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The relaxation of the two-well model problem in the analysis of solid-solid
phase transitions leads to a variational problem with a quasiconvex energy
density which fails to be convex if the phases are not compatible. This paper
presents an adaptive algorithm for the computation of minimizers for this
functional in finite element spaces with Courant elements and with successive
loops of the form SOLVE, ESTIMATE, MARK, and REFINE. Convergence
of the total energy of the approximating deformations and strong convergence
of all except one component of the corresponding deformation gradients is
established. The proof relies on the decomposition of the energy density into
a degenerate convex part and a null-Lagrangian, some convexity control of
the degenerate convex part, and some refined estimator reduction compatible
with the translation energy.
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1 Introduction

Mathematical models in the framework of nonlinear elasticity for phase transformations
in solids lead to variational problems for which the existence of minimizers cannot be
obtained by the direct method in the calculus of variations, see [1, 10, 2] and the literature
quoted therein. In particular, infimizing sequences tend to develop oscillations on finer
and finer scales and converge only weakly but not strongly. Typically the weak limit is
not a minimizer of the problem and has to be replaced by a generalized minimizer, the
gradient Young measure associated to the sequence of deformation gradients [16, 24].

The numerical simulation of problems of this kind is a challenging task and a direct
minimization of the nonconvex energy in a finite element space leads to strongly mesh
dependent effects [21, 9]. An alternative approach is based on a minimization of the
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associated relaxed variational problem [13]. It is obtained by replacing the energy density
W by its quasiconvex relaxation W qc, that is, one minimizes

Iqc(v) :=

∫
Ω
W qc(ε(v)) dx−

∫
Ω
f · v dx among all v in A := uD +H1

0 (Ω;R2) . (1.1)

Here the function uD ∈ H1(Ω;R2) defines the Dirichlet boundary conditions for the prob-
lem and ε(v) denotes the symmetric part of the deformation gradient Du. In Section 5
we comment on the analogues of our results in the case that the energy density depends
on the full gradient and not only on its symmetric part. The original and the relaxed
variational problem are closely related. Since the energy density in the relaxed minimiza-
tion problem satisfies the necessary convexity conditions in the vector-valued calculus of
variations, it has a minimizer. Moreover, any minimizer u characterizes a macroscopic
deformation of the original problem in the sense that there exists a sequence (uj)j∈N
which infimizes the energy of the original variational problem and converges weakly to
u. If this convergence is also strong in H1(Ω;R2), then the minimum of the energy is
attained and u is a classical minimizer of the original problem.

This approach is very appealing, in particular if an explicit formula for W qc is known.
In this case one can construct for a given deformation gradient F a corresponding
gradient Young measure ν with center of mass F which realizes the relaxed energy,
W qc(F ) = 〈W, ν〉, and provides at the same time a representation for the stress variable
σ(F ) = DW qc(F ) = 〈DW, ν〉; see [3] and [6] for a discussion of the regularity of the
stress variable. In this way one obtains the associated stresses which are of fundamental
importance in engineering applications. A successful example of this approach in the
numerical analysis of a relaxed problem can be found in [7].

From the point of view of numerical analysis, one striking advantage of the relaxed
minimization problem is that the macroscopic deformation u can, in principle, be com-
puted with a strongly convergent sequence of minimizers in suitable finite element spaces.
The reliability-efficiency gap [5] does not prevent the convergence proof of the associ-
ated stresses for a large class of variational problems with energy densities that fail to
be strictly convex [4].

In this paper, we carry out the convergence analysis for the relaxation of the classical
model energy, which we also refer to as two-well energy with linear kinematics,

W (E) = min
{1

2
〈C(E −A1), E −A1〉+ w1 ,

1

2
〈C(E −A2), E −A2〉+ w2

}
(1.2)

in a two-dimensional setting for which the relaxation was obtained in [19, 20, 25]; see (3.2)
below for the precise formula with given symmetric matrices A1 and A2. It turns out
that the quasiconvex relaxation is in fact the convex relaxation if and only if the two
preferred strains A1 and A2 are compatible, i.e., if A1−A2 = c⊗d+d⊗c for two vectors
c, d ∈ R2 [19, Lemma 4.1] for necessary and sufficient conditions for compatibility. The
case of compatible wells was analyzed in [4] and therefore we focus on the incompatible
case in this paper. Moreover, we assume that the matrix A1 − A2 is not proportional
to the identity matrix since in this case the uniqueness of minimizers may be lost [27,
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Remark 2.2]. Hence we assume that the eigenvalues η1 and η2 of the matrix A1 − A2

satisfy

0 < η1 < η2 . (1.3)

We refer to the problem as nonconvex since the relaxation is not convex but quasiconvex.
See Remark 3.3 for a short discussion of uniqueness of minimizers and counterexamples
to uniqueness in the case η1 = η2.

Our first main result shows strong convergence for three out of four components in the
deformation gradient. The fact that the last component cannot be controlled is related
to the degenerate convexity of the relaxed energy. We refer to Section 2 for the definition
of the notation used below.

Theorem 1.1 Suppose that W is given by (1.2) with assumptions (1.3), that u ∈ A is
a minimizer of Iqc, and that uh is a minimizer of

Iqc(vh) =

∫
Ω
W qc(ε(vh)) dx−

∫
Ω
f · vh dx

in a finite element space uD + Vh,0 with uD ∈ Vh and Courant finite element method
with respect to some shape-regular triangulation Th. Then there exist constants C1 and
C2 which depend on the triangulation only through the constant κ∗ defined in (2.1) such
that, in a suitable coordinate system with A1 −A2 = diag(η1, η2),

||∂1(u− uh)1||H−1(Ω) +
∑

j,k=1,2;(j,k)6=(1,1)

||∂k(u− uh)j ||L2(Ω)

≤ C1 min
vh∈uD+Vh,0

(
Iqc(vh)− Iqc(u)

)
.

If u ∈ H2(Ω;R2) then

min
vh∈uD+Vh,0

(
Iqc(vh)− Iqc(u)

)
≤ C2h||D2u||L2(Ω).

Our second main result concerns the design of an adaptive scheme of Section 4.2 which

allows the computation of a sequence of triangulations T` and minimizers u` ∈ uD +V(`)
0

and so generalises [4] to some nonconvex minimisation problem.

Theorem 1.2 Suppose that the assumptions in Theorem 1.1 hold. Then the sequence

(u`)`∈N with u` ∈ uD + V(`)
0 , ` ∈ N0, computed by the adaptive scheme converges with

respect to the weak topology of H1(Ω;R2) to the unique minimizer u of the variational in-
tegral Iqc in the class of admissible functions A. Moreover, the energies Iqc(u`) converge,
i.e.,

lim
`→∞

Iqc(u`) = Iqc(u) = min
v∈uD+H1

0 (Ω;R2)
Iqc(v) ,

and, in a suitable coordinate system with A1 − A2 = diag(η1, η2), all components of the
deformation gradient except the (1, 1)-component converge strongly L2(Ω), i.e.,

||∂1(u− u`)1||H−1(Ω) +
∑

j,k=1,2;(j,k)6=(1,1)

||∂k(u− u`)j ||L2(Ω) → 0 as `→∞.
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One key ingredient in the proof is the observation [19] that the relaxation of the
energy (1.2) can be written as the sum of a convex and a polyaffine function which in
the case at hand is a multiple of the determinant. This special structure has, e.g., been
used in [27, 28] to obtain uniqueness results and regularity of phase boundaries while
our approach is in the spirit of the translation method which has been widely used
in homogenization theory to separate nonconvex terms with special structure, usually
polyaffine functions, from others terms, see the discussion in Section 5 in [19] for more
details and references. The crucial observation in this paper is that the convex function
Φ allows a convexity control in the sense of [7, 6, 17, 4], i.e., some suitable constant λ1

satisfies

λ1|DΦ(A)−DΦ(B)|2 ≤ Φ(A)− Φ(B)− 〈DΦ(B), A−B〉 for all A, B ∈M2×2. (1.4)

The structure of the remaining parts of this paper is as follows. We introduce in
Section 2 standard notation including our assumptions on shape regular triangulations.
Section 3 reviews the necessary results on the relaxation of the two-well energy which
are used in our proofs. The first key feature is the decomposition of the relaxed energy
density in the form W qc = Φ+γ det. The convexity control (1.4) of the translated energy
Φ is presented in Section 4.1. Section 4.2 states the adaptive algorithm, presents the
error estimator, and introduces the refinement scheme. The proofs of Theorem 1.1 and
Theorem 1.2 are presented in Section 4.3. The second key observation is a refined error
estimator reduction introduced in the proof of Theorem 1.2 which allows one to relate
errors in the approximation of the pseudostresses DΦ and the true stress DW qc. The
concluding Section 5 presents the analogous results in the case that the energy depends
on the full deformation gradient.

The results presented in this paper are the first affirmative convergence results for a
non-convex minimization problem in the spirit of [15, 8, 29, 4].

2 Notation

Throughout this paper, Ω ⊂ R2 denotes an open and bounded domain with polygonal
boundary and uD ∈ H1(Ω;R2) is piecewise affine and belongs to all finite element spaces
V(`) and Vh.

Standard notation for respective Lebesgue and Sobolev spaces applies to the norms
like ‖·‖Lp(Ω) = ‖·‖p;Ω = ‖·‖p and ‖·‖Wk,p(Ω) = ‖·‖k,p;Ω = ‖·‖k,p. The domain is neglected

if it is clear from the context. The space of real 2× 2 matrices is denoted by M2×2 and
the symmetric part of a given matrix F ∈M2×2 by E = F̂ = (F + F T )/2 ∈M2×2

sym. The
inner product between two vectors a and b reads a · b while that of the two matrices A
and B reads A : B; the symbol 〈·, ·〉 abbreviates the inner product in any dimension.

Generic constants may change from line to line. Unless indicated otherwise, all con-
stants are independent of the underlying triangulation.

A triangulation T of a domain Ω ⊂ R2 is a finite set of closed triangles which partitions
Ω in the sense that ⋃

T∈T
T = Ω .
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Moreover, if T1, T2 ∈ T , T1 6= T2, are two triangles, then T̊1 ∩ T̊2 = ∅ and if the
intersection of two triangles T1, T2 ∈ T , T1 6= T2, is not empty, then it is either a
common edge, called interior edge, or a common vertex, also called node. The set of all
nodes (resp. edges) reads N (resp. E) and the set of all interior nodes (resp. interior
edges) by N̊ (resp. E̊). A family of triangulations T`, ` ∈ N, is said to be shape regular
in the sense of [11] if there exists a universal constant κ∗ with 0 < κ∗ < 1/2 which is
independent of the level ` ∈ N such that the area |T | of each triangle T ∈ T` satisfies a
two-sided bound in terms of the diameter hT = diam(T ) in the sense of

κ∗ h2
T ≤ |T | ≤ h2

T /κ
∗ . (2.1)

We write Th if hT is bounded by h for all T ∈ Th. Throughout this paper, we use
Courant elements at each fixed refinement level ` ∈ N0. Let Pk(T ) denote the set of all
real-valued polynomials of total degree at most k on the triangle T ∈ T` and let

Pk(T`) =
{
v` ∈ L2(Ω) : ∀T ∈ T`, v`|T ∈ Pk(T )

}
.

Finally we define the corresponding vector-valued functions Pk(T`;R2) = Pk(T`)×Pk(T`)
and introduce the finite element spaces (plus the analogous definitions for triangulations
Th)

V(T`) = P1(T`;R2) ∩H1(Ω;R2) and V0(T`) = P1(T`;R2) ∩H1
0 (Ω;R2) .

3 Review of fundamental properties of the relaxation of the
double well problem

The starting point is the nonconvex energy density W for a two-dimensional model
in linear elasticity with linear kinematics for a phase transforming material with two
preferred elastic strains A1 and A2 ∈M2×2

sym and elasticity tensor C for which

W (E) := min
{
W1(E), W2(E)

}
for all E ∈M2×2

sym

with suitable constants wj ∈ R and

Wj(E) :=
1

2
〈C(E −Aj), E −Aj〉+ wj for j = 1, 2 .

The attention in this contribution lies on the classical case of an isotropic Hooke’s law
with bulk modulus κ > 0 and shear modulus µ > 0, i.e.,

CE = κ(trE) I + 2µ
(
E − 1

2
(trE) I

)
.

See Section 5 for comments on the situation with nonlinear kinematics W = W (F )
instead of W = W (E) in an isotropic model. Since A1 and A2 are symmetric matrices,
we may relabel the matrices in such a way that the eigenvalues η1 and η2 of A1 − A2

satisfy η1 ≥ |η2| and after a suitable change of coordinates we may suppose that the
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eigenvectors are parallel to the coordinate axes, i.e., A1 − A2 = diag(η1, η2). It is well-
established (see, e.g., Lemma 4.1 in [19]) that A1 and A2 are incompatible as linear
elastic strains, if and only if η2 > 0. The relaxed energy density W qc(E) was computed
by Kohn [19], Lurie and Cherkaev [20] and Pipkin [25]. As mentioned, e.g., in [19],
Section 4, the relaxation is piecewise quadratic and globally C1, and in the notation of
this reference given by the expression below. In order to simplify the formulas, set [19]

P1 =
{
E ∈M2×2

sym : W1(E)−W2(E) +
g

2
≤ 0
}
,

P2 =
{
E ∈M2×2

sym : W1(E)−W2(E)− g

2
≥ 0
}
,

Prel =
{
E ∈M2×2

sym :
∣∣W1(E)−W2(E)

∣∣ ≤ g

2

}
,

as well as, for j = 1, 2,

γj = (κ− µ) tr(A1 −A2) + 2µηj , g =
γ2

1

κ+ µ
=

γ2
1

µ(ν + 2)
, ν =

κ− µ
µ

. (3.1)

With this notation the quasiconvex envelope of the two-well energy is given by

W qc(E) =


W1(E) if E ∈ P1 ,

W2(E) if E ∈ P2 ,

W2(E)− 1

2g

(
W2(E)−W1(E) +

1

2
g
)2

if E ∈ Prel .

(3.2)

For future reference we note that in the case η2 > 0 of incompatible tensors,

−1 < ζ := (ν + 1)− (ν + 2)
γ2

γ1
< 1. (3.3)

Moreover, ζ = −1 if and only if γ1 = γ2 and ζ = 1 if and only if η2 = 0. In order to
verify the upper bound, one uses that for η2 = 0 the expression simplifies to

ζ =
κ

µ
− κ+ µ

µ

(κ− µ)η1

(κ− µ)η1 + 2µη1
= 1

and that the derivative ∂ζ/∂η1 is less than or equal to zero on [0, η2].
Following [27] we define

H(E) :=
1

2
〈CE,E〉 − 1

2g
〈E,C(A1 −A2)〉2 for E ∈M2×2

sym . (3.4)

Note that H is the quadratic part of the energy in the relaxed phase where the relaxation
does not coincide with one of the two functions W1 and W2. The relaxed energy is non-
convex due to a term proportional to the determinant in the relaxed phase. The key
observation is, that this energy is given by a nonnegative quadratic form after a suitable
translation with a term proportional to the determinant.

The next lemma is a crucial ingredient in the proof of the convexity control.
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Lemma 3.1 (see [27]) Let γ := µ
(
ν − (ν + 2)γ2γ1

)
and F ∈ M2×2 with symmetric part

E := F̂ . If E ∈ Prel, then the quadratic part T of the translation of the relaxed energy
W qc(E)− γ detF satisfies

T (F ) = H(E)− γ detF =
1

2
〈CE,E〉 − 1

2g
〈CE,A1 −A2〉2 − γ detF ≥ 0 . (3.5)

Proof. We include a sketch of the proof for future reference since we will need the
nonnegativity of certain terms. The explicit expression for H follows immediately from
the definition of the relaxed energy in (3.2). Since C(A1 − A2) = diag(γ1, γ2) we can
evaluate the quadratic form H and find that

H(E) =
µ

2
(2 + ν)

(
1− γ2

2

γ2
1

)
F 2

22 + µ
(
ν − (ν + 2)

γ2

γ1

)
F11F22 + 2µE2

12

=
µ

2
(2 + ν)

(
1− γ2

2

γ2
1

)
F 2

22 + Q̃(F ) + µ
(
ν − (ν + 2)

γ2

γ1

)
detF (3.6)

with c0 = c0(γ1, γ2) ≥ 0 and

Q̃(F ) =
µ

2
F 2

12 +
µ

2
F 2

21 + µ
(
ν + 1− (ν + 2)

γ2

γ1

)
F12F21

=
µ

2

(
F12

F21

)T ( 1 ν + 1− (ν + 2)γ2γ1
ν + 1− (ν + 2)γ2γ1 1

)(
F12

F21

)
(3.7)

≥ c0

(
F 2

12 + F 2
21

)
.

Indeed, up to a factor of µ2/4, the determinant of the matrix in the last formula equals

(ν + 2)
(
1− γ2

γ1

) (2 + ν)γ2 − νγ1

γ1
= 4µη2(ν + 1)(ν + 2)

(γ1 − γ2)2

γ2
1

.

In fact, c0 > 0 if η2 > 0 and γ2 < γ1; the former inequality holds if the two linear strains
are not compatible and the latter if A1 − A2 is not isotropic, that is, not proportional
to the identity matrix. 2

Under the foregoing assumptions, a minimizer of the relaxed functional exists in the
class of admissible functions A and is unique. We include a short proof of the theorem for
the convenience of the reader and in order to emphasize that existence and uniqueness
follows in the finite element space Vh as well. Moreover, we will follow the same outline
in the case of models with nonlinear kinematics.

Theorem 3.2 ([27], Theorem 2.1) Suppose that W is given by (1.2) with assump-
tions (1.3) and that uD ∈ H1(Ω;R2) and f ∈ L2(Ω). Then there exists a unique mini-
mizer of the variational problem: Minimize Iqc with

Iqc(v) =

∫
Ω
W qc(ε(v))dx−

∫
Ω
f · vdx among all v ∈ A.
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Moreover, any solution of the Euler-Lagrange equations coincides with the minimizer.
Finally, if u ∈ A is a minimizer of Iqc and v ∈ A, then the difference e = u− v satisfies

µ

2

∫
Ω

(
αe2

2,2 + e2
1,2 + e2

2,1 + βe1,2e2,1

)
dx =

∫
Ω
H(e(x)) dx ≤ Iqc(v)− Iqc(u)

with α := (2 + ν)
(
1− γ22

γ21

)
> 0 and −2 < β := 2ζ = 2

(
(1 + ν)− (2 + ν)γ2γ1

)
< 2.

Note that β = −2 if A1 − A2 is isotropic and β ≥ 2 if A1 and A2 are compatible as
linear strains.

Proof. The existence of a minimizer follows from the direct method in the calculus of
variations. To prove the remaining assertions, we follow the arguments in [27, Section 3].
Since the relaxed energy is globally C1 (see Section 4 in [19]), any critical point u satisfies
the Euler-Lagrange equations∫

Ω
DW qc(ε(u)) : ε(v)dx−

∫
Ω
f · vdx = 0 for all v ∈ H1

0 (Ω;R2) . (3.8)

For all A,B ∈M2×2
sym, the Taylor expansion about A implies

W qc(B)−W qc(A)−DW qc(A) : (B −A)

=
1

2

∫ 1

0
D2W qc(A+ s(B −A))[B −A,B −A] ds . (3.9)

Note that (3.4) implies

H(E) ≤ 1

2
D2W qc(C)[E,E] for all C,E ∈M2×2

sym . (3.10)

We set A = ε(u) and B = ε(v), and use this estimate with C = A + s(B − A) and
E = A − B to obtain a lower bound for the right-hand side in the Taylor expansion.
After integration over Ω one obtains in view of (3.8)∫

Ω
H
(
ε(v − u)

)
dx ≤ Iqc(v)− Iqc(u) .

We deduce from (3.6) and the fact that the determinant is a Null-Lagrangian that

Iqc(v)− Iqc(u) ≥ µ
2

∫
Ω

(
(2 + ν)

(
1− γ2

2

γ2
1

)(
∂2(v2 − u2)

)2
+
(
∂1(v2 − u2)

)2
+
(
∂2(v1 − u1)

)2
(3.11)

+ 2
[
(ν + 1)− (ν + 2)

γ2

γ1

]
∂1(v2 − u2)∂2(v1 − u1)

)
dx ≥ 0 ,

as asserted. Finally suppose that v is a minimizer and that u is a critical point.
Then (3.11) implies ∂2(v2 − u2) = 0 and, by Poincaré’s inequality, that v2 − u2 van-
ishes identically. We then conclude that ∂2(v1 − u1) = 0 and hence v1 − u1 = 0 as well.
This establishes the proof of the theorem. 2
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We conclude this section with an example which demonstrates the loss of unique-
ness in the isotropic case [25, 27]. The question of uniqueness is an open problem for
general boundary conditions, [18] contains some affirmative results in the case of strict
quasiconvexity and affine boundary conditions.

Remark 3.3 Suppose that the material is isotropic, i.e., that η1 = η2 and that

A1 −A2 = η1I , A1 = A2 + η1I, A =
1

2
(A1 +A2) = A2 +

η1

2
I

with diagonal matrices A1 and A2. For simplicity we assume that κ = µ = 1/2. In this
case, C is the identity tensor and the relevant constants are given by γ1 = γ2 = η1, ν = 0
and g = η2

1 > 0, see (3.1). Moreover,

W1(A) =
1

2

∣∣A−A1

∣∣2 =
1

2

∣∣η1

2
I
∣∣2 and W2(A) =

1

2

∣∣A−A2

∣∣2 =
1

2

∣∣η1

2
I
∣∣2.

Hence A is a matrix in the interior of the relaxed phase Prel which is an open set in
the space of all deformation gradients. On this subset, the quadratic part of the relaxed
energy reads

H(E) =
1

4
(F12 − F21)2 − detF .

Fix any φ ∈ C∞c (Ω) with compact support in Ω. For δ small enough, the deformation
gradient of the deformation uδ(x) = Ax+ δDφ(x) is symmetric and lies in the open set
Prel. Thus the total elastic energy of the affine function uD(x) = Ax and the functions uδ
(which satisfy the same boundary conditions) are equal. This establishes nonuniqueness
for constant applied forces f . To obtain forces which are not constant one can choose
f = curlψ with ψ ∈ C∞(Ω). In particular, the stress fields of the deformations are
different. Thus our results cannot be extended to the case of isotropic materials.

4 Kinematically linear models

We begin our analysis with the case of linear kinematics.

4.1 Convexity control of the translated energy

One key observation is that the translated energy allows for convexity control in the
sense of [4, 17].

Theorem 4.1 Let γ := µ
(
ν − (ν + 2)γ2γ1

)
and define the translation of the energy W qc

as Φ : M2×2 → R for all X ∈M2×2 by

Φ(X) = W qc(X̂)− γ detX for X̂ :=
1

2
(X +XT ). (4.1)

Then Φ allows convexity control in the sense that there exists a constant λ1 with 0 <
λ1 <∞ such that

λ1|DΦ(A)−DΦ(B)|2 ≤ Φ(A)− Φ(B)− 〈DΦ(B), A−B〉 for all A, B ∈M2×2 . (4.2)
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Note that the energy Φ depends on the full deformation gradient and not only on its
symmetric part.

The proof requires a useful observation on nonnegative quadratic forms.

Lemma 4.2 Given any nonnegative quadratic form Q : Mm×n → R there exists a
constant λ0 > 0 such that, for all A,B,X ∈Mm×n,

λ0|DQ(X)|2 ≤ Q(X)

and

λ0|DQ(A)−DQ(B)|2 ≤ Q(B)−Q(A)− 〈DQ(A), B −A〉 = Q(B −A) . (4.3)

Proof. The identification of Mm×n with Rmn shows that one needs to prove the lemma
form = 1 and any n ∈ N and may identify the bilinear form with some matrixM ∈ Rn×n,
i.e., Q(X) = X ·MX for all X ∈ Rn. Without loss of generality we may and will suppose
that M is symmetric.

The terms Q(X) = X ·MX and |DQ(X)|2 = 4 |MX|2 are invariant under orthogonal
transformations and the spectral theorem shows that it is sufficient to prove the assertion
for any diagonal matrix M . The latter follows immediately form the scalar case with
λ0 = 1/(4λmax) for the maximal positive eigenvalue of M (when M 6= 0 and else for any
λ0). This concludes the proof of the first assertion.

Since Q is quadratic, the Taylor series expansion of Q at A in terms of X = B−A up
to the quadratic term equals Q(B). Furthermore, the second derivative 1

2 D
2Q(A)[X,X]

equals Q(X). Hence, the Taylor series expansion proves the equality in (4.3). That
equality plus the first assertion imply the claimed inequality in (4.3). 2

Proof of Theorem 4.1. By definition, Φ is the translation of W qc by a multiple of the
determinant which is (in two dimensions) a quadratic form. In particular, if we collect
all terms involving the translation on the right-hand side in (4.2), we obtain, for all
A,B ∈M2×2, that

−γ
(
det(A)− det(B)−D det(B) : (A−B)

)
= −γ det(A−B) . (4.4)

Recall that the energy W qc in (3.2) is given by three distinct expressions in the three
domains P1, P2, and Prel with W qc = Wj on Pj for j = 1, 2. To simplify the notation
we set Wrel = W qc on Prel. It follows from the chain rule that

∂

∂Fjk
W (E) =

1

2

∂

∂Ejk
W (E) +

1

2

∂

∂Ekj
W (E)

and hence ∂FW is the symmetric part of ∂EW . However, since the derivative of W with
respect to E is symmetric, we may write DW without indicating whether the derivative
is with respect to E or F . The same applies to W qc and the three distinct parts in the
formula for W and W qc.
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We need to check all combinations of arguments A and B lying in each of the three
domains P1, P2, and Prel. Suppose thus that Â ∈ Pj and B̂ ∈ Pk with j, k ∈ {1, 2, rel}.
Then

RHS = Φ(A)− Φ(B)−DΦ(B) : (A−B)

=Wj(Â)−Wk(Â) +Wk(Â)−Wk(B̂)−DWk(B̂) : (Â− B̂)− γ det(A−B) .

Since Wk is a quadratic polynomial we obtain for all symmetric arguments X that

D2Wk(B)[X,X] = D2Wk(B̂)[X,X] = C[X,X] ≥ 2H(X)

for B̂ ∈ Pk and k = 1, 2 while

D2Wrel(B)[X,X] = D2Wrel(B̂)[X,X] = 2H(X)

for B̂ ∈ Prel, see (3.4). Hence the right-hand side is equal to

RHS =Wj(Â)−Wk(Â) +
1

2
D2Wk(B̂)[Â− B̂, Â− B̂]− γ det(A−B) . (4.5)

The assertion follows for j = k from (4.3) and Lemma 3.1 since

1

2
D2Wk(B̂)[Â− B̂, Â− B̂]− γ det(A−B) ≥ H(Â− B̂)− γ det(A−B) ≥ 0 .

The strategy in the remaining cases is to rearrange the terms in such a way that they are
equal to T (A−B) plus some nonnegative terms where T was defined in (3.5). Then the
expression DΦ(A)−DΦ(B) on the left-hand side is transformed to DT (A−B) plus error
terms. Finally one notes that in all cases the squares of the error terms are bounded by
the additional nonnegative terms.

We include a sketch of the calculations for the four relevant cases and omit the re-
maining two (symmetric cases) for brevity.

Case 1: B̂ ∈ Prel, Â ∈ P1. The right-hand side is given by (4.5), i.e.,

RHS =W1(Â)−Wrel(Â) +
1

2
D2Wrel(B̂)[Â− B̂, Â− B̂]− γ det(A−B)

=
1

2g

(
W2(Â)−W1(Â)− g

2

)2
+ T (A−B) . (4.6)

The relevant expression on the left-hand side (under the square) is equal to

DW1(Â)−DWrel(B̂)− γD det(A−B)

= DT (A−B) +
1

g

(
W2(Â)−W1(Â)− g

2

)
C(A1 −A2) .

We conclude that∣∣DW1(Â)−DWrel(B̂)− γD det(A−B)
∣∣2

≤ 2

g
(γ2

1 + γ2
2)
(
W2(Â)−W1(Â)− g

2

)2
+ 2|DT (A−B)|2 . (4.7)

11



The first term in (4.7) is estimated by the first term in (4.6) (up to constants, recall that
T ≥ 0) and the second term in this expression is estimated by (4.3). Thus there exists
a constant λ1 with the asserted properties.

Case 2: B̂ ∈ Prel, Â ∈ P2. In this case the right-hand side is given by

W2(Â)−Wrel(Â) +
1

2
D2Wrel(B̂)[Â− B̂, Â− B̂]− γ det(A−B)

=
1

2g

(
W2(Â)−W1(Â) +

g

2

)2
+ T (A−B)

while the left-hand side is equal to

DW2(Â)−DWrel(B̂)− γD det(A−B)

= DT (A−B) +
1

g

(
W2(Â)−W1(Â) +

g

2

)
C(A1 −A2) .

The assertion follows as in the previous case.
Case 3: B̂ ∈ P1, Â ∈ Prel. The right-hand side is equal to

Wrel(Â)−W1(Â) +
1

2
D2W1(B̂)[Â− B̂, Â− B̂]− γ det(A−B)

= − 1

2g

(
W2(Â)−W1(Â)− g

2

)2
+

1

2g
〈C(Â− B̂), A1 −A2〉2 + T (A−B) .

Note that in the situation at hand

|W2(Â)−W1(Â)| ≤ g

2
, W1(B̂)−W2(B̂) +

g

2
≤ 0

and that the first two terms can be rearranged to

− 1

2g

(
W2(Â)−W1(Â)− g

2

)2
+

1

2g
〈C(Â− B̂), A1 −A2〉2

= − 1

g

(
W2(Â)−W1(Â)− g

2

)(
W2(B̂)−W1(B̂)− g

2

)
+

1

2g

(
W2(B̂)−W1(B̂)− g

2

)2
.

In particular, the first term is nonnegative and the right-hand side is bounded from
below by

1

2g

(
W2(B̂)−W1(B̂)− g

2

)2
+ T (A−B) .

On the left-hand side we obtain

DWrel(Â)−DW1(B̂)− γD det(A−B)

= −1

g

(
W2(B̂)−W1(B̂)− g

2

)
C(A1 −A2) +DT (A−B)

and the assertion follows as before.
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Case 4: B̂ ∈ P1, Â ∈ P2. In this case,

W1(B̂)−W2(B̂) +
g

2
≤ 0 , W1(Â)−W2(Â)− g

2
≥ 0

and the right-hand side is equal to

W2(Â)−W1(Â) +
1

2
D2W1(B̂)[Â− B̂, Â− B̂]− γ det(A−B)

= W2(Â)−W1(Â) +
1

2g
〈C(Â− B̂), A1 −A2〉2 + T (A−B) .

We focus on the first three terms which we rewrite as

W2(Â)−W1(Â) +
1

2g
〈C(Â− B̂), A1 −A2〉2

=
1

2g

(
W2(Â)−W1(Â) +

g

2

)2 − 1

g

(
W2(Â)−W1(Â)− g

2

)(
W2(B̂)−W1(B̂)− g

2

)
+

1

2g

(
W2(B̂)−W1(B̂)− g

2

)2
.

Note that the middle term is by assumption nonnegative. The terms on the left-hand
side are

DW2(Â)−DW1(B̂)− γD det(A−B)

=
1

g

[(
W2(Â)−W1(Â) +

g

2

)
−
(
W2(B̂)−W1(B̂)− g

2

)]
C(A1 −A2) +DT (A−B) .

If we square the right-hand side we obtain three squares which are all balanced on the
left-hand side. The proof is complete. 2

4.2 Adaptive Algorithm

This section describes the adaptive algorithm. Given an initial shape-regular triangula-
tion T0, this scheme generates a sequence of triangulations T` and corresponding finite
element spaces V(`) which all satisfy the estimate (2.1) with a constant κ∗ determined
form the initial configuration. In particular, all constants are independent of `.

4.2.1 INPUT

The input required by the numerical scheme is a shape-regular triangulation T0 of the
bounded domain Ω ⊂ R2 with polygonal boundary ∂Ω into closed triangles, the associ-
ated finite element space V(0) = V(T0) of continuous functions which are on all elements
affine polynomials with values in R2, and a fixed parameter Θ with 0 < Θ < 1 for the
marking strategy. Moreover, we assume that the Dirichlet condition uD is contained in
V(0).
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4.2.2 SOLVE and the discrete minimization problems

Given the triangulation T`, ` ∈ N0, with the corresponding discrete spaces V(`) = V(T`)
and V(`)

0 = V0(T`) on the level `, compute the discrete solution u` ∈ uD + V(`)
0 as the

unique minimizer of the energy functional Iqc on uD +V(`)
0 , see Corollary 4.3 below. For

simplicity, we suppose that the discrete solution is computed exactly. Then, the discrete
stress is given by

σ` = DW qc(ε(u`)) ∈ L2(T`;M2×2
sym).

Note that DW qc is piecewise affine and globally continuous and hence globally Lipschitz
continuous. Since ε(u`) ∈ P0(T`;M2×2

sym) is piecewise constant, so is σ` ∈ L2(T`;M2×2
sym).

4.2.3 ESTIMATE

Suppose that T+ and T− are two distinct triangles in T` with a common edge E =
∂T+ ∩ ∂T− ∈ E`(Ω) of length |E|. The unit normal vector

νE = νT+ |E = −νT− |E along E

is defined up to the orientation which we fix as the orientation of the outer normal νT+ of
T+ along E. Given the discrete stress σ` = DW qc(ε(u`)) ∈ L2(T`;M2×2

sym) of the previous
subsection, the jump of σ` across the edge is defined as

[σ`]EνE = σ`|T+νT+ + σ`|T−νT− =
(
σ`|T+ − σ`|T−

)
νE along E.

Let E(T ) denote the set of the three edges of a triangle T ∈ T` and E̊(T ) = E(T )\E`(∂Ω)
the subset of interior edges. To each triangle T ∈ T` with area |T | we associate the error
estimator contribution η`(T ) given by

η2
` (T ) = |T | ||f + div σ`||2L2(T ) + |T |1/2

∑
E∈E̊(T )

||[σ`]EνE ||2L2(E). (4.8)

The sum
η2
` =

∑
T∈T`

η2
` (T )

is indeed an error estimator for the accompanying pseudostress approximations from
the translated energy minimization problem, see the proof of Theorem 1.2. However,
the upper bound η` of the pseudostress error is not sharp, the reliable error estimator
η` is not efficient. This dramatic difficulty in the a posteriori error control is called
reliability-efficiency gap in [5] and is caused by the degenerate convexity which is fre-
quently encountered in relaxed variational problems in the modelling of microstructures.

4.2.4 MARK and REFINE

Suppose that all element contributions (η2
` (T ) : T ∈ T`) defined in the previous subsec-

tion are known on the current level ` with triangulation T`. Given the input parameter

14



Θ ∈ (0, 1) select a subset M` of T` (of minimal cardinality) with

Θη2
` ≤

∑
T∈M`

η2
` (T ) =: η2

` (M`). (4.9)

This selection condition is also called bulk criterion or Dörfler marking [15, 22] and is
easily arranged with some greedy algorithm.

Any marked element is bisected according to the rules in Figure 1 and further mesh
refinements may be necessary (e.g., via newest vertex bisection) such that T`+1 is a
refinement of T` with M` ⊂ T` \ T`+1.

Theorem 1.2 does not need the refinement with five bisections to obtain the interior
node property and may focus on green-blue-red or green-blue refinement strategies.
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Figure 1: Possible refinements of a triangle (up to rotations).

4.2.5 OUTPUT and convergence result

For a given triangulation T` the adaptive scheme generates the triangulation at the next
level T`+1 by a successive completion of the subroutines

SOLVE → ESTIMATE → MARK → REFINE (4.10)

Based on the input triangulation T0, this scheme defines a sequence of meshes T0, T1, T2, . . .
and associated discrete subspaces

V(0) $ V(1) $ · · · $ V(`) $ V(`+1) $ · · · $ V = H1(Ω;R2) (4.11)

with discrete minimizers u` ∈ uD + V(`)
0 , ` ∈ N0. The main properties of this sequence

of solutions are formulated in Theorem 1.1 and Theorem 1.2, see also the steps in the
proof in Section 4.3 for approximation of the pseudostresses associated to Φ.

4.3 Proofs of Theorem 1.1 and Theorem 1.2

This section presents the proofs for our main results which involve additional approxi-
mation estimates for the pseudostress τ .
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4.3.1 Preliminary Remarks

Theorem 3.2 implies the existence and uniqueness of minimizers in our finite element
spaces.

Corollary 4.3 Suppose that uD ∈ H1(Ω;R2), that Th is a shape regular triangulation
with associated finite element space Vh with Courant elements and that uD ∈ Vh. Let
f ∈ L2(Ω). Then there exists a unique solution uh ∈ Vh with uh = uD on ∂Ω of the
variational problem: Minimize Iqc(vh) among all admissible functions vh ∈ uD + Vh,0.

We begin with a brief discussion of the relations between the original and the translated
energy density Φ(X) = W qc(X̂)−γ detX. The first observation is that the determinant
is a Null-Lagrangian, that is, for all u ∈ A defined in (1.1) the identity∫

Ω
detDudx =

∫
Ω

detDuDdx

holds, see, e.g., [23, Theorem 2.3]. This implies that the relaxed functional Iqc and the
energy functional with the translated energy Eqc differ on A by a constant,

Eqc(v) :=

∫
Ω

Φ(Dv)dx−
∫

Ω
f · v dx = Iqc(v)− γ

∫
Ω

detDuDdx for all v ∈ A .

Moreover, u is a minimizer for Iqc if and only if u is a minimizer for Eqc. Note that Φ
depends on the full deformation gradient while W qc depends only on its symmetric part.

An important consequence is that any minimizer of E or Iqc is a weak solution of the
corresponding Euler-Lagrange systems,∫

Ω
DW qc(ε(u)) : ε(v)dx−

∫
Ω
f · vdx =

∫
Ω
σ : ε(v)dx−

∫
Ω
f · vdx = 0 (4.12)

for all v ∈ H1
0 (Ω;R2) as well as∫

Ω
DΦ(Du) : Dvdx−

∫
Ω
f · vdx =

∫
Ω
τ : Dvdx−

∫
Ω
f · vdx = 0. (4.13)

Here and throughout the paper, σ := DW qc(ε(u)) denotes the true stresses, τ :=
DΦ(Du) denotes the pseudostress, i.e. the stress associated to the translated varia-
tional problem.

4.3.2 Proof of Theorem 1.1

The bound in terms of the energy difference follows from the algebraic estimates in
Theorem 3.2, since for all vh ∈ Vh the estimate

µ

2

∫
Ω

(
αe2

2,2 +
2− β

2

(
e2

1,2 + e2
2,1

))
≤ Iqc(uh)− Iqc(u) ≤ Iqc(vh)− Iqc(u)
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holds. The weaker estimate for ∂1(u− uh) follows with Poincaré’s inequality from

||∂1(u− uh)1||H−1(Ω) = sup
w∈H1

0 (Ω), ‖w‖1,2≤1

∫
Ω

(u− uh)1∂1wdx

. sup
w∈H1

0 (Ω), ‖w‖1,2≤1

‖∂2(u− uh)1‖L2(Ω) ‖Dw‖L2(Ω)

. ‖∂2(u− uh)1‖L2(Ω) .

Moreover, the fact that W qc is piecewise quadratic implies in view of the Taylor expan-
sion (3.9) and the Euler-Lagrange system (4.12) for the minimizer u that

0 ≤ Iqc(vh)− Iqc(u) =

∫
Ω

(
W qc(ε(vh))−W qc(ε(u))

)
dx−

∫
Ω
f · (vh − u)dx

=

∫
Ω

(
W qc(ε(vh))−W qc(ε(u))−DW qc(ε(u)) : (ε(vh)− ε(u))

)
dx

≤ C
∫

Ω

∣∣Dvh −Du∣∣2dx .

If u ∈ H2(Ω;R2) then the error estimate follows if one chooses for vh the usual nodal
interpolation operator of u and uses the standard error estimates.

4.3.3 Proof of Theorem 1.2

We divide the proof in several steps. Let u` be the finite element minimizer in V(`).
Since the discrete spaces are nested, see the inclusions in (4.11), it follows that the
sequence (Iqc(u`))`∈N is monotone decreasing and bounded from below by Iqc(u), hence
convergent. In the following H(div = 0) denotes the subspace of all matrix fields in
L2(Ω;M2×2) for which the divergence of the rows vanishes in the sense of distributions,

H(div = 0) :=
{
τ ∈ L2(Ω;M2×2) : div τ = 0 in D′(Ω;R2)

}
.

Step 1: True stresses and pseudostresses. The key to the proof is the analysis of the
convergence of the pseudostress τ` = DΦ(Du`) which is piecewise constant. Since the
derivative of the determinant as a map from M2×2 to R is the cofactor matrix, and since
div cof Du = 0 in the sense of distributions, i.e., cof Du` ∈ H(div = 0), the true stress
σ` = σ(Du`) and the pseudostress τ` are related by

σ` = DΦ(Du`) + γ cof Du` ∈ τ` +H(div = 0) .

Step 2: Error estimator reduction. There exist two constants 0 < ρ < 1 and 0 < Λ <
∞ (which only depend on Θ and T0) such that, for any two consecutive levels ` and
` + 1 with corresponding finite element solutions u` and u`+1 and discrete stress (resp.
pseudo-stress) approximations σ` and σ`+1 (resp. τ` and τ`+1),

η2
`+1 ≤ ρ η2

` + Λ||τ`+1 − τ`||2L2(Ω). (4.14)
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When ||τ`+1−τ`||2L2(Ω) is replaced by ||σ`+1−σ`||2L2(Ω), the error reduction property (4.14)
is a well-established tool in the convergence analysis of adaptive finite element methods
and can be found in [4, 8] for elliptic problems in a very general setting. The proof
employs the triangle and trace inequalities but no particular property of the piecewise
polynomial approximations. Since the true stress and the pseudo-stress approximations
differ merely by some piecewise constant divergence free cofactor matrix, the error esti-
mator η` in terms of σ` is identical to the one with σ` replaced by τ`. This establishes
(4.14).

Step 3: Bounds on the difference of successive pseudostresses. For any ` ∈ N the
L2-norm of the difference of stresses at successive levels is estimated by

λ1‖τ`+1 − τ`‖2L2(Ω) ≤ E
qc(u`)− Eqc(u`+1) .

To prove this estimate, we evaluate the convexity control estimate in (4.2) for x in the
interior of an element in T`+1 in A = Du`(x) and B = Du`+1(x) and integrate on Ω to
obtain

λ1‖τ`+1 − τ`‖2L2(Ω) ≤
∫

Ω
(Φ(Du`)− Φ(Du`+1)) dx−

∫
Ω
τ`+1 : D(u` − u`+1)dx . (4.15)

Since u`+1 minimizes E in uD+V(`+1)
0 we may use the discrete Euler-Lagrange equations

which are analogous to (4.13); that is,∫
Ω
τ`+1 : Dv`+1 dx =

∫
Ω
f · v`+1 dx for all v`+1 ∈ V(`+1)

0 .

Since V(`) ⊆ V(`+1), v`+1 = u` − u`+1 ∈ V(`+1)
0 is an admissible test function and hence∫

Ω
τ`+1 : D(u` − u`+1)dx =

∫
Ω
f · (u` − u`+1)dx.

We substitute this identity in (4.15) and obtain the assertion.

Step 4: Convergence of the error estimator. The error estimators η`, ` ∈ N, converge
to zero, that is, lim`→∞ η` = 0. In fact, the error estimator reduction (4.14) and the
discrete stress control of Step 3 imply

η2
`+1 ≤ ρ η2

` + Λ/λ1 (Eqc(u`)− Eqc(u`+1)) for all ` ∈ N .

Mathematical induction shows, for m, n ∈ N, that

η2
m+n ≤ ρnη2

m +
Λ

λ1

n−1∑
k=0

ρn−k−1
(
Eqc(um+k)− Eqc(um+k+1)

)
≤ ρnη2

m +
Λ

λ1

(
Eqc(um)− Eqc(um+n)

)
.
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Form = 0 we obtain uniform boundedness of the sequence (ηn)n∈N, and since (Eqc(u`))`∈N
is a Cauchy sequence and 0 < ρ < 1 we conclude lim`→∞ η` = 0.

Step 5: Error estimates for the pseudo-stress. Let ` ∈ N, then

λ1‖τ − τ`‖2L2(Ω) ≤ E
qc(u`)− Eqc(u)

and

λ1‖τ − τ`‖2L2(Ω) ≤ E
qc(u)− Eqc(u`) +

∫
Ω

(τ − τ`) : D(u− u`)dx . (4.16)

The first assertion follows as in Step 3 by replacing u`+1 with u. To prove (4.16), let x
be a Lebesgue point of Du which lies in the interior of an element in T`. For such an x
we evaluate the convexity control estimate (4.2) in A = Du(x) and B = Du`(x). Since
almost all points are Lebesgue points, we may integrate on Ω and obtain

λ1‖τ − τ`‖2L2(Ω) ≤
∫

Ω
(Φ(Du)− Φ(Du`)) dx−

∫
Ω
τ` : D(u− u`)dx .

The pseudo-stress τ satisfies the Euler-Lagrange equations (4.13) and the assertion fol-
lows in view of the definition of the energy.

Step 6: Explicit residual-based reliable error control I. There exists a constant Crel
such that, for all ` ∈ N0,

λ1‖τ − τ`‖2L2(Ω) + Eqc(u`)− Eqc(u) ≤ Crel η`||D(u− u`)||L2(Ω) .

To prove this, let e` := u − u` ∈ H1
0 (Ω;R2) denote the error on the `th level of the

scheme and let J` be a quasi-interpolation of H1
0 onto V(`)

0 in the sense of [12, 26]. We
denote by h` the mesh-size function of T` which is constant on the elements in T`. Then
there exists a constant Capx which depends only on T0 such that [30]

||h−1
` (e− J`e)||2L2(Ω) +

∑
E∈E(T`)

|E|−1‖e− J`e‖2L2(E) ≤ Capx||De||
2
L2(Ω) . (4.17)

We use (4.16) and the Euler-Lagrange equations for the solutions u and u` to obtain for

all v` ∈ uD + V(`)
0 ,

λ1‖τ − τ`‖2L2(Ω) + Eqc(u`)− Eqc(u) ≤
∫

Ω
f · (u− v`)dx−

∫
Ω
τ` : D(u− v`)dx .

Let v` = u` + J`(u − u`) ∈ uD + V(`)
0 so that u − v` = e` − J`e`. In the second integral

we use integration by parts on the individual triangles. In order to simplify the notation
we do not replace integrals over Ω by a sum over all triangles. Instead we denote by
div` the local divergence on all elements in T`. A careful rearrangement of the boundary
terms shows that∫

Ω
f · (u− v`)dx−

∫
Ω
τ` : D(u− v`)dx

=

∫
Ω

(f + div` τ) · (e` − J`e`)dx−
∑

E∈E̊(T`)

∫
E

(e` − J`e`) · [τ`]EνE ds .
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Cauchy’s inequality and the approximation error estimate (4.17) lead to the upper bound(
‖h`(f + div` τ`)‖2L2(Ω) +

∑
E∈E̊(T`)

|E| ‖[τ`]EνE‖2L2(E)

)1/2
C1/2
apx||De`||L2(Ω).

The equivalence of local mesh-size and the square root of the area of the elements (which
follows from the shape-regularity) implies the existence of a reliability constant Crel and
the corresponding upper bound η`Crel||De`||L2(Ω) . This verifies the asserted estimate.

Step 7: Explicit residual-based reliable error control II. Let u` be the sequence of
functions computed by the adaptive finite element scheme. Then

lim
`→∞

Eqc(u`) = Eqc(u) and lim
`→∞

‖τ − τ`‖L2(Ω) = 0 .

Note that the energy density W qc satisfies two-sided growth conditions of the from

c1|E|2 − c2 ≤W qc(E) ≤ c3(|E|2 + 1) for all E ∈M2×2
sym

with positive constants c1, c2, c3. Thus the symmetric parts of the deformation gradients
of the minimizers u and u` are uniformly bounded in L2 and since u − u` ∈ H1

0 (Ω) we
obtain from Korn’s inequality that ‖Du −Du`‖L2 is uniformly bounded. Step 4 shows
η` → 0 as `→∞ and Step 6 implies that

lim
`→∞

(
λ1‖τ − τ`‖2L2(Ω) + Eqc(u`)− Eqc(u)

)
= 0.

This estimate implies the assertion of the Theorem 1.2.

Step 8: Convergence of the deformation gradient. This follows from Theorem 3.2 and
the convergence of the energy from Step 7. 2

5 Kinematically nonlinear models

In this section we extend the foregoing results to the case of energies which depend on
the full deformation gradient and not only its symmetric part. The analysis for the
relaxation of the double-well energy in the kinematically linear case can be performed
in the nonlinear case as well and leads to the same formula (3.2), see Section 7 in [19].

5.1 Results

In the special case of an isotropic material with

W (F ) =
1

2
min

{
|αF −A1|2 + w1, |αF −A2|2 + w2

}
, α > 0, w1, w2 ∈ R

the constant g reads (see Formula (7.1) in [19])

αλmax

(
(A1 −A2)T (A1 −A2)

)
.
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By a change of coordinates we may assume that A2 = −A1 = Λ = diag(α1, α2) with
α1 > |α2| > 0 and α = 1. In particular, the two matrices are not compatible in the sense
that the rank of the matrix A1 −A2 is bigger than one and that the matrix ATA is not
proportional to the identity matrix. These assumptions lead to

W (F ) =
1

2
min

{
|F − Λ|2 + w1, |F + Λ|2 + w2

}
with g = λmax(4Λ2) = 4α2

1 . (5.1)

In this situation we have the following uniqueness result which parallels [27, Theo-
rem 2.1] or Theorem 3.2 from this paper; the case w1 = w2 was already noted in [14].

Theorem 5.1 Let Ω ⊂ Rn be a bounded and open domain with Lipschitz boundary,
let A ∈ Mm×n be a matrix with rank(A) > 1 and let W be given by (5.1). Given
f ∈ L2(Ω;RN ) and uD ∈ H1(Ω;Rm), consider the variational integral

Iqc[v] =

∫
Ω
W qc(Dv)dx−

∫
Ω
f · vdx for all v ∈ H1(Ω;Rm) (5.2)

in the class of admissible functions

A =
{
u ∈ H1(Ω;RN )|u = uD on ∂Ω

}
.

Then, Iqc has a unique minimizer u in A.

The analysis in Section 4 can be performed for the nonlinear setting as well. The
corresponding results are summarized in the next theorem.

Theorem 5.2 Let Iqc be the functional given in (5.2) with the energy density given
in (5.1).

1. A priori estimates: Suppose that uD ∈ Vh for some h > 0, that u is a minimizer of
the functional Iqc in the class of admissible functions A, and that uh is a minimizer
of Iqc in the finite element space uD +Vh,0 based on Courant finite elements on an
underlying shape-regular triangulation Th. Then there exists a constant C1 such
that, in a suitable coordinate system with A1 −A2 = diag(η1, η2),∑

j,k=1,2;(j,k)6=(1,1)

||∂k(u− uh)j ||L2(Ω) ≤ C1 min
vh∈uD+Vh,0

(
Iqc(vh)− Iqc(u)

)
.

Moreover, the (1, 1)-component satisfies the weaker estimate

||∂1(u− uh)1||H−1(Ω) ≤ C1 min
vh∈uD+Vh,0

(
Iqc(vh)− Iqc(u)

)
.

If u ∈ H2(Ω;R2) then there exists a constant C2 such that

min
vh∈uD+Vh,0

(
Iqc(vh)− Iqc(u)

)
≤ C2h||D2u||L2(Ω) .
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2. Convergence of the adaptive scheme: Let (u`)`∈N with u` ∈ uD + V(`)
0 , ` ∈ N0, be

the sequence computed by the adaptive scheme described in Section 4.2. Then this
sequence converges with respect to the weak topology of H1(Ω;R2) to the unique
minimizer u of the variational integral Iqc in the class of admissible functions A.
Moreover, the energies Iqc(u`) converge, i.e.,

lim
`→∞

Iqc(u`) = Iqc(u) = min
v∈uD+H1

0 (Ω;R2)
Iqc(v) ,

and all components of the deformation gradient except the (1, 1)-component con-
verge strongly L2(Ω), i.e.,

‖∂1(u− u`)1‖H−1(Ω) +
∑

j,k=1,2;(j,k)6=(1,1)

‖∂k(u− u`)j‖L2(Ω) → 0 as `→∞.

In the following sections we sketch the proof of this theorem.

5.2 Convexity control of the translated energy

The key idea in Section 4.1 was the definition of the quadratic form H which was the
quadratic part of the energy in the phase Prel. This motivates to define

H(F ) =
1

2
|F |2 − 2

g
〈F,A〉2 ≤ 1

2
D2W qc(G)[F, F ] for all F, G ∈M2×2 . (5.3)

We define γ = −α2/α1 ∈ (−1, 1) and note that

T (F ) = H(F )− γ detF ≥ 1

2

(
1− γ2

)
F 2

22 +
1

2

(
1− γ2

)(
F 2

12 + F 2
21

)
defines a nonnegative quadratic form. In analogy to Theorem 4.1 one obtains convexity
control for the translated energy.

Theorem 5.3 Suppose that W is given by (5.1). Let Φ : M2×2 → R be given by

Φ(X) = W qc(X)− γ detX, X ∈M2×2 . (5.4)

Then the translated energy Φ allows convexity control in the sense that there exists a
constant λ1 with 0 < λ1 <∞ such that

λ1|DΦ(A)−DΦ(B)|2 ≤ Φ(A)− Φ(B)− 〈DΦ(B), A−B〉 for all A, B ∈M2×2 . (5.5)

The proof is identical to the proof of Theorem 4.1.
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5.3 Convergence analysis and proofs of Theorem 5.1 and Theorem 5.2

The proof of Theorem 5.1 is with minor changes identical to the proof of Theorem 3.2.
We now obtain for any stationary point u ∈ A of Iqc and any v ∈ A the estimate

Iqc(v)− Iqc(u) ≥
∫

Ω
H
(
D(u− v)

)
dx

≥ 1

2
(1− γ2)

∫
Ω

[(
∂2(v1 − u1)

)2
+
(
∂1(v2 − u2)

)2
+
(
∂2(v2 − u2)

)2]
dx .

In particular, all stationary states are minimizers and uniquely defined. This estimate
implies immediately the a priori estimates in Theorem 5.2. The convergence analysis
follows the lines of the one for the case of linear kinematics in Section 4.3 with the true
stresses σ` = DW qc(Du`) and the pseudostresses τ = DΦ(Du`).
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