
ADJOINT PAIRS

OF

DIFFERENTIAL ALGEBRAIC EQUATIONS

Vu Hoang Linh∗and Roswitha März†

IN MEMORIAM KATALIN BALLA (1947–2005)

Abstract

This paper is devoted to the analysis of adjoint pairs of regular differential algebraic
equations with arbitrarily high tractability index. We consider both standard form DAEs and
DAEs with properly involved derivative. After reviewing the basic structure of regular DAEs,
we investigate the common structure of factorization-adjoint pairs. We show that an adjoint
pair of regular DAEs always possesses essential underlying ODEs which are adjoint to each
other. Finally, we extend the Lyapunov exponent theory to regular DAEs with arbitrarily
high index.
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1 Introduction

In the classical theory of explicit ordinary differential equations (ODEs) the adjoint equation is
introduced as equation satisfied by the adjoint inverses of the fundamental solution matrices, e.g.
[2, 16, 13, 17]. If

x′(t) +B(t)x(t) = 0, t ∈ I, (1)

is the given ODE, with X(t, t0) being a fundamental solution matrix normalized at t0, then

Y (t, t0) := X(t, t0)−1 ∗, t ∈ I,

satisfies the adjoint ODE
−y′(t) +B(t)∗y(t) = 0, t ∈ I, (2)

This property is closely related to the so-called Lagrange identity,

〈x(t), y(t)〉 = constant, t ∈ I, (3)

which is valid for each arbitrary pair of solutions of equations (1) and (2). Thereby the interval
I ⊆ R is arbitrary. We are most interested in an infinite one.1 Particularly the Lagrange identity
accounts for the benefit of adjoint ODEs, for instance, when investigating asymptotics, boundary
value problems, and also optimal control problems.
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compact interval and, additionally, boundary conditions.

1



The nature of differential-algebraic equations (DAEs) is much more complicated. Except for
the less interesting case of index-0 DAEs, all fundamental solution matrices of regular DAEs are
everywhere singular matrix functions such that one is coerced into finding appropriate generalized
inverses. It was Katalin Balla who initiated to clarify the relevant structure of regular index-1 and
index-2 DAEs and who made profound contribution to this topic [7, 9, 8, 10, 4, 6, 5].

In the present paper we continue the investigations and take up the intentions of Katalin Balla
concerning adjoint pairs of DAE, now for regular DAEs with arbitrarily high tractability index.
We adress both standard form DAEs

E(t)x′(t) + F (t)x(t) = 0, t ∈ I, (4)

and DAEs with properly involved derivative

A(t)(Dx)′(t) +B(t)x(t) = 0, t ∈ I. (5)

Together with the DAEs (4) and (5) we consider the equations

−(E∗y)′(t) + F (t)∗y(t) = 0, t ∈ I, (6)

and
−D∗(t)(A∗y)′(t) +B(t)∗y(t) = 0, t ∈ I, (7)

later on justified as their adjoint counterparts.
The attempt [19] to treat DAEs as operator equations in appropriate function spaces provides

the adjoint operators as a byproduct when looking for the biadjoint operators representing the
closures, e.g.,[19, Theorem 1]. In this context, equation (6) is already justified as adjoint equation
associated with (4); and (7) is justified as adjoint of (5), see also [26]. In contrast, here we do not
make use of functional-analytic arguments, but we try to argue from appropriate aspects of the
theory of differential equations.

For smooth coefficients E and F , the equation (6) is introduced as dual descriptor system in
[11]; and the original DAE and its dual are shown to be solvable at the same time. In case of merely
continuous coefficients, the DAE (6) and a generalized Lagrange identity are applied in [7, 27] to
describe solution manifolds of boundary problems for the DAE (4) with index 1. In [8] the notion
adjoint DAE is used and justified for the index-1 case by rigorous solvability investigations. In
particular, it is shown that, if X(t) denotes the maximal fundamental solution matrix of the DAE
(4) normalized at t0 ∈ I, then

Y (t, t0) := E(t)∗−X(t, t0)−∗E(t0)∗, t ∈ I,

is the maximal fundamental solution matrix of the adjoint equation, also normalized at t0. The
superscript “-“ indicates special generalized inverses. At this point we add, that for the less
interesting index-0 DAEs (the case of nonsingular E), one obtains this relations immediately by
simple computations.
Correspondent results for index-1 and index-2 DAEs with properly stated leading term (5) and
(7) are reached in [9, 10]. In particular, it is shown that the adjoint pair shares in the index
and the further characteristic values. For an important class of self-adjoint DAEs, the inherent
explicit regular ODE (IERODE) is proved to be Hamiltonian in [5]. Supposing so-called completely
decoupling projectors to define the generalized inverses D− and A∗−, it is proved in [9] that

Y (t, t0) := A(t)∗−D(t)∗−X(t, t0)−∗D(t0)∗A(t0)∗

is the fundamental solution matrix of the adjoint DAE (7) normalized at the same point t0. These
investigations are continued for DAEs with index ≤ 2 in [4, 6]. Conditions ensuring the inherent
regular ODEs of the adjoint pair to be adjoint each to other are given. Moreover, also adjoint
pairs of essential underlying ODEs (EUODE) are studied.
The standard form DAE (9) with smooth coefficients together with the standard form DAE

−E(t)∗y′(t) + (F (t)∗ − E′(t)∗)y(t) = 0, t ∈ I, (8)
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resulting from (6) are revisited in [20], there called formally adjoint pair. It is shown that the
DAEs (4) and (8) share in the differentiation index and the size of the differential part.

The present paper is organized as follows: Section 2 describes the general assumptions and the
Lagrange identity for DAEs. Section 3 collects required material concerning transformations and
refactorizations. The basic structure of regular DAEs is exposed in Section 4. In particular, we
discuss how the IERODEs and the EUODEs are related to each other. These preliminaries are
followed by Section 5 which gives a definition of adjoint DAEs and provides results concerning the
joint basic structure of adjoint pairs. It is also shown that an adjoint DAE pair possesses EUODEs
adjoint each to other. Finally, Section 6 presents new insights concerning the stability analysis of
regular DAEs. The list of symbols and abbreviations is given at the end. We drop the argument
t if ever possible without causing confusion.

2 Basics and Lagrange identity

We investigate standard form DAEs

E(t)x′(t) + F (t)x(t) = 0, t ∈ I, (9)

and DAEs with properly involved derivative

A(t)(Dx)′(t) +B(t)x(t) = 0, t ∈ I. (10)

The interval I ⊆ R is arbitrary, possible infinite. The coefficients are supposed to be continuous,
that is,

E,F ∈ C(I,L(Km,Km)),

A ∈ C(I,L(Kn,Km)), D ∈ C(I,L(Km,Kn)), B ∈ C(I,L(Km,Km)),

with K = R and K = C in the real and complex versions, respectively. Additionally, throughout
the paper we assume the time-varying subspaces

kerE(t), kerA(t), and imD(t), t ∈ I,

to be C1- subspaces. When dealing with a DAE of the form (10), we presume the transversality
condition

kerA(t)⊕ imD(t) = Kn, t ∈ I, (11)

to be valid, which means that the derivative is properly involved and the DAE shows actually a
properly stated leading term. The decomposition (11) determines the so-called border projector
function R ∈ C1(I,L(Kn,Kn)) by

kerR(t) = kerA(t), imR(t) = imD(t), t ∈ I. (12)

Since both involved subspaces are C1-subspaces, the projector function R is actually continuously
differentiable.

Since kerE is a C1-subspace, owing to [26, Theorem 3.1], we find a proper factorization E =:
AD, A ∈ C(I,L(Kn,Km)), D ∈ C1(I,L(Km,Kn)) such that kerE(t) = kerD(t), t ∈ I and the
condition (11) is valid. For instance, one can use A = E, D = P , with a projector function P
along kerE as applied already in [18]. Then we can rewrite the standard form DAE (9) as

A(t)(Dx)′(t) + (F (t)−A(t)D′(t))x(t) = 0, t ∈ I, (13)

which is a DAE with properly stated leading term.
Conversely, each DAE (10) with a continuously differentiable coefficient D and C1-solutions can
be written also as standard DAE

A(t)D(t)x′(t) + (B(t) +A(t)D′(t))x(t) = 0, t ∈ I. (14)
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We emphasize that the standard form DAE and the DAE with properly stated leading term share
most their structural properties. However, though C1-solutions are supposed for standard form
DAEs, the DAE (10) naturally admits continuous functions x showing a continuously differentiable
part Dx.2

Together with the DAEs (9) and (10) we consider the equations

−(E∗y)′(t) + F (t)∗y(t) = 0, t ∈ I, (15)

and
−D∗(t)(A∗y)′(t) +B(t)∗y(t) = 0, t ∈ I, (16)

later on justified as their adjoint counterparts.
The DAE (16) has a properly stated leading term at the same time as (10), with the associated
border projector function R∗.
The DAE (15) is obviously out of the scope of a standard form DAE, but, supposing additionally
that E and y are continuously differentiable, one can turn to the standard form DAE

−E∗(t)y′(t) + (F (t)∗ − E′(t)∗)y(t) = 0, t ∈ I. (17)

On the other hand, applying the proper factorization E∗ = [AD]∗ = D∗A∗, equation (17) leads to

−D(t)∗(A∗y)′(t) + (F (t)∗ −D′(t)∗A(t)∗)y(t) = 0, t ∈ I, (18)

which is the precise counterpart of (13).

For any solution pair x ∈ C1D(I,Km) and y ∈ C1A∗(I,Km) of the DAEs (10) and (16), respec-
tively, we have

d

dt
〈D(t)x(t), A(t)∗y(t)〉 = 〈(Dx)′(t), A(t)∗y(t)〉+ 〈D(t)x(t), (A∗y)′(t)〉

= 〈A(t)(Dx)′(t), y(t)〉+ 〈x(t), D(t)∗(A∗y)′(t)〉
= 〈−B(t)x(t), y(t)〉+ 〈x(t), B(t)∗y(t)〉 = 0, t ∈ I,

and this implies the Lagrange identity generalized for DAEs with properly stated leading terms
(10) and (16),

〈D(t)x(t), A(t)∗y(t)〉 = constant, t ∈ I, (19)

as well as the generalized Lagrange identity for the pair (9) and (15),

〈x(t), E(t)∗y(t)〉 = 〈D(t)x(t), A(t)∗y(t)〉 = constant, t ∈ I. (20)

The last identity (20) is valid for all solutions x ∈ C1D(I,Km) (including all x ∈ C1(I,Km)) and
y ∈ C1A∗(I,Km) of the DAEs (13) and (15), respectively. If E is continuously differentiable, then
(20) makes sense for all solutions x ∈ C1(I,Km) and y ∈ C1(I,Km) of (9) and (17) at least.

3 Transformations and refactorizations

Let pointwise nonsingular matrix functions

L ∈ C(I,L(Km,Km)), K ∈ C1(I,L(Km,Km))

be given. Multiplying the standard form DAE

Ex′ + Fx = q (21)

2In functional-analytic terms, the operator representing the DAE (13) with properly stated leading term is the
closure of operator of the standard DAE (9).
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from left by L and transforming x = Kx̃ yields the equivalent DAE

LEK︸ ︷︷ ︸
=:Ẽ

x̃′ + (LFK + LEK ′)︸ ︷︷ ︸
=:F̃

x̃ = Lq. (22)

Multiplying the associated adjoint equation

−(E∗y)′ + F ∗y = p (23)

from left by K∗ and transforming y = L∗ỹ leads to

−((LEK)∗ỹ)′ + ((LFK)∗ + (LEK ′)∗ỹ = K∗p,

that is,
−(Ẽ∗ỹ)′ + F̃ ∗ỹ = K∗p. (24)

In summary the following relations are valid:

Ex′ + Fx = q adjoint
←−−−→

−(E∗x)′ + F ∗y = p

⇓ L,K ⇑ L−1,K−1 ⇓ K∗, L∗ ⇑ K∗−1, L∗−1

Ẽx̃′ + F̃ x̃ = Lq adjoint
←−−−→

−(Ẽ∗ỹ)′ + F̃ ∗ỹ = K∗p

Next we turn to DAEs with properly stated leading term

A(Dx)′ +Bx = q (25)

and consider multiplications from left and coordinate transformations x = Kx̃ by pointwise non-
singular matrix functions

L ∈ C(I,L(Km,Km)), K ∈ C(I,L(Km,Km)).

Additionally we allow refactorizations of the leading term AD = (AH)(H−D) by H with

H ∈ C1(I,L(Ks,Kn)), H− ∈ C1(I,L(Kn,Ks)), n, s ≥ r := rankD,

HH−H = H, H−HH− = H−, RHH−R = R. (26)

In particular, one can apply refactorizations with n = s and nonsingular H.
The resulting DAE (cf.[24, Section 2.3])

Ã(D̃x̃)′ + B̃x̃ = Lq (27)

has the coefficients

Ã := LAH, D̃ := H−DK, B̃ := LBK − LAH(H−R)′DK.

It inherits the properly stated leading term from (25), and its border projector function is R̃ =
H−RH.

Observe that

H−∗H∗H−∗ = H−∗, H∗H−∗H∗ = H∗, R∗H−∗H∗R∗ = R∗,

which means that H−∗− := H∗ is a generalized inverse of H−∗ suitable for the refactorization
D∗A∗ = (D∗H−∗)(H−∗−A∗) = (D∗H−∗)(H∗A∗).
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Multiplying the adjoint equation

−D∗(A∗y)′ +B∗y = p (28)

by K∗, transforming y = L∗ỹ and refactoryzing by means of H−∗ leads to the transformed DAE

−D̃∗(Ã∗ỹ)′ + B̃∗ỹ = K∗p. (29)

In summary the following relations are valid:

A(Dx)′ +Bx = q adjoint
←−−−→

−D∗(A∗y)′ +B∗y = p

⇓ L,K,H ⇑ L−1,K−1, H− ⇓ K∗, L∗, H−∗ ⇑ K∗−1, L∗−1, H∗

Ã(D̃x̃)′ + B̃x̃ = Lq adjoint
←−−−→

−D̃∗(Ã∗ỹ)′ + B̃∗ỹ = K∗p

The following observation will play its role for Definition 5.2 below.
Let the matrix function H ∈ C1(I,L(Ks,Kn)) describe a refactorization of the leading term in the
DAE (25) and let H−∗ induce a refactorization in (28). A refactorization does not change neither
the DAE solutions nor the relevant function spaces housing the DAE solutions. In particular, we
have

C1D(I,Km) = C1H−D(I,Km), and C1A∗(I,Km) = C1H∗A∗(I,Km).

For any solution pair x ∈ C1D(I,Km) and y ∈ C1A∗(I,Km) of the homogenous versions of the DAEs
(25) and (28), respectively, it holds that

〈H(t)−D(t)x(t), H(t)∗A(t)∗y(t)〉
= 〈R(t)H(t)H(t)−D(t)x(t), A(t)∗y(t)〉 = 〈D(t)x(t), A(t)∗y(t)〉, t ∈ I,

and hence, next to (19), also

〈H(t)−D(t)x(t), H(t)∗A(t)∗y(t)〉 = constant, t ∈ I. (30)

Thereby, the constant is the same as in (19).

4 The basic structure of a regular DAE

In the context of the projector based analysis of DAEs, the basic structure of a regular DAE is
determined by its tractability index µ and the characteristic values r0 ≤ . . . rµ−1 < rµ = m. We
refer to [24] for general relations with other index notions.

The DAE with properly stated leading term

A(Dx)′ +Bx = q (31)

as described in Section 2 has continuous coefficients A,D,B. If necessary, the coefficients are
supposed to be smooth enough for regularity and the existence of complete decouplings, e.g.,[24,
Section 2.4.3]. We apply the regularity notion given in [24, Definition 2.25], which is supported
by several constant-rank requirements yielding the tractability index µ ∈ N and the characteristic
values

r0 ≤ . . . ≤ rµ−1 < rµ = m,

of a regular DAE. Regularity is formally determined by means of admissible projector functions

P0, . . . , Pµ−1 ∈ C(I,L(Km,Km))
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associated with the construction of admissible matrix functions sequences starting from G0 := AD
and ending up with a nonsingular Gµ, see [24, Definition 2.6].
The tractability index generalizes the Kronecker index of a regular matrix pencil, and, in case
of such a matrix pencil, the characteristic values ri provide a complete description of the formal
structure of the corresponding Weierstraß-Kronecker form.

We use the further denotations

Q0 := I − P0, Π0 := P0, Qi := I − Pi, Πi := Πi−1Pi, i = 1, . . . , µ− 1.

A regular DAE (31) accommodates also the projector functions

DΠ0D
−, . . . , DΠµ−1D

− ∈ C1(I,L(Kn,Kn)),

with the pointwise determined generalized inverse D− such that

DD−D = D, D−DD− = D−, DD− = R, D−D = P0. (32)

The regularity notion applies to standard form DAEs

Ex′ + Fx = q, (33)

with sufficiently smooth coefficients E,F , as follows: the standard form DAE (33) is regular with
tractability index µ and characteristic values r0 ≤ . . . ≤ rµ−1 < rµ = m, if any (equivalently:
each) proper factorization of the leading coefficient E = AD yields a regular DAE of type (31),

A(Dx)′ + (F −AD′)x = q, (34)

being regular with these characteristics, e.g., [24, Section 2.7]. Similarly, the equation

−(E∗y)′ + F ∗y = p, (35)

with sufficiently smooth coefficients E,F , is called regular DAE with tractability index µ and
characteristic values r0 ≤ . . . ≤ rµ−1 < rµ = m, if any (equivalently: each) proper factorization
E = AD yields a regular DAE of type (31),

−D∗(A∗y)′ + (F ∗ −D∗′A∗)y = q, (36)

being regular with these characteristics.

The sequence of projector functions P0, . . . , Pµ−1 serves as tool for the decoupling of the DAE
itself and the decomposition of the solution x into their characteristic parts, see [24, Section 2.4].
In particular, the component u = DΠµ−1x satisfies the so-called inherent explicit regular ODE
(IERODE)

u′ − (DΠµ−1D
−)′u+DΠµ−1G

−1
µ BΠµ−1D

−u = DΠµ−1G
−1
µ q. (37)

The components v0 = Q0x, v1 = Π0Q1x, . . . , vµ−1 = Πµ−2Qµ−1x satisfy the triangular subsystem
involving several differentiations

0 N01 · · · N0,µ−1

0
. . .

...
. . . Nµ−2,µ−1

0




0
(Dv1)′

...
(Dvµ−1)′

 (38)

+


I M01 · · · M0,µ−1

I
. . .

...
. . . Mµ−2,µ−1

I




v0
v1
...

vµ−1

+


H0

H1

...
Hµ−1

D−u =


L0

L1

...
Lµ−1

 q.
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The subspace imDΠµ−1 is an invariant subspace for the IERODE. The components v0, v1, . . . , vµ−1
remain within their subspaces imQ0, imΠµ−2Q1, . . . , imΠ0Qµ−1, respectively. The structural de-
coupling is associated with the decomposition

x = D−u+ v0 + v1 + · · ·+ vµ−1.

The coefficients are continuous and explicitly given in terms of an admissible matrix function
sequence as

N01 := −Q0Q1D
−

N0j := −Q0P1 · · ·Pj−1QjD−, j = 2, . . . , µ− 1,

Ni,i+1 := −Πi−1QiQi+1D
−,

Nij := −Πi−1QiPi+1 · · ·Pj−1QjD−, j = i+ 2, . . . , µ− 1, i = 1, . . . , µ− 2,

M0j := Q0P1 · · ·Pµ−1MjDΠj−1Qj , j = 1, . . . , µ− 1,

Mij := Πi−1QiPi+1 · · ·Pµ−1MjDΠj−1Qj , j = i+ 1, . . . , µ− 1, i = 1, . . . , µ− 2,

L0 := Q0P1 · · ·Pµ−1G−1µ ,

Li := Πi−1QiPi+1 · · ·Pµ−1G−1µ , i = 1, . . . , µ− 2,

Lµ−1 := Πµ−2Qµ−1G
−1
µ ,

H0 := Q0P1 · · ·Pµ−1KΠµ−1,

Hi := Πi−1QiPi+1 · · ·Pµ−1KΠµ−1, i = 1, . . . , µ− 2,

Hµ−1 := Πµ−2Qµ−1KΠµ−1,

with

K := (I −Πµ−1)G−1µ Bµ−1Πµ−1 +

µ−1∑
l=1

(I −Πl−1)(Pl −Ql)(DΠlD
−)′DΠµ−1,

Mj :=

j−1∑
k=0

(I −Πk){PkD−(DΠkD
−)′ −Qk+1D

−(DΠk+1D
−)′}DΠj−1QlD

−,

l = 1, . . . , µ− 1.

The IERODE is always uncoupled of the second subsystem, but the latter is tied to the IERODE
if among the coefficients H0, . . . ,Hµ−1 is at least one who does not vanish. One speaks about a
fine decoupling, if H1 = · · · = Hµ−1 = 0, and about a complete decoupling, if H0 = 0, additionally.
A complete decoupling is given, exactly if the coefficient K vanishes identically.
If the DAE is regular and the original data are sufficiently smooth, then fine and complete decou-
plings exist and can be constructed, see [24, Subsection 2.4.3]. Below, we suppose at least a fine
decoupling.
It should be added at this point, that the coefficients of the IERODE depend on the special choice
of admissible projector functions. However, they are uniquely determined in the scope of fine
decouplings.

The so-called canonical projector function Πcan of a regular DAE (see [24, Definition 2.37])
is actually a generalization of the spectral projector onto the finite eigenspace along the infinite
eigenspace of a regular matrix pencil (cf. [24, Section 1.4]).

By means of fine decoupling projector functions P0, . . . , Pµ−1, the canonical projector function
of the DAE ([24, Definition 2.37]) can be represented as

Πcan = (I −H0)Πµ−1.
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It follows that
DΠµ−1 = DΠcan. (39)

We emphasize that Πcan itself is independent of the choice of projector functions. Therefore, also
DΠµ−1 does not depend of the construction.
One can find fine decoupling projector functions P0, . . . , Pµ−1 with arbitrarily fixed start projector
function P0 along kerD. This allows to prescribe the generalized inverse D− in (32).
In contrast, complete decoupling projector functions P0, . . . , Pµ−1 yield the representation Πcan =
Πµ−1, which is very useful in theory, but less comfortable in practice when dealing with D− (cf.
(32)).

If the DAE is regular, then the IVP

A(DX)′ +BX = 0, X(t0) = Πcan(t0), (40)

possesses exactly one solution X(·, t0) called maximal fundamental solution matrix normalized at
t0, cf.[8, 9, 24]. It holds that

imX(t, t0) = imΠcan(t), kerX(t, t0) = kerΠcan(t0), (41)

X(t, t0) = Πcan(t)D(t)−U(t, t0)D(t0)Πcan(t0), t ∈ I, (42)

with U(·, t0) being the classical (nonsingular) fundamental solution matrix of the IERODE (37)
from a fine decoupling, U(t0, t0) = I. Furthermore,

X(t, t0)− := Πcan(t0)D(t0)−U(t, t0)−1D(t)Πcan(t), t ∈ I, (43)

turns out to be the appropriate generalized inverse concerning the flow, see [24, Section 2.6].

Example 4.1 The system comprising the m = m1 +m2 equations

x′1+B11x1 +B12x2 = q1,

B21x1 = q2,

is said to be a DAE in Hessenberg form of size 2, supposed the product B21B12 is nonsingular.
Then this DAE is regular with tractability index 2, and with characteristic values r0 = r1 = m1,
r2 = m1 +m2. Denoting

Ω := B12B
−
12, B−12 := (B21B12)−1B21, (44)

we obtain the projector function Ω onto imB12 along kerB21. Suppose Ω to be continuously
differentiable. The canonical projector function of this DAE reads (e.g.,[24, p. 107])

Πcan =

[
I −Ω 0

−B−12(B11 −Ω′)(I −Ω) 0

]
.

It can be directly checked that all solutions of the homogenous DAE with q = 0 have the form

x =

[
(I −Ω)x1

−B−12(B11 −Ω′)(I −Ω)x1

]
= Πcanx,

in which the component u = (I −Ω)x1 satisfies the ODE

u′ − (I −Ω)′u+ (I −Ω)B11(I −Ω)u = 0. (45)

This ODE stated in Km1 represents the associated IERODE, if one supposes the natural description[
I
0

]
︸︷︷︸
=A

(
[
I 0

]︸ ︷︷ ︸
=D

x)′ +

[
B11 B12

B21 0

]
x = q, D− =

[
I
0

]
.
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Choosing a matrix function Γd ∈ C1(I,L(Km1 ,Kd)), d := m1 −m2, whose columns form a basis
of im (I −Ω) = kerB21, and determining the generalized inverse Γ−d so that

Γ−d Γd = I −Ω, ΓdΓ−d = Id,

we may condense the IERODE to the so-called essential underlying ODE (cf. [3, 6])

η′ + (ΓdB11Γ
−
d + ΓdΓ

−
d

′
)η = 0,

Since there are different possibilities to choose a basis to form Γd, the essential underlying ODE
depends on the specially chosen basis. �

We will see below, that such kind of essential underlying ODEs can be associated with any regular
DAE and how they are related to the IERODE.

As exposed in Section 3, the multiplication from left by L, the coordinate transformation
x = Kx̃, and the refactorization by H transforms the DAE (31) into the DAE

Ã(D̃x̃)′ + B̃x̃ = Lq. (46)

with coefficients

Ã := LAH, D̃ := H−DK, B̃ := LBK − LAH(H−R)′DK.

Theorem 4.2 The tractability index µ and the characteristic values r0 ≤ . . . ≤ rµ−1 < rµ of any
regular DAE with properly stated leading term persist under multiplications from left by continuous
nonsingular matrix functions, continuous coordinate transformations and refactorizations with
continuously differentiable matrix functions.

Proof: For K = R, the assertion is a direct consequence of [24, Theorems 2.18 and 2.21]. The
proof of the complex case can be carried out in the same way. �

In the context of standard form DAEs one supposes continuously differentiable solutions and,
correspondingly, continuously differentiable coordinate transformations.

Corollary 4.3 The tractability index µ and the characteristic values r0 ≤ . . . ≤ rµ−1 < rµ of any
regular standard form DAE (33) persist under multiplications from left by continuous nonsingular
matrix functions and continuously differentiable coordinate transformations.

Proof: The tractability index as well as the characteristic values of a standard form DAE are de-
fined via the form (34). Thereby, the special choice of the factorization does not matter. Supposing
K and x to be continuously differentiable in

LA(DKx̃)′ + (LFK − LAD′K)x̃ = Lq

immediately yields
LADKx̃′ + (LFK + LADK ′)x̃ = Lq.

that is, (22). �

Proposition 4.4 Let the DAE (31) be regular, and let P0, . . . , Pµ−1 be associated admissible pro-
jector functions. Then the transformed DAE (46) is also regular and it has admissible projector
functions P̃0, . . . , P̃µ−1 such that

Π̃i = K−1ΠiK, D̃Π̃iD̃
− = H−DΠiD

−H, i = 0, . . . , µ− 1,

with D̃− := K−1D−H. Furthermore, The border projector function and the canonical projector
function of the transformed DAE (46) can be described by R̃ = H−RH and Π̃can = K−1ΠcanK.
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Proof: The real case is verified in [24, Section 2.3]. The proof of the complex case can be carried
out in the same way. �

The next theorem says that each regular DAE can be transformed into a form with decoupled
fast and slow parts, similar to the Weierstraß-Kronecker form of a regular matrix pencil. This
provides the main tool to be used in the next section for proving properties of adjoint DAE pairs.

Theorem 4.5 Each regular DAE (31) with tractability index µ and characteristic values r0 ≤
. . . ≤ rµ−1 < rµ = m can be transformed by pointwise nonsingular matrix functions

L ∈ C(I,L(Km,Km)), K ∈ C(I,L(Km,Km)),

and a refactorizations of the leading term by H with

H ∈ C1(I,L(Ks,Kn)), H− ∈ C1(I,L(Kn,Ks)), n, s ≥ r := rankD,

HH−H = H, H−HH− = H−, RHH−R = R,

into the structured form
Ã(D̃x̃)′ + B̃x̃ = Lq, (47)

with

Ã = LAH =

[
Id 0
0 N

]
, D̃ = H−DK =

[
Id 0
0 PN

]
,

B̃ = LBK − LAH(H−R)′DK =

[
W 0
0 Im−d

]
,

d = m−
µ−1∑
i=0

(m− ri),

N =


0 N0 1 . . . N0µ−1

. . .
. . .

0 Nµ−2µ−1
0

 , PN =


0m−r0

Im−r1
. . .

Im−rµ−1

 ,
whereby the entries Ni−1 i have size (m − ri−1) × (m − ri) and full column-rank m − ri, i =
1, . . . , µ− 1.

Proof: The real case is verified by [24, Theorem 2.65 (2)]. In essence, completely decoupling
projector functions are chosen and then the above large decoupled system is condensed to minimal
size m. The proof of the complex case can be carried out in the same way. �

The transformed DAE (47) comprises the explicit ODE

η′ +Wη = ρ, (48)

with size d. We call it essential underlying ODE (EUODE) of the originally given DAE (31) or
(33) after [3, 12, 6].
Recall that the IERODE lives in Kn, n ≥ d, and it is unique in the scope of fine decouplings.
Its coefficients are expressed in terms of the original DAE. In contrast, the EUODE has minimal
size d, but it is accessible by suitable transformations only. An EUODE can be seen as condensed
IERODE. However, depending on the transformations used, there is a variety of EUODEs. We
describe the condensing in detail, which is actually part of the proof of Theorem 4.5 in [24].

The IERODE (37) resulting from a fine decoupling is independent of the construction. We
emphasize this fact by rewriting the IERODE as

u′ − (DΠcanD
−)′u+DΠcanG

−1
µ BΠcanD

−u = DΠcanG
−1
µ q. (49)
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Since the projector functionDΠcanD
− is continuously differentiable and has rank d, so is (DΠcanD

−)∗,
and im (DΠcanD

−)∗ is spanned by d continuously differentiable basis functions. This means that
there is a matrix function

Γd ∈ C1(I,L(Kn,Kd)), imΓ ∗d = im (DΠcanD
−)∗, kerΓ ∗d = {0}.

Then we determine the generalized Γ−d ∈ C1(I,L(Kd,Kn)) by

ΓdΓ
−
d Γd = Γd, Γ−d ΓdΓ

−
d = Γ−d , Γ−d Γd = DΠcanD

−, ΓdΓ
−
d = Id. (50)

Letting η = Γdu for the solutions u = DΠcanD
−u = Γ−d Γdu of the IERODE leads to an EUODE

(48) with (cf. [24, Section 2.8])

W = −Γ ′dΓ−d + ΓdDΠcanG
−1
µ BΠcanD

−Γ−d = −Γ ′dΓ−d + ΓdDΠcanG
−1
µ BD−Γ−d .

Finally in this section, we emphasize again that, though the IERODE is unique, the EUODE is
not, since it depends on the choice of the basis functions of im (DΠcanD

−)∗ to construct Γd.

5 The common structure of factorization-adjoint pairs

A standard form DAE and its adjoint are known to be regular with tractability index µ ≤ 2 at
the same time; the pair also shares the characteristic values r0 < r1 = m, resp. r0 ≤ r1 < r2 = m,
and it has the common dynamical degree of freedom d = r0 for µ = 1, d = r0 + r1 −m for µ = 2,
see [8, 28].
The same is shown for DAEs with properly stated leading term, see [9].
In the present section we verify and specify correspondent general properties of regular DAEs with
arbitrary index. Being about to do this we take a second look to Hessenberg size 2 DAEs.

Example 5.1 (Continuation of Example 4.1) The Hessenberg form DAE from Example 4.1

x′1+B11x1 +B12x2 = q1,

B21x1 = q2,

and its adjoint

−y′1+B∗11y1 +B∗21y2 = p1,

B∗12y1 = p2,

have the canonical projector functions

Πcan =

[
I −Ω 0

−B−12(B11 −Ω′)(I −Ω) 0

]
, Π∗ can =

[
I −Ω∗ 0

−B∗−21 (B∗11 +Ω∗′)(I −Ω∗) 0

]
.

It holds that
DΠcanD

− = I −Ω, A∗Π∗ canA
∗− = I −Ω∗ = (DΠcanD

−)∗.

The associated IERODEs are

u′ − (I −Ω)′u+ (I −Ω)B11(I −Ω)u = 0. (51)

and
−v′ + (I −Ω∗)′v + (I −Ω∗)B∗11(I −Ω∗)v = 0. (52)

Observe that the IERODEs (51) and (52) form a classical adjoint pair, if and only if the projector
function Ω is constant, or, equivalently, if the associated subspaces imB12 and kerB21 do not vary
with t.
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One has (DΠcanD
−)∗ = I−Ω∗ = A∗Π∗ canA

∗−, however, the canonical projector function Π∗ can
does not equal Π∗can unless very strong additional restrictions.
On the other hand, choosing a matrix function Γd ∈ C1(I,L(Km1 ,Kd)), d := m1 − m2, whose
columns form a basis of im (I −Ω) = kerB21, and determining the generalized inverse Γ−d so that

Γ−d Γd = I −Ω, ΓdΓ−d = Id,

we may simultaneously condense both IERODEs to EUODEs (cf. [6])

η′ + (ΓdB11Γ
−
d + ΓdΓ

−
d

′
)η = 0

and

−ζ ′ + (Γ−∗d B∗11Γ
∗
d + Γ−∗d

′
Γ ∗d )ζ = 0,

which are actually adjoint each to other, without additional restrictions. Hereby, the second
IERODE is condensed by means of

v = (I −Ω∗)v = Γ ∗dΓ
−∗
d v = Γ ∗dΓdζ, ζ = Γ−∗d v.

We emphasize again that the EUODEs depend on the specially chosen Γd. �

Correspondent properties as in Example 5.1 are verified for all regular DAEs with tractability
index µ ≤ 2 in [9, 6]. Moreover, supposing completely decoupling projector functions to define
also D− and A∗−, it is proved in [9] that the relation

Y (t, t0) = A(t)∗−D(t)−∗X(t, t0)−∗D(t0)∗A(t0)∗

concerning the fundamental solution matrices of the DAE and the adjoint DAE normalized at the
same point t0 is valid, and in particular

Π∗ can = A∗−D−∗Π∗canD
∗A∗.

We turn back to the general regular DAE with properly stated leading term

A(Dx)′ +Bx = q. (53)

The regular DAE (53) and the DAE

AH(H−Dx)′ + (B −AH(H−R)′D)x = q (54)

resulting from a refactorization of the leading term by H have exactly the same solutions. In
particular, each fundamental solution matrix of (53) represents at the same time a fundamental
solution of the DAE (54). Therefore, having in mind wanted appropriate relations of fundamental
solution matrices, we regard this matter by extending the notion of adjoint pairs accordingly to
a refactorization-tolerant version. 3 We add that, owing to Theorem 4.2 and Proposition 4.4,
the DAEs (53) and (54) share their tractability index and all characteristic values, and also the
canonical projector function. The difference refers solely to the shape of the IERODEs.

3Correspondingly, the operator L representing a linear DAE on a compact interval I does not at all depend on
the special proper factorization of the leading term, and the same is true for the adjoint operator L∗, [26].
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Definition 5.2 The DAE (53) with properly stated leading term is said to be factorization-adjoint
to the DAE

−D∗(A∗y)′ + B∗y = p. (55)

if there is a refactorization of the leading term in (53)

H ∈ C1(I,L(Ks,Kn)), H− ∈ C1(I,L(Kn,Ks)), n, s ≥ r := rankD,

HH−H = H, H−HH− = H−, RHH−R = R.

such that

A = AH, D = H−D, B = B −AH(H−R)′D.

If the DAE (53) is factorization-adjoint to (55), then, conversely, the DAE (55) is factorization-
adjoint to the DAE (53), since one can apply a refactorization in (55) with H∗−, H∗−∗ := H∗

(cf. Section 3). This justifies to say that the DAEs (53) and (55) form an factorization-adjoint
pair.

As stated previously, e.g. [9, 4, 24], the DAEs (53) and

−D∗(A∗y)′ +B∗y = p. (56)

are said to be adjoint each to other. Each adjoint pair (53) and (56) is at the same time
factorization-adjoint for trivial reason. The converse does not necessarily hold. The notion of
factorization-adjoint pairs is broader as the following scheme documents:

A(Dx)′ +Bx = q adjoint
←−−−−−→

−D∗(A∗y)′ +B∗y = p

↖
⇓ H ⇑ H− factorization −adjoint ⇓ H−∗ ⇑ H∗

↘

A(Dx)′ + Bx = q adjoint
←−−−−−→

−D∗(A∗y)′ + B∗y = p

If the DAEs (53) and (55) are an factorization-adjoint pair, then the Lagrange identity

〈D(t)x(t), A(t)∗y(t)〉 = 〈D(t)x(t), A(t)∗y(t)〉 = constant, t ∈ I,

is valid for all solution pairs of the correspondent homogeneous equations (cf.(30)).

Next we recall the commonly accepted notion of the adjoint of a standard form DAE (e.g.,
[11, 7, 27, 8, 12]).

Definition 5.3 The equation
−(E∗x)′ + F ∗x = p, (57)

is said to be the adjoint of the standard form DAE

Ex′ + Fx = q, (58)

and vice versa.

Replacing both DAEs (57) and (58) by proper versions (cf. (13) and (L.9))

−D∗(A∗x)′ + (F ∗ −D′∗A∗)x = p,
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and
Ā(D̄x)′(t) + (F − ĀD̄′)x = q, (59)

possibly with different proper factorizations E = AD and E = ĀD̄, we know that these proper
versions form a factorization-adjoint pair exactly if the DAEs (57) and (58) are adjoint to each
other. Namely, the DAE

A(Dx)′ + (F −AD′)x = p

transforms by means of refactorization with H = DD̄−, H− = D̄D−, into the DAE (59).

Theorem 5.4 Let the DAE (53) have sufficiently smooth coefficients.

(1) If the DAE (53) is regular with tractability index µ and characteristic values r0 ≤ . . . ≤ rµ−1 <
rµ = m, then so is each factorization-adjoint DAE (55). In particular, a factorization-

adjoint pair shares in the dimension (dynamical degree of freedom) d = m−
∑µ−1
i=0 (m− ri).

(2) If the DAEs (53) and (56) are regular, then there exist EUODEs of size d of both being adjoint
each to other in the classical sense.

Proof: Let the DAE (53) be regular with tractability index µ and characteristic values r0 ≤ . . . ≤
rµ−1 < rµ = m. Owing to Theorem 4.5 it transforms by L,K,H into the structured form (47),
that is, [

Id 0
0 N

]
(

[
Id 0
0 PN

]
x̃)′ +

[
W 0
0 Im−d

]
x̃ = q̃, (60)

and, by Theorem 4.2, the tractability index as well as the characteristic values persist. Then,
owing to Lemma 5.6 below, the adjoint DAE

−
[
Id 0
0 PN

]
(

[
Id 0
0 N∗

]
ỹ)′ +

[
W ∗ 0
0 Im−d

]
ỹ = p̃, (61)

also possesses the same characteristics. This DAE transforms by K∗−1, L∗−1, H∗ to the DAE
(56). Owing to Theorem 4.2 the DAE (56) has the same characteristics, too. Since the DAE (55)
results from the DAE (56) by a further refactorization, both DAEs share in their tractability index
and characteristic values. This proves Assertion (1).
The structured forms (60) and (61) show the EUODEs being adjoint each to other in the classical
sense. This verifies Assertion (2). �

The following immediate corollary of Theorem 5.4 specifies and extends [20, Theorem 3.5].

Corollary 5.5 Let the standard form DAE (58) have sufficiently smooth coefficients,

(1) If the DAE (58) is regular with tractability index µ and characteristic values r0 ≤ . . . ≤ rµ−1 <
rµ = m, then so is its adjoint (57) and vice versa. In particular, a adjoint pair share in the

dimension (dynamical degree of freedom) d = m−
∑µ−1
i=0 (m− ri).

(2) If the DAEs (58) and (57) are regular, then they possess EUODEs being adjoint each to other
in the classical sense with size d.

Lemma 5.6 The DAE (61), i.e.,

−
[
Id 0
0 PN

]
(

[
Id 0
0 N∗

]
ỹ)′ +

[
W ∗ 0
0 Im−d

]
ỹ = p̃,

with W ∈ C(I,L(Kd,Kd)), PN ∈ L(Km−d,Km−d), and N ∈ C1(I,L(Km−d,Km−d)) having the
structure described in Theorem 4.5, is regular with tractability index µ and characteristic values
r0 ≤ . . . ≤ rµ−1 < rµ = m.
The canonical projector function associated with (61) is simply

Π̃can =

[
Id 0
0 0

]
.
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Proof: We introduce the permutation matrices

JN :=


0 Im−r0

·
·

·
Im−rµ−1

0

 , J−1N =


0 Im−rµ−1

·
·

·
Im−r0 0


as well as

M : = J−1N N∗JN =


0 N∗µ−2µ−1 . . . N∗0µ−1

. . .
. . .

0 N∗0 1

0

 ,

RM : = J−1N PNJN =


Im−rµ−1

. . .

Im−r1
0m−r0

 .
The matrix function M has strict upper block triangular structure, with entries N∗i i+1 having full
row-rank m− ri+1, i = 0, . . . , µ− 2. Set

J :=

[
Id 0
0 JN

]
.

Multiplying (61) by J−1, transforming the coordinate ỹ = J ˜̃y and refactorizing the leading term
by J yields

−
[
Id 0
0 RM

]
(

[
Id 0
0 M

]
˜̃y)′ +

[
W ∗ 0
0 Im−d

]
˜̃y = J−1r. (62)

Exploiting the special structure of M we construct a projector function VM onto kerM having
also upper block triangular structure,

VM =



Im−rµ−1

Vµ−1 ∗ · · · ∗
. . .

. . .
...

. . . ∗
V1

 .

Thereby, the entries Vi+1 are projector functions onto kerN∗i i+1, i = 0, . . . , µ− 2. Denote further
UM := I − VM and determine the generalized inverse M− by

MM−M = M, M−MM− = M−, M−M = UM , MM− = RM .

Set

H̃ =

[
Id

M

]
, H̃− =

[
Id

M−

]
,

and apply a further refactorization by H̃, which leads to

−
[
Id 0
0 M

]
(

[
Id 0
0 UM

]
˜̃y)′ +

[
W ∗ 0
0 Im−d −M ′UM

]
˜̃y = J−1r. (63)
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Owing to the structure of M and UM , the matrix function Im−d −M ′UM is upper block trian-
gular with identity diagonal blocks, and (Im−d −M ′UM )−1M =: M has again strict upper block
triangular structure. Multiplying the DAE (63) by

L̃ =

[
Id

(Im−d −M ′UM )−1

]
results in the DAE

−
[
Id 0
0 M

]
(

[
Id 0
0 UM

]
˜̃y)′ +

[
W ∗ 0
0 Im−d

]
˜̃y = L̃J−1r.. (64)

Finally, the DAE (64) fits into the form of equation [24, (2.141), page 163]. which implies the first
part of the assertion for the real case. The complex case can be treated in the same way.
The canonical projector function associated with (64) is constant, namely,

Π̃can =

[
Id 0
0 0

]
.

Then, Πcan = JΠ̃canJ
−1 = Π̃can represents the constant canonical projector function associated

with the DAE (61). �

6 Stability issues

In this section, we study the qualitative behaviour of solutions of DAEs with properly involved
derivative (10). We suppose the infinite interval I = [0,∞) and extend some notions and results
obtained for index-1 DAEs in [14, 15, 21, 23, 22] to regular DAEs with arbitrary index. First, we
recall preliminary results from [24, Section 2.6.3].

Definition 6.1 Let the regular DAE (10) be given on the infinite interval I = [0,∞). The DAE
is said to be

(1) stable, if for every ε > 0, t0 ∈ I, there exists a value δ(ε, t0) such that the conditions x0, x̄0 ∈
imΠcan(t0), |x0 − x̄0| < δ(ε, t0) imply the existence of solutions x(., t0, x0), x(., t0, x̄0) ∈
C1D(I,Rm) as well as the inequality

|x(t, t0, x0)− x(t, t0, x̄0)| < ε, t0 ≤ t,

(2) uniformly stable, if δ(ε, t0) in (1) is independent of t0,

(3) asymptotically stable, if (1) holds true, and as t→∞

|x(t, t0, x0)− x(t, t0, x̄0)| −→ 0 for all x0, x̄0 ∈ imΠcan(t0), t0 ∈ I,

(4) uniformly asymptotically stable, if the limit in (3) is uniform with respect to t0.

Similarly to the well-known results for ODEs, the stability properties of DAEs are characterized
by the growth behaviour of the normalized maximal fundamental solution matrix defined by (40).

Theorem 6.2 Let the regular DAE (10) be considered on the infinite interval I = [0,∞). Then
the following assertions hold true, with postive constants Kt0 , K and α:

(1) The DAE is stable, if and only if |X(t, t0)| ≤ Kt0 , t ≥ t0.

(2) The DAE is uniformly stable, if and only if |X(t, t0)X(s, t0)−| ≤ K, t0 ≤ s ≤ t.

(3) The DAE is asymptotically stable, if and only if |X(t, t0)| −→ 0 as t→∞.

17



(4) The DAE is uniformly asymptotically stable, if and only if |X(t, t0)X(s, t0)−| ≤ Ke−α(t−s), t0 ≤
s ≤ t.

Proof: The proofs for the sufficiency statements are given in [24, p. 129]. For the reverse direction,
we proceed similarly to the ODE case, see [1, Chapter IV.]. �

In turn, the representations (41) and (43) allow to trace back the stability question to the
IERODE, cf. [24, Section 2.6].

Now, we consider possible changes in the stability properties under the transformations and
the refactorizations discussed in Section 3. It is easy to see that a refactorization does not change
the solutions of the DAE (10), therefore neither the stability properties of the DAE. However,
a transformation may alter the stability properties of the DAE. Hence, we need the so-called
kinematic equivalent transformation.

Definition 6.3 A pair of pointwise nonsingular matrix functions L, K ∈ C(I,L(Km,Km)) is said
to yield a kinematic equivalent transformation for the DAE (25) (i.e.,(10)) if both K and K−1 are
bounded on I. If in addition, both L and L−1 are bounded, then it is a strong kinematic equivalent
transformation.

It is easy to see that the stability property of a DAE does not alter under kinematic equivalent
transformations. Then, in this case we say that the DAE (25) and the transformed one (27) are
kinematically equivalent.

To characterize the growth rate of the solutions of the DAE (10), we use the notion of character-
istic exponent introduced by Lyapunov [25, 1, 17]. For a non-vanishing function f : [0,∞) −→ Rn,
the quantity χu(f) = lim supt→∞

1
t ln |f(t)|, is called the upper Lyapunov characteristic exponent

of f . Similarly, one can define the lower Lyapunov characteristic exponent χl(f) by taking lim inf
instead of lim sup. Here, we focus on the upper Lyapunov characteristic exponent and refer to it
as the Lyapunov exponent for brevity. In this context the Euclidean norm is used.

Theorem 6.4 Let the DAE (10) be regular and the coefficients of its IERODE as well as ΠcanD
−

be bounded. Then each nontrivial solution of the homogenous DAE has a finite Lyapunov exponent.

Proof: By [1, Theorem 2.3.1] each nontrivial solution u of the homogenous IERODE has a finite
Lyapunov exponent. This transfers to the DAE solution by the representation x = ΠcanD

−u. �

To get the complete information on the Lyapunov exponents of the solutions of (10), we use
minimal fundamental solution matrices instead of maximal ones. We regard fundamental solution
matrices of different sizes after the idea of Katalin Balla first introduced into [8]. Any matrix
function X ∈ C1

D(I,L(Rk,Rm)), with d ≤ k ≤ m is called a fundamental solution matrix of the
regular DAE (10) if each of its columns is a solution to (10) and rankX(t) = d, for all t ≥ 0. A
fundamental solution matrix is said to be maximal if k = m and minimal if k = d.

One may construct a minimal fundamental solution matrix by solving initial value problems
for (10) with d linearly independent, consistent initial vectors arbitrarily chosen from imΠcan(t0).

It is now straightforward to generalize the classical notions of a normal basis (normal funda-
mental solution matrix) and the Lyapunov spectrum of the DAE. We refer to [22, Definition 4.2]
for the case of strangeness-free DAEs.

Definition 6.5 For a given minimal fundamental solution matrix X of the regular DAE (10),
and for 1 ≤ i ≤ d, we introduce

λi = lim sup
t→∞

1

t
ln |X(t)ei|,

where ei denotes the i-th unit vector. The columns of a minimal fundamental solution matrix
form a normal basis if Σdi=1λi is minimal with respect to all possible minimal fundamental solution
matrices. The λi, i = 1, 2, ..., d, belonging to a normal basis are called the Lyapunov exponents of
(10). The set of the Lyapunov exponents is called the Lyapunov spectrum of the DAE (10) and
denoted by ΣL.
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Simple consequences for the asymptotic stability of the DAE (10) are easily derived by looking
at the largest Lyapunov exponent. Namely, if the largest Lyapunov exponent of the DAE (10) is
negative, then the DAE is asymptotically stable. In contrary, if the largest Lyapunov exponent
is positive, then the DAE is unstable. It is easy to see that the Lyapunov spectrum of a regular
DAE is invariant under kinematic equivalent transformation.

Example 6.6 Given a regular time-invariant DAE (10), i. e., A, D, and B are constant matrices,
it is not difficult to show that the Lyapunov spectrum of (10) is the set of the real parts of generalized
eigenvalues of matrix pencil λAD +B, i. e., ΣL = {Reλ, det(λAD +B) = 0} . �

By the same argument as in the ODE case [1, Theorem 2.4.2], a normal basis can always be
constructed from an arbitrary minimal fundamental solution matrix.

Proposition 6.7 For any given minimal fundamental solution matrix X of the regular DAE (10),
for which the Lyapunov exponents of the columns are ordered decreasingly, there exists a constant,
nonsingular, and upper triangular matrix C ∈ Rd×d such that the columns of XC form a normal
basis for (10).

Next, we investigate the relation between the Lyapunov spectrum of the DAE (10) and that
of the correspondent homogeneous EUODE (48).

Proposition 6.8 Consider the regular DAE (10). Let Γ∗d be a basis of im (DΠcanD
−)∗ and Γ−d

be determined by (50). If both ΓdDΠcan and ΠcanD
−Γ−d are bounded on I, then the Lyapunov

spectra of the DAE (10) and of the correspondent EUODE (48) coincide.

Proof: Let x be an arbitrary nontrivial solution of (10) and η be the correspondent solution of
the homogeneous version of the EUODE (48). By the construction, we have that u = DΠcanx
and η = Γdu. Hence, η = ΓdDΠcanx, which implies |η(t)| ≤ ‖ΓdDΠcan‖|x(t)|, t ∈ I. By the
definition, we have χu(η) ≤ χu(x). Conversely, we have that x = ΠcanD

−u and u = Γ−d η. Thus,
x = ΠcanD

−Γ−d η. By a similar argument, the reverse estimate χu(x) ≤ χu(η) holds. Consequently,
we have χu(η) = χu(x). This means that the Lyapunov exponent of an arbitrary nontrivial solution
of (10) and that of the correspondent solution of EUODE (48) are equal. Hence, the columns of
a minimal fundamental solution matrix X of (10) form a normal basis if and only those of the
correspondent fundamental solution matrix of (48) do so and the sets of their Lyapunov exponents
are equal. �

By construction, it holds that

ΓdDΠcanΠcanD
−Γ−d = Id, ΠcanD

−Γ−d ΓdDΠcan = Πcan, (65)

which makes clear that the factors ΓdDΠcan and ΠcanD
−Γ−d have constant rank d and constitute

a factorization of Πcan. If both factors are bounded, then Πcan is necessarily bounded, too. If
Πcan is unbounded, then one of these factors must be unbounded at least.

Here, we emphasize once again that the EUODE (48) depends on the choice of the basis Γ∗d,
thus, on the choice of Γd.

We say that a EUODE is spectrum-preserving if it inherits the Lyapunov spectrum of the
DAE.
Clearly, if an EUODE is obtained by Γd satisfying the conditions of Proposition 6.8 then it is
spectrum-preserving. Next, we show that, surprisingly, a spectrum-preserving EUODE can always
be constructed by means of an appropriately chosen Γd. We first study a simple example.

Example 6.9 We consider the regular index-1 DAE[
1
0

]
(
[
1 0

]
x)′(t) +

[
α 0
1 − 1

β(t)

]
x(t) = 0, t ∈ [0,∞), (66)
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with K = R, n = 1,m = 2, d = 1, α ∈ R, and a continuous scalar function β with no zeros. We
derive

Q0 =

[
0 0
−β 1

]
, D− =

[
1
β

]
, G1 =

[
1 0
1 − 1

β

]
, Πcan =

[
1 0
β 0

]
, ΠcanD

− =

[
1
β

]
,

and further ΠcanG
−1
1 = Πcan, DΠcanD

− = 1, DΠcanG
−1
1 BD− = α. The IERODE reads

u′(t) + αu(t) = 0, u = Dx = x1.

The solutions of the DAE have the form

x(t) = Πcan(t)D(t)−u(t) =

[
1
β(t)

]
e−αtc, |x(t)| = (1 + β2)

1
2︸ ︷︷ ︸

=:f(t)

e−αt|c|

with a constant c, so that the only Lyapunov exponent of the DAE is χu(f)− α.
Though the IERODE is uniquely determined, the EUODE is not. For an arbitrary nonvanishing
function ξ ∈ C1(I,R), we obtain with Γ∗d = ξ a basis of im (DΠcanD

−)∗ = im (DΠcanD
−). This

yields Γd = ξ and Γ−d = 1
ξ . Then the associated EUODE results as

η′(t) + (α− ξ′(t)

ξ(t)
)η(t) = 0.

The particular choice ξ(t) ≡ 1 leads to an EUODE which coincides with the IERODE. However,
this EUODE is not necessarily spectrum-preserving, since its Lyapunov exponent is −α. This
EUODE preserves the spectrum of the DAE, exactly if χu(f) = 0, which is the case for a polynomial
or bounded function f .
Letting ξ(t) = (1 + β(t)2)

1
2 = f(t) – which seems to be strange for the first glance – we arrive at

Πcan(t)D−Γ−d (t) =

[
1
β(t)

]
1

ξ(t)
=: U(t), |U(t)| = 1, U(t)∗U(t) = 1,

such that

|x(t)| = |Πcan(t)D−Γ−d (t)η(t)| = |U(t)η(t)| = |η(t)|.

This version of an EUODE is actually spectrum-preserving. Its solutions are

η(t) = e−αt(1 + β(t)2)
1
2 c.

If the function f is unbounded than so is Πcan and Proposition 6.8 does not apply. �

Now we show that any regular DAE possesses a spectrum-preserving EUODE. We proceed as
follows. Let U be a continuous matrix function such that its columns form an orthonormal basis
of imΠcanD

− = imΠcan. This implies imDU = imDΠcanD
−, U∗U = Id, and UU∗ represents a

projector function such that imUU∗ = imΠcanD
− = imΠcan. Next we put

Γd := U∗ΠcanD
− = U∗Π∗canΠcanD

−, Γ−d := DU (67)

and verify the required properties. First of all, Γ∗d = (ΠcanD
−)∗U forms a basis of im (DΠcanD

−)∗.
Namely, Γ∗dz = 0 implies Uz ∈ ker (ΠcanD

−)∗ = (imΠcanD
−)⊥, thus Uz = 0, z = 0. Then Γ∗d

has full column-rank d. We have further

im Γ∗d ⊆ im (ΠcanD
−)∗ = (kerΠcanD

−)⊥ = (kerDΠcanD
−)⊥ = im (DΠcanD

−)∗.

For reasons of dimensions we have im Γ∗d = im (DΠcanD
−)∗.

Next we show that Γ−d actually satisfies (50). Compute

Γ−d Γd = DUU∗Πcan︸ ︷︷ ︸
=Πcan

D− = DΠcanD
−, ΓdΓ

−
d = U∗ΠcanD

−DU = U∗ΠcanU︸ ︷︷ ︸
=U

= U∗U = Id.
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The remaining two relations in (50) are trivially fulfilled. It comes out that (67) determines a
possible choice. Derive further

ΠcanD
−Γ−d = ΠcanD

−DU = ΠcanU = U,

which proves that |x(t)| = |U(t)η(t)| = |η(t)| so that the associated EUODE is spectrum-
preserving.
Surely, U is not unique in this context. However, the solutions of the EUODEs η′ + Wη = 0
and η̃′ + W̃ η̃ = 0 corresponding to choices U and Ũ , respectively, are related via η = U∗Ũ η̃,
where U∗Ũ is a pointwise orthogonal matrix function. This proves their Lyapunov spectrum to
be independent of the special choice of U in (67).

Theorem 6.10 Consider the regular DAE (10). With a Γd chosen as in (67), the EUODE
(48) preserves the Lyapunov spectrum of the DAE (10). Furthermore, the so-called Lyapunov’s
inequality

d∑
i=1

λi ≥ lim sup
t→∞

1

t

∫ t

t0

Re Trace (−W (s)) ds (68)

holds, where λi, i = 1, 2, . . . , d, are the Lyapunov exponents of (10) and W is the coefficient matrix
of the associated EUODE (48).

Proof: Let again x be an arbitrary nontrivial solution of (10) and η be the correspondent solution
of the homogeneous EUODE (48). The pointwise orthonormal property ofΠcanD

−Γ−d immediately
implies that |x(t)| = |η(t)|, t ∈ I. Hence, the spectra of (10) and of (48) coincide. The inequality
(68) follows directly from the well-known Lyapunov’s inequality for ODEs [1, Theorem 2.5.1]. �
We emphasize again that in the above construction U , and hence Γd, are not unique. However,
the quantity on the right-hand side of (68) is independent of the choice of Γd chosen in this way.

Definition 6.11 Let W be the coefficient of a spectrum-preserving EUODE (48) constructed with
such a Γd from (67) and assume that it is bounded on I. The regular DAE (10) is said to be
Lyapunov regular if its Lyapunov exponents satisfies the equality

d∑
i=1

λi = lim inf
t→∞

1

t

∫ t

t0

Re Trace (−W (s)) ds.

This definition means exactly that the regular DAE (10) is Lyapunov regular if and only if the
EUODE used in Theorem 6.10 is regular in Lyapunov’s sense. It is true that this regularity
property does not depend on the choice of the basis U in this scope.

Example 6.12 We continue to study Example 6.9. We find W (t) = a− f ′(t)
f(t) for the DAE (66),

further

lim inf
t→∞

1

t

∫ t

t0

Re Trace (−W (s)) ds = −α+ lim inf
t→∞

1

t
ln |f(t)| =: −α+ χl(f).

Therefore, the DAE (66) is regular in Lyapunov’s sense if the upper and lower Lyapunov exponents

of f coincide. For example, Lyapunov regularity is given if β(t) equals e−t, et, esin t, and et
2

,
yielding 0, 1, 0, and ∞, for χu(f) = χl(f), respectively. In contrast, for β(t) = et sin t it results
that χu(f) = 1, but χl(f) = 0. Then the regular index-1 DAE (66) fails to be Lyapunov regular.
�

Proposition 6.13 Consider the regular DAE (10). If there exists a basis function Γ̂d such that
both Γ̂dDΠcan and ΠcanD

−Γ̂−d are bounded on I, then the DAE (10) is Lyapunov regular if and

only if the correspondent EUODE η̂′ + Ŵ η̂ = 0 is regular in Lyapunov’s sense.
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Proof: Due to Proposition 6.8, the correspondent EUODE is spectrum-preserving. Now, we show
that under the assumption, the equality

lim inf
t→∞

1

t

∫ t

t0

Re Trace
(
−Ŵ (s)

)
ds = lim inf

t→∞

1

t

∫ t

t0

Re Trace (−W (s)) ds

holds, where W is the coefficient matrix of the EUODE η′ + Wη = 0 used in Definition 6.11.
Indeed, since both Γ−d and Γ̂−d are bases in imDΠcanD

−, there exists a pointwise nonsingular

function V such that Γ̂−d = Γ−d V . Due to the pointwise orthonormal property of ΠcanD
−Γ−d , we

have
|ΠcanD

−Γ̂−d | = |ΠcanD
−Γ−d V | = |V |.

Consequently V is bounded on I. From the relation u = Γ−d η = Γ̂−d η̂, we have η = V η̂. The
classical Liouville formulas for the two EUODEs lead to

exp

∫ t

t0

Trace (−W (s)) ds = (detV (t0))−1 detV (t) exp

∫ t

t0

Trace
(
−Ŵ (s)

)
ds.

By taking the logarithm of the modulus of both sides, dividing by t, and then taking the limit
inferior as t → ∞, the required equality is obtained. Thus, the regularities of the EUODEs
η′ +Wη = 0 and η̂′ + Ŵ η̂ = 0 simultaneously hold. �

Example 6.14 Consider once more Example 6.9. If the expression f(t) = (1 + β(t)2)
1
2 re-

mains bounded, and thus |Πcan(t)| = f(t), we may turn to the basis ξ ≡ 1 yielding Γ̂d(t) = 1,
|Γ̂d(t)DΠcan(t)| = 1 and |Πcan(t)D(t)−Γ̂d(t)

−| = f(t). In contrast, if f(t) growths unboundedly,
there is no such factorization with bounded factors. �

We also emphasize that the Lyapunov regularity of the DAE (10) is invariant with respect to
kinematic equivalent transformations.

Analogously to the ODE case, see [1, Lemma 3.5.1], it is easy to see that the regular DAE (10)
is Lyapunov regular if and only if

(1) there exists the exact limit

S = lim
t→∞

1

t

∫ t

t0

Re Trace (−W (s)) ds

and

(2)
∑d
i=1 λi = S.

As a consequence, we obtain a property of solutions of Lyapunov regular DAE (10) which is already
well known in the ODE case.

Corollary 6.15 Suppose that the regular DAE (10) is Lyapunov regular. Let x be an arbitrary
nontrivial solution of (10). Then, x has the sharp Lyapunov exponent, i.e. the exact limit

lim
t→∞

1

t
ln |x(t)|

exists.

Proof: The proof comes directly from the fact that |x(t)| = |η(t)|, t ∈ I and the property of
solutions of Lyapunov regular ODEs, see [1, Theorem 3.9.1]. �

Finally, we investigate the relation between the Lyapunov regularity of DAE (10) and that of
its adjoint DAE (16). To this end, we consider the EUODEs provided by Theorem 5.4 (2), which
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are adjoint to each other. We recall that the transformation matrices stated in Theorem 4.5 have
the following explicit form (cf. [24, p. 146])

L =

[
Id 0

0 (I + M̃)−1

]
ΓdDΠcan

Γ0Q0

...
Γµ−1DΠµ−2Qµ−1

G−1µ
and

K =


ΓdDΠcan

Γ0Q0

...
Γµ−1DΠµ−2Qµ−1


−1

,

where the complete decoupling projector functions are used and the functions Γi, i = 0, 1, . . . , µ−1,
are defined as in [24, p. 143]. Though the matrix function Gµ and its inverse may depend on
the special choice of the completely decoupling projector functions, the expression ΠcanG

−1
µ and

GµΠcan = ADΠcan are invariant.
The structured form (61) is transformed from (16) by K∗, L∗.

Lemma 6.16 Let us denote the variable for the EUODE retrieved from (61) by ζ. Then, for the
homogenous equations, we have the relations

y = G−∗µ (ΓdDΠcan)∗ζ = (ΠcanG
−1
µ )∗(ΓdDΠcan)∗ζ, (69)

ζ = (ΠcanD
−Γ−d )∗G∗µy = (ΠcanD

−Γ−d )∗(GµΠcan)∗y. (70)

Proof: Taking into account the relation y = L∗ỹ and the special structure of ỹ (all the components
are zeros, except for the first component ζ), the first equality immediately follows. Now, we show
that

K =
[
ΠcanD

−Γ−d ∗ . . . ∗
]
,

where ∗s denote certain unknown matrix functions. Indeed, due to Theorem 4.5, we have x̃ =
K−1x = K−1ΠcanD

−Γ−d η, i.e.,
η
0
...
0

 =


ΓdDΠcan

Γ0Q0

...
Γµ−1DΠµ−2Qµ−1

ΠcanD
−Γ−d η.

Equivalently, we have 
Id
0
...
0

 η = K−1ΠcanD
−Γ−d η.

Since this is true for any η ∈ Rd, the formula for K is proven. Therefore, from ỹ = L−∗y, the
second equality follows. �

The following lemma generalizes the relation of the canonical projector functions of the regular
DAE (10) and its adjoint (16) in the spirit of Katalin Balla.

Lemma 6.17 For the canonical projector functions Πcan and Π∗ can of the regular DAE (10) and
its adjoint (16) it holds that

A∗Π∗ canA
∗− = (DΠcanD

−)∗,

Π∗ can = A∗−(DΠcanD
−)∗A∗.
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Proof: Supposing completely decoupling projector functions associated with the DAE (10) we
apply Theorem 5.4. We find

K−1ΠcanK =

[
Id 0
0 0

]
, L∗−1Π∗ canL

∗ =

[
Id 0
0 0

]
.

This leads to

Π∗ can = L∗K−1
[
Id 0
0 0

]
KL∗−1 = G−∗µ (ΓdDΠcan)∗(ΠcanD

−Γ−d )∗G∗µ = G−∗µ Π∗canG
∗
µ.

Regarding GµΠcan = ADΠcan we find Π∗ can = G−∗µ Π∗canD
∗A∗, further

A∗Π∗ canA
∗− = A∗G−∗µ Π∗canD

∗A∗A∗−. Taking into account that A∗A∗− = R∗, D∗A∗A∗− =
D∗R∗ = D∗ we finally derive

A∗Π∗ canA
∗− = A∗G−∗µ Π∗canD

∗,

A∗G−∗µ Π∗can = (ADD−)∗G−∗µ Π∗can = (ΠcanG
−1
µ ADD−)∗ = (ΠcanPµ−1 · · ·P0D

−)∗ = (ΠcanD
−)∗,

A∗Π∗ canA
∗− = (ΠcanD

−)∗D∗ = (DΠcanD
−)∗.

The second relation follows from A∗−A∗Π∗canA
∗−A∗ = Π∗can. �

Note that the expression (AD)− := D−A∗−∗ represents a reflexive generalized inverse of
AD. From Lemma 6.17 and its proof, we also have Π∗∗ can = ADΠcan(AD)− or equivalently,
GµΠcanG

−1
µ = GµΠcan(AD)−. Consequently, we obtain the relation ΠcanG

−1
µ = Πcan(AD)−.

Theorem 6.18 Let the DAE (10) be regular with tractability index µ and let the auxiliary ma-
trix functions ADΠcan and Πcan(AD)− be bounded on I. Additionally, let such a basis Γ∗d of
im (DΠcanD

−)∗ exist, that both ΓdDΠcan and ΠcanD
−Γ−d are bounded on I.

Then the DAE (10) is Lyapunov regular if and only if its adjoint DAE (16) is so. Furthermore,
in this case we have the Perron identity

λi + βi = 0, i = 1, 2, . . . , d,

where λi are the Lyapunov exponents of (10) in decreasing order and βi are the Lyapunov exponents
of (16) in increasing order.

Proof: By Proposition 6.13, the DAE (10) is Lyapunov regular if and only if the EUODE η′ +
Wη = 0 is so. The solutions y of the adjoint DAE (16) are represented by (69), where ζ solves the
adjoint ODE −ζ ′ + W ∗ζ = 0, which serves as EUODE for (16). By Lemma 6.16, regarding the
boundedness assumptions, the estimates |y(t)| ≤ ‖(ΠcanG

−1
µ )∗‖‖(ΓdDΠcan)∗‖|ζ(t)| and |ζ(t)| ≤

‖ΠcanD
−Γ−d )∗‖‖(GµΠcan)∗‖|y(t)| hold for t ∈ I. Thus, the EUODE −ζ ′+W ∗ζ = 0 is spectrum-

preserving, too.
Next we show that Π∗can has a bounded factorization, so that Proposition 6.13 applies to the
adjoint DAE (16). Then, the adjoint DAE (16) is Lyapunov regular if and only if the EUODE−ζ ′+
W ∗ζ = 0 is so. From Π∗can = A∗−(DΠcanD

−)∗A∗ = A∗−Γ∗dΓ
−∗
d A∗ we derive the factorization

Π∗can = (Π∗canA
∗−Γ∗d)(Γ

−∗
d A∗Π∗can) =: F1F2,

which is associated with the choice of the basis Γ∗∗d := Γ−∗d of im (DΠcanD
−), and Γ−∗d = Γ∗d. To

show the factors to be bounded we derive

F ∗1 = ΓdA
∗−∗Π∗∗can = ΓdA

∗−∗ADΠcanD
−A∗−∗ = ΓdDΠcanD

−A∗−∗ = (ΓdDΠcan)(ΠcanD
−A∗−∗),

and

F2 = (Π∗∗canAΓ−d )∗ = ((ADΠcan)(ΠcanD
−Γ−d ))∗.

The boundedness conditions agreed upon ensure the boundedness of F1 and F2, and Proposition
6.13 applies to the adjoint DAE.

Recalling the well-known fact in the ODE theory that an ODE is Lyapunov regular if and only
if its adjoint is so, the first statement is proved. The second statement follows from the Perron
identity, see [1, Theorem 3.6.1], for the Lyapunov exponents of an ODE and its adjoint. �
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Remark 6.19 Under the assumptions of Theorem 6.18, by [1, Theorem 3.6.1], the Perron identity
is not only a necessary condition, but also a sufficient one for the Lyapunov regularity of the DAE
(10).

Remark 6.20 By multiplying both sides of the regular DAE (10) by G−1µ , we obtain a transformed

DAE for which the equality G̃µ ≡ I holds, supposing the same projector functions as before are
chosen. Then, the boundedness assumptions stated in Theorem 6.18 are directed mainly to Πcan.
However, if either Gµ or G−1µ are unbounded, this scaling is no longer a strong kinematic equivalent
transformation and it may change the stability behavior of the adjoint DAE.
Furthermore, if we assume that the above pair of matrix functions L, K forms a strong kinematic
equivalent transformation, then obviously the statements of Theorem 6.18 remain true.

Finally, we illustrate Theorem 6.18 by an example.

Example 6.21 We continue the analysis in Example 6.9 by checking the Lyapunov regularity and
the Perron identity for the DAE[

1
0

]
(
[
1 0

]
x)′(t) +

[
α 0
1 −1

β(t)

]
x(t) = 0, t ∈ [0,∞). (71)

and its adjoint equation

−
[
1
0

]
(
[
1 0

]
y)′(t) +

[
α 1
0 −1

β(t)

]
y(t) = 0, t ∈ [0,∞).

The auxiliary matrix functions used in Theorem 6.18 are

ADΠcan =

[
1 0
0 0

]
, Πcan(AD)− =

[
1 0
β 0

]
,

so that the boundedness requirements result in the condition for f = (1 + β2)
1
2 to be bounded.

It is easy to calculate that the IERODE for the adjoint DAE is v′−αv = 0 and the solutions of

the adjoint DAE are y(t) =
[
1 0

]T
eαtc. Obviously a spectrum-preserving EUODE is ζ ′−αζ = 0.

Thus, the adjoint DAE is Lyapunov regular with its only Lyapunov exponent α. Obviously, if f
remains bounded, both DAEs are regular and the Perron identity is satisfied. Here, instances are
β(t) = e−t, β(t) = esin t.
In contrast, if f is unbounded, the situation changes. For example, with β(t) = et both DAEs
are Lyapunov regular, however, the Perron identity is not satisfied. For β(t) = et sin t, the adjoint
DAE is Lyapunov regular but the original DAE is not. �
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6.1 List of symbols and abbreviations

K set of real numbers R and set of complex numbers C
L(Ks,Kn) set of K-valued n× s - matrices

and linear operators from Ks to Kn
C(I, X) space of continuous functions mapping I into X
C1(I, X) space of continuously differentiable functions mapping I into X
C1M (I, X) {x ∈ C(I, X) : Mx ∈ C1(I, Y ), with M ∈ L(X,Y )
K∗ adjoint matrix
K− generalized inverse, KK−K = K, K−KK− = K−

K+ Moore-Penrose inverse
K∗− [K∗]−

K−∗ [K−]∗

K−∗− [[K−]∗]−

kerK nullspace (kernel) of K
imK image (range) of K
〈·, ·〉 scalar product in Km
(·, ·) scalar product in function spaces
| · | vector and matrix norms
‖ · ‖ norms on function spaces, operator norms
⊕ direct sum
χu(f) the upper Lyapunov characterisitic exponent of f
χl(f) the lower Lyapunov characterisitic exponent of f
DAE differential-algebraic equation
ODE ordinary differential equation
IVP initial value problem
IERODE inherent explicit regular ODE
EUODE essential underlying ODE
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