉pk

′
j ,

(40)

and therefore {
〈wk′j , pk

′
j 〉 = 0,

|(∇uk′)j |wk
′
j = (∇vk′)j − 〈(∇vk

′
)j , p

k′
j 〉pk

′
j .

Passing k′ → ∞, we have 〈w∗j , p∗j 〉 = 0 and (∇v∗)j − 〈(∇v∗)j , p∗j 〉p∗j = 0. Thus the
third condition in (22) is fulfilled.
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(3b) There exists an infinite index subset {k′} ⊂ {k} such that (∇uk′)j < γk
′

for all k′.
Then analogous to case (2), we have for all k′ that

pk
′
j =

(
3

2γk′
−
|∇uk′j |2

2(γk′)3

)
∇uk′j ,

γk
′
wk
′
j =

(
3

2
− |(∇u

k′)j |2

2(γk′)2

)
(∇vk′)j −

〈
(∇vk′)j ,

(∇uk′)j
γk′

〉
(∇uk′)j
γk′

.

(41)

Let qj ∈ R2 be an arbitrary accumulation point of the uniformly bounded sequence
{(∇uk′)j/γk

′}. Then we have p∗j = (3
2 −

1
2 |qj |

2)qj . It follows from |p∗j | = 1 that
|qj | = 1 must hold. Since this holds true for an arbitrary accumulation point qj , we
infer that limk′→∞(∇uk′)j/γk = p∗j and further from the second equation in (41) that
(∇v∗)j − 〈(∇v∗)j , p∗j 〉p∗j = 0, i.e. (∇v∗)j = cp∗j for some c ∈ R. On the other hand,
equation (41) also yields that

〈wk′j , (∇vk
′
)j〉 =

(
3

2γk′
− |(∇u

k′)j |2

2(γk′)3

)
|(∇vk′)j |2 −

1

γk′

∣∣∣∣∣
〈

(∇vk′)j ,
(∇uk′)j
γk′

〉∣∣∣∣∣
2

≥ 3

2γk′

1−

∣∣∣∣∣(∇uk
′
)j

γk′

∣∣∣∣∣
2
 |(∇vk′)j |2 ≥ 0.

Passing k′ →∞, the third condition in (22) is again fulfilled.

5.3 Hybrid projected gradient method

Now we present a hybrid projected gradient method for finding a C-stationary point of the bilevel
optimization problem (7). In a nutshell, at a feasible point (uk, hk, pk) where the strict com-
plementarity holds, we calculate DhĴ(hk)> according to formula (28) and perform a projected
gradient step by setting

ĥk(τk) := PQh
[hk − τkDhĴ(hk)>] (42)

for some proper step size τk > 0. If the strict complementarity is violated at (uk, hk, pk), we
rather perform a projected gradient step on the smoothed bilevel problem (33) with γ = γk > 0,
i.e.

h̆k(τk) := PQh
[hk − τkDhJ̆γk(hk)>]. (43)

In addition, we are cautioned against a critical case where the step size τk in (42) tends to zero
along the iterations. This case may possibly occur, provided that the {(uk, hk, pk)} converges to
some {(u∗, h∗, p∗)} where the strict complementarity breaks, even if the strict complementarity
holds for each feasible point (uk, hk, pk). In such a critical case, we also resort to the smoothed
bilevel problem as in (43). The overall hybrid algorithm is detailed below.

Algorithm 5.5 (Hybrid projected gradient method).

Require: inputs α > 0, 0 ≤ µ � α, 0 < τ � τ̄ , 0 < σJ < 1, 0 < ρτ < 1, 0 < ργ < 1, σh > 0,
tolh > 0, tolγ > 0.

1: Initialize γ1 > 0, a feasible point (u1, h1, p1) ∈ R|Ωu|×Qh×
(
R|Ωu|

)2
satisfying (9), ũ1 := u1,

p̃1 := p1, I := {1}, and k := 1.
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2: loop
3: if the strict complementarity condition (23) is violated at (ũk, hk, p̃k) (i.e. the biactive set

{j ∈ Ωu : (∇ũk)j = 0, |p̃kj | = 1} is nonempty) or J(ũk, hk) > J(umax(I), hmax(I)) then
4: Go to step 16.
5: end if
6: Set uk := ũk, pk := p̃k. Compute DhĴ(hk)> using formula (28). Define ĥk(·) as in (42).
7: if ‖ĥk(τ̄)− hk‖ ≤ tolh then
8: Return (uk, hk) as a C-stationary point of (7) and terminate the algorithm.
9: end if

10: Perform the backtracking line search on ĥk(·), i.e. find τk as the largest element in {τ̄(ρτ )l :
l = 0, 1, 2, ...} such that ĥk(τk) fulfills the following Armijo-type condition:

Ĵ(ĥk(τk)) ≤ Ĵ(hk) + σJDhĴ(hk)(ĥk(τk)− hk). (44)

11: if τk < τ then
12: Go to step 16.
13: end if
14: Set hk+1 := ĥk(τk) and I := I ∪ {k}. Generate ũk+1 ∈ R|Ωu| and p̃k+1 ∈

(
R|Ωu|

)2
such

that (ũk+1, hk+1, p̃k+1) satisfies the state equation (9).
15: Set γk+1 := γk. Go to step 26.
16: Solve equation (34) with (γ, h) = (γk, hk) for uγ =: uk, and equation (38) with (γ, uγ , h) =

(γk, uk, hk) for vγ =: vk. Then calculate DhJ̆γk(hk)> using formula (37). Define h̆k(·) as
in (43).

17: if ‖h̆k(τ̄)− hk‖ ≤ σhγk then
18: if γk = tolγ then
19: Return (uk, hk) as a C-stationary point of (7) and terminate the algorithm.
20: else
21: Set γk+1 := max(ργγ

k, tolγ) and (ũk+1, hk+1, p̃k+1) := (ũk, hk, p̃k). Go to step 26.
22: end if
23: end if
24: Perform the backtracking line search on h̆k(·), i.e. find τk as the largest element in {τ̄(ρτ )l :

l = 0, 1, 2, ...} such that h̆k(τk) fulfills the following Armijo-type condition:

J̆γk(h̆k(τk)) ≤ J̆γk(hk) + σJDhJ̆γk(hk)(h̆k(τk)− hk). (45)

25: Set hk+1 := h̆k(τk). Generate ũk+1 ∈ R|Ωu| and p̃k+1 ∈
(
R|Ωu|

)2
such that (ũk+1, hk+1, p̃k+1)

satisfies the state equation (9). Set γk+1 := γk.
26: Set k := k + 1.
27: end loop

In the following, we prove convergence of Algorithm 5.5 towards C-stationarity. To begin
with, we collect a technical result from Lemma 3 in [19], which will be used several times in our
convergence analysis.

Lemma 5.6. The mappings τk 7→ ‖ĥk(τk) − hk‖/τk and τk 7→ ‖h̆k(τk) − hk‖/τk are both
monotonically decreasing on [0,∞).

Based on Lemma 5.6, it is shown in the following lemma that the backtracking line searches
in Algorithm 5.5 enjoy good properties.
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Lemma 5.7. The backtracking line searches in steps 10 and 24 of Algorithm 5.5 always termi-
nate with success after finitely many trails.

Proof. As the line search in step 24 is performed on the continuously differentiable objective
J̆γk , the proof of Proposition 2 in [19] can be directly applied.

However, this proof needs to be adapted for step 10 since it is performed on the B-differentiable
objective Ĵ . In this case, we proceed with a proof by contradiction. Assume that (44) is vio-
lated for all τk = τkl := τ̄(ρτ )l with l = 0, 1, 2, ... Then hk cannot be stationary, since otherwise

ĥk(τk) = hk and (44) holds true for any τk > 0.
Since Ĵ is B-differentiable, we have

Ĵ(ĥk(τkl ))− Ĵ(hk) = DhĴ(hk)(ĥk(τkl )− hk) + o(‖ĥk(τkl )− hk‖), as l→∞. (46)

This, together with the violation of (44), gives

(1− σJ)DhĴ(hk)(ĥk(τkl )− hk) + o(‖ĥk(τkl )− hk‖) > 0, as l→∞. (47)

Moreover, due to the relation (42), we also have

DhĴ(hk)(hk − ĥk(τkl )) ≥
‖ĥk(τkl )− hk‖2

τkl
, (48)

which further implies

o(‖ĥk(τkl )−hk‖) > (1−σJ)DhĴ(hk)(hk− ĥk(τkl )) ≥ (1−σJ)
‖ĥk(τkl )− hk‖2

τkl
, as l→∞. (49)

Thus, it follows from Lemma 5.6 that

‖ĥk(τ̄)− hk‖
τ̄

≤
‖ĥk(τkl )− hk‖

τkl
→ 0, as l→∞. (50)

This contradicts that hk is not stationary.

For the sake of our convergence analysis, we consider tolh = tolγ = 0 in the remainder of
this section.

Lemma 5.8. Let the sequence {(uk, hk, pk) : k ∈ I} be generated by Algorithm 5.5. If |I| is
infinite, then we have

lim inf
k→∞, k∈I

∥∥∥hk − PQh
[hk − τ̄DhĴ(hk)>]

∥∥∥ = 0. (51)

Proof. We restrict ourselves to k ∈ I throughout this proof. It follows from Lemma 5.6 and the
satisfaction of the Armijo-type condition (44) that

Ĵ(hk)− Ĵ(hk+1) = Ĵ(hk)− Ĵ(ĥk(τk)) ≥ σJDhĴ(hk)(hk − ĥk(τk))

≥ σJ
‖hk − ĥk(τk)‖2

τk
≥ σJτk

‖hk − ĥk(τ̄)‖2

τ̄2
≥ σJτ

τ̄2
‖hk − ĥk(τ̄)‖2,

for all sufficiently large k. Moreover, since the sequence {Ĵ(hk) : k ∈ I} is monotonically
decreasing and Ĵ is bounded from below, the conclusion follows.
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Now we are in a position to present the main result of our convergence analysis.

Theorem 5.9. Let the sequence {(uk, hk)} be generated by Algorithm 5.5. In addition, assume
that the auxiliary variables {wk}, recall (29) and (39) for the respective cases k ∈ I and k /∈ I and
also see equations (53) and (55) below, are uniformly bounded. Then there exists an accumulation
point {(u∗, h∗)} which is feasible and C-stationary for (7), i.e. {(u∗, h∗)} satisfies (9) and (20)

for some p∗ ∈
(
R|Ωu|

)2
, w∗ ∈

(
R|Ωu|

)2
, v∗ ∈ R|Ωu|.

Proof. The proof is divided into two cases.
Case I: Let us consider the case where |I| is infinite. In view of Lemma 5.8, let {(uk, hk, pk)}

be a subsequence (the index k is kept throughout this proof for brevity) such that k ∈ I for all
k and

lim
k→∞

∥∥∥hk − PQh
[hk − τ̄DhĴ(hk)>]

∥∥∥ = 0. (52)

Let (u∗, h∗, p∗) be an accumulation point of {(uk, hk, pk)}. Note that (u∗, h∗, p∗) is feasible,
i.e. satisfies the state equation (9), owing to the continuity of F and the closedness of G. If
the strict complementarity holds at (u∗, h∗, p∗), then Ĵ is continuously differentiable at h∗, and
therefore we have h∗ = PQh

[h∗ − τ̄DhĴ(h∗)>], or equivalently (u∗, h∗, p∗) is (C-)stationary.

Now assume that (u∗, h∗, p∗) lacks strict complementarity. For each k, let gk := DhĴ(hk)>.
Then from (28) we have

gk = DhJ(uk, hk)> +DhF (uk, hk)>vk,
DuF (uk, hk)>vk + α∇>wk +DuJ(uk, hk)> = 0,
wk = 1

α(−I + pk(pk)>)ηk,
α∇vk + |∇uk|ηk = 0,

(53)

with vk → v∗, gk → g∗, wk → w∗ as k →∞, possibly along yet another subsequence.
We claim that (u∗, h∗, p∗, w∗, v∗) satisfies the C-stationarity (21). From (52) and (53), one

readily verifies the first and the second conditions in (21). In view of the satisfaction of strict
complementarity at each (uk, hk, pk), the proof of the third condition that (α∇>w∗,−v∗) ∈
N

(C)
gphG(u∗, α∇>p∗) separates into two cases for each j ∈ Ωu.

(I-1) There exists a subsequence {(uk, hk, pk)} such that (∇uk)j 6= 0 and |pkj | = 1 for all k.
Then it follows from (53) that

|(∇uk)j |wkj = (∇vk)j − 〈(∇vk)j , pkj 〉pkj .

Analogous to (40), this eventually yields 〈w∗j , (∇v∗)j〉 ≥ 0 and (∇v∗)j−〈(∇v∗)j , p∗j 〉p∗j = 0.

(I-2) There exists a subsequence {(uk, hk, pk)} such that (∇uk)j = 0 and |pkj | < 1 for all k.
Then it follows from (53) that (∇v∗)j = 0.

In both cases above, (α∇>w∗,−v∗) ∈ N (C)
gphG(u∗, α∇>p∗) holds true.

Case II: Now we turn to the case where |I| is finite. We claim that limk→∞ γ
k = 0 in

this scenario. Assume for the sake of contradiction that for all sufficiently large k we have
γk = γ̄ for some γ̄ > 0 and ‖h̆k(τ̄) − hk‖ > σhγ̄. Then Algorithm 5.5, for all sufficiently
large k, reduces to a projected gradient method on the constrained minimization (36) with a
continuously differentiable objective. This leads to a contradiction as limk→∞ ‖h̆k(τ̄)− hk‖ = 0
due to Proposition 2 in [19]. Thus, we must have limk→∞ γ

k = 0.
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As a consequence, steps 17–23 in Algorithm 5.5 yields the existence of a subsequence
{(uk, hk)} such that k /∈ I for all k and

‖h̆k(τ̄)− hk‖ =
∥∥∥hk − PQh

[hk − τ̄DhJ̆γk(hk)>]
∥∥∥ ≤ σhγk → 0, (54)

as k →∞. Let gkγ := DhJ̆γk(hk)>, and we have

F (uk, pk) + α∇>pkγ = 0,

pkγ := ϕ′
γk

(∇uk),
gkγ = DhJ(uk, hk)> +DhF (uk, hk)>vk,

DuF (uk, hk)>vk + α∇>wk = −DuJ(uk, hk)>,
wk = ϕ′′

γk
(∇uk)∇vk,

(55)

for all k such that hk → h∗, uk → u∗, pkγ → p∗, vk → v∗, wk → w∗, gkγ → g∗γ as k →∞, possibly
along another subsequence. Then from (54) and (55), the first and the second conditions in the
C-stationarity condition (21) immediately follow. The satisfaction of the third condition in (21)
can be verified using an argument analogous to that in the proof of cases (1)–(3) in Theorem
5.4. Thus, we conclude that (u∗, h∗) is C-stationary.

6 Numerical experiments

In this section, we report our numerical experiments on the bilevel optimization framework for
blind deconvolution problems. In order to achieve practical efficiency, in section 6.1.2 we will
utilize a simplified version of Algorithm 5.5. In particular, the smoothed lower-level problem
can be efficiently handled by a semismooth Newton solver, which is described in section 6.1.1.
Numerical results on PSF calibration and multiframe blind deconvolution are given in sections
6.2 and 6.3, respectively.

6.1 Implementation issues

Here our concern is to implement a practically efficient version of the hybrid projected gradient
method (i.e. Algorithm 5.5) developed in section 5.3. At each iteration of that algorithm, step
14 requires the numerical solution of the set-valued equation (9) for obtaining a feasible point.
In this vein, first-order methods are typically used, see, e.g., [10] and its variants, but they only
converge sublinearly. We note that the semismooth Newton method without any regularization
is not directly applicable for solving (9) due to non-uniqueness in the (dual) variable p. As
a remedy, a null-space regularization on the predual problem is introduced in [22]. A more
computationally amenable Tikhonov regularization (on the dual problem), which is equivalent
to Huber-type smoothing on the primal objective, is proposed in [23]. Following [23], the Euler-
Lagrange equation (34) in the smoothing step (i.e. steps 16–26) of Algorithm 5.5 can be solved
by a superlinearly convergent semismooth Newton method. To take advantage of this fact, we
will simplify Algorithm 5.5 by implementing the smoothing step only in Algorithm 6.2. In the
meantime, we first describe a semismooth Newton solver for the smoothed lower-level problem.

6.1.1 Semismooth Newton solver for the smoothed lower-level problem

We only present essentials of the semismooth Newton method as a subroutine in solving the
bilevel problem and refer the interested reader to [23, 25, 26] for further details. For the smoothed
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lower-level problem in (33), we fix γ > 0 and h ∈ Qh. With the introduction a dual variable

pγ ∈
(
R|Ωu|

)2
, the Euler-Lagrange equation (34) associated with the smoothing parameter γ can

be reformulated as follows:(−µ∆ +K(h)>K(h))uγ + α∇>pγ = K(h)>z,

max(|∇uγ |, γ)pγ =
(3

2
− |∇uγ |2

2 max(|∇uγ |, γ)2

)
∇uγ .

To ease our presentation, we temporarily omit the superscript γ in uγ and pγ , and denote the
iterates in the lower-level solver (i.e. inner loop) by (ul, pl). A generalized Newton step on the
above Euler-Lagrange equation refers to the solution of the following linear system:

[
−µ∆ +K(h)>K(h) α∇>

−C l∇ diag(mle)

] [
δul

δpl

]
=

 −(−µ∆ +K(h)>K(h))ul − α∇>pl +K(h)>z

−mlpl +
(3

2
− |∇u

l|2

2(ml)2

)
∇ul

 ,
where

ml := max(|∇ul|, γ),

(χl)j :=

{
1 if |(∇ul)j | ≥ γ
0 if |(∇ul)j | < γ

∀j ∈ Ωu,

C l := χl
(
I − (ml)−1pl(∇ul)>

)
+ (1− χl)

(
3

2
I − diag

(
|∇ul|2e

2γ2

)
− (∇ul)(∇ul)>

γ2

)
.

After eliminating δpl in the above Newton system, we arrive at(
−µ∆ +K(h)>K(h) + α∇>(ml)−1C l∇

)
δul = −r(ul;h, γ),

recall (34) for the definition of the residual term r(·). In order to guarantee that δul be a descent
direction for the lower-level minimization problem, we further introduce a modification on C l,
i.e. we replace C l by

Ĉ l :=χl
(
I − 1

2
(ml)−1

(
p̂l(∇ul)> + (∇ul)(p̂l)>

))
+ (1− χl)

(
3

2
I − diag

(
|∇ul|2e

2γ2

)
− (∇ul)(∇ul)>

γ2

)
,

where p̂l is the projection of pl onto Qp, i.e. p̂l := pl

max(|pl|,1)
. Thus, the final modified Newton

system appears as(
−µ∆ +K(h)>K(h) + α∇>(ml)−1Ĉ l∇

)
δul = −r(ul;h, γ). (56)

Once δul is obtained, δpl can be computed by

δpl := −pl + (ml)−1
(3

2
− |∇u

l|2

2(ml)2

)
∇ul + (ml)−1Ĉ l∇δul. (57)

The overall semismooth Newton solver for the smoothed lower-level problem is summarized
in Algorithm 6.1 below. The superlinear convergence of this solver can be justified following the
approach in [23, 25].

20



Algorithm 6.1 (Semismooth Newton solver).

Require: (ordered) inputs α > 0, 0 ≤ µ � α, h ∈ Qh, γ > 0, u1 ∈ R|Ωu|, tolr > 0. Return:
u∗ ∈ R|Ωu|.

1: Initialize p1 :=
∇u1

max(|∇u1|, γ)
, l := 1.

2: loop
3: Generate the Newton system in (56).

4: if
‖r(ul;h, γ)‖

max(‖r(u1;h, γ)‖, 1)
≤ tolr then

5: return u∗ := ul and terminate the algorithm.
6: end if
7: Solve (56) for δul, and compute δpl using formula (57).
8: Determine the step size al > 0 via backtracking Armijo line search along δul.
9: Generate the next iterates: ul+1 := ul + alδul and pl+1 := pl + alδpl.

10: Set l := l + 1.
11: end loop

6.1.2 Simplified projected gradient method

Based on Algorithm 6.1, we present the simplified projected gradient method for the bilevel
problem (7) in the following. We remark that while the proximity measure κk in step 3 is chosen
in our algorithm as a signal for reducing γk, other choices may be considered as well.

Algorithm 6.2 (Simplified projected gradient method).

Require: inputs α > 0, 0 ≤ µ� α, tolr > 0, 0 < σJ < 1, σh > 0, τ̄ > 0, tolγ > 0, 0 < ργ < 1,
0 < ρτ < 1.

1: Initialize h1 ∈ Qh, γ1 > 0, u0 ∈ R|Ωu|, k := 1.
2: loop
3: Apply Algorithm 6.1 with ordered inputs α, µ, hk, γk, uk−1, tolr, which returns uk as the

solution of (34).
4: Solve the adjoint equation(

DuF (uk, hk)> + α∇>ϕ′′γk(∇uk)∇
)
vk = −DuJ(uk, hk)>

for vk. Then compute the gradient DhJ̆γk(hk)> := DhJ(uk, hk)> + DhF (uk, hk)>vk and
evaluate the proximity measure

κk :=
∥∥∥PQh

[hk − τ̄DhJ̆γk(hk)>]− hk
∥∥∥ .

5: if κk ≤ σhγk then
6: if γk = tolγ then
7: return (uk, hk) as a C-stationary point of (7) and terminate the algorithm.
8: else
9: Set γk+1 := max(ργγ

k, tolγ). Go to step 13.
10: end if
11: end if
12: Set hk+1 := PQh

[hk − τkDhJ̆γk(hk)>], where τk the largest element in {τ̄(ρτ )l : l =
0, 1, 2, ...} which fulfills the following Armijo-type condition:

J̆γk
(
PQh

[hk − τkDhJ̆γk(hk)>]
)
≤ J̆γk(hk) + σJDhJ̆γk(hk)(PQh

[hk − τkDhJ̆γk(hk)>]− hk).
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13: Set k := k + 1.
14: end loop

We further specify the parameter choices for Algorithm 6.2 in our numerical experiments.
For an image of nx × ny pixels, we set the mesh size ω :=

√
1/(nxny) and discretize the spatial

gradient by forward differences, i.e. for each j = (jx, jy) ∈ Ωu

(∇u)(jx,jy) :=

(
u(jx+1,jy) − u(jx,jy))

ω
,
u(jx,jy+1) − u(jx,jy)

ω

)
,

with homogenous Dirichlet boundary condition. The following parameters are chosen throughout
the experiments: α = 10−5, µ = 10−4α, σJ = σh = 0.01, ργ = ρτ = 1/2, u0 = z, γ1 = 0.05/ω,
tolγ = 0.001/ω, tolr = 10−7. The conjugate gradient method is utilized for solving the linear
systems in step 3 of Algorithm 6.1 with residual tolerance 0.01 and in step 3 of Algorithm 6.2
with residual tolerance 10−9, respectively. All experiments are performed under Matlab R2011b.

6.2 Calibration of point spread functions

We first test our method on a point spread function (PSF) calibration problem. Let h be a point
spread function on a 2D index domain Ωh, and Qh = {h ∈ R|Ωh| :

∑
j∈Ωh

hj = 1, hj ≥ 0 ∀j ∈
Ωh}. The blurring operator K is defined through a 2D convolution, i.e. K(h)u = h ∗ u, with
zero boundary condition. Given the true PSF h(true) ∈ Qh and the source image u(true) ∈ R|Ωu|,
the observed image z is generated as h(true) ∗ u(true) + noise, where the noise is white Gaussian
and of zero mean and standard deviation 0.02. In addition to the observation, we are supplied
with a reference image u(ref), which is generated as the (non-blurred) source image corrupted
by white Gaussian noise of zero mean and standard deviation 0.02. Our aim is to calibrate the
underlying PSF using a blurred observation image and a noisy reference image.

In this problem, we utilize a tracking-type objective

J(u, h) =
1

2
‖u− u(ref)‖2 +

β

2
‖∇h‖2

in the upper level, where a Tikhonov regularization on h is also included to stabilize the solution
and the regularization parameter β = 0.05 is chosen. The relevant partial derivatives of J and
F required for the implementation of Algorithm 6.2 are listed below

DuJ(u, h)> = u− u(ref),

DhJ(u, h)> = −β∆h,

DuF (u, h)> = (−µ∆ +K(h)>K(h)), (58)

〈DhF (u, h)>v, δh〉 = 〈v,DhF (u, h)δh〉
= 〈v, δh(−·) ∗ (h ∗ u− z)〉+ 〈v, h(−·) ∗ (δh ∗ u)〉. (59)

Here h(−·) is a PSF in Qh defined by (h(−·))j = h−j for all j ∈ Ωh, and similar for δh(−·).
The size of Ωh is always chosen to be slightly larger than the support size of the true PSF. Note
that for DhF (u, h)> only the matrix-vector product DhF (u, h)>v is needed in the numerical
computation, which is given by (59) in a dual form. Concerning the initializations, we set the
initial line search step size τ̄ = 2 × 10−5 and the initial PSF h1 to be the discrete Dirac delta
function.

Our experiments are performed on three different pairs of images and PSFs, namely Gaussian
blur on the “Satellite” image, motion blur on the “Cameraman” image, and out-of-focus blur
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on the “Grain” image. In Figure 1, the ground-truth images are displayed in (a)–(c), the
underlying PSFs in (d)–(f), and the corresponding blurred observations in (g)–(i). The results
of the bilevel-optimization calibration are shown in the last two rows: (j)–(l) for the estimated
PSFs and (m)–(o) for the deblurred images from the lower-level problem. It is observed that
the calibrations are reasonably good in all three cases in the sense that the calibrated PSFs
resemble their true counterparts and yield the deblurred images of high visual quality.

In Figure 2, we also illustrate the typical numerical behavior of Algorithm 6.2 in the “satel-
lite” example. Subplot (a) records the history of the smoothing parameter γk. The objective
values Jγk(uk, hk) are shown in (b), which exhibit regular decrease along iterations. The prox-

imity measure κk in step 4 of Algorithm 6.2, shown in subplot (c), also behaves well.

6.3 Multiframe blind deconvolution

Now we apply our algorithmic framework to multiframe blind deconvolution [5]. In this problem,
the observation ~z consists of f frames, i.e. ~z = (~z1, ..., ~zf ), where each frame is generated from
the convolution between the source image u(true) and a frame-varying PSF ~hi over Ωh plus some
additive Gaussian noise ~ηi, i.e.

~zi = ~hi ∗ u(true) + ~ηi, ∀i ∈ {1, 2, ..., f}.

Furthermore, each PSF ~hi follows a (normalized) multivariate Gaussian distribution, i.e. ~hi =
h(~σix, ~σ

i
y,
~θi) with unknown frame-dependent parameters ~σix, ~σ

i
y ∈ Qσ, ~θi ∈ Qθ. The parameter-

ization of the Gaussian PSF h : Qσ ×Qσ ×Qθ → Qh is defined by

h(σx, σy, θ) :=
h̃(σx, σy, θ)∑

(jx,jy)∈Ωh

(
h̃(σx, σy, θ)

)
(jx,jy)

,

where for all (jx, jy) ∈ Ωh(
h̃(σx, σy, θ)

)
(jx,jy)

:=
1

2πσxσy
exp

(
−(jx cos θ − jy sin θ)2

2(σx)2
− (jx sin θ + jy cos θ)2

2(σy)2

)
.

Our task is to simultaneously recover the image u(true) and the PSF parameters ~σx, ~σy ∈ (Qσ)f

and ~θ ∈ (Qθ)
f .

For such a multiframe blind deconvolution problem, we formulate the bilevel optimization
model as follows:

min J(~u) =
1

2

∑f
k=1

∥∥∥~uk − 1
f

∑f
l=1 ~u

l
∥∥∥2

s.t. ~ui = arg minu∈R|Ωu|
1

2

∥∥∥h(~σix, ~σ
i
y,
~θi) ∗ u− ~zi

∥∥∥2
+ α‖∇u‖1, ∀i ∈ {1, 2, ...f},

~σx, ~σy ∈ (Qσ)f , ~θ ∈ (Qθ)
f .

The upper-level objective represents a (rescaled) sample variance of {~u1, ..., ~uf}. Upon Huber-
type smoothing on each lower-level problem respectively, the derivative of the reduced objective
Ĵ(~σx, ~σy, ~θ) := J(~u1(~σ1

x, ~σ
1
y ,
~θ1), ..., ~uf (~σfx , ~σ

f
y , ~θf )) can be calculated for all i ∈ {1, ..., f} as

D
(~σi

x,~σ
i
y ,
~θi)
Ĵ(~σx, ~σy, ~θ)

> = D(σx,σy ,θ)h(~σix, ~σ
i
y,
~θi)>DhF (~ui,~hi)>~vi,
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(a) Satellite. (b) Cameraman. (c) Grain.

(d) 15 × 15 Gaussian PSF. (e) 9 × 11 motion PSF. (f) 13 × 13 out-of-focus PSF.

(g) Observed satellite. (h) Observed cameraman. (i) Observed grain.

(j) Estimated Gaussian PSF. (k) Estimated motion PSF. (l) Estimated out-of-focus PSF.

(m) Deblurred satellite. (n) Deblurred cameraman. (o) Deblurred grain.

Figure 1: Calibration of point spread functions.
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Figure 2: Numerical behavior.

where each ~vi ∈ R|Ωu| satisfies the adjoint equation

(
DuF (~ui,~hi)> + α∇>ϕ′′γ(∇~ui)∇

)
~vi = −D~uiJ(~u)> = −

(
~ui − 1

f

f∑
l=1

~ul

)
.

In addition, the formulae for DuF (·)> and DhF (·)> are identical to (58) and (59), and the
partial derivatives of h are respectively given by(
Dσx h̃(σx, σy, θ)

>
)

(jx,jy)
=
(
h̃(σx, σy, θ)

)
(jx,jy)

(
(jx cos θ − jy sin θ)2

(σx)3
− 1

σx

)
,

Dσxh(σx, σy, θ)
> =

1∑
(jx,jy)∈Ωh

(
h̃(σx, σy, θ)

)
(jx,jy)

·

Dσx h̃(σx, σy, θ)
> − h(σx, σy, θ)

∑
(jx,jy)∈Ωh

(
Dσx h̃(σx, σy, θ)

>
)

(jx,jy)

 ,

(
Dσy h̃(σx, σy, θ)

>
)

(jx,jy)
=
(
h̃(σx, σy, θ)

)
(jx,jy)

(
(jx sin θ + jy cos θ)2

(σy)3
− 1

σy

)
,

Dσyh(σx, σy, θ)
> =

1∑
(jx,jy)∈Ωh

(
h̃(σx, σy, θ)

)
(jx,jy)

·

Dσy h̃(σx, σy, θ)
> − h(σx, σy, θ)

∑
(jx,jy)∈Ωh

(
Dσy h̃(σx, σy, θ)

>
)

(jx,jy)

 ,

(
Dθh̃(σx, σy, θ)

>
)

(jx,jy)
=
(
h̃(σx, σy, θ)

)
(jx,jy)

(
1

(σx)2
− 1

(σy)2

)
·

(jx cos θ − jy sin θ)(jx sin θ + jy cos θ),

Dθh(σx, σy, θ)
> =

1∑
(jx,jy)∈Ωh

(
h̃(σx, σy, θ)

)
(jx,jy)

·

Dθh̃(σx, σy, θ)
> − h(σx, σy, θ)

∑
(jx,jy)∈Ωh

(
Dθh̃(σx, σy, θ)

>
)

(jx,jy)

 .
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(a) True PSF #1. (b) True PSF #2. (c) True PSF #3. (d) True PSF #4.

(e) Estimated PSF #1. (f) Estimated PSF #2. (g) Estimated PSF #3. (h) Estimated PSF #4.

(i) True PSF #5. (j) True PSF #6. (k) True PSF #7. (l) True PSF #8.

(m) Estimated PSF #5. (n) Estimated PSF #6. (o) Estimated PSF #7. (p) Estimated PSF #8.

Figure 3: Multiframe blind deconvolution — PSFs.
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(a) Observation #1. (b) Observation #2. (c) Observation #3. (d) Observation #4.

(e) Deblurred frame #1. (f) Deblurred frame #2. (g) Deblurred frame #3. (h) Deblurred frame #4.

(i) Observation #5. (j) Observation #6. (k) Observation #7. (l) Observation #8.

(m) Deblurred frame #5. (n) Deblurred frame #6. (o) Deblurred frame #7. (p) Deblurred frame #8.

Figure 4: Multiframe blind deconvolution — images.
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In our experiments, Qσ = [1, 3] and Qθ = [−π/2, π/2] are fixed, and the underlying param-

eters (~σ
(true)
x , ~σ

(true)
y , ~θ(true)) are (uniform-)randomly drawn from (Qσ)f × (Qσ)f × (Qθ)

f . The
first and third rows of Figure 3 show the random PSFs in a trial run with 8 frames, i.e. f = 8.
The corresponding observations are given in the first and third rows of Figure 4. Concerning
the initializations in our implementation, we always choose τ̄ = 0.005 and (~σix)1 = (~σiy)

1 = 2,

(~θi)1 = 0 for all i.
The results of the 8-frame trial run, both PSFs and images, are displayed in Figures 3 and

4 respectively. It is observed from the comparison in Figure 3 that our method well captures
the underlying PSFs, especially the widths and the orientations in case of strongly skewed PSFs
(see #2, #3, #4, #7, #8). Furthermore, all deblurred frames yield significant improvement in
visual quality over the corresponding observations.

We are also interested in the effect of the number of frames on the image restoration quality.
For this sake, we track the mean peak signal-to-noise ratio (mPSNR) of all individual frames
for f ∈ {4, 6, 8, 10, 12}. For each f , the mean and the standard deviation (stdev) of mPSNR
after 10 trial runs are reported in Table 1, where the mean is rising and the standard deviation
is falling as f becomes larger. Thus, we conclude from our experiments that, as is expected,
more observations typically enhance the frame-wise image restoration quality in the bilevel-
optimization based multiframe blind deconvolution.

f 4 6 8 10 12

mean 23.6019 23.7170 23.7639 23.7883 24.0026
stdev 0.6020 0.4380 0.3381 0.2889 0.2720

Table 1: Mean peak signal-to-noise ratio.
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