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Abstract

In [1] we proposed a formula for the 3-point structure constants of Toda field theory, derived using
topological strings and the AGT-W correspondence from the partition functions of the non-Lagrangian
TN theories on S4. In this article, we show how the semi-degeneration of one of the three primary fields on
the Toda side corresponds to a particular Higgsing of the TN theories and derive the well-known formula
by Fateev and Litvinov.
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1 Introduction

Obtaining the 3-point functions of the Toda CFT is a long standing problem in mathematical physics.
Attacking this problem purely by using 2D CFT techniques is a notoriously difficult task and results
exist only for particular specializations of the external momenta. Only the cases of degenerate or semi-
degenerate primaries are known [2–4]. Our strategy in this paper, following [1], will be to employ string
theory techniques, in particular topological stings and 5-brane web physics, that through the AGT-W
correspondence will allow us tackle this problem using tools of a very different nature.

The AGT-W correspondence [5,6] is a relation between 4D N = 2 SU(N) quiver gauge theories and 2D
WN Toda CFT. The correlation functions of the 2D Toda CFT are obtained from the partition functions
of the corresponding 4D N = 2 gauge theories as

ZS4

=

∫
[da]

∣∣∣Z4D
Nek(a,m, ϵ1,2)

∣∣∣2 ∝ ⟨Vα1(z1) · · ·Vαn(zn)⟩Toda , (1)

where the Omega deformation parameters are related to the Toda coupling constant1 via ϵ1 = b and
ϵ2 = b−1. The conformal blocks of the 2D CFTs are given by the appropriate instanton partition functions
of Nekrasov [5,6], while the three point structure constants should be obtained by the S4 partition functions
of the TN superconformal theories [7, 8]. These partition functions were until recently [1, 8, 9] unknown,
with the sole exception of the W2 case, i.e. the Liouville case, whose three point structure constants are
given by the famous DOZZ formula [10,11].

1We also use the notation ϵ+ = ϵ1 + ϵ2. When we specialize ϵ1 = b and ϵ2 = b−1 in order to connect the topological
string expressions to the Toda expressions, we have ϵ+ = b+ b−1 = Q.
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Figure 1: This figure depicts the identification of the α weights appearing on the Toda CFT side with
the position of the flavor branes on the TN side, here drawn for the case N = 5.

A similar relation between 5D gauge theories and 2D q-CFT exists [8, 12–25], which relates the 5D
Nekrasov partition functions on S4 × S1 to correlation functions the of q-deformed Liouville/Toda field
theory:

ZS4×S1

=

∫
[da]

∣∣∣Z5D
Nek(a,m, β, ϵ1,2)

∣∣∣2 ∝ ⟨Vα1(z1) · · ·Vαn(zn)⟩q-Toda , (2)

where β = − log q is the circumference of the S1. The exponentiated Omega background parameters

q = e−βϵ1 , t = eβϵ2 , (3)

are used in this case. The partition function on ZS4×S1

is the 5D superconformal index, which as discussed
in [26] can also be computed using topological string theory techniques

ZS4×S1

=

∫
[da] |Z5D

Nek(a)|2 ∝
∫
[da] |Ztop(a)|2 . (4)

In [8] we computed the partition functions of the 5D TN theories on S4 × S1 (see also [9]) and suggested
that they should be interpreted as the 3-point structure constants of q-deformed Toda. We read them
off from the toric-web diagrams of the TN junctions of [27] by employing the refined topological vertex
formalism of [28, 29]. In a subsequent paper [1], we showed how to take the 4D limit, corresponding to
β → 0 or equivalently to q → 1, obtaining the partition function of 4D TN theories on S4

ZS4

N = const× lim
β→0

β− χN
ϵ1ϵ2 ZS4×S1

N , (5)

where by “const” we mean a function of ϵ1, ϵ2 and β that is independent of the mass parameters of the
theory. The degree of divergence was determined as proportional to the quadratic Casimir of SU(N)3

χN = −
∑

1≤i<j≤N

[
(mi −mj)

2 + (nj − ni)
2 + (li − lj)

2
]
= −N

3∑
i=1

(αi −Q,αi −Q) . (6)

where Q := Qρ = (b + b−1)ρ with the SU(N) Weyl vector ρ defined in (A.8). After the first equality of
(6), we have introduced the mass parameters mi, ni and li of the TN theory, which, as shown in figure 1,
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are connected to the Toda theory parameters [1]

mi = (α1 −Q, hi) = N

N−1∑
j=i

αj
1 −

N−1∑
j=1

jαj
1 −

N + 1− 2i

2
Q ,

ni = − (α2 −Q, hi) = −N
N−1∑
j=i

αj
2 +

N−1∑
j=1

jαj
2 +

N + 1− 2i

2
Q ,

li = − (α3 −Q, hN+1−i) = −N
N−1∑

j=N+1−i

αj
3 +

N−1∑
j=1

jαj
3 −

N + 1− 2i

2
Q .

(7)

It is important to note, that the mass parameters are not all independent, but obey

N∑
i=1

mi =

N∑
i=1

ni =

N∑
i=1

li = 0 , (8)

which is reflected in the fact that the sum of the weights hi of the fundamental SU(N) representation is
zero. Then the structure constants of three primary operators in the q-Toda theory is given by the TN

partition functions on S4 × S1 as

Cq(α1,α2,α3) = const×

 3∏
j=1

Yq(αj)

 (1− q)−χNZS4×S1

N , (9)

where we have used the following special functions that capture the non-trivial Weyl transformation
properties of the structure constants:

Yq(α) :=

(1− qb
)2b−1(

1− qb
−1)2b

(1− q)2Q

−(α,ρ)∏
e>0

Υq ((Q−α, e)) , (10)

with the functions Υq defined in (A.24) and the product is taken over all positive roots e of SU(N). The
partition function on S4 ×S1, or the superconformal index, for the TN theory is given by an integral over
the refined topological string amplitude2

ZS4×S1

N :=

∮ N−2∏
l=1

N−1−l∏
m=1

[
dÃ

(m)
l

2πiÃ
(m)
l

|M(t, q)|2
] ∣∣∣∣∣Ztop

N

Zdec
N

∣∣∣∣∣
2

, (11)

after removing the decoupled degrees of freedom, referred to as “non-full spin content” in [8],∣∣Zdec
N

∣∣2 :=
∏

1≤i<j≤N

∣∣∣M(M̃iM̃
−1
j )M(t/qÑiÑ

−1
j )M(L̃iL̃

−1
j )
∣∣∣2

= const×
3∏

k=1

(1− q)
N(αk,αk−2Q)

((
1− qb

)2b−1(
1− qb

−1)2b)(αk,ρ)

Yq(αk) .

(12)

The partition function Zdec
N captures additional degrees of freedom that are contained in the topological

string calculation but then decouple from the 5D theory. Interestingly enough, as noted in [1], these

2Multiplied by an appropriate power of the refined MacMahon function M(t, q), see (A.30) for a definition.
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Figure 2: The figure illustrates the desired Higgsing procedure for the general TN diagram. We denote
7-branes by crossed circles. The left part of the figure shows the original TN 5-brane web diagram, while
the right one depicts the web diagram obtained by letting N − 1 of the left 5-branes terminate on the same
7-brane.

degrees of freedom are responsible for the Weyl covariance of the Toda structure constants. Here and
elsewhere, we shall use the shorthand notation

|f(u1, . . . , ur; t, q)|2 := f(u1, . . . , ur; t, q)f(u
−1
1 , . . . , u−1

r ; t−1, q−1) , (13)

while the functions M are defined in (A.19). Inserting (11) into (9), we find the nice expression

Cq(α1,α2,α3) = const×
∮ N−2∏

k=1

N−1−l∏
l=1

[
dÃ

(l)
k

2πiÃ
(l)
k

|M(t, q)|2
] ∣∣Ztop

N

∣∣2 . (14)

The topological string amplitude is Ztop
N obtained from the TN web-diagram by using the refined topo-

logical vertex formalism and reads
Ztop

N = Zpert
N Z inst

N , (15)

where the “perturbative” partition function3 is

Zpert
N :=

N−1∏
r=1

∏
1≤i<j≤N−r

M
(

Ã
(r−1)
i Ã

(r−1)
j

Ã
(r−1)
i−1 Ã

(r−1)
j+1

)
M
(√

t
q

Ã
(r−1)
i Ã

(r)
j−1

Ã
(r−1)
i−1 Ã

(r)
j

)
M
(√

t
q

Ã
(r)
i Ã

(r−1)
j

Ã
(r)
i−1Ã

(r−1)
j+1

) ∏
1≤i<j≤N−r−1

M
( t
q

Ã
(r)
i Ã

(r)
j

Ã
(r)
i−1Ã

(r)
j+1

)
, (16)

and the “instanton” one is

Z inst
N :=

∑
ν

N∏
r=1

N−r∏
i=1

(
ÑrL̃N−r

Ñr+1L̃N−r+1

) |ν(r)
i

|
2 N∏

r=1

N−r∏
i≤j=1

Nβ

ν
(r−1)
i ν

(r)
j

(
a
(r−1)
i + a

(r)
j−1 − a

(r−1)
i−1 − a

(r)
j − ϵ+/2

)
Nβ

ν
(r−1)
i ν

(r−1)
j+1

(
a
(r−1)
i + a

(r−1)
j − a

(r−1)
i−1 − a

(r−1)
j+1

)

×
Nβ

ν
(r)
i ν

(r−1)
j+1

(
a
(r)
i + a

(r−1)
j − a

(r)
i−1 − a

(r−1)
j+1 − ϵ+/2

)
Nβ

ν
(r)
i ν

(r)
j

(
a
(r)
i + a

(r)
j−1 − a

(r)
i−1 − a

(r)
j − ϵ+

)
 , (17)

where the a
(j)
i are defined via Ã

(j)
i = e−βa

(j)
i , while the Nβ

λµ are given in (A.36). The “interior” Coulomb

moduli Ã
(i)
j = e−βa

(j)
i are independent, while the “border” ones are given by

Ã
(0)
i =

i∏
k=1

M̃k , Ã
(i)
0 =

i∏
k=1

Ñk , Ã
(N−i)
i =

i∏
k=1

L̃k , (18)

3We put the words “perturbative” and “instanton” inside quotation marks because for the TN there is not really a notion
of instanton expansion, since there is no coupling constant.

4



Figure 3: On the left we depict the sphere with three full punctures that corresponds to the un-Higgsed TN

with SU(N)3 global symmetry. On the right we show the sphere with two full punctures and one L-shaped
{N − 1, 1} puncture. This particular Higgsing of TN leads to a theory with with SU(N)× SU(N)× U(1)
global symmetry. The partition function of this theory will lead to the Toda 3-point function with one
semi-degenerate primary insertion.

where M̃k := e−βmk and similarly for Ñk and L̃k. See appendix A for more details on the parametrization
of the TN junction.

The formula (9) for the structure constants of three Toda primary fields, has the correct symmetry
properties, the zeros that it should and, for N = 2, gives the known answer for the Liouville CFT [1].

However, it is very implicit as one has first to perform N(N−1)
2 sums over the partitions ν

(j)
i , followed by

an (N−1)(N−2)
2 dimensional integral over the Coulomb moduli Ã

(j)
i (the number of faces in the left diagram

in figure 2), and finally take the 4D or q → 1 limit (5). In this article, we show how to derive from (9) the
formula by Fateev and Litvinov [2–4] for the structure constants with one semi-degenerate primary (20).
This provides a very strong check of the results in [1].

This article is organized as follows. We begin by presenting in section 2 the formula by Fateev and
Litvinov that we wish to obtain as well as its generalization to the q-deformed Toda theory. We then argue
in section 3 that the semi-degeneration of the primary field on the 2D CFT side is obtained on the 4D/5D
side by Higgsing the TN theory. Specifically, we Higgs the left part of the TN web diagram, as illustrated

in figure 2. The original, i.e. non-Higgsed, TN partition function on S4 × S1 is given by a (N−1)(N−2)
2

dimensional integral over the Coulomb moduli, but the Higgsing “pinches” the integration contours and
gets rid of all of them as we show in section 4 for the T3 case and in appendix C for the T4 case. The

general TN case is then presented in section 5. In deriving these results, we need to perform N(N−1)
2

sums over partitions, but the semi-degeneration trivializes (N−1)(N−2)
2 of them. Finally, we succeed in

performing the N − 1 leftover sums using the Kaneko-Macdonald-Warnaar sl(N) q-binomial identities,
which we present in 5 and prove their applicability to our case in appendix B.

2 The formula of Fateev and Litvinov

In this section we introduce the formula by Fateev and Litvinov [2–4] for the Toda 3-point structure con-
stants with one semi-degenerate primary that we want to re-derive using our formula (9). The coordinate
dependence of the 3-point functions of three primary fields Vαi is fixed by conformal symmetry up to an
overall coefficient C(α1,α2,α3) called the 3-point structure constants

⟨Vα1(z1, z̄1)Vα2(z2, z̄2)Vα3(z3, z̄3)⟩ =
C(α1,α2,α3)

|z12|2(∆1+∆2−∆3)|z13|2(∆1+∆3−∆2)|z23|2(∆2+∆3−∆1)
, (19)

where zij := zi − zj and ∆i is the conformal dimension of the primary Vαi . Using 2D CFT techniques it
has so far only been possible to derive the formula for the 3-point structure constants of the WN Toda
CFT in some special cases, see [2–4] for the state of the art. The formula for the structure constants in the
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semi-degenerate case, in which one of the three weights becomes proportional to the first ω1 or to the last
ωN−1 fundamental SU(N) weight was derived in [2]. Specifically, one sets4 α1 = Nκω1 or α1 = NκωN−1

and obtains

C(NκωN−1,α2,α3) =
(
πµγ(b2)b2−2b2

) (2Q−
∑3

i=1 αi,ρ)
b ×

×
Υ′(0)N−1Υ(Nκ)

∏
e>0 Υ((Q−α2, e))Υ((Q−α3, e))∏N

i,j=1 Υ(κ + (α2 −Q, hi) + (α3 −Q, hj))
,

(20)

where the functions γ and Υ are to be found in appendix A.3. For our conventions concerning SU(N),
see appendix A.2. In [1], we argued that the q-deformation of (20) should be given by

Cq(NκωN−1,α2,α3) =

(1− qb
)2(

1− qb
−1)2b2

(1− q)2(1+b2)


(2Q−

∑3
i=1 αi,ρ)
b

×
Υ′

q(0)
N−1Υq(Nκ)

∏
e>0 Υq((Q−α2, e))Υq((Q−α3, e))∏N

i,j=1 Υq(κ + (α2 −Q, hi) + (α3 −Q, hj))
.

(21)

We want to emphasize that the q-deformed version of Toda field theory does not have a known Lagrangian
description. Thus, everything is defined algebraically in analogy to the usual case via a deformation of the
WN algebra, see [30] and references therein. Since no Lagrangian description is known for the q-deformed
Toda field theory, we can compute everything, up to overall factors containing the cosmological constant.
Therefore, we defined the 5D correlation functions (21) up to the πµγ(b2) term, since they together form
the b → b−1 invariant combination. Explicitly, we have for the q-deformed 3-point structure constants

Cq(α1,α2,α3)
q→1−→

(
πµγ(b2)

)− (2Q−
∑3

i=1 αi,ρ)
b C(α1,α2,α3) , (22)

so that it is clear how one can put back the appropriate πµγ(b2) factors for a given correlation function.

3 Higgsing the TN theories

In this section we argue that a particular way of Higgsing the TN theories, as depicted in figure 2,
corresponds to the degeneration that we are in interested on the Toda side. We do this by using the
physics of (p, q) 5-brane webs, considering their symmetries and counting the dimension of their moduli
spaces, both Higgs and Coulomb. In the next sections we will use the intuition we acquired here to
explicitly substitute the values dictated by the web diagram, (32) and (28), in the formula (9) in order to
explicitly obtain the formula (20) by Fateev and Litvinov. The physics of the (p, q) 5-brane webs that we
will need in this section is well known and extensively studied, in the context that we need, in [9,27,31,32].
We give a short review of their relevant results.

A very useful way of realizing 4D N = 2 quiver gauge theories in string theory is by using type IIA
string theory and the Hanany-Witten construction [33] of D4 branes suspended between NS5 branes [34].
This configuration can be lifted to M-theory, where both the D4 and the NS5 branes become a single
M5 brane with non-trivial topology, physically realizing the Seiberg-Witten curve in which all the low
energy data are encoded [34]. Similarly, 5D N = 1 gauge theories can be realized using type IIB string
theory with D5 branes suspended between NS5 branes forming (p, q) 5-brane webs [35, 36]. A large class
of N = 2 SCFTs, called class S, can be reformulated (from the realization in [34] with a single M5 brane

4We use a slightly different convention than [2]. One has to change κ → κ
N

to obtain the same expressions.
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Figure 4: On the left part of this figure, we see N 5-branes ending on n 7-branes in bunches of ℓ1, . . . , ℓn
5-branes each. On the right side of the figure, we depict the Young diagram {ℓ′1, ℓ′2, . . . , ℓ′n} that gives the
flavor symmetry of the corresponding puncture. Having n bunches of 5-branes, each ending of a 7-brane
leads to a puncture in the Gaiotto curve with flavor symmetry S(U(k1) × · · · × U(kr)), where the widths
ki of the boxes are equal to the numbers of stacks with the same number of branes per stack.

with non-trivial topology) as a compactification of N M5 branes on a sphere [37]. This point of view is
very useful since intersections of these N M5 branes with other M5 branes can be thought of as insertions
of defect operators on the world volume of the M5 branes and thus punctures on the sphere. The name
simple puncture is used for defects that are obtained from the intersection of the original N M5 branes
with a single M5 brane (originating from D4’s ending on an NS5 in the Hanany-Witten construction),
while full or maximal punctures stem from defects corresponding to intersections with N semi-infinite M5
branes (external flavor semi-infinite D4’s in [34]).

More general punctures, naturally labeled by Young diagrams consisting of N boxes, are also possible
[37,38]. In the (p, q) 5-brane web language, they can be described when additional 7-branes are introduced
[27]. Semi-infinite (p, q) 5-branes are equivalent to (p, q) 5-branes ending on (p, q) 7-branes [39]. Consider
N 5-branes and let them end on n 7-branes, as shown on the left of figure 4. The jth 7-brane carries ℓj
5-branes. We define the numbers ℓ′j as a permutation of the ℓj such that they are ordered

ℓ′1 ≥ ℓ′2 ≥ · · · ≥ ℓ′n , (23)

and arrange them as the columns of a Young diagram5 {ℓ′1, ℓ′2, . . . , ℓ′n}, see the right hand side of figure 4.
As we started with N 5-branes, the ℓ′js must obey the condition

∑n
j=1 ℓ

′
j = N . The integers ka are defined

recursively
ka = {# ℓ′j : ℓ

′
j = ℓ′k1+···ka−1+1} , (24)

and are equal to the number of columns of equal height. Since the diagonal U(1) of the whole set of the N
5-branes is not realized on the low energy theory [39], the flavor symmetry of the corresponding puncture
in the Gaiotto curve is S(U(k1)× · · · ×U(kr)) [37].

Having this toolkit at hand, the authors of [27] where able to show that the Coulomb branch of the
TN theories, corresponding to normalizable deformations of the web which do not change its shape at
infinity, has dimension equal to the number of faces in the TN web diagram, see the left part of figure

2, and has dimension (N−1)(N−2)
2 , as it should [38]. Moreover, they where able to count the dimension

of the Higgs branch of the TN theories (that was known to be 3N2−N−2
2 [38]) by terminating all the

external semi-infinite 5-branes on 7-branes and counting the independent degrees of freedom for moving
them around on the web-plane. Finally, the global symmetry SU(N)3 of the TN theories is realized on
the 7-branes.

Beginning with the TN 5-brane webs which correspond to the sphere with three full punctures (labeled
by the Young diagrams {1N}) and grouping the N parallel 5 branes of the punctures into smaller bunches

5In this article, we draw the Young diagrams in the English notation. By {c1, . . . , cr} we mean a Young diagram with
r columns for which the j-th column has cj boxes, j = 1, . . . , r. Furthermore, we use the notation {ab} for the partition
{a, . . . , a} with b columns.
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Figure 5: In this figure we present the dot diagrams of T4 with three different Higgsings. On the left
we have the un-Higgsed dot diagram with three full punctures, SU(4)3 global symmetry and three Coulomb
moduli. In the middle, the four D5 branes end on two D7 branes with two D5 branes on each, which
corresponds to the Young diagram {2, 2}. This theory has apparent global symmetry SU(4)2 × SU(2) and
one closed polygon corresponding to one leftover Coulomb modulus. Finally, on the right we have the
fully-Higgsed theory with three D5 branes on the first D7 brane and one D5 brane on the second D7. This
theory has no Coulomb moduli left.

(labeled by the Young diagrams {ℓ′1, ℓ′2, . . . , ℓ′n}), the authors of [27] obtained 5-brane configurations
which realize 5D theories with E6,7,8 flavor symmetry. These theories have Coulomb and Higgs branches
of smaller dimension than the original TN and can be counted using a generalization of the s-rule [40–42]
by using the so called dot diagrams6. These theories where further studied in [9, 31, 32]. For us, the
important result from [27] is that the dimension of the Higgs moduli space of a puncture corresponding
to the Young diagram depicted in figure 4 is

dimHMp
H =

n∑
j=1

(j − 1) ℓj , (25)

and that the Coulomb branch is the number of closed dual polygons in the dot diagram.
We need to decide which puncture (Young diagram {ℓ′1, ℓ′2, . . . , ℓ′n}) corresponds to the Fateev-Litvinov

semi-degenerate primary operator. This puncture should have only U(1) symmetry (for N > 2). Thus, it
can be obtained by grouping the N5-branes in two bunches of unequal number of 5-branes, N − 1 and 1
respectively, forming the L-shaped Young diagram {N − 1, 1} shown in figure 3. For N = 2, the puncture
has an SU(2) flavor symmetry, while for N ≥ 3 the flavor symmetry gets reduced to U(1), as required for

the semi-degenerate field. The Higgs moduli space of this configuration has dimHMsemi-deg
H = 1 which is

consistent with the fact that we have only one parameter κ in the CFT side. Finally, the dot diagrams tell
us that the dimension of the Coulomb branch in this case is zero, which, as we will see later, is consistent
with what one gets by just substituting (29) in (9).

Now, let us discuss what happens with the Kähler moduli that parametrize the TN partition functions
as we bring together N − 1 parallel horizontal external D5 branes on a single D7 brane. These we
will then translate in the language of mass parameters mi, ni, li (i = 1, . . . , N) and Coulomb moduli
ar (r = 1, . . . , (N−1)(N−2)/2) using the dictionary of appendix A.1 and in particular equation (A.4) and,
finally, to the Toda weights α1,2,3 using (7). We follow closely the discussion in [31]. For simplicity, we
begin with two parallel D5 branes that originally end on different D7 branes. This process is depicted in
figure 6. First we need to shrink u2 of U2 = e−βu2 to zero while still having two 7-branes. In the process
of sending the u1 of U1 = e−βu1 to zero, one of the two D7 branes will meet a D5 brane and the two
parallel D5 branes will fractionate on the D7 branes. After moving the cut piece to infinity it effectively
decouple from the rest of the web.

6The dot diagrams are the dual graphs of the web diagrams with the additional information about the 7-branes encoded
in white and black dots.
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Figure 6: This figure shows the way two 5-branes are brought on the same 7-brane [9].

For the unrefined topological strings, i.e. for ϵ2 = −ϵ1, shrinking the length of a 5-brane that is
parametrized7 by U = e−βu corresponds to setting U = 1. This is not true any more in the case of the
refined topological string where zero size will correspond either to U =

√
t/q or U =

√
q/t [43–46]. It turns

out that both choices are equivalent as is extensively discussed in [31]. In this paper we wish to consider
only the parameter space that corresponds to Toda with Q = ϵ1 + ϵ2 > 0, i.e. t/q > 1, and thus we have
to pick U =

√
t/q.

For the T3 case the situation is exactly the same as the simple example depicted in figure 6. The
following two Kähler parameters

Q
(1)
m;1 = A−1M̃1Ñ1 and Q

(1)
l;1 = AM̃−1

2 Ñ−1
1 (26)

are the ones we have to shrink, where A ≡ Ã
(1)
1 is the Coulomb modulus of T3. See appendix A.1 for

notations and figure 9 for the web diagram of T3. Thus, we have to set

Q
(1)
m;1 = Q

(1)
l;1 =

√
t

q
. (27)

In general for TN as depicted in figure 13 we must tune

Q
(j)
m;i = Q

(j)
l;i =

√
t

q
with i = 1, . . . , N − 2, j = 1, . . . , N − 1− i . (28)

Going back to the Toda side, we wish to semi-degenerate the weight α1, i.e. set it to

α1 = NκωN−1 ⇐⇒ mi =

{
κ − N+1−2i

2 Q i = 1, . . . , N − 1 ,
−(N − 1)κ + N−1

2 Q i = N ,
(29)

where the implications from (7) of the semi-degeneration on the mass parameters are written on the right.
For the T3 case that implies for the exponentiated mass parameters that

M̃1 = K̃
t

q
= e−β(κ−Q) and M̃2 = K̃ (30)

which is consistent with (26) and (27) when the Coulomb moduli is tuned to the value

A = K̃Ñ1

√
t

q
. (31)

This is compatible with the statement that after Higgsing, the T3 the dimension of the Coulomb branch
is zero, and also with the fact that we will discuss in next section, the contour integral gets pinched once
one substitutes (29) in (9). In the general TN case, Higgsing forces the Coulomb parameters to become

Ã
(j)
i = K̃i

(
t

q

) i(N−i−j)
2

j∏
k=1

Ñk , (32)

7The parameter u in the exponent is the length of the 5 brane segment.
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where i, j = 1, . . . , N − 2, i + j ≤ N − 1 and K̃ = e−βκ . This implies that the Kähler parameters obey
(28).

A remark on the physicality condition for the WN Toda weights α is in order. Denoting by ∆(α) the
conformal dimension of the primary field Vα, the formula for the two point functions

⟨Vα′(z′, z̄′)Vα(z, z̄)⟩ =
(2π)N−1δ(α+α′ − 2Q) +Weyl-reflections

|z − z′|4∆(α)
, (33)

tells us that requiring that Vα′ be the conjugate field to Vα leads to the following reality condition8

ℜ(α) = Q ⇐⇒ mi, ni, li ∈ iR . (34)

On the Toda side, the physicality condition for the Toda weights (34) implies through the dictionary
(7) that the mass parameters are purely imaginary. On the (p, q) 5-brane web diagram side, distances
are measured by the real part of the mass parameters, see equations (2.7-2.12) of [17] for a review of the
conventions. When the 5-branes are on top of each other, i.e. when their distance is zero9, TN has SU(N)3

symmetry [27] and we can have physical Toda states. Since Q = Q
∑N−1

i=1 ωi and since semi-degeneration
requires that α = NκωN−1, we see that semi-degeneration/Higgsing is incompatible with the physicality
condition (34). This is compatible with CFT intuition [47].

Figure 7: The figure illustrates the change of the Käher parameters upon flopping.

We wish to conclude this section by stressing that the formulas we are dealing with have different
domains with different convergent expansions depending on the values of the masses, just like in (A.19).
In the topological string language they correspond to different geometries that are related to each other
by flopping. For each Kähler parameter U , we distinguish between the region |U | > 1 and the one with
|U | < 1; to each is associated a different (p, q) 5-brane web diagram. Going from one region to the other
involves “flopping” which transforms the Kähler parameters as depicted in figure 7. See [48] for a recent
discussion of the topic. In the next section, we explain how the contour in (9) is to be chosen and we
argue that the contour is dictated by the choice of the flopping frame.

4 The Higgsed T3 theory and the semi-degenerate W3 3-point
functions

In this section, we illustrate the relationships between Higgsing and semi-degeneration with the simplest
example, namely T3. For this, we show how semi-degeneration of the masses mi “pinches” the contour
integral, so that the result is given by only one residue. Furthermore, we discuss the relationship between
the potential residues from the contour integral and the different Higgsed geometries.

8See section 4 and 11 of [47] for a detailed discussion of the physicality condition in the Liouville case.
9In the refined topological vertex, the Seiberg-Witten curve is replaced by its quantum version in which zero distance is

understood as integer multiples of ϵ+.
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Let us first make a trivial example to illustrate our situation. Let g be a meromorphic function in a
domain D ⊂ C that has only simple poles at the points a, b and pi, meaning that it can be written as

g(z) =
f(z)

(z − a)(z − b)
∏

i(z − pi)
, (35)

where f is a holomorphic function in D. Let C be a closed contour in D that encircles a as well as the pi
but not b. We write a = p+ δ and b = p− δ and take the limit δ → 0, thus letting the two points a and b
collide on the contour C on both sides, as depicted in figure 8. If we now compute the contour integral of

Figure 8: The figure shows an example of contour pinching. As the poles at a and at b collide, the
contour integral diverges, which is why we regulate it by multiplying with a − b. In the limit a → b, the
integral is given by a single residue.

g around C and multiply it by a− b, we obtain

(a− b)

∮
C

dz

2πi
g(z) =

f(a)∏
i(a− pi)

+
∑
i

(a− b)f(pi)

(pi − a)(pi − b)
∏

j ̸=i(pi − pj)

δ→0−→ f(p)∏
i(p− pi)

= lim
a→b

[(a− b)Res(g(z), a)] . (36)

Thus, in the limit a → b, the contour gets pinched at the point a = b = p and the integral is given by a
single residue. This is essentially the contour integral version of the identity limε→0

ε
(x+iε)(x−iε) = πδ(x).

This example can also be easily generalized to the case in which g has not only simple poles, but we will
not need it.

We now want to explain how this simple example applies to our integral formulas for the correlation
functions of T3. In the T3 case, formula (14) for the structure constants reads

Figure 9: This figure shows the two flopping frames for T3 for which it is possible to choose an integration
contour for A that gets pinched in the semi-degenerate limit. The geometry on the left corresponds to the
domain (38), while the one on the right corresponds to (39). One can obtain the right geometry from the
left one by applying two flopping moves, see figure 7, to the encircled segments.
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Cq(α1,α2,α3) = const×
∮

dA

2πiA
|M(t, q)|2 |Ztop

3 |2 , (37)

where A
(1)
1 ≡ A = e−βa. We first need to determine the contour. As we discussed in the previous section,

for each flopping frame, the Käher parameters are subject to specific constraints. In our case, we have
two relevant flopping frames as shown in figure 9. The first one is valid for∣∣∣∣∣M̃1Ñ1

A

∣∣∣∣∣
2

> 1 ,

∣∣∣∣ A

M̃2Ñ1

∣∣∣∣2 > 1 ,
∣∣∣AM̃2L̃3

∣∣∣2 > 1 , (38)

while the second one requires∣∣∣∣ A

M̃1Ñ1

∣∣∣∣2 > 1 ,
∣∣∣AM̃1L̃3

∣∣∣2 > 1 ,

∣∣∣∣ 1

AM̃2L̃3

∣∣∣∣2 > 1 . (39)

They are related to each other by two flopping moves as illustrated in figure 7. For a given flopping frame,
the contour integral in A has to be chosen such that the inequalities (38) or (39) are satisfied. As we will
show in the rest of this section, picking different flopping frames, i.e. picking different contours, leads to
having different poles contribute to the integral, which however leaves the final answer invariant up to a
sign.

Let us now turn our attention to the poles in the contour integral. From (15), we get for N = 3 the
following expression for the topological string amplitude

|Ztop
3 |2 = |Zpert

3 |2|Z inst
3 |2 =

∣∣∣∣[∏1≤i<j≤3 M
(

M̃i

M̃j

)]
M
(
A2 L̃3

Ñ1

)
M
(

t
qA

2 L̃3

Ñ1

)∣∣∣∣2∣∣∣∣[∏3
k=1 M

(√
t
qAM̃kL̃3

)
M
(√

t
q

A
M̃kÑ1

)]
M
(√

t
q
AÑ2

L̃1

)
M
(√

t
q
AÑ3

L̃2

)∣∣∣∣2

×

∣∣∣∣∣∣∣∣
∑
ν

(
Ñ1L̃2

Ñ2L̃3

) |ν(1)
1 |+|ν(1)

2 |
2

(
Ñ2L̃1

Ñ3L̃2

) |ν(2)
1 |
2

∏3
k=1

[
Nβ

ν
(1)
1 ∅

(a−mk − n1 − Q/2)Nβ

∅ν(1)
2

(a+mk + l3 − Q/2)

]
Nβ

ν
(1)
1 ν

(1)
1

(0)Nβ

ν
(1)
2 ν

(1)
2

(0)Nβ

ν
(2)
1 ν

(2)
1

(0)

×
Nβ

ν
(1)
1 ν

(2)
1

(a+ n2 − l1 − Q/2)Nβ

ν
(2)
1 ν

(1)
2

(a+ n3 − l2 − Q/2)

Nβ

ν
(1)
1 ν

(1)
2

(2a− n1 + l3)N
β

ν
(1)
2 ν

(1)
1

(−2a+ n1 − l1)

∣∣∣∣∣∣
2

. (40)

Since we wish to evaluate the contour integral (37) in the semi-degenerate limit α1 = 3κω2, we introduce
a regulator δ and parametrize the three masses labeling the positions of the branes on the left as

m1 = κ + δ −Q , m2 = κ − δ , m3 = −2κ +Q , (41)

which implies that the exponentiated masses M̃i = e−βmi are

M̃1 = K̃e−βδ t

q
, M̃2 = K̃eβδ , M̃3 = K̃−2 q

t
, (42)

with K̃ = e−βκ . The semi-degenerate limit then corresponds to δ → 0. For these values of the masses,
the numerator of |Ztop

3 |2 in (40) goes to zero, just like the term a− b in (36), since

|M(M̃1M̃
−1
2 )|2 = (1− e−2βδ)× reg. ≈ δ × reg. , (43)

where “reg” are terms that don’t vanish for δ → 0. Let us now analyze the poles in the integrand of (40)
and determine which ones will contribute in the semi-degenerate limit. We make the assumption that
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only poles from the “perturbative” part, i.e. the first line of (40), are relevant for this computation, which
will be justified by the final result. We need to find poles that lie on different sides of the contour and
that collide when the regulator is removed. The relevant poles in the integrand come from the zeroes of
the functions |M(u)|2 in the first line of (40). Since, in order to obtain the Toda theory from topological
strings we wish to have b > 0, so that |q| < 1 and |t| > 1, we get from (A.19) the expression

|M(u; t, q)|2 = M(u; t, q)M(u−1; t−1, q−1) =
∞∏

i,j=1

(1− ut−iqj)(1− u−1t1−iqj−1) . (44)

Thus, the zeroes of |M(u)|2 are to be found on the points

u = t−mqn , u = tm+1q−n−1 , (45)

for m,n ∈ N0 = {0, 1, 2, . . .}. We see that there are two classes of poles of |Ztop|2, namely those that
condense around zero in the A complex plane and those that condense around infinity.

We now pick our contour according to the two different choices of flopping frames in figure 9. On
one hand, if we choose the first geometry, the contour has to lie in the domain (38), which in the semi-
degenerate limit implies∣∣∣K̃Ñ1e

βδ
∣∣∣ < |A| <

∣∣∣∣K̃Ñ1e
−βδ t

q

∣∣∣∣ , |A| >
∣∣∣K̃−1L̃−1

3 e−βδ
∣∣∣ . (46)

On the other hand, the other geometry forces the contour to be in the domain (39), which means that∣∣∣K̃−1L̃−1
3 eβδ

q

t

∣∣∣ < |A| <
∣∣∣K̃−1L̃−1

3 e−βδ
∣∣∣ , |A| >

∣∣∣∣K̃Ñ1e
βδ t

q

∣∣∣∣ . (47)

When we then take the limit δ → 0, some poles from the exterior of the contour integral with coincide
with some from the interior, leading to a divergence that will cancel the zero of (44), just like in the simple
example of equation (36). We easily see that the relevant terms in the denominator of the first line of (40)
are ∣∣∣∣M(√

t

q
AM̃−1

1 Ñ−1
1

)
M
(√

t

q
AM̃−1

2 Ñ−1
1

)
M
(√

t

q
AM̃1L̃3

)
M
(√

t

q
AM̃2L̃3

)∣∣∣∣2 . (48)

The other zeroes in the denominator will not pinch the integral once the regulator δ is set to zero and can
be ignored, just like the pi terms in (36). Numbering the functions M as 1 to 4 in (48) from left to right,
using (45) and the parametrization (41), we know that we have first order poles in the integrand if

(1) A = K̃Ñ1e
−βδt−m+ 1

2 qn−
1
2 , (1̄) A = K̃Ñ1e

−βδtm+ 3
2 q−n− 3

2 ,

(2) A = K̃Ñ1e
βδt−m− 1

2 qn+
1
2 , (2̄) A = K̃Ñ1e

βδtm+ 1
2 q−n− 1

2 ,

(3) A = K̃−1L̃−1
3 eβδt−m− 3

2 qn+
3
2 , (3̄) A = K̃−1L̃−1

3 eβδtm− 1
2 q−n+ 1

2 ,

(4) A = K̃−1L̃−1
3 e−βδt−m− 1

2 qn+
1
2 , (4̄) A = K̃−1L̃−1

3 e−βδtm+ 1
2 q−n− 1

2 , (49)

for m,n ∈ N0. We have labeled with a ·̄ those sets of poles that coalesce around A = ∞. The choice of
the domain (46) or (47) does not fully constrain the form of the contour. We argue that it is natural to
choose the contour such that for generic values of the parameters it lies between the sets of poles in (49)
that condense around zero and those that condense around infinity. For the first choice of the domain
(46), we show a possible contour in figure 10. The contour has to also pass between two poles coming
the lines 3̄ and 4̄, which will not lead to pinching in the limit δ → 0. We see that, due to set of poles 1
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1.5 1.5

Figure 10: The figure shows the integration contour for the choice of allowed domain (46). The allowed
domain is the shaded region, shown here for |K̃| = |Ñ1| = |L̃3| = 1. As the variable δ is sent to zero, the
contour gets pinched between two zeroes and the contributions are given by a residues on one of the poles
of type 1 whose position is indicated by a black circle. The set of poles are labeled according to (49).

colliding with the set of poles 2̄ for m = n = 0, the integral gets pinched as δ → 0 and that the result is
given by the residue at

A =

√
t

q
K̃Ñ1e

−βδ . (50)

We see that for the choice of contour in figure 10, the fact that for δ → 0 we get an overlap between a pole
from 3 and a pole from 4̄ is of no consequence since they both lie of the same side of the contour. The
geometry corresponding to the residue at (50) is depicted in figure 11. Let us now compute the residue of

Figure 11: The figure shows the Higgsed geometry corresponding to the residue (50). For this residue,
the Kähler parameters take the values (27).

|Ztop
3 |2 at (50) directly. We can use the fact that for a function f that has no pole at Btkql, we have

Res

(
f(A)

A|M(AB−1)|2
,A = Btkql

)
=

g−k,l

|M(t, q)|2
f(Btkql) . (51)

Here |M(t, q)|2 is the norm squared of the refined MacMahon function defined in (A.30) and the function
gkl is defined as

gkl(t, q) := lim
u→1

|M(u)|2

|M(ut−kql)|2
=

k∏
i=1

(t−iql+1; q)∞
(tiq−l; q)∞

l∏
j=1

(t−1qj ; t−1)∞
(q−j ; t−1)∞

, (52)

where we have used the shift properties (A.23) of the M functions and the last equality is only valid
for k, l ∈ N0. The above expression can be continued for negative k and l with gkl = −g−k−1,−l−1. In
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particular g−n,0 = g0,−n = 0 for n ≥ 1. Therefore, choosing the contour to lie in the first domain (46),
letting δ → 0 and using (51)

lim
δ→0

∮
dA

2πiA
|M(t, q)|2 |Ztop

3 |2 = |M(t, q)|2 Res
(
|Ztop

3 |2,A =

√
t

q
K̃Ñ1e

−βδ

)
(53)

=

∣∣∣M(K̃−3)
∣∣∣2∣∣∣∏3

k=1 M
( ÑkL̃4−k

K̃

)∣∣∣2
∣∣Z inst

3

∣∣2∣∣A=
√

t
q K̃Ñ1

.

One can observe that due to (A.38), the sum over ν
(1)
1 in

∣∣Z inst
3

∣∣2∣∣A=
√

t
q K̃Ñ1

drops out and we obtain the

result

(
Z inst

3

)∣∣A=
√

t
q K̃Ñ1

=
∑
ν1,ν2

(
Ñ2L̃1

Ñ3L̃2

) |ν1|
2
(
Ñ1L̃2

Ñ2L̃3

) |ν2|
2

×
Nβ

ν1∅(n3 + l1 − κ)Nβ
ν2ν1

(n2 + l2 − κ)Nβ
∅ν2

(n1 + l3 − κ)
Nβ

ν1ν1
(0)Nβ

ν2ν2
(0)

, (54)

where we denoted ν
(2)
1 ≡ ν1, ν

(1)
2 ≡ ν2.

We also calculated the contour integral for the second choice of the flopping frame, i.e. the domain

(46). We find that for that choice of the contour, the result is given by the residue of
∣∣Ztop

3

∣∣2 at

A =

√
q

t
K̃−1L̃−1

3 e−βδ , (55)

which, together with (41) implies for δ → 0 the Higgsed geometry shown in figure 12. Computing the

Figure 12: The figure shows the Higgsed geometry corresponding to the residue (55).

residue, we find that the “perturbative” contribution, i.e. the prefactor of
∣∣Z inst

3

∣∣2 in (54), is the same

as before. Furthermore, we find after relabeling ν
(1)
2 ↔ ν

(1)
1 and using (A.39) that the “instanton”

contribution in (54) is unchanged, i.e.(
Z inst

3

)∣∣A=
√

t
q K̃Ñ1

=
(
Z inst

3

)∣∣A=
√

q
t K̃

−1L̃−1
3

. (56)

In order to complete the computation, we need to calculate the sum in (54) over the two remaining
partitions. For this purpose, we shall use the following identity that we shall state in full generality in

15



section 5 and prove in appendix B:

∑
ν1,ν2

(
V1

√
U1U2

)|ν1| (
V2

√
U2U3

)|ν2| N
β
ν1∅ (u1 − Q/2)Nβ

ν2ν1
(u2 − Q/2)Nβ

∅ν2
(u3 − Q/2)

Nβ
ν1ν1

(0)Nβ
ν2ν2

(0)
(57)

=
M
(
U1V1

)
M
(
t
qV1U2

)
M
(
U2V2

)
M
(
t
qV2U3

)
M
(
U1V1U2V2

)
M
(
t
qV1U2V2U3

)
M
(√

t
qV1

)
M
(√

t
qV2

)
M
(√

t
qU1V1U2

)
M
(√

t
qV1U2V2

)
M
(√

t
qU2V2U3

)
M
(√

t
qU1V1U2V2U3

) ,
where Ui := e−βui . Upon making the following substitutions in (57)

Uk =

√
q

t

Ñ4−kL̃k

K̃
, V1 =

√
t

q

K̃

Ñ3L̃2

, V2 =

√
t

q

K̃

Ñ2L̃3

, (58)

where k = 1, 2, 3, we arrive at

(
Z inst

3

)∣∣A=
√

t
q K̃Ñ1

=
M
(
L̃1

L̃2

)
M
(
L̃2

L̃3

)
M
(
L̃1

L̃3

)
M
(
t
q
Ñ1

Ñ2

)
M
(
t
q
Ñ2

Ñ3

)
M
(
t
q
Ñ1

Ñ3

)
M
(
Ñ1L̃1

K̃

)
M
(
Ñ1L̃2

K̃

)
M
(
Ñ2L̃1

K̃

)
M
(
t
q

K̃
Ñ2L̃3

)
M
(
t
q

K̃
Ñ3L̃2

)
M
(
t
q

K̃
Ñ3L̃3

) . (59)

Inserting the above into (53), we arrive at

lim
δ→0

∮
dA

2πiA
|M(t, q)|2 |Ztop

3 |2 =

∣∣∣M(K̃−3)
∏

1≤i<j≤3 M
(
Ñj/Ñi

)
M
(
L̃i/L̃j

)∣∣∣2∣∣∣∏3
i,j=1 M(ÑiL̃jK̃−1)

∣∣∣2
=

(1− q)φ̃3

Λ2

Υq(3κ)
∏

1≤i<j≤3 Υq(ni − nj)Υq(l4−i − l4−j)∏3
i,j=1 Υq(κ − ni − l4−j)

, (60)

where we have used (A.24), (A.25) and defined the exponent

φ̃3 =

(
Q

2
− 3κ

)2

+
∑

1≤i<j≤3

[(
Q

2
+ nj − ni

)2

+

(
Q

2
+ l4−j − l4−i

)2
]
−

3∑
i,j=1

(
Q

2
+ ni + l4−j − κ

)2

= 2Q

(
3κ +

3∑
i=1

i(ni + l4−i)

)
− Q2

2
= −2Q

(
2Q−

3∑
i=1

αi, ρ

)
− Q2

2
, (61)

where in the last line we have used our SU(3) conventions, see appendix A.2 and equation (7). Now we
employ (A.31) and rearrange the prefactors of (60) to obtain the q-deformedW3 Fateev-Litvinov structure
constants (21) in the form conjectured by [1]:

Cq(3κω2,α2,α3) =

=
(
β |M(t, q)|2

)2 ((
1− qb

)2b−1(
1− qb

−1)2b)(2Q−
∑3

i=1 αi,ρ)
lim
δ→0

∮
dA

2πiA
|M(t, q)|2 |Ztop

3 |2 (62)

=

(1− qb
)2b−1(

1− qb
−1)2b

(1− q)2Q

(2Q−
∑3

i=1 αi,ρ)
Υ′

q(0)
2Υq(3κ)

∏
e>0 Υq((Q−α2, e))Υq((Q−α3, e))∏3

i,j=1 Υq(κ + (α2 −Q, hi) + (α3 −Q, hj))
.

Taking the 4D limit q → 1 then leads to the usual formula (20), up to a prefactor depending on b and the
cosmological constant µ.
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5 The general TN case

Having computed the structure constants for the T3 case in the previous section, we now want to turn our
attention to the general case. Starting with T4, we have to consider multiple integrals and we relegate the
investigation of the subtleties that are associated to them to appendix C.

We begin by considering the integration contour. From (A.4), we take the parametrization of the
relevant Kähler parameters for the TN geometry depicted on the left of figure 2

Q
(j)
l;i =

Ã
(j)
i Ã

(j−1)
i

Ã
(j)
i−1Ã

(j−1)
i+1

, Q
(j)
m;i =

Ã
(j−1)
i Ã

(j)
i−1

Ã
(j)
i Ã

(j−1)
i−1

, (63)

where the “boundary” Ã’s are to be expressed via the masses through equation (A.1). We choose to

perform the contour integral in the flopping frame of figure 2, which implies that the Ã
(l)
k that we integrate

over have to be in the domain in which∣∣∣Q(j)
l;i

∣∣∣ > 1 ,
∣∣∣Q(j)

m;i

∣∣∣ > 1 , (64)

where i, j ≤ 1 and i + j ≤ N . As before, we are interested in the semi-degenerate limit. This, we
parametrize the masses as follows

M̃i = K̃di

(
t

q

)N+1−2i
2

for i = 1, . . . , N − 1, M̃N = K̃1−N
(q
t

)N−1
2

, (65)

where the di = e−βδi are regulators satisfying
∏N−1

i=1 di = 1 and K̃ = e−βκ . The numerator of |Ztop|2 has

a zero of order (N−2)(N−1)
2 in the limit δi → 0 since

∏
1≤i<j≤N

∣∣∣M( M̃i

M̃j

)∣∣∣2 = reg×
∏

1≤i<j≤N−1

∣∣∣M(( t

q

)j−i di
dj

) ∣∣∣2 , (66)

and
∣∣M ((

t/q
)n)∣∣2 = 0 for n ≥ 0. These zeroes can all be canceled by divergences coming from the pinching

of the (N−2)(N−1)
2 integrals if we choose the contour carefully, see for instance figure 14 for an example in

the T4 case.Thus the final answer is obtained by taking the residues in the integration variables Ã
(l)
k at

Ã
(j)
i = K̃i

(
t

q

) i(N−i−j)
2

j∏
k=1

Ñk . (67)

Computing the residues, we obtain the result

lim
δa→0

∮ N−2∏
l=1

N−1−l∏
m=1

[
dÃ

(m)
l

2πiÃ
(m)
l

|M(t, q)|2
]
|Ztop

N |2 =

=

∣∣∣M(K̃−N )
∣∣∣2∣∣∣∏N

k=1 M
(
ÑkL̃N+1−kK̃−1

)∣∣∣2 ×

∣∣∣∣∣ ∑
ν1,...,νN−1

[N−1∏
i=1

(
ÑN−iL̃i

ÑN−i+1L̃i+1

) |νi|
2 ]

(68)

×
Nβ

ν1∅ (nN + l1 − κ)
[∏N−2

i=1 Nβ
νi+1νi

(nN−i + li+1 − κ)
]
Nβ

∅νN−1
(n1 + lN − κ)∏N−1

i=1 Nβ
νiνi

(0)

∣∣∣∣∣
2

.
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Here νi for i = 1, . . . , N − 1 denote the partitions corresponding to the N − 1 brane junctions not affected
by Higgsing at the given pole. For our choice of flopping frame, see figure 2, these partitions are readily

identified as νi := ν
(N−i)
i , i = 1, . . . , N − 1, see figure 4 of [1] for the notation.

The remaining sums in (68) will be now performed by using the summation identity (B.18) proven in
appendix B.2, which we reproduce here for convenience

Theorem

∑
ν1,...,νN−1

N−1∏
i=1

(
Vi

√
UiUi+1

)|νi|

Nβ
νiνi

(0)

Nβ
ν1∅ (u1 − ϵ+/2)

[
N−2∏
i=1

Nβ
νi+1νi

(ui+1 − ϵ+/2)

]
Nβ

∅νN−1
(uN − ϵ+/2) =

=
N−1∏
i=1

N−i∏
j=1

M
(∏i+j−1

s=j UsVs

)
M
(
t
q
Ui+j

Uj
·
∏i+j−1

s=j UsVs

)
M
(√

t
qUi+j

∏i+j−1
s=j UsVs

)
M
(√

t
q

1
Uj

∏i+j−1
s=j UsVs

) . (69)

Setting the parameters here to be equal to

Ui =

√
q

t

ÑN−i+1L̃i

K̃
, Vj =

√
t

q

K̃

ÑN−j+1L̃j+1

, (70)

for i = 1, · · ·N and j = 1, · · ·N − 1, one straightforwardly obtains:

∑
ν1,...,νN−1

[N−1∏
i=1

(
ÑN−iL̃i

ÑN−i+1L̃i+1

) |νi|
2 ]

×
Nβ

ν1∅ (nN + l1 − κ)
[∏N−2

i=1 Nβ
νi+1νi

(nN−i + li+1 − κ)
]
Nβ

∅νN−1
(n1 + lN − κ)∏N−1

i=1 Nβ
νiνi

(0)

=
∏

1≤i<j≤N

M
(
L̃i

L̃j

)
M
(
t
q
ÑN−j+1

ÑN−i+1

)
M
( ÑN−j+1L̃i

K̃

)
M
(
t
q

K̃
ÑN−i+1L̃j

) . (71)

Substituting (71) in (68) and expressing everything in term of the Υq functions through formula (A.24)
one obtains

lim
δa→0

∮ N−2∏
l=1

N−1−l∏
m=1

[
dÃ

(m)
l

2πiÃ
(m)
l

|M(t, q)|2
]
|Ztop

N |2 =

=
(1− q)φ̃N

ΛN−1

Υq(Nκ)
∏

1≤i<j≤N [Υq(ni − nj)Υq(lN+1−i − lN+1−j)]∏N
i,j=1 Υq(κ − ni − lN+1−j)

(72)

where the exponent

φ̃N =

(
Q

2
−Nκ

)2

+
∑

1≤i<j≤N

[(
Q

2
+ nj − ni

)2

+

(
Q

2
+ lN+1−j − lN+1−i

)2
]

−
N∑

i,j=1

(
Q

2
+ ni + lN+1−j − κ

)2
(73)

after a little algebra simplifies into

φ̃N = 2Q

(
N(N − 1)

2
κ +

N∑
i=1

i(ni + lN+1−i)

)
− N − 1

4
Q2 = −2Q

(
2Q−

3∑
i=1

αi, ρ

)
N − 1

4
Q2 . (74)
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Now we will employ our SU(N) conventions, see appendix A.2, equation (7) as well as equations (A.25),
(A.31) and rearrange the prefactors to obtain the the q-deformed Fateev-Litvinov three-point function in
the form conjectured by [1]:

Cq(NκωN−1,α2,α3) =
(
β |M(t, q)|2

)N−1 ((
1− qb

)2b−1(
1− qb

−1)2b)(2Q−
∑3

i=1 αi,ρ)

× lim
δa→0

∮ N−2∏
l=1

N−1−l∏
m=1

[
dÃ

(m)
l

2πiÃ
(m)
l

|M(t, q)|2
]
|Ztop

N |2 (75)

=

(1− qb
)2b−1(

1− qb
−1)2b

(1− q)2Q

(2Q−
∑3

i=1 αi,ρ)
Υ′

q(0)
N−1Υq(Nκ)

∏
e>0 Υq((Q−α2, e))Υq((Q−α3, e))∏N

i,j=1 Υq(κ + (α2 −Q, hi) + (α3 −Q, hj))
.

Taking the 4D limit q → 1 here yields the Fateev-Litvinov formula (20) for the semi-degenerate three-point
function of the WN Toda field theory, up to a factor depending on b and the cosmological constant µ.

6 Conclusions and Outlook

In this article, we used formula (9), taken from [1], for the Toda structure constants of three generic
primary operators to rederive the known formula for the structure constants involving one semi-degenerate
primary, which was originally obtained by Fateev and Litvinov in [2]. We showed in section 3 how the
degeneration of the primary fields on the Toda side corresponds to Higgsing on the (p, q) 5-brane web
diagram side. After committing to the choice of the flopping frame which then dictates the form of the
contour, we demonstrated that in the semi-degenerate limit, the contour integral expressing the Toda
structure constants is given by a single residue. Then, using q-binomial identities (69), we proved that the
sums over partitions still present in the residues can be computed exactly and that the final result (75)
agrees with the expression of Fateev and Litvinov after one takes the q → 1 limit and reintroduces (22)
the terms depending on the cosmological constant µ. Thus, we have obtained a very non-trivial check of
the general formula for the Toda structure constants given in [1].

We would of course want to obtain further checks of (9). A natural next step would involve rederiving
(3.11) of [4], which is a generalization of (20) for the T3 case. Specifically, if one generalizes the semi-
degenerate condition α1 = Nκω2 to α1 = Nκω2 −mbω1, where m is a positive integer, then one obtains
the expression

C(Nκω2 −mbω1,α2α3) = Ξ(α2,α3|Nκ)mJm, (76)

where Ξ is given by a generalization of (20) as

Ξ(α2,α3|Nκ)m :=(πµ)2m
(
πµγ(b2)b2−2b2

) (2Q−
∑3

i=1 αi,ρ)
b ×

×
Υ′(−mb)2Υ(Nκ)

∏
e>0 Υ((Q−α2, e))Υ((Q−α3, e))∏3

i,j=1 Υ(κ −mbδij +
mb
3 + (α2 −Q, hi) + (α3 −Q, hj))

.

(77)

and Jm is given by an 4m5 dimensional Coulomb integral, see appendix B of [4]. It would be quite
interesting to obtain this formula using our formula (9).

Furthermore, another interesting direction involves investigating the semi-classical regime. In that
limit, the combinatorial functions Nβ

λµ factorize in a product

Nβ
λµ(m; b, b−1)

b→∞−→ Nβ
λ∅(m; b, b−1)Nβ

∅µ(m; b, b−1) . (78)
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Thus, the sums over partitions disentangle, allowing one to use generalizations of the q-binomial identities
to compute them. This direction is especially interesting because computing the correlation function in
the semi-classical limit could help derive the still unknown Lagrangian of the q-deformed Toda theory.
One should begin by looking for the Lagrangian of the q-deformed Liouville theory, returning to the work
of [18,19]. It could be that the 2D space has to be made non-commutative [49–51].

The ultimate goal is of course to compute the contour integral in (14) exactly for generic values of the
parameters, which requires finding a closed form expression for the “instanton” sum of (17). In order to
accomplish this, a suitable generalization of the q-binomial identities that we used in this article to perform
the sums in (9) must be found. A more modest goal with which one can practice involves computing the
sums for the cases with E6,7,8 flavor symmetry studied in [9,27,31,32], which are obtained from the general
TN by a less severe Higgsing than the one we perform here.

In [1] we gave a formula for the 3-point functions of three Toda primary fields. Knowledge of all the
3-point correlation functions of primary fields is in itself not enough to obtain all generic 3-point functions,
thus solving the Toda CFT. In order to achieve that, we need to also compute the correlation functions of
descendants, which for the general WN Toda CFTs is not that simple. It is however rather straightforward
to see from the topological strings point of view what are the steps that lead to them. Specifically, in
the computation of the topological partition function (15), we have to let the partitions on the edge of
the diagram be arbitrary instead of empty, see figure 4 of [1]. This would lead to the general Ding-Iohara
algebra interwiners. The Ding-Iohara algebra [52] in the free boson representation with N free bosons is
known to factorize [53] as

A = WN ⊗H (79)

where H is the Heisenberg algebra. This algebra is precisely the one needed to describe the descendent
operators in the context of the AGT-W relation, see [54, 55]. In particular, it would be quite easy to
obtain the 3-point function of two primaries and one descendant and such 3-point functions will already
lead to many higher point functions thanks to the conformal bootstrap and addressing this problem is
work in progress [56]. Moreover, it would be important to better understand the q-deformed AGT-W
correspondence and its relation to topological strings by more actively studying the Ding-Iohara algebra
as in [57].

The degeneration we study in this paper, and in general Higgsing, can also be understood on the 4D/5D
side using co-dimension two half-BPS surface defects [58] as in [43, 59–61] and [62, 63]. More concretely,
this can be done by studying the generalization of the 2D/4D story of [59–64], which is a generalization
of the AGT correspondence including surface operators, to the 3D/5D relation that was initiated by [18]
and further studied by [19–21]. See [65] for the latest advancements on the subject.

We finish by observing that the Higgsed geometry corresponding to the degeneration, see the right
side of figure 2, is related to the strip geometry, see figure 23 in [8], by the Hanany-Witten effect. We
refer to [66] for a nice discussion on the subject. The invariance of the topological string amplitude under
the Hanany-Witten transition is non-trivial and it would be important to see how one can relate formula
(21) for the q-deformed structure constants to the topological string amplitude for the strip, see equation
(4.66) of [8].
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A Notations, conventions and special functions

In this appendix, we summarize our conventions and the main properties of the special functions that we
use the most.

A.1 Parametrization of the TN junction

We gather in this appendix all necessary formulas for the parametrizations of the Kähler moduli of the

TN . First, the “interior” Coulomb moduli Ã
(i)
j = e−βa

(j)
i are independent, while the “border” ones are

given by

Ã
(0)
i =

i∏
k=1

M̃k, Ã
(j)
0 =

j∏
k=1

Ñk, Ã
(N−i)
i =

i∏
k=1

L̃k. (A.1)
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The parameters labeling the positions of the flavors branes obey the relations

N∏
k=1

M̃k =
N∏

k=1

Ñk =
N∏

k=1

L̃k = 1 ⇐⇒
N∑

k=1

mk =
N∑

k=1

nk =
N∑

k=1

lk = 0. (A.2)

Therefore, Ã
(0)
0 = Ã

(0)
N = Ã

(N)
0 = 1 and we can invert relation (A.1) as

M̃i =
Ã

(0)
i

Ã
(0)
i−1

, Ñi =
Ã

(i)
0

Ã
(i−1)
0

, L̃i =
Ã

(N−i)
i

Ã
(N−i+1)
i−1

. (A.3)

All placements are illustrated in figure 13. The Kähler parameters associated to the edges of the TN

junction are related to the Ã
(j)
i as follows

Q
(j)
n;i =

Ã
(j)
i Ã

(j)
i−1

Ã
(j−1)
i Ã

(j+1)
i−1

, Q
(j)
l;i =

Ã
(j)
i Ã

(j−1)
i

Ã
(j)
i−1Ã

(j−1)
i+1

, Q
(j)
m;i =

Ã
(j−1)
i Ã

(j)
i−1

Ã
(j)
i Ã

(j−1)
i−1

. (A.4)

For each inner hexagon of (13), the following two constraints are satisfied

Q
(j)
l;i Q

(j)
m;i+1 = Q

(j+1)
m;i Q

(j+1)
l;i , Q

(j)
n;iQ

(j+1)
m;i = Q

(j)
m;i+1Q

(j)
n;i+1. (A.5)

A.2 Conventions and notations for SU(N)

For the convenience of the reader we summarize here our SU(N) conventions. The weights of the funda-

mental representation of SU(N) are hi with
∑N

i=1 hi = 0. We remind that the scalar product is defined
via (hi, hj) = δij − 1

N . The simple roots are

ek := hk − hk+1 , k = 1, . . . , N − 1 , (A.6)

and the positive roots e > 0 are contained in the set

∆+ := {hi − hj}Ni<j=1 = {ei}N−1
i=1 ∪ {ei + ei+1}N−2

i=1 ∪ · · · ∪ {e1 + · · ·+ eN−1} . (A.7)

The Weyl vector ρ for SU(N) is given by

ρ :=
1

2

∑
e>0

e =
1

2

N∑
i<j=1

(hi − hj) =
N∑
i=1

N + 1− 2i

2
hi = ω1 + · · ·+ ωN−1, (A.8)

and it obeys (ρ, ei) = 1 for all i. The N − 1 fundamental weights ωi of SU(N) are given by

ωi =
i∑

k=1

hk , i = 1, . . . , N − 1 (A.9)

and the corresponding finite dimensional representations are the i-fold antisymmetric tensor product of
the fundamental representation. They obey the scalar products (ei, ωj) = δij , i.e. they are a dual basis.
Furthermore, we find the following scalar products useful

(ρ, hj) =
N + 1

2
− j, (ρ, ωi) =

i(N − i)

2
, (hj , ωi) =

{
1− i

N j ≤ i
− i

N j > i
, (A.10)

as well as

(ωi, ωj) =
min(i, j) (N −max(i, j))

N
, (ρ, ρ) =

N(N2 − 1)

12
. (A.11)
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The Weyl group of SU(N) is isomorphic to SN and is generated by the N−1 Weyl reflections associated
to the simple roots. If α is a weight, we define the Weyl reflections with respect to the simple root ei

wi ·α := α− 2
(ei,α)

(ei, ei)
ei = α− (ei,α) ei . (A.12)

Furthermore, we define the affine Weyl reflections with respect to ei as follows

wi ◦α := Q+ wi · (α−Q) = wi ·α+Qei = α− (α−Q, ei) ei , (A.13)

where Q := Qρ = (b+ b−1)ρ.

A.3 Special functions

In this section we gather the definitions and properties of all special functions used in the main text. First
we begin by defining the shifted factorials10

(x; q)p :=

p∏
i=1

(1− xqi−1) (A.14)

for positive p, which is continued to negative p according to

(x; q)p =
1

(xqp; q)−p
. (A.15)

In particular for p → ∞, and for arbitrary number of q’s, we have (we require for convergence that |qi| < 1
for all i)

(x; q1, . . . , qr)∞ :=

∞∏
i1=0,...,ir=0

(1− xqi11 · · · qirr ) . (A.16)

We can extend the definition of the shifted factorial for all values of qi by imposing the relations

(x; q1, . . . , q
−1
i , . . . , qr)∞ =

1

(xqi; q1, . . . , qr)∞
. (A.17)

Furthermore, they obey the following shifting properties

(qjx; q1, . . . , qr)∞ =
(x; q1, . . . , qr)∞

(x; q1, . . . , qj−1, qj+1, . . . , qr)∞
. (A.18)

We then define the function M(u; t, q) as

M(u; t, q) := (uq; t, q)−1
∞ =


∏∞

i,j=1(1− uti−1qj)−1 for |t| < 1, |q| < 1∏∞
i,j=1(1− uti−1q1−j) for |t| < 1, |q| > 1∏∞
i,j=1(1− ut−iqj) for |t| > 1, |q| < 1∏∞
i,j=1(1− ut−iq1−j)−1 for |t| > 1, |q| > 1

, (A.19)

converging for all u. This function can be written as a plethystic exponential

M(u; t, q) = exp

[ ∞∑
m=1

um

m

qm

(1− tm)(1− qm)

]
, (A.20)

10A good source for the properties of the shifted factorials is [67].
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which converges for all t and all q provided that |u| < q−1+θ(|q|−1)tθ(|t|−1). Here and elsewhere θ(x) = 1
if x > 0 and is zero otherwise. The following identity is obvious from the definition

M(u; q, t) = M(ut/q; t, q) . (A.21)

From the analytic properties of the shifted factorials (A.17), we read the identities

M(u; t−1, q) =
1

M(ut; t, q)
, M(u; t, q−1) =

1

M(uq−1; t, q)
, (A.22)

while from (A.18) we take the following shifting identities

M(ut; t, q) = (uq; q)∞M(u; t, q), M(uq; t, q) = (uq; t)∞M(u; t, q) . (A.23)

We define the q-deformed Υ function as

Υq(x|ϵ1, ϵ2) =(1− q)−
1

ϵ1ϵ2
(x−

ϵ+
2 )

2
∞∏

n1,n2=0

(1− qx+n1ϵ1+n2ϵ2)(1− qϵ+−x+n1ϵ1+n2ϵ2)

(1− qϵ+/2+n1ϵ1+n2ϵ2)

=(1− q)−
1

ϵ1ϵ2
(x−

ϵ+
2 )

2

∣∣∣∣∣∣M(q−x; t, q)

M(
√

t
q ; t, q)

∣∣∣∣∣∣
2

,

(A.24)

where we have used the definition (13) for the norm squared. From time to time we will use the short-hand
notation

Λ := |M(

√
t

q
; t, q)|2 . (A.25)

If follows from the definition (A.24) that Υq(ϵ+/2|ϵ1, ϵ2) = 1, that Υq(x|ϵ1, ϵ2) = Υq(ϵ+−x|ϵ1, ϵ2) and that
Υq(x|ϵ1, ϵ2) = Υq(x|ϵ2, ϵ1). Furthermore, from the shifting identities for M, we can easily prove that

Υq(x+ ϵ1|ϵ1, ϵ2) =
(

1− q

1− qϵ2

)1−2ϵ−1
2 x

γqϵ2 (xϵ
−1
2 )Υq(x|ϵ1, ϵ2) , (A.26)

together with a similar equation for the shift with ϵ2. Here, we have used the definition of the q-deformed
Γ and γ functions

Γq(x) := (1− q)1−x (q; q)∞
(qx; q)∞

, γq(x) :=
Γq(x)

Γq(1− x)
= (1− q)1−2x (q

1−x; q)∞
(qx; q)∞

, (A.27)

valid for |q| < 1. They obey Γq(x+ 1) = 1−qx

1−q Γq(x), implying γq(x+ 1) = (1−qx)(1−q−x)
(1−q)2 γq(x). Because of

the normalization of Υq(x|ϵ1, ϵ2) and since the factors of the right hand side of (A.26) have a well defined
limit for q → 1, we find by comparing functional identities that

Υq(x+ ϵ1|ϵ1, ϵ2)
q→1−→ Υ(x|ϵ1, ϵ2) :=

Γ2

( ϵ+
2 |ϵ1, ϵ2

)2
Γ2

(
x|ϵ1, ϵ2

)
Γ2

(
ϵ+ − x|ϵ1, ϵ2

) . (A.28)

where Γ2 is the Barnes Double Gamma function. In particular, the usual function Υ(x) introduced in [11]
is equal to Υ(x|b, b−1). We shall often just write Υq(x) instead of Υq(x|ϵ1, ϵ2) and indicate in the text
whether the ϵi parameters are arbitrary or whether b = ϵ1 = ϵ−1

2 .
We will also need to evaluate the derivative of Υq(x) at x = 0. Since the zero of Υq(x) at x = 0 is

due to the factor (1 − qx) in the numerator of (A.24), we find that the only piece of the derivative that
survives is

Υ′
q(0) =

β

1− q
Υq(b) . (A.29)
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From this formula we can then obtain an identity useful for the calculations of the main text. Let us
define the norm squared of the refined McMahon function following [26]:

|M(t, q)|2 := lim
u→1

|M(u; t, q)|2

1− u−1
= |M(q−1; t, q)|2 = (1− q)

(ϵ1−ϵ2)2

4ϵ1ϵ2 ΛΥq(ϵ1) . (A.30)

Then, from (A.25) and (A.29) we get for ϵ1 = b and ϵ2 = b−1

|M(t, q)|2 =
1

β
(1− q)(

Q
2 )

2

ΛΥ′
q(0) . (A.31)

A.4 Combinatorial functions

We shall use in the following

|λ| :=
ℓ(λ)∑
i=1

λi, ||λ||2 :=

ℓ(λ)∑
i=1

λ2
i , n(λ) :=

ℓ(λ)∑
i=1

(λi − 1) =
||λt||2 − |λ|

2
, (A.32)

where ℓ(λ) is the number of rows of the partition λ. We also define the relative arm-length aµ(s), arm-
colength a′µ(s), leg-length lµ(s) and leg-colength l′µ(s) of a given box s of the partition λ with respect to
another partition µ as:

aµ(s) := µi − j , a′µ(s) := j − 1 , lµ(s) := µt
j − i , l′µ(s) := i− 1 . (A.33)

It is of course also possible to have λ = µ. The (q, t)-deformed factorial of A depending on a partition λ
is then given as a following product over its boxes:

(A; q, t)λ :=

ℓ(λ)∏
i=1

(At1−i; q)λi =
∏
s∈λ

(1−Aqa
′(s)t−l′(s)) . (A.34)

The next piece of notation that we need are the (q, t)-deformations of the hook product of a Young
diagram λ. There are two inequivalent ways for this number to be deformed to a two-variable polynomial,
namely:

hλ(q, t) :=
∏
s∈λ

(1− qa(s)tl(s)+1) , h′
λ(q, t) :=

∏
s∈λ

(1− qa(s)+1tl(s)) . (A.35)

Our last definition is that of the 5D uplift of Nekrasov functions, which we write as

Nβ
λµ(m; ϵ1, ϵ2) :=

∏
(i,j)∈λ

2 sinh
β

2

[
m+ ϵ1(λi − j + 1) + ϵ2(i− µt

j)
]

×
∏

(i,j)∈µ

2 sinh
β

2

[
m+ ϵ1(j − µi) + ϵ2(λ

t
j − i+ 1)

]
(A.36)

=
∏
s∈λ

2 sinh
β

2
[m+ ϵ1 (aλ(s) + 1)− ϵ2lµ(s)]

∏
s∈µ

2 sinh
β

2
[m− ϵ1aµ(s) + ϵ2 (lλ(s) + 1)]

where the products are taken over boxes of partitions λ and µ, respectively. By pulling some factors out
of the products, the definition can also be rewritten as

Nβ
λµ(m; ϵ1, ϵ2) :=

(√
t

q

1

U

) |λ|+|µ|
2

t
||λt||2−||µt||2

4 q
||µ||2−||λ||2

4

∏
(i,j)∈λ

(
1− U tµ

t
j−iqλi−j+1

)

×
∏

(i,j)∈µ

(
1− U t−λt

j+i−1q−µi+j

)
, (A.37)
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where U := e−βm. For particular values of the parameter m, the introduced functions behave like
Kronecker−δ functions, namely

Nβ
λ∅(−ϵ+) = Nβ

∅λ(0) = δλ∅, (A.38)

where ϵ+ = ϵ1 + ϵ2. Furthermore, they obey the exchange identities

Nβ
λµ(m;−ϵ2,−ϵ1) = Nβ

µtλt(m− ϵ+; ϵ1, ϵ2),

Nβ
λµ(−m; ϵ1, ϵ2) = (−1)|λ|+|µ|Nβ

µλ(m− ϵ+; ϵ1, ϵ2), (A.39)

Nβ
λµ(m; ϵ2, ϵ1) = Nβ

λtµt(m; ϵ1, ϵ2).

Finally, there are two relations involving the functions we just defined, namely

1

hλ(q, t)h′
λ(q, t)

=
(−1)|λ|t−

||λt||2
2 q−

||λ||2
2

Nβ
λλ (0)

(A.40)

as well as

(U)λ ≡ (U ; q, t)λ =

(√
t

q
U

) |λ|
2

t−
||λt||2

4 q
||λ||2

4 Nβ
λ∅ (m− ϵ+) , (A.41)

where U := e−βm.

B The sl(N) Kaneko-Macdonald-Warnaar hypergeometric func-
tions

This appendix contains the derivation of the summation formula (69) used in the main text. It exploits
a binomial identity for the Kaneko-Macdonald-Warnaar extension of basic hypergeometric functions [68]
which generalizes the Kaneko-Macdonald sl(2) identity of [69–71].

B.1 The sl(N) KMW hypergeometric functions and their q-binomial identity

The Macdonald polynomials Pλ(x; q, t), which are referred to in the case of infinite alphabet x as the
Macdonald symmetric functions, are labeled by a number partition λ = (λ1, . . . , λℓ(λ)) and form an
especially convenient basis in the ring of symmetric functions of x = (x1, x2, . . . ) over the field F = Q(q, t)
of rational functions in two variables q and t [72].

Having many nice properties, the Macdonald polynomials have been applied in various areas of con-
temporary mathematics. One of them is the theory of sl(N) Kaneko-Macdonald-Warnaar analogues of
basic hypergeometric functions. These functions of type (r + 1, r) are defined as

r+1Φr

[
A1, . . . , Ar+1

B1, . . . , Br
; q, t; x(1), . . . , x(N−1)

]
:=

∑
λ(1),...,λ(N−1)

(A1, . . . , Ar+1; q, t)λ(N−1)

(qtkN−1−1, B1, . . . , Br; q, t)λ(N−1)

N−1∏
s=1

[
tn(λ

(s)) (qt
ks−1; q, t)λ(s)

h′
λ(s)(q, t)

Pλ(s)(x(s); q, t)

]
(B.1)

×
N−2∏
s=1

ks∏
i=1

ks+1∏
j=1

(qtj−i−1+ks−ks+1 ; q)
λ
(s)
i −λ

(s+1)
j

(qtj−i+ks−ks+1 ; q)
λ
(s)
i −λ

(s+1)
j

,
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where the summations are performed over partitions λ(s), 1 ≤ s ≤ N − 1 whose lengths ks := ℓ(λ(s))

satisfy 0 ≡ k0 < k1 < k2 < · · · < kN−1 and whose entries are ordered according to λ
(s)
i ≥ λ

(s+1)
i−ks+ks+1

for

1 ≤ s ≤ N − 1. We have used here the definitions (A.14), (A.32), (A.34), (A.35).
In the following, it will be enough to restrict ourselves to a so-called principal specialization of a

Macdonald polynomial, for which the string of arguments x is set to x̃ := z(1, t, . . . , tk−1) with k = ℓ(λ):

Pλ(x̃; q, t) = z|λ|tn(λ)
(tk; q, t)λ
hλ(q, t)

. (B.2)

The corresponding specialization of the sl(N) q-binomial theorem is then written as:

Theorem [See [68], Cor. 3.1]

1Φ0

[
A

−
; q, t; x̃(1), . . . , x̃(N−1)

]
=

N−1∏
s=1

ks−ks−1∏
i=1

(Azs · · · zN−1t
i+s+ks−1+···+kN−2−N ; q)∞

(zs · · · zN−1ti+s+ks−1+···+kN−2−N ; q)∞
(B.3)

×
∏

1≤s≤r≤N−2

ks−ks−1∏
i=1

(qzs · · · zrti+s−r+ks−1+···+kr−kr+1−2; q)∞
(zs · · · zrti+s−r+ks−1+···+kr−1−1; q)∞

,

where x̃(s) := zs(1, t, . . . , t
ks−1) for 1 ≤ s ≤ N − 1.

B.2 The summation formula

It will be convenient for the subsequent argument to rewrite the above formula (B.3) in the topological
string conventions. This turns out to be possible due to the identities (A.19), (A.40), (A.41) and the
following lemma:

Lemma

k1∏
i=1

k2∏
j=1

(Atj−i)λ1,i−λ2,j

(Atj−i+1)λ1,i−λ2,j

= t
k1|λ2|−k2|λ1|

2
Nβ

λ2λ1
(−a)

Nβ
λ2∅ (−a− k1ϵ2)N

β
∅λ1

(−a+ k2ϵ2)
, (B.4)

where ℓ(λ1) = k1, ℓ(λ2) = k2 and A := e−βa.
Proof: Let us first notice that by using definition A.37 as well as exchange identities A.39, the right-

hand side of the above formula can be written as a following product:

t
k1|λ2|−k2|λ1|

2
Nβ

λ2λ1
(−a)

Nβ
λ2∅ (−a− k1ϵ2)N

β
∅λ1

(−a+ k2ϵ2)

=
∏

(i,j)∈λ1

1−A t
q t

λt
2,j−iqλ1,i−j+1

1−A t
q t

k2−iqλ1,i−j+1

∏
(i,j)∈λ2

1−A t
q t

−λt
1,j+i−1q−λ2,i+j

1−A t
q t

−k1+i−1q−λ2,i+j
. (B.5)

In proving the lemma, we will deal with formal power series in variables t and q, so that we will not be
concerned with issues of convergence of the intermediate expressions, requiring only that t, q ̸= 1. We also
extend the entries of partitions λ1 and λ2, such that

λ1,i := 0, i > k1, λ2,i := 0, i > k2 . (B.6)

So, let us start with the following obvious identity:

∞∑
i,j=1

tj−i
(
1− qλ1,i−λ2,j

)
=

( k1∑
i=1

k2∑
j=1

+
∞∑

i=k1+1

k2∑
j=1

+

k1∑
i=1

∞∑
j=k2+1

)
tj−i

(
1− qλ1,i−λ2,j

)
. (B.7)
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Taking the last two sums of the right-hand side, shifting their summation indices and using convention
(B.6), one gets:( ∞∑

i=k1+1

k2∑
j=1

+

k1∑
i=1

∞∑
j=k2+1

)
tj−i

(
1− qλ1,i−λ2,j

)
=

∞∑
i=1

k2∑
j=1

tj−i−k1
(
1− q−λ2,j

)
+

k1∑
i=1

∞∑
j=1

tj−i+k2
(
1− qλ1,i

)
=

1

t−1 − 1

(
−

k2∑
j=1

tj−i−k1
(
1− q−λ2,j

)
+

k1∑
i=1

t−i+k2
(
1− qλ1,i

))
, (B.8)

where in the last step we used the sum of an infinite geometric progression. Substituting this back and
multiplying the whole expression by t−1 − 1, we obtain:

(t−1 − 1)
∞∑

i,j=1

tj−i
(
1− qλ1,i−λ2,j

)
=(t−1 − 1)

k1∑
i=1

k2∑
j=1

tj−i
(
1− qλ1,i−λ2,j

)
−

k2∑
j=1

tj−1−k1
(
1− q−λ2,j

)
+

k1∑
i=1

t−i+k2
(
1− qλ1,i

)
. (B.9)

Now we will use the following identity which the reader can find for instance in [28]:

−(t−1 − 1)

∞∑
i=1

qλ1,i t1−i = (q−1 − 1)

∞∑
i=1

t−λt
1,iqi. (B.10)

Multiplying it by
∑∞

j=1 t
j−1q−λ2,j and subtracting from the result the same with λ1, λ2 set to zero, we

find:

(t−1 − 1)
∞∑

i,j=1

tj−i
(
1− qλ1,i−λ2,j

)
= (q−1 − 1)

∞∑
i,j=1

tj−1qi
(
t−λt

1,iq−λ2,j − 1
)
. (B.11)

Substituting this back as a left-hand side of (B.9) and dividing everything by q−1 − 1, we obtain the
following:

∞∑
i,j=1

tj−1qi
(
t−λt

1,iq−λ2,j − 1
)
=

k1∑
i=1

k2∑
j=1

q
(
tj−i−1 − tj−i

) 1− qλ1,i−λ2,j

1− q

+

k2∑
j=1

q1−λ2,j tj−1−k1
1− q−λ2,j

1− q
+

k1∑
i=1

qt−i+k2
1− qλ1,i

1− q
, (B.12)

where one can now use the formula for finite geometric progression to get rid of the fractions in the
right-hand side:

∞∑
i,j=1

(
tj−1−λt

1,iqi−λ2,j − tj−1qi
)
=

k1∑
i=1

k2∑
j=1

λ1,i−λ2,j∑
l=1

(
tj−i−1 − tj−i

)
ql

+

k2∑
j=1

λ2,j∑
i=1

tj−1−k1qi−λ2,j +

k1∑
i=1

λ1,i∑
j=1

t−i+k2qj . (B.13)
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For the left-hand side one now should employ an identity from [73] (our t and q are interchanged with
respect to the formula there):

∞∑
i,j=1

(
tj−1−λt

1,iqi−λ2,j − tj−1qi
)
=
∑
s∈λ1

tlλ2
(s)qaλ1

(s)+1 +
∑
s∈λ2

t−lλ1
(s)−1q−aλ2

(s)

≡
∑

(i,j)∈λ1

tλ
t
2,j−iqλ1,i−j+1 +

∑
(i,j)∈λ2

ti−λt
1,j−1qj−λ2,i (B.14)

Interchanging the indices in the second summand of the right-hand side of (B.13), changing the summation
order in the third summand and moving them to the left, one finally obtains:∑

(i,j)∈λ1

(
tλ

t
2,j−i − tk2−i

)
qλ1,i−j+1 +

∑
(i,j)∈λ2

(
t−λt

1,j+i−1 − t−k1+i−1
)
q−λ2,i+j

=

k1∑
i=1

k2∑
j=1

λ1,i−λ2,j∑
l=1

(
tj−i−1 − tj−i

)
ql. (B.15)

Substituting here t, q −→ tr, qr, multiplying by (A t
q )

r

/r and using the series expansion of a logarithm
ln(1− x) = −

∑∞
r=1

xr

r , we get

∑
(i,j)∈λ1

ln

(
1−A t

q t
λt
2,j−iqλ1,i−j+1

1−A t
q t

k2−iqλ1,i−j+1

)
+

∑
(i,j)∈λ2

ln

(
1−A t

q t
−λt

1,j+i−1q−λ2,i+j

1−A t
q t

−k1+i−1q−λ2,i+j

)

=

k1∑
i=1

k2∑
j=1

ln

(λ1,i−λ2,j∏
l=1

1−Atj−iql−1

1−Atj−i+1ql−1

)
. (B.16)

Exponentiation concludes the proof.
Having proven the above lemma, it is straightforward to show that (B.3) is equivalent to:

∑
λ(1),...,λ(N−1)

[N−2∏
i=1

(zi
t
t
ki−1

2 +ki−
ki+1

2

)|λ(i)|]
·
(√

A
t

q

zN−1

t
t
kN−2+kN−1

2

)|λ(N−1)|

×
[N−1∏

i=1

Nβ
λ(i)λ(i−1) ((ki−1 − ki)ϵ2 − ϵ+)

Nβ
λ(i)λ(i) (0)

]
· Nβ

∅λ(N−1) (−a) (B.17)

=
∏

1≤i≤j≤N−2

M
(
ti−(j+1)+ki−kj+1 ·

∏j
s=i(zst

ks)
)
M
(
t
q · t(i−1)−j+ki−1−kj ·

∏j
s=i(zst

ks)
)

M
(
t · t(i−1)−(j+1)+ki−1−kj+1 ·

∏j
s=i(zst

ks)
)
M
(
1
q · ti−j+ki−kj ·

∏j
s=i(zst

ks)
)

×
N−1∏
i=1

M
(
A
q · ti−(N−1)+ki−kN−1 ·

∏N−1
s=i (zst

ks)
)
M
(
t
q · t(i−1)−(N−1)+ki−1−kN−1 ·

∏N−1
s=i (zst

ks)
)

M
(
At
q · t(i−1)−(N−1)+ki−1−kN−1 ·

∏N−1
s=i (zstks)

)
M
(
1
q · ti−(N−1)+ki−kN−1 ·

∏N−1
s=i (zstks)

) .
Now we are in position to prove the required summation formula:
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Theorem

∑
λ(1),...,λ(N−1)

[N−1∏
i=1

(
Vi

√
UiUi+1

)|λ(i)|

Nβ
λ(i)λ(i) (0)

]
Nβ

λ(1)∅ (d1 − ϵ+/2)

×
[N−2∏

i=1

Nβ
λ(i+1)λ(i) (ui+1 − ϵ+/2)

]
Nβ

∅λ(N−1) (uN − ϵ+/2) (B.18)

=
N−1∏
i=1

N−i∏
j=1

M
(∏i+j−1

s=j (VsUs)
)
M
(
t
q
Ui+j

Uj
·
∏i+j−1

s=j (VsUs)
)

M
(√

t
qUi+j ·

∏i+j−1
s=j (VsUs)

)
M
(√

t
q

1
Uj

·
∏i+j−1

s=j (VsUs)
) ,

with N site parameters Ui = e−βdi and N − 1 link parameters Vj . One can visualize the right-hand
side of this formula by noticing that the arguments of numerator are exactly all the simply-connected
combinations of even number of site and link parameters (multiplied by t

q when starting with a link

parameter), whereas the arguments of denominator are represented by all simply-connected combinations

of odd number of site and link parameters (multiplied by
√

t
q , single site parameters are excluded).

Proof: We use a so-called specialization technique [72]. Let us make the following specialization of Ui

(k0 ≡ 0):

Ui =

√
t

q
tki−ki−1 , i = 1, . . . , N − 1 (B.19)

and reparametrize the remaining variables as

Vj =

√
q

t

zj
t
tkj−1+kj−kj+1 , j = 1, . . . , N − 2 (B.20)

as well as

UN =

√
q

t

1

A
, VN−1 =

√
t

q
A

zN−1

t
tkN−2 . (B.21)

One can readily check that the formula (B.18) then reproduces the established sl(N) q-binomial identity
(B.17). Upon the continuation (see, e.g. page 41 of [8]) from discrete to continuous values of parameters
(from compact to non-compact functions), this specialized identity is promoted to the summation formula
(B.18) with arbitrary Ui, concluding our short argument.

Finally, let us remark that the summation formula (B.18) for N = 2

∑
λ(1)

(
V1

√
U1U2

)|λ(1)| Nβ
λ(1)∅ (d1 − ϵ+/2)Nβ

∅λ(1) (d2 − ϵ+/2)

Nβ
λ(1)λ(1) (0)

=
M
(
U1V1

)
M
(
t
qV1U2

)
M
(√

t
qV1

)
M
(√

t
qU1V1U2

) (B.22)

reproduces the non-trivial part of (5.3) of [7], whereas, taken for N = 3

∑
λ(1),λ(2)

(
V1

√
U1U2

)|λ(1)| (
V2

√
U2U3

)|λ(2)| Nβ
λ(1)∅ (d1 − ϵ+/2)Nβ

λ(2)λ(1) (d2 − ϵ+/2)Nβ
∅λ(2) (d3 − ϵ+/2)

Nβ
λ(1)λ(1) (0)N

β
λ(2)λ(2) (0)

=
M
(
U1V1

)
M
(
t
qV1U2

)
M
(
U2V2
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it is equivalent to the formula (6.7) conjectured in [9].
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C Higgsing and iterated integrals for the T4 case

We saw in section 4 how for T3 the semi-degeneration of the mass parameters mi pinches the integral
contour so that the structure constants are given by a single residue. The purpose of this section is to
perform the same computation in the T4 case, so as to illustrate the complexities that arise when we are

confronted with iterated contour integrals. For simplicity of notation, we set A1 ≡ A
(1)
1 , A2 ≡ A

(1)
2 and

A3 ≡ A
(2)
1 . From (16), we read the “perturbative” part of the the topological string partition function
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In addition, the “instanton” part (17) takes for N = 4 the form
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Let us try to perform the contour integrals over the Coulomb moduli Ai’s. We fix the contours over the
Ai’s as explained in section 4 by choosing the flopping frame shown in the left part of figure 2. Using the
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T4 parametrization of (A.4), we find the expressions for the Kähler parameters Q
(j)
m;i and Q

(j)
l;i . The fact

that the lengths in the picture have to be positive, implies the following domain∣∣∣∣∣M̃1Ñ1
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∣∣∣∣ > 1 ,

∣∣∣∣∣A1M̃2

A2

∣∣∣∣∣ > 1 ,

∣∣∣∣ A2

A1M̃3

∣∣∣∣ > 1 ,
∣∣∣A2M̃3L̃4

∣∣∣ > 1 , (C.3)∣∣∣∣∣A1Ñ2
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The mass parameters for the 5-branes on the left side of the T4 junction are parametrized as follows
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with
∏3

i=1 di = 1. We set di = e−βδi with
∑3

i=1 δi = 0. We will compute the integrals in the order A1,
A2 and A3 and are interested in the result in the limit δa → 0. Thus, in the calculation of the contour
integrals, we will only keep the residues that will diverge when the regulators δi are finally all set to

zero. Their divergences will be canceled in the limit by the zeroes coming from the
∣∣M(

M̃iM̃
−1
j

)∣∣2 in the
numerator.

Let us now consider the contour integral over A1. The possible contributing poles come from the
following terms in the denominator of (C.1)∣∣∣∣∣∣
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We number the terms with j = 1, 2, 3 as 1 to 3 and those with k = 1, 2, 3 as 4 to 6 and we need to
investigate which of them might pinch the integral contour. Plugging (C.4) into (C.3), we find that the
allowed domain for the contour of A1 is∣∣∣∣∣K̃Ñ1d2
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(C.6)

The situation for imaginary δa is depicted in figure 14. We see that for |K̃| > 1 and imaginary masses ni

and li, the two domains in (C.6) do not overlap and after some contemplation we find that the contour
for A1 can be chosen in such a way that in the limit δa → 0 only one residue contributes, namely the one
for

A1 = K̃Ñ1d1
t

q
. (C.7)

Thus, we can compute the integral over A1 just as in the T3 case and, after some simplifications, obtain
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1.5 1.5

1.5

1.5

Figure 14: The figure presents our choice of the integration contour for A1. The allowed domains for
A1 taken from (C.6) are shaded in blue. As the regulators δa are taken to zero, the integral is given by
just one residue whose position is indicated by a small circle.

the integral expression

lim
δa→0

∮ 3∏
k=1

[
|M(t, q)|2 dAk

2πiAk

] ∣∣Ztop
4

∣∣2 = lim
δa→0

∮ 3∏
k=2

[
|M(t, q)|2 dAk

2πiAk

]
Res

(∣∣Ztop
4

∣∣2 ,A1 = K̃Ñ1d1
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where we have used (51).
We must now perform the integration over A2. We find that the relevant terms in the denominator of

the integrand in (C.8) are∣∣∣∣M(
A2d2

K̃2Ñ1

)
M
(
q

t

A2d3

K̃2Ñ1
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From the above, we read that there are two poles that are potentially relevant for the semi-degenerate
limit, namely those for

A2 = K̃2Ñ1d
−1
3

t

q
, A2 = K̃−1L̃−1

4 d−1
3 . (C.10)

These are the two residues that could contribute due to pinching. We need now to set the exact integral
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contour for A2 to see which one of them actually contributes. Plugging (C.3) and (C.4) in (C.7), we find∣∣∣∣∣K̃2Ñ1d
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The above constraints teach us that the contour can be chosen in such a way as to have the residue at
A2 = K̃2Ñ1d

−1
3

t
q , but not in such a way as to have A2 = K̃−1L̃−1

4 d−1
3 . This latter point is due to the

last constraint in (C.11) which implies that both poles that collide A2 = K̃−1L̃−1
4 when the regulators

are removed have to lie on the same side of the contour. The argument is the same as the one used in the
T3 case to exclude (55) for the first flopping frame of figure 9. Taking all this into consideration, we can
compute the integral over A2 in (C.8).

Finally, we have to compute the integral over A3. Arguments similar to the ones used for A2 tell us
that the contour should be chosen such as to have a pinching when the regulators are removed and we get
the residue at

A3 = K̃Ñ1Ñ2d1

√
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q
. (C.12)

Performing the same kind of computation that led to (C.8), we obtain the integral in the semi-degenerate
limit
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Computing the “instanton” contribution to residues, we find that inserting the values of he Coulomb
moduli, namely (C.7), the left part of (C.10) as well as (C.12) into (C.2) immediately gets rid of the

sums over ν
(1)
1 , ν

(2)
1 and ν

(1)
2 due to (A.38). Thus, we obtain the “instanton” contribution to the contour

integral in the semi-degenerate limit
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We can now plug the summation formula (69) in (C.14) and inserting the result in (C.13) we get the final
result
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Thus, we obtain our general formula (68), specialized for N = 4.
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