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Abstract. The pseudostress approximation of the Stokes equations rewrites the stationary
Stokes equations with pure (but possibly inhomogeneous) Dirichlet boundary conditions as
another (equivalent) mixed scheme based on a stress in Hpdivq and the velocity in L2. Any
standard mixed finite element function space can be utilized for this mixed formulation, e.g.
the Raviart-Thomas discretization which is related to the Crouzeix-Raviart nonconforming
finite element scheme in the lowest-order case. The effective and guaranteed a posteriori
error control for this nonconforming velocity-oriented discretization can be generalized to
the error control of some piecewise quadratic velocity approximation that is related to the
discrete pseudostress. The analysis allows for local inf-sup constants which can be chosen in
a global partition to improve the estimation. Numerical examples provide strong evidence
for an effective and guaranteed error control with very small overestimation factors even for
domains with large anisotropy.

1. Introduction

The pseudostress finite element method (PS-FEM) has recently been established in the
context of a least-squares finite element method for the Stokes equations [1, 2, 3]. The
adaptive mesh-refinement leads to optimal convergence rates [4] for the lowest-order case.
This and the principle availability for higher polynomial degrees makes this mixed finite
element method highly attractive over the nonconforming P1 finite element method usually
attributed to Crouzeix and Raviart.

The error control for finite element methods in the energy norm with residual-based ex-
plicit error estimators typically leads to unknown or large multiplicative reliability constants
and is usually uncompetitive over refined methodologies like equilibration error estimators
that lead to guaranteed upper bounds, see [5, 6, 7] for recent error estimator competitions.
In case of nonconforming finite element schemes, one residual in the error analysis concerns
the geometric condition that one variable is a distributional gradient of a Sobolev function
and thereby involves the design of a particular test-function v near to the discrete solution
uh. For the Stokes problem, the side conditions on this Sobolev function require the match
of the true Dirichlet boundary conditions as well as the incompressibility condition div v “ 0
a.e. in the domain Ω. The relaxation of this later condition has been suggested in [8] based
on some regular split of a gradient into a gradient of a divergence-free H1 function and an
L2-orthogonal remainder. This leads to the guaranteed upper bound of the energy error

�

�u´ uh
�

�

2

NC
ď η2 `

´

�

�v ´ uh
�

�

NC
`
∥∥div v

∥∥
L2pΩq

{c0

¯2
.

The first quantity η depends only on the right-hand side f , while the second term on the
right-hand side depends on v. Another advantage of the PS-FEM is the appearance of
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the oscillation of the right-hand side f in η compared to the L2-norm of the mesh-size
times f in the nonconforming case [9]. The stability constant c0 is an inf-sup constant and
difficult to compute, see [10] and [11] for the corrected results. Moreover, c0 deteriorates for
stretched domains with large aspect ratios [12] and so may crucially worsen the efficiency
indices of all error estimators based on designs of non divergence-free test-functions. Several
such designs were proposed and compared in [8, 13, 14] and mainly stem from popular
conforming postprocessings of nonconforming finite element solutions for the Poisson problem
[15, 16, 17, 7].

The only approach to compute guaranteed error bounds for the backward facing step
from Subsection 5.4 follows the localization technique [9] with a partition Ω1, . . . ,ΩJ of Ω
and inf-sup constants cj of Ωj . When the designed test-function satisfies the additional
condition

ż

BΩj

v ¨ νΩj ds “ 0 for j “ 1, . . . , J,

the guaranteed upper bound only includes the local inf-sup constants of the subdomains Ωj ,
i.e.,

�

�u´ uh
�

�

2

NC
ď η2 `

J
ÿ

j“1

´∥∥DNCpv ´ uhq
∥∥
L2pΩjq

`
∥∥div v

∥∥
L2pΩjq

{cj

¯2
.

To mention just two prominent situations, one may think of a decomposition of an L-shaped
domain or a long thin channel into squares. Several strategies of how to satisfy the additional
constraint within the test-function designs from [13] are discussed in Section 4 below.

The resulting error estimators are studied for the lowest-order PS-FEM where uh :“ u2

is some piecewise quadratic function whose piecewise gradient equals the Raviart-Thomas
best-approximation of the exact pseudostress [4, 18] up to some pressure contribution. The
proposed error estimator designs of the present paper lead to the sharpest guaranteed upper
error bounds known for this scheme, even in the case of challenging domains with very small
inf-sup constants.

The remaining parts of this paper are organized as follows. Section 2 recalls the Stokes
equations and describes the nonconforming finite element discretization. Section 3 presents
the pseudostress approximation and states the main result for the guaranteed upper error
bound in Theorem 3.1 on page 5. Section 4 designs different interpolations of the discrete
velocity which lead to guaranteed upper error bounds. It includes the treatment of inhomo-
geneous Dirichlet boundary conditions. Finally, Section 5 presents numerical experiments
on some benchmark problems.

Standard notation on Lebesgue and Sobolev spaces applies throughout this paper such as
HkpΩq, Hpdiv,Ωq, and L2pΩq and the associated spaces for vector- or matrix-valued functions
HkpΩ;R2q, L2pΩ;R2q, HkpΩ;R2ˆ2q, Hpdiv,Ω;R2ˆ2q, and L2pΩ;R2ˆ2q. Let H1

0 pΩq –
 

v P

H1pΩq : v ” 0 on BΩ in the sense of traces
(

be equipped with the energy norm
�

� ¨
�

� –
∣∣ ¨ ∣∣

H1pΩq
“

∥∥D ¨
∥∥
L2pΩq

.

The 2D rotation operators read, for v P H1pΩ;R2q,

Curl v –

ˆ

´Bv1{Bx2 Bv1{Bx1

´Bv2{Bx2 Bv2{Bx1

˙

and curl v – tr Curl v.

The expression A À B abbreviates the relation A ď CB with a generic constant 0 ă C
which solely depends on the interior angles ?T of the underlying triangulation; A « B
abbreviates A À B À A.
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2. Notation and Preliminaries

2.1. Stokes equations. This paper concerns the 2D Stokes equations: Given a right-hand
side f P L2pΩ;R2q and Dirichlet boundary data uD P H

1pΩ;R2q with
ş

BΩ uD ¨ ν ds “ 0, seek

a pressure p P L2
0pΩ;R2q :“ tq P L2pΩ;R2q :

ş

Ω q dx “ 0u and a velocity field u P H1pΩ;R2q

with

´∆u`∇p “ f and div u “ 0 in Ω while u “ uD on BΩ.

The error analysis involves (lower bounds of) the inf-sup constant

0 ă c0 :“ inf
qPL2

0pΩqzt0u

sup
vPH1

0 pΩ;R2qzt0u

ż

Ω
q div v dx

M

`∥∥D v
∥∥
L2pΩq

∥∥q∥∥
L2pΩq

˘

that arises in the Ladyzhenskaya lemma [19, §6. Theorem 6.3] and depends on Ω. Lower
bounds for this constant are in general difficult to compute, see [10] and for corrected results
[11]. Moreover, c0 gets smaller for stretched domains with large anisotropy [12]. How to
circumvent these problems for the error analysis is explained in Section 3 based on [9].

2.2. Nonconforming finite element spaces. Given a regular triangulation T of the
bounded Lipschitz domain Ω Ď R2 into closed triangles in the sense of Ciarlet with the
set of edges E , the set of nodes N , the set of interior edges EpΩq, the set of interior nodes
N pΩq, the set EpBΩq of edges along the boundary BΩ and the set of boundary nodes N pBΩq,
define the set midpEq– tmidpEq : E P Eu of midpoints of all edges and let EpT q be the set
of the three edges and let N pT q be the set of the three vertices of a triangle T P T . Let the
set T pzq contain all triangles T P T with vertex z P N pT q for a node z P N and denote its
cardinality with

∣∣T pzq∣∣. The diameter diampT q of T P T is denoted by hT and hT denotes
their piecewise constant values with hT |T – hT – diampT q for all T P T . With the ele-
mentwise polynomials PkpT ;R2q of degree at most k, the nonconforming Crouzeix-Raviart
finite element spaces read

CR1pT ;R2q– tv P P1pT ;R2q : @E P E , v is continuous at midpEqu,

CR1
0pT ;R2q– tv P CR1pT ;R2q : @E P EpBΩq, vpmidpEqq “ 0u.

The Crouzeix-Raviart finite element functions form a subspace of the piecewise Sobolev
functions

H1pT q– tv P L2pΩq : @T P T , v|T P H1pT q– H1pintpT qqu

with corresponding piecewise differential operators DNC and divNC.
The integral mean of a function f P L2pωq (or any vector f P L2pω;R2q) over some open

set ω is denoted by

fω –

 
ω
f dx–

ż

ω
f dx

M∣∣ω∣∣.
The oscillations of f P L2pΩq (as well as of vectors f P L2pΩ;R2q) read

osc2pf, T q–
ÿ

TPT
osc2pf, T q “

∥∥hT pf ´ fT q∥∥2

L2pΩq
with osc2pf, T q–

∥∥hT pf ´ fT q∥∥2

L2pT q
,

where fT – Πf denotes the L2-orthogonal projection of f onto the piecewise constant
functions P0pT q (respectively P0pT ;R2q).

Finally, define the right-hand side functional for given f P L2pΩ;R2q by

F pvq–

ż

Ω
f ¨ v dx for all v P H1pT ;R2q.(2.1)
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2.3. Crouzeix-Raviart FEM for the Stokes equations. The first discrete bilinear form
reads

aNCpuCR, vCRq–
ÿ

TPT

ż

T
DuCR : D vCR dx

for all uCR, vCR P CR1pT ;R2q Ď H1pT ;R2q with A : B –
ř

j,k“1,2AjkBjk for all 2 ˆ 2

matrices A,B P R2ˆ2. Let L2
0pΩq :“ tq P L2pΩq :

ş

Ω q dx “ 0u denote the space of L2

functions with zero integral mean. Then, the second discrete bilinear form reads

bNCpvCR, q0q–

ż

Ω
q0 divNC vCR dx

for all vCR P CR1
0pT ;R2q and q0 P P0pT q X L2

0pΩq. This leads to the discrete counterpart

ZNC – tvCR P CR1
0pT ;R2q : divNC vCR “ 0 a.e. in Ωu

of the set of divergence-free functions

Z – tv P H1
0 pΩ;R2q : div v “ 0 a.e. in Ωu.

The nonconforming representation of the Stokes problem reads: Given f P L2pΩ;R2q and
uD P L

2pΩ;R2q with
ş

BΩ uD ¨ ν ds “ 0, seek uCR P ZNC with

uCRpmidpEqq “

 
E
uD ds for all E P EpBΩq

and

aNCpuCR, vCRq “ F pvCRq for all vCR P ZNC.

In other words, up to boundary conditions, uCR is computed from the Riesz representation
of a linear functional (given as right-hand side plus boundary modifications) in the Hilbert
space pZNC, aNCq. The actual implementation uses unconstrained Crouzeix-Raviart elements
vCR P CR1

0pT ;R2q as test functions and enforce the constraint divNC uCR “ 0 a.e. in Ω by
piecewise constant Lagrange multipliers in P0pT qXL2

0pΩq. Hence, uCR from above and some
pCR P P0pT q X L2

0pΩq are determined by

aNCpuCR, vCRq ` bNCpvCR, pCRq “ F pvCRq for all vCR P CR1
0pT ;R2q,

bNCpuCR, qCRq “ 0 for all qCR P P0pT q X L2
0pΩq.

3. Pseudostress Approximation and Error Analysis

A simple postprocessing of the Crouzeix-Raviart nonconforming solution puCR P ZNC and
ppCR P P0pT q X L2

0pΩq for the piecewise constant right-hand side fT (instead of f in (2.1))
leads to the pseudostress representation

σPS – DNC puCR ´
fT
2
b p‚ ´midpT qq ´ ppCRI2ˆ2 and

uPS – ΠpuCR `
1

4
ΠpdevpfT b p‚ ´midpT qqqp‚ ´midpT qqq,

where midpT q denotes the piecewise constant vector-valued function with midpT q|T :“
midpT q and devpAq :“ A ´ trpAq I2ˆ2{2 denotes the deviatoric part of some matrix-valued
function A. Then, the piecewise quadratic function

u2 – puCR ´
fT
4

´∣∣ ‚ ´midpT q
∣∣2 ´ ∥∥ ‚ ´midpT q

∥∥2

L2pΩq

¯

P P2pT ;R2q

satisfies DNC u2 “ σPS ` ppCRI2ˆ2.
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The pair pσPS, uPSq solves the Raviart-Thomas mixed FEM [4, 3] to approximate the exact
pseudostress

σ – Du´ pI2ˆ2 P Hpdiv,Ω;R2ˆ2q{R –

"

τ P Hpdiv,Ω;R2ˆ2q :

ż

Ω
tr τ dx “ 0

*

with f ` div σ “ 0 and the exact solution u P H1pΩ;R2q in the discrete spaces

PSpT q–
 

τ P P1pT ;R2ˆ2q XHpdiv,Ω;R2ˆ2q{R : @j “ 1, 2, pτj1, τj2q P RT0pT q
(

and P0pT ;R2q such that div σPS`fT “ 0 a.e. in Ω. In fact, the following discrete formulation
has the unique solution pσPS, uPSq P PSpT q ˆ P0pT ;R2q,

ż

Ω
dev σPS : τPS dx`

ż

Ω
div τPS ¨ uPS dx “

ż

BΩ
uD ¨ τPSν ds for all τPS P PSpT q,(3.1)

ż

Ω
div σPS ¨ vPS dx “ ´

ż

Ω
f ¨ vPS dx for all vPS P P0pT ;R2q.(3.2)

The following theorem recovers the known results for the Crouzeix-Raviart finite element
method from [13, 8] for the pseudostress-related approximation u2 with the set of admissible
test functions A – tv P H1pΩ;R2q : v “ uD on BΩu. Moreover, a refined guaranteed upper
bound that follows an idea from [9] is introduced. This idea is based on a partition of Ω into

J many subdomains Ω1, . . . ,ΩJ with
ŤJ
j“1 Ωj “ Ω, outer unit normal vectors νΩj and local

inf-sup constants

0 ă cj – inf
qPL2

0pΩjqzt0u

sup
vPH1

0 pΩj ;R2qzt0u

ż

Ωj

q div v dx
M

`
∥∥D v

∥∥
L2pΩjq

∥∥q∥∥
L2pΩjq

˘

for j “ 1, . . . , J.

The set of test functions that are suitable for the refined error control satisfy an additional
contraint and are defined by

(3.3) rA :“

#

v P A :

ż

BΩj

v ¨ νΩj ds “ 0 for j “ 1, . . . , J

+

.

Moreover, the constant j1,1 ě 3.8317 below denotes the first positive root of the first Bessel
function.

Theorem 3.1. (a) Any v P A satisfies
�

�u´ u2

�

�

2

NC
ď oscpf, T q2{j2

1,1 `

´

�

�v ´ u2

�

�

NC
`
∥∥div v

∥∥
L2pΩq

{c0

¯2
.

(b) Any v P rA from (3.3) satisfies

�

�u´ u2

�

�

2

NC
ď oscpf, T q2{j2

1,1 `

J
ÿ

j“1

´∥∥DNCpv ´ u2q
∥∥
L2pΩjq

`
∥∥div v

∥∥
L2pΩjq

{cj

¯2
.

Proof of Theorem 3.1 (a). The point of departure is the orthogonal split from [8, Subsection
3.2],

DNCpu´ u2q “ D z ` y(3.4)

into some z P Z with
ż

Ω
D z : D v dx “

ż

Ω
DNCpu´ u2q : D v dx for all v P Z

and the remainder

y P Y :“

"

y P L2pΩ;R2ˆ2q :

ż

Ω
y : D v dx “ 0 for all v P Z

*

.
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Since Y is the orthogonal complement of DpZq in L2pΩ;R2ˆ2q, it follows

(3.5)
�

�u´ u2

�

�

2

NC
“

�

�z
�

�

2
`
∥∥y∥∥2

L2pΩq
.

Since z P Z, I2ˆ2 : D z “ div z “ 0 a.e. This, the aforementioned orthogonality, and an
integration by parts show

�

�z
�

�

2
“

ż

Ω
DNCpu´ u2q : D z dx “

ż

Ω
Du : D z dx´

ż

Ω
DNC u2 : D z dx

“

ż

Ω
f ¨ z dx´

ż

Ω
σPS : D z dx “

ż

Ω
f ¨ z dx`

ż

Ω
z ¨ div σPS dx “

ż

Ω
pf ´ fT q ¨ z dx.

Piecewise Poincaré inequalities (with Poincaré constant hT {j1,1 from [20, Corollary 3.4]) then
imply

ż

Ω
pf ´ fT q ¨ z dx “

ż

Ω
pf ´ fT q ¨ pz ´ zT q dx ď

ÿ

TPT

∥∥f ´ fT∥∥L2pT q

∥∥z ´ zT∥∥L2pT q

ď
ÿ

TPT
hT {j1,1

∥∥f ´ fT∥∥L2pT q

∥∥D z
∥∥
L2pT q

ď oscpf, T q{j1,1
�

�z
�

�.

Hence,

(3.6)
�

�z
�

� ď oscpf, T q{j1,1.

Recall from [8, Subsection 3.2, Lemma 2] that, for each y P Y , there exists some q P L2
0pΩq

with
ż

Ω
y : Dw dx “

ż

Ω
q divw dx for all w P H1

0 pΩ;R2q

and

c0

∥∥q∥∥
L2pΩq

ď
∥∥y∥∥

L2pΩq
.

Hence, any v P A with u´ v “ 0 on BΩ satisfies∥∥y∥∥2

L2pΩq
“

ż

Ω
DNCpu´ u2q : y dx “

ż

Ω
DNCpv ´ u2q : y dx`

ż

Ω
Dpu´ vq : y dx

“

ż

Ω
DNCpv ´ u2q : y dx`

ż

Ω
q divpu´ vqdx

ď

´∥∥DNCpv ´ u2q
∥∥
L2pΩq

`
∥∥div v

∥∥
L2pΩq

{c0

¯∥∥y∥∥
L2pΩq

.

Therefore, ∥∥y∥∥
L2pΩq

ď
∥∥DNCpv ´ u2q

∥∥
L2pΩq

`
∥∥divpvq

∥∥
L2pΩq

{c0.(3.7)

The combination of (3.5)–(3.7) concludes the proof. �

Proof of Theorem 3.1 (b). The proof follows ideas from [9] for the local versions

Zj – tz P H1
0 pΩj ;R2q : div z “ 0 a.e. in Ωju and

Yj –
!

y P L2pΩj ;R2ˆ2q :

ż

Ωj

y : D z dx “ 0 for all z P Zj

)

of Z and Y from the proof of (a) with Ω replaced by Ωj .

Given v P rA and any j “ 1, . . . , J, the condition
ż

BΩj

v ¨ νjds “ 0
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guarantees that the Stokes equations with volume force fT has a unique solution wj P Zj
with the boundary data wj “ v along BΩj , i.e.,

ż

Ωj

Dwj : D ζj dx “

ż

Ωj

fT ¨ ζj dx for all ζj P Zj .(3.8)

Furthermore, there exist zj P Zj and yj P Yj with

DNCpwj ´ u2q “ D zj ` yj on Ωj .

Since Yj is the orthogonal complement of DpZjq in L2pΩj ;R2ˆ2q, it follows

(3.9)
∥∥DNCpwj ´ u2q

∥∥2

L2pΩjq
“

∥∥D zj
∥∥2

L2pΩjq
`
∥∥yj∥∥2

L2pΩjq
.

The combination of the aforementioned orthogonality with (3.8), div zj “ 0 a.e. in Ωj ,
dev σPS “ dev DNC u2 and fT ` div σPS “ 0 yields∥∥D zj

∥∥2

L2pΩjq
“

ż

Ωj

DNCpwj ´ u2q : D zj dx “

ż

Ωj

Dwj : D zj dx´

ż

Ωj

DNC u2 : D zj dx

“

ż

Ωj

fT ¨ zj dx´

ż

Ωj

σPS : D zj dx “

ż

Ωj

pfT ` div σPSq ¨ zj dx “ 0.(3.10)

Recall from [8, Subsection 3.2, Lemma 2] that, for each yj P Yj , there exists some qj P L
2
0pΩjq

with
ż

Ωj

yj : Dϕj dx “

ż

Ωj

qj divϕj dx for all ϕj P H
1
0 pΩj ;R2q

and

cj
∥∥qj∥∥L2pΩjq

ď
∥∥yj∥∥L2pΩjq

.

The combination of this result for the test function ϕj ” wj ´ v P H1
0 pΩj ;R2q with the

aforementioned orthogonality and a Cauchy inequality result in∥∥yj∥∥2

L2pΩjq
“

ż

Ωj

yj : DNCpwj ´ u2qdx “

ż

Ωj

yj : DNCpv ´ u2q dx`

ż

Ωj

yj : DNCpwj ´ vqdx

ď

´∥∥DNCpv ´ u2q
∥∥
L2pΩjq

`
∥∥divϕj

∥∥
L2pΩjq

{cj

¯∥∥yj∥∥L2pΩjq
.

This, (3.9), (3.10), and divwj “ 0 a.e. in Ωj imply, for j “ 1, . . . , J ,∥∥DNCpwj ´ u2q
∥∥
L2pΩjq

“
∥∥yj∥∥L2pΩjq

ď
∥∥DNCpv ´ u2q

∥∥
L2pΩjq

`
∥∥div v

∥∥
L2pΩjq

{cj .(3.11)

The functions wj , zj P H
1
0 pΩj ;R2q can be extended by zero to rwj , rzj P H

1
0 pΩ;R2q (i.e.

rwj – wj and rzj – zj in Ωj and rwj , rzj – 0 in ΩzΩj) and yj P L
2pΩj ;R2ˆ2q can be extended

by zero to ryj P L
2pΩ;R2ˆ2q (i.e. ryj – yj in Ωj and ryj – 0 in ΩzΩj). Then the sums

rz – rz1 ` . . .` rzJ and rw – rw1 ` . . .` rwJ belong to Z.
Since div rw “ 0 a.e. in Ω, part (a) proves for rw P A that

�

�u´ u2

�

�

2

NC
ď oscpf, T q2{j2

1,1 `
�

�

rw ´ u2

�

�

2

NC
.

The estimate (3.11) implies

�

�

rw´u2

�

�

2

NC
“

J
ÿ

j“1

∥∥DNCpwj´u2q
∥∥2

L2pΩjq
ď

J
ÿ

j“1

´∥∥DNCpv ´ u2q
∥∥
L2pΩjq

`
∥∥div v

∥∥
L2pΩjq

{cj

¯2
.

This concludes the proof of (b). �



8 P. BRINGMANN, C. CARSTENSEN, AND C. MERDON

4. Proper Interpolation Designs

This section designs functions v P rA with the additional prerequisites

ż

BΩj

v ¨ νΩj ds “ 0 for j “ 1, . . . , J(4.1)

for Theorem 3.1 (b) by modifications of the designs compared in [13]. All designs satisfy a
discrete Dirichlet boundary condition of the set of admissable functions defined by

ApT q– tv P CpΩ;R2q : vpzq “ uDpzq for all z P N pBΩqu and

rApT q– tv P ApT q : v satisfies (4.1)u.

These functions violate the exact Dirichlet boundary condition, see Subsection 4.4 for a
remedy. Furthermore, EpΓq :“ tE P E : E Ď Γu defines the set of edges along the skeleton

Γ –
ŤJ
j“1 BΩj .

4.1. Piecewise quadratic interpolation. A nodal averaging of u2 as in [13] leads to the

piecewise quadratic and continuous function vAP2 P P2pT ;R2qX rApT q, defined via piecewise
quadratic interpolation of the values at the nodes z P N

vAP2pzq–

#

uDpzq for z P N pBΩq,
ř

TPT pzq u2|T pzq
M∣∣T pzq∣∣ for z P N pΩq,

and in the midpoints of the edges E P E with the two adjacent triangles T pmidpEqq of
E P EpΩq and the two endpoints N pEq

vAP2pmidpEqq–

#

ř

TPT pmidpEqq u2|T pmidpEqq
M∣∣T pmidpEqq

∣∣ for E P EpΩqzEpΓq,
3puCRpmidpEqq{2´

ř

zPN pEq vAP2pzq{4 for E P EpΓq.

Let pϕz : z P N YmidpEqq denote the piecewise quadratic and globally continuous basis
functions of P2pT q X CpΩq. The definition of vAP2 implies

ż

BΩj

vAP2 ¨ ν ds “
ÿ

EPEpBΩjq

ż

E
vAP2 ¨ ν ds

“
ÿ

EPEpBΩjq

´

vAP2pmidpEqq

ż

E
ϕmidpEq ds`

ÿ

zPN pEq
vAP2pzq

ż

E
ϕz ds

¯

¨ νΩj |E

“
ÿ

EPEpBΩjq

∣∣E∣∣{6 ´

4vAP2pmidpEqq `
ÿ

zPN pEq
vAP2pzq

¯

¨ νΩj |E

“
ÿ

EPEpBΩjq

∣∣E∣∣
puCRpmidpEqq ¨ νΩj |E “

ż

BΩj

puCR ¨ νΩj ds “

ż

Ωj

div puCR dx “ 0.

Hence, v ” vAP2 satisfies condition (4.1).
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4.2. Minimal piecewise quadratic interpolation. A global minimization of the guaran-
teed upper bound from Theorem 3.1 (b) leads to

vMP2 – argmin
vPP2pT ;R2qX rApT q

J
ÿ

j“1

´∥∥DNCpv ´ u2q
∥∥
L2pΩjq

`
∥∥div v

∥∥
L2pΩjq

{cj

¯2

“ argmin
vPP2pT ;R2qX rApT q

J
ÿ

j“1

min
0ăµjă8

´

p1` µjq
∥∥DNCpv ´ u2q

∥∥2

L2pΩjq

` p1` 1{µjq
∥∥div v

∥∥2

L2pΩjq
{c2
j

¯

and is realised by the following algorithm.

Algorithm 4.1 (global minimization). Input pu2 P P2pT ;R2q, c1, . . . , cj ,Ω1, . . . ,ΩJ and the
number of iterations K P N.
Initialize µj – 1 for j “ 1, . . . , J .
for k “ 1, . . . ,K do

Compute vMP2pkq –

argmin
vPP2pT ;R2qX rApT q

J
ÿ

j“1

´

p1` µjq
∥∥DNCpv ´ u2q

∥∥2

L2pΩjq
` p1` 1{µjq

∥∥div v
∥∥2

L2pΩjq
{c2
j

¯

,

µj –
∥∥div vMP2pkq

∥∥
L2pΩjq

M

`

cj
∥∥DNCpvMP2pkq ´ u2q

∥∥
L2pΩjq

˘

for j “ 1, . . . , J . od

Output vMP2pKq P P2pT ;R2q X rApT q.

The condition (4.1) (involved in rApT q) may be enforced by Lagrange multipliers λ P RJ .
The computation of vMP2pkq requires a solution of a linear system in each step. In order to
reduce the computational costs, we use three iterations of a preconditioned conjugate gradient
method for inexact solve and denote the solution with vMP2CG3pKq. The preconditioner is
the diagonal of the system matrix named after Jacobi. Note that this solution might not
satisfy condition (4.1) exactly. For a remedy, the reader is referred to Subsection 4.5.

Undisplayed numerical experiments show that the values after K “ 3 iterations do not
significantly change anymore.

4.3. Piecewise linear interpolation on red-refinement. This subsection designs piece-

wise linear vred P P1predpT q;R2qX rApT q with respect to the uniform red-refinement redpT q of
triangulation T [7, 13]. The nodes of redpT q consists of the nodes N and the edge midpoints

midpEq of T . Define vred P P1predpT q;R2q X rApT q via piecewise linear interpolation of the
values, for the node z P N ,

(4.2) vredpzq–

#

uDpzq for z P N pBΩq,
vz for z P N pΩq

with some particular choice of vz P R2, and in the midpoints of the edges E P E ,

(4.3) vredpmidpEqq–

#

puCRpmidpEqq for E P EpΩqzEpΓq,
2puCRpmidpEqq ´

ř

zPN pEq vredpzq{2 for E P EpΓq.
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Define pϕred
z : z P N YmidpEqq as the nodal basis functions in P1predpT qq X CpΩq. The

definition of vred implies
ż

BΩj

vred ¨ ν ds “
ÿ

EPEpBΩjq

ż

E
vred ¨ ν ds

“
ÿ

EPEpBΩjq

´

vredpmidpEqq

ż

E
ϕred

midpEq ds`
ÿ

zPN pEq
vredpzq

ż

E
ϕred
z ds

¯

¨ νΩj |E

“
ÿ

EPEpBΩjq

∣∣E∣∣{4 ´

2vredpmidpEqq `
ÿ

zPN pEq
vredpzq

¯

¨ νΩj |E

“
ÿ

EPEpBΩjq

∣∣E∣∣
puCRpmidpEqq ¨ νΩj |E “

ż

BΩj

puCR ¨ νΩj ds “

ż

Ωj

div puCR dx “ 0.

Hence, v ” vred satisfies condition (4.1).

z

P1 “ P6

P2

P3P4

P5

Q1

Q2

Q3
Q4

Q5

T1

T2

T3

T4

T5

ωred
z

(a) Interior Patch

P1

T1

T2

T4

T3

P2

T1

T2

T4

T3

P3

T1

T2

T4

T3
Q1

T1

T2

T4

T3

Q2

T1

T2

T4

T3

Q3

T1

T2

T4

T3

(b) Central Subtriangle T4 “

convtmidpEpT qqu in redpT q for T P T .

Figure 4.1. Notation for red-refinements.

interpolation vred is fixed on all central subtriangles as T4 in Figure 4.1(b) and it remains
to determine the values vz at the free nodes z P N pΩq, e.g. by nodal averaging

(4.4) vz –
ÿ

TPT pzq
puCR|T pzq

L
∣∣T pzq∣∣ for all z P N pΩq.

Algorithm 4.2 below suggests the one-dimensional minimization problem around each node
patch ωred

z with respect to the red-refined triangulation as in Figure 4.1(a) under the side
condition of the fixed values at the edge midpoints Qj of the adjacent edges.

Algorithm 4.2 (patchwise minimization). Input puCR P CR
1pT ;R2q, c1, . . . , cJ ,Ω1, . . . ,ΩJ

and the number of iterations K P N.
Initialize vPMred –

ř

EPE puCRpmidpEqqϕred
midpEq and µj :“ 1 for j “ 1, . . . , J .

for k “ 1, . . . ,K do
v0 –

ř

EPE vPMredpmidpEqqϕred
midpEq,
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@z P N pΩq compute

vz – argmin
wPR2

J
ÿ

j“1

´

p1` µjq
∥∥DNCpv0 ` wϕ

red
z ´ u2q

∥∥2

L2pωred
z XΩjq

` p1` 1{µjq{c
2
j

∥∥divpv0 ` wϕ
red
z q

∥∥2

L2pωred
z XΩjq

¯

,

vPMred – v0 `
ř

zPN pΩq vzϕ
red
z ,

@j “ 1, . . . , J compute µj –
∥∥div vPMred

∥∥
L2pΩjq

{
`

cj
∥∥DNCpvPMred ´ u2q

∥∥
L2pΩjq

˘

. od

Output vPMred P P1predpT q;R2q X rApT q.

Undisplayed numerical experiments show that the values after K “ 3 iterations do not
significantly change anymore.

We distinguish between the optimal version vPMred from Algorithm 4.2, and vMAred with
the suboptimal choice vz from (4.4).

4.4. Inhomogeneous Dirichlet boundary conditions. In case of inhomogeneous Di-
richlet boundary conditions all designs in Subsections 4.1–4.3 result in some vxyz which does
not necessarily belong to A. To heal this shortcoming, a virtual boundary reconstruction
wD P H

1pΩq with wD “ uD ´ vxyz along BΩ as in [21, 7, 13] allows v – vxyz ` wD P A and
the estimates∥∥DNCpv ´ u2q

∥∥
L2pΩjq

`
∥∥div v

∥∥
L2pΩjq

{cj ď
∥∥DNCpvxyz ´ u2q

∥∥
L2pΩjq

`
∥∥div vxyz

∥∥
L2pΩjq

{cj

`
∥∥DwD

∥∥
L2pΩjq

`
∥∥divwD

∥∥
L2pΩjq

{cj .

The divergence and energy norm of wD can be estimated by [21, Theorem 4.2]∥∥divwD
∥∥
L2pΩjq

ď
?

2
∥∥DwD

∥∥
L2pΩjq

ď
?

2Cγ
∥∥h3{2

E B2
EpuD ´ vxyzq{Bs

2
∥∥
L2pBΩjXBΩq

.

The construction of wD ensures
ş

E wD ds “ 0 for all E P EpBΩjq. Hence, v ” vxyz ` wD P
rApT q for any vxyz P rApT q.

For right isosceles triangles, numerical calculations in [7] suggest the constant Cγ “ 0.4980.
If vxyz|E equals uD|E at N pEq and midpEq for all E P EpBΩq, wD can be designed on
the red-refined triangulation with halved edge lengths and accordingly reduced constant
Cγ “ 0.4980{23{2 “ 0.1761.

4.5. Projection. This subsection designs a projection operator that projects a given func-

tion v P P2pT ;R2q XApT q onto a function ṽ P P2pT ;R2q X rApT q. Consider the constrained
minimization problem

min
wPP2pT ;R2qX rApT q

J
ÿ

j“1

´

p1` µjq
∥∥Dpv ´ wq

∥∥2

L2pΩjq
` p1` 1{µjq

∥∥divpv ´ wq
∥∥2

L2pΩjq
{c2
j

¯

,

where 0 ă µj ă 8 is chosen as follows

µj –

#∥∥div v
∥∥
L2pΩjq

M

`

cj
∥∥DNCpv ´ u2q

∥∥
L2pΩjq

˘

if v P tvMP2pKq, vMP2CG3pKqu,

1 otherwise.

For a given enumeration N YmidpEq “ tz1, . . . , zMu of the M –
∣∣N ∣∣ ` ∣∣E∣∣ nodes of the

triangulation, define the index set of all nodes on the boundary

M – tm P t1, . . . ,Mu : zm P BΩu.
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Let pϕz : z P N YmidpEqq denote the piecewise quadratic and globally continuous basis
functions of P2pT qXCpΩq enumerated according to the nodes of the triangulation, i.e. ϕm –

ϕzm for m “ 1, . . . ,M . Let x, y P R2M denote the coefficients of the basis representation of
w respectively v,

w “
M
ÿ

m“1

xmpϕm, 0q
J ` xM`mp0, ϕmq

J and v “
M
ÿ

m“1

ympϕm, 0q
J ` yM`mp0, ϕmq

J.

Then, the minimization problem reads

min
xPR2M

py ´ xqJApy ´ xq s.t. pxm, xM`mq
J “ uDpzmq for m PM and Bx “ 0,

where A P R2Mˆ2M is defined via

A`m –

J
ÿ

j“1

´

p1` µjq

ż

Ωj

Dϕ` : Dϕm dx` p1` 1{µjq

ż

Ωj

divϕ` divϕm dx{c2
j

¯

for `,m “ 1, . . . , 2M and condition (4.1) is expressed by the rectangular matrix B P RJˆ2M

with the entries

Bjm “

ż

BΩj

ϕm ¨ ν ds for j “ 1, . . . , J and m “ 1, . . . , 2M.

Introduce J many Lagrangian multipliers λ1, . . . , λJ to ensure the side condition (4.1).
Minimizing the Lagrange functional

Lpy;x, λq– py ´ xqJApy ´ xq ` λJBx

leads to the saddle point problem
„

2A BJ

B 0

 „

x
λ



“

„

2Ay
0



.

In order to reduce the computational costs, replace the matrix A by its diagonal Λ – diagpAq.
Finally, define the desired projection

ṽ –

M
ÿ

m“1

xmpϕm, 0q
J ` xM`mp0, ϕmq

J P P2pT ;R2q X rApT q.

5. Numerical Experiments

This section presents some benchmark examples with convergence history plots for the
energy error and history plots of efficiency indices for error estimators as a function of
numbers of degrees of freedom (ndof). The labels of the graphs refer to the subscripts of the
estimator term ηxyz as follows, ’AP2’ indicates the piecewise quadratic interpolation vAP2

and ’MP2’ the minimal piecewise quadratic interpolation vMP2, where the following number
in brackets indicates the number of iterations K in Algorithm 4.1. ’MAred’ and ’PMred’
indicate the two different piecewise linear interpolations vMAred and vPMred on the red-refined
triangulation. The annotation ’(mod)’ indicates the modified interpolations according to the
side condition (4.1) and ’(proj)’ indicates the usage of the projection from Subsection 4.5.
Both allow for the upper bound from Theorem 3.1 (b).
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5.1. Adaptive algorithm. The benchmark examples employ the following adaptive al-
gorithm which includes an equivalent modification of the a posteriori error estimator ηopt

from [3].

Algorithm 5.1 (APSFEM). Input Initial regular triangulation T0 with refinement edges of
the polygonal domain Ω into triangles and bulk parameter 0 ă θ ď 1.
for any level ` “ 0, 1, 2, . . . do

Solve (3.1)–(3.2) with respect to regular triangulation T` with solution pσ`, u`q.
Compute pη`pT`, T q, T P T`q with

η2
optpT`, T q– osc2pf, T q `

∣∣T ∣∣∥∥ curlpdev σ`q
∥∥2

L2pT q

`
∣∣T ∣∣1{2 ÿ

EPEpT q

∥∥rdevpσ`qτEsE
∥∥2

L2pEq

and
η2

optpT`q–
ÿ

TPT
η2

optpT`, T q.

Mark a subset M` of T` of (almost) minimal cardinality
∣∣M`

∣∣ with

θη2
` ď η2

` pM`q–
ÿ

TPM`

η2
` pT q.

Refine. Compute the smallest regular refinement T``1 of T`
with M Ď T`zT``1 by newest vertex bisection. od

Output Sequence of discrete solutions pσ`, u`q`PN0 and meshes pT`q`PN0.

Recall from [4], that this algorithm leads to quasi-optimal convergence in the notion of
approximation classes.

5.2. Classical example on L-shaped domain. The first benchmark problem employs
fpx, yq ” 0 with the exact solution in polar coordinates

upr, ϑq “ rαpp1` αq sinpϑqwpϑq ` cospϑqw1pϑq,´p1` αq cospϑqwpϑq ` sinpϑqw1pϑqqJ,

ppr, ϑq “ ´rα´1pp1` αq2w1pϑq ` w3pϑqq{p1´ αq

on the L-shaped domain Ω “ p´1, 1q2zpp0, 1q ˆ p´1, 0qq, where

wpϑq “ 1{pα` 1q sinppα` 1qϑq cospαωq ´ cosppα` 1qϑq

` 1{pα´ 1q sinppα´ 1qϑq cospαωq ` cosppα´ 1qϑq

for α “ 856399{1572864 and ω “ 3π{2 from [22]. The inhomogeneous Dirichlet boundary
data are prescribed by the exact solution uDpx, yq– upx, yq on BΩ. The L-shaped domain Ω
is partitioned into the three unit squares Ω1 “ p´1, 0q2,Ω2 “ p´1, 0qˆp0, 1q and Ω3 “ p0, 1q

2.
Due to theoretical lower bounds by [10, 11], use 0.1601 ď c0 and 0.3826 ď cj for j “ 1, 2, 3.

Figure 5.1 shows the convergence history of the exact energy error for uniform and adaptive
mesh refinement by Algorithm 5.1 with θ “ 0.5. As known for this example, the convergence
rate for the uniform mesh refinement is not optimal, i.e. 0.25 with respect to the number of
degrees of freedom (or 0.5 with respect to the mesh width as h ” ndof´1{2).

Figure 5.2 shows the efficiency indices for all error estimators for uniform mesh refine-
ment. The main observation is that the efficiency indices for the ’(mod)’ and ’(proj)’ error
estimators, that allow for the refined upper bounds with the local inf-sup constant from
Theorem 3.1 (b), are dramatically improved compared to the error estimators that operate
with unmodified designs. In other words, the gain from the change from global to local
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Figure 5.1. Convergence history of the energy error for uniform and adapt-
ive mesh refinement for the problem from Subsection 5.2.
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MP2CG3(3)

MP2CG3(3) (proj)
MAred

MAred (mod)
PMred

PMred (mod)

Figure 5.2. History of efficiency indices ηxyz{~u´uh~ of various a posteriori
error estimators labelled xyz in the figure as functions of the number of
unknowns on uniform meshes for the problem from Subsection 5.2.

inf-sup constants is larger than the loss of freedom from the additional constraints in the
designs. As an example the efficiency index for ηAP2 drops from about 4.5 to almost 3.0 for
ηAP2 (mod) and the efficiency index for ηMAred drops from 4.4 to about 3.5 for ηMAred (mod).
Also the global designs with a truncated minimization benefit from the modifications and



ERROR CONTROL FOR STOKES PSEUDOSTRESS FEM 15

101 102 103 104 105 106
1

2

3

4

5

6

7

8

ndof

effi
ci

en
cy

in
d

ic
es

AP2

AP2 (mod)

AP2 (proj)

MP2(1)

MP2(3)

MP2(3) (mod)

MP2(3) (proj)

MP2CG3(3)

MP2CG3(3) (proj)
MAred

MAred (mod)
PMred

PMred (mod)

Figure 5.3. History of efficiency indices ηxyz{~u´uh~ of various a posteriori
error estimators labelled xyz in the figure as functions of the number of
unknowns for adaptive mesh refinement for the problem from Subsection 5.2.

Ω

Ω1 Ω2 Ω3 . . . Ω`

Figure 5.4. Subdivision of the domain Ω in the stretched colliding flow
example from Subsection 5.3.

the projection. For example, the efficiency index of ηMP2CG3(3) of about 2.7 is improved
to 1.8 by its modified form ηMP2CG3(3) (proj). The estimator with the least improvement is
ηMP2(3) which is due to the fact that its inf-sup constant dependable part of the error estim-
ator is very small at least on fine meshes. The variant ηMP2(3) (proj) is slighlty less efficient
than the variant ηMP2(3) (mod). Hence, it seems advisable to add the additonal constraint
as a side constraint in the minimization problem. However, in case of ηAP2, the ’(proj)’
variant is slightly more efficient than the ’(mod)’ variant. The efficiency indices for adaptive
mesh refinement depicted in Figure 5.3 allow similar conclusions with even more remarkable
improvements for the local designs.

5.3. Colliding flow example on stretched domain. Given a ratio ` P N, let Ω –

p´1, 2` ´ 1q ˆ p´1, 1q denote a stretched domain. The subdivision Ω1, . . . ,Ω` of Ω consists
of the ` squares with edge length 2 as displayed in Figure 5.4 and lower bounds of the local
inf-sup constants 0.3826 ď cj for j “ 1, . . . , ` from [10, 11]. A computation of a lower
bound for the inf-sup constant on star-shaped domains Ω according to [11, Corollary 7 and
Proposition 9 i)] yields the lower bounds of c0 as displayed in Table 1.
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Figure 5.5. Convergence history of the exact energy error for uniform and
adaptive mesh refinements for the problem from Subsection 5.3.

The second benchmark problem employs fpx, yq– p240p`´1px`1q´1qy2, 240`´3p`´1px`
1q ´ 1q2yqJ with the exact solution which is derived by transformation of the solution from
the colliding flow example to the stretched domain Ω, i.e.,

upx, yq– p20p`´1px` 1q ´ 1qy4 ´ 4p`´1px` 1q ´ 1q5, 20`´1p`´1px` 1q ´ 1q4y ´ 4`´1y5qJ,

ppx, yq– ´20`´1p`´1px` 1q ´ 1q4 ´ 2`´1y4.

Figure 5.5 shows the exact error graphs of the 6 computations with varying parameter
` “ 1, 2, 4, 8, 16. The error gets worse for larger domains, but its convergence rates stays
optimal.

Table 1 displays the efficiency indices for the computations on a six times red-refined initial
triangulation of Ω with ` “ 1, 2, 4, 8, 16. In all cases, the error estimators ηMP2, ηMP2 (mod), ηMP2 (proj),
and ηMP2CG3 (proj) yield the best results with indices between 1 and 2. When the anisotropy
of the domain grows, the global versions of the simple estimators ηAP2, ηMAred, ηPMred get
worse. For ` “ 16, they reveal extremely poor efficiency indices between 15 and 26 (except
for ηPMred). However, their local versions exhibit almost no change for increasing `. Their ef-
ficiency indices range from 1.8 to 3.7. This is due to the deterioration of the inf-sup-constant
c0 for anisotropic domains, which behaves asymptotically like Op`´1q [12, Theorem 3].

5.4. Backward facing step example. The third benchmark problem employs fpx, yq ” 0
on the domain Ω “ pp´2, 8q ˆ p´1, 1qqzpp´2, 0q ˆ p´1, 0qq with Dirichlet boundary data

uDpx, yq “

$

’

&

’

%

p´ypy ´ 1q{10, 0q if x “ ´2,

p´py ` 1qpy ´ 1q{80, 0q if x “ 8,

0 otherwise

with a unique, but unknown, weak solution. Therefore the discrete solution on the twice
red-refined triangulation is used as a reference solution in the computation of the displayed
approximations to the unknown errors. For the refined estimates, the domain Ω is split into
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Figure 5.6. Subdivision of the domain Ω in the backward facing step ex-
ample from Subsection 5.4.
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Figure 5.7. Convergence history of the energy error with respect to a ref-
erence solution on a twice red-refined triangulation for uniform and adaptive
mesh refinements for the problem from Subsection 5.4.

six squares as depicted in Figure 5.6 with lower bounds of the local inf-sup constants 0.3826 ď
cj for j “ 1, . . . , 6 from [10, 11]. The lower bound of the inf-sup constant 0.049814 ď c0

in this computation is derived from the formula in [11, Corollary 7]. Up to the authors’
knowledge, the assumption in this corollary is not satisfied for Ω. In fact, the true inf-sup
constant c0 might be smaller.

As seen in the previous examples, the adaptive mesh-refinement results in an optimal
convergence rate of 0.5 (cf. Figure 5.7).

Figures 5.8 and 5.9 present the efficiency indices for the error estimators from Section 4.
The versions with global inf-sup constant exhibit extremely bad efficiency indices in the
range of 8 to 22 for ηAP2 and ηMAred. Significantly better, but still worse are the efficiency
indices for ηPMred of about 8 to 10 for adaptive mesh refinement. These error estimators are
most affected by the very small global inf-sup constant of the specific domain Ω. However,
the global version of ηMP2 still yields good efficiency indices close to 1 because the computed
test function vMP2 is almost divergence free. Its computationally much cheaper modification
ηMP2CG3 is slightly worse with an index of about 3 for adaptive mesh refinement.
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Figure 5.8. History of efficiency indices ηxyz{~u´uh~ of various a posteriori
error estimators labelled xyz in the figure as functions of the number of
unknowns on uniform meshes for the problem from Subsection 5.4.

This benchmark problem once again highlights the exceptional superiority of the pro-
posed designs based on the division of Ω into subdomains and the computation with local
inf-sup constants by Theorem 3.1 (b) as suggested by [9]. From the very beginning the
estimators with local modification or projection exhibit efficiency indices below 5 in the
uniform case and below 4 in the adaptive case. Even the index of the moderate estim-
ator ηMP2CG3 can be drastically reduced by a factor of at least 2 by using the projected
version. It is also remarkable that the computationally cheap but localized upper bounds
ηAP2 (mod), ηAP2(proj), ηMAred (mod), and ηPMred (mod) compare favourably well with the global
estimator ηMP2CG3.
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` ndof AP2 AP2(mod) MAred MAred(mod) PMred PMred(mod)

1 32,513 2.1455 2.1781 2.7207 2.7610 2.2257 2.2324
2 65,153 3.0522 2.3069 4.3233 3.1558 2.6221 2.1078
4 130,433 4.8789 2.3780 7.5121 3.3666 2.9824 1.9815
8 260,993 8.5031 2.3906 13.6768 3.4124 3.7073 1.9542
16 522,113 15.7631 2.3901 25.9517 3.4199 5.3061 1.9556

` MP2(3) MP2(3)(mod) MP2CG3(3) MP2CG3(3)(proj) c0

1 1.0377 1.0377 1.2131 1.2131 3.8268 ¨ 10´1

2 1.0439 1.0280 1.3304 1.2382 2.2975 ¨ 10´1

4 1.0520 1.0174 1.5122 1.2489 1.2218 ¨ 10´1

8 1.0612 1.0100 1.8327 1.2481 6.2137 ¨ 10´2

16 1.0747 1.0057 2.4606 1.2458 3.1204 ¨ 10´2

Table 1. Efficiency indices for a collection of estimators for the problem
from Subsection 5.3 with different domains for ` “ 1, 2, 4, 8, 16. The tables
show the results of a computation on the 6 times uniformly red-refined initial
triangulation.
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