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Abstract: We study the form factors of the Konishi operator, the prime example of non-

protected operators in N = 4 SYM theory, via the on-shell unitarity methods. Since the

Konishi operator is not protected by supersymmetry, its form factors share many features

with those in QCD, such as the occurrence of rational terms and of UV divergences that

require renormalization. A subtle point is that this operator depends on the spacetime

dimension. This requires a modification when calculating its form factors via unitarity

methods. We derive a rigorous prescription that implements this modification to all loop

orders and obtain the two-point form factor up to two-loop order and the three-point form

factor to one-loop order. From these form factors, we construct an IR-finite cross section

type quantity, namely the inclusive decay rate of the (off-shell) Konishi operator to any

final (on-shell) state. Via the optical theorem, it is connected to the imaginary part of

the two-point correlation function. We extract the Konishi anomalous dimension up to

two-loop order from it.

mailto:dhritiman@physik.hu-berlin.de
mailto:csieg@physik.hu-berlin.de
mailto:mwilhelm@physik.hu-berlin.de
mailto:gang.yang@physik.hu-berlin.de


Contents

1 Introduction 2

2 Cross sections for two-point correlation functions in a nutshell 7

2.1 Renormalization of composite operators and their two-point functions 7

2.2 Two-point correlation functions and cross sections 8

3 Form factors for K6 via unitarity 11

3.1 Some BPS form factor results 12

3.2 Tree-level two- and three-point form factors 13

3.3 One-loop two-point form factor 14

3.4 Two-loop two-point form factor 17

3.5 One-loop three-point form factor 23

4 Konishi vs. K6 29

4.1 A subtlety in the dimension of intermediate states 29

4.2 Lifting intermediate states for form factors 31

4.3 Final Konishi form factors 33

5 BPS and Konishi cross sections 34

5.1 BPS cross section up to one-loop 34

5.2 Konishi cross section up to two-loop 36

5.2.1 One-loop result 37

5.2.2 Two-loop result 38

6 Conclusion and outlook 43

A Fourier transformation of the propagator 46

B Feynman integrals 46

C Passarino-Veltman reductions 50

D Checks of the three-point one-loop Konishi form factor 51

E Phase-space parametrization 53

F Anomalous dimensions via two-point form factors 54

G Renormalization-scheme transformations 57

H Feynman diagrams 59

– 1 –



1 Introduction

So far, the framework of quantum field theories (QFTs) is very successful in describing the

high-energy processes measured at colliders such as LHC. However, theoretical predictions

are usually restricted to the weak-coupling regime, which admits a perturbative expansion

in terms of the small coupling constants. The individual contributions to the perturbation

series can be calculated by employing Feynman diagrams. Thereby, a large proliferation

of diagrams is in general encountered when one proceeds to higher-order corrections, and

hence concrete calculations are mainly restricted to the first few orders.

The investigation of alternative techniques that bypass this limitation is thus of high

importance. It might not only allow to push perturbation theory to higher orders, but

could also deepen our understanding of fundamental principles and mechanisms encoded

in QFTs. The so-called ‘on-shell’ techniques are such an alternative. They allow one to

build amplitudes from other amplitudes with a lower number of external legs and loops

via recursion relations [2, 3] and unitarity [4, 5]. They have been successfully used in

supersymmetric gauge theories as well as in QCD, see [6–8] for pedagogical reviews and

references therein.

In particular, the maximally supersymmetric Yang-Mills (N = 4 SYM) theory with

gauge group SU(Nc) in four dimensions plays an important role in the aforementioned

developments. According to the AdS/CFT correspondence [9–11] it has a dual description

in terms of a string theory, allowing its study also at strong coupling. Moreover, in the

planar limit [12], it shows signs of integrability at weak as well as at strong coupling, and it

is believed to be present even at any coupling; based on the conjectured integrability, new

predictions for the spectrum, i.e. for the anomalous scaling dimensions of gauge-invariant

composite operators were made, see [13] for a review. This rises the hope that the theory

is exactly solvable, and it is hence sometimes even referred to as the “harmonic oscillator

of the 21st century”.

Given the success of the on-shell techniques for amplitudes, it is an intriguing question

whether they can be applied for determining off-shell quantities such as correlation func-

tions or the anomalous dimensions as well. A bridge between the purely on-shell amplitudes

and the purely off-shell correlation functions is provided by form factors. They also contain

the information necessary to determine the anomalous dimensions. An n-point form factor

describes the overlap of an off-shell initial state, described by a composite operator, into

an on-shell final state consisting of n elementary fields. It is given by

FO(1, . . . , n) =

∫

dDx eiq·x〈1 · · · n|O(x)|0〉 = δ(D)
(

q −
n∑

i=1

pi

)

〈1 · · · n|O(0)|0〉 , (1.1)

where the particles labeled by i = 1, . . . , n carry individual on-shell momenta pi and the

operator O carries momentum q. If the number n and type of the external fields exactly

match those contained in O, the form factor is called minimal form factor. Minimal form

factors with n = 2 points are denoted as Sudakov form factors.

In the N = 4 SYM theory, the most intensively studied form factors are the ones of
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the half-BPS operator

OBPS = tr(φ(IφJ)) , (1.2)

where the parenthesis denote traceless-symmetrization of the flavor indices I, J = 1, . . . , Nφ

of the Nφ scalar field flavors. This operator belongs to the stress tensor supermultiplet. Its

Sudakov form factor was first studied by van Neerven [14] and analyzed up to four loops

[15, 16] in the recent past. The Sudakov form factor exhibits exponentiation [17–19], a

feature which was seen to be the key for predicting the all-loop IR behavior of scattering

amplitudes [20].

The form factors of the stress tensor multiplet with general n external legs can be

analyzed in analogy to the scattering amplitudes with modern on-shell techniques. The

n-point form factor with the bosonic operator (1.2) was first studied in [21, 22], and later

generalized to the full stress tensor multiplet in [23, 24]. Up to one loop order, compact

expressions for general n-point MHV as well as some NMHV form factors have been com-

puted in [21, 23–26, 33]. The two-loop three-point form factor was computed in [27]. The

form factors of half-BPS operators with k scalar fields (as well as the supermultiplet) have

been studied in [22, 28, 29], where n-point tree and one-loop MHV results are presented

in [28] and the mininal form factors (for n = k) were computed at two-loop [29]. Form

factors have also been studied at strong coupling via the AdS/CFT correspondence [30],

and a Y-system formulation was given in [31] for AdS3 and in [32] for AdS5.

The aforementioned studies have shown that form factors share very similar recursive

and analytic properties with scattering amplitudes, at least for the protected operators.

Moreover, the robust set of on-shell techniques for computing on-shell objects is also ap-

plicable here. This rises the hope that also fully off-shell quantities can be studied using

on-shell methods, and that such an enhancement of the toolkit allows to detect new features

of the theory. Indeed, it was found that certain correlation functions can be constructed

via generalized unitarity from amplitudes, form factors and their generalizations involving

several operator insertions [33]. In the recent parallel work [34], one of us has determined

at tree level the minimal form factors of a generic operator and at one-loop order their cut-

constructible parts. The one-loop results yield the complete one-loop dilatation operator

of the theory.

Scattering amplitudes as well as form factors are themselves not physical observables,

since they contain infrared (IR) divergences from the integration of loop momenta. Adding

the so-called Bremsstrahlung contributions, their IR divergences from the real emissions of

soft and collinear particles cancel the IR divergences coming from virtual loop corrections

according to the Kinoshita-Lee-Nauenberg theorem [35, 36], and one obtains an observable.

In particular, the cross sections are free of IR divergences and hence physical observables.

They are, however, in general not well defined in a CFT such as the N = 4 SYM theory,

where asymptotic states are ill defined. Some cross-section-type quantities have been de-

fined by using coherent states as asymptotic states [37]. Alternatively, we can consider the

decay of an initial off-shell state described by an operator O(q), which is timelike (q2 > 0)

into any final on-shell multi-particle state. The probability of this inclusive decay is the

total decay rate of O(q). This decay process may occur as part of a total cross section of
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a scattering process in which O(q) is produced as an intermediate state.1 The probability

for the inclusive decay of O(q) into a final state X with total momentum q = pX is defined

by

σO(q) =
∑

X

δ(D)(q − pX) |〈X|O(0)|0〉|2 , (1.3)

where the sum ensures that that the quantity is inclusive, i.e. all contributions, which are

specified by the number and type of the particles in the final states are integrated over

the respective phase space and are summed up. This cross-section type quantity depends

on the matrix element 〈X|O(0)|0〉, which is precisely the form factor of O with final state

X. Via the optical theorem, (1.3) is related to the imaginary part of the (time-ordered)

two-point correlation function 〈0|Ō(x)O(0)|0〉 after transforming to momentum space.

Finally, although not considered in this paper, we would like to mention that by

modifying (1.3), ‘event shapes’ such as energy or charge correlation functions were studied

in the N = 4 SYM theory [33, 39–41]. Also, Wilson coefficients for the deep inelastic

scattering were considered [42]. For simplicity, we will follow the terminology of [40] and

denote the cross-section-type quantity defined in (1.3) as total cross section, or simply cross

section.

In this paper, we will study the form factor (1.1) and the cross section (1.3) for the

Konishi operator as a first example for an operator that is not protected by supersymme-

try. Hence, UV divergences appear in addition to the aforementioned IR divergences that

already emerge for protected operators. The Konishi primary operator is given by

K = tr(φIφI) , (1.4)

where a sum over all I = 1, . . . , Nφ scalar field flavors is implicitly understood. In strictly

D = 4 dimensions Nφ = 6. The Konishi scaling dimension ∆K = ∆
(0)
K + γK consists of

the bare dimension ∆
(0)
K = 2 and an anomalous dimension γK. It is a power series in the

coupling constant

g2 =
g2YMNc

(4π)2
(4πe−γE)ǫ , (1.5)

which depends on the Yang-Mills coupling constant gYM, the number of colors Nc and is

the loop-counting parameter in the modified Dimensional Reduction (DR) scheme. In the

planar limit, the Konishi anomalous dimension is given by

γK = 6[2g2 − 8g4 + 56g6 − 16(26 − 6ζ3 + 15ζ5)g
8

+ 16(158 + 72ζ3 − 54ζ23 − 90ζ5 + 315ζ7)g
10] +O(g12) ,

(1.6)

1 The operator may be of different physical origin. For example, it can be part of a vertex that couples to

a massive particle in an effective Lagrangian. Then, (1.3) yields the decay rate of this particle. A concrete

example from the Standard Model is an effective Higgs-gluons vertex H tr(FµνF
µν) obtained by integrating

out a heavy quark loop, see e.g. [38]. The operator may be also be a (conserved) current describing a

two-particle scattering. Examples of this type are e+e− annihilation into a virtual photon or Drell-Yan

scattering, where the two incoming particles are annihilated into a virtual photon or gluon, respectively,

exciting the QCD vacuum and decaying into e.g. quarks, gluons or leptons.
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where the one- and two-loop contributions, which we reproduce as a check in this paper,

were obtained by explicit Feynman diagram calculations in [43, 44] and [45–47].2

The operator given in (1.4) is the so-called primary operator of the Konishi supermul-

tiplet. Its anomalous dimension given in (1.6) was mainly obtained by considering certain

descendent operators within the Konishi multiplet rather than the Konishi primary opera-

tor (1.4). This is possible, since all members of a supermultiplet have the same anomalous

dimension.3 In fact, we will see that the Konishi primary defined in (1.4) and involving a

sum over the Nφ scalar field flavors depends on the dimension D as Nφ = 10 − D is re-

quired to ensure supersymmetry. This becomes important when regulating the divergences

by continuing the theory from D = 4 to D = 4− 2ǫ dimensions.

We will apply four-dimensional unitarity in order to compute the form factors. Within

this framework, all on-shell component fields can be conveniently combined into Nair’s

N = 4 on-shell superfield [63]. The on-shell superfield reads

Φ(p, η) = g+(p)+η
A ψA(p)+

ηAηB

2!
φAB(p)+

εABCDη
AηBηC

3!
ψ̃D(p)+η1η2η3η4g−(p) , (1.7)

where ηA are Grassmann variables that encode the flavor and helicity of the component

fields, and A = 1, . . . , 4 is the SU(4) R-symmetry index. In the above superfield, the six real

on-shell scalars φI transforming in the fundamental representation of SO(6) are represented

as the anti-symmetric product representation of two fundamental SU(4) representations,

φAB = −φBA, employing the isomorphism of the Lie-algebras so(6) and su(4).

Using (1.7), each n-point scattering amplitude with fixed total helicity can be efficiently

packed into a single superamplitude. In analogy, also the form factors for the BPS operator

(1.2) can be packed into super form factors if the BPS operator is expressed in terms of

the scalar fields φAB

OBPS = tr(φABφCD)−
1

12
εABCD tr(φEFφEF ) , (1.8)

where the last term subtracts the trace in the space of scalar flavors. Without loss of

generality we will focus in the rest of this paper on its particular component

OBPS = tr(φABφAB) , (1.9)

where doubled indices are not summed. Expressing also the Konishi operator in terms of

the scalar fields φAB yields

K6 =
1

8
εABCD tr(φABφCD) = tr(φ12φ34)− tr(φ13φ24) + tr(φ14φ23) , (1.10)

2The Konishi anomalous dimension γK is currently known up to five loops from field theory calculations

and up to nine loops from the conjectured integrability. The three-loop result was conjectured in [48] and

confirmed in [49, 50]. The four-loop result was determined by calculating the wrapping corrections to the

integrability-based asymptotic dilatation operator in [51, 52] and by a computer-based direct calculation

in [53]. The integrability-based four-loop expression of [54] matches this result. The five-loop result was

predicted from integrability in [55–57], and confirmed in [58] from an OPE analysis of the four-point

correlation function of stress-tensor multiplets. The results at six [59], seven [60], eight [61] and nine loops

[62] are so far only based on the conjectured integrability.
3Working with certain descendants which are non-singlet states of the SU(4) R-symmetry instead of the

primary operator (1.4), which is an SU(4) singlet, simplifies the calculations in both, the field theory and

integrability-based approach.
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where the subscript 6 reminds us that the operator is identical to the Konishi primary (1.4)

only for Nφ = 6, i.e. only in strictly D = 4 dimensions.

There is a subtlety originating from the fact that in D 6= 4 dimensions the Konishi

operator K in (1.4) cannot be identified with K6 in (1.10). The four-dimensional unitarity

method applies to the operator K6. In this formulation, the operator stays the same if the

encountered IR- and UV-divergences are regularized by changing the spacetime dimension

from D = 4 to D = 4 − 2ǫ. But in D = 4 − 2ǫ dimensions the Konishi operator K is

not identical to the operator K6. Hence, the unitarity-based results for K6 do not directly

yield those for the Konishi operator K. Instead, modifications have to be made which take

into account that one should have used K and not K6 in order to obtain the results for the

Konishi operator regularized in D = 4− 2ǫ dimensions.

In the main part of the paper we elaborate on the ideas mentioned above. In section 2

we discuss two-point correlation functions of gauge-invariant local operators, their renor-

malization and the transformation to momentum space. We identify the imaginary part of

such a correlation function with the cross section defined in (1.3). Finally, we present the

general strategy of computing the total cross section for a given operator using its form

factors as the building blocks.

In section 3, we present our computation of the form factors for K6 at the one- and

two-loop orders, which are based on the unitarity method and on-shell superspace. Since

the Konishi operator is not protected, several new interesting features appear in the results,

such as the UV divergences and rational terms.

In section 4, we discuss in detail the aforementioned subtleties arising from the fact

that in D = 4 − 2ǫ dimensions the Konishi operator K cannot be identified with K6. We

derive a rigorous prescription of how to implement the substitution of K6 by K in the

results of the previous section.

In section 5, we present the computation of the cross section starting with the BPS

operator up to one-loop order as a simple example to make the reader become familiar with

our strategy. We find the expected non-trivial cancelation of the IR divergences between

real and virtual channels. Then, we compute the cross section for the Konishi operator

up to two loops. We extract the renormalization constant and hence the anomalous di-

mension from the UV divergence of the bare result. They match the known results. We

present the finite result for the renormalized cross section and discuss its dependence on

the renormalization scheme.

Finally, in section 6 we summarize the main results of our paper and the interesting

features associated with them. We also present some future directions and open questions.

In the appendices A–G, we elaborate on the various technical aspects of our compu-

tations as well as non-trivial features of our results which were not seen before in similar

computations for BPS operators or on-shell objects like scattering amplitudes. In the fi-

nal appendix H, we summarize direct Feynman-diagrammatic calculations of the one- and

two-loop form factors for both, the BPS and the Konishi operator, which served as checks

for our approach and guided us to the modifications discussed in section 4.
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2 Cross sections for two-point correlation functions in a nutshell

In this section, we review some facts about the form of the two-point correlation function of

a renormalized composite operator in spacetime and in momentum space. Via the optical

theorem, its imaginary part yields a cross-section-type quantity. It can be directly obtained

from the form factors of the respective operator.

2.1 Renormalization of composite operators and their two-point functions

Gauge-invariant local composite operators can be regarded as external states of the N = 4

SYM theory, and they can occur in correlation functions in the same way as the elementary

fields. Such correlation functions in general contain UV divergences, which are associated

with the presence of these operators, requiring their renormalization in analogy to that of

the elementary fields and vertices of the theory. In this paper, we only consider composite

operators that are eigenstates under renormalization. Such a renormalized operator is

given in terms of the bare operator as

OR = ZO(g, ǫ)OB , (2.1)

where ZO is the renormalization constant. It depends on the coupling constant g and

absorbs the UV divergences, which appear as poles in ǫ when the theory is regularized

by changing the spacetime dimension from D = 4 to D = 4 − 2ǫ. The renormalization

constant determines the anomalous dimension

γO =
∞∑

ℓ=1

g2ℓγ
(ℓ)
O = lim

ǫ→0
ǫg
∂

∂g
logZO , (2.2)

which is added to the bare scaling dimension ∆
(0)
O in order to obtain the conformal dimen-

sion ∆O. Since γO is finite when the limit ǫ → 0 is taken in the above equation, the form

of ZO as a power series in g is fixed to

ZO = exp

( ∞∑

ℓ=1

g2ℓ

2ℓǫ
γ
(ℓ)
O

)

= 1 + g2
γ
(1)
O
2ǫ

+ g4
(
(γ

(1)
O )2

8ǫ2
+
γ
(2)
O
4ǫ

)

+O(g6) . (2.3)

Conformal symmetry also completely fixes the form of the two-point function of the

operator OR. In Minkowski spacetime, it reads

G2O,R(x) = 〈0|ŌR(x)OR(0)|0〉 =
M

(−x2 + i0)∆Oµ2γO
, ∆O = ∆

(0)
O + γO , (2.4)

where our conventions for the i0 description are given in appendix A. The parameter µ has

the dimension of mass and is introduced in order to fix the mass dimension to ∆
(0)
O . The

coupling-dependent dimensionless factor M has a perturbative expansion as

M =
∑

ℓ=0

g2ℓM (ℓ) , (2.5)

and it can be absorbed into the normalization of OR.
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O(0) Ō(x) q

Figure 1: The two-point function in position space and momentum space.

We will work in momentum space, and hence need the Fourier transformation of (2.4).

According to appendix A, it is given by

G̃2O,R(q
2) =

∫

dDx eiq·xG2O,R(x) = (−i)2D−2∆Oπ
D
2
Γ(D2 −∆O)

Γ(∆O)
M

(−q2 − i0)
D
2
−∆Oµ2γO

.

(2.6)

When expanding the above expression first for small g and then for small ǫ, one obtains
1
ǫk
-poles for any k ≥ 1, which for k ≥ 2 are proportional to powers of γO [64]. Since

G2O,R(x) is the finite (renormalized) Green function, these poles cannot come from UV

divergences. In fact, they arise from integrating over the origin x = 0 of spacetime,

where G2O,R(x) is singular. This can be most easily seen for the half-BPS operator OBPS

defined in (1.2). Since this operator is protected, γBPS = 0, and all poles of order k ≥ 2

disappear, but a simple 1
ǫ -pole remains. In momentum space, this pole is associated with

the one-loop bubble integral. It is obtained when inserting Fourier expressions for the

two scalar propagators4 1
(−x2+i0)1−ǫ connecting the two operators as depicted in figure 1

and performing the integration over x in (2.6), which yields a δ-function of momentum

conservation. For the tree-level two-point function, the steps are as follows:

1

(−x2 + i0)2−2ǫ
−→
FT

∫
dDl

(2π)D
1

l2(l − q)2
∼ 1

ǫ(−q2 − i0)ǫ
. (2.7)

This simple pole (for the BPS operator) and all the further 1
ǫk
-poles, k ≥ 2, (for non-

protected operators) are absent when taking the imaginary part of the momentum-space

Green function (2.6).

As we will see in the next subsection, via the optical theorem this part yields a cross-

section-type quantity: the probability of the inclusive decay of the renormalized operator

OR with off-shell momentum. It has to be finite in the limit ǫ → 0, since it is free of IR

divergences and — due to renormalization — also of UV divergences.

2.2 Two-point correlation functions and cross sections

Via the optical theorem, the imaginary part of a two-point correlation function is related

to the inclusive decay width of the renormalized operator OR with off-shell momentum q,

where q2 > 0. As motivated in the introduction, we will simply denote this as cross section

σO,R in this paper. It is given by

σO,R = Im[2i G̃2O,R(q
2)] =

∑

X

δD(q − pX) |〈X|OR(0)|0〉|2 , (2.8)

4In D dimensions, the scaling dimension of a scalar field is given by ∆
(0)
φ = D

2
− 1 = 1− ǫ
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where one sums over all final on-shell states X, and the squared matrix element is given

by the product of two form factors

F̂O,X = 〈X|O(0)|0〉 . (2.9)

The form factor is given by a perturbative expansion as

F̂O,X =

∞∑

ℓ=0

g2ℓF̂ (ℓ)
O,X , (2.10)

where g defined in (1.5) is the parameter of the loop expansion. Concretely, in N = 4 SYM

theory in the modified dimensional reduction (DR) scheme,5 the coupling constant is given

in (1.5). Moreover, the summation over all final states X in (2.8) involves in particular

a summation over the number n of particles in the final state, i.e. of the n-point form

factors F̂ (ℓ)
O,n over n. The number n is directly related to powers of the Yang-Mills coupling

constant gYM. In analogy to amplitudes (see e.g. [66]), the n-point form factors possess a

decomposition in terms of the possible color structures as

F̂ (ℓ)
O,n({ai, pi, ηi}) = gn−2

YM

∑

σ∈Sn/Zn
tr(Taσ(1) · · ·Taσ(n))F (ℓ)

O,n({pσ(i), ησ(i)})

+ multi-trace terms ,

(2.11)

where Ta, a = 1, . . . , N2
c − 1, are the gauge-group generators of SU(Nc) normalized as

tr(TaTb) = δab . (2.12)

In (2.11), the ith particle, i = 1, . . . , n, with momentum pi carries the adjoint gauge-group

index ai. Via Nair’s superfield (1.7), its flavor and helicity are encoded in terms of the

Grassmann variables ηi, on which the color-ordered super form factors F (ℓ)
O,n on the rhs.

also depend.

The imaginary part of (2.6) can be obtained by taking the discontinuity, which for

timelike (q2 > 0) momentum reads6

2i Im (−q2 − i0+)
x = (−q2 − i0)x − (−q2 + i0)x =

2πi

Γ(x)Γ(1− x)
(q2)x . (2.13)

Using this relation in order to determine the imaginary part of (2.6) and then inserting

the result into (2.8) yields

σO,R

σ
(0)
O

=
M(g)

M (0)

Γ(∆
(0)
O )Γ(D2 −∆O)

Γ(∆O)Γ(D2 −∆
(0)
O )

Γ(∆
(0)
O − D

2 )Γ(1 +
D
2 −∆

(0)
O )

Γ(∆O − D
2 )Γ(1 +

D
2 −∆O)

( q2

4µ2

)γO
, (2.14)

where we have divided σO,R by its classical part σ
(0)
O = Im[2i G̃

(0)
2O,R(q

2)]. Indeed, as

mentioned at the end of the previous subsection, both σ
(0)
O and σO,R are free of 1

ǫ -poles,

5This scheme employs dimensional reduction as regularization and for the subtraction of the divergences

a modified minimal subtraction which absorbs the same finite terms in addition to the UV-divergences into

the renormalization constant as the famous MS scheme [65].
6Our conventions for the i0 description are given in appendix A.
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since the poles are canceled by the extra Γ-functions introduced via (2.13). This can also

directly be seen for the bubble integral in (2.7): its imaginary part is obtained by applying

a double-cut, which just yields a finite constant.

By taking the logarithm of (2.14), we can expose the dependence on q2 as follows

log

(
σO,R

σ
(0)
O

)

= γO log
q2

µ2
+ C +O(ǫ) , (2.15)

where the constant C is scale-independent but depends on γO and the expansion coefficients

of the normalization factor (2.5) as

C = g2
(
M (1)

M (0)
− (1− 2γE)γ

(1)

)

+ g4
(
M (2)

M (0)
− 1

2

(
M (1)

M (0)

)2

+
3− π2

6

(
γ(1)

)2 − (1− 2γE)γ
(2)

)

+O(g6) .

(2.16)

It is also renormalization-scheme-dependent as discussed at the end of section 5. However,

the log q2 term is universal and scheme-independent. The anomalous dimension is given by

the coefficient of log q2

µ2
. In this paper, we will verify this structure for the Konishi operator

up to two loops.

Strategy of computing cross sections

The cross section is obtained from (2.8) in more detail as follows:

σ =
∑

n

∫

dPSn
∑

colors

∑

spins
helicities







F̂n ··· F̂n···







︸ ︷︷ ︸

Mn

. (2.17)

This relation holds for both, the bare and the renormalized cross section, if F̂n represents

the bare and the renormalized form factors, respectively. The evaluation of (2.17) requires

three main steps: (1) determining the form factors F̂n, (2) taking the absolute square of

F̂n, and (3) performing the n-particle phase space integrals. More concretely, (2.17) is

expanded in powers of g as follows:

σ =

∞∑

ℓ=0

g2ℓσ(ℓ) , σ(ℓ) =

ℓ+2∑

n=2

g2(2−n)
∫

dPSnM(ℓ+2−n)
n , (2.18)

where the squared matrix elements are given by

M(ℓ)
n =

1

n!

∑

ai

∫ n∏

i=1

d4ηi

m∑

k=0

ℓ∑

l=0

F̂NkMHV,(l)

O,n ({ai, pi, ηi})F̂∗,Nm−kMHV,(ℓ−l)

Ō,n ({ai, pi, ηi}) ,

(2.19)
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in which F̂ (ℓ)
n ({ai, pi, ηi}) is the ℓ-loop n-point non-color-ordered super form factor defined

in (2.11), and F̂∗
n({ai, pi, ηi}) is its complex conjugate.7 We have indicated the maximally

helicity violating (MHV) degree, which depends on the degree of η. For the BPS and

Konishi operator considered in this paper, the MHV form factors have degree 4 in η and

m = n − 2 is fixed. The squared matrix element involves sums over all numbers n and

types of external particles and their color degree of freedom. The sum over the types of

particles is given in terms of integrations over the fermionic variables ηAi , A = 1, 2, 3, 4,

and a sum over the MHV degree k.

Given the squared matrix elements, as a next step, the integration over the phase space

of the n particles in the final state has to be performed. The respective measure is given

by

dPSn =

n∏

ℓ=1

dDpℓ
(2π)D

2πδ+(p
2
ℓ) · (2π)DδD

(

q −
n∑

ℓ=1

pℓ

)

, (2.20)

where δ+(p
2) = δ(p2)θ(p0) with θ(p0) being the Heaviside step function that imposes the

positivity condition on p0. In appendix E, we give explicit parametrizations of the two-

particle and three-particle phase space integrals.

Finally, the sum over the different channels, i.e. over the different particle numbers n,

has to be performed. This leads to a cancellation among the different soft and collinear IR

divergences such that the final result is IR finite. If non-protected operators are involved,

as in the Konishi case, their renormalization constants have to be taken into account.

The use of the super form factors encoding the particle content and their polarizations

via the on-shell superfields (1.7) requires that the number of scalars Nφ = 6, such that they

fit in the antisymmetric product of two fundamental SU(4) representations. Moreover, in

order to preserve supersymmetry, this demands that the polarization vectors εµi of the

gluons are kept four-dimensional when the spacetime dimension is continued to D = 4−2ǫ

dimensions. The scheme imposing these descriptions is called the four-dimensional helicity

(FDH) scheme [67, 68]. This is analogous to the procedure pursued in section 3 where we

sum the internal particles via the four-dimensional on-shell superspace. There are, however,

some subtleties when considering the case of the Konishi operator, since it has Nφ = 6+2ǫ

scalar flavors in D = 4 − 2ǫ dimensions rather than only 6 that are included in the on-

shell superfield. This has to be considered by modifying the result. The corresponding

prescription will be discussed in details in section 4.

3 Form factors for K6 via unitarity

In the previous section, we have defined the cross section for gauge-invariant operators O
in N = 4 SYM theory in terms of its squared matrix elements. As discussed around (2.19),

the building blocks of these squared matrix elements are the non-color ordered super form

factors for the particular operator. In this section, we will present the building blocks

7Note that in (2.19) the complex conjugate of tree-level form factors is already encoded in changing O to

be its conjugate Ō and also changing the MHV degree from k to m− k. Therefore, the “*” corresponds to

taking the conjugate of the ℓ ≥ 1 contributions only. This will be explained in explicit examples in section

5. See the discussion around (5.6).
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necessary for computing the cross section of the Konishi operator (1.4) up to two loops,

which are the two-point form factor up to two-loop order, and the three-point form factor

at one-loop order.8

We use the notation for the non-color-ordered super form factors F̂ (ℓ)
O,n({ai, pi, ηi})

and color-ordered super form factors F (ℓ)
O,n({pi, ηi}) as introduced in (2.11). We denote

the bosonic color-ordered form factors with fixed external states by F
(ℓ)
O,n({pi}), and more

specifically for a precise external state, e.g. of two scalars and one gluon as F
(ℓ)
O (1φ, 2φ, 3g)

or simply F
(ℓ)
O,(φ,φ,g). These can be obtained from F (ℓ)

O,n({pi, ηi}) by taking a specific term in

the ηi expansion. We also introduce the normalized bosonic form factors f
(ℓ)
O,n as the ratio

between the ℓ-loop and tree-level color-ordered bosonic form factors

f
(ℓ)
O,n({pi}) =

F
(ℓ)
O,n({pi})
F

(0)
O,n({pi})

. (3.1)

Our computation will focus on the colored-ordered form factors, and it is straightforward

to obtain the full non-color ordered super form factor from them.

The computation of form factors in this section are based on the on-shell superspace

formulation (1.7). Therefore, the operator in the form factor is K6 defined in (1.10) and

not the Konishi operator K defined in (1.4). We denote the resulting form factors by F
(ℓ)
K6,n

.

As we will see in the next section, we have to modify the results presented in this section

to obtain the Konishi form factors. This will be discussed in detail in section 4.

3.1 Some BPS form factor results

We start by presenting some known BPS form factor results, which are also useful building

blocks for the Konishi form factors. Unless otherwise specified, the BPS form factor in this

paper will always refer to that of the half-BPS operator tr(φ2AB) defined in (1.9), and we

use the abbreviation F (ℓ)
BPS,n = F (ℓ)

tr(φ2AB),n
.

The n-point maximally helicity-violating (MHV) tree-level BPS super-form factor is

given by [23]

F (0),MHV
BPS,n (1, 2, . . . , n) =

δ(4)AB(
∑n

i=1 λiηi)

〈1 2〉〈2 3〉 . . . 〈n 1〉 , (3.2)

where δ(4)AB(
∑

i λiηi) is understood as taking η in the delta function with only A,B indices,

or more explicitly

δ(4)AB(
∑

i

λiηi) =
(∑

i<j

〈i j〉ηAi ηAj
)(∑

k<l

〈k l〉ηBk ηBl
)

. (3.3)

Note that in this and all following expressions for form factors we do not explicitly write

the momentum-conserving delta function δ(4)(q−∑n
i=1 pi), where q is the four-momentum

carried by the gauge invariant operator.

8The tree-level four-point Konishi form factor essentially agrees with the BPS result, as we will discuss

in subsection 3.2.
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We give the loop corrections to the BPS MHV form factor in terms of the normalized

form factor defined in (3.1). For the purpose of this paper, we only need the following

three results [14, 21, 22]:

f
(1)
BPS,2 = −2s12

p1

p2

, (3.4)

f
(2)
BPS,2 = s212



4

p1

p2

+

p1

p2



 , (3.5)

f
(1)
BPS,3 =− s12s23

2

p1

p2

p3

− s13 + s23
2

p1

p2

p3

− s12 + s31
2

p1

p2

p3

+ cyclic perm. of {p1, p2, p3} .
(3.6)

Each graph corresponds to a Feynman integral which is defined in appendix B. Throughout

this paper, all external on-shell momenta labeled by pi are understood as outgoing.

For the two-point case, only the MHV configuration exists, while at three-point there

are the MHV and the next-to-MHV (NMHV) configuration. The NMHV tree-level form

factor can be obtained from (3.2) by first taking the conjugation λ→ λ̃ and ηA → η̃A, and

then applying a fermionic Fourier transformation as9

F (0),NMHV
BPS,3 (1, 2, 3) =

3∏

i=1

∫

d4η̃i e
∑
C η

C
i η̃i,C

δ
(4)
AB(

∑3
i=1 λ̃iη̃i)

[1 2][2 3][3 1]
. (3.7)

Both, the MHV and the NHMV three-point form factor, share the same loop correction

(3.6).

3.2 Tree-level two- and three-point form factors

We now turn to the Konishi form factor. In this subsection, we consider the tree-level form

factors for K6. They are identical to those of the Konishi operator K. The expression for

K6 in (1.10) contains the individual fields φABφCD where A,B,C,D assume distinct values

instead of φ2AB as is the case for the BPS operator. For the tree-level bosonic form factor

with specified external particles, however, the index structure of the external scalars and

fermions do not play any role in the result, which is obvious from the Feynman diagram

computation. Therefore, the tree-level bosonic form factors for the Konishi operator are

identical to the corresponding BPS form factors.

The super form factors, on the other hand, take different forms. Taking into account

all the components, the two-point super form factor reads10

F (0)
K6

(1, 2) = −1

4

〈1 2〉2
〈1 2〉〈2 1〉

4∑

A,B,C,D=1

εABCD(η
A
1 η

B
1 )(η

C
2 η

D
2 ) , (3.8)

9Note the operator also becomes the conjugate one, tr((φ̄AB)2), where φ̄AB = 1
2
εABCDφCD.

10The normalization factor is fixed to be consistent with the definition of the operator K6 in (1.10).
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where ε1234 = 1. The bosonic two-point form factor

F
(0)
K6

(1φ12 , 2φ34) = − 〈1 2〉2
〈1 2〉〈2 1〉 = 1 , (3.9)

can be obtained by taking the (η11η
2
1)(η

3
2η

4
2) component of the tree-level form factor F (0)

K6,2

in (3.8); it is identical to the BPS result as can be seen by taking the (ηA1 η
B
1 )(η

A
2 η

B
2 )

component of (3.2) at n = 2. There are two other possible scalar field configurations at the

external legs, namely {(φ13, φ24), (φ14, φ23)}, and for both these cases we obtain the same

bosonic form factor as above.

The three-point MHV super form factor is given by the following expression:

F (0)
K6

(1, 2, 3) =
−1

4〈1 2〉〈2 3〉〈3 1〉
∑

A,B,C,D

(

〈1 2〉2εABCD(ηA1 ηB1 )(ηC2 ηD2 )

+ 2〈1 3〉〈2 3〉εABCDηA1 ηB2 (ηC3 ηD3 ) + cyclic perm.
)

.

(3.10)

It has two distinct configurations of the external states: scalar-scalar-gluon and fermion-

fermion-scalar. Taking the coefficients of (η11η
2
1)(η

3
2η

4
2) and η

1
1η

2
2(η

3
3η

4
3), we find

F
(0)
K6

(1φ12 , 2φ34 , 3g+) = − 〈1 2〉2
〈1 2〉〈2 3〉〈3 1〉 , F

(0)
K6

(1ψ1 , 2ψ2 , 3φ34) = − 〈1 3〉〈2 3〉
〈1 2〉〈2 3〉〈3 1〉 ,

(3.11)

which are also identical to the corresponding BPS form factors. The NMHV form factor

can be obtained from the MHV result in a similar way as in the BPS case (3.7).

3.3 One-loop two-point form factor

In this and the following subsection, we compute the form factor of K6 at one- and two-loop

level by using four-dimensional unitarity [4, 5].

The general idea of unitarity in this context is to reconstruct loop corrections to the

form factors at integrand level from their discontinuities, i.e. by applying cut. Here, a cut

denotes setting a propagator on-shell according to

i

l2i
→ 2πδ+(l

2
i ) , (3.12)

where δ+(l
2
i ) was defined after (2.20). On the cut, the loop expression factorizes into a

product of (known) tree-level or lower-loop form factors and amplitudes. These have to

be summed over all possible particles exchanged in the cut channel, which can be done

by taking the super form factors as well as the super amplitudes and integrating over the

Grassmannian degrees of freedom in the cut legs. Then, one can apply the spinor algebra

to write the result in a form that can be identified as a sum of cut integrals. In this way,

an ansatz for the uncut integrals occurring in the loop correction is assembled. In general,

not all integrals appear in a given cut, and additional cuts have to be taken to complement

the ansatz. The complete ansatz has to be consistent with all possible cut. Finally, the

cut integrals have to be lifted to the uncut integrals, as discussed in appendix B.
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q

p1

p2l2

l1

FO A4,tree

Figure 2: The simple (p1 + p2)
2 double cut.

In the following, we apply this technique to the form factor of K6 and start with the

computation of the one-loop two-point form factor. For the sake of explicitness, we choose

a fixed combination of external scalar states, namely {φ12, φ34}. As in the tree-level case,

the other two choices of external scalars {φ13, φ24} and {φ14, φ23} lead to the same result.

We abbreviate F
(ℓ)
K6

(1φ12 , 2φ34) as F
(ℓ)
K6,(φ,φ)

.

Only one cut needs to be considered: the two-particle cut in the channel (p1 + p2)
2 =

q2.11 It cuts the internal propagators carrying momenta l1 and l2 as shown in figure 2.

The building blocks on the two sides of the cut are the color-ordered two-point form factor

(3.8) and the color-ordered four-point MHV amplitude given in the standard MHV form

[69] as12

A(0)
n = i

δ(8)(
∑n

i=1 λiηi)

〈1 2〉〈2 3〉 . . . 〈n 1〉 . (3.13)

The sum over all possible particles exchanged along the cut is considered by integrating

over the fermionic coordinates of the exchanged particles as
∫
d8ηl1,2 =

∫
d4ηl1 d

4ηl2 while

keeping the external state fixed.

The q2-cut integral reads13

F
(1)
K6,(φ,φ)

∣
∣
∣
q2

=

∫

dPS2,{l} d
8ηl1,2F

(0)
K6,2

(−l1,−l2)×A(0)
4 (p1, p2, l2, l1)

∣
∣
∣
(η11η

2
1)(η

3
2η

4
2)

= F
(0)
K6,(φ,φ)

i

∫

dPS2,{l}
〈l1 2〉2〈l2 1〉2 + 4〈l1 1〉〈l1 2〉〈l2 1〉〈l2 2〉+ 〈l1 1〉2〈l2 2〉2

〈l1 1〉〈1 2〉〈2 l2〉〈l2 l1〉
︸ ︷︷ ︸

C(φ,φ)

.

(3.14)

Since the external states are fixed to be {φ12, φ34}, we take the (η11η
2
1)(η

3
2η

4
2) component

of the cut integrand. The phase-space integration measure, dPS2,{l}, is defined according

to (2.20), with the integration variables being the momenta of the cut propagators {l1, l2};
hence the subscript in the notation for dPS2,{l}.

11The other two two-particle cuts occur in the p21 and p22 channels. Since these legs have p21 = p22 = 0,

massless bubble integrals in these channels vanish identically in dimensional regularization. Hence, all

integrals can be detected by the q2 cut.
12Recall that we are always suppressing the momentum-conserving delta function in the notation.
13For the reversing of momentum l → −l, such as in F

(0)
K6,2

(−l1,−l2), we follow the convention λl → −λl

and λ̃l → λ̃l in the spinor helicity formalism.
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The cut integral can be simplified at the integrand level as14

C(φ,φ) =
∫

dPS2,{l}

(〈l1 l2〉〈1 2〉
〈l1 1〉〈2 l2〉

− 6
〈l1 2〉〈l2 1〉
〈1 2〉〈l1 l2〉

)

=

∫

dPS2,{l}

( −s12
(l1 + p1)2

+ 6
(l1 + p2)

2

s12

)

= − s12

p1

p2

l1

l2

+ 6
(l1 + p2)

2

s12

p1

p2

l1

l2

,

(3.15)

where the flow of the momenta is as specified in figure 2. In the above equation, the

integral over the two-particle phase space is shown by the dashed cut line of the triangle

and bubble graph. For the triangle graph, the denominator in the integrand is the uncut

propagator 1
(l1+p1)2

and the numerator coefficient is −s12. The shown bubble graph has

no uncut propagator, but is has a loop-momentum-dependent numerator factor, which is

written in front of the graph.

As described in appendix B, the cut integrals (3.15) can be lifted to the full integrals.

The full normalized form factor as defined in (3.1) then becomes15

f
(1)
K6,(φ,φ)

= 2



−s12
p1

p2

+ 6
s2l
s12

p1

p2

l


 , (3.16)

where the factor of 2 is due to the permutation of the two external legs, and we use the short

notation silj = (pi+ lj)
2. Note that the prefactors that depend on the loop momentum are

understood to appear in the integrand of the integral represented by the respective graph

it multiplies.

The bubble integral with loop momentum in the numerator can be reduced to the

scalar bubble integral via Passarino-Veltman (PV) reduction, see appendix C for details.

Thus, we obtain the form factor16

f
(1)
K6,(φ,φ)

= −2s12

p1

p2
︸ ︷︷ ︸

f
(1)
BPS,2

− 6

p1

p2

.
(3.17)

Note that the contribution to the form factor involving the triangle integral is the same as

the BPS form factor f
(1)
BPS,2 in (3.4). The integrals corresponding to the graphs are given in

appendix B. An independent computation of this result via Feynman diagrams is shown in

appendix H.

From the above calculation at one-loop, we see that the IR-divergent part of the form

factor of K6 is the same as the one of the BPS operator. The extra contribution coming

from the UV divergent bubble integral yields a non-vanishing anomalous dimension unlike

in the BPS case. We will equally organize all subsequent results for the form factor in terms

of part identical to the BPS form factor and an additional contribution that is unique to

the form factor of K6.
14The first line can be obtained via the Schouten identity 〈a b〉〈c d〉 = 〈a c〉〈b d〉+ 〈a d〉〈c b〉 for 〈l1 2〉〈l2 1〉

in (3.14).
15The coupling dependence can be recovered as shown in appendix B.
16For convenience, we will from now on refer to the normalized form factor as form factor too.
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Vanishing one-loop form factors

Before proceeding to two-loops, we briefly discuss two other possible form factors with gluon

or fermion external states, namely the form factors F
(1)
K6

(1g− , 2g+) and F
(1)
K6

(1ψ1 , 2ψ234). At

tree level, they are zero since no Feynman diagram for this configuration exists. At higher

loops this is not obvious. Here, we use unitarity to show explicitly that they are zero

at least at one-loop order. Consider the q2-cut as in (3.14), but to obtain F
(1)
K6

(1g− , 2g+)

and F
(1)
K6

(1ψ1 , 2ψ234) take the components η11η
2
1η

3
1η

4
1 and η11(η

2
2η

3
2η

4
2) of the cut integrand,

respectively. This yields for the two cases

F
(1)
K6,(g−,g+)

∣
∣
∣
q2

= i

∫

dPS2,{l}
6〈l1 1〉〈l2 1〉2

〈1 2〉〈l1 l2〉〈l2 2〉
= −i 6〈1|l1|2]

2

s12

p1

p2

l1

l2

, (3.18)

F
(1)
K6,(ψ1,ψ234)

∣
∣
∣
q2

= i

∫

dPS2,{l}
3〈l1 1〉〈l1 2〉〈l2 1〉2 + 3〈l1 1〉2〈l2 1〉〈l2 2〉

〈1 2〉〈l1 l2〉〈l1 1〉〈l2 2〉

= i 3〈1|l1|2]
p1

p2

l1

l2

+ i 6
〈1|l1|2]
s12

p1

p2

l1

l2

. (3.19)

When we lift these expressions to the full triangle and bubble integrals and perform the

PV reduction, we obtain zero. Since we use four-dimensional unitarity, we also have to

check that there is no contribution from potential rational terms. A similar (but simpler)

study as in appendix D shows that rational terms are indeed absent.

Finally, there is an easy way to see that FK6(1g− , 2g+) = 0 to all loop orders. Using

the gauge freedom, we can choose the polarization vectors of the outgoing gluons as ε−1 =

ε+2 ∝ λ1λ̃2. It is then obvious that the form factor must be zero, since it is proportional to

εi · pj or ε1 · ε2.
One can also compute F

(1)
K,(g,g) directly by using Feynman diagrams. A simple compu-

tation gives

F
(1)
K6,(g,g)

=

[

2(ε1 · ε2)−
(ε1 · p2)(ε2 · p1)

s12

]

ID3 [ℓ2ǫ ] , (3.20)

where the integral ID3 [ℓ2ǫ ] =
1
2+O(ǫ) is given in (B.7) for p2 → 0 and the relabeling p3 → p2.

This result applies for the polarization vectors ε±1,2 taken to be in general 4−2ǫ dimensions.

Since I3[ℓ
2
ǫ ] is finite and its prefactor is of order O(ǫ) (as it vanishes when D = 4), the

form factor itself F
(1)
K6,(g,g)

is of order O(ǫ). This is consistent with the unitarity-based

calculation.

3.4 Two-loop two-point form factor

Next, we compute the two-loop two-point form factor of K6. As in the one-loop case, we

specify the external states to be {φ12, φ34}.

Two-particle cut

We first study the two-particle cut in the q2-channel. We follow a similar procedure as the

one being used in computing the BPS form factor [27]. We first quote the q2-cut integral
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Figure 3: The (p1 + p2)
2 double cut at two loops that contributes to the planar ladder

integral. The building blocks are the color-ordered one-loop amplitude and the color-

ordered tree-level form factor.

given by the equation (2.6) of [27]17

F
(2)
O,2

∣
∣
∣
q2

=

∫

dPS2,{l} d
8ηl1,2F

(0)
O,2(−l1,−l2)

(

4A(1)
4 (p1, p2, l2, l1) +A(1)

4 (p1, l1, p2, l2)
)

,

(3.21)

where the building blocks are the two-point tree-level form factor (3.8) and the one-loop

color-ordered four-point amplitudes [70]

A(1)
4 (p1, p2, p3, p4) = A(0)

4 (p1, p2, p3, p4)(− s12s23)I
(1)
4 (p1, p2, p3, p4) . (3.22)

The tree-level super amplitude A(0)
4 (p1, p2, p3, p4) in (3.22) contains all the dependence on

the fermionic coordinates, and the term multiplying it is a massless scalar box integral I
(1)
4

defined in (B.6).18

Let us briefly explain (3.21); see [27] for a derivation in full details. The above cut

integral is obtained by taking the product of the non-color ordered four-point amplitude

and the two-point form factor. The one-loop four-point amplitude contains a single-trace

contribution, as well as a double-trace contribution which is sub-leading in color. However,

after the contraction of the color factors with the two-point form factor, both contribute

to the cut integral with the single-trace color factor δab = tr(TaTb).19 The final building

blocks in the cut integral are the color-ordered form factor and amplitude as given in

(3.21). The two contributions in the parentheses of (3.21) are depicted in figure 3 and 4

respectively.20 We consider them one by one below.

We first study the contribution from the first term in the parentheses of (3.21), which

is shown in figure 3. Using the one-loop result (3.22) for the amplitude and taking the

17Note that (3.21) applies to any composite operator with two elementary fields, in particular to the form

factor of K6.
18The minus sign in (3.22) is related to the convention of the box integral we use in (B.6).
19The enhancement of the power in Nc of the apparently suppressed double-trace term in the amplitude

is the wrapping effect analysed earlier for the spectral problem [71].
20The factor 4 in the first term comes from the different contributions of the color factor contractions,

two of them come from the single-trace four-point amplitudes, the other two other from the double-trace

four-point amplitude, as explained in [27]. A different way to understand the factor 4 is to look at the

two-particle cut with the one-loop form factor on the left hand side and the tree-level amplitude on the

right hand side. It then arises from twice applying the reasoning that gave us the factor 2 at one loop.
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Figure 4: The q2-cut at two loops that contributes to the crossed ladder integral. The

building blocks are the the color-ordered one-loop amplitude and the tree-level form factor.

external states to be {φ12, φ34}, the corresponding cut integral can be written as

F
(2)
K6,(φ,φ)

∣
∣
∣

I

q2
=

∫

dPS2,{l} d
8ηl1,2F

(0)
K6,2

(−l1,−l2)A(0)
4 (p1, p2, l2, l1)

∣
∣
∣
(η11η

2
1)(η

3
2η

4
2)

× (−)s12s1l1I
(1)
4 (p1, p2, l2, l1) .

(3.23)

The first line in (3.23) given by the product of tree factors is the same as the cut integrand

of the previously studied one-loop case in (3.14). Therefore, we can perform exactly the

same calculation as in (3.15) to obtain

F
(2)
K6,(φ,φ)

∣
∣
∣

I

q2
= −F (0)

K6,(φ,φ)

∫

dPS2,{l}
(−s12
s1l1

+ 6
s2l1
s12

)

s12s1l1I
(1)
4 (p1, p2, l2, l1)

= F
(0)
K6,(φ,φ)

(

s212 − 6s1l1s2l1

)
p1

p2

l1

l2

.

(3.24)

The above cut integral can be lifted to the two-loop planar ladder integral. This

integral can be drawn in two different ways, namely

p1

p2

,

p1

p2

. (3.25)

Furthermore, there are two other planar graphs by permuting the external legs p1 ↔ p2.

So, all together we have 4 diagrams drawn in four different ways, which all give equivalent

planar ladder integrals. This provides a diagrammatic interpretation of the factor 4 in

the first term of (3.21). As we will see later in the triple cut, it is also very important to

separately draw the ladder graphs in different ways according to (3.25) in order to compute

the cut integrand correctly.

Next we consider the second term inside the parentheses in (3.21), which is depicted

in figure 4. The corresponding cut integral is given by

F
(2)
K6,(φ,φ)

∣
∣
∣

II

q2
= −

∫

dPS2,{l} d
8ηl1,2F

(0)
K6,2

(−l1,−l2)A(0)
4 (p1, l1, p2, l2)

× s12s1l1I
(1)
4 (p1, l1, p2, l2)

∣
∣
∣
(η11η

2
1)(η

3
2η

4
2)
.

(3.26)
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Following similar steps as in the previous case, the cut integral is expressed as a two-particle

cut of the two-loop crossed ladder integral as shown below

F
(2)
K6,(φ,φ)

∣
∣
∣

II

q2
= F

(0)
K6,(φ,φ)

(

s212 − 6s1l1s2l1

)

p1 p2
l1

l2
. (3.27)

Now, lifting the cut integral (3.27) together with the previous planar contribution in (3.24),

as described in appendix B, we find the following contribution to the two-loop form factor

of K6

4f
(2),I
K6,(φ,φ)

+ f
(2),II
K6,(φ,φ)

=
(

s212 − 6s1ls2l

)



4

p1

p2

l

+

p1

p2

l


 , (3.28)

where, as explained around (3.25), the factor 4 is included for f
(2),I
K6,(φ,φ)

.

There is another q2-cut which is similar to the one in figure 3. It has the one-loop

two-point form factor on the left hand side and the tree-level four-point amplitude on the

right hand side. This case is a bit subtle. Naively, one would assume that only the one-loop

two-point form factor with scalar external states F
(1)
K6,(φ,φ)

can occur on the left hand side,

since the other possibly contributing form factors with gluon and fermion external states

F
(1)
K6,(g−,g+) and F

(1)
K6,(ψ1,ψ234)

, respectively, vanish. However, this turns out to be incorrect.

There are non-vanishing contributions from these two cases: only the integrated one-loop

form factors are zero, but the integrands are not, as we can see from (3.18) and (3.19). One

should take their integrands into account in the unitarity cuts, and then obtains a result

which is consistent with the one found from the q2-cut of figure 3.21

The above result obtained by using only the two-particle cuts is not guaranteed to

give the full form factor. One problem is that the numerator coefficient of the crossed

ladder integral may have an ambiguity up to terms proportional to l2. Due to the on-shell

condition of the cut propagators, such terms are not detected by the double cuts. Moreover,

there may be other basis integrals which cannot be detected by the double cuts. Both these

issues can be fixed by studying the three particle cuts, which we do next.

Three-particle cut

The three-particle cut, or triple cut (TC), across the q2-channel is shown in figure 5. Unlike

for the BPS form factor, the triple cut will indeed give some new contribution to the form

factor of K6, which is not detectable by the previous double cut.

21Since the non-planar ladder does not contribute to this cut, one only obtains the contribution coming

from the planar ladder integral in (3.28).
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Figure 5: The two loop (p1 + p2)
2 = q2 triple cut.

The cut integral is given as

F
(2)
K6,(φ,φ)

∣
∣
∣
TC

=

∫

dPS3,{l}

3∏

i=1

d4ηli

(

F (0),MHV
K6,3

(−l1,−l2,−l3)A(0),NMHV
5 (p1, p2, l3, l2, l1)

+ F (0),NMHV
K6,3

(−l1,−l2,−l3)A(0),MHV
5 (p1, p2, l3, l2, l1)

)∣
∣
∣
(η11η

2
1)(η

3
2η

4
2)

= F
(0)
K6,(φ,φ)

i CTC .

(3.29)

Note that besides the MHV form factors and amplitudes also the NMHV form factors

and amplitudes appear as building blocks. The two terms in the above sum are in fact

conjugate to each other.

After performing the fermionic integrations22 and some spinor algebra, the cut integral

can be simplified at the integrand level into the following form:23

CTC =

∫

dPS3,{l}

(
s212 − 6s1l1s2l1
s2l3sl1l2sl2l3

+
s212 − 6s1l3s2l3
s1l1sl1l2sl2l3

+
s212 − 6s1l2s2l2
s2l3sl1l2sl1l3

+
s212 − 6s1l2s2l2
s1l1sl1l3sl2l3

+
s212 − 6s1l2s2l2
s1l1s2l3sl1l3

+
18

s12
− 18s1l3
s12sl1l2

− 18s2l1
s12sl2l3

)

.

(3.30)

Note that the first five terms in (3.30) can be obtained directly from the result de-

termined by the two-particle cut in the previous paragraph, namely the planar ladder

contribution in (3.24) and the crossed ladder in (3.26). Let us first look at the first term

in (3.28), the contribution from the planar ladder, which contains the numerical prefactor

4. As mentioned earlier, this factor 4 stems from the four different ways of drawing the

planar ladder graph. The two configurations shown in (3.25) contribute to the above triple

cut. In order to account for all the possible triple cuts on these two diagrams, we cut each

22To obtain the cut integrand in a compact form, it is convenient to take the product of the bosonic

form factor and amplitude expressions and sum over all helicity configurations, since the NMHV result of

both three-point form factor and five-point amplitudes take simple MHV form. We have checked that the

expression obtained in this way is equivalent to the expression by using super form factor and amplitudes

and doing the fermionic integration directly.
23In practice this form can be obtained easily as follows. First, one can write down immediately the

contribution of the first five terms by using the result (3.28) obtained from the double cuts, as explained

below. Then, subtracting them from the cut integrand, the remaining terms take a very simple form which

can be easily simplified into the last three terms.
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Figure 6: Triple cut of the integrals that correspond to the first five terms in (3.30). The

flow of the momenta is as specified in figure 5.

in two ways as shown in figure 6. Thus, the first four terms in (3.30) correspond to the

first four diagrams in figure 6, which are just the planar ladder integrals. The remaining

fifth term in (3.30) correspond to the last diagram in figure 6, which is the crossed ladder

integral with only one possible triple cut. Hence, the first five terms in (3.30) do not result

in any new contribution but reproduce the double-cut result in (3.28).

The remaining three terms in (3.30), however, are new contributions to the two-loop

ansatz detected by the three-particle cut. They can be expressed as the three-particle cut

of the following three integrals:

f
(2)
K6,(φ,φ)

∣
∣
∣

III

CT
= i 18




1

s12

p1

p2

l1

l3

l2
− s1l3
s12 l2

l1

l3

p1

p2

− s2l1
s12

l2

l3

l1
p1

p2



 .

(3.31)

These above three cut integrals can be lifted to full integrals, which can be simplified

further at the integral level to give a single scalar integral:

f
(2),III
K6,(φ,φ)

=
18

s12

p1

p2

. (3.32)
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Complete two-loop result

Now, we combine the results from all the cuts, (3.28) and (3.32), and obtain the two-loop

two-point form factor,24

f
(2)
K6,(φ,φ)

= 4f
(2),I
K6,(φ,φ)

+ f
(2),II
K6,(φ,φ)

+ 2f
(2),III
K6,(φ,φ)

= −6(l + p1)
2(l + p2)

2

(

4

p1

p2

l

+

p1

p2

l )

+
36

s12

p1

p2

+ s212

(

4

p1

p2

+

p1

p2

)

︸ ︷︷ ︸

f
(2)
BPS,2

,

(3.33)

where the integrals corresponding to the graphs are given in appendix B. Note that we have

multiplied f
(2),III
K6,(φ,φ)

by 2 to include the contribution from the permutation of the external

legs p1 ↔ p2. As in the one-loop case, we have presented the result by separating a part

that is identical to the BPS form factor f
(2)
BPS,2 given in (3.5).

The double and triple cuts we have considered should be able to detect all possible basis

integrals up to potential rational terms that might be missing when using four dimensional

unitarity. Comparing our result (3.33) with the one which we obtained from the Feynman

diagrams of appendix H, we have confirmed that such rational terms are absent.

As will be explained in section 4, the result given by (3.33) is, however, only for the

operator K6 defined in (1.10), but not for the Konishi operator K defined in (1.4). This

subtlety will be discussed in details in section 4. We will see that by a rigorous prescription

we can modify the above result in order to obtain the Konishi form factor.

3.5 One-loop three-point form factor

In this subsection, we compute the one-loop three-point form factor of K6. The computation

is similar to what we have done for the previous two-point case. We need to consider cuts

in all possible kinematic channels, which, apart from the q2-cut employed earlier for the

two-point form factors, contain also the sab-cut, as shown in figure 7. Combining the results

from both cuts ensures that no contribution to the ansatz is missed.

Unlike for the BPS form factor, the loop corrections to the tree-level form factor of K6

are in general different for different configurations of external particles. Therefore, we need

to consider the form factors with specific configurations of the external states individually.

We consider the scalar-scalar-gluon and fermion-fermion-scalar cases.25 We will discuss the

scalar-scalar-gluon case in some detail. The fermion-fermion-scalar result can be obtained

in the same way and we only present the final result.

24The above result matches the one in the unpublished notes of Boucher-Veronneau, Dixon and Penning-

ton [72].
25There could also be other external states with combinations of different fields, such as

F
(1)
K6

(1g
−

, 2g+ , 3g+ ) and F
(1)
K6

(1ψ1
, 2ψ234

, 3g+ ). Such form factors, however, do not contribute to the two-

loop cross section studied in section 5 as the corresponding tree-level results are zero, and we will not

consider them in this paper.
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Figure 7: The cuts needed to compute the one-loop three-point form factor of K6.

F
(1)
K6

(1φAB
, 2φCD

, 3g+)

We first consider the form factor of K6 with scalar-scalar-gluon external states. For the

sake of explicitness, we focus on F
(1)
K6

(1φ12 , 2φ34 , 3g+), which we abbreviate as F
(1)
K6,(φ,φ,g)

.

As shown in figure 7, we need to consider both the q2-cut and the sab-cut. Furthermore,

since the operator is a color singlet, we need to consider all possible cyclic permutations of

external on-shell legs in the cuts, as they contribute to the same color-ordered form factor.

Explicitly, we need to consider three cases for each channel in figure 7:

{a, b, c} → (I) {1φ12 , 2φ34 , 3g+}, (II) {2φ34 , 3g+ , 1φ12}, (III) {3g+ , 1φ12 , 2φ34} . (3.34)

In total, there are six cut channels to consider: (a-I), (a-II), (a-III) and (b-I), (b-II), (b-III),

such that (a-I)-(a-III) are the q2-cut while (b-I)-(b-III) are the sab-cut. Note the (I) and

(III) cases are actually related to each other by a flipping symmetry.

(a-I)-cut:

This is the q2-cut in figure 7 with the choice of external legs {pa, pb, pc} corresponding to

the particles {1φ12 , 2φ34 , 3g+}. As in the previous subsections, the cut integral is given by

the following equation,

F
(1)
K6,(φ,φ,g)

∣
∣
∣
(a-I)

=

∫

dPS2,{l} d
8ηl1,2F

(0)
K6,2

(−l1,−l2)A(0),MHV
5 (p1, p2, p3, l2, l1)

∣
∣
∣
(η11η

2
1)(η

3
2η

4
2)

= F
(0)
K6,(φ,φ,g)

i

∫

dPS2,{l}
〈l1 2〉2〈l2 1〉2 + 4〈l1 1〉〈l1 2〉〈l2 1〉〈l2 2〉+ 〈l1 1〉2〈l2 2〉2

〈l1 1〉〈3 l2〉〈l2 l1〉
〈1 3〉
〈1 2〉2

︸ ︷︷ ︸

C(a-I)

,

(3.35)

where the tree-level form factor F
(0)
K6,(φ,φ,g)

= F
(0)
K6

(1φ12 , 2φ34 , 3g+) is given in (3.11).

The above result can be reduced to an appropriate cut of integrals by using some
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spinor algebra. Without going through the detail, we present the result below:

C(a-I) = −s12s23
2

p1

p2

p3

l1

l2

− s12 + s13
2

p1

p2

p3

l1

l2

−
[
s13 + s23

2
− 3s2l1 ((s13 + s23)s1l1 + s12s23)

s212

] p1

p2

p3

l1

l2

+ 3

[(
q2 − 2s13

)
(s13 + s1l2)

s212
− s13 (s13s3l2 − s12s2l2)

s122s123

] p1

p2

p3

l1

l2

.

(3.36)

(a-II)-cut:

This is the q2 cut in figure 7 with the choice of external legs {pa, pb, pc} corresponding to a

different order of particles, namely {2φ34 , 3g+ , 1φ12}. The cut integral can be computed as

F
(1)
K6,(φ,φ,g)

∣
∣
∣
(a-II)

=

∫

dPS2,{l} d
8ηl1,2F

(0)
K6,2

(−l1,−l2)A(0),MHV
5 (p2, p3, p1, l2, l1)

∣
∣
∣
(η11η

2
1)(η

3
2η

4
2)

= F
(0)
K6,(φ,φ,g)

i

∫

dPS2,{l}
〈l1 1〉2〈l2 2〉2 + 4〈l1 1〉〈l1 2〉〈l2 1〉〈l2 2〉+ 〈l1 2〉2〈l2 1〉2

〈l1 2〉〈2 1〉〈1 l2〉〈l2 l1〉
︸ ︷︷ ︸

C(a-II)

.

(3.37)

After some spinor algebra, the above result can be expressed as cut of the following inte-

grals,

C(a-II) = −s23s31
2

p2

p3

p1

l1

l2

− s12 + s13
2

p2

p3

p1

l1

l2

− s12 + s23
2

p2

p3

p1

l1

l2

− 3
(

1 +
s1l1s2l2 − s2l1s1l2

s12s123

)
p2

p3

p1

l1

l2

.

(3.38)

(b-I) cut:

This is the (q−p3)2 cut in figure 7 with the choice of external legs {pa, pb, pc} corresponding

to the particles {1φ12 , 2φ34 , 3g+}. In this case, one of the building blocks is the tree-level

three-point form factor in (3.10). The cut integral is given by,

F
(1)
K6,(φ,φ,g)

∣
∣
(b-I)

=

∫

dPS2,{l} d
8ηl1,2F

(0),MHV
K6,3

(−l1,−l2, p3)A(0)
4 (p1, p2, l2, l1)

∣
∣
∣
(η11η

2
1)(η

3
2η

4
2)

= F
(0)
K6,(φ,φ,g)

i

∫

dPS2,{l}
〈l1 2〉2〈l2 1〉2 + 4〈l1 1〉〈l1 2〉〈l2 1〉〈l2 2〉+ 〈l1 1〉2〈l2 2〉2

〈l1 1〉〈2 l2〉〈3 l2〉〈l1 3〉
〈1 3〉〈2 3〉
〈1 2〉2

︸ ︷︷ ︸

C(b-I)

.

(3.39)
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It can be written as cut of integrals as

C(b-I) = −s12s13
2

p3

p1

p2
l2

l1

− s12s23
2

p1

p2

p3

l1

l2

+

[

− s13 + s23
2

+
3s1l2 ((s13 + s23)s2l2 + s12s13)

s122

] p3

p1

p2l2

l1

+

[

− s13 + s23
2

+
3s2l1 ((s13 + s23)s1l1 + s12s23)

s212

] p1

p2

p3

l1

l2 .

(3.40)

(b-II) cut:

This is the case of the (q − p1)
2 cut, the last of the independent cut channels, in figure 7

with the choice of external legs {pa, pb, pc} corresponding to the particles in the order of

{2φ34 , 3g+ , 1φ12}. The cut integral is given by

F
(1)
K6,(φ,φ,g)

∣
∣
(b-II)

=

∫

dPS2,{l} d
8ηl1,2F

(0),MHV
K6,3

(−l1,−l2, p1)A(0)
4 (p2, p3, l2, l1)

∣
∣
∣
(η11η

2
1)(η

3
2η

4
2)

= F
(0)
K6,(φ,φ,g)

i

∫

dPS2,{l}

(
〈l1 1〉〈l2 2〉 − 〈l1 2〉〈l2 1〉

)2

〈l1 2〉〈3 l2〉〈1 l2〉〈l1 1〉
〈3 1〉
〈2 1〉

︸ ︷︷ ︸

C(b-II)

,

(3.41)

which leads to

C(b-II) = −s12s23
2

p1

p2

p3
l2

l1

− s23s31
2

p2

p3

p1

l1

l2

− s12 + s13
2

p1

p2

p3l2

l1 − s12 + s13
2

p2

p3

p1

l1

l2 .

(3.42)

As previously mentioned, the cuts (a-III) and (b-III) give similar results to (a-I) and

(b-I), and can be obtained by a flipping symmetry, namely {p1 ↔ p2}. Hence, we will not

give them explicitly.

From the cuts to the full form factor

We find that all the above cut results are consistent with each other, i.e. the prefactors of

the graphs are identical when the same graph appears in different cut channels apart from

terms that vanish due to the on-shell condition for the cut momenta. Given all these cut

results, it is straightforward to lift the cut integrals, as described in appendix B, to obtain
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the full form factor26

f
(1)
K6,(φ,φ,g)

=

{

3

[
(s123 − 2s13) (s13 + s1l)

s212
− s13 (s13s3l − s12s2l)

s212s123
− 1

2

] p1

p2

p3

l

+
3s2l (s1l(s13 + s23) + s12s23)

s212

p1

p2

p3

l

+ {p1 ↔ p2}
}

+ f
(1)
BPS,3 ,

(3.43)

where f
(1)
BPS,3 denotes the BPS part that is given in (3.5). We point out that the above

result applies to form factors with any other non-zero scalar-scalar-gluon configuration

F
(1)
K6

(1φAB , 2φCD , 3g±).

F
(1)
K6

(1ψ1, 2ψ2, 3φ34)

For the form factor with fermion-fermion-scalar external states like F
(1)
K6

(1ψ1 , 2ψ2 , 3φ34), one

can proceed in the above steps for computing the cut integrand in all possible channels

and lifting the cut result to the full answer. Without giving details, we present the final

result, denoted by f
(1)
K6,(ψ,ψ,φ)

,

f
(1)
K6,(ψ,ψ,φ)

=

{

− 3s23
2

p2

p3p1

− 3

(

1− s12 − s13
s23

) p2

p3p1

+ 3

(
s12s2l − s13s3l

s23s123
− s2l − s3l

s23

) p1

p2

p3

l

+ 3

(
s12 + s13

2
+
s12s3l − s13s2l

s23

) p1

p2

p3

l

+ {p1 ↔ p2}
}

+
3s23s31

2

p2

p3

p1

+ f
(1)
BPS,3 .

(3.44)

Note that in the above result not all the contribution from box graphs are incorporated in

the analogous BPS part given in (3.5), unlike in the expression for the scalar-scalar-gluon

form factor (3.43). Also, in the first line of the equation there are new one-mass triangles

which do not exist in (3.43).

PV reduction and some interesting features of the results

We have obtained the full integral expressions for the form factors (3.43) and (3.44) of

K6. The results are obtained by using unitarity method fully at the integrand level. As

a result, the integrals still contain loop-momentum-dependent numerators. Such integrals

can be reduced further via PV reduction, see appendix C for details.

26 Recall that the prefactors that depend on the loop momenta are understood to appear in the integrand

of the integral represented by the respective graph each prefactor multiplies.
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After PV reduction, the results (3.43) and (3.44) are simplified to

f
(1)
K6,(φ,φ,g)

= −3

[

1 +
s213 + s223

(s13 + s23)2

] p1

p2

p3

− 6s13s23
(s13 + s23)2

p1

p2

p3

+
12s13s23

s12(s13 + s23)
ID3 [ℓ2ǫ ] + f

(1)
BPS,3 , (3.45)

f
(1)
K6,(ψ,ψ,φ)

= 3

(
s12 − s13
s12 + s13

+
s12 − s23
s12 + s23

) p1

p2

p3

− 3

(

1 +
s12 − s13
s12 + s13

) p2

p3

p1

− 3

(

1 +
s12 − s23
s12 + s23

) p3

p1p2

+
3s23s31

2
Fin

( p2

p3

p1

)

+ f
(1)
BPS,3 , (3.46)

where all relevant integrals are given in appendix B, and the finite box function is defined

in (4.8).

There are several interesting features in the above results we would like to comment

on.

• Going back to the expressions (3.43) and (3.44), we notice that besides a part identical

to the BPS form factor f
(1)
BPS,3, there are still triangle or box integrals left, which

separately contain IR divergences. This might cause a net IR divergences in addition

to the one contained in f
(1)
BPS,3, i.e. it would spoil the universality of the IR divergence.

However, as evident from the results (3.45) and (3.46), these additional IR divergences

cancel after PV reduction and hence the only the universal IR divergence of the BPS

part remains.

• There are remaining divergences given by bubble integrals. These are the UV di-

vergences, which have to be canceled by renormalizing the composite operator. See

section 5 for a further discussion.

• Besides the common BPS part, the two results (3.45) and (3.46) are quite different

from each other. This directly shows that the form factors of K6 with different

external legs (even with the same MHV degree) have very different structure and

need to be studied case by case.

• There a term in (3.43) involving the integral ID3 [ℓ2ǫ ] given in (B.7). It evaluates

to a rational term. Interestingly, we have found this contribution by applying four-

dimensional unitarity. This may not be surprising, since we apply the four-dimensional

unitarity to compute the integrand expressed in terms of a tensor-integral basis. The

rational term only appears after the PV reduction when the basis is reduced to scalar

integrals. In the usual one-loop (generalized) unitarity computation [73, 74], one

computes the coefficients of the scalar integrals directly and hence one would miss

this rational term. In appendix D, we have checked that the rational term in (3.43)
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matches with an independent Feynman diagrammatic computation, and hence the

final result for the form factor is complete.

• The integral coefficients of the form factors in (3.45) and (3.46) appear to contain

unphysical poles, such as 1
s13+s23

= 1
s123−s12 . These are, however, just spurious poles

which cancel when all contributions are taken into account. We demonstrate this in

details in appendix D.

Finally, we would like to mention that most of the above features (except the IR divergence)

do not occur for the one-loop scattering amplitudes and BPS form factors of the N = 4

SYM theory. In QCD they are, however, common as e.g. for the one-loop amplitudes [6].

Last but not least, recall that the above results for K6 still need to be modified to get

the correct ones for the Konishi form factor, as will be described in the next section. This

does not affect any of the above listed properties.

4 Konishi vs. K6

In this section, we discuss some important subtleties that arise when regulating the theory

by continuing the spacetime dimension from D = 4 to D = 4 − 2ǫ. Our unitarity-based

calculation made use of the on-shell superfield (1.7) that only captures all degrees of freedom

in strictly D = 4 dimensions. Hence, we had to keep the external states in the intermediate

steps in strictly D = 4. The on-shell superspace formulation has been so far successfully

used in computing scattering amplitudes and form factors of BPS operators. However, in

general this is not enough and the final result has to be lifted to D = 4−2ǫ dimensions. We

explain this in details below, taking the Konishi form factor as a concrete (counter)example.

In this section, the dimension always refers to the dimension of physical states rather than

the loop momenta. The loop momenta are lifted to D = 4− 2ǫ dimensions.

4.1 A subtlety in the dimension of intermediate states

When regulating the theory by continuing the spacetime dimension toD = 4−2ǫ, one has to

also specify how the various fields are continued. In conventional dimensional regularization

(CDR) [75] and the ’t Hooft Veltman (HV) scheme [76], the number of fermion flavors Nψ

and also the number of scalar flavors Nφ remain as in four dimensions and are hence kept

as Nψ = 4 and Nφ = 6, respectively. This does, however, break supersymmetry, since the

polarization vector ǫµ is taken in D = 4− ǫ dimension.

A scheme that preserves supersymmetry is dimensional reduction (DR) [77].27 In this

scheme, the number of scalar fields is changed to Nφ = 6 + 2ǫ, such that D + Nφ = 10

is independent of ǫ. It exploits the fact that four-dimensional N = 4 SYM theory can be

obtained by dimensional reduction of ten-dimensional N = 1 SYM theory. Performing the

dimensional reduction to D = 4 − 2ǫ dimensions instead, one obtains a regulated theory

that preserves N = 4 supersymmetry. The ten-dimensional gauge field AM ,M = 1, . . . , 10,

27Supersymmetry is also preserved in the four-dimensional helicity (FDH) scheme [67, 68], although in a

different way.
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then reduces to the D-dimensional gauge field Aµ and to Nφ = 10 − D = 6 + 2ǫ scalar

fields φI . Similarly, the ten-dimensional metric gMN reduces to the D-dimensional metric

gµν and δIJ .

The above fact forces us to revisit the previous calculations based on strictly four-

dimensional unitarity, since we have lifted the loop momenta in the integrals to D = 4−2ǫ

but kept the degrees of freedom of the external states in four dimensions. In particular, the

DR scheme is incompatible with the use of the N = 4 on-shell superfield (1.7), since the

Nφ = 6 + 2ǫ scalar fields do not fit into the six-dimensional antisymmetric representation

of the SU(4) R-symmetry group. In order to detect the differences between working with

external states in strictly four dimensions and the DR scheme, we examine the underlying

Feynman diagrams.

In Feynman diagrams, explicit factors of D = gµµ and Nφ = δI I arise whenever a

gauge or scalar field runs in a loop in which the respective Lorentz or flavor index also

forms a closed loop. These factors occur even if the index loop is apparently interrupted

when the gauge or scalar field splits into a pair of fermions that themselves build a loop.

This follows from the relations of the spacetime and scalar Clifford algebra into which the

ten-dimensional Clifford algebra splits; these are the algebras governing the interactions of

the bosons with the fermions. The corresponding splitting of the ten-dimensional vector-

fermion coupling is illustrated in figure 8. In the following, we understand closed loops to

→ +

Figure 8: In dimensional reduction, the interaction of the ten-dimensional vector (zigzag

line) with fermions (dashed) decomposes to one of a D-dimensional vector (wiggly line)

with fermions and one of a 10−D-dimensional scalar (solid line) with fermions.

mean closed index loops. We call an index loop externally closed if fields of the composite

operator are involved in the index loop and internally closed if the operator is not involved

in the index loop.

We look at internally closed index loops first. From the dimensional reduction from ten

dimensions, we know that an internally closed vector index loop always occurs together

with an internally closed scalar index loop. This is illustrated in figure 9. Hence, each

→ +

Figure 9: In dimensional reduction, a Feynman diagram with a closed ten-dimensional

vector loop (zigzag) decomposes to one with a closed 4(−2ǫ)-dimensional vector loop (wig-

gly) and one with a 6(+2ǫ)-dimensional scalar loop (plain).

factor of D for a closed Lorentz index loop is accompanied by a factor of Nφ for a closed
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scalar flavor index loop. This can also be seen in the concrete Feynman diagrams in

appendix H, e.g. by comparing the first two lines in table 2. The sum of both contributions

is proportional to D + Nφ = 10, both in the DR scheme and in strictly four dimensions.

Hence, as far as internally closed index loops are concerned, one is free to work with strictly

four-dimensional external fields.

The situation changes for externally closed index loops. Generically, the fields of a

composite operator involved in such a loop are only a subset of the fields in the theory, e.g.

only the scalar fields. In this case, a diagram in which the externally closed scalar loop

generates a factor Nφ is not paired with a diagram in which a vector field can circulate in

the loop and generate a factor D. Hence, the result is sensitive to working with external

states in strictly four dimensions or the DR scheme. On the other hand, in scattering

amplitudes and form factors of the BPS operators such as tr(φk12), no externally closed

index loops can occur. This is why the FDH scheme works so well for these quantitites.

Let us consider the particular example of the Konishi primary operator (1.4); it is

defined as the trace over all scalars and can hence be part of an externally closed scalar index

loop. The Konishi primary is the highest-weight state of a so-called long supermultiplet of

psu(2, 2|4). Supersymmetry guarantees that all members of this supermultiplet have the

same anomalous dimension (1.6) – unless it is broken by the regularization scheme. In the

supersymmetry-preserving DR scheme, the Konishi primary is define as the trace over all

Nφ = 10 −D = 6 + 2ǫ scalars. While the expression (1.4) can easily be modified to sum

over this regularization-dependent number of scalars, the expression (1.10) is only valid for

Nφ = 6 and hence it is not the highest-weight state of the superconformal multiplet. In

particular, its anomalous dimension does not equal (1.6), which is usually calculated using

a descendent of the Konishi operator in the SU(2) or SL(2) sector.28

A priori, this discrepancy requires the use of methods beyond those based on the on-

shell superspace. Fortunately, this is not the case. In the following, we will argue that

– at least for the cases at hand – the strictly four-dimensional result can be lifted to the

D-dimensional result with a simple prescription.

4.2 Lifting intermediate states for form factors

Consider a generic multi-loop diagram contributing to the two-point form factor of the

operator tr(φIφJ) with outgoing scalar fields φK and φL. It can only have one of the three

types of R-charge flow depicted in figure 10 together with the respective tensor structures.

Only in the case (c), an externally closed scalar index loop exist. The BPS operator

tr(φ(IφJ)) defined in (1.2) obtains contributions from the cases (a) and (b) but not from

case (c). The Konishi operator tr(φIφI) defined in (1.4) obtains contributions from all

three cases. Thus, we can isolate the contribution from case (c) by subtracting the result

for the BPS operator from the result for the Konishi operator. In D dimensions, the single

externally closed scalar index loop present in the case (c) should not generate a factor 6

but instead a factor Nφ = 10−D = 6+2ǫ. Hence, in order to lift the 4-dimensional result

28The additional 2ǫ scalar components in the D-dimensional continuation of the Konishi operator are an

example of so-called evanescent operators, which also appear in the context of QCD [78]. See [75] for a

textbook treatment.
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q

p1

p2

=

I

J

K

L

(a) δIKδJL

+

I

J

K

L

(b) δILδJK

+

I

J

K

L

(c) δIJδKL

Figure 10: According to R-charge conservation, only three different contractions of the

scalar flavors can exist in a generic multi-loop diagram with incoming operator tr(φIφJ)

and outgoing scalar fields φK and φL: (a) δIKδJL (blue), (b) δILδJK (green) and (c) δIJδKL
(red).

to the 4− 2ǫ-dimensional result, we simply have to multiply the contributions of case (c),

i.e. the difference of the Konishi and BPS case, by the ratio

rφ =
Nφ

6
=

6 + 2ǫ

6
. (4.1)

Similar arguments are valid for the three-point form factor of the Konishi operator. In

our calculation, only its components with either two scalar legs and one gluon leg or two

fermion legs and one scalar legs appear. While in the former case the previous arguments

directly apply, in the latter case a slight modification is necessary. A generic multi-loop

diagram of the latter type, which has incoming operator tr(φIφJ) and outgoing fields φK ,

ψA and ψB , can only have one of the three possible R-charge flows show in figure 11. An

q

p1

p2

p3

=

I

J

K

A

B

(a) δIK(σJ )AB

+

I

J

K

A

B

(b) (σI)ABδ
JK

+

I

J

K

A

B

(c) δIJ(σK)AB

Figure 11: According to R-charge conservation, only three different contractions of the

scalar flavors can exist in a generic multi-loop diagram with incoming operator tr(φIφJ ),

outgoing scalar fields φK and outgoing fermion fields ψA and ψB: a) δIK(σJ)AB (blue), b)

(σI)ABδJK (green) and c) δIJ(σK)AB (red).

externally closed scalar index loop exists only in the case (c). In analogy to the case of

the two-point form factor, we can isolate this case by subtracting the result for the BPS

operator from the result for the Konishi operator. Then, we correct the number of scalars

by multiplying this difference by rφ.

In fact, these arguments can be generalized to any number n of points. Note that we

have performed the analysis for the Konishi form factor using real scalars φI . The results

of our analysis, however, are formulated in terms of a part identical to the form factor of

– 32 –



the BPS operator and a part unique for the Konishi operator, where the former stems from

the contribution of (a)–(b) and the latter from the contribution of (c). In particular, this

formulation of the results of our analysis makes no reference to the kind of scalars we are

using to express these operators. This allows us to perform the calculations using scalars

transforming in the antisymmetric representation of SU(4), and hence N = 4 on-shell

super space – as done in the previous section.

In all form factor ratios in the previous section, we have to introduce rφ by replacing

f
(ℓ)
K6,n

= f
(ℓ)
BPS,n + f̃

(ℓ)
K6,n

rφ−→ f
(ℓ)
BPS,n + rφf̃

(ℓ)
K6,n

= f
(ℓ)
BPS,n + f̃

(ℓ)
K,n = f

(ℓ)
K,n , (4.2)

where fBPS,n is the part identical to the BPS form factor and

f̃K6,n = f
(ℓ)
K6,n

− f
(ℓ)
BPS,n , f̃K,n = f

(ℓ)
K,n − f

(ℓ)
BPS,n , (4.3)

are the parts unique for the operators (1.10) and (1.4), respectively. More explicitly, the

replacement rule reads

f̃
(ℓ)
K6,n

rφ−→ rφf̃
(ℓ)
K6,n

= f̃
(ℓ)
K,n . (4.4)

We have focused on the form factor of the Konishi operator. A similar discussion should

also be applicable to other operators containing a contraction of flavor or vector indices. As

in the Konishi case, it is essential to be able to formulate the results in terms of two parts,

one that contains an externally closed index loop and the other that does not. The part

without externally closed index loop should be able to be computed independently, such

as the BPS part in the Konishi form factor. Given such a decomposition, one can then use

the efficient on-shell techniques, together with a simple modification rule as (4.2). Another

example of an operator with contracted flavor indices is tr(φIφIφK), which has one-loop

anomalous dimension 8. An example with contracted vector indices is tr(Dµφ12Dµφ12),

which has one-loop anomalous dimension 12. In this case, the differences in the one-loop

two-point form factor between intermediate states in D = 4 and D = 4 − 2ǫ dimensions

are precisely given by the rational terms in the PV reduction formula (C.5).

4.3 Final Konishi form factors

Finally, we list the non-vanishing results for the Konishi form factor, which will be used as

the input in the next section to calculate the cross section. They can be obtained by using

the form factors computed in section 3 and integral results in appendix B. Note that the

f̃K parts are corrected by the rφ factor according to the prescription (4.4). The full form

factors can be obtained as f
(ℓ)
K,n = f

(ℓ)
BPS,n + f̃

(ℓ)
K,n.

Two-point one-loop

f
(1)
BPS,2 =

( µ2

−q2
)ǫ

[

− 2

ǫ2
+
π2

6
+

14

3
ζ3ǫ+

47

720
π4 ǫ2

]

+O(ǫ3) ,

f̃
(1)
K,(φ,φ) =

( µ2

−q2
)ǫ

[

−6

ǫ
− 14−

(

28− π2

2

)

ǫ−
(

56− 7π2

6
− 14ζ3

)

ǫ2
]

+O(ǫ3) .

(4.5)
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Two-point two-loop

f
(2)
BPS,2 =

( µ2

−q2
)2ǫ

[
2

ǫ4
− π2

6ǫ2
− 25ζ3

3ǫ
− 7π4

60

]

+O(ǫ) ,

f̃
(2)
K,(φ,φ) =

( µ2

−q2
)2ǫ

[
12

ǫ3
+

46

ǫ2
+

152 − 2π2

ǫ
+

(

484− 35π2

3
− 56ζ3

)]

+O(ǫ) .

(4.6)

Three-point one-loop

f
(1)
BPS,3 =− cΓ

ǫ2

[( µ2

−s12

)ǫ
+
( µ2

−s23

)ǫ
+

( µ2

−s31

)ǫ]

+ FB(p1, p2, p3,−q) + FB(p2, p3, p1,−q) + FB(p3, p1, p2,−q) ,

f̃
(1)
K,(φ,φ,g) =− rφcΓ

ǫ(1− 2ǫ)

{

3

[

1 +
s213 + s223

(s13 + s23)2

]( µ2

−q2
)ǫ

+
6s13s23

(s13 + s23)2

( µ2

−s12

)ǫ

+
12s13s23

s12(s13 + s23)

ǫ

(2− 2ǫ)

1

s13 + s23

[

s12

( µ2

−s12

)ǫ
− q2

( µ2

−q2
)ǫ]

}

,

f̃
(1)
K,(ψ,ψ,φ) =− rφcΓ

ǫ(1− 2ǫ)

{

3

(

1 +
s12 − s13
s12 + s13

)( µ2

−s23

)ǫ
+ 3

(

1 +
s12 − s23
s12 + s23

)( µ2

−s13

)ǫ

− 3

(
s12 − s13
s12 + s13

+
s12 − s23
s12 + s23

)( µ2

−q2
)ǫ
}

+
3rφ
2

FB(p2, p3, p1,−q) ,

(4.7)

in which we have defined the finite part of the one-mass box integral as

FB(p1, p2, p3,−q) = −cΓ
ǫ2

[( µ2

−s12

)ǫ
h
(

− s31
s23

)

+
( µ2

−s23

)ǫ
h
(

− s31
s12

)

−
( µ2

−q2
)ǫ
h
(

− s31q
2

s12s23

)]

,

(4.8)

where h(x) = 2F1(1,−ǫ, 1 − ǫ, x)− 1 and q2 = s12 + s23 + s31.

5 BPS and Konishi cross sections

In this section, we compute the cross section discussed in section 2. We first discuss in

detail the case of the BPS operator (1.2) as a warmup example. Then, we compute one of

our main results: the Konishi cross section to two-loop order. We will use the Konishi form

factors given in subsection 4.3 that were obtained from the form factors of K6 computed in

section 3 by applying the prescription of section 4. All form factors f
(ℓ)
K,n and f̃

(ℓ)
K,n appearing

in this section are hence those for the Konishi operator (1.4) which are explicitly given in

subsection 4.3.

5.1 BPS cross section up to one-loop

As a warmup, we first consider in details the cross section corresponding to the imaginary

part of the two-point correlation function of BPS operators, 〈0| tr(φ212)(x) tr(φ234)(0)|0〉.
Since the operators are protected, the cross section has no loop corrections, i.e.

σBPS = σ
(0)
BPS +O(ǫ) . (5.1)

We check this explicitly up to one-loop level.
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Figure 12: Tree-level squared matrix element.

+ +

Figure 13: One-loop squared matrix elements.

Tree level

Let us start with the tree-level cross section. The squared matrix element, as shown in

figure 12, is the product of two two-point tree-level BPS form factors, one for tr(φ212) and

one for its conjugate tr(φ234). The tree-level BPS non color-ordered super form factor can

be obtained from (2.11) and (3.2). It is easy to perform the color factor summation and

the fermionic integration. This yields the squared matrix element

M(0)
BPS,2 =

1

2!

∑

a1,a2

∫

d4η1 d
4η2 F̂ (0)

BPS(1, 2) F̂∗(0)
BPS (1, 2) =

N2
c − 1

2
. (5.2)

The tree-level cross section is given by the integral (E.2) of M(0)
BPS,2 over the two-particle

phase space in D = 4− 2ǫ dimensions. This yields

σ
(0)
BPS =

∫

dPS2 M(0)
BPS,2 =

(µ2

q2

)ǫ 1

4(16π)
1
2
−ǫ Γ(32 − ǫ)

N2
c − 1

2
. (5.3)

One loop

The one-loop cross section is given by the sum of a two-particle and a three-particle channel,

as shown in figure 13:

σ
(1)
BPS =

∫

dPS2M(1)
BPS,2 +

1

g2

∫

dPS3M(0)
BPS,3 . (5.4)

Two-particle channel

The squared matrix element of the two-particle channel corresponds to the first two graphs

of figure 13. As an equation, it reads

M(1)
BPS,2 =

1

2!

∑

a1,a2

∫

d4η1 d
4η2

[

F̂ (1)
BPS,2 F̂

∗(0)
BPS,2 + F̂ (0)

BPS,2 F̂
∗(1)
BPS,2

]

= 2M(0)
BPS,2 ℜ

(
f
(1)
BPS,2

)
,

(5.5)

where ℜ denotes the real part, and f
(ℓ)
O,n is the ratio between the ℓ-loop and tree-level

n-point form factor of the operator O as defined in (3.1). The tree-level form factor is

absorbed into M(0)
BPS,2. For short notation, we denote F̂O(1, .., n) as F̂O,n.

– 35 –



There is an important point related to the i0-prescription to be explained here. Two-

point form factors acquire a factor of (−q2± i0)−ǫ for each loop. The function f
∗(1)
BPS,2 is the

complex conjugate of f
(1)
BPS,2 and can be obtained from the latter by replacing (−q2 − i0)−ǫ

with (−q2 + i0)−ǫ. The sum of them amounts to taking the real part of f
(1)
BPS,2. Hence, we

need the real part of (−q2 ± i0)−ǫ, which is given by (see e.g. [79])

ℜ(−q2 ± i0)x =
Γ(1 + x)Γ(1− x)

Γ(1 + 2x)Γ(1− 2x)
(q2)x . (5.6)

Using this result to determine the real part of the form factor (4.5) and then inserting

it into (5.5) together with the tree-level result (5.2) and performing the two-particle phase

space integral (E.2), we obtain for the first term in (5.4)

σ
(1)
BPS,2 =

∫

dPS2 M(1)
BPS,2 = σ

(0)
BPS

(µ2

q2

)ǫ
(

− 4

ǫ2
+

7π2

3

)

+O(ǫ) . (5.7)

Three-particle channel

The squared matrix element of the three-particle channel is given by the last graph of

figure 13. The MHV and NMHV non-color-ordered three-point form factor (2.11) can be

obtained using (3.2) and (3.7). Performing the color summation and fermionic integration,

we find the squared matrix element

M(0)
BPS,3 =

1

3!

∑

a1,a2,a3

∫

d4η1 d
4η2 d

4η3

[

F̂MHV,(0)
BPS,3 F̂∗NMHV,(0)

BPS,3 + F̂NMHV,(0)
BPS,3 F̂∗MHV,(0)

BPS,3

]

=
2

3
g2YMNc (N

2
c − 1)

(q2)2

s12s23s31
.

(5.8)

Performing the three-particle phase space integral by using (E.3), we obtain for the second

term in (5.4)

σ
(1)
BPS,3 =

1

g2

∫

dPS3 M(0)
BPS,3 = σ

(0)
BPS

(µ2

q2

)ǫ
(

4

ǫ2
− 7π2

3

)

+O(ǫ) . (5.9)

Summing (5.7) and (5.9) together as prescribed by (5.4), we see that both contributions

cancel and hence that (5.1) exactly holds at one-loop level.

5.2 Konishi cross section up to two-loop

Next, we compute the Konishi cross section. We start with the discussion of an important

simplification for the computation, which exploits the fact that BPS cross section (5.1) is

protected and occurs as a contribution in the Konishi cross section.

First, at tree level, the squared matrix elements of the Konishi and the BPS cross

section satisfy the following simple relation29

M(0)
K,n =

∑

colors

∑

spins
helicities

F̂ (0)
K,nF̂

∗(0)
K,n = 6

∑

colors

∑

spins
helicities

F̂ (0)
BPS,nF̂∗(0)

BPS,n = 6M(0)
BPS,n ,

(5.10)

29Note that the Konishi tree-level form factors with specified external legs are identical to the correspond-

ing BPS form factors.
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where the factor 6 originates from the contribution of all scalar flavor degrees of freedom

in the two-point function of the Konishi operator (1.4) that does not occur for the BPS

operator.30

Furthermore, the loop correction of the Konishi form factor can be written as linear

combination of two contributions: one that is identical to the BPS form factor and the other

one that is defined in (4.3). We can introduce a corresponding squared matrix element that

includes a subtraction of the BPS part as

M̃(ℓ)
K,n = M(ℓ)

K,n − 6M(ℓ)
BPS,n , (5.11)

where the factor 6 takes into account that at any loop order ℓ the contribution M(ℓ)
BPS,n

built from two BPS-type components of the Konishi form factor receives a factor 6 as in

(5.10).

Since the BPS cross section (5.1) receives no loop corrections, this means that at loop

level, we only need to consider the squared matrix elements M̃(ℓ)
K defined in (5.11), namely

σ
(ℓ)
K =

ℓ+1∑

n=2

g2(2−n)
∫

dPSnM̃(ℓ+2−n)
K,n , ℓ ≥ 1 , (5.12)

which does not contain a pure BPS contribution compared to (2.18). Note in particular

that M̃(0)
K,n = 0, therefore, the sum of n can be terminated already at ℓ+1. As we will see,

this simplifies the computation dramatically.

From (5.10), it immediately follows that the tree-level cross section for the Konishi

operator also contains an extra factor 6 compared to the one of the BPS-operator. Hence,

σ
(0)
K =

∫

dPS2M(0)
K,2 = 6σ

(0)
BPS . (5.13)

At loop-level, it is convenient to factorize out σ
(0)
K .

5.2.1 One-loop result

The bare one-loop Konishi cross section receives contributions from products of tree-level

and one-loop two-point form factors and of tree-level three-point form factors as shown in

figure 13. The squared matrix element of the two-particle channel is given by

M(1)
K,2 =

1

2!

∑

a1,a2

∫

d4η1 d
4η2

(

F̂ (1)
K,2 F̂

∗(0)
K,2 + F̂ (0)

K,2 F̂
∗(1)
K,2

)

= 2M(0)
K,2 ℜ

(
f
(1)
K,(φ,φ)

)
, (5.14)

where we use the abbreviation f
(1)
K,(φ,φ) = f

(1)
K,2(1φ12 , 2φ34).

31

30Since we use the FDH scheme, we get an integer factor 6 compared to the BPS result which holds for

(1.9) where no summation over the scalar flavors occurs. In another prescription, one might have to replace

6 by Nφ = 6 + 2ǫ. In any case, this factor cancels out when the cross section is divided by the tree-level

cross section as e.g. in (2.14).
31The non-zero two-point tree-level form factor must contain two external scalar legs. Therefore, it is

not necessary to consider other external states such as f
(1)
K,2(1g+ , 2g

−

), which are anyway zero as shown in

section 3. A similar argument applies also to the following two-loop computation.
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(

Z(1)
K

)

+
(

Z(1)
K

)

Figure 14: One-loop correction from one-loop renormalization constant.

As discussed above, the result for the three-particle channel cancels with the BPS part

in the two-particle channel. Therefore, we can subtract the BPS part from (5.14), as in

(5.11) This gives

M̃(1)
K,2 = 2M(0)

K,2 ℜ
(
f̃
(1)
K,(φ,φ)

)
, (5.15)

where f̃
(1)
K,(φ,φ) is given in (4.5). Performing the two-particle phase space integral (E.2), the

one-loop bare cross section reads

σ
(1)
K =

∫

dPS2 M̃(1)
K,2 = σ

(0)
K

(µ2

q2

)ǫ
(

−12

ǫ
− 28

)

+O(ǫ) . (5.16)

The divergence in (5.16) should be canceled by the one-loop correction of the Konishi

operator obtained from the one-loop term Z(1)
K in the operator renormalization constant

ZK, as shown in figure 14, which is imply given by

σ
(1)

Z(1)K = 2Z(1)σ
(0)
K . (5.17)

Since this contribution has to cancel the overall UV divergence of (5.16), we immediately

find

Z(1)
K =

6

ǫ
. (5.18)

Comparing this result with the one-loop term of the expansion (2.3) reproduces the one-

loop Konishi anomalous dimension γ(1) = 12 first obtained in [43, 44].

The renormalized one-loop cross section is hence given by

σ
(1)
K,R = σ

(1)
K + σ

(1)

Z(1)K = σ
(0)
K

(

12 log
q2

µ2
− 28

)

+O(ǫ) . (5.19)

As predicted in (2.15), the coefficient of log q2

µ2
also reproduces the correct one-loop anoma-

lous dimension.

5.2.2 Two-loop result

The two-loop cross section is obtained from the contributions to the squared matrix el-

ements that are depicted in figure 15. As discussed at the beginning of this section, we

can neglect the contribution that is proportional to the BPS cross section. In particular,

it is not necessary to consider the four-particle channel contribution in figure 15c, which

involves the complicated four-particle phase space integral. This simplifies the computa-

tion significantly. In the following, we compute the contributions from the two-particle and

three-particle channel separately.
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Figure 15: The two-loop bare squared matrix element.

Two-particle channel

The full contribution of the two-particle channel consists of three terms
∫

dPS2 M̃(2)
K,2 +

∫

dPS2M(2)

Z(1)K,2 +
∫

dPS2 M(2)

Z(2)K,2 , (5.20)

where the first term is the bare contribution, and the second and the third term involve

the one- and two-loop contributions of the renormalized Konishi operator that are given as

multiplication with the respective term of the renormalization constant ZK. We compute

the first two terms and then determine Z(2)
K from the condition that all divergences are

canceled.

The squared matrix element obtained from the bare form factors is shown in figure

15a. In analogy to (5.15), the first two graphs yield

M̃(2),I
K,2 = 2M(0)

K,2 ℜ
(
f̃
(2)
K,(φ,φ)

)
, (5.21)

where f̃
(2)
K,(φ,φ) is given in (4.6).

The third graph of figure 15a contributing to the squared matrix element has no lower-

loop counterpart and needs to be discussed in detail. It is the product of two one-loop

Konishi form factors, and each of them is a linear combination of the BPS part f
∗(1)
BPS,2 and

the f̃
(1)
K,2 part. After subtracting the product of two BPS parts, we obtain

M̃(2),II
K,2 = M(0)

K,2

[

2ℜ
(

f̃
(1)
K,(φ,φ)f

∗(1)
BPS,2

)

+ f̃
(1)
K,(φ,φ)f̃

∗(1)
K,(φ,φ)

]

, (5.22)

where the form factors are given in (4.5).32

Integrating the sum of the two previous contributions over the two-particle phase space

(E.2) yields the bare cross section of the two-particle channel. It explicitly reads

σ
(2)
K,2 =

∫

dPS2
(
M̃(2),I

K,2 + M̃(2),II
K,2

)

= σ
(0)
K

(µ2

q2

)2ǫ
[
48

ǫ3
+

184

ǫ2
+

584 − 56π2

ǫ
+ 1724 − 668

3
π2 − 224ζ3

]

+O(ǫ) .

(5.23)
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)(

Z(1)
K
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Figure 16: The contribution from the one-loop renormalization constant to the two-

particle channel.

Next, we consider the contribution involving the one-loop renormalization constant. It

is shown in figure 16 and cancels some one-loop subdivergences contained in the bare cross

section (5.23). The squared matrix element is given by the expression

M(2)

Z(1)K,2 = M(0)
K,2

[

4ℜ
(
f
(1)
K,(φ,φ)

)
Z(1)
K +

(
Z(1)
K

)2
]

. (5.24)

Inserting the explicit expressions (4.5) into (5.24) and performing two-point phase space

integration (E.2), we obtain

σ
(2)

Z(1)K,2 =
∫

dPS2M(2)

Z(1)K,2

= σ
(0)
K

[(µ2

q2

)ǫ
(

− 48

ǫ3
− 144

ǫ2
− 336 − 28π2

ǫ
− 672 + 84π2 + 112ζ3

)

+
36

ǫ2
− 12

ǫ
+ 4

]

+O(ǫ) .

(5.25)

Three-particle channel

There are two contributions to the two-loop cross section in the three-particle channel:

1

g2

[ ∫

dPS3 M̃(1)
K,3 +

∫

dPS3 M(1)

Z(1)K,3

]

. (5.26)

The contribution involving the bare form factor is determined from the diagrams of

figure 15b. The expression reads

M(1)
K,3 =

1

3!

∑

ai

∫ 3∏

i=1

d4ηi

1∑

ℓ=0

[

F̂ (ℓ),MHV
K,3 F̂∗(1−ℓ),NMHV

K,3 + F̂ (ℓ),NMHV
K,3 F̂∗(1−ℓ),MHV

K,3

]

= 6M(0)
K,3

[

2ℜ
(

f
(1)
K,(φ,φ,g)

) s212
(q2)2

+ 2ℜ
(

f
(1)
K,(ψ,ψ,φ)

) s13s23
(q2)2

]

.

(5.27)

In the second line, we have not indicated the MHV degree, since the loop correction is

the same for the MHV and the NMHV amplitude. This allows us to use the abbreviation

f
(1)
K,3 = f

(1),MHV
K,3 = f

(1),NMHV
K,3 for any fixed three-particle final state. Moreover, we have ab-

breviated the form factors of the two different final states as f
(1)
K,(φ,φ,g) = f

(1)
K,3(1φ12 , 2φ34 , 3g+)

and f
(1)
K,(ψ,ψ,φ) = f

(1)
K,3(1ψ1 , 2ψ2 , 3φ34).

32Note that for the Konishi form factors we have specified the external legs, while for BPS we do not.
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+
(

Z(1)
K

)

Figure 17: The contribution from the one-loop renormalization constant to the three-

particle cross section.

Since the one-loop corrections differ from each other, as given in (4.7), we need to treat

the contribution of these two form factors separately. Note the factors
s212
(q2)2 and s13s23

(q2)2 come

from the square of tree-level form factors divided by the tree-level matrix element M(0)
K,3.

After subtracting the BPS part, we find

M̃(1)
K,3 = 6M(0)

K,3

[

2ℜ
(

f̃
(1)
K,(φ,φ,g)

) s212
(q2)2

+ 2ℜ
(

f̃
(1)
K,(ψ,ψ,φ)

) s13s23
(q2)2

]

. (5.28)

Inserting the explicit results (4.7) and performing the three-particle phase space integration

(E.3), we find that the contribution to the cross section is given by

σ
(2)
K,3 = σ

(0)
K

(µ2

q2

)2ǫ
[

− 48

ǫ3
− 112

ǫ2
− 224 − 56π2

ǫ
− 544 +

632

3
π2 + 848ζ3

]

+O(ǫ) .

(5.29)

The one-loop renormalization constant (5.18) contributes as shown in figure 17. To-

gether with (5.24) these terms cancel all one-loop subdivergences contained in the bare

cross section (5.23). The squared matrix element reads

M(1)

Z(1)K,3 = 2M(0)
K,3 Z

(1)
K . (5.30)

The corresponding cross section can be computed as in (5.9), and is given by

σ
(2)

Z(1)K,3 =
1

g2

∫

dPS3M(1)

Z(1)K,3 = σ
(0)
K

(µ2

q2

)ǫ
[
48

ǫ3
− 28π2

ǫ
− 400ζ3

]

+O(ǫ) . (5.31)

Summing (5.23), (5.25), (5.29) and (5.31), we find the cross section, which only contains

the two-loop overall UV divergence after the subdivergences have been cancelled.33 It reads

σ
(2)
K,2 + σ

(2)

Z(1)K,2 + σ
(2)
K,3 + σ

(2)

Z(1)K,3

= σ
(0)
K

[

− 36

ǫ2
+

24

ǫ
+ 72 log2

q2

µ2
− 384 log

q2

µ2
+ 508 + 72π2 + 336ζ3

]

+O(ǫ) .

(5.32)

Two-loop renormalization constant

So far we have not included the third contribution of (5.20) involving the two-loop renor-

malization constant. In analogy to (5.17), it reads

σ
(2)

Z(2)K = 2σ
(0)
K Z(2)

K . (5.33)

33All infrared divergences should be already canceled between the different channels.
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Since this contribution has to cancel the overall UV divergence of (5.32), we immediately

find

Z(2)
K =

18

ǫ2
− 12

ǫ
. (5.34)

Comparing this with the expansion of (2.3) in terms of the anomalous dimension to two-

loop order yields the known one- and two-loop Konishi anomalous dimension first obtained

in [43, 44]

γ
(1)
K = 12 , γ

(2)
K = −48 . (5.35)

Adding (5.33) to (5.32) yields the renormalized two-loop cross section

σ
(2)
K,R = σ

(0)
K

[

72 log2
q2

µ2
− 384 log

q2

µ2
+ 508 + 72π2 + 336ζ3

]

+O(ǫ) , (5.36)

Finally, we compute the second order term in the expansion of the logarithm

[

log

(
σK,R

σ
(0)
K

)](2)

=
σ
(2)
K,R

σ
(0)
K

− 1

2

(
σ
(1)
K,R

σ
(0)
K

)2

= −48 log
q2

µ2
+116 + 72π2 + 336ζ3+O(ǫ) , (5.37)

We find that the coefficient of log q2

µ2 gives the correct two-loop anomalous dimension, as

expected from (2.15).

Including also the one-loop result (5.19), the Konishi cross section is given by

log

(
σK,R

σ
(0)
K

)

= g2
(

12 log
q2

µ2
− 28

)

+ g4
(

−48 log
q2

µ2
+ 116 + 72π2 + 336ζ3

)

+O(g6, ǫ) .

(5.38)

Indeed, this result is in accord with (2.15) since the prefactor of the logarithm is the Konishi-

anomalous dimension to two-loop order given e.g. in (5.34). Moreover, the remaining finite

terms yield the constant C, and by a comparison with (2.16) they determine the one- and

two-loop terms of the constant M in (2.4). It would be nice to have an independent check

of the two-loop contribution to C.

Some discussion

There are different routes one can pursue to compute the renormalized cross section. In

the above presentation, we have treated the bare contribution and the terms involving the

renormalization constant separately at the cross section level. One may also perform the

renormalization of the form factors first, as described in appendix F, and then compute

the renormalized cross section directly with them. Furthermore, the terms involving the

renormalization constant can be obtained directly by expanding the relation (G.1). For

example, the sum of (5.25) and (5.31) that involve the one-loop renormalization constant

can be obtained as34

σ
(2)

Z(1)K,2 + σ
(2)

Z(1)K,3 = 2Z(1)σ
(1)
K + (Z(1))2 . (5.39)

34Note in this case, one needs the result of one-loop cross section up to O(ǫ) order. The result (5.16)

based on (5.12) is not enough, since σBPS is not zero at O(ǫ) order.
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We have checked that these different ways give the same result.

As discussed in appendix G, the above result depends on the renormalization scheme.

One can define the new coupling at which the subtraction is performed as g̺ = g e̺ǫ and

then expand the expressions in terms of the original coupling g. This scheme change can

be implemented by simply replacing in all the above equations Z(ℓ)
K → Z(ℓ)

K e2̺ǫ. With

such a modification in the above computation, one finds that the renormalized cross sec-

tion (5.38) acquires a finite additive contribution 2γK̺, demonstrating that M in (2.4) is

scheme-dependent. This is exactly as expected from (G.7), since the scheme change can

be understood as a change of the ’t Hooft mass µ→ µ e−̺.

Finally, let us briefly comment on the FDH scheme we have chosen in the computation.

In the FDH scheme, we set the number of external scalars to 6 and use polarization vectors

in D = 4 dimensions for the form factors. As discussed in section 2, this corresponds to

the prescription given in (2.19), where the sum of the degrees of freedom for the external

legs is performed by the η-integration based on the SU(4) representation. One can also

perform a detailed analysis at the diagrammatic level, as for the form factors in section

4, which leads to an alternative prescription for obtaining the cross section in D = 4− 2ǫ

dimensions. We will not present the details in the paper, but we have checked that both

prescriptions give identical results at least up to the two-loop order.

6 Conclusion and outlook

In this paper, we have studied form factors of non-protected operators in N = 4 SYM

theory, specifically the Konishi operator, using on-shell unitarity techniques. We have

obtained explicit new results of the three-point form factor at one-loop and two-point form

factors up to two-loop order, given in (4.5)– (4.7). The application of on-shell methods to

determine such form factors, which are partial off-shell quantities involving both, composite

operators and on-shell states, provides a step to deepen our understanding of the connection

between modern on-shell techniques and the off-shell world of correlation functions.

Another important aspect of the paper is to provide a physical observable within

N = 4 SYM, given by a cross-section-type quantity: the inclusive decay rate of a state,

described by a composite operator carrying off-shell momentum q, into any final on-shell

multi-particle state. We gave a formulation of how to compute this observable. Using the

Konishi form factor results mentioned above, we performed an explicit computation of the

total cross section up to two-loop order, given in (5.38).

The UV divergences appearing in the Konishi form factors together with the IR di-

vergences require the renormalization of the operator. This is carried out explicitly in the

computation of the total cross section in which the IR divergences cancel. We reproduced

the known Konishi anomalous dimension up to two-loop order from the renormalization

constant and also identified it as the coefficient of the log q2

µ2
term in the renormalized cross

section (5.38).

Since the Konishi operator is not protected by supersymmetry, interesting subtleties

and new features appeared, which we now summarize.
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First, an important subtlety occurs in the unitarity-based computation of the Konishi

form factors. The Konishi primary is a trace of all scalars. In order to preserve super-

symmetry, the Konishi operator has to be continued to D = 4 − 2ǫ dimensions, i.e. the

number of scalar field flavors that is summed over has to be Nφ = 10 − D. However,

working with 4-dimensional unitarity based on Nair’s on-shell superspace means that one

computes the form factor for the different operator K6, which in D = 4 − 2ǫ dimensions

has Nφ = 6 scalars rather than Nφ = 6 + 2ǫ. In order to find the Konishi form factor,

the results based on four-dimensional unitarity have to be modified when they are lifted

to D = 4 − 2ǫ dimensions where the occurring divergences are regularized. We provide a

rigorous prescription (4.2) for this lift that yields the form factors of the Konishi operator.

Second, some interesting features are not present for other on-shell quantities in N = 4

SYM theory studied so far, such as scattering amplitudes or the BPS form factors as partial

off-shell quantities. The bare Konishi form factor contains bubble integrals and bubble

subintegrals which contain the UV divergences. Moreover, the one-loop three-point result

contains a rational term.35 Also, the coefficients of the individual integrals occuring in

the form factor results involve spurious poles, which only disappear after multiplication

with the basis integrals and summation over all contributions. Last but not least, the loop

corrections of the Konishi form factors that have different external states turn out to have

quite different structures, even if they are in the same MHV sector. The emergence of these

features that are familiar from QCD may be traced back to the fact that a non-protected

operator has been inserted into the action, formally breaking its supersymmetry.

Finally, let us briefly mention some further directions one can pursue following this

work.

First, it should be straightforward to generalize the computation of the one-loop Kon-

ishi form factor to the higher-point cases. Since the Konishi form factors share similar

features as amplitudes in QCD, it would be interesting to study possible connection be-

tween these quantities. It is also interesting to proceed to higher loop orders. In particular,

using the known IR exponentiation property of the Sudakov form factor, the knowledge of

the two-point Konishi form factor alone should be enough to extract the Konishi anomalous

dimension. Turning the logic around, we give in appendix F a prediction for the three-loop

two-point Konishi form factor apart from finite terms, only using the known three-loop

anomalous dimension and the IR exponentiation.

Second, our detailed example of how to apply four-dimensional unitarity to compute

the Konishi form factor by understanding an encountered subtlety and providing a solution

is a solid stepping stone for further studies of other non-protected operators, based on

generalizing the prescription we give in section 4. Combining our insights with those from

the recent one-loop calculation in [34], it should be possible to compute the minimal form

factors for general operators at two-loop order via on-shell methods. This would allow us

to determine the complete two-loop dilatation operator of N = 4 SYM theory which yields

all two-loop anomalous dimensions as eigenvalues. Besides the anomalous dimensions, the

other important CFT data is given by the structure constants, which can be computed

35A similar rational term also occurs for the minimal form factor of operators in the SL(2) subsector [80].
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from three-point functions. It would be very interesting to use similar unitarity-based

techniques to compute them.

Furthermore, as given in [33, 39–41], the so-called energy energy correlation function

can be computed as a weighted cross section which is very similar to the total cross section

studied in this paper. Although in [40, 41] different techniques have been used to eval-

uate them, it would be interesting to perform a cross section computation directly. The

interpretation of the cross-section-type quantities at strong coupling via the AdS/CFT

correspondence is also an open problem. In particular, it would be interesting to consider

the phase space integration with strong coupling form factors in the framework of string

theory.

Finally, as a cousin ofN = 4 SYM, the so-called ABJM theory [81] has been intensively

studied in recent years. In particular, the form factors for half-BPS operators have been

determined in this theory as well [82–84]. It would be interesting to pursue a similar study

as in this paper for the ABJM theory, especially for the form factors of non-protected

operators.
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A Fourier transformation of the propagator

In Euclidean space, we have the following relation from the Fourier transformation:

1

(x2E)
∆

= 2D−2∆π
D
2
Γ(D2 −∆)

Γ(∆)

∫
dDqE
(2π)D

eiqE·xE

(q2E)
D
2
−∆

, (A.1)

where qE · xE = qE,0xE,0 +
∑D−1

i=1 qixi.

In Minkowski space, where the integrand has poles at q0 = ±|~q|, we want positive

energies q0 > 0 to propagate into the future x0 > 0. Hence, for a mostly-minus-signature

metric where the exponent from the Fourier transformation is given by −iq · x, the pole

at q0 = |~q| has to be picked when for x0 > 0 the integral over q0 is closed in the negative

imaginary half plane such that the exponential factor vanishes for q0 → −i∞. This is

guaranteed if we replace q2E → −q2− i0 in the denominator of the above expression. It fixes

the Wick-rotation to be counterclockwise in momentum space, i.e. q0 = iqE,0, and clockwise

in configuration space, i.e. x0 = −ixE,0. This leaves the exponential invariant, and it can

be transformed to Minkowski signature by flipping the sign of the spatial momenta qi. We

hence find

1

(−x2 + i0)∆
= (−i)2D−2∆π

D
2
Γ(D2 −∆)

Γ(∆)

∫
dDq

(2π)D
e−iq·x

(−q2 − i0)
D
2
−∆

, (A.2)

where q · x = q0x0 −
∑D−1

i=1 qixi.

B Feynman integrals

In this appendix, we present all integrals that enter the form factor results in section 3, as

well as our conventions. Moreover, we show how the cut integrals are lifted to full integrals.

As a regularization procedure, the four-dimensional N = 4 SYM theory can be con-

tinued to D = 4− 2ǫ dimensions. Both IR and UV divergences are then captured as poles

in ǫ. Moreover, the Yang-Mills coupling constant gYM has to be replaced by gYMµ
ǫ, where

µ is the ’t Hooft mass that is introduced in order to keep gYM dimensionless [85]. Hence, in

the planar limit, the combination gµǫ with g given in (1.5) is the effective loop expansion

parameter of the perturbation series.

From Feynman diagrams, the following combination of the coupling constant, ’t Hooft

mass µ and loop integral occurs at ℓ loops

(gYMµ
ǫ)2ℓN ℓ

c (−i)ℓ
∫

dDl1
(2π)D

. . .
dDlℓ
(2π)D

f(l1, . . . , lℓ)
∏

j Dj
= g2ℓI(ℓ)[f(l1, . . . , lℓ)] , (B.1)

where, with the definition of the effective planar coupling constant given in (1.5), the

integral I(ℓ) is of the following form

I(ℓ)[f(l1, . . . , lℓ)] = (eγE µ2)ℓǫ
∫

dDl1

iπ
D
2

. . .
dDlℓ

iπ
D
2

f(l1, . . . , lℓ)
∏

j Dj
. (B.2)

In these formulae, the Dj ’s are the propagators, i.e. Dj = k2j + i0 for kj being the

combination of external momenta and loop momenta that flows through the propagator.
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Lifting the cut integral

Let us explain our procedure and convention for lifting the cut integrals to the full integral.

Consider the triangle term in (3.15) as an explicit example. We have

g2YMNc

∫

dPS2,{l}
s12

(l1 + p1)2
= g2YMNcs12

p1

p2

l1

l2

−→
lifting

−ig2s12
p1

p2

,

(B.3)

where the phase space integration measure dPS2,{l} is defined according to (2.20) with

measure factor dDl
(2π)D

. To lift the cut integral to the full integral, two steps have to be

performed.

One is to replace the cut propagator as

2πδ+(l
2
j ) −→ i

l2j
. (B.4)

The other is to change the measure factor and coupling constant as in (B.1), such that

the integrals of uncut graphs are defined in terms of (B.2). This prescription is employed

throughout section 3.

List of integrals

We define q =
∑

i pi and introduce the factor

cΓ = eγEǫ
Γ(1− ǫ)2Γ(1 + ǫ)

Γ(1− 2ǫ)
. (B.5)

In the results for the integrals, all (−q2)ℓǫ should be understood as (−q2−i0)ℓǫ and similarly

for (−sij)ℓǫ.

In the convention introduced in (B.2), the one-loop integrals that are required to
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compute the one-loop form factors read

p1

p2

= (eγE µ2)ǫ
∫

dDl

iπ
D
2

1

l2(l + q)2
=

cΓ
ǫ(1− 2ǫ)

(−q2
µ2

)−ǫ
,

p1

p2

= (eγE µ2)ǫ
∫

dDl

iπ
D
2

1

(l + p1)2l2(l − p2)2
= −cΓ

ǫ2
1

(−q2)
(−q2
µ2

)−ǫ
,

p1

p2

p3

= (eγE µ2)ǫ
∫

dDl

iπ
D
2

1

(l + p1 + p2)2l2(l − p3)2

= −cΓ
ǫ2

1

s13 + s23

[(−s12
µ2

)−ǫ
−

(−q2
µ2

)−ǫ]
,

p1

p2

p3

= I1m4 (p1, p2, p3,−q) = (eγE µ2)ǫ
∫

dDl

iπ
D
2

1

l2(l2 + p1)2(l + p1 + p2)2(l − q)2

=
cΓ
ǫ2

2

s12s23

[

−
(−q2
µ2

)−ǫ
2F1

(
1,−ǫ, 1− ǫ,− q2s13

s12s23

)

+
(−s12
µ2

)−ǫ
2F1

(
1,−ǫ, 1− ǫ,− s13

s23

)

+
(−s23
µ2

)−ǫ
2F1

(
1,−ǫ, 1− ǫ,− s13

s12

)]

,

(B.6)

where 2F1 denote the Gaussian hypergeometric function. The box integral result can

be found, for example, in [86].

Furthermore, we need the following integral, which evaluates to a rational term:

ID3 [l2ǫ ] = (eγE µ2)ǫ
∫

dDl

iπ
D
2

l2ǫ
(l + p1 + p2)2l2(l − p3)2

= − cΓ
(1− 2ǫ)(2− 2ǫ)

1

s13 + s23

[

s12

(−s12
µ2

)−ǫ
− q2

(−q2
µ2

)−ǫ]
,

(B.7)

where the notation of l2ǫ is introduced in (C.1) in appendix C.

To compute the two-loop two-point form factor, we need the following two-loop inte-

grals. Using IBP identities, e.g. via LiteRed [87], these can be reduced to master integrals

as36

36Recall that the loop-momentum-dependent prefactors are understood to appear in the numerators of

the depicted integrals.
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p1

p2

=
2− 3ǫ

ǫ(−q2)

p1

p2

(q2)2
p1

p2

= −3(1− 2ǫ)(1 − 3ǫ)(2− 3ǫ)

ǫ3(−q2)

p1

p2

+
3(1− 2ǫ)(1 − 3ǫ)

2ǫ2

p1

p2

+
(1− 2ǫ)2

ǫ2

( p1

p2

)2

s1ls2l

p1

p2

l

=
(2− 3ǫ)(2− 9ǫ+ 10ǫ2 − 4ǫ3)

(1− ǫ)(1− 2ǫ)ǫ2(−q2)

p1

p2

− 1− 4ǫ+ 2ǫ2

(1− ǫ)ǫ

p1

p2

− 2− 3ǫ+ 2ǫ2

2(1− ǫ)ǫ

( p1

p2

)2

s1ls2l

p1

p2

l

=
(1− 2ǫ)(2− 3ǫ)(3 − 5ǫ)

ǫ2(1− 4ǫ)(−q2)

p1

p2

− (1 + ǫ)(1− 2ǫ)

ǫ(1− 4ǫ)

p1

p2

− ǫ (−q2)2
(1− 4ǫ)

p1

p2

,

(B.8)

where the master integrals are [88]

p1

p2

= e2γEǫ
Γ(1− ǫ)3Γ(1 + 2ǫ)

2ǫ(1 − 2ǫ)Γ(3 − 3ǫ)
(−q2)

(

− q2

µ2

)−2ǫ

,

p1

p2

= e2γEǫ
Γ(1− ǫ)2Γ(1 + ǫ)Γ(1 + 2ǫ)Γ(1 − 2ǫ)

2ǫ2(1− 2ǫ)Γ(2 − 3ǫ)

(

− q2

µ2

)−2ǫ

,

p1

p2

= e2γEǫ
1

(−q2)2
(

− q2

µ2

)−2ǫ [
Γ(1− 2ǫ)4Γ(1 + 2ǫ)3Γ(1− ǫ)Γ(1 + ǫ)

ǫ4(1− 4ǫ)2Γ(1 + 4ǫ)

+
4Γ(1− ǫ)2Γ(1− 2ǫ)Γ(1 + 2ǫ)

ǫ2(1 + ǫ)(1 + 2ǫ)Γ(1 − 4ǫ)
3F2

(
1, 1, 1 + 2ǫ; 2 + ǫ, 2 + 2ǫ; 1

)

+
Γ(1− ǫ)2Γ(1 + ǫ)Γ(1− 2ǫ)Γ(1 + 2ǫ)

2ǫ4Γ(1− 3ǫ)
3F2

(
1,−4ǫ,−2ǫ; 1 − 3ǫ, 1 − 2ǫ; 1

)

+
Γ(1− ǫ)3Γ(1 + 2ǫ)

2ǫ4Γ(1− 3ǫ)
4F3

(
1, 1 − ǫ,−4ǫ,−2ǫ; 1 − 3ǫ, 1− 2ǫ, 1− 2ǫ; 1

)
]

,

(B.9)

and the one-loop bubble integral given in (B.6).
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C Passarino-Veltman reductions

In this appendix, we summarize some results on Passarino-Veltman (PV) reduction [89],

which we need in section 3.

We use the four-dimensional helicity (FDH) scheme of [67, 68], and decompose the

D-dimensional loop momentum l into a four-dimensional part l(4) and a (D − 4) = −2ǫ

dimensional part lǫ, where we assume that ǫ < 0. This yields for the decomposition of the

scalar product

ηµν l
µlν = l2(4) = l2 + l2ǫ , (C.1)

where ηµν is the four-dimensional metric.37 Arbitrary four-dimensional external reference

momenta are denoted as ki.

Bubble. The D-dimensional bubble integral with external momentum q defined in (B.6)

may include a non-trivial polynomial f(l) of the loop momentum l and the reference mo-

menta ki in its numerator. Denoting this as ID2 [f(l)](q2), we find the relations

ID2 [(l · k1)](q2) = −(q · k1)
2

ID2 (q2) , (C.2)

ID2 [(l · k1)(l · k2)](q2) =
(
(q · k1) (q · k2)

3
− q2 (k1 · k2)

12

)

ID2 (q2)

−
(
(q · k1) (q · k2)

3q2
− (k1 · k2)

3

)

ID2 [l2ǫ ](q
2) . (C.3)

Triangle. Next, we consider the D-dimensional triangle integral with numerator f(l),

which depends on two arbitrary momenta q1 and q2. It is defined as

ID3 [f(l)](q1, q2) = (eγE µ2)ǫ
∫

dDl

iπ
D
2

f(l)

l2(l + q1)2(l + q2)2
. (C.4)

We find

ID3 [(l · k1)](q1, q2) =
2∑

i=0

ai
2
I
D,(i)
2 −

2∑

i=1

ai q
2
i

2
ID3 ,

ID3 [(l · k1)(l · k2)](q1, q2) =
2∑

i=0

C
(i)
2 I

D,(i)
2 +C3,0I

D
3 + C3,ǫI

D
3 [l2ǫ ](q1, q2) ,

(C.5)

where I
D,(0)
2 = ID2 ((q1 − q2)

2), I
D,(1)
2 = ID2 (q22), I

D,(2)
2 = ID2 (q21),

37The sign in front of lǫ results from the mostly-minus metric.
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C
(1)
2 = −1

4

( 2∑

i=1

a1i q
2
i

)

a21 −
1

4
a11(q2 · k2) +

1

8
[(k1 · k2)− b] q22

2∑

i=1

(A−1)2i , (C.6)

C
(2)
2 = −1

4

( 2∑

i=1

a1i q
2
i

)

a22 −
1

4
a12(q1 · k2) +

1

8
[(k1 · k2)− b] q21

2∑

i=1

(A−1)1i , (C.7)

C
(0)
2 = −

2∑

i=1

C
(i)
2 +

1

4
(k1 · k2) , (C.8)

C3,0 =
1

4

( 2∑

i=1

a1i q
2
i

)( 2∑

j=1

a2j q
2
j

)

+
1

8

[
b− (k1 · k2)

]
q21 q

2
2 Ã , (C.9)

C3,ǫ =
(k1 · k2)− b

2
, (C.10)

and

aij =

2∑

m=1

(ki · qm)(A−1)mj , Aij = qi · qj , (C.11)

a0 = −
2∑

i=1

ai , ai = a1i , i, j = 1, 2 , (C.12)

b =

2∑

i,j=1

(k1 · qi)(A−1)ij(qj · k2) , Ã =

2∑

i,j=1

(A−1)ij . (C.13)

The integrals involving l2ǫ give rational terms [90]. The rational term for the tensor-two

triangle integral is given in (B.7).

D Checks of the three-point one-loop Konishi form factor

Rational term in F
(1)
K

(1φ12, 2φ34, 3g+)

An interesting feature of the Konishi form factor is the occurrence of rational term at one

loop.

For the form factor F
(1)
K (1φ12 , 2φ34 , 3g+), denoted as F

(1)
K,(φ,φ,g), this corresponds to the

triangle integral containing the l2ǫ -term, see (3.45).

Using the formula (B.7), the rational term, denoted by R[•], can be computed as

R[F
(1)
K,(φ,φ,g)] = F

(0)
K,(φ,φ,g)

Nφ s13s23
s12(s13 + s23)

. (D.1)

Since the computation in section 3 is based on the four-dimensional unitarity method,

one might be concerned whether additional rational terms are missing. In the following,

we show that the result is actually complete by comparing with a Feynman diagram com-

putation following the strategy of [91].
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l

p1

p2

p3

= l

p3

p1

p2

=
−iNφg

3
YM

2
√
2s12

∫
dDl

(2π)D
(2l + p1 + p2) · (p1 − p2) (2l − p3) · ǫ+3

l2(l + p1 + p2)2(l − p3)2
.

(D.3)

Figure 18: Feynman diagrams of the one-loop three-point Konishi form factor that con-

tribute to the rational term.

First, from the power counting criterion given in [5], a one-loop integral has rational-

term contributions only when it has high enough power of loop momentum l in the numer-

ator of the loop integrand, which is given by

m > n− 2 for IDn [(l)m] with n > 2 ,

m > 1 for ID2 [(l)m] .
(D.2)

Furthermore, we can safely neglect Feynman diagrams that appear in the computation

of the BPS form factor, since the sum of them is known to be free of rational terms. It

turns out that only two diagrams need to be considered, which are shown in figure 18.

Using standard color-ordered Feynman rules (see e.g. [66]), these two graphs give

F
(0)
K,(φ,φ,g)

(

− 4Nφ√
2s12

) 〈2 3〉〈3 1〉
〈1 2〉 (eγE µ2)ǫ

∫
dDl

iπ
D
2

(l · ǫ+3 )[l · (p1 − p2)]

l2(l − p3)2(l + p12)2
, (D.4)

where the polarization vector is given by ǫ+3 =
√
2ξλ̃3

〈ξλ3〉 and ξ is an arbitrary reference

spinor. Then, applying the formula38

R
[ ∫

dDl

iπ
D
2

(l · k1)(l · k2)
l2(l + q1)2(l + q2)2

]

=
k1 · k2

2
− (k1 · k2)(k2 · q1)

2q1 · q2
, k1 · q1 = q21 = 0 , (D.5)

we can extract the rational term of (D.4) immediately, which, after some simple spinor

algebra, turns out to be identical to that given in (D.1). Thus, we have proven that the

unitarity method gives the complete rational terms.

Spurious poles

The coefficients of the integrals in (3.45) and (3.46) contain unphysical poles, such as the

pole 1
s13+s23

= 1
s123−s12 . The physical consistency requires that such poles must cancel when

multiplying the coefficients with the respective integrals and summing all contributions.39

Here we check that this is indeed true. We focus on the pole 1
s13+s23

, the others are similar.

Let us first consider the case of F
(1)
K (1ψ, 2ψ , 3φ). Only the coefficients of the bubble

integrals contain spurious poles. Summing over all bubble integrals, the 1
ǫ term is free of

38This identity can be obtained using PV reduction and (B.7). Formulae for more general cases can be

found in [91].
39This is a common feature for one-loop QCD amplitudes, see e.g [6].
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the pole, and at finite order we find

− 3
s12s13
s12 + s13

log
(s123
s23

)

. (D.6)

This is indeed finite when s12 + s13 → 0, as can be seen from the expansion

log x

x− 1
= 1− x− 1

2
+

(x− 1)2

3
+O((x− 1)3) . (D.7)

The F
(1)
K (1φ, 2φ, 3g) case is a little more complicated. In this case, both bubble and triangle

integral contain the pole 1
s13+s23

in its coefficients. Expanding to finite order and extracting

the terms that contain this pole, we find

− 6
s13s23

(s13 + s23)2
log

(s123
s12

)

+ 6
s13s23

s12(s13 + s23)
, (D.8)

where there first term stems from the sum of bubble integrals and the second term is the

rational term. Each term itself is divergent when taking the limit s13 + s23 → 0; however,

the sum of the two terms is finite in the limit.

E Phase-space parametrization

In this appendix, we provide formulae for the parametrization of the phase-space inte-

grals. Furthermore, we give details on a non-trivial three-particle phase-space integration

encountered in section 5.

The n-particle phase space integral is defined as
∫

dPSn (•) =
∫ ( n∏

j=1

dDpj
(2π)D

2π δ+(p
2
j )

)

(2π)DδD
(

q −
n∑

j=1

pj

)

(•) , (E.1)

where (•) denotes the integrand, i.e. the squared matrix element.

When n = 2, the squared matrix element depends only on q2, and we can evaluate the

two-particle phase space integral independently:
∫

dPS2 (•) = fPS2 (•) , fPS2 =
(q2)−ǫ

4(16π)
1
2
−ǫ Γ(32 − ǫ)

. (E.2)

The three-particle phase space can be parametrized as
∫

dPS3 (•) = fPS3

∫ 1

0
dxx1−2ǫ(1− x)−ǫ

∫ 1

0
dy [y(1 − y)]−ǫ (•) , (E.3)

with

fPS3 =
(q2)1−2ǫ

2(4π)3−2ǫΓ(2− 2ǫ)
. (E.4)

The ratios of Mandelstam variables occurring in the squared matrix element are parametrized

as {sij
q2

,
sjk
q2

,
ski
q2

}

=
{
x(1− y) , 1− x , xy

}
, (E.5)

in which (i, j, k) can be any permutation of (1, 2, 3), since the phase space measure is totally

symmetric for p1, p2, p3.
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Some details about the three-particle phase space integral

The phase-space integration becomes non-trivial for the squared matrix element involving

the three-point one-loop form factor. It contains the finite part of the box integral, which

involves the hypergeometric functions 2F1, as given in (4.8).

The corresponding phase space integrals are

∫

dPS3
1

s13

( µ2

−s23

)ǫ 1

ǫ2
2F1

(

1,−ǫ, 1− ǫ,−s13
s12

)

=
fPS3
q2

( µ2

−q2
)ǫ 1

ǫ2

∫ 1

0
dxx−2ǫ(1− x)−2ǫ

∫ 1

0
dy y−1−ǫ(1− y)−ǫ 2F1

(

1,−ǫ, 1− ǫ,− y

1− y

)

=
fPS3
q2

( µ2

−q2
)ǫ Γ(1− 2ǫ)Γ(−ǫ)2

4ǫ2Γ(2− 4ǫ)

[

(1 + 6ǫ) 2F1

(

1, 1, 1 − 2ǫ, 1
)

− (8ǫ) 3F2

(

1, 1,−ǫ; 1 − ǫ,−2ǫ; 1
)]

(E.6)

and

∫

dPS3
1

s13

(
µ2

−q2
)ǫ

ǫ2
2F1

(

1,−ǫ, 1 − ǫ,− q2

s12s23

)

=
fPS3
q2

( µ2

−q2
)ǫ 1

ǫ2

∫ 1

0
dxx−2ǫ(1− x)−ǫ

∫ 1

0
dy y−1−ǫ(1− y)−ǫ

2F1

(

1,−ǫ, 1− ǫ,− 1

1− x

y

1− y

)

=
fPS3
q2

( µ2

−q2
)ǫ

[

− 1

ǫ3
− 3

ǫ2
− 9− 5π2

6

ǫ
+

(

− 27 +
17π2

6
+ 21ζ3

)

+O(ǫ)

]

(E.7)

F Anomalous dimensions via two-point form factors

In the main part of this paper, we have determined the anomalous dimension of the Konishi

operator from its cross section, i.e. from the imaginary part of its two-point function. It

is also possible to determine the anomalous dimension of the Konishi operator from its

two-point form factor alone. As seen throughout this paper, form factors of non-protected

operators contain both UV and IR divergences. To extract the UV divergences, one needs

to subtract the IR divergences. The computation of the cross section, as done in section

5, is one of the safest ways to do so. On the other hand, the IR divergences, in particular

for Sudakov form factors, have an universal structure [17–19]. This allows one to subtract

the IR divergences directly from the form factors. The remaining divergences are purely

UV divergences, from which one can read off the anomalous dimension of the operator.40

40This route was also taken in the unpublished notes of Boucher-Veronneau, Dixon, and Pennington [72].
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In terms of the effective planar coupling constant (1.5), the logarithm of the Sudakov

form factor in N = 4 SYM theory has the following structure [20]:41

log fO,R =

∞∑

ℓ=1

g2ℓ (log fO,R)
(ℓ)

=

∞∑

ℓ=1

g2ℓ
( µ2

−q2
)ℓǫ

(

− γ
(ℓ)
cusp

(2ℓǫ)2
− G(ℓ)

0

2ℓǫ
+ Fin(ℓ)

)

+O(ǫ),

(F.1)

where the divergent terms are determined by the universal cusp and collinear anomalous

dimensions

γcusp(g) =
∞∑

ℓ=1

γ(ℓ)cuspg
2ℓ = 8g2 − 16ζ2g

4 + 176ζ4g
6 +O(g8) ,

G0(g) =
∞∑

ℓ=1

G(ℓ)
0 g2ℓ = −4ζ3g

4 + 16
(

2ζ5 +
5

3
ζ2ζ3

)

g6 +O(g8) .

(F.2)

The finite terms of the logarithm of the form factor depend on the specific properties of

the form factor such as the choice of the operator. In particular, they contain a remainder

function, which was studied in [27, 29].

For non-protected operators, renormalization is required. The renormalized form factor

is given as

f
(L)
O,R =

L∑

ℓ=1

Z(ℓ)f
(L−ℓ)
O,B , (F.3)

where the renormalization constant is related to the anomalous dimension as shown in

(2.3).

The universal structure of IR divergence, together with the bare Konishi form factor,

allow us to determine the renormalization constant and therefore the anomalous dimension.

In the following, we employ the two-loop Konishi form factor to reproduce the Konishi

anomalous dimension (1.6) up to two-loop order. Reversing the logic, we then give a

prediction for the bare three-loop two-point Konishi form factor up to O(ǫ−1) order by

using the known three-loop anomalous dimension.

One-loop form factor

The one-loop bare form factor is given in (4.5). From the universal IR structure, we know

that

(log fK,R)
(1) = f

(1)
K,R = f

(1)
K,B + Z(1)

K =
( µ2

−q2
)ǫ(

− γ
(1)
cusp

4ǫ2
− G(1)

0

2ǫ

)

+O(ǫ0) , (F.4)

41This form was checked for the minimal form factor of the BPS operator tr(φ2
12) up to the third loop

order [15], for the minimal form factor of the BPS operator tr(φk12) up to the second loop order [29], for the

n-point MHV form factor of the BPS operator tr(φ2
12) up to the first loop order [21] and for the 3-point

MHV form factor of the BPS operator tr(φ2
12) up to the second loop order [27].
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where the one-loop cusp and collinear anomalous dimensions are given in (F.2). The simple

pole in f
(1)
K,B has to be canceled by the one-loop term in the operator renormalization

constant, which yields

Z(1)
K =

6

ǫ
, (F.5)

in agreement with (5.18) and the known one-loop anomalous dimension. Thus, the one-loop

renormalized form factor is

f
(1)
K,R =

( µ2

−q2
)ǫ 2(1 + ǫ+ ǫ2)eǫγEΓ(−ǫ)2Γ(1 + ǫ)

(−1 + 2ǫ)Γ(1 − 2ǫ)
+

6

ǫ
. (F.6)

Two-loop form factor

The two-loop bare Konishi form factor is given in (4.6). From the universal IR structure,

we know that

(log fK,R)
(2) = f

(2)
K,R − 1

2

(

f
(1)
K,R

)2
=

(

f
(2)
K,B + Z(1)

K f
(1)
K,B + Z(2)

K

)

− 1

2

(

f
(1)
K

)2

=
( µ2

−q2
)2ǫ(

− γ
(2)
cusp

16ǫ2
− G(2)

0

4ǫ

)

+O(ǫ0) ,

(F.7)

where the two-loop cusp and collinear anomalous dimensions are given in (F.2). This

determines the two-loop term of the renormalization constant as

Z(2)
K =

18

ǫ2
− 12

ǫ
, (F.8)

which perfectly agrees with (5.34) and the known two-loop anomalous dimension. Hence,

the two-loop renormalized form factor is

f
(2)
K,R =

( µ2

−q2
)2ǫ

[
2

ǫ4
+

28− π2

6

ǫ2
+

56− π2 − 25ζ3
3

ǫ
+

(

316 − 26π2

3
− 28ζ3 −

7π4

60

)

+
(

1172 − 131π2

3
− 572ζ3

3
− 53π4

120
+

23π2ζ3
18

+
71ζ5
5

)

ǫ

]

+O(ǫ2) .

(F.9)

Prediction for the three-loop bare Konishi form factor

Now, we reverse the logic. From the universal IR structure, we know that

(log fK,R)
(3) = f

(3)
K,R − f

(2)
K,R f

(1)
K,R +

1

3

(

f
(1)
K,R

)3

=
(

f
(3)
K,B + Z(1)

K f
(2)
K,B + Z(2)

K f
(1)
K,B + Z(3)

K

)

− f
(2)
K,R f

(1)
K,R +

1

3

(

f
(1)
K,R

)3

=
( µ2

−q2
)3ǫ(

− γ
(3)
cusp

36ǫ2
− G(3)

0

6ǫ

)

+O(ǫ0) ,

(F.10)

where the three-loop cusp and collinear anomalous dimensions are given in (F.2). Using the

known one- and two-loop form factors, and together with the counter term up to three-loop,
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we can predict the three-loop bare Konishi form factor as:

f
(3)
K,B =

( µ2

−q2
)3ǫ

[

− 4

3ǫ6
− 12

ǫ5
− 64

ǫ4
− 284− 2π2 − 22ζ3

3

ǫ3
− 1180 − 65π2

3 − 78ζ3 − 247π4

3240

ǫ2

− 4744 − 141π2 − 554ζ3 − 51π4

40 + 85π2ζ3
54 + 878ζ5

15

ǫ

]

+O(ǫ0) .

(F.11)

This should be compared with a direct computation.

G Renormalization-scheme transformations

In this appendix, we review transformations between different mass-independent renormal-

ization schemes and derive the behavior of the cross section (5) under such transformations.

A renormalization scheme specifies a regularization procedure for the UV divergences

encountered in perturbation theory beyond tree-level and a prescription for the subtraction

of these divergences into renormalized fields, coupling constants and composite operators.

The subtraction prescription specifies how the UV divergences are removed from the pertur-

bation series. In particular, it has to be indicated which finite parts are absorbed together

with the UV divergences into the counter terms or — equivalently — the renormalization

constants determining the relations between bare and renormalized quantities.

A modified renormalization scheme, which contains a different prescription for sub-

tracting the UV divergences from the perturbation series in g, can be described by applying

the subtraction of the original scheme but to the perturbation series in a modified coupling

constant gρ = g e̺ǫ. Thereby, the parameter ̺ specifies the finite terms that are subtracted

together with the UV divergences. Since the combination gµǫ of the coupling constant

g and ’t Hooft mass µ is the expansion parameter of the perturbation series, the change

between schemes, i.e. between g and g̺, can easily be implemented by changing µ. If we

demand g̺µ
ǫ
̺ = gµǫ, the transformation of the perturbation series to the scheme ̺, but

written in terms of the original coupling constant g, is given by replacing µ→ µ̺ = µ e−̺.

A widely used renormalization scheme is the dimensional reduction (DR) scheme, which

combines regularization by dimensional reduction with a minimal subtraction of the diver-

gences into counter terms or –equivalently– renormalization constants. Minimal subtrac-

tion means that no finite terms are subtracted. In the DR scheme, minimal subtraction is

applied to the perturbation series in the coupling constant
√
λ

4π , λ = g2YMNc.

In this paper, we work in the modified dimensional reduction (DR) scheme. It employs

dimensional reduction as regularization procedure, but the subtraction is non-minimal

in terms of the coupling constant
√
λ

4π , λ = g2YMNc. It is, however, minimal in terms

of the coupling constant g defined in (1.5). Hence, the subtraction procedures of the

DR and DR scheme are related in the same way as those of the famous MS and MS

schemes defined in [85] and [65], respectively, that employ dimensional regularization as

regularization procedure. The expressions in this scheme are obtained from the ones in the

DR scheme by replacing µ→ µ e−̺, where ̺ = 1
2(log 4π − γE).

Consider the renormalized cross section σR which when inserting (2.1) into (2.8) is

given as a product of the squared operator renormalization constant ZO introduced in
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(2.1) and the bare cross section σB

σR = ZO(g, ǫ)
2σB . (G.1)

The logarithm of the ratio of the bare and the tree-level cross section σ(0) then has the

following expansion up to two-loop order

log
σB

σ(0)
= g2

(µ2

q2

)ǫ
(

− γ
(1)
O
ǫ

+s
(1)
0

)

+g4
(µ2

q2

)2ǫ
(

− γ
(2)
O
2ǫ

+s
(2)
0 − (s

(1)
0 )2

2

)

+O(g6, ǫ) . (G.2)

In the DR scheme where the coupling constant is (1.5), the subtraction of only the 1
ǫ -poles

into ZO then shows that the finite terms s
(ℓ)
0 become the coefficients of the perturbative

expansion of the ratio of the renormalized and the tree-level cross section

σR

σ(0)
=

( q2

4µ2

)γO[
1 + g2

(
s
(1)
0 + s

(1)
1 ǫ

)
+ g4

(
s
(2)
0 +O(ǫ)

)
+O(g6, ǫ2)

]
. (G.3)

The condition g̺µ
ǫ
̺ = gµǫ implies that the expression (G.2) is the same in all schemes.

However, only the subtraction prescription of the DR scheme leads to the above expression

for the renormalized cross section.

The renormalization constant ZO(g, ǫ) of the DR scheme obtained by performing mini-

mal subtraction at the coupling constant g can be expressed as the renormalization constant

ZO,̺ = ZO(g̺, ǫ) in the scheme ̺ obtained by performing minimal subtraction at the cou-

pling constant g̺ times a factor without poles in ǫ. Hence, the difference of the logarithms

of these constants is finite and given by

logZO(g, ǫ) = logZO,̺ + g2̺∆Z(1)
O + g4̺∆Z(2)

O +O(g6̺) , (G.4)

where

∆Z(1)
O =

(( g

g̺

)2
− 1

)

Z(1)
O = −γ(1)O ̺(1− ̺ǫ) +O(ǫ2) ,

∆Z(2)
O =

(( g

g̺

)4
− 1

)

Z(2)
O − (∆Z(1)

O )2

2
−Z(1)

O ∆Z(1)
O = −γ(2)O ̺+O(ǫ) .

(G.5)

We have used the expansion given in (2.3). In the expression ∆Z(1)
O we have kept the term

linear in ǫ, since it leads to a finite term in ǫ in the expression ∆Z(2)
O , when it is multiplied

by Z(1)
O .

Adding (G.2) and (G.5) leads to the following relation of the renormalized cross sections

in both schemes

log
σR,̺

σ(0)
= log

σR
σ(0)

−2
(
g2∆Z(1)

O +g4∆Z(2)
O

)
= log

σR
σ(0)

+2γO̺+O(g6, ǫ)+O(g6, ǫ) , (G.6)

where we have inserted g̺ = g e̺ǫ and neglected terms that vanish when ǫ → 0. This

relation can be interpreted in two ways, as follows.

First, one can insert the expansion (G.3) for σR and the same expression for σR,̺ but

with µ replaced by µ̺. Then, one obtains the relation µ̺ = µ e−̺ mentioned already at
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the beginning of this appendix. This shows that a scheme change can be performed by

changing µ.

Second, one can insert the expansion (G.3) for σR and a similar expression for σR,̺ but

with the finite expansion coefficients s
(ℓ)
0 replaced by s

(ℓ)
0,̺. Then, one obtains the behavior

of the finite terms under a scheme change, given by the relations

s
(ℓ)
0,̺ = s

(ℓ)
0 + 2γ

(ℓ)
O ̺ . (G.7)

H Feynman diagrams

In this appendix, we compute the unrenormalized form factors of section 3 to two-loop

order via Feynman diagrams. See e.g. [92] for the Feynman rules of the N = 4 SYM

theory in our conventions. In particular, we demonstrate how the analysis of section 4

works for the concrete diagrams and that we did not miss any rational terms in section 3.

One-loop self energies

For the calculation of the unrenormalized two-loop form factors, we need the one-loop

self-energies of the gauge and scalar fields. They occur as subdiagrams in certain two-loop

diagrams.

The one-loop self-energy of the gauge field is determined from diagrams in which the

scalar fields, the fermion fields, the gauge field itself or the ghost field propagates in the

loop. They evaluate to

=
g2

2
Nφδ

abIsµν , = g2Nψδ
abIfµν ,

=
g2

2
δab(DIsµν + Iphµν + 2Ighµν) , = −g2δabIghµν ,

(H.1)

where g is the coupling in the DR scheme defined in (1.5), and besides the number of scalar

flavors Nφ = 6 + 2ǫ we have also introduced the number of fermion flavors Nψ = 4 of the

N = 4 SYM theory. Moreover, we have split the contribution from the gauge loop into the

tensor integrals Isµν , Ighµν occurring in case of the scalar- and ghost-loop contribution,

respectively, and into Iphµν , which is associated with the remaining physical degrees of

freedom of the gauge-field polarizations. The occurring integrals are expressed in terms of

the simple bubble integral in the first line of (B.6) as
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Isµν = (eγE µ2)ǫ
∫

dDl

iπ
D
2

(q − 2l)µ(q − 2l)ν
l2(q − l)2

=
1

D − 1
(qµqν − q2gµν) ,

Ifµν = (eγE µ2)ǫ
∫

dDl

iπ
D
2

tr σ̃µ(q − l)σ̃ν l

l2(q − l)2
=
D − 2

D − 1
(qµqν − q2gµν) ,

Iphµν = (eγE µ2)ǫ
∫

dDl

iπ
D
2

1

l2(q − l)2
(−6qµqν + 4qµ(q − l)ν + 4(q − l)µqν − 8(q − l)µ(q − l)ν)

+ (5q2 − 2q · (q − l) + 2(q − l)2)gµν)

= −4D − 2

D − 1
(qµqν − q2gµν) ,

Ighµν = (eγE µ2)ǫ
∫

dDl

iπ
D
2

(l − q)µlν
l2(q − l)2

=
1

4(D − 1)
(−(D − 2)qµqν − q2gµν) .

(H.2)

Inserting the results for the tensor integrals into (H.1) and summing all contributions,

we obtain

=
g2

2
δab((Nφ +D)Isµν + 2NψIfµν + Iphµν) ,

=
g2

2
δab

Nφ +D + 2(D − 2)Nψ − (4D − 2)

D − 1
(qµqν − q2gµν)

= 2g2δab(qµqν − q2gµν) .

(H.3)

The first line shows that our decomposition of the gauge loop contribution in (H.1) is

advantageous: D and Nφ only appear in the combination D + Nφ which is insensitive

to the simultaneous continuation of D and Nφ as prescribed by the DR scheme, cf. the

discussion in section 4. We note that when inserting the appropriate numbers flavors in

the second line, the dependence on D originating from the tensor integrals is also canceled.

The remaining one-loop self energies for the scalar and fermion fields read

= −2g2δabδJI q
2 ,

= −4g2δabδJI qα̇
α .

(H.4)

One-loop form factors

In the Feynman diagram approach, the one-loop form factors for the BPS operator (1.2) and

the Konishi operator (1.4) are obtained from the two diagrams given in table 1. Completing

the numerator of the second integral in table 1 to squared momenta occurring in the
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diagram g2(A1+BT) f(l)

A B

1 −1 (l + p2)
2







f(l)

1 0 (l + 2q − p2) · (l − p2)

Table 1: Diagrams for the unrenormalized one-loop form factors. The prefactors g2(A1+

BT) of each diagram consist of the identity and trace operator in flavor space 1 and T,

respectively. For the BPS operator (1.2) and for the Konishi operator (1.4) the prefactors

reduce to g2A and g2(A + BNφ), respectively. They multiply the triangle integral which

contains the numerator factor f(l).

denominator, it can be transformed to the expression

(l + 2q − p2) · (l − p2) = − + + + (p21 + p22 − 2q2) .

(H.5)

Only the first three integrals are UV divergent. Moreover, they develop IR divergences

if the corresponding external momentum square q2, p21 or p22 vanishes. In this case, the

respective integral vanishes identically in dimensional reduction since its IR pole and its UV

pole cancel. The fourth integral is UV finite, but it becomes IR divergent if at least one of

the three momentum squares vanishes. In case that p21, p
2
2 are not zero, also the self-energy

corrections of the scalar fields contribute to the form factor. Using the expression for the

one-loop scalar self energy given in (H.4), the respective contribution can be written as

1

2

[

+

]

= −g2
[

+

]

, (H.6)

where the factor 1
2 originates from the fact that the squareroot of the renormalization con-

stant determined from the self energy contribution renormalizes the corresponding elemen-

tary field. When added to the sum of the two diagrams given in table 1, this contribution

exactly cancels the second and third term in the expansion of the second integral given in

(H.5), irrespective of the vanishing or non-vanishing of p21, p
2
2. In the case of the BPS oper-

ator, where both diagrams of table 1 only contribute with the coefficient A, the remaining

UV divergence contained in the bubble integral cancels among the two diagrams given in

table 1. Hence, in the BPS case, there is only a contribution from the triangle integral of

(H.5). In the case of the Konishi operator, the contributions of the bubble integral do not

cancel for the flavor-trace contribution, which comes with the coefficient B. The one-loop
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form factors for the BPS operator and the Konishi operator hence read

f
(1)
BPS,2 = (p21 + p22 − 2q2) ,

f
(1)
K,(φ,φ) = −Nφ + (p21 + p22 − 2q2) .

(H.7)

We have calculated the above form factors for generic off-shell momenta p21 6= 0 and p22 6= 0.

Hence, they are generalizations of the respective expressions with p21 = p22, given for the

BPS operator in (3.4) and for the operator K6 in (3.16) into which the factor rφ has to be

introduced as prescribed in (4.2) in order to obtain the Konish form factor.

The difference of the two form factors defined in (4.3) is free of any contribution from

the triangle integral, and it is in particular independent of p21 and p22. This explicitly

confirms that the IR divergence is universal, i.e. the same for the BPS and the Konishi

operator. Moreover, the UV divergence of the Konishi operator can be extracted from the

final ǫ-expansions of the Konishi and the BPS form factor given in (4.5) in the on-shell case

p21 = p22 = 0 where the the 1
ǫ -poles originate from both, the UV and the IR divergences.

Two-loop form factors

The one-particle-irreducible (1PI) diagrams for the two-loop form factors of the BPS op-

erator (1.2) and the Konishi operator (1.4) are displayed in table 2.
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diagram λ2(A1+BT) f(k, l)

A B

1 Nφ − 2 (k − l)2(l + p2)
2



































































































































































































































































































































Itb

0 d (k − l)2(l + p2)
2

1 −1 (l + p2)
2(k + l) · (k + l + 2q)

0 0 (l + q)2(l − 2k) · (l + 2p2)

1 −1 (k − l)2(l − p2) · (l + 2q − p2)

0 1 (k − l)2(l + 2p2) · (l + 2p2 − q)

0 −1 (l + p2)
2(l − 2k) · (l − 2k − q)

−4 4 (l + q)2(l + p2)
2

3
2
(Nφ − 3) 3 l2(l + q)2

3
2
d 0 l2(l + q)2

− 3
2

0 (l + q)2(k + l) · (l − p2)

0 −8
2(l − k) · l(l + p2) · (l + q)− 2(l − k) · (l + p2)l · (l + q)
+ 2(l − k) · (l + q)l · (l + p2)

1 0 (k + l) · (k + l + 2q)(l − p2) · (l + 2q − p2)

0 1 (s− 2k − q) · (l + p2 − q)(l − 2k) · (l + 2p2)

Table 2 – continued on next page
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Continued from previous page

diagram λ2(A1+BT) f(k, l)

A B

− 3
2

0 (l + p2)
2(k + l) · (k + 2q − p2)















































































































































Ibt

3
2

0 (k − l)2(l − p2) · (k + 2q − p2)

1
2

0 (l − 2k) · (l + 2p2)(k − 2l − p2) · (k + 2q − p2)

− 1
2

0
(2k − l + p2) · (l − p2)(k + l) · (k + 2q − p2)
− (k + l + 2p2) · (k + l)(k + 2q − p2) · (l − p2)
+ (2l − k + p2) · (k + 2q − p2)(k + l) · (l − p2)

−4 0
2l · (−l − p2)(k + 2q − p2) · (k − l)
− 2l · (k + 2q − p2)(−l − p2) · (k − l)
+ 2l · (k − l)(k + 2q − p2) · (−l − p2)

−2 0
l
2(k − p2) · (k + 2q − p2)

−
l2

(k + p2)2
(k + p2) · (k − p2)(k + p2) · (k + 2q − p2)

−2 0 (l + p2)
2(k − p2) · (k + 2q − p2)

−4 2
2l · (l + p2)(k + q − p2) · k − 2l · (k + q − p2)k · (l + p2)
+ 2l · k(l + p2) · (k + q − p2)



















Ibb
1
2

0 (2k + l + 2q − p2) · (l − p2)(k + 2l) · (k + 2q − 2p2)

Table 2: Diagrams for the unrenormalized two-loop form factors. The prefactors g2(A1+

BT) of each diagram consist of the identity and the trace operator in flavor space, 1 and T,

respectively. For the BPS operator (1.2) and for the Konishi operator (1.4), the prefactors

reduce to g4A and g4(A+BNφ), respectively. They multiply the corresponding integral tb,

bt or bb, which are given in (H.8) and contain the numerator factors f(k, l). For all diagrams

which are not symmetric under a reflection at the horizontal axis, also the corresponding

reflected version has to be considered.
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The occurring integrals are given by

Itb = f(k, l) = (eγE µ2)2ǫ
∫

dDk

iπ
D
2

dDl

iπ
D
2

f(k, l)

k2(k + q)2(k − l)2l2(l + q)2(l + p1)2
,

Ibt = f(k, l) = (eγE µ2)2ǫ
∫

dDk

iπ
D
2

dDl

iπ
D
2

f(k, l)

k2(k + q)2(k + p1)2(k − l)2l2(l + p1)2
,

Ibb = f(k, l) = (eγE µ2)2ǫ
∫

dDk

iπ
D
2

dDl

iπ
D
2

f(k, l)

(k + l)2(k + l + q)2k2(k + p1)2l2(l + p2)2
.

(H.8)

For p21 6= 0, p22 6= 0, contributions from diagrams involving the two-loop self-energy of

the scalar fields have to be considered in addition to the 1PI diagrams shown in table 2.

Also, the second diagram coming with the integral Ibt yields a non-vanishing contribution,

while it vanishes otherwise. All graphs are then IR finite, and the UV-divergence can

easily be extracted by setting e.g. one external momentum to zero and the other one to q2

such that no new IR divergences are accidentally created. Moreover, since all integrals are

superficially logarithmically divergent, one can neglect external momenta in the numerators

as convenient for maximal simplifications. We have checked that this produces the known

result for the two-loop overall UV-divergence of the Konishi operator when subdivergences

are subtracted by considering also the corresponding counter-term diagrams. This also

produces a vanishing result for the BPS operator.

For p21 = p22 = 0, where the 1PI diagrams shown in table 2 are the only contributions

to the form factors, it is advantageous to express the scalar products in the numerators in

terms of squares of momenta found in the denominator from the propagators. Then, one

can use IBP reduction as e.g. implemented in LiteRed [87] in order to further reduce the

integrals to a set of master integrals. The results exactly match the ones given in (4.6).

This confirms the absence of further rational terms that might not have been detected in

the unitarity-based approach.
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