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Abstract

We present the result of a calculation for the third and fourth moments of the non-singlet
four-loop anomalous dimension of Wilson twist-2 operators in QCD with full color and
flavour structures. We discuss also a general expressions for some contributions to the
full four-loop anomalous dimension obtained with the help of the method, based on LLL-
algorithm, which was proposed earlier by us for the reconstruction of a general form of the
anomalous dimension from a fixed values.



In our recent paper [1] we calculated the higher moments for the non-planar contri-
bution to the four-loop anomalous dimension of the twist-2 operators in the maximally
extended N = 4 Supersymmetric Yang-Mills (SYM) theory. As N = 4 SYM theory is
a generalization of the Quantum Chromodynamics (QCD) we have all the necessary to
perform a similar calculations for the four-loop anomalous dimension in QCD. In this pa-
per we present the results for the third and fourth moments of the non-singlet four-loop
anomalous dimension of Wilson twist-2 operators in QCD with the full color and flavour
structures, which extend our previous result [2] to the next two moments. All general for-
mal equations can be found, for example, in Ref. [8]. So, here we will only give the details,
which are concerned the calculations of the third and fourth moments together with the
discussion of a general results.

The standard twist-2 irreducible (i.e. symmetrical and traceless in indices µ1 . . . µN ,
what usually denoting with curly brackets) flavour non-singlet quark operators with the
Lorenz spin-N have the following form:

Oa,{µ1...µN} = ψ̄λaγ{µ1Dµ2 . . .DµN}ψ, a = 1, 2, . . . , (n2
f − 1), (1)

where Dµj are the covariant derivatives, λa are the generators of the flavour group SU(nf ).
Note, that in general there are three independent quark non-singlet distributions q±ns,ij

and qV
ns and one quark singlet distribution qs. The three non-singlet distributions are the

flavour asymmetries

q±ns,ij = qi ± q̄i − (qj ± q̄j) , (2)

and the sum of the valence distributions of all flavours,

qV
ns =

nf∑
i=1

(qi − q̄i) , (3)

while the singlet distribution is simply the sum of the distributions of all flavours,

qs =

nf∑
i=1

(qi + q̄i) . (4)

Here we will calculate the anomalous dimensions γ±NS related only with q±NS,ij and up-

per/down sign corresponds to the operators Oa,{µ1...µN} with even/odd N .
So, in this paper we will interesting to the operators with N = 3 (third moment) and

N = 4 (fourth moment). The results up to three-loop can be found in Refs. [3, 4, 5, 6, 7,
8, 9]. The Feynman rules for the operator Oλµ1,...,µN with the different number of the gauge
fields can be found in Ref. [10] and the projectors can be found in Ref. [10] (see also [11]).
Note, that for the operator with N = 4 the operator vertex with the five lines is appeared
(two quark and three gluons lines).

As in our previous papers the calculations of diagrams were performed with FORM [12],
using FORM package COLOR [13] for evaluation of the color traces. For the dealing with a
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huge number of diagrams we use a program DIANA [14], which call QGRAF [15] to generate
all diagrams. The reduction of all appeared scalar integrals to the master-integrals was
done with our program BAMBA based on the algorithm of Laporta [16]. We used, following
Ref. [17] (see also Refs. [18, 19, 20] for details), the infra-red rearrangement (IRR) procedure
which reduce a propagator-type diagrams to a fully massive tadpole diagrams. For the
reduction of the newly appeared Feynman integrals with a higher powers of denominators
and numerators we considerably improved our MATHEMATICA code BAMBA.

Practically, all computations are divided into three parts: calculation of the planar-
based diagrams, calculation of the non-planar-based diagrams and a renormalization.

For the calculations we used the following forms of the non-singlet operators (1) for the
third (N = 3) and fourth moment (N = 4)

Oa,µνρNS = ψ̄λaγµDνDρψ , (5)

Oa,µνρσNS = ψ̄λaγµDνDρDσψ (6)

and we don’t need a symmetrization and a subtraction of the traces as we will multiply
operators to the corresponding projectors, which are the symmetric traceless tensors .

The projectors for these operators can be found in Ref. [10] and explicitly they have
the following forms:

Πµνρ =
1

D − 1

[
D + 2

p6
pµpνpρ −

1

p4
g{µνpρ}

]
p/

4
, (7)

Πµνρσ =
1

D2 − 1

[
(D + 4)(D + 2)

p8
pµpνpρpσ −

D + 2

p6
g{µνpρpσ} +

1

p4
g{µνgρσ}

]
p/

4
. (8)

For the renormalization we need the three-loop renormalization constants for the oper-
ator insertion gψ̄λaγ{µAν ...}ψ with two quarks and one gluon legs, gψ̄λaγ{µAνAρ ...}ψ with
two quarks and two gluon legs and gψ̄λaγ{µAνAρAσ}ψ with two quarks and three gluon
legs, which can be obtained order by order in a usual way from the renormalization of the
corresponding operator Oa,{µν ...}NS with the same number of Lorentz indices as

Zψ̄λaγ{µAν ...}ψ =ZOa,{µν ...}NS
Z

1/2
A Z1/2

g Zψ , (9)

Zψ̄λaγ{µAνAρ ...}ψ =ZOa,{µνρ ...}NS
ZAZgZψ , (10)

Zψ̄λaγ{µAνAρAσ ...}ψ =ZOa,{µνρσ ...}NS
Z

3/2
A Z3/2

g Zψ , (11)

where ZA, Zg and Zψ are the renormalization constants for gluon filed Aµ, coupling con-
stant and quark correspondingly.
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Our final result is:

γ4−loop
NS (3) = +as

25

6
CF + as

2

[
535

27
CFCA −

2035

432
C2
F −

415

54
CFTFnf

]
+ as

3

[
C3
F

(
110ζ3

3
− 244505

15552

)
+ C2

FCA

(
−55ζ3 −

311213

15552

)
+C2

FTFnf

(
200

3
ζ3 −

203627

3888

)
+ CFC

2
A

(
55

3
ζ3 +

889433

7776

)
+CFCATFnf

(
−200

3
ζ3 −

62249

1944

)
− 2569

486
CFT

2
Fn

2
f

]
+as

4

[
C4
F

(
24380

81
ζ3 −

2000

3
ζ5 +

341611945

2239488

)
+C3

FTFnf

(
6986

81
ζ3 +

220

3
ζ4 −

2000

3
ζ5 +

38386673

139968

)
+C3

FCA

(
−140057

648
ζ3 −

605

3
ζ4 +

2900

3
ζ5 +

40709323

279936

)
+C2

FT
2
Fn

2
f

(
−2440

9
ζ3 +

400

3
ζ4 +

1313443

17496

)
+C2

FCATFnf

(
31547

27
ζ3 −

1430

3
ζ4 +

1000

9
ζ5 −

22941613

69984

)
+C2

FC
2
A

(
−4843

27
ζ3 +

605

2
ζ4 −

1325

9
ζ5 −

503877829

559872

)
+CFC

3
A

(
125219

648
ζ3 −

605

6
ζ4 −

5950

27
ζ5 +

72667541

69984

)
+CFC

2
ATFnf

(
−11483

9
ζ3 +

1210

3
ζ4 +

14000

27
ζ5 −

2366971

3888

)
+CFCAT

2
Fn

2
f

(
2440

9
ζ3 −

400

3
ζ4 +

79747

1458

)
+CFT

3
Fn

3
f

(
1600

81
ζ3 −

23587

4374

)
+

5

9

dabcdF dabcdA

NF

(1520ζ3 − 1460ζ5 − 51)

+nf
5

9

dabcdF dabcdF

NF

(392ζ3 − 800ζ5 + 165)

]
, (12)

3



γ4−loop
NS (4) = +as

157

30
CF + as

2

[
16157

675
CACF −

287303

54000
C2
F −

13271

1350
CFTFnf

]
+as

3

[
C3
F

(
2878

75
ζ3 −

714245693

48600000

)
+ C2

FCA

(
−1439

25
ζ3 −

267028157

9720000

)
+C2

FTFnf

(
1256

15
ζ3 −

165237563

2430000

)
+ CFC

2
A

(
1439

75
ζ3 +

136066373

972000

)
+CFCATFnf

(
−1256

15
ζ3 −

8802581

243000

)
− 384277

60750
CFT

2
Fn

2
f

]
+as

4

[
C4
F

(
14504764

50625
ζ3 −

25136

45
ζ5 +

3482407012657

34992000000

)
+C3

FTFnf

(
1641922

10125
ζ3 +

5756

75
ζ4 −

2512

3
ζ5 +

29581840417

87480000

)
+C3

FCA

(
−10215349

81000
ζ3 −

15829

75
ζ4 +

33004

45
ζ5 +

33802068299

174960000

)
+C2

FC
2
A

(
−2497339

16875
ζ3 +

15829

50
ζ4 −

1645

9
ζ5 −

1557367902137

1749600000

)
+C2

FCATFnf

(
4588639

3375
ζ3 −

43174

75
ζ4 +

1256

9
ζ5 −

89325051233

218700000

)
+C2

FT
2
Fn

2
f

(
−8584

25
ζ3 +

2512

15
ζ4 +

5419760639

54675000

)
+CFC

3
A

(
13461191

81000
ζ3 −

15829

150
ζ4 −

18646

135
ζ5 +

49455970561

43740000

)
+CFC

2
ATFnf

(
−5247961

3375
ζ3 +

37418

75
ζ4 +

87472

135
ζ5 −

1796654459

2430000

)
+CFCAT

2
Fn

2
f

(
8584

25
ζ3 −

2512

15
ζ4 +

60167591

911250

)
+CFT

3
Fn

3
f

(
10048

405
ζ3 −

17813699

2733750

)
+
dabcdF dabcdA

NF

(
63568

45
ζ3 −

78868

45
ζ5 +

254713

1350

)
+nf

dabcdF dabcdF

NF

(
22552

75
ζ3 −

26912

45
ζ5 +

16568

135

)]
, (13)

where NF is the dimension of the fermion representation (i.e. the number of quark colours),
nf is the number of quark flavors and for the color group SU(Nc) (see Ref. [21]):

dabcdF dabcdF

NA

=
N4
c − 6N2

c + 18

96N2
c

,
dabcdF dabcdA

NA

=
Nc(N

2
c + 6)

8

TF =
1

2
, CF =

N2
c − 1

2Nc

, CA = Nc , NA = N2
c − 1 . (14)
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The part of the obtained result, which is proportional to (nf )
i−1ais, coincide with the

prediction from Ref. [22].
There are also some predictions [23]1, coming from the Pade resummation, which for

γ
(3)
NS(3, nf = 4) gives 3480 or 3450 and for γ

(3)
NS(4, nf = 4) gives 4211 or 4207 depending on

the resummations procedure2. Our explicit results for the four active quarks (with Nc = 3
and nf = 4) is given by:

γ4−loop
NS (3, nf = 4) = 5.55556 as + 50.39095 as

2 + 418.17201 as
3 + 4322.89048 as

4 , (15)

γ4−loop
NS (4, nf = 4) = 6.97778 as + 60.07233 as

2 + 502.91174 as
3 + 5066.33924 as

4 . (16)

In the end we want to give some general results, which can be obtained from our results
for N = 2 [2], N = 3 (12) and N = 4 (13). We have found two different colour structures,
which have multiplied to some common prefactors with arbitrary N :

1) with prefactor equal to the one-loop non-singlet anomalous dimension [3][24]:

aCF

[
2S1 +

2

N(N + 1)
− 3

]
×

(
1 + 16 a2CFnfTF ζ3 − 16 a2CAnfTF ζ3

+
128

27
a3T 3

Fn
3
fζ3 + 32 a3CFT

2
Fn

2
fζ4 − 32 a3CAT

2
Fn

2
fζ4

−160 a3C2
FTFnfζ5 +

80

3
a3CFCATFnfζ5

)
. (17)

2) with prefactor, which can be read form the general expression for three-loop non-
singlet anomalous dimension [25]:

24 a3CF

[
−2S−2 +

(−1)N

N2(N + 1)2
+

(−1)N

N(N + 1)
− 5

4

]
×

(
4C2

F ζ3 − 6CFCAζ3 + 2C2
Aζ3

+8 aC2
FTFnfζ4 − 22 aC2

FCAζ4 + 33 aCFC
2
Aζ4 − 11 aC3

Aζ4

)
. (18)

Here we used the nested harmonic sums defined as (see [26][27]):

Sa(N) =
N∑
j=1

(sgn(a))j

j|a|
, Sa1,...,an(N) =

N∑
j=1

(sgn(a1))j

j|a1|
Sa2,...,an(j) (19)

and the sum of the absolute values of the indices is called the transcendentality :

` = |a1|+ . . . |an| . (20)

1We thank A.L. Kataev, who pointed out to us this result.
2Note, that in the four loops a new colour structures (14) are appeared, which can disimprove a

resummation.
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A general results for the anomalous dimension can be obtained also with the method,
which was proposed by us for the reconstruction of a general form of anomalous dimension
from the few first fixed values. This method based on the two observation:

1) the anomalous dimension of twist-two operators contains only harmonic sums with
a transcendentality not higher than (2`− 1) at `-loop order;

2) the coefficients in the front of this sums usually rather simple integer numbers.

So, we can write down ansatz from the all possible harmonic sums at find coefficients in
the front of these sums from the knowledge of the anomalous dimension with the fixed
values. According to the second observation the obtained system of linear equations will
be the system of Diophantine equations, which is very interesting from the point of view
a number theory. The most simple and the most public available method for the solution
of the system of linear Diophantine equations based on the LLL-algorithm [28], which has
a realizations in a lot of computer algebra system and a private codes. Firstly, we used
this method in our paper [29] about a six-loop anomalous dimension of twist-3 operators
in N = 4 SYM theory, where we reconstruct the general form of anomalous dimension
from the knowledge of first 40 fixed values for the ansatz with 85 harmonic sums. Then
we used this method for the reconstruction of a general form of the three-loop anomalous
dimension of the transverse twist-2 operators in QCD from the first 15 fixed values [30]
and the obtained result was checked with 16-th moment [31]. The detailed explanation
of the work of this method for our purpose with a simple example can be found in our
paper [32]. Recently, we reconstruct with our method a full planar six-loop anomalous
dimension of twist-2 operators in N = 4 SYM theory form the first 35 even values [33]
(note, that the corresponding ansatz contained about 350 harmonic sums, that is in one
order more than the number of calculated fixed values). So, this method is very powerful,
but according to its applicability it demands the usage of a large numbers, that is it will
give the more reliable result when the available fixed values would be a large numbers. In
this sense the results, presented in this paper, do not contain a large enough numbers, so
we can try reconstruct only most simple contribution from the full anomalous dimension,
namely the contribution, which is proportional to ζ5.

There are nine different color structures in our results. (12) and (13) for ζ5 contribution:{
a4C4

F , a
4C3

FCA, a
4C2

FC
2
A, a

4CFC
3
A, a

4C3
FTFnf , a

4C2
FCATFnf , a

4CFC
2
ATFnf ,

a4 d
abcd
F dabcdA

NF

, a4TFnf
dabcdF dabcdF

NF

}
(21)

The contributions, which are proportional to a4C3
Fnf and a4C2

FCAnf can be found in
Eq. (17). The most simplest contribution among the rest structures, as we can expect, is
proportional to a4CFC

2
ATFnf .
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For the reconstruction we can use also well known fact that the non-singlet anomalous
dimension at N = 1 is equal to zero in all order of perturbative theory, because in this case
our operator (1) is equivalent to a non-singlet vector current and the vanishing of the first
moment of the non-singlet anomalous dimension follows from the conservation of the such
current. So, this will give us additional constraints. Another constraint comes from the
results, which are known in N = 4 SYM theory. At present we know a general expression
for the anomalous dimension of twist-2 operators up to six-loops for planar part [34, 35, 33]
and at least ζ5 contribution for non-planar part at four-loop order [36, 37, 1]. At four loops
the general expression for the ζ5 contribution can be written as:

γ4−loop, ζ5
N=4SYM (j) = −640 S2

1(j − 2)

(
1 +

12

N2
c

)
ζ5 . (22)

This result should be obtained from the corresponding result in QCD, which we are looking
for, applying to its the maximal transcendentality principle, as was done by us in ref. [38]
at three loops. To move from QCD to N = 4 SYM theory we should make arguments
of all harmonic sums the same (in general the QCD results contain the harmonic sums
with a shifted arguments, see [25]), that is change (N ± 1) to N and make the following
substitution for the colour factors: CF → CA, TFnf → CA. Then we should drop out
all harmonic sums, which do not respect to the maximal transcendentality principle, that
is all harmonic sums with transcendentality less then (2` − 1) at `-loop order. Following
the maximal transcendentality principle we can expect the next harmonic sums in the
expression for the ζ5 contribution to the four-loop non-singlet anomalous dimension:{

S1,1(N)− 1

2
S2(N), S1,1(N + 1)− 1

2
S2(N + 1), S1,1(N + 1)− 1

2
S2(N + 1),

S−2(N), S−2(N + 1), S−2(N − 1), S1(N), S1(N + 1), S1(N − 1), 1

}
, (23)

where the combination of the harmonic sums in the first three terms and the absence of
S2 sums are due to reciprocity [39, 40], which, as we believe, should works for QCD in this
case. Applying above described procedure to the result, which will some combinations of
the harmonic sums form the basis (23) we should obtain the result from Eq. (22). Note, that
if we make the substitution for the colour factors CF → CA in our results for N = 2, 3, 4
we obtain:

γ
(3)
NS, ζ5

(2)
CF→CA=

1280

27

(
24
dabcdF dabcdA

NF

+ C4
A

)
− 320

27
nf

(
96
dabcdF dabcdF

NF

+ C3
A

)
, (24)

γ
(3)
NS, ζ5

(3)
CF→CA= −1825

27

(
24
dabcdF dabcdA

NF

+ C4
A

)
− 500

27
nf

(
96
dabcdF dabcdF

NF

+ C3
A

)
, (25)

γ
(3)
NS, ζ5

(4)
CF→CA= −19717

135

(
24
dabcdF dabcdA

NF

+ C4
A

)
− 3364

27
nf

(
96
dabcdF dabcdF

NF

+ C3
A

)
. (26)

So, indeed, planar and non-planar contributions are related through the same equations as
we have in N = 4 SYM theory, even for nf part.
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Let’s start with the colour structures, which are proportional to the nf . For such contri-
butions we can make some interesting observation from the known three-loop results [25]:
the transcendentality of such contributions is less then the maximal transcendentality on
the power of nf . In our case we can expect, that all contributions, which are proportional
to nf will have transcendentality 1. For a4C3

Fnf and a4C2
FCAnf this is correct. So, for

a4CFC
2
ATFnf and a4nfd

abcd
F dabcdF /NF we will write the following basis (see Eq. (17)):{

S1(N),
1

N(N + 1)
,

(−1)N

N(N + 1)
, 1

}
, (27)

As we have four results for N = 1, 2, 3, 4 we can exactly find all coefficients in the ansatz
from the basis (27) and the corresponding contributions look like:

γ
(3)
NS ,ζ5

∣∣∣
dF dF

=
1024

3
TF nf

dabcdF dabcdF

NF

(
− 7S1(N)− 5

2N(N + 1)
− (−1)N

N(N + 1)
+

31

4

)
, (28)

γ
(3)
NS ,ζ5

∣∣∣
CFC

2
Anf

=
128

9
CFC

2
ATFnf

(
17S1(N)− 10

N(N + 1)
− (−1)N

4N(N + 1)
− 97

8

)
. (29)

For the reconstruction of the non-nf contributions we tried the following minimal basis:{
S1(N)2, S1(N),

1

N2(N + 1)2
,

(−1)N

N2(N + 1)2
,

1

N(N + 1)
,

(−1)N

N(N + 1)
, 1

}
, (30)

From the corresponding ansatz and with the help of LLL-algorithm we have found the
following results for the non-planar contribution:

γ
(3)
NS ,ζ5

∣∣∣
dabcdF dabcdA

= 640
dabcdF dabcdA

NF

(
− 4S2

1(N) + 2S1(N)− 3

N2(N + 1)2
+

10(−1)N

N2(N + 1)2

− 3

N(N + 1)
+

2(−1)N

N(N + 1)
+

31

4

)
. (31)

For other contributions the most simple expressions, obtained with the help of LLL-
algorithm from the minimal basis (30) are the following:

γ
(3)
NS ,ζ5

∣∣∣
C4
F

= 320C4
F

(
+ 4S2

1(N)− 14S1(N) +
14(−1)N

N2(N + 1)2

+
10

N2(N + 1)2
− (−1)N

N(N + 1)
+

1

N(N + 1)
+ 10

)
, (32)

γ
(3)
NS ,ζ5

∣∣∣
C3
FCA

= 320C3
FCA

(
− 2S2

1(N) + 6S1(N) +
5(−1)N

N2(N + 1)2
+

4

N2(N + 1)2

− 5(−1)N

N(N + 1)
− 11

N(N + 1)
− 3

4

)
, (33)
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γ
(3)
NS ,ζ5

∣∣∣
C2
FC

2
A

= 160C2
FC

2
A

(
− S2

1(N)− S1(N) +
5(−1)N

2N2(N + 1)2

+
17(−1)N

2N(N + 1)
+

9

2N(N + 1)
+

37

8

)
, (34)

γ
(3)
NS ,ζ5

∣∣∣
CFC

3
A

=
160

3
CFC

3
A

(
+ 4S2

1(N)− 4S1(N)− 10(−1)N

N2(N + 1)2
+

3

N2(N + 1)2

− 7(−1)N

N(N + 1)
+

10

N(N + 1)
− 47

4

)
. (35)

However Eqs. (32)-(35) do not satisfy the relation (26). In principal, we can extended
basis (30), but our numbers from Eqs. (12) and (13) are rather small and we can not
improve our general results. So, we need to know the higher moments.

In general we can conclude, that the structure of the anomalous dimension in the four
loops is much complicated with compare to what we can expect from the analyze of the
three-loop results. Note, that something similar occur in N = 4 SYM theory starting from
the four loops. Up to three loops the anomalous dimension of the twist-2 operators can be
obtained with the help of integrability from the asymptotic Bethe-ansatz (ABA) [41], while
starting from the four loops a new type of diagrams appeared, which are not accounted
with ABA [42]. We are going to continue our calculations to obtain a general result, at
least for the ζ5 contribution.
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