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Abstract

We give a new method for computing the correlation functions of the chiral part of the stress-
tensor supermultiplet that relies on the reformulation of N = 4 SYM in twistor space. It yields
the correlation functions in the Born approximation as a sum of Feynman diagrams on twistor
space that involve only propagators and no integration vertices. We use this unusual feature of
the twistor Feynman rules to compute the correlation functions in terms of simple building blocks
which we identify as a new class of N = 4 off-shell superconformal invariants. Making use of
the duality between correlation functions and planar scattering amplitudes, we demonstrate that
these invariants represent an off-shell generalisation of the on-shell invariants defining tree-level
scattering amplitudes in N = 4 SYM.
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1 Introduction

In this paper, we continue the study of correlation functions of the operators in the stress-tensor
supermultiplet T in N = 4 SYM initiated in [1, 2]. This supermultiplet plays a privileged
role since it comprises all local conserved currents as well as the Lagrangian of the theory. Its
correlation functions have a number of remarkable properties. The two- and three-point functions
are protected by superconformal symmetry and do not receive quantum corrections. The four-
point function G4 = 〈T (1)T (2)T (3)T (4)〉 is the first non-protected quantity. At strong coupling
it has been thoroughly studied via the AdS/CFT correspondence [3,4] whereas at weak coupling
it has been computed at one loop [5], at two loops [6, 7] and recently at three loops [1, 8]. The
operator product expansion of this correlation function has provided valuable data about the
spectrum of anomalous dimensions of twist-two operators [9]. The interest in these correlation
functions, for an arbitrary number of points, has been renewed in the context of the recent studies
of scattering amplitudes in N = 4 SYM. The correlation functions have been found to be dual
to the scattering amplitudes in a special light-like limit [10–12].

Computing the weak coupling corrections to these correlation functions within the conven-
tional Feynman diagram approach turned out to be a difficult task, even at low levels of the
perturbative expansions. Already the evaluation of the two-loop correction to the four-point
function needed judicious use of N = 1 or N = 2 supersymmetry [6, 7]. Going to higher orders
became possible by using the Lagrangian insertion method combined with the recently discov-
ered hidden permutation symmetry of G4 that mixes integration and external points [1,2]. More
precisely, since the (on-shell chiral) Lagrangian of N = 4 SYM appears as the top component
in the chiral sector of the stress-tensor supermultiplet, the order O(g2ℓ) correction to G4 can be
related to the Born-level correlation function G4+ℓ involving the insertion of ℓ additional chi-
ral stress-tensor supermultiplets, integrated over their positions in the chiral superspace. The
permutation symmetry follows from the Bose symmetry of the correlation function G4+ℓ.

This point illustrates the importance of the general multi-point correlation functions Gn =
〈T (1) . . .T (n)〉 of the stress-tensor supermultiplet in the chiral sector. Another reason to study
these is the above mentioned duality with scattering amplitudes. Knowing Gn allows us to
predict the general n−point tree-level superamplitude as well as the integrands of its perturbative
corrections.

The goal of the present paper is to develop a new approach to computing the correlation
functions Gn which makes efficient use of N = 4 superconformal symmetry1. Viewed as a
function of the chiral odd variables θ, Gn admits the expansion

Gn = Gn;0 +Gn;1 + · · ·+Gn;n−4 , (1.1)

where Gn;p is a homogenous polynomial in θ of degree 4p. Notice that the expansion terminates
at p = n− 4 (instead of the maximally allowed p = n) due to N = 4 superconformal symmetry.
An important consequence of (1.1) is that for n = 4 the correlation function coincides with its
lowest component, G4 = G4;0, and so it does not depend on the Grassmann variables.

Each term on the right-hand side of (1.1) should respect the N = 4 superconformal symmetry.
As a consequence, it can be expanded over a set of invariants In;p of this symmetry. As was shown
in [1], for the bottom (p = 0) and top (p = n− 4) components the invariant is unique (up to an
arbitrary function of conformal cross-ratios). For the remaining components in (1.1) the number

1Throughout the paper we always mean the chiral half of N = 4 superconformal symmetry.

1



of invariants varies with p and they have not been studied in the literature. One of the main
goals of this paper is to provide a convenient basis for such invariants in twistor superspace.

Note that the expansion (1.1) is very similar to that of the n−particle scattering super-
amplitude in N = 4 SYM. In fact, the two quantities are related to each other in the limit in
which the operators T (i) are located at the vertices of light-like n−gon [10–15]. This duality
yields non-trivial relations between the invariants In;p and their on-shell counter-parts defining
the scattering amplitudes. It is in this sense that we can think of In;p as the off-shell generalisation
of the on-shell (amplitude) invariants. In particular, in the simplest non-trivial case p = 1, in
the light-like limit the off-shell invariants In;1 are related to the NMHV R−invariants [16, 17].

Computing the higher components Gn;p in (1.1) and finding the corresponding off-shell super-
conformal invariants In;p proves to be a very non-trivial problem. In the conventional approach,
the Born approximation to Gn;p is given by a set of Feynman diagrams with many interaction
vertices and the associated Feynman integrals. The number of diagrams and their complexity
rapidly increase with the Grassmann degree p. Moreover, the contribution of each individual
diagram is neither gauge invariant nor (super)conformally covariant. The N = 4 superconformal
symmetry is only restored in the sum of all diagrams.

In this paper we demonstrate that these difficulties can be avoided by employing the refor-
mulation of N = 4 SYM in twistor space [18]. We find a representation of the chiral part of the
stress-tensor supermultiplet T as a four-fold fermionic integral of the main interaction term in
the twistor Lagrangian. In the judiciously chosen axial gauge, the self-dual sector of SYM is free
and has no interaction vertices. Furthermore, all the interaction vertices are comprised in the
non-polynomial expression for T in terms of the twistor superfield. As a result, the correlation
function Gn;p is given in the Born approximation by a new type of Feynman diagram which only
involves free propagators of twistor superfields but no interaction vertices. The calculation of
the twistor space Feynman diagrams is drastically simplified (no Feynman integrals!) and yields
very concise expressions for Gn;p. We check by an explicit calculation that the results for Gn;1

obtained by the new method agree with those of the conventional Feynman diagram approach.
Analysing the Feynman diagrams in twistor space, we introduce a new class of N = 4 off-shell

superconformal invariants and study their properties. The simplest invariant R(1; 234) is given by
a nilpotent Grassmann polynomial of degree two in the odd variables θ. It depends on four points
and an auxiliary (reference) supertwistor defining the axial gauge for the twistor action. This
invariant serves as an elementary building block for constructing higher-point invariants. Namely,
the general n−point invariant In;p factorises into a product of 2p elementary R−invariants.
We show that the correlation function (1.1) is given in the Born approximation by a linear
combination of such off-shell invariants with rational coefficient functions of the distances x2ij ≡
(xi−xj)2. Although each invariant depends on the reference supertwistor, this dependence drops
out in their sum.

The paper is organised as follows. In Section 2 we define the correlation function of the stress-
tensor multiplet in the chiral sector and summarise its properties. In Section 3 we reformulate
this correlation function in twistor space and develop a diagram technique for computing its
components Gn;p of a given Grassmann degree 4p. In Section 4 we present an explicit calculation
of the first non-trivial component Gn;1 and show that it satisfies all necessary consistency condi-
tions (operator product expansion and duality with the NMHV amplitude in the light-like limit).
In Section 5, we apply the conventional Feynman diagram technique to compute the five-point
correlation function G5;1 in the Born approximation. In Section 6 we match the two approaches
and demonstrate that they lead to the same expressions for various components of the four- and
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five-point correlation functions. Section 7 contains concluding remarks. Some technical details
are summarised in four appendices.

2 Correlation functions of the stress-tensor multiplet

In this section, we define the correlation functions of the operators in the stress-tensor supermul-
tiplet in N = 4 SYM and discuss their general properties. A distinctive feature of this multiplet
is that it comprises the stress-energy tensor (hence the name) and the Lagrangian of the the-
ory. They appear as coefficients in the expansion of the corresponding superfield T (x, θA, θ̄A) in
powers of the odd coordinates θAα and θ̄α̇A (with Lorentz spinor indices α = 1, 2, α̇ = 1̇, 2̇ and
SU(4) index A = 1, . . . , 4). In addition, this superfield is annihilated by half of the Poincaré
supercharges and, as a consequence, it depends on half of the odd variables, both chiral and
anti-chiral:

T = T (x, θ+, θ̄−, u) , θ+a
α = θAαu

+a
A , θ̄α̇−a′ = θ̄α̇Aū

A
−a′ . (2.1)

Here the odd coordinates θA and θ̄A appear projected with auxiliary bosonic variables u+a
A

and ūA−a′ with a = 1, 2, a′ = 1′, 2′ (see Appendix A for details), or ‘harmonics’ on the coset
SU(4)/(SU(2) × SU(2)′ × U(1)). The harmonics allow us to define the so-called Grassmann
analytic (or just ‘analytic’) superspace with odd coordinates θ+ and θ̄−, without breaking the
R−symmetry SU(4). More details can be found in Refs. [19–21] (see also footnote 5).

For our purposes in this paper we shall restrict T to its purely chiral sector by setting θ̄α̇−a′ = 0.
Then the expansion of the superfield in powers of θ+ has the form2

T (x, θ+, 0, u) = O++++(x) + θ+a
α O+++,α

a (x) + (θ+)2αβO
++,αβ(x)

+ (θ+)2 abO++
ab (x) + (θ+)3 aα O+,α

a (x) + (θ+)4L(x) , (2.2)

where the lowest component (or superconformal primary) O++++ = tr(φ++φ++) is a half-BPS
operator built from the scalar fields φ++ = φABu+a

A u+b
B ǫab and the top component L(x) is the chiral

form of the N = 4 SYM on-shell Lagrangian. The remaining components can be obtained by
successively applying the chiral N = 4 supersymmetry transformations to the lowest component
[13]. Their explicit expressions are given in Eq. (5.1) below. Notice that T carries four units of
harmonic U(1) charge, as indicated by the number of pluses in each term on the right-hand side.

In this paper we propose a new approach to evaluating the correlation functions of the stress-
tensor multiplet

Gn = 〈0|T (1) . . .T (n)|0〉 , (2.3)

where we used the short-hand notation T (i) = T (xi, θ
+
i , 0, ui) so that Gn depends on n copies of

the chiral superspace coordinates (xi, θ
+
i , ui). N = 4 superconformal symmetry imposes strong

constraints on Gn. In particular, for n = 2 and n = 3, the super-correlation function (2.3) is
a protected quantity, independent of the coupling constant. Moreover, it does not depend on
the chiral odd variables and coincides with the correlation function of the lowest component
tr[φ++φ++] evaluated at Born level.

2Here we use the notation (θ+)2αβ = θ+a
α θ+b

β ǫab, (θ
+)2 ab = θ+a

α θ+b
β ǫαβ , (θ+)3 a

α = θ+b
α θ+c

β θ+a
γ ǫbcǫ

βγ and (θ+)4 =

θ+a
α θ+b

β θ+c
γ θ+d

δ ǫbcǫadǫ
αβǫγδ.
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For n ≥ 4 the correlation function (2.3) depends on the coupling constant g2. This dependence
can be controlled through the Lagrangian insertion method which relies on the following relation

∂

∂g2
Gn =

∫
d4xn+1 〈0|T (1) . . .T (n)L(xn+1)|0〉

=

∫
d4xn+1d

4θ+n+1 〈0|T (1) . . .T (n)T (n+ 1)|0〉

≡
∫
d4xn+1d

4θ+n+1Gn+1 . (2.4)

Here in the second line we made use of the relation between the on-shell action of N = 4 SYM
and the stress-tensor multiplet

SN=4 =

∫
d4xL(x) =

∫
d4x

∫
d4θ+ T (x, θ+, 0, u) (2.5)

that follows from (2.2). Expanding the correlation functions in (2.4) in the powers of the coupling
constant, we find from (2.4) that the order O(g2ℓ) correction to Gn is determined by the order
O(g2ℓ−2) correction to Gn+1, integrated over the position of the (n + 1)−th point. Successively
applying (2.4) we can express the O(g2ℓ) integrand of Gn in terms of the correlation function
Gn+ℓ evaluated at the lowest order in the coupling, i.e., in the Born approximation.

This property shows that in order to find any quantum correction to the above correlation
function it is sufficient to evaluate (2.3) at Born level and for an arbitrary number of points n.
In this approximation Gn is a rational function of the distances x2ij ≡ (xi − xj)

2. This function
can be reconstructed if we known the form of its singularities corresponding to null separations
x2ij = 0 between the operators in (2.3).

The various components of the correlation function (1.1) have different dependence on the
coupling constant g2 and on the number of colours N . As follows from (2.3) and (2.2), the lowest
component Gn;0 is given by the correlation function of scalar operators tr(φ++φ++) and reduces,
in the Born approximation, to a product of free scalar propagators. Therefore, it does not depend
on the coupling constant and scales as Gn;0 ∼ dim(SU(N)) = N2 − 1. The higher components
Gn;p in (1.1) are given by more complicated correlation functions involving other members of the
supermultiplet (2.2). As we show later in the paper, their perturbative expansion necessarily
involves interaction vertices whose number increases with p. Each vertex is accompanied by a
power of the coupling constant g, so that Gn;p scales in the Born approximation as

Gn;p =
N2 − 1

(2π)2n

(
g2N

4π2

)p

Ĝn;p , (2.6)

with Ĝn;p depending on the n superspace points and on the parameter 1/N2 controlling the
non-planar corrections. According to [2], non-planar corrections only exist for p ≥ 4 due to the
occurrence of the higher Casimir operators of the gauge group SU(N) in the individual Feynman
diagrams. 3 The correlation function Gn;p involves an overall factor which is a product of free
scalar propagators, each bringing a factor of 1/(2π)2. For the sake of simplicity of the formulae,
in what follows we shall not display the normalisation factor in (2.6).

3The simplest example is the quartic Casimir operator dabcddabcd/(N2 − 1) = (N4 − 6N2 + 18)/(96N2) that
first appears for p = 4.
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By construction, the correlation functions Gn;p have to respect (the chiral half of) N = 4
superconformal symmetry and to satisfy the corresponding Ward identities. The general solution
to these identities is given by a linear combination of N = 4 superconformal nilpotent invariants
In;p whose number depends on the Grassmann degree p. As was shown in [1], for the top
component of the correlation function with p = n − 4 the corresponding invariant In;n−4 is
unique leading to

Gn,n−4 =
In;n−4∏

1≤i<j≤n x
2
ij

. (2.7)

The explicit expression for In;n−4 can be found in [1].
In this paper, we extend the relation (2.7) to the remaining components Gn;p of the correlation

function (1.1) with p < n − 4. Namely, we shall construct the set of N = 4 superconformal
invariants In;p and determine their contributions to Gn;p.

3 Correlation functions on twistor space

In this section, we present a new approach to computing the correlation functions (2.3) that
relies on the reformulation of N = 4 SYM as a gauge theory on twistor space based on a twistor
action. The twistor space Feynman diagrams that arise from this twistor action provide an off-
shell generalization of the MHV diagrams of [22] that give rise to scattering amplitudes. The
framework extends to null polygonal Wilson loops [12, 23] and other correlators [15, 24] giving
dual conformal invariant versions of MHV diagrams for the amplitude or standard ones for the
Wilson loop.

Here we show how to obtain Feynman rules on twistor space for the correlation functions
(2.3) that avoid many of the difficulties of conventional space-time Feynman diagrams. The
main advantage of the twistor rules as opposed to the conventional ones is that the contribution
of each diagram manifests the N = 4 superconformal symmetry up to the choice of a reference
twistor that has been used to define the axial gauge. Its contribution remains invariant under
a superconformal transformation acting on all external data, if we in addition transform the
reference supertwistor linearly. In the sum over all diagrams, dependence on the reference super-
twistor drops out as we shall prove below. There are also relatively few diagrams compared to
the conventional ones, particularly at low MHV degree.

3.1 Twistor space approach

Non-projective twistor space is the fundamental representation space of the complexified spinor
covering of the super conformal group SL(4|4;C). We first explain how the bosonic conformal
group in this form acts on space-time and how it relates to bosonic twistor space and then build
up to the full supersymmetric correspondence.

As mentioned above, the correlation functions (2.3) at Born level are rational functions of the
distances x2ij . Therefore, they admit analytic continuation to complex space-time coordinates.
This is an advantage because the action of the complexified conformal group SL(4;C) on the
correlation functions can be greatly simplified by employing the embedding formalism, in which
complexified compactified Minkowski space is realised as a light-cone in complex projective space

5



CP
5 with homogenous coordinates XIJ ∼ cXIJ (with I, J = 1, . . . , 4)

(X ·X) ≡ XIJX
IJ = 0 , (3.1)

where XIJ = 1
2
ǫIJKLX

KL and XIJ = −XJI . The complex coordinates xαα̇ define a particular
parameterisation of XIJ

XIJ =

[
ǫαβ −ixβ̇α
ixα̇β −x2ǫα̇β̇

]
, (3.2)

with xβ̇α = xαα̇ǫ
α̇β̇ and x2 = 1

2
xβ̇αx

α

β̇
. Conformal transformations of xαα̇ correspond to global

SL(4;C) transformations of XIJ .
Bosonic twistor space is the complex projective space CP

3 whose homogenous coordinates
ZI ∼ cZI (with I = 1, . . . , 4) transform in the fundamental representation of the cover SL(4;C)
of the conformal group. A space-time point XIJ corresponds to a line in twistor space given by
the incidence relation

XIJZ
J = 0 . (3.3)

For a given point XIJ this relation defines a line in twistor space since (3.1) is the condition that
XIJ has rank two. Choosing two arbitrary points on this line, ZJ

1 and ZJ
2 , we can reconstruct

XIJ as

XIJ = ZI
1Z

J
2 − ZJ

1 Z
I
2 = ǫabZI

aZ
J
b . (3.4)

Combining (3.2) and (3.4) we obtain that each point in complexified Minkowski space-time xαα̇
is mapped into a line XIJZ

J(σ) = 0 in twistor space 4

ZI(σ) = ZI
1σ

1 + ZI
2σ

2 ≡ ZI
aσ

a , (3.5)

with σa = (σ1, σ2) being local coordinates on the line. For n points xi, defining the space-time
coordinates of the operators in the correlation function (2.3), the corresponding configuration
in twistor space consists of n (non-intersecting) lines whose moduli are determined by the cor-
responding projective coordinates XIJ

i , as shown in Fig. 2 below. Then, the (square of the)
distance between two operators is given by

x2ij ∼
1

2
(Xi ·Xj) =

1

4
ǫIJKLX

IJ
i XKL

j

=
1

4
ǫIJKLǫ

abZI
i,aZ

J
i,bǫ

cdZK
j,cZ

L
j,d ≡ 〈Zi,1Zi,2Zj,1Zj,2〉 , (3.6)

where Zi,a and Zj,a (with a = 1, 2) are two pairs of points belonging to two lines with moduli Xi

and Xj , respectively. If two lines intersect, we can choose ZI
i,2 = ZI

j,1 leading to x2ij = 0. Thus,
the light-like limit of the correlation function, x2ij → 0, corresponds to the limit of intersecting
lines.

4More precisely this is a line in projective twistor space CP
3 or equivalently a two-plane in (non-projective)

twistor space C4. So Minkowski space is the Grassmannian of two-planes in C4, Gr(2, 4).

6



To deal with correlation functions in N = 4 SYM in the chiral sector, we have to extend the
twistor space to include four odd coordinates

Z = (ZI , χA) , (with I, A = 1, . . . , 4) , (3.7)

subject to the equivalence relation Z ∼ cZ. The odd twistor coordinates χA satisfy an incidence
relation analogous to (3.3). Using the parameterisation (3.2) we can rewrite the relation between
a point in chiral Minkowski (super)space-time (xα̇α, θAα) and a line in twistor superspace as

ZI = (λα, ix
α̇βλβ) , χA = θA,βλβ , (3.8)

with λα being homogeneous coordinates on the line in twistor space.5 The N = 4 superconformal
transformations correspond to global GL(4|4) rotations of the supertwistor Z.

3.2 N = 4 SYM on twistor space

The fields of N = 4 SYM theory are described on projective twistor space PT by a superfield A
that takes values in (0, 1)-forms with values in the Lie algebra of the gauge group. Expanding in
the fermionic coordinates χA we obtain

A(Z, Z̄, χ) = a(Z, Z̄) + χAγ̃A(Z, Z̄) +
1

2
χAχBφAB(Z, Z̄)

+
1

3!
ǫABCDχ

AχBχCγD(Z, Z̄) +
1

4!
ǫABCDχ

AχBχCχDg(Z, Z̄) . (3.9)

The coefficients in front of χn are antiholomorphic (0, 1)−differential forms on the supertwistor
space CP

3|4, homogeneous of degree n that are related to the various component fields of N = 4
SYM by the Penrose transform: g and a give rise to self-dual and anti self-dual part of the field
strength tensor, γ̃A and γD are mapped into gaugino fields and φAB produce the scalar fields.

The twistor action of N = 4 SYM takes the form

S[A] =

∫

CP
3|4

D3|4Z ∧ tr

(
1

2
A ∂̄A− 1

3
A3

)
+

∫
d4x d8θ Lint(x, θ) , (3.10)

where D3|4Z = 1
4!
ǫIJKLZ

IdZJdZKdZLd4χ is the integration measure on the complex projective
space and

Lint(x, θ) = g2
[
ln det(∂̄ −A)− ln det ∂̄

]
. (3.11)

The separation of the action S[A] into the sum of two terms corresponds to expansion of N = 4
theory around the self-dual sector. Indeed, the holomorphic Chern-Simons action is equivalent,
in the appropriate gauge, to the self-dual part of the N = 4 action. The second term on the
right-hand side of (3.10) describes the interaction induced by the non self-dual part of the action.
It involves the logarithm of the chiral determinant of the Dirac operator evaluated on the line in
twistor space defined in (3.8), and then integrated over all lines.

5Again, more precisely this identifies chiral Minkowsksi superspace with the space of lines in projective super-
twistor space CP

3|4, or equivalently the space of two-planes in non-projective supertwistor space C4|4, that is the
Grassmannian Gr(2, 4|4). Similarly analytic superspace, on which the stress-energy tensor naturally sits, is the
super-Grassmannian of (2|2) planes in C4|4, Gr(2|2, 4|4) [20]. The modding out of a super-plane accounts for the
halving of the odd degrees of freedom (for example in (2.1)).
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To perform calculations using (3.10) it is convenient to choose an axial gauge in which the
component of A in the direction of a fixed reference twistor Z∗ vanishes. In this gauge, the cubic
term in the holomorphic Chern-Simons action vanishes and the remaining quadratic term defines
the propagator

〈Aa(Z1)Ab(Z2)〉 = δ̄2|4(Z1,Z2,Z∗)δ
ab , (3.12)

where we have displayed the SU(N) indices of the fields A = AaT a (with T a being the SU(N)
generators in the fundamental representation) and explicitly denoted the supertwistor Z∗ that
defines the axial gauge. Here

δ̄2|4(Z1,Z2,Z∗) =

∫
ds

s

dt

t
δ̄4|4(sZ1 + tZ2 + Z∗) (3.13)

is a projective delta function. It is a homogenous (0, 2)−form on twistor space that enforces
the condition for its arguments to be collinear in the projective space. In the axial gauge, all
interaction vertices are produced by Lint. Its expansion in powers of superfields looks like

Lint(x, θ) = −g2
∑

n≥2

1

n
tr
[
∂̄−1A . . . ∂̄−1A

]

= −g2
∑

k≥2

1

k

∫
tr [A(Z(σ1)) ∧Dσ1 . . .A(Z(σk)) ∧Dσk]

〈σ1σ2〉 . . . 〈σkσ1〉
, (3.14)

where Dσi = 〈σi, dσi〉 ≡ ǫabσ
a
i dσ

b
i is the projective measure and

〈σiσj〉 = ǫabσ
a
i σ

b
j . (3.15)

In the second relation in (3.14) the superfields are integrated along the line in twistor space
Z(σi) = Z1σ

1
i + Z2σ

2
i parameterised by coordinates σa

i ≡ (σ1
i , σ

2
i ) with two reference points Z1

and Z2 of the form (3.7) and (3.8) with the same xαα̇ and θAα but different λα.
Making use of (3.14) and (3.12) we can apply the conventional Feynman diagram technique

to compute the correlation functions of operators built from supertwistor fields at weak coupling.
To establish the correspondence with (2.3) we have to work out the representation of the stress-
tensor superfield T (x, θ+, u) in twistor space. Our main contention is that 6

T (x, θ+, u) =

∫
d4θ−Lint(x, θ) , (3.16)

where θ−a′α = θAαu−a′

A and θ+aα = θAαu+a
A are the projected fermionic coordinates required in

the definition of T . We first remark that, although Lint is not gauge invariant because of the
chiral gauge anomaly in ln det(∂̄ − A) in (3.11), the fermionic integration in (3.16) annihilates
the anomalous gauge variation.7

6Other previous works discussing composite operators within the twistor framework are the proof of the
correlator/amplitude duality for the Konishi multiplet [15, 25] and the recent papers [26, 27] where the N = 4
one-loop dilatation operator in the SO(6) sector is rederived. In either case the realisation of the operators is
necessarily different from our approach because they are not connected to the Lagrangian by supersymmetry,
which we use extensively.

7This is a refinement of the discussion following Eq.(3.6) of [18]. There, the variation of Lint under a gauge
transformation is seen to be quintic in the θ’s. A more detailed examination shows that the Grassamann integral
in (3.16) does not find a matching θ−structure in this gauge variation.
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To justify (3.16), denote the corresponding operator as TA(x, θ
+, u) and examine another

equivalent representation for the correlation function (2.3)

Gn = 〈0|TA(1) . . .TA(n)|0〉A , (3.17)

where we inserted the subscript A to indicate that the expectation value is evaluated with the
action given by (3.10). To determine the explicit expression for TA(x, θ

+, u) we shall require that,
in the twistor space approach, the derivative of the correlation function (3.17) with respect to
the coupling constant ∂Gn/∂g

2 has to be related to Gn+1 as in the last relation in (2.4).
Since the dependence of the twistor action (3.14) on the coupling constant only resides in Lint

we obtain

∂

∂g2
Gn =

∫
d4xn+1d

8θn+1〈0|TA(1) . . .TA(n)Lint(xn+1, θn+1)|0〉A . (3.18)

This relation is remarkably similar to (2.4). However, an important difference is that, in dis-
tinction to Lint(xn+1, θn+1) the stress-tensor superfield T (xn+1, θ

+
n+1, un+1) entering the second

line in (2.4) only depends on half of the θAα
n+1 variables while it has an additional dependence on

the harmonic variables un+1. To match the sets of variables these two operators depend on, we
employ the harmonics to decompose θAα

n+1 into the two projections

θ+a,α
n+1 = θAα

n+1u
+a
n+1,A , θ−a′,α

n+1 = θAα
n+1u

−a′

n+1,A , (3.19)

with A = (+a,−a′), and then integrate out θ−a′,α
n+1 using the identity

∫
d8θn+1 =

∫
d4θ+n+1

∫
d4θ−n+1.

Appealing to the analogy with (2.4) we identify the resulting operator as representing the stress-
tensor superfield in twistor space

TA(n+ 1) =

∫
d4θ−n+1 Lint(xn+1, θn+1) , (3.20)

whereby (3.18) takes the same form as (2.4). Notice that the dependence of TA(n + 1) on the
harmonic variable un+1 enters through the integration measure

∫
d4θ−n+1.

We combine the relations (3.20) and (3.17) to obtain the following representation for the
correlation function in twistor space

Gn =

∫
d4θ−1 . . . d

4θ−n 〈0|Lint(1) . . . Lint(n)|0〉A , (3.21)

where Lint(i) ≡ Lint(xi, θi) and θ
−a′,α
i = θAα

i (ui)
−a′

A . As before, we will be interested in computing
this correlation function to lowest order in the coupling constant. In this approximation, we can
neglect the dependence of the twistor action (3.10) on the coupling constant and retain only the
first (Chern-Simons) term on the right-hand side of (3.10). In addition, we recall that in the axial
gauge the Chern-Simons term reduces to the kinetic term, quadratic in twistor superfield A. As
a consequence, calculating (3.21) we can treat A as a free field. In this way, replacing Lint(i) by
its expression (3.14) we have to perform all possible Wick contractions of the superfields A and
express the correlation function (3.21) as a product of propagators defined in (3.12). This leads
to the set of Feynman rules formulated in the next subsection.
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3.3 Feynman rules from twistor space

According to the definition (3.14), each operator Lint(xi, θi) lives on a line in twistor space

Zi(σ) = Zi,1σ
1 + Zi,2σ

2 ≡ Zi,ασ
α , (3.22)

with two reference points Zi,1 and Zi,2 satisfying the incidence relations involving xi and θi.
Then, each term in the sum in the second relation in (3.14) can be viewed as a line in twistor
space; the k legs attached to it represent the twistor superfields A(Zi(σ)). For our purposes it
will also be convenient to treat the same diagram as defining a new effective interaction vertex
as shown in Fig. 1.

Zi,1

Zi,2 Zj,1

Zj,2

i

i

i

i
j

j

j1j1 j2j2 j3j3 jkjk

. . .. . .

Figure 1: Propagators and vertices in twistor space.

Then, the correlation function (3.21) is given by a set of diagrams in which an arbitrary number
of propagators are stretched between n lines, or equivalently connect n effective vertices (see
Fig. 2).

1
1 22

33

44
n

n

Figure 2: Feynman diagram on twistor space contributing to an n−point correlation function. A double
line with label i represents a line in twistor space with moduli (xi, θi). Solid lines stand for propagators
of twistor superfields and dots denote effective interaction vertices.

Let us consider the propagator connecting two lines with indices i and j. Denoting the
local parameters of the points on these two lines by σα

ij and σα
ji, respectively, we can write its
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contribution as
∫

〈σijdσij〉
∫
〈σjidσji〉 δ2|4(Zi(σij),Zj(σji),Z∗)(. . . )

=

∫
〈σijdσij〉

∫
〈σjidσji〉

∫
ds

s

dt

t
δ4|4(sZi(σij) + tZj(σji) + Z∗)(. . . )

=

∫
d2σij

∫
d2σji δ

4|4(Z∗ + σα
ijZi,α + σα

jiZj,α)(. . . ) , (3.23)

where the expression inside (. . . ) corresponds to the rest of the diagram and we made use of
(3.13) in the second relation. Here in the third relation we replaced the integration variables
σα
ij → sσα

ij and σα
ji → tσα

ji taking into account that the expression inside (. . . ) is a homogenous
function of σij and σji of degree (−2).

Then, the Feynman rules taking us from a graph as shown in Fig. 2 to a contribution to the
correlation function (3.21) are as follows:

• To each line connecting vertices i and j we associate two pairs of spinor variables σα
ij and σ

α
ji

(with α = 1, 2). They define the coordinates of the end points σα
ijZi,α and σα

jiZj,α belonging
to the ith and jth lines, respectively, in projective twistor space 8;

• A propagator connecting vertices i and j produces a graded delta function δaiajδ4|4(Z∗ +
σα
ijZi,α + σα

jiZj,α) with ai and aj being SU(N) colour indices;

• Each vertex comes with a Parke-Taylor-like denominator accompanied by the SU(N) colour
factor, − tr[T aj1T aj2 · · ·T ajk ]/

∏k

ℓ=1〈σijℓσijℓ+1
〉 (with jk+1 ≡ j1 and 〈σijℓσijℓ+1

〉 given by
(3.15)). In virtue of trT aj = 0 , we must have at least two lines coming from each vertex;

• Finally, at each vertex i = 1, . . . , n we have to perform an integration
∫
d2σij1 . . . d

2σijk over
the σ−parameters of all lines attached to that vertex and, in addition, integrate out half
of the Grassmann variables by

∫
d4θ−i .

These rules are summarised in Fig. 3.

i

i j

j1
j2 j3

jk

− tr[T aj1T aj2 · · ·T ajk ]

〈σij1σij2〉〈σij2σij3〉 · · · 〈σijkσij1〉. . .

δaiajδ4|4(Z∗ + σα
ijZi,α + σα

jiZj,α)

Figure 3: Feynman rules for propagators and vertices in twistor space.

To compute an n−point correlation function using these Feynman rules we have to examine
all diagrams with exactly n vertices and an arbitrary number of propagators. Since each vertex

8Such an assignment of the σij variables would be ambiguous if two vertices were connected by more than one
line. As we show below (see Eq. (3.48)), this never happens for n−point correlation functions if n > 2.
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has at least two lines attached to it, the minimal number of propagators is n. Let us denote the
total number of propagators as n + p (with p ≥ 0) and examine the Grassmann degree of the
corresponding diagram. Each propagator increases the Grassmann degree by four units whereas
each vertex reduces it by four units due to the integration

∫
d4θ−i . Thus, the Grassmann degree

of a diagram containing n vertices and n + p propagators is 4 p. This counting is in perfect
agreement with the general form of the correlation function (1.1). It also allows us to identify
each term in the expansion (1.1) with the contribution of a particular class of diagrams:

Gn;p = Sum of diagrams with n vertices and n + p propagators (3.24)

3.4 Lowest component

To illustrate the formalism, we apply the Feynman rules formulated in the previous subsection
to compute the simplest Gn;0 component of the correlation function (1.1). According to (3.24),
Gn;0 is given by the sum of diagrams with n vertices and n propagators. A distinctive feature of
such diagrams is that all vertices are bivalent. In what follows we shall only consider connected
twistor diagrams. 9 A particular example of such a diagram is the graph in which vertices i and
i+ 1 are connected by a single line. All remaining diagrams can be obtained by permuting the
labels of the vertices. According to the Feynman rules in Fig. 1, the contribution of the ith vertex
involves −1/(〈σi,i−1σi,i+1〉〈σi,i+1σi,i−1〉) = 1/〈σi,i−1σi,i+1〉2. We combine it with the propagators
to obtain 10

Gn;0 =

n∏

i=1

∫
d4θ−i

∫
d2σi,i−1d

2σi,i+1

〈σi,i−1σi,i+1〉2
δ4|4(Z∗ + σβ

i,i−1Zi,β + σβ
i−1,iZi−1,β) + (Sn−perm), (3.25)

where (Sn−perm) denotes the additional terms needed to restore the Bose symmetry of the
correlation function.

We recall that Zi,1 and Zi,2 denote two points on a line in supertwistor space. They have
the general form (3.7) and (3.8) with the local coordinates λ1,β and λ2,β, respectively. The
correlation function (3.25) should not depend on the choice of these coordinates. Indeed, the
change of the local coordinates corresponds to the GL(2) rotation λγ,β → gγ

δλγ,β, or equivalently
Zi,β → gγ

δZi,δ. This variation can be compensated in (3.25) by the change of the integration

variable σβ
ik → (g−1)βδσ

δ
ik. We can make use of this symmetry to choose Zi,β in the following

form

Zi,β = (Z I
i,β, θ

A
i,β) , Z I

i,β = (ǫαβ , ix
α̇
i,β) , (3.26)

with I = (α, α̇). It is also convenient to parameterise the axial gauge supertwistor as

Z∗ = (Z I
∗ , θ

A
∗ ) . (3.27)

We substitute (3.26) into (3.25) and perform the integration over θ−i to obtain (see Eq. (3.33)
below)

Gn;0 =
n∏

i=1

y2i,i+1

∫
d2σi,i−1d

2σi,i+1δ
4(Z∗ + σβ

i,i−1Zi,β + σβ
i−1,iZi−1,β) + (Sn−perm) . (3.28)

9The disconnected twistor diagrams describe contributions to the correlation function which reduce to products
of correlators with lower number of points.

10Here we do not display the factor (N2 − 1) coming from the contraction of the SU(N) colour indices since it
is included in (2.6).
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Here yi,i+1 = yi − yi+1 with yi being the local coordinates on the harmonic coset introduced in
(A.5). We notice that the total number of delta functions in this integral matches the number
of integration variables. Therefore, the integral is localised at the values of the σ−parameters
satisfying Z∗ + σβ

i,i−1Zi,β + σβ
i−1,iZi−1,β = 0. Equivalently

σα
i,i−1 = ǫαβ

〈Zi,βZ∗Zi−1,1Zi−1,2〉
〈Zi−1,1Zi−1,2Zi,1Zi,2〉

,

σα
i−1,i = ǫαβ

〈Zi−1,βZ∗Zi,1Zi,2〉
〈Zi−1,1Zi−1,2Zi,1Zi,2〉

, (3.29)

where we used the notation 〈Z1Z2Z3Z4〉 = ǫIJKLZ
I
1Z

J
2 Z

K
3 Z

L
4 . In this way, we finally obtain

Gn;0 =

n∏

i=1

y2i,i+1

x2i,i+1

+ (Sn−perm) . (3.30)

Notice that the dependence on the reference supertwistor Z∗ disappeared in Gn;0 as it should for
a gauge invariant quantity.

The result (3.30) perfectly meets our expectations. In the conventional approach, Gn;0 co-
incides with the correlation function of n operators tr[φ++φ++], the lowest component of the
stress-tensor multiplet (2.2). Then, to lowest order in the coupling constant, Gn;0 is given by a
product of n free scalar propagators 〈φ++(i)φ++(j)〉 = y2ij/x

2
ij , properly symmetrised to respect

Bose symmetry.

3.5 Twistor Feynman rules for higher components

To compute higher components of the correlation function Gn;p we have to examine all diagrams
containing n vertices and n+ p propagators. We can apply the Feynman rules formulated in the
previous sections to write down their contribution as a productsof n + p graded delta functions
of the form δ4|4(Z∗ + σα

ijZi,α + σα
jiZj,α). However, this approach is not very efficient in that it

involves integrating a function of Grassmann degree 4(n + p) over 4n odd variables
∫
d4θ−i to

arrive at the function Gn;p of Grassmann degree 4p. So, in this subsection we instead perform
the explicit integration over the variables θ−i at the level of the twistor Feynman rules and thus
derive a simpler set of rules.

To begin with, we split each propagator up into a product of bosonic and fermionic delta
functions,

δ4(Z∗ + σα
ijZi,α + σα

jiZj,α)δ
4(θ∗ + σα

ijθi,α + σα
jiθj,α) . (3.31)

To integrate over θ−i , we employ the harmonics ui to decompose the variables θi into two halves
(3.19) (see Appendix A),

θAi = θ+a
i ūAi,+a + θ−a′

i ūAi,−a′ . (3.32)

Then, multiplying the argument of the fermionic delta function by the 4 × 2 matrices u+a
i,A and

u+a
j,A we find after some algebra

δ4(θ∗ + 〈σijθi〉+ 〈σjiθj〉) = y2ij δ
2
(
〈σijθ−i 〉+ Aij

)
δ2
(
〈σjiθ−j 〉+ Aji

)
, (3.33)
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with y2ij =
1
4
ǫABCDu+a

i,Aǫabu
+b
i,Bu

+c
j,Cǫcdu

+d
j,D. Here the functions

Aa′

ij =
[
〈σjiθ+b

j 〉+ 〈σijθ+c
i 〉(Uij)

+b
+c + θA∗ u

+b
j,A

]
(U−1

ij )−a′

+b (3.34)

depend only on θ+i and θ+j , and the matrices Uij are defined as

(Uij)
+b
+c = ūAi,+cu

+b
j,A , (Uij)

+b
−a′ = ūAi,−a′u

+b
j,A . (3.35)

The function Aa′

ji can be obtained from Aa′

ij by exchanging the indices i↔ j. It is often convenient
to use a parameterisation of the harmonic variables ui in terms of the local coordinates yi on
the harmonic coset defined in (A.5). In this case, (Uij)

+b
+c = δbc and (Uij)

+b
−a′ = (yij)

b
a′ , so that the

expression (3.34) significantly simplifies,

Aa′

ij =
[
〈σjiθ+b

j 〉+ 〈σijθ+b
i 〉+ θA∗ u

+b
j,A

]
(y−1

ij )a
′

b . (3.36)

Notice that the dependence on θ−i and θ−j on the right-hand side of (3.33) resides in the first
and second delta functions, respectively. This suggests associating the first delta function with
the vertex i and the second one with the vertex j. Then, if the vertex i has k propagators attached
to it, we take into account the additional σ−dependent factor coming from the Feynman rules
in Fig. 3 to arrive at the integral

R(i; j1j2 . . . jk) = −
∫
d4θ−i

δ2(〈σij1θ−i 〉+ Aij1)δ
2(〈σij2θ−i 〉+ Aij2) . . . δ

2(〈σijkθ−i 〉+ Aijk)

〈σij1σij2〉 〈σij2σij3〉 . . . 〈σijkσij1〉
. (3.37)

Here the index i labels the vertex and the indices j1, . . . , jk enumerate the outgoing lines. By
construction, this integral has Grassmann degree (2k − 4). As we shall see in the next section,
the quantity R(i; j1j2 . . . jk) plays a crucial role in our analysis.

Relation (3.37) depends on the parameters σα
ij and σ

α
ji. Their values can be determined using

the bosonic part of the propagator (3.31). Namely, solving the equation ZI
∗+〈σijZI

i 〉+〈σjiZI
j 〉 = 0

we obtain

σα
ij = ǫαβ

〈Zi,βZ∗Zj,1Zj,2〉
〈Zi,1Zi,2Zj,1Zj,2〉

, σα
ji = ǫαβ

〈Zj,βZ∗Zi,1Zi,2〉
〈Zi,1Zi,2Zj,1Zj,2〉

, (3.38)

c.f. (3.29). Finally, for each propagator (3.31) the bosonic delta function allows us to do the
σ−integration yielding

y2ij

∫
d2σijd

2σji δ
4|0(Z∗ + σijZi + σjiZj) =

y2ij
〈Zi,1Zi,2Zj,1Zj,2〉

=
y2ij
x2ij

, (3.39)

where the additional factor of y2ij comes from (3.33).
In summary, we arrive at the following twistor Feynman rules shown in Fig. 4:

• A line connecting vertices i and j is associated with the propagator dij = y2ij/x
2
ij ;

• Bivalent vertices are associated with R(i; j1j2) tr[T
aj1T aj2 ] = R(i; j1j2)δ

aj1aj2 ;

• Higher valency vertices are associated with R(i; j1 . . . jk) tr[T
aj1 . . . T ajk ] evaluated for the

σ−parameters given by (3.38).
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i

i j

j1
j2 j3

jk

tr[T aj1T aj2 · · ·T ajk ]R(i; j1j2 . . . jk)

. . .

δaiajdij = δaiaj
y2ij
x2ij

Figure 4: Feynman rules for propagators and vertices in analytic superspace.

3.6 Properties of the R−vertices

Let us summarise the properties of R(i; j1j2 . . . jk). In twistor diagrams, this function is accom-
panied by the colour factor tr[T aj1 . . . T ajk ] with the same ordering of external lines. As follows
from the representation (3.37), R(i; j1j2 . . . jk) is invariant under a cyclic shift of the j−indices
and changes sign under a ‘mirror’ exchange of the indices, jℓ → jk−ℓ+1,

R(i; j1j2 . . . jk−1jk) = R(i; j2j3 . . . jkj1) = (−1)kR(i; jkjk−1 . . . j2j1) . (3.40)

For k = 3 external lines, this relation implies that R(i; j1j2j3) is completely antisymmetric under
the exchange of external legs,

R(i; j1j2j3) = −R(i; j1j3j2) = −R(i; j3j2j1) = R(i; j2j3j1) . (3.41)

In the special case j2 = j3, corresponding to a graph in which the two external legs are attached
to the same vertex, this relation implies

R(i; j1j2j2) = 0 . (3.42)

Let us examine the explicit expression for R(i; j1j2 . . . jk) for the lowest values of k. For a
bivalent vertex, k = 2, the integration in (3.37) yields

R(i; j1j2) = 1 . (3.43)

For a valency three vertex, k = 3, we can make use of the Schouten identity

σα
ij1
〈σij2σik〉+ σα

ij2
〈σikσij1〉+ σα

ik〈σij1σij2〉 = 0 (3.44)

to rewrite the argument of one of the three delta functions on the support of the other two in
such a way that it becomes θ−i independent. In this way, we obtain

R(i; j1j2j3) = −
δ2
(
〈σij1σij2〉Aij3 + 〈σij2σij3〉Aij1 + 〈σij3σij1〉Aij2

)

〈σij1σij2〉 〈σij2σij3〉 〈σij3σij1〉
. (3.45)

For vertices of higher valency, we can recursively apply the same trick, reducing a k−valent vertex
to a product of 3− and (k − 1)−valent vertices. Specifically, we rewrite the last delta function
on the right-hand side of (3.37) as a combination of the first and the (k − 1)st to get

R(i; j1j2 . . . jk) = R(i; j1j2 . . . jk−1)R(i; j1jk−1jk) . (3.46)
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Continuing recursively we can express the k−valent vertex as a product of (k − 2) copies of
3−valent vertices

R(i; j1j2 . . . jk) = R(i; j1j2j3)R(i; j1j3j4) . . . R(i; j1jk−1jk) . (3.47)

Note that the index j1 plays a special role here as it appears in every factor on the right-hand
side. We can obtain another equivalent representation for R(i; j1j2 . . . jk) by making use of the
symmetry properties (3.40). Combining (3.47) with (3.42) we find that the R−vertex vanishes
if two indices of external lines coincide

R(i; j1j1j3 . . . jk) = R(i; j1j2 . . . j1 . . . jk) = 0 . (3.48)

In terms of twistor diagrams this relation implies that diagrams with (at least) two propagators
stretched between any two twistor lines do not contribute to the correlation function.

We observe that the denominator in (3.37) has the same form as in the Parke-Taylor MHV
amplitude upon identifying the variables σij with the holomorphic variables λj that define the
on-shell momenta of the particles. As a consequence, we can use the properties of the MHV
amplitude to obtain non-trivial relations for R(i; j1j2 . . . jk). In particular, the U(1) decoupling
relation for MHV amplitudes [28] translates into

R(i; j1j2 . . . jk−1jk) +R(i; j1j3 . . . jkj2) + · · ·+R(i; j1jk . . . jk−2jk−1) = 0 , (3.49)

where the sum runs over cyclic permutations of the indices j2, . . . , jk−1, jk. This relation can be
verified using the Schouten identity (3.44).

The R−vertices satisfy another set of non-trivial relations. In the simplest case of three-point
vertices it takes the form

R(i; j1j2j3) = R(i; j4j2j3) +R(i; j1j4j3) +R(i; j1j2j4) , (3.50)

with j1, . . . , j4 being arbitrary. The proof of this relation can be found in Appendix B. We can
then use (3.50) and (3.47) together to obtain an analogous relation for four points

R(i; j1j2j3j4) = R(i; j5j2j3j4) +R(i; j1j5j3j4) +R(i; j1j2j5j4) +R(i; j1j2j3j5)

+R(i; j5j1j2)R(i; j5j3j4) +R(i; j5j2j3)R(i; j5j4j1) . (3.51)

It is straightforward to generalise it to an arbitrary number of points

R(i; j1j2 . . . jk) = R(i; jk+1j2 . . . jk) +
1

2

k−2∑

p=2

R(i; jk+1j1 . . . jp)R(i; jk+1jp+1 . . . jk) + cyclic(j1j2 . . . jk) ,

(3.52)

where the expression on the right-hand side is symmetrised with respect to cyclic permutations
of the indices j1, j2, . . . , jk.

4 Next-to-lowest component

As we have shown in the previous section, the lowest component of the correlation function (1.1)
reduces to a product of free scalar propagators (3.30). In this section, we shall compute the first
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component Gn;1 of (1.1) with non-trivial dependence on the Grassmann variables. We recall that
Gn;1 is a homogenous function of θ+i (with i = 1, . . . , n) of degree four.

In the conventional approach, to obtain Gn;1 we have to replace the superfields T (i) in (2.3)
by their expansion (2.2) in powers of θ+i and to single out the contribution involving products
of four Grassmann variables. In this way, Gn;1 is given by a sum of n−point correlation func-
tions involving various components of the stress-tensor supermultiplet. Each of these component
correlation functions has conformal symmetry, but N = 4 supersymmetry is not manifest. The
main advantage of the twistor space approach is to offer an efficient way of finding Gn;1 without
the need of computing individual component correlation functions; N = 4 supersymmetry is
manifest.11

According to (3.24), the correlation function Gn;1 is given by the sum of all twistor diagrams
containing n vertices and (n + 1) edges. Since each vertex is at least 2−valent, such diagrams
may have either two 3−valent vertices, or a single 4−valent vertex with the remaining vertices
being 2−valent. Thus, we distinguish different topologies of twistor diagrams shown in Fig. 5.
The last three diagrams correspond to different embeddings of the colour-ordered quartic vertex.

i

i i

i

i

j

(a) (b) (c) (d) (e)

j1 j1

j1

j1j2 j2

j2

j2

j3 j3j3 j3j4 j4j4

k1

k2

l1

l2

m1

m2

...

Figure 5: Topologies of twistor diagrams that contribute to Gn;1.

Let us first consider the contribution of the diagram shown in Fig. 5(a). It involves two chains
of propagators attached to two cubic vertices with indices i and j3. Applying the Feynman rules,
we find that the contribution of this diagram to the correlation function vanishes

G
(a)
n;1 ∼ δaj1aj2 tr[T aj1T aj2T aj3 ]R(i; j1j2j3) = 0 , (4.1)

where δaj1aj2 comes from the product of propagators connecting 2−valent vertices j1 and j2. Here
we took into account that T aT a = CF = (N2−1)/N is the quadratic Casimir of the gauge group
SU(N) and, as a consequence, the colour trace in the above relation vanishes, tr T aj3 = 0.

The diagram shown in Fig. 5(b) contains three chains of propagators attached to two vertices
with indices i and j. Explicitly, its contribution is

Fig. 5(b) = R(i; k1l1m1) tr[T
ak1T al1T am1 ]×R(j; k2l2m2) tr[T

ak2T al2T am2 ]

×δak1ak2
(
y2ik1
x2ik1

. . .
y2k2j
x2k2j

)
× δal1al2

(
y2il1
x2il1

. . .
y2l2j
x2l2j

)
× δam1am2

(
y2im1

x2im1

. . .
y2m2j

x2m2j

)
, (4.2)

11We recall that the price to pay for this is the presence of the reference twistor Z∗, in addition to the external
data. The important point however is that Z∗ drops out from the final expressions, due to gauge invariance.
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where the dots stand for the product of the remaining propagators constituting the three chains.
As opposed to the previous case, the colour factor of this diagram is different from zero. In
the correlation function, the above expression should be symmetrised with respect to the indices
of all vertices in order to respect the Bose symmetry. In particular, since the cubic vertex
is antisymmetric under the exchange of external legs, R(i; k1l1m1) = −R(i; l1k1m1), its colour
factor tr[T ak1T al1T am1 ] should also have the same property for the contribution of the diagram
to be Bose symmetric. This allows us to replace tr(T ak1T al1T am1 ) → tr([T ak1 , T al1 ]T am1 ) yielding

δak1ak2δal1al2 δam1am2 tr ([T ak1 , T al1 ]T am1 ) tr ([T ak2 , T al2 ]T am2 ) = −2(N2 − 1)N , (4.3)

where we used [T a, T b] = i
√
2fabcT c with fabcfabc′ = Nδcc

′
for the gauge group SU(N) and

tr(T aT b) = δab. In this way, we find the contribution of the diagram in Fig. 5(b) (see footnote
10)

G
(b)
n;1 = −R(i; k1l1m1)R(j; k2l2m2)dik1...k2jdil1...l2jdim1...m2j + (Sn−perm) , (4.4)

where the notation was introduced for the product of scalar propagators

dik1...k2j =
y2ik1
x2ik1

. . .
y2k2j
x2k2j

. (4.5)

The diagrams shown in Fig. 5(c)–(e) contain two chains of propagators that are attached to the
quartic vertex in three different ways. Their contribution to the correlation function is

Fig. 5(c+d+e) = dij1...j2idij4...j3i
[
CcR(i; j1j2j3j4) + CdR(i; j1j3j4j2) + CeR(i; j1j4j2j3)

]
. (4.6)

The colour factors are

Cc = δaj1aj2 δaj3aj4 tr (T aj1T aj2T aj3T aj4 ) = NC2
F ,

Cd = δaj1aj2 δaj3aj4 tr (T aj2T aj1T aj3T aj4 ) = NC2
F ,

Ce = δaj1aj2 δaj3aj4 tr (T aj1T aj4T aj2T aj3 ) = NCF (CF −N) , (4.7)

where CF = (N2 − 1)/N is the quadratic Casimir of SU(N) in the fundamental representation.
Notice that Ce is suppressed at large N by a factor of 1/N2, compared to Cc and Cd. This reflects
the fact that the former diagram is non-planar whereas the latter two are planar.

Substituting (4.7) into (4.6) we expect to encounter both planar and non-planar contributions.
It turns out that the non-planar diagram 5(e) cancels against the 1/N2 suppressed contributions
of the diagrams in Fig. 5(c)+(d) in such a way that their total sum remains planar in the large
N limit, in perfect agreement with (2.6). To show this, we apply the relation (3.49) for k = 4 to
replace R(i; j1j4j2j3) = −R(i; j1j2j3j4)− R(i; j1j3j4j2) in (4.6) leading to

CcR(i; j1j2j3j4) + CdR(i; j1j3j4j2) + CeR(i; j1j4j2j3)

= (Cc − Ce)R(i; j1j2j3j4) + (Cd − Ce)R(i; j1j3j4j2)

= (N2 − 1)N
[
R(i; j1j2j3j4) +R(i; j2j1j3j4)

]
, (4.8)

where in the last relation we made use of the identity R(i; j1j3j4j2) = R(i; j2j1j3j4), Eq. (3.40).
Comparing with (4.7) we observe that all terms proportional to C2

F cancel out in the sum over
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all diagrams and the only terms that survive are those involving the colour factor CFN . This
property is reminiscent of the so-called non-abelian exponentiation of Wilson loops [29, 30].

We combine (4.6) and (4.8) to obtain the contribution of the diagrams Fig. 5(c),(d),(e) to the
correlation function (see footnote 10)

G
(c)+(d)+(e)
n;1 = R(i; j1j2j3j4) dij1...j2idij4...j3i + (Sn−perm) . (4.9)

This expression involves a quartic vertex which can be expressed in terms of cubic vertices using
(3.47)

R(i; j1j2j3j4) = R(i; j1j2j3)R(i; j1j3j4) = R(i; j2j4j1)R(i; j2j3j4) . (4.10)

Finally, we combine relations (4.1), (4.4) and (4.9) to obtain the following representation for the
next-to-lowest component of the correlation function:

Gn;1 = −R(i; k1l1m1)R(j; k2l2m2)dik1...k2jdil1...l2jdim1...m2j

+R(i; j1j2j3)R(i; j1j3j4)dij1...j2idij4...j3i + (Sn−perm) . (4.11)

Here the indices i, j, k, l,m label n different points and the sum runs over their permutations.
The following comments are in order concerning the properties of (4.11).
A remarkable feature of (4.11) is that the whole dependence on the Grassmann variables is

encoded in the simple cubic R−vertex given by (3.45). According to its definition, Eqs. (3.45)
and (3.36), the function R(i; j1j2j3) is a homogenous polynomial in θ+i of degree 2, so that Gn;1

has Grassmann degree 4 as it should be.
Recall that the dependence of the correlation function (4.11) on the super-coordinates of the

operators (xi, θ
+
i ) enters into R(i; j1j2j3) through the commuting spinors σij and the function Aij

given by (3.38) and (3.36), respectively. They depend in turn on the supertwistor coordinates
defined in (3.26) as well as on the reference supertwistor Z∗. Notice that each term on the right-
hand side of (4.11) depends on Z∗ but this dependence should cancel in the total sum in order for
Gn;1 to be gauge invariant. We demonstrate the independence of the correlation function (4.11)
of the reference supertwistor Z∗ in the next section.

For n = 4 the relation (4.11) takes the form

G4;1 = −
∏

1≤i<j≤4

dij [R(1; 324)R(2; 314)/d34 +R(1; 234)R(3; 214)/d24 +R(1; 243)R(4; 213)/d23

+R(2; 134)R(3; 124)/d14 +R(2; 143)R(4; 123)/d13 +R(3; 142)R(4; 132)/d12
]
, (4.12)

with dij = y2ij/x
2
ij . However, G4;1 should vanish due to N = 4 superconformal symmetry (see

Eq. (1.1)). Therefore, the linear combination inside the square brackets in this relation should
vanish. We demonstrate this in Sect. 6 by an explicit calculation.

4.1 The light-like limit

As another test of (4.11) we consider the limit of the correlation function Gn in which the n
operators become sequentially light-like separated. In chiral superspace, this corresponds to
x2i,i+1 → 0 and θA,α

i,i+1(xi,i+1)αα̇ → 0 for i = 1, . . . , n and the periodic boundary condition i+n ≡ i
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is assumed. In this limit we expect the correlation function to be related to the square of the
n−particle superamplitude [13–15]

Gn

x2
i,i+1→0
∼ Gn;0

(
1 +RNMHV

n + . . .+RMHV
n

)2
, (4.13)

where RNMHV
n is given by the ratio of the NMHV and MHV n−particle amplitudes and similarly

for the other components. For Gn computed in the Born approximation, the amplitudes can be
replaced by their tree level expressions. In this way, we find for the next-to-lowest component

lim
x2
i,i+1→0

Gn;1/Gn;0 = 2RNMHV
n . (4.14)

The NMHV ratio function RNMHV
n is known to have an enhanced dual (super)conformal symmetry

[16] and is given by a sum of five-point on-shell invariants (see Eq. (4.24) below). The duality
relation (4.14) then suggests that the ratio of the correlation functions Gn;1/Gn;0 should also have
an enhanced symmetry, at least in the light-like limit.

Let us first examine the asymptotic behaviour of the lowest component Gn;0 in the light-like
limit. It is easy to see from (3.30) that, in the sum over all Sn permutations, only one term
provides the leading singularity,

Gn;0

x2
i,i+1→0
∼

n∏

i=1

y2i,i+1

x2i,i+1

≡ d12...n , (4.15)

where the d−function was introduced in (4.5).
For the next-to-lowest component Gn;1 the light-like limit can be imposed diagram by diagram.

Since each edge (ij) connecting the vertices with the corresponding labels comes with a factor
y2ij/x

2
ij , we observe that only those graphs containing the edges (12), (23), . . . , (n1) provide the

leading contribution in the light-like limit x2i,i+1 → 0; all other graphs will be subleading. So in
this limit only graphs containing a simply connected n−gon will survive. This n−gon clearly
yields the same product of free scalar propagators y2i,i+1/x

2
i,i+1 as the leading term in Gn;0, and

therefore it provides a non-vanishing contribution to the ratio Gn;1/Gn;0 in the light-like limit.
Examining the diagrams shown in Fig. 5(b) – (e) we notice that, since the total number of

vertices in the diagrams equals n, graphs (c), (d) and (e) cannot contain a simply connected
n−gon and are thus subleading in the light-like limit. For graph (b) to contain an n−gon, one
of the chains connecting the cubic vertices i and j should not contain any vertices. In other
words, the graphs that contribute to Gn;1 in the light-like limit have the form of an n−gon with
one additional propagator stretched between vertices i and j. Using (4.11) their contribution is
brought to the form

Gn;1

x2
i,i+1→0
∼ d12...n

∑

i 6=j

Rij∗ , (4.16)

where Rij∗ is given by the product of two cubic vertices

Rij∗ =
y2ij
x2ij
R(i; i− 1 j i+ 1)R(j; j − 1 i j + 1) . (4.17)

Here we explicitly indicated the dependence of Rij∗ on the reference supertwistor Z∗.
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Taking into account (4.15) and (4.16), we find for the ratio of correlation functions in the
light-like limit

lim
x2
i,i+1→0

Gn;1/Gn;0 = 2
∑

i<j

Rij∗ . (4.18)

To simplify the expression for Rij∗ it is convenient to return to the integral representation of Gn;1

based on the Feynman rules in twistor space in Fig. 3. Then,

Rij∗ =

∫
d2σijd

2σji 〈σii−1σii+1〉〈σjj−1σjj+1〉
〈σii−1σij〉〈σijσii+1〉〈σjj−1σji〉〈σjiσjj+1〉

δ4|4(Z∗ + σα
ijZi,α + σα

jiZj,α) . (4.19)

To reproduce (4.17) it suffices to split the delta function in this relation into bosonic and fermionic
parts, Eq. (3.31), and to apply relations (3.33) and (3.39).

The parameters σii−1 and σi−1i in (4.19) are given by the general expressions (3.29) which
become singular in the light-like limit since 〈Zi−1,1Zi−1,2Zi,1Zi,2〉 = x2i−1,i → 0. Nevertheless, we
can use the invariance of (4.19) under rescalings of σ to put

σβ
i,i−1 = ǫβα〈Z∗Zi−1,1Zi−1,2Zi,α〉 , σβ

i,i+1 = ǫβα〈Z∗Zi+1,1Zi+1,2Zi,α〉 , (4.20)

and similarly for σj,j−1 and σj,j+1. We recall that in twistor space the light-like limit, x2ii+1 → 0

and θA,α
i,i+1(xi,i+1)αα̇ → 0, is equivalent to the intersection of the corresponding twistor lines Ziα

and Zi+1α. The local GL(2) invariance (corresponding to the reparameterisation freedom on each
twistor line) allows us to choose this intersection to occur in the following convenient manner

Zi,2 = Zi+1,1 ≡ Zi , (i = 1 . . . n) , (4.21)

where Zi = (Zi, χ
A
i ) with Zi = (λαi , x

α̇β
i λiβ) and χ

A
i = θA,β

i λiβ. Substituting the bosonic part of
this relation into (4.20) we find

σα=1
i i+1 = σα=2

i i−1 = 0 , σα=2
i i+1 = −σα=1

i+1 i . (4.22)

Denoting σα
ij = (s1, s2) and σ

α
ji = (t1, t2) we finally obtain from (4.19)

Rij∗ =

∫
ds1ds2dt1dt2
s1s2t1t2

δ4|4(Z∗ + s1Zi−1 + s2Zi + t1Zj−1 + t2Zj)

=
δ4(χ∗〈i− 1ij − 1j〉+ χi−1〈ij − 1j∗〉+ . . .+ χj〈∗i− 1ij − 1〉)
〈i− 1ij − 1j〉〈ij − 1j∗〉〈j − 1j ∗ i− 1〉〈j ∗ i− 1i〉〈∗i− 1ij − 1〉 , (4.23)

with 〈i− 1ij − 1j〉 ≡ 〈Zi−1ZiZj−1Zj〉, which is precisely the invariant defining the NMHV tree-
level amplitude [16, 17]

RNMHV
n =

∑

i<j

Rij∗ . (4.24)

Comparing this relation with (4.18) we observe perfect agreement with (4.14). In addition, (4.17)
yields the factorisation of the NMHV (on-shell) invariant Rij∗ into a product of two (off-shell)
cubic vertices in the light-like limit.
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4.2 Independence of the reference twistor

In the previous section we have shown that the correlation function Gn;1 can be built from the
cubic vertices R(i; j1j2j3). These vertices depend on the four supertwistors corresponding to the
external points i, j1, j2, j3 as well as on the reference supertwistor Z∗. They are constructed using
the Feynman rules in Fig. 3 that have manifest N = 4 superconformal covariance as long as we
transform the reference twistor too. In this sense the symmetry of R(i; j1j2j3) is actually broken
by the presence of the fixed constant reference supertwistor. However, the symmetry is restored
in Gn;1 since it must not depend on the reference twistor (that is, on the gauge choice). In this
section we confirm that this is indeed the case.

As follows from (3.45), the dependence of R(i; j1j2j3) on the reference twistor enters through
the parameters σij given by (3.38). Viewed as a function of Z∗, the vertex R(i; j1j2j3) has spurious
poles located at 〈σij1σij2〉 〈σij2σij3〉 〈σij3σij1〉 = 0. We shall argue that the absence of spurious
poles is equivalent to the Z∗−independence of Gn;1. Let us show how the spurious poles cancel
in the sum of all twistor diagrams shown in Fig. 5.

More specifically, consider a particular spurious pole located at 〈σ12σ13〉 = 0. 12 We can use
(3.38) to verify the following identity

〈σ12σ13〉x212x213 = 〈σ23σ21〉x223x221 = 〈σ31σ32〉x213x223 ≡ (123) , (4.25)

where (123) is totally antisymmetric under the exchange of any pair of points. It implies that
the same spurious pole corresponds to 〈σ12σ13〉 = 〈σ23σ21〉 = 〈σ31σ32〉 = 0, or equivalently

(σ13)
α = z1(σ12)

α , (σ21)
α = z2(σ23)

α , (σ32)
α = z3(σ31)

α . (4.26)

The complex parameters zi in this relation are not independent however. We take into account
the identity (see Eq. (D.5) in Appendix D for its derivation)

(σα
13σ

β
21) + (σα

12σ
β
23)− (σα

13σ
β
23) = 0 , for (123) = 0 (4.27)

and substitute (4.26) to get

z1 + 1/z2 − z1/z2 = 0 . (4.28)

To obtain an analogous relation between z1 and z3 we permute the indices 2 and 3 on both sides
of (4.27) and take into account that (132) = −(123). In this way, we obtain

z2 =
z1 − 1

z1
, z3 =

1

1− z1
. (4.29)

Examining the expression for the cubic vertex (3.45) for different values of the indices, we find
that the spurious pole at (123) = 0 appears in three different vertices,

R(1; 23i), R(2; 31j), R(3; 12k), (4.30)

12Of course we can choose any three points for the spurious pole condition.
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where i, j and k are arbitrary points (different from 1, 2, 3). We use (3.45) and (4.26) to compute
the residues at the spurious pole

lim
(123)→0

(123)
y212
x212

y213
x213

R(1; 23i) =
1

z 1
y212y

2
13δ

2(z1A12 − A13) ,

lim
(123)→0

(123)
y212
x212

y223
x223

R(2; 31j) =
1

z 2
y212y

2
23δ

2(z2A23 − A21) ,

lim
(123)→0

(123)
y213
x213

y223
x223

R(3; 12k) =
1

z 3
y213y

2
23δ

2(z3A31 − A32) , (4.31)

where Aij are given by (3.36) and (3.34).
Let us show that the sum of the three residues (4.31) vanishes. To simplify the calculation,

we make use of the superconformal symmetry of the R−vertex to fix the gauge

θ+1 = θ+2 = θ+3 = 0 , y1 = 0, y2 = 1, y3 → ∞ . (4.32)

The generic values of these coordinates can be restored via a finite N = 4 superconformal
transformation. In this gauge, the Aij in (4.31) simplify to Aa′

ij = θA∗ u
+b
j,A(y

−1
ij )a

′

b . Splitting

θA∗ = (θa∗ , θ
a′

∗ ) and expressing u+j in terms of the variables yj as described in (A.5), we find

A12 = θ′∗ − θ∗ , A23 = −θ∗ , A31 = −θ′∗y−1
3 ,

A13 = −θ∗ , A21 = −θ′∗ , A32 = (θ∗ − θ′∗)y
−1
3 . (4.33)

Substituting these relations into (4.31) and taking into account (4.29), we find that the delta
functions on the right-hand side of (4.31) are proportional to

r123 = y23δ
2
(
Θ∗

)
, Θ∗ = (1− z1)θ∗ + z1θ

′
∗. (4.34)

Next, we evaluate the sum of the residues of the three R−vertices at the spurious pole (123) = 0
and find that it vanishes,

lim
(123)→0

(123)

[
y212
x212

y213
x213

R(1; 23i) +
y212
x212

y223
x223

R(2; 31j) +
y213
x213

y223
x223

R(3; 12k)

]

= r123

[
1

z1
− 1

z1(1− z1)
+

1

(1− z1)

]
= 0 . (4.35)

Here the three terms in the second relation correspond to the three terms in the first line. Notice
that the residues of the vertices (4.30) at the spurious pole do not depend on the choice of the
points i, j, k and are proportional to each other.

We can now apply (4.35) to show the cancellation of spurious poles in the sum of the diagrams
contributing to the correlation function Gn. As we explained in Sect. 3.5, these diagrams involve
vertices of different valency. According to (3.47), they can all be expressed in terms of the cubic
R−vertices. Examining all possible vertices we find that the spurious pole at (123) = 0 is only
present in the vertices of the following types: R(1; 23a..b), R(2; 31c..d) and R(3; 12e..f) with
indices a, b, c, d, e, f labeling the other external points. Indeed, we can use (3.46) to obtain the
following representation

R(1; 23a..b) = R(1; 3a..b)R(1; 23b) = R(1; 2a..b)R(1; 23a) ,

R(2; 31c..d) = R(2; 1c..d)R(2; 31d) = R(2; 3c..d)R(2; 31c) ,

R(3; 12e..f) = R(3; 2e..f)R(3; 12f) = R(3; 1e..f)R(3; 12e) , (4.36)
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where the cubic vertices are of the form (4.30) and thus contain a spurious pole at (123) = 0.
Let us consider the graphs shown in Fig. 6. They can be viewed as part of a bigger diagram

in which points a, b, c, d, e, f, . . . label other vertices. The first three graphs in Fig. 6 have the
same number of propagators, hence their contribution to the correlation function has the same
Grassmann degree. A special feature of these graphs is that they involve vertices of the form
(4.36) and thus have spurious poles. Moreover, these are the only diagrams that are singular
for (123) = 0. There is however another graph (see Fig. 6(d)) that contains the same singular
vertices (4.36). We will show below that its contribution remains finite for (123) = 0.

1 111

2 2223 333

a aaab bbb

c ccc

d ddde eee

f fff

(a) (b) (c) (d)

Figure 6: All subgraphs with a potential spurious pole at (123) = 0. The spurious pole is present
in graphs (a), (b) and (c) but cancels in their sum. The graph (d) in fact has no spurious pole
at (123) = 0. In the above diagrams the number of legs coming out of each of the vertices 1,2,3
is arbitrary and we can even have just one leg coming out. For example, we can have a = b or
c = d etc. In the graph (d) we can even have no additional legs from the vertices.

The total contribution of the graphs shown in Fig. 6 (a)-(c) is 13

d12d13R(1; 23a..b)R(2; 1c..d)R(3; 1e..f) + d12d23R(1; 2a..b)R(2; 31c..d)R(3; 2e..f)

+ d13d23R(1; 3a..b)R(2; 3c..d)R(3; 12e..f) , (4.37)

where dij = y2ij/x
2
ij is a scalar propagator. We apply (4.36) to rewrite the first term in the last

relation as

R(1; 23a..b)R(2; 1c..d)R(3; 1e..f) = R(1; 2a..b)R(1; 23a)R(2; 1c..d)R(3; 1e..f)

= R(1; 2a..b)R(1; 23a)R(2; 3c..d)R(3; 1e..f) + (reg.) , (4.38)

where ‘reg’ denotes terms regular for (123) = 0. Here in the second relation we took into account
that the residues of R(1; 23a) and R(2; 31d) at (123) = 0 are proportional to each other and are
independent of the points a and d (see Eq. (4.35)), leading to

lim
(123)→0

(123)R(1; 23a)R(2; 1c..d) = ξ lim
(123)→0

(123)R(2; 31d)R(2; 1c..d)

= ξ lim
(123)→0

(123)R(2; 31c)R(2; 3c..d)

= lim
(123)→0

(123)R(1; 23a)R(2; 3c..d), (4.39)

13Here we assume the planar limit.
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where ξ = (z1−1)d23/d13 and we applied (4.36) in the second line. The remaining terms in (4.37)
can be simplified likewise. In this way, we evaluate the residue of (4.37) at (123) = 0 and find
that it is proportional to the same linear combination of cubic vertices as in (4.35),

lim
(123)→0

(123)× Eq.(4.37) = R(1; 2a..b)R(2; 3c..d)R(3; 1e..f)

× lim
(123)→0

(123)
[
d12d13R(1; 23a) + d12d23R(2; 31c) + d13d23R(3; 12e)

]
= 0 . (4.40)

We conclude that the spurious pole is indeed absent in the sum of all diagrams in Fig. 6(a)-(c).
Finally, there exists the possibility of having a subgraph of the type shown in Fig. 6(d). Its

contribution contains the product of three vertices

d12d23d13R(1; 23a..b)R(2; 31c..d)R(3; 12e..f) , (4.41)

each of which having a spurious pole at (123) = 0. Denoting (123) = ǫ we find for ǫ→ 0

R(1; 23a..b) ∼ R(1; 23a) ∼ 1

ǫ
δ2
(
Θ∗ + ǫf1 +O(ǫ2)

)
. (4.42)

Here in the first relation we applied (4.36) and in the second relation made use of (4.31) and (4.35).
As compared with (4.34), we included in (4.42) the subleading O(ǫ) correction parameterised by
some odd function f1 whose explicit form will not be important for our purposes. For ǫ = 0,
the delta function on the right-hand side of (4.42) coincides with r123 defined in (4.34). The two
remaining R−vertices in (4.40) also satisfy (4.42) with f1 replaced by some functions. Then, for
the product of three R−vertices we find for ǫ→ 0

Eq.(4.42) ∼ 1

ǫ3
δ2
(
Θ∗ + ǫf1)

)
δ2
(
Θ∗ + ǫf2

)
δ2
(
Θ∗ + ǫf3

)

=
1

ǫ3
δ2
(
Θ∗ + ǫf1)

)
δ2
(
ǫ(f1 − f2)

)
δ2
(
ǫ(f1 − f3)

)
∼ O(ǫ) , (4.43)

so that the contribution of the graph in Fig. 6(d) vanishes for (123) → 0.
Note that the above discussion is not sensitive to the number of legs attached to vertices 1, 2

and 3 (see Fig. 6). In particular, it also applies when there is only one additional line coming
out of each vertex, e.g. we could have a = b and/or c = d and/or e = f . In this case, R(1; 2a..b),
R(2; 3c..d) and R(3; 1e..f) in (4.40) describe bivalency vertices which equal 1 according to (3.43).

1 11

2 223 33

Figure 7: Example of diagrams contributing to Gn;1 and having a spurious pole at (123) = 0.
This pole cancels in the sum of three diagrams.

The mechanism of cancellation of spurious poles described in this subsection is rather general
as it applies to any component of the correlation function Gn. In application to the next-to-
lowest component Gn;1 defined by the diagrams shown in Fig. 5 given by (4.11), we can restrict
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ourselves to the graphs in Fig. 6 containing vertices of valency 2, 3 and 4 only. As an example, we
show in Fig. 7 the set of diagrams which contribute to Gn;1 and whose sum is free from spurious
pole at (123) = 0. It is straightforward to extend the analysis of spurious poles to the higher
components of Gn.

In this subsection we have demonstrated that the correlation function Gn is free from spurious
poles depending on the reference supertwistor Z∗. This property combined with the fact that
Gn is a rational homogeneous function of Z∗ of degree 0 implies that it is Z∗ independent.

4.3 Short-distance limit

In the previous subsection we have shown that all spurious poles cancel in the correlation function
Gn. As a consequence, the only singularities that Gn can have are those coming from short
distances xi → xj . We shall refer to them as physical poles.

The short distance asymptotics of Gn is controlled by the operator product expansion of the
stress-tensor multiplets T (1)T (2). Each operator depends on the set of coordinates (xi, θ

+
i , ui(yi))

and the short distance Euclidean limit 1 → 2 amounts to x1 → x2, θ
+
1 → θ+2 and y1 → y2. In

this limit we have

T (1)T (2) =
N2 − 1

2

(
y212
x212

)2

I + 2
y212
x212

T (1) + . . . , (4.44)

where the dots denote terms suppressed by powers of x212 and y
2
12. The first term on the right-hand

side of (4.44) involves the identity operator and it describes the disconnected contribution to the
correlation function Gn for 1 → 2. Applying (4.44), we find the leading asymptotic behaviour of
the connected part of the correlation function Gn for 1 → 2 to be

Gn
1→2∼ 2

y212
x212

Gn−1 . (4.45)

Examining the twistor diagrams contributing to Gn, we find that the physical pole y212/x
2
12 only

comes from the diagrams in which vertices 1 and 2 are connected by a propagator. Then, in
order to verify (4.45) it is sufficient to show that in the short-distance limit the product of two
R−vertices at points 1 and 2 reduces to a single R−vertex.

2d12

2d12

cyclic

cyclic

++

+++
1→2∼

1→2∼ 1

1

1

1

1

11

2

2

2

22
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j2
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j2j2

j3

j3

j3

j3

j3

j3

j3

j4

j4

j4j4

Figure 8: The OPE relations for 3− and 4−point vertices. The expressions on the left-hand side are
symmetrised with respect to cyclic shifts of the labels of the external legs.
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For the lowest component Gn;0, the relation (4.45) follows immediately from (3.30). For the
next-to-lowest component Gn;1, we have to examine different contributions where the vertices
1 and 2 have valency 2, 3 and 4. If both vertices have valency 2, the contribution of the
corresponding graph to Gn;1 automatically verifies (4.45). When one of the vertices has valency
2 and the other has valency 3, the corresponding contribution to Gn;1 reads (see Fig. 8)

d12
[
R(1; 2j1)R(2; 1j2j3) +R(1; 2j1j2)R(2; 1j3) + cyclic(j1j2j3)

]
, (4.46)

where d12 = y212/x
2
12. This expression is invariant under cyclic shifts of the indices of the external

legs j1, j2 and j3. It can be simplified using (3.50) and (3.43),

Eq. (4.46) = d12 [R(1; j1j2j3) +R(2; j1j2j3)]
1→2∼ 2d12R(1; j1j2j3) , (4.47)

where in the last relation we took into account that the difference R(1; j1j2j3) − R(2; j1j2j3)
vanishes in the limit 1 → 2. Thus, in the short-distance limit the product of two vertices of
valency 2 and 3 reduces to a single valency 3 vertex leading to (4.45).

Finally, we have to examine the product of two vertices of total valency 6 (see the second line
in Fig. 8). Their contribution to the correlation function is given by the expression

d12
[
R(1; 2j1)R(2; 1j2j3j4) +R(1; 2j1j2j3)R(2; 1j4) +R(1; 2j1j2)R(2; 1j3j4) + cyclic(j1j2j3j4)

]
,

(4.48)

which is symmetric under cyclic shifts of the external legs j1, . . . , j4. Using (3.37) it is straight-
forward to verify that each term in the square brackets remains finite for 1 → 2. Moreover, the
resulting expression can be simplified with the help of (3.51) (applied for i = j5 = 1)

Eq. (4.48)
1→2∼ 2d12R(1; j1j2j3j4) , (4.49)

in perfect agreement with (4.45).
The above relations can be extended to the product of vertices of an arbitrary total valency

k. In this case, (4.46) and (4.48) should be generalised to include the sum of products of vertices
of valency (p + 1) and (k − p + 1) with p = 1, . . . , k − 1. Then, in the short distance limit
1 → 2, we can apply the identity (3.52) for i = jk+1 = 1 to show that the sum collapses into
2d12R(1; j1 . . . jk), leading to (4.45).

To conclude, in this section we have demonstrated that the expressions for the correlation
function Gn obtained within the twistor space approach satisfy two consistency conditions: they
are independent of the reference supertwistor and have the correct asymptotic behaviour in
the light-like and short distance limits. In the following two sections, we shall compare these
results with the analogous expressions for Gn computed using the conventional Feynman rules
in Minkowski space and shall demonstrate their perfect agreement.

5 Correlation functions from Feynman diagrams

In this section we outline the calculation of the correlation function Gn in the conventional
Feynman diagram approach. More precisely, we shall concentrate on computing the next-to-
lowest component Gn;1 in the Born approximation. As was explained above, Gn;1 has Grassmann
degree 4 and its perturbative expansion starts at order O(g2).
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5.1 Next-to-lowest component

To evaluate Gn;1, we use the superfield expansion (2.2) of the stress-tensor multiplet T in (2.3)
and retain the contributions of Grassmann degree 4. This yields a representation for Gn;1 as a
collection of correlation functions involving various components of T . Each correlation function
has conformal symmetry but not the N = 4 supersymmetry. The latter is realised in the form
of Ward identities that these correlation functions satisfy.

The stress-tensor multiplet has the form (2.2) with components given by the following gauge
invariant composite operators [13]

O++++ = tr(φ++φ++),

O+++,α
a = 2

√
2i tr

(
ψ+α
a φ++

)
,

O++,αβ = tr
(
ψ+c(αψ+β)

c − i
√
2F αβφ++

)
,

O++
ab = − tr

(
ψ+γ

(a ψ
+
b)γ − g

√
2[φ+C

(a , φ̄+b,C)]φ
++
)
,

O+,α
a = −4

3
tr
(
F α
β ψ

+β
a + ig[φ+B

a , φBC ]ψ
Cα
)
,

L =
1

3
tr

{
−1

2
FαβF

αβ +
√
2gψαA[φAB, ψ

B
α ]−

1

8
g2[φAB, φCD][φAB, φCD]

}
, (5.1)

where the shorthand notations were introduced for the scalar and gaugino fields projected with
SU(4) harmonic variables

φ+B
a = ǫabu

+b
A φAB , φ̄+b,A = ūB+bφAB , φ++ = −1

2
u+a
A ǫabu

+b
B φAB ,

ψ+α
a = ǫabu

+b
A ψαA , ψ+ aα = u+a

A ψαA . (5.2)

Here φAB = 1
2
ǫABCDφCD, and we adopt the conventions for the raising-lowering of indices sum-

marised in Appendix A. We also use weighted symmetrisation A(αβ) =
1
2
(Aαβ + Aβα).

The correlation functionGn;1 depends on the analytic superspace Grassmann variables ρi ≡ θ+i
with i = 1, . . . , n. It can be expanded over eight different nilpotent polynomials in ρi of degree
4, covariant under Lorentz and R−symmetry transformations,

Gn;1 =
∑

i

ρ4i f(i) +
∑

i 6=j

ρaiα(ρ
3
j )

b
βf

αβ
ab (i, j) +

∑

i 6=j

(ρ2i )
(αβ)(ρ2j )

(γδ)f(αβ)(γδ)(i, j)

+
∑

i 6=j

(ρ2i )
(αβ)(ρ2j )

(cd)f(αβ)(cd)(i, j) +
∑

i 6=j

(ρ2i )
(ab)(ρ2j )

(cd)f(ab)(cd)(i, j)

+
∑

i 6=j 6=k

ραai ρ
βb
j (ρ2k)

(γδ)fαβ(γδ),ab(i, j, k) +
∑

i 6=j 6=k

ραai ρ
βb
j (ρ2k)

(cd)fαβ,ab(cd)(i, j, k)

+
∑

i 6=j 6=k 6=l

ραai ρ
βb
j ρ

γc
k ρ

δd
l fαβγδ,abcd(i, j, k, l) , (5.3)

where we introduced the notation for

(ρ3) aα = ρbαρ
β
b ρ

a
β , ρ4 = ρbαρ

β
b ρ

c
βρ

α
c , (ρ2)(αβ) = ρaαǫabρ

b
β , (ρ2)(ab) = ρaαǫ

αβρbβ . (5.4)
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The functions f , fαβ,ab, f(αβ)(γδ), f(αβ)(cd), f(ab)(cd), fαβ(γδ),ab, fαβ,ab(cd), fαβγδ,abcd are polynomials in
the variables yi and are rational functions in the variables xi. They correspond to the correlation
functions of the operators (5.1), e.g.

f(1) = 〈0|L(1)O++++(2) . . . O++++(n)|0〉 ,

fαβ
ab (1, 2) = 〈0|O+++,α

a (1)O+,β
b (2)O++++(3) . . . O++++(n)|0〉 . (5.5)

In what follows we shall calculate the eight coefficient functions in (5.3) at order O(g2) by means
of the standard N = 4 SYM Feynman rules.

5.2 T−block approach

We use the explicit component field form of the Lagrangian of N = 4 SYM 14

LN=4 = tr

{
−1

4

(
FαβF

αβ + F̄α̇β̇F̄
α̇β̇
)
+

1

4
Dαα̇φ

ABDα̇αφAB +
1

8
g2[φAB, φCD][φAB, φCD]

+2iψ̄α̇AD
α̇αψA

α −
√
2gψαA[φAB, ψ

B
α ] +

√
2gψ̄α̇A[φ

AB, ψ̄α̇
B]

}
, (5.6)

where all fields are in the adjoint representation of the gauge group SU(N) , e.g. φAB = φa
ABT

a,
Fαβ = F a

αβT
a, ψαA = ψαAaT a, with the generators T a being N ×N traceless matrices normalised

as tr(T aT b) = δab.
We do the calculation in coordinate space. The scalar and gaugino propagators have the form

〈φ++(x1, u1) φ
++(x2, u2)〉 =

1

(2π)2
y212
x212

,

〈ψA
α (x1) ψ̄

B
α̇ (x2)〉 = − 1

(2π)2
∂αα̇

1

x212
δAB , (5.7)

with the SU(N) indices suppressed. It is convenient to introduce the normalisation factor

cn =
g2N(N2 − 1)

(2π)2n+2
. (5.8)

As we will see in a moment, it appears in the expression for the individual diagrams. The same
normalisation factor enters (2.6) for p = 1.

To illustrate our approach, we first compute the coefficient function fαβ
ab (1, 2) for n = 4 points.

According to (5.5), it is given by the four-point correlation function involving two scalar operators
O+++ and the operators O+++,α

a and O+,β
b defined in (5.1). To lowest order in the coupling,

fαβ
ab (1, 2) receives contribution from the following Feynman diagrams (and their permutations
3 ⇄ 4)

1

23

4

(Γ4;1)

1

23

4

(Γ4;2)

1

23

4

(Γ4;3)

1

23

4

(Γ4;4)

14The operator L in (5.1) coincides (up to a normalisation factor) with the chiral form of the N = 4 SYM
on-shell Lagrangian.
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1

23

4

(Γ4;5)

1

23

4

(Γ4;6)

1

23

4

(Γ4;7)

Here the diagrams in the first and the second lines correspond to the two terms in the expression
(5.1) for the operator O+,β

b at point 2.
The above diagrams involve interaction vertices. We can significantly simplify the calculations

of the corresponding Feynman integrals by defining two simple building blocks which are called
bosonic and fermionic T−blocks. The former represents the interaction of a gluon in the Feynman
gauge with a pair of scalars,

1 2

3

= 〈φa,++(1)F b
αβ(3)φ

c,++(2)〉 = 2g

(2π)4
fabcy212

(x31x̃32)(αβ)
x212x

2
13x

2
23

, (5.9)

and the latter stands for the Yukawa interaction of a scalar with a pair of chiral fermions,

1 2

3

= 〈ψa,A
α (1)φb,++(3)ψc,B

β (2)〉 = − i
√
2g

(2π)4
fabc(3̄A−a′ǫ

a′b′ 3̄B−b′)
(x31x̃32)αβ
x212x

2
13x

2
23

.

(5.10)

Here fabc are the SU(N) structure constants and we use the shorthand notation 3̄A−a′ ≡ ūA3,−a′.
We then observe that diagrams (Γ4;3) and (Γ4;4) involve a product of the two T−blocks

supplemented by scalar propagators dij = y2ij/x
2
ij , e.g.

(Γ4;4) ∼ 〈φ++(3)F βγ(2)φ++(4)〉〈ψA,α(1)φ++(3)ψB
γ (2)〉u+a

1,Au
+b
2,B d14 , (5.11)

where we suppressed the SU(N) indices. Going through the calculation of (Γ4;4) we find

(Γ4;4) = −4

3
c4 y

2
14y

2
34(y13ỹ32)

ab (x31x̃32x24x̃23 − x31x̃32x23x̃24)
αβ

x212x
2
13x

2
14x

4
23x

2
24x

2
34

. (5.12)

Note that this expression is gauge dependent and, as a consequence, it is not conformally covari-
ant. Conformal symmetry is restored in the sum of diagrams that is gauge invariant.

Similarly, diagrams (Γ4;6) and (Γ4;7) involve only a single fermionic T−block (5.10), e.g.

(Γ4;7) =
4

3
c4 y

2
14y

2
34(y13ỹ32)

ab (x13x̃32)
αβ

x212x
2
13x

2
14x

4
23x

2
24

. (5.13)

This expression is gauge invariant and, as a consequence, it is conformally covariant. It contains
however the factor of 1/x423 which should disappear in the sum of all Feynman diagrams in
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order to restore the expected 1/x223 asymptotic behavior (4.45) of the correlation function in the
short-distance limit 2 → 3.

The remaining diagrams (Γ4;1), (Γ4;2) and (Γ4;5) cannot be reduced to products of T−blocks.
Moreover, they involve more complicated Feynman integrals that are potentially ultraviolet di-
vergent and, in addition, produce a contribution that is not a rational function of x2ij . We recall
however that the correlation function in the Born approximation should be a rational function of
x2ij . This suggests that the non-rational pieces from the above mentioned diagrams should disap-
pear in the sum of all diagrams. Indeed, there exists an efficient way to organise the calculation
so that we do not actually need to compute these complicated integrals. Instead of considering
the ‘difficult’ diagrams one by one, we shall combine them into sums that are explicitly rational.

To identify such rational sums, we return to (1.1) and notice that, in virtue of N = 4
superconformal symmetry, the correlation function for n = 4 only involves the lowest component
Gn;0 given by (3.30). This means that G4;1 = 0, so that all coefficient functions in (5.3) vanish

for n = 4. In particular, fαβ
ab (1, 2) = 0 for n = 4. In other words, the sum of all diagrams Γ4;k

(with k = 1, . . . , 7), symmetrised with respect to the exchange of points 3 ↔ 4, should vanish.
Since the diagrams (Γ4;k) have a harmonic structure y213y

2
34(y14ỹ42)ab that is not invariant under

the exchange of points 3 and 4, this yields the condition

7∑

k=1

(Γ4;k) = 0 . (5.14)

This relation allows us to express the sum of ‘difficult’ diagrams in terms of ‘easy’ diagrams
(Γ4;3), (Γ4;4), (Γ4;6), (Γ4;7) that are reduced to fermionic and bosonic T−blocks, Eqs. (5.9) and
(5.10). It is convenient to represent (5.14) in the following diagrammatic form

1

23

4

= (Γ4;1) + (Γ4;2) + (Γ4;3) + (Γ4;5) + (Γ4;6) = −(Γ4;4)− (Γ4;7) (5.15)

where the graph on the left-hand side has a shaded block with a free propagator attached to
points 3 and 4. This block stands for the sum of diagrams containing interaction vertices and
we shall refer to it as a ‘black box’. It is expressed in terms of the easy diagrams (Γ4;4) and
(Γ4;7) given by (5.12) and (5.13) and, therefore, it is a rational function.15 The main reason for
introducing the ‘black box’ is that, as we show in the next subsection, it naturally appears as a
non-trivial core of higher-point diagrams.

5.3 The O(ρ1ρ
3
2) component for 5 points

We are now ready to compute the coefficient function fαβ
ab (1, 2) for the n = 5 correlation function.

We recall that it defines the ρ1ρ
3
2−component in the expansion (5.3) of G5;1. Unlike the n = 4

case examined above, fαβ
ab (1, 2) is different from zero for five points.

15If we were to reproduce (5.15) without appealing to G4;1 = 0, we would need to choose a particular regulari-
sation and to calculate several non-trivial integrals which are not rational. Their sum is rational however.
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Let us first identify the relevant Feynman diagrams. Compared to the n = 4 case, these
diagrams involve the additional vertex 5 with two scalar propagators attached:

ts

1

23

4

5

PSfrag

1

23

4

5

1

23

4

5

1

23

4

5 1

23

4

5

(Γ5;1) (Γ5;2) (Γ5;3) (Γ5;4) (Γ5;5)

Here the shaded block has the same meaning as in (5.15). Namely, it denotes the sum of graphs
(Γ4;1) + (Γ4;2) + (Γ4;3)+ (Γ4;5) + (Γ4;6) with the scalar line between points 3 and 4 removed. As a
result, the contribution of the diagram (Γ5;3) can be obtained from (5.15) by replacing the scalar
propagator d34 with the product of two propagators d34d45 in the sum of two ‘easy’ diagrams
−[(Γ4;4) + (Γ4;7)]:

(Γ5;3) =
4

3
c5 y

2
15y

2
34y

2
45(y13ỹ32)

ab (x31x̃32x25x̃23 − x31x̃32x23x̃25)
αβ − x235(x13x̃32)

αβ

x212x
2
13x

2
15x

4
23x

2
25x

2
34x

2
45

. (5.16)

The calculation of (Γ5;1) and (Γ5;2) is similar to that of (Γ4;4). They are given by products of
fermionic and bosonic T−blocks (5.9) and (5.10) resulting in

(Γ5;1) = −4

3
c5 y

2
15y

2
34y

2
45(y13ỹ32)

ab (x31x̃32x24x̃23 − x31x̃32x23x̃24)
αβ

x212x
2
13x

2
15x

4
23x

2
24x

2
34x

2
45

,

(Γ5;2) = −4

3
c5 y

2
15y

2
34y

2
45(y13ỹ32)

ab (x31x̃32x25x̃24 − x31x̃32x24x̃25)
αβ

x212x
2
13x

2
15x

2
23x

2
24x

2
25x

2
34x

2
45

. (5.17)

We note that (Γ5;3) contains a double pole 1/(x223)
2 which should disappear in the sum of all

Feynman diagrams. In addition, the expressions in (5.16) and (5.17) do not transform covariantly
under the conformal transformations. In order to recover the conformal symmetry we have to
examine the sum of all three diagrams. We find after some algebra

∑

k=1,2,3

(Γ5;k) = −4

3
c5 y

2
15y

2
34y

2
45(y13ỹ32)

ab

× x225x
2
34(x13x̃32)

αβ − x223(x13x̃35x54x̃42 − x13x̃34x45x̃52)
αβ

x212x
2
13x

2
15x

4
23x

2
24x

2
25x

2
34x

2
45

. (5.18)

This example shows that in a order to obtain a conformal result we have to assemble together a
gauge invariant set of diagrams with all possible attachments of the gluon propagators.

The two remaining diagrams (Γ5;4) and (Γ5;5) are conformally covariant. The diagram (Γ5;4)
can be obtained from (Γ4;7) by replacing the scalar propagator d41 → d45d51 in (5.13). When
combined together with (5.18), it cancels the first term in the numerator in the second line of
(5.18). The resulting expression does not have a double pole 1/(x223)

2 but only a simple pole
1/x223. The diagram (Γ5;5) is the 5−point analogue of (Γ4;6), however its harmonic structure is
more complicated due to the higher number of points,

(Γ5;5) =
4

3
c5 y

2
15y

2
34(y13ỹ34y45ỹ52 − y13ỹ35y54ỹ42)

ab (x13x̃32)
αβ

x212x
2
13x

2
15x

2
23x

2
24x

2
25x

2
34

. (5.19)
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Finally, to obtain fαβ
ab (1, 2) we add together the contributions of all diagrams (Γ5;k) (at k =

1, 2, · · · , 5) and symmetrise over all permutations of the points 3, 4, 5 in order to restore the Bose
symmetry of the correlation function. The result takes the remarkably simple form

fαβ,ab(1, 2) =
8

3
c5
x214x

2
35y

2
15y

2
34∏

1≤i<j≤5 x
2
ij

[
y245(y13ỹ32)

ab(x13x̃35x54x̃42)
αβ − (x↔ y)

]
+ perm345. (5.20)

Notice that the product fαβ,ab(1, 2)
∏

i<j x
2
ij is symmetric under the exchange of spatial and

harmonic coordinates xi ⇄ yi (see Appendix C for explanation of this property).
Thus, we were able to compute the O(ρ1ρ

3
2) component of G5;1 by using only the T−blocks

(5.9) and (5.10) combined with the ‘black box’ relation (5.15). We can apply the same approach
to computing the remaining components of the 5−point correlation function G5;1. Their explicit
expressions can be found in Appendix C.

5.4 Consistency checks

In this subsection, we compare the obtained result for G5;1 with the analogous expression found
in [1]. As was shown in that paper, the N = 4 superconformal symmetry allows us to predict
the form of the 5−point correlation function up to an overall normalisation factor

G5;1 = c
I5;1(x, ρ, y)∏

1≤i<j≤5 x
2
ij

, (5.21)

where the dependence on the Grassmann and harmonic variables resides in the function I5;1. It
is a polynomial in ρ of Grassmann degree 4, invariant under Q and S̄ superconformal transfor-
mations. Its explicit form has been found in [1]

I5;1 = Q8S̄8

5∏

i=1

δ4(ρi)

=

∫
d4ǫ d4ǫ′d4ξ̄ d4ξ̄′

5∏

i=1

δ(4)
(
ρi − (ǫ+ yiǫ

′)− xi(ξ̄ + yiξ̄
′)
)

= x223x
2
24x

2
25x

2
34x

2
35x

2
45 ×R(2345)×

(
ρ1 +

5∑

i=2

R1i ρi

)4

, (5.22)

where δ4(ρi) ≡ ρ4i . Here (R1i ρi)
αa = Rαβ,ab

1i (ρi)βb involves the matrix Rαβ,ab
1i (see Eq. (5.25)

below) and the function R(2345) is polynomial in y2ij and rational in x2ij ,

R(2345) =
x212x

2
13x

2
14x

2
15∏

1≤i<j≤5 x
2
ij

[
(y223y

2
45x

2
25x

2
34 − x223x

2
45y

2
25y

2
34)(y

2
23y

2
45x

2
24x

2
35 − x223x

2
45y

2
24y

2
35)

+(y224y
2
35x

2
25x

2
34 − x224x

2
35y

2
25y

2
34)(y

2
24y

2
35x

2
23x

2
45 − x224x

2
35y

2
23y

2
45)

+(y225y
2
34x

2
23x

2
45 − x225x

2
34y

2
23y

2
45)(y

2
25y

2
34x

2
24x

2
35 − x225x

2
34y

2
24y

2
35)

]
. (5.23)

Expanding (5.21) in powers of the Grassmann variables and matching the result with (5.3) we
can express the f−coefficient functions in terms of R(2345) and R1i−matrices.
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In this way, we examine the O(ρ41) component and obtain

f(1) = c
R(2, 3, 4, 5)

x212x
2
13x

2
14x

2
15

. (5.24)

Comparing this relation with (C.1), we observe perfect agreement and fix the normalisation
constant, c = 2c5/3. In a similar manner, for the O(ρ2ρ

3
1) component we find

fαβ,ab(2, 1) = −4Rαβ,ab
12 f(1) . (5.25)

Together with (5.20) this relation leads to a definite prediction for the matrix R12 that we could
match against the integral representation for the same matrix, Eq. (5.22). Going through the
calculation we find agreement.

The same analysis can be repeated for the other components of G5;1. We verified that for
n = 5 the relation (5.3) with the coefficient functions given in Appendix C coincides with (5.21).

6 Matching the two approaches

In the preceding section we employed the conventional Feynman diagram technique to compute
the five-point correlation function G5;1. In this section we show that the relation (4.11) obtained
in the twistor approach correctly reproduces this result. To save space, here we consider the
matching of one component only, (ρ21)

(ab)(ρ23)
(cd) in (5.3), and leave the more detailed discussion

for a future publication.

6.1 Four points

As a simpler illustration, let us first consider the component (ρ21)
ab(ρ23)

cd in the four-point correla-
tion function G4;1. As was already mentioned, it should vanish in virtue of N = 4 superconformal
symmetry. At the same time, the twistor approach leads to the expression (4.12) that involves
the product of 3−point R−vertices. In this subsection we demonstrate that the (ρ21)

(ab)(ρ23)
(cd)

contribution to (4.12) does indeed vanish.
At four points there is only one topology of twistor graphs that contributes to G4;1. It is

given by:

I1234 =

1

2

3

4
= d12d23d34d41d13R(1; 234)R(3; 412) (6.1)

and is obviously symmetric under the exchange of points 1 ↔ 3 and 2 ↔ 4. The correlation
function is given by the sum over the non-trivial permutations of this graph,

G4;1 ∼ I1234 + I1243 + I2134 + I2143 + I1324 + I3142 . (6.2)

To extract the contribution (ρ21)
(ab)(ρ23)

(cd), we have to replace the R−invariants in (6.1) by their
expansion (see (B.3) in Appendix B) and truncate the resulting expression to the component we
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are looking for. In this way, we find after some algebra

I1234 =
[d34d14(y123)ab(y123)cd

x212x
2
23x

2
13y

2
13

− d23d14(y123)ab(y341)cd
x212x

2
13x

2
34y

2
13

+
(y12341)ac(y34123)bd
2x212x

2
14x

2
34x

2
13x

2
23y

2
13

+ (2 ↔ 4)
]
(ρ21)

ac(ρ23)
bd + . . . ,

I1243 = −(124)

(123)

d24(y123)ab(y341)cd
x212x

2
34x

2
13x

2
14

(ρ21)
ad(ρ23)

bc + . . . ,

I2143 =
(124)(324)

(413)(231)

d24(y321)ab(y143)cd
x214x

2
12x

2
43x

2
32

(ρ21)
bc(ρ23)

ad + . . . , (6.3)

where the dots denote the remaining terms and we used the shorthand notations for

yijk = yij ỹjk , yijklm = yij ỹjkyklỹlm , (ijk) = 〈σijσik〉x2ijx2ik . (6.4)

The expressions for the remaining terms on the right-hand side of (6.2) can be obtained from
(6.3) through permutation of the indices, e.g. I2134 = I1243[1 ↔ 3, 2 ↔ 4], I1324 = I1243[2 ↔ 4]
and I3142 = I1243[1 ↔ 3].

Note that the contribution to (6.2) from I1234 is independent of the reference twistor. It is
straightforward to verify that the same is true for the sum of the remaining five terms on the
right-hand side of (6.2). Finally, substituting (6.3) into (6.2) we find after some algebra

G4;1 ∼
1

x212x
2
23x

2
13x

2
34x

2
14y

2
13

[
y234y

2
14(y123)ab(y321)cd − y223y

2
12(y143)ab(y134)cd − y223y

2
41(y123)ab(y341)cd

− y243y
2
21(y143)ab(y321)cd − y224y

2
13(y123)ab(y341)cd + (y12341)ad(y34123)bc

]
(ρ21)

ad(ρ23)
bc + . . . (6.5)

The expression inside the square brackets vanishes via a non-trivial y−identity. The easiest way
to see this is to use the SU(4) covariance of (6.5) in order to fix the y−variables at the four
points as:

y1 →
(
1 0
0 1

)
, y2 → ∞ , y3 → 0 , y4 →

(
y 0
0 ȳ

)
. (6.6)

Implementing this choice sets (6.5) to zero. Hence, the (ρ2i )
ab(ρ2j )

cd component of G4;1 vanishes

G4;1 ∼ 0× (ρ21)
ad(ρ23)

bc + . . . (6.7)

as it should be.

6.2 Five points

At five points, the correlation function G5;1 receives contributions from twistor graphs of three
different topologies:

1

1

1

2

2

2

3 33

4

4

4

5

5
5

A12345 B12345 C12345
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Applying the Feynman rules shown in Fig. 4 we find

A12345 = d12d23d13d15d45d34R(1; 235)R(3; 412) ,

B12345 = d14d34d15d35d12d23R(1; 452)R(3; 254) ,

C12345 = d12d13d14d15d23d45R(1; 345)R(1; 234) . (6.8)

G5;1 is given by their total sum symmetrised with respect to the permutations of the five points.
Let us examine the contribution of each topology to the component (ρ21)

ab(ρ23)
cd. Replacing

the R−invariants in (6.8) by their expansion in powers of the Grassmann variables (see Eqs. (B.2)
and (B.3)) we find that this component does not receive contributions from graphs of type C for
all possible relabelings of the points. The total set of contributing graphs is

G5;1 ∼ A12345 +
1

2
(A51342 + A53142 + A41352 + A43152 +B53412) +

1

6
B12345 + perm245 . (6.9)

Here each inequivalent graph appears with coefficient 1, and the numerical factors are introduced
to account for over-counting in the sum over permutations. We split the computation up in this
way, since, as we will see in a moment, the linear combination in the parentheses on the right-hand
side of (6.9) is independent of the reference twistor.

Going through calculations similar to those performed in the four-point case, we obtain the
following expressions for the component (ρ21)

ab(ρ23)
cd

A12345 = −y
2
45(y15243)ab(y123)dc
x212x

2
23x

2
13x

2
34x

2
45x

2
15

(ρ21)
ad(ρ23)

bc + . . . ,

A51342 =
(345)

(341)

y224y
2
25(y153)ab(y341)cd

x215x
2
35x

2
34x

2
13x

2
24x

2
25

(ρ21)
ad(ρ23)

bc + . . . ,

B12345 =
(y12541)ab(y34523)cd
x212x

2
23x

2
34x

2
41x

2
15x

2
35

(ρ21)
ab(ρ23)

cd + . . . ,

B53412 =
(345)(145)

(431)(513)

y224y
2
25(y341)ab(y153)cd

x215x
2
14x

2
35x

2
34x

2
24x

2
25

(ρ21)
bc(ρ23)

ad + . . . (6.10)

The remaining graphs can be obtained by permuting the indices in these expressions.
Notice that the expressions for A12345 and B12345 do not depend on the reference twistor and

have the correct conformal and SU(4) properties. Then, we examine the sum of graphs in the
parentheses in (6.9)

A51342 + A53142 + A41352 + A43152 +B53412 =
y225y

2
24∏

1≤i<j≤5 x
2
ij

x212x
2
23x

2
45

(431)(513)
(y341)ab(y153)cd(ρ

2
1)

bc(ρ23)
ad

×
[
(345)(145)x213 + (451)(351)x234 + (134)(534)x215 + (345)(531)x214 + (451)(143)x235

]
+ . . .

= − y225y
2
24∏

1≤i<j≤5 x
2
ij

x212x
2
23x

4
45(y341)ab(y351)dc(ρ

2
1)

bc(ρ23)
ad , (6.11)

where in the second relation we made use of the six-term identity (D.7). We observe that the
dependence on the reference twistor disappears in the sum of graphs.
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Finally, we substitute (6.10) and (6.11) into (6.9) and obtain the following expression for the
component (ρ21)

ac(ρ23)
bd of the correlation function

G5;1 =
1∏

1≤i<j≤5 x
2
ij

[
− 1

2
x212x

2
23x

4
45y

2
25y

2
24(y143)ab(y153)cd − x214x

2
24x

2
25x

2
35y

2
45(y15243)ab(y123)cd

+
1

6
x213x

2
24x

2
25x

2
45(y12541)ac(y34523)bd + perm245

]
(ρ21)

ac(ρ23)
bd + . . . (6.12)

We compare this expression with the analogous result (C.3) obtained in the standard Feynman
diagram approach and find perfect agreement (after appropriate permutations of indices). 16

To summarise, we demonstrated by an explicit calculation of a particular component of G5;1

that the expression (4.11) for the correlation function in the twistor approach matches that
obtained in the conventional Feynman diagram approach.

7 Conclusions

We have developed a new approach to computing the correlation function Gn of the chiral part
of the stress-tensor supermultiplet in the Born approximation. It relies on the reformulation
of N = 4 SYM in twistor space and gives Gn as a sum of effective diagrams on twistor space
which only involve propagators and no integration vertices. We have used this unusual feature of
the twistor diagrams to decompose them into simple building blocks, the N = 4 superconformal
invariants R(i; j1j2j3). However, the price to pay for the relative simplicity of the twistor diagrams
is the dependence of these invariants on the reference supertwistor Z∗ defining the axial gauge
condition. This dependence cancels in the sum of all twistor diagrams, due to the gauge invariance
of Gn but it is present in the contribution of each individual diagram. The situation here is similar
to that of the tree-level scattering superamplitudes in planar N = 4 SYM.

The relation to the scattering amplitudes can be made more precise by examining the asymp-
totic behaviour of Gn in the light-like limit. As we have shown, in the simplest case of the NMHV
amplitude and the next-to-lowest component Gn;1, the on-shell NMHV invariants are given by
the product of two off-shell R−invariants evaluated in the light-like limit. The on-shell invariants
are known to possess a larger, dual superconformal symmetry [16] which is promoted to a Yan-
gian symmetry [31] when combined with the conventional N = 4 superconformal symmetry. As
a consequence, the off-shell invariants also have this extended symmetry, in the light-like limit
at least. Whether this symmetry survives away from the light-like limit is a very interesting
question which requires further investigation.

Knowing Gn in the Born approximation allows us to predict the quantum corrections to the
same correlation function using the Lagrangian insertion method. Namely, integrating the cor-
relation function Gn+1 over the position of one of the operators,

∫
d4xn+1 d

4θ+n+1Gn+1, produces
the order O(g2) correction to the correlation function Gn. Continuing this procedure, we can
interpret Gn+ℓ in the Born approximation as the O(g2ℓ) integrand for the quantum corrections to
the correlation function Gn. For n = 4 this procedure, combined with the uniqueness of the top
superconformal invariant Iℓ+4,ℓ, has been used in [1] to reveal a new permutation symmetry of
the four-point correlation function. Starting from n = 5, the quantum corrections to Gn receive

16 Note that the harmonic y−structure that comes out of the Feynman graph approach for this component is
graphically identical to the twistor graph.
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contributions from several superconformal invariants Iℓ+n,p (with p = ℓ, . . . , ℓ + n − 4) whose
explicit form can be found using the approach presented in this paper. It remains to be seen
what these invariants can tell us about the properties of the corresponding integrands. It would
be interesting to establish the relationship with the Grassmannian approach to the integrand of
the amplitude [32] and with the recent ‘amplituhedron’ construction [33].

When computing the correlation function Gn, we restricted our analysis to the chiral sector.
By putting the antichiral Grassmann variables θ̄ to zero we explicitly broke half of the super-
symmetry. We could ask what happens if we include the dependence of Gn on θ̄, thus recovering
the full N = 4 superconformal symmetry. In the simplest case n = 4 the dependence on θ̄ can
be restored unambiguously [34], whereas for n ≥ 5 the N = 4 superconformal symmetry is not
powerful enough to lift the correlation function from the chiral sector to the full superspace. It
would be interesting to extend the twistor space approach to this case.
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A Conventions

We introduce harmonic variables in order to covariantly decompose all quantities carrying indices
in the fundamental representation of SU(4). These variables appear as components of the unitary
matrix

uBA ≡ (u+b
A , u−b′

A ) , (A.1)

where the index A transforms under global SU(4) while the other index B splits into two halves
B = (b, b′) according to the local subgroup SU(2)×SU(2)′×U(1) ∈ SU(4) with indices b, b′ = 1, 2
in the fundamental representation of SU(2) and SU(2)′, respectively, and the signs +b and −b′
referring to the U(1) charge. The unitarity conditions for the matrix u and its conjugate ū are

ūA+au
+b
A = δba , ūA−a′u

−b′

A = δb
′

a′ , ūA−a′u
+b
A = ūA+au

−b′

A = 0 . (A.2)

They satisfy the completeness relation

u+a
A ūB+a + u−a′

A ūB−a′ = δBA , (A.3)

which allows us to decompose θA as

θA = θ+aūB+a + θ−a′ ūA−a′ , θ+a = θAu+a
A , θ−a′ = θAu−a′

A . (A.4)
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It is convenient to use a particular parametrisation of the harmonic variables

u+a
B = (δab , y

a
b′) , u−a′

B = (0, δa
′

b′ ) , ūB+a = (δba, 0) , ūB−a′ = (−yba′ , δb
′

a′) , (A.5)

which amounts to choosing a gauge for the local subgroup SU(2) × SU(2)′ × U(1). In this
parameterisation, the SU(4) transformations can be reduced to combining a shift of y with the
discrete operation of inversion

yba′ → yba′ + ǫba′ , yba′ → ya
′

b /y
2 , (A.6)

with ya
′

b = yab′ǫ
b′a′ǫab and y

2 = yba′y
a′

b /2, in close analogy with the action of the conformal group
on the space-time coordinates xαα̇

xαα̇ → xαα̇ + ǫαα̇ , xαα̇ → x̃α̇α/x2 . (A.7)

We use the following conventions for rising and lowering Lorentz and SU(2) indices

x̃α̇α = ǫαβxββ̇ǫ
β̇α̇ = xα

β̇
ǫβ̇α̇ , ỹa

′a = ǫabybb′ǫ
b′a′ = yab′ǫ

b′a′ , (A.8)

so that (with xij = xi − xj and yij = yi − yj)

(x12x̃23)α
β = (x12)αβ̇(x̃23)

β̇β , (y12ỹ23)a
b = (y12)ab′(ỹ23)

b′b . (A.9)

It is straightforward to verify that these expressions transform covariantly under the SU(4) and
conformal transformations, Eqs. (A.6) and (A.7), correspondingly,

(x12x̃23)α
β →

(x1)
α̇γ(x12x̃23)γ

δ(x̃3)δβ̇
x21x

2
2x

2
3

,

(y12ỹ23)a
b → (y1)

a′c(y12ỹ23)c
d(ỹ3)db′

y21y
2
2y

2
3

. (A.10)

B Component form of the R−invariants

In this appendix we work out the expansion of the three-point R−invariants (3.45) in powers of
the Grassmann variables. We start with the definition (3.45)

R(i; 123) = −
δ2
(
〈σi1σi2〉Ai3 + 〈σi2σi3〉Ai1 + 〈σi3σi1〉Ai2

)

〈σi1σi2〉 〈σi2σi3〉 〈σi3σi1〉
, (B.1)

where Aa′

ij =
[
〈σjiρbj〉+ 〈σijρbi〉

]
(y−1

ij )a
′

b with ρai ≡ θ+a
i . Compared with (3.36), here we put θA∗ = 0

for simplicity.
Expanding (B.1) in powers of ρ’s we obtain a sum of five different structures antisymmetrised

with respect to the indices of the external legs

R(i; 123) =R1(i; 12) +
1

2
R2(i; 12) +

1

2
R3(i; 12) +

1

2
R4(i; 123) +

1

6
R5(i; 123) + antisym123 .

(B.2)
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Here we have defined

R1(i; 12) =
〈σi1|ρiyi12ρ2|σ2i〉

(i12)

x2i1
y2i1

x2i2
y2i2

,

R2(i; 12) = −〈σ1i|ρ1y1i2ρ2|σ2i〉
(i12)

x2i1
y2i1

x2i2
y2i2

,

R3(i; 12) =
〈σi1|ρ2i |σi2〉y212

(i12)

x2i1
y2i1

x2i2
y2i2

,

R4(i; 123) = −〈σ1i|ρ21|σ1i〉
x2i1(i23)

(i12)(i31)

x2i1
y2i1

,

R5(i; 123) = −(ραi yi123iρi,α)
1

y2i1y
2
i2y

2
i3

, (B.3)

where we used (6.4) and introduced a shorthand notation for ραi yi123iρi,α = ραai (yi123i)a
bρi,αb,

〈σi1|ρiyi12ρ2|σ2i〉 = σα
i1ρ

a
i,α(yi12)a

bρβ2,bσ2i,β , etc.
The functions R1, R2 and R3 depend on two external points and change sign under their

exchange, Rk(i, 12) = −Rk(i; 21). The function R5(i; 123) is completely antisymmetric in 1,2,3
and R4(i; 123) = −R4(i; 132). The rational factors are introduced in (B.2) to avoid double
counting due to these symmetries.

We can apply (B.2) to calculate various components in the product of R−invariants. For
instance, to find the component (ρ21)

ab(ρ23)
cd in (6.1) we use

R(1; 234)R(3; 412) = −R1(1; 23)R1(3; 21) +R1(1; 23)R1(3; 41)

−R1(1; 43)R1(3; 41) +R1(1; 43)R1(3; 21) +R5(1; 234)R5(3; 412) + . . . (B.4)

where the dots denote terms that do not produce the above mentioned component. The first
term in (B.4) gives:

R1(1; 23)R1(3; 21) =
〈σ12|ρ1ỹ123ρ3|σ31〉

(123)d12d13

〈σ32|ρ3ỹ321ρ1|σ13〉
(321)d23d13

. (B.5)

We can then decompose the product of two ρ’s belonging to the same point into irreducible
components with the help of the identity

ρaαρ
b
β =

1

2
ǫαβ(ρ

2)ab +
1

2
ǫab(ρ2)αβ . (B.6)

To get the component (ρ21)
ab(ρ23)

cd we can neglect the second term. In this way, we obtain

R1(1; 23)R1(3; 21) = −(y123)ab(y321)cd(ρ
2
1)

ad(ρ23)
bc

4x212x
4
13x

2
32d

2
13d12d23

+ . . . , (B.7)

where we used (6.4) to replace 〈σ12σ13〉 = (123)/(x212x
2
13) and 〈σ32σ31〉 = (321)/(x213x

2
23). Per-

forming similar manipulations we find

R1(1; 23)R1(3; 41) =
(y123)ab(y143)dc(ρ

2
1)

ad(ρ23)
bc

4x212x
2
13x

2
13x

2
34d

2
13d34d12

+ . . . ,

R5(1; 234)R5(3; 412) =
(y12341)ab(y34123)cd(ρ

2
1)

ab(ρ23)
cd

x212x
2
14x

2
34x

2
13x

2
23y

2
13

+ . . . . (B.8)
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The remaining terms on the right-hand side of (B.4) can be obtained from the last two relations
by swapping the indices 2 ↔ 4. Substituting these expressions into (B.4) we arrive at the first
relation in (6.3).

Let us show that the invariants (B.1) satisfy relation (3.50). We start with the U(1) decoupling
relation (3.49) for the 4−point vertex

R(1; abcd) +R(1; acdb) +R(1; adbc) = 0 (B.9)

and use (3.47) together with (3.41) to factor out each term on the left-hand side into a product
of 3−point vertices

R(1; abcd) = R(1; abc)R(1; cda) = −R(1; abc)R(1; dca) ,
R(1; acdb) = R(1; acb)R(1; cdb) = −R(1; abc)R(1; dbc) ,
R(1; adbc) = R(1; abc)R(1; adb) = −R(1; abc)R(1; dab) . (B.10)

In this way, we obtain from (B.9)

R(1; abc)
[
R(1; dca) +R(1; dbc) +R(1; dab)

]
= 0 . (B.11)

It follows from (B.1) that R(1; abc)2 = 0 and, therefore, the general solution to this relation is

R(1; dca) +R(1; dbc) +R(1; dab) = κR(1; abc) . (B.12)

We can use (4.31) to verify that the expression on the left-hand side has zero residue at the poles
(1di) = 0 with i = a, b, c, implying that κ does not depend on the choice of point d. Putting
d = a on both sides and making use of (3.42) we find that κ = 1. We can obtain the same result
by replacing the R−invariants in (B.12) by their explicit expressions (B.2) and (B.3).

C The components of the five-point correlator

In this appendix we summarise the expressions for the eight coefficient functions defining the
5−point correlation function G5;1 in (5.3). Going through the steps outlined in Sect. 5.3 we can
compute them in terms of bosonic and fermonic T−blocks (5.9) and (5.10). One of the coefficient
function is given by (5.20) and the remaining seven functions are

f(1) =
2

3

c5∏
x2ij

[
(y223y

2
45x

2
25x

2
34 − x223x

2
45y

2
25y

2
34)(y

2
23y

2
45x

2
24x

2
35 − x223x

2
45y

2
24y

2
35)

+(y224y
2
35x

2
25x

2
34 − x224x

2
35y

2
25y

2
34)(y

2
24y

2
35x

2
23x

2
45 − x224x

2
35y

2
23y

2
45)

+(y225y
2
34x

2
23x

2
45 − x225x

2
34y

2
23y

2
45)(y

2
25y

2
34x

2
24x

2
35 − x225x

2
34y

2
24y

2
35)

]
(C.1)

f (αβ)(ab)(1, 2) = − c5∏
x2ij

[
y234y

2
45x

2
24x

2
35(y23ỹ31y15ỹ52)

(ab)(x14x̃45x53x̃31)
(αβ)

−x234x245y214y235(x13x̃32x25x̃51)(αβ)(y24ỹ45y53ỹ32)(ab)
]
+ perm345 (C.2)
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f (ab)(cd)(1, 2) = −2
c5∏
x2ij

[
1

2
x214x

2
24x

4
35 y

2
34y

2
45(y13ỹ32)

(a
(c(y15ỹ52)

b)
d)

+x213x
2
25x

2
34x

2
45 y

2
35(y15ỹ54y43ỹ32)

(a
(c(y14ỹ42)

b)
d)

+
1

6
x212x

2
34x

2
35x

2
45(y13ỹ34y45ỹ51)

(ab)(y23ỹ34y45ỹ52)
(cd)

]
+ perm345 (C.3)

f (αβ)(γδ)(1, 2) = 2
c5∏
x2ij

[
1

2
y214y

2
24y

4
35 x

2
34x

2
45(x13x̃32)

(α
(γ (x15x̃52)

β)
δ)

+y215y
2
23y

2
34y

2
45 x

2
35(x13x̃34x45x̃52)

(α
(γ (x14x̃42)

β)
δ)

+
1

6
y212y

2
34y

2
35y

2
45(x14x̃43x35x̃51)

(αβ)(x24x̃43x35x̃52)
(γδ)

]
+ perm345 (C.4)

fαβγδ,abcd(1, 2, 3, 4) = 8c5
1

x215x
2
25x

2
35x

2
45

y214y
2
23

x212x
2
14x

2
23x

2
34

(y15ỹ52)
ab(x15x̃52)

αβ(y35ỹ54)
cd(x35x̃54)

γδ

+ graded perm234 (C.5)

fαβ,ab(cd)(1, 2, 3) = 4
c5∏
x2ij

[
(x14x̃42)

αβ
(
x212x

2
35x

2
45y

2
15y

2
25(y14ỹ43)

a(c(y24ỹ43)
bd)

−x214x225x235y215y245(y12ỹ23)a(c(y24ỹ43)bd) − x215x
2
24x

2
35y

2
25y

2
45(y14ỹ43)

a(c(y21ỹ13)
bd)

+x215x
2
25x

2
34y

2
45(y14ỹ42)

ab(y31ỹ12y25ỹ53)
(cd) + x213x

2
25x

2
45y

2
15(y14ỹ42)

ab(y32ỹ24y45ỹ53)
(cd)

−x215x223x245y225(y14ỹ42)ab(y31ỹ14y45ỹ53)(cd)
)

+
(
x212x

2
45y

2
15y

2
24 − x215x

2
24y

2
12y

2
45

)
(x14x̃43x35x̃52)

αβ(y14ỹ43)
a(c(y25ỹ53)

bd)

+x245(x
2
15x

2
24y

2
14y

2
25 − x214x

2
25y

2
15y

2
24)(x13x̃32)

αβ(y14ỹ43)
a(c(y25ỹ53)

bd)

]
+ perm45 (C.6)

fαβ(γδ),ab(1, 2, 3) = 4
c5∏
x2ij

[
(y14ỹ42)

ab
(
y212y

2
35y

2
45x

2
15x

2
25(x14x̃43)

α(γ(x24x̃43)
βδ)

−y214y225y235x215x245(x12x̃23)α(γ(x24x̃43)βδ) − y215y
2
24y

2
35x

2
25x

2
45(x14x̃43)

α(γ(x21x̃13)
βδ)

+y215y
2
25y

2
34x

2
45(x14x̃42)

αβ(x31x̃12x25x̃53)
(γδ) + y213y

2
25y

2
45x

2
15(x14x̃42)

αβ(x32x̃24x45x̃53)
(γδ)

−y215y223y245x225(x14x̃42)αβ(x31x̃14x45x̃53)(γδ)
)

+(y212y
2
45x

2
15x

2
24 − y215y

2
24x

2
12x

2
45)(y14ỹ43y35ỹ52)

αβ(x14x̃43)
α(γ(x25x̃53)

βδ)

+y245(y
2
15y

2
24x

2
14x

2
25 − y214y

2
25x

2
15x

2
24)(y13ỹ32)

ab(x14x̃43)
α(γ(x25x̃53)

βδ)
]
+ perm45 (C.7)

Multiplied by
∏

i<j x
2
ij , these expressions have a definite parity under the exchange of spatial and

harmonic coordinates, xi ↔ yi. Namely, f and fαβγδ,abcd are invariant under this transformation,
f(αβ)(ab)(1, 2) transforms into −f(αβ)(ab)(2, 1); f(ab)(cd) and f(αβ)(γδ) transform into each other as
well as fαβ(γδ),ab into fαβ,ab(cd). To understand the origin of these properties, we notice that,
according to the second relation in (5.22), I5;1 is invariant under xi ↔ yi. Consequently the
correlation function G5;1 (as well as its components) inherit the same symmetry.
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D Useful identities

In this appendix we prove some identities that we used in computing the correlation function in
the twistor approach. They involve the variables σij defined in (3.38). Using the gauge (3.26),
we can express them in terms of the spatial coordinates x as

σα
ij = ǫαβ

〈Zi,βZ∗Zj,1Zj,2〉
〈Zi,1Zi,2Zj,1Zj,2〉

= (x−1
ij x̃j0|0〉)α , (D.1)

where the auxiliary point x0 and spinor |0〉 ≡ λ0 originate from the expression for the reference
twistor

ZI
∗ = (λ0,α, ix

α̇β
0 λ0,β) . (D.2)

Then, we apply (D.1) to obtain the following representation for the brackets (ijk) introduced in
(4.25)

(ijk) = 〈σijσik〉x2ijx2ik = 〈0|x0j x̃jixikx̃k0|0〉 . (D.3)

It is straightforward to verify that

(ijk) = x20i〈0|x0j x̃0k|0〉 − x20j〈0|x0ix̃0k|0〉+ x20k〈0|x0ix̃0j |0〉 (D.4)

so that (ijk) is completely antisymmetric in the indices.
Let us show that the following identities take place

(σα
13σ

β
21) + (σα

12σ
β
23)− (σα

13σ
β
23) =

(x13x̃32)
αβ

x212x
2
23x

2
31

(123) ,

(i12)(i34) + (i13)(i42) + (i14)(i23) = 0 . (D.5)

To begin with we notice that both relations stay invariant under the conformal transformations
acting both on the external points 1, 2, 3, 4, i and on the auxiliary point 0 defining the reference
twistor (D.2). We can then use the conformal symmetry to put x2 = 0 and x3 → ∞ in (D.5).
Under this choice the first relation in (D.5) simplifies as

|0〉α(x−1
1 x̃10|0〉)β + (x−1

1 x̃0|0〉)α|0〉β − |0〉α|0〉β = −ǫαβ〈0|x−1
1 x̃0|0〉 (D.6)

and it is obviously satisfied. We can prove the second relation in (D.5) in a similar manner by
choosing xi → ∞ and x2 = 0.

Finally, we prove of the non-trivial six-term identity

(234)(341)x212 − (234)(124)x213 + (123)(234)x214

+ (124)(134)x223 − (123)(134)x224 + (123)(124)x234 = 0 . (D.7)

It is convenient to introduce an auxiliary dual reference twistor Z̃∗ normalised as Z̃∗AZ
A
∗ = 1. It

then allows us to define two sets of dual variables

Z̃iA = Xi,ABZ
B
∗ , ẐA

i = XAB
i Z̃∗B , (D.8)
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with XBC
i = ZB

i,1Z
C
i,2 − ZC

i,1Z
B
i,2 and Xi,AB = 1

2
ǫABCDX

CD
i . They satisfy the relations

Z̃jAZ
A
∗ = ẐA

i Z̃∗A = 0 . (D.9)

We also notice that since the XAB takes values in the Clifford algebra of SU(4), the following
holds true:

ẐA
i Z̃jA + ẐA

j Z̃iA = −Z̃∗AZ
C
∗ (X

AB
i XjBC +XAB

j XiBC) = −(Xi ·Xj) . (D.10)

Using the dual variables (D.8) we can obtain two equivalent representations for (ijk) defined in
(D.1) and (D.3)

(ijk) =
1

2
ǫABCDZ̃iAZ̃jBZ̃kCZ̃∗D =

1

2
ǫABCDẐ

A
i Ẑ

B
j Ẑ

C
k Z

D
∗ ≡ 〈 ijk∗ 〉 . (D.11)

According to (D.9), the twistors Z̃jA with j = 1, . . . , 4 are all orthogonal to ZA
∗ , therefore, they

are linear dependent. The same is true for ẐA
j with j = 1, . . . , 4. This yields two identities

Z̃1A 〈234∗〉+ Z̃2A 〈34∗1〉+ Z̃3A 〈4∗12〉+ Z̃4A 〈∗123〉 = 0 ,

ẐA
1 〈234∗〉+ ẐA

2 〈34∗1〉+ ẐA
3 〈4∗12〉+ ẐA

4 〈∗123〉 = 0 (D.12)

Finally we multiply the expressions on the left-hand side and contract the SU(4) indices to get

(234)(341)(X1 ·X2)− (123)(134)(X2 ·X4)− (234)(124)(X1 ·X3)

+ (123)(234)(X1 ·X4) + (124)(134)(X2 ·X3) + (123)(124)(X3 ·X4) = 0 . (D.13)

where we made use of (D.10) and took into account that (Xi · Xi) = 0. Since the last relation
is homogenous in X ’s we can employ the gauge (3.26) and replace (Xi · Xj) = x2ij to arrive at
(D.7).
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