GUARANTEED ERROR CONTROL FOR THE PSEUDOSTRESS
APPROXIMATION OF THE STOKES EQUATIONS
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ABSTRACT. The pseudostress approximation of the Stokes equations rewrites the stationary
Stokes equations with pure (but possibly inhomogeneous) Dirichlet boundary conditions as
another (equivalent) mixed scheme based on a stress in H(div) and the velocity in L?. Any
standard mixed finite element function space can be utilized for this mixed formulation, e.g.
the Raviart-Thomas discretization which is related to the Crouzeix-Raviart nonconforming
finite element scheme in the lowest-order case. The effective and guaranteed a posteriori
error control for this nonconforming velocity-oriented discretization can be generalized to
the error control of some piecewise quadratic velocity approximation that is related to the
discrete pseudostress. The analysis allows for local inf-sup constants which can be chosen in
a global partition to improve the estimation. Numerical examples provide strong evidence
for an effective and guaranteed error control with very small overestimation factors even for
domains with large anisotropy.

1. INTRODUCTION

The pseudostress finite element method (PS-FEM) has recently been established in the
context of a least-squares finite element method for the Stokes equations [I, 2, [3]. The
adaptive mesh-refinement leads to optimal convergence rates [4] for the lowest-order case.
This and the principle availability for higher polynomial degrees makes this mixed finite
element method highly attractive over the nonconforming P; finite element method usually
attributed to Crouzeix and Raviart.

The error control for finite element methods in the energy norm with residual-based ex-
plicit error estimators typically leads to unknown or large multiplicative reliability constants
and is usually uncompetitive over refined methodologies like equilibration error estimators
that lead to guaranteed upper bounds, see [5] 6l [7] for recent error estimator competitions.
In case of nonconforming finite element schemes, one residual in the error analysis concerns
the geometric condition that one variable is a distributional gradient of a Sobolev function
and thereby involves the design of a particular test-function v near to the discrete solution
uyp,. For the Stokes problem, the side conditions on this Sobolev function require the match
of the true Dirichlet boundary conditions as well as the incompressibility condition dive = 0
a.e. in the domain . The relaxation of this later condition has been suggested in [8] based
on some regular split of a gradient into a gradient of a divergence-free H' function and an
L?-orthogonal remainder. This leads to the guaranteed upper bound of the energy error

2
s =l < 72+ ([[o =l + 1| o] o)

The first quantity n depends only on the right-hand side f, while the second term on the
right-hand side depends on v. Another advantage of the PS-FEM is the appearance of
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the oscillation of the right-hand side f in 1 compared to the L?-norm of the mesh-size
times f in the nonconforming case [9]. The stability constant ¢y is an inf-sup constant and
difficult to compute, see [10] and [11] for the corrected results. Moreover, ¢y deteriorates for
stretched domains with large aspect ratios [I2] and so may crucially worsen the efficiency
indices of all error estimators based on designs of non divergence-free test-functions. Several
such designs were proposed and compared in [8, 13 [I4] and mainly stem from popular
conforming postprocessings of nonconforming finite element solutions for the Poisson problem
[15, (16, [17, [7].

The only approach to compute guaranteed error bounds for the backward facing step
from Subsection follows the localization technique [9] with a partition Q1,...,; of Q
and inf-sup constants c; of €2;. When the designed test-function satisfies the additional
condition

f v-vg,ds=0 forj=1,...,J,
09,

the guaranteed upper bound only includes the local inf-sup constants of the subdomains €2,
ie.,

J
2 2 . 2
v = unle < * + jz:l (H Dne(v — uh)HLZ(Qj) + || leUHLZ(Qj)/CJ) :
To mention just two prominent situations, one may think of a decomposition of an L-shaped
domain or a long thin channel into squares. Several strategies of how to satisfy the additional
constraint within the test-function designs from [13] are discussed in Section [4| below.

The resulting error estimators are studied for the lowest-order PS-FEM where uy, := u2
is some piecewise quadratic function whose piecewise gradient equals the Raviart-Thomas
best-approximation of the exact pseudostress [4] [I8] up to some pressure contribution. The
proposed error estimator designs of the present paper lead to the sharpest guaranteed upper
error bounds known for this scheme, even in the case of challenging domains with very small
inf-sup constants.

The remaining parts of this paper are organized as follows. Section [2 recalls the Stokes
equations and describes the nonconforming finite element discretization. Section [3| presents
the pseudostress approximation and states the main result for the guaranteed upper error
bound in Theorem on page [5} Section [4] designs different interpolations of the discrete
velocity which lead to guaranteed upper error bounds. It includes the treatment of inhomo-
geneous Dirichlet boundary conditions. Finally, Section [5| presents numerical experiments
on some benchmark problems.

Standard notation on Lebesgue and Sobolev spaces applies throughout this paper such as
HE(Q), H(div,Q), and L?(Q) and the associated spaces for vector- or matrix-valued functions
HR(Q;R?), L2(R?), HF(Q;R?*2), H(div, Q;R?*?), and L?(Q;R?*?). Let H}(Q) = {v €
HY(Q) : v=0on dQ in the sense of traces} be equipped with the energy norm

Il fl=1 - ‘Hl(Q) =||D- HL2(Q)'
The 2D rotation operators read, for v € H'(Q; R?),

—5111/51'2 5@1/5%1
—61}2/6952 502/5%1

The expression A < B abbreviates the relation A < CB with a generic constant 0 < C
which solely depends on the interior angles %7 of the underlying triangulation; A ~ B
abbreviates A < B < A.

Curlv == < > and curlv := tr Curlo.
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2. NOTATION AND PRELIMINARIES

2.1. Stokes equations. This paper concerns the 2D Stokes equations: Given a right-hand
side f € L?*(€;R?) and Dirichlet boundary data up € H'(Q; R?) with SaQ up -vds = 0, seek
a pressure p € L3(Q;R?) := {qg e L*((;R?) : Yo ¢dz = 0} and a velocity field u € H(Q;R?)
with

—Au+Vp=f and divu=0inQ while u = up on 0f.

The error analysis involves (lower bounds of) the inf-sup constant

0<cy:= inf sup f qdivvdx/(HDUHLQ(Q)HqHLQ(Q))
qeLF(2)\{0} ve H (GR?)\{0} JO2

that arises in the Ladyzhenskaya lemma [19, §6. Theorem 6.3] and depends on 2. Lower

bounds for this constant are in general difficult to compute, see [10] and for corrected results

[11]. Moreover, ¢y gets smaller for stretched domains with large anisotropy [12]. How to

circumvent these problems for the error analysis is explained in Section |3 based on [9].

2.2. Nonconforming finite element spaces. Given a regular triangulation 7 of the
bounded Lipschitz domain Q < R? into closed triangles in the sense of Ciarlet with the
set of edges &, the set of nodes N, the set of interior edges £(Q), the set of interior nodes
N (), the set £(09Q) of edges along the boundary 0 and the set of boundary nodes N (02),
define the set mid(€) = {mid(F) : E € £} of midpoints of all edges and let £(T") be the set
of the three edges and let N'(T') be the set of the three vertices of a triangle 7' € T. Let the
set T(z) contain all triangles T € T with vertex z € N (T) for a node z € N and denote its
cardinality with |7(z)|. The diameter diam(T") of T € T is denoted by hy and hy denotes
their piecewise constant values with hy|r = hp = diam(T) for all T € 7. With the ele-
mentwise polynomials P (7;R?) of degree at most k, the nonconforming Crouzeix-Raviart
finite element spaces read

CRYT;R?) == {ve P(T;R?) : YE € &, v is continuous at mid(E)},
CRY(T;R?) == {v e CRYT;R?) : VE € £(69), v(mid(E)) = 0}.

The Crouzeix-Raviart finite element functions form a subspace of the piecewise Sobolev
functions

HYT)={veL*Q) : VT e T,v|r e H(T) = H (int(T))}

with corresponding piecewise differential operators D¢ and divyc.
The integral mean of a function f € L?(w) (or any vector f € L?(w;R?)) over some open

set w is denoted by
fuw :=][fda: ::J fdx/’w‘

The oscillations of f € L?(2) (as well as of vectors f € L?(2;R?)) read
osc?(f,T) = 3, 0s?(£,T) = |h7(f = f)|agqy with os®(£,T) = |hr(f = fo)| o,
TeT

where fr = IIf denotes the L?-orthogonal projection of f onto the piecewise constant
functions Py(T) (respectively Py(T;R?)).
Finally, define the right-hand side functional for given f € L?(Q;R?) by

(2.1) F(v) = Jgf -vdx  for all ve HY(T;R?).
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2.3. Crouzeix-Raviart FEM for the Stokes equations. The first discrete bilinear form
reads

anc(ucr;ver) = Y, | Ducr : Dogr dz
TeT T

for all ucr,vcr € CRYT;R?) < HY(T;R?) with A : B = Zj,k:LQ A By, for all 2 x 2
matrices A, B € R**2. Let L(Q) := {q € L*(Q) : {,gdz = 0} denote the space of L?
functions with zero integral mean. Then, the second discrete bilinear form reads

bne(ver, qo) = J qo divnc ver dz
Q

for all ver € CRY(T;R?) and g € Po(T) n LZ(2). This leads to the discrete counterpart
Znc = {vcr € CR(I)(T; R?) : divnc vcr = 0 a.e. in Q}
of the set of divergence-free functions
7 = {ve H}(Q;R?) : divv =0 a.e. in Q}.
The nonconforming representation of the Stokes problem reads: Given f € L?(Q;R?) and
up € L*(Q;R?) with §, up - vds = 0, seck ucr € Znc with

ucr (mid(F)) = ][ upds for all E e £(0Q)
E

and

anc(ucr,vcr) = F(vcr)  for all ver € Zne.
In other words, up to boundary conditions, ucr is computed from the Riesz representation
of a linear functional (given as right-hand side plus boundary modifications) in the Hilbert
space (Znc, anc). The actual implementation uses unconstrained Crouzeix-Raviart elements
VCR € CR(l](T; R?) as test functions and enforce the constraint divcucr = 0 a.e. in Q by

piecewise constant Lagrange multipliers in Py(7) n L3(£2). Hence, ucr from above and some
pcr € Po(T) n L3(Q) are determined by

anc(ucr,ver) + bne(ver, per) = F(ver) for all vor € CRY(T;R?),

bNC (uCR, qCR) =0 fOI' all qCR € Po(T) M Lg(Q)

3. PSEUDOSTRESS APPROXIMATION AND ERROR ANALYSIS

A simple postprocessing of the Crouzeix-Raviart nonconforming solution tucr € Znc and
Pcr € Po(T) n L3(2) for the piecewise constant right-hand side fr (instead of f in (2.1))
leads to the pseudostress representation

o = D fion — fg ® (o — mid(T)) — ferlaxz  and

ups = TWiicr + {T1(dev(fr @ (o — mid(7))) (s — mid(7))),

where mid(7) denotes the piecewise constant vector-valued function with mid(7)|r :=
mid(7") and dev(A) := A — tr(A) Iax2/2 denotes the deviatoric part of some matrix-valued
function A. Then, the piecewise quadratic function

o= e~ T (|0 (D — [ o —mid (7)) € BT

satisfies Dnc ug = ops + perloxo.



ERROR CONTROL FOR STOKES PSEUDOSTRESS FEM 5

The pair (opg, upg) solves the Raviart-Thomas mixed FEM [4, [3] to approximate the exact
pseudostress

0 = Du — plyyo € H(div, % R**?)/R := {r € H(div, Q; R?*?) . f trrde = 0}
Q

with f + dive = 0 and the exact solution u € H'(2;R?) in the discrete spaces
PS(T) = {r € P\(T;R**?) n H(div, % R*?)/R : Vj = 1,2, (1j1,7j2) € RTo(T)}

and Py(T;R?) such that div ops+ fr = 0 a.e. in Q. In fact, the following discrete formulation
has the unique solution (opg,ups) € PS(T) x Py(T;R?),

(3.1) J dev opg : Tpg da + J div 7pg - upg dz = j up - psvds  for all 7pg € PS(T),
Q Q o0

(3.2) f divopg - vpgdx = —f f-vpsdz  for all vpg € Py(T;R?).
Q Q

The following theorem recovers the known results for the Crouzeix-Raviart finite element
method from [I3], [§] for the pseudostress-related approximation uy with the set of admissible
test functions A == {v e H(Q;R?) : v = up on 9Q}. Moreover, a refined guaranteed upper
bound that follows an idea from [9] is introduced. This idea is based on a partition of {2 into

J many subdomains €1, ...,Q; with szl (TJ = (), outer unit normal vectors v, and local
inf-sup constants

PG o e RN} Lj odivuds/ (1Dl lela) fori =

The set of test functions that are suitable for the refined error control satisfy an additional
contraint and are defined by

~

(3.3) Azz{ve.A: v-vg,ds =0 forjzl,...,J}.
o9,

Moreover, the constant ji 1 = 3.8317 below denotes the first positive root of the first Bessel
function.

Theorem 3.1. (a) Any v € A satisfies
2
Jlu = el R < ose(f. T/ + (Il = wallye + 1 div e ooy /o)

(b) Any v e A from [B.3) satisfies

J 2
Jlu = w2l R < ose(f, /521 + Y (IPxc(o = o)l o,y + 11 div o] agn /es)
j=1

Proof of Theorem . The point of departure is the orthogonal split from [8, Subsection
3.2],

(3.4) DNc(u — UQ) =Dz + Yy

into some z € Z with

f Dz:Dvdx =J Dnc(u —ug) : Dvdx forallve Z
Q Q

and the remainder

yey = {yeLQ(Q;szz) : f y:Dwvdx =0 for allveZ}.
Q
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Since Y is the orthogonal complement of D(Z) in L?(2;R?*2), it follows

(35) Jlu =l =

Since z € Z, Isxo : Dz = divz = 0 a.e. This, the aforementioned orthogonality, and an
integration by parts show

Jal° = | Delu—un) s Dzas = |

Q
=J f-zda:—f UPS:Dzde‘zf f-zda:—l—f z-divapsdmzj(f—fT)-zda:.
Q Q Q Q Q

Piecewise Poincaré inequalities (with Poincaré constant hr/j1 1 from [20, Corollary 3.4]) then
imply

L(f—fT)'Zdw = f (f=fr) (z—27)d Z Hf fTHL2(T Hz zTHL2(T

Du:Dzdx—f Dncug : Dzdex
Q

TeT
< > /i llf = Frll gy | D 2] oy < ose(f, T
TeT
Hence,
(3.6) lI]l < ose(£, T) 1

Recall from [8, Subsection 3.2, Lemma 2] that, for each y € Y, there exists some g € L3(Q)
with

J y:Dwdxzf qdivwdz for all w e H}(Q;R?)
Q Q

and
COHQHL2(Q) < H?JHL2(Q)

Hence, any v € A with 4 — v = 0 on 0f) satisfies
HyHiQ(Q) = f Dnc(u—ug) : ydo = f Dnc(v —ug) : ydx —i—f D(u—w):ydx
Q Q Q
= f Dnc(v —wug) : ydz + f qdiv(u —v)dx
Q Q

< (H Dyo(v — u2)HL2(Q) + || diVUHL?(Q)/CO> HyHL2(Q)

Therefore,
(3.7) [yl 2 Q) S < || Dxc(v 2)HL2(Q) + || diV(”>HL2(Q)/CO‘
The combination of (3.5 -f concludes the proof. O

Proof of Theorem[3.1[(b)} The proof follows ideas from [9] for the local versions
= {z € H}(Q;;R?) : divz =0 ae. in Q;} and
Y, = {y e L*(Q,; R**?) . J y:Dzdz =0forall z e Zj}
£
of Z and Y from the proof of @ with € replaced by ;.
Given v e A and any j = 1,...,J, the condition

J v-vids =0
29
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guarantees that the Stokes equations with volume force f7 has a unique solution w; € Z;
with the boundary data w; = v along 0€};, i.e.,

(3.8) f ij:Ddexzj fr-¢ida forall ¢ € Z;.

J

Furthermore, there exist z; € Z; and y; € Y; with
DNc(’wj - UQ) = DZ]' +vy; on Qj.
Since Y; is the orthogonal complement of D(Z;) in L?(£2;; R?*?), it follows
2 2 2
(3.9) || Dxc(w; — UZ)HB(QJ-) = | Dszm(Qj) + HyJ‘Hm(Qj)'

The combination of the aforementioned orthogonality with (3.8)), divz; = 0 a.e. in Q,
devopg = dev Dyc ue and f7 + divopg = 0 yields

2
HDszLQ(Qj)z jQ DNC(wj—ug):Dzjdmzj ij:Dzjdx—J Dncug : D zjde

Q; Q;
f fT'zjdx—f O'PSZDZjdl‘:J (fr +divops) - zjdz = 0.
Q; . .

J Q]

J

(3.10)

Recall from [8, Subsection 3.2, Lemma 2] that, for each y; € Yj;, there exists some q; € L3(£2;)
with
J y; :Dyjde = J gjdivpjdz  for all p; € H&(Qj;RQ)
j €y
and
¢illaill 2,y < I19ill 2o,

The combination of this result for the test function ¢; = w; — v € H}(;;R?) with the
aforementioned orthogonality and a Cauchy inequality result in

2
HyjHLQ(Q‘) = f yj : Dnc(wj — ug) dz = J yj : Dnc(v — ug) dz +j yj : Dnc(w; —v)dz
! Q; Q; Q;
< (H Dno(v - u2)HL2(Qj) + || div SOj}lLQ(Qj)/Cj) HyjHLZ(Qj)'

This, (3.9), ,and divw; = 0 a.e. in Q; imply, for j =1,...,J,
(3-11) || Dne(w; - u2)HL2(Qj) - HyjHLQ(Qj) < || Dxc(v - u2)HL2(Qj) + || diVUHL2(Qj)/Cj~

The functions w;,z; € Hg(Q;;R?) can be extended by zero to @;,2; € H}(;R?) (ie.
W; = w; and Zj = z; in Q; and @}, Z; = 0 in Q\Q;) and y; € L*(Q;; R?*?) can be extended
by zero to ¥; € L?(;R?**2) (ie. ¥ = y; in Q; and §; = 0 in Q\Q;). Then the sums
Z=Z1+...+Zyand W:=wy; + ...+ wy belong to Z.

Since divw = 0 a.e. in {2, part @ proves for w € A that

2 . ~ 2
llw = uallne < oselfs /ity + 1@ = sy

The estimate (3.11]) implies

J 2
@ —usllxc = 2 Dxelw;—uo)| o) < D (H Dne (v = u2)| 2, + || diV“HLz(Qj)/Cj)
j=1

Jj=1

This concludes the proof of @ O
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4. PROPER INTERPOLATION DESIGNS

This section designs functions v € A with the additional prerequisites
(4.1) f veovg;ds=0 forj=1,...,J
02

for Theorem @ by modifications of the designs compared in [13]. All designs satisfy a
discrete Dirichlet boundary condition of the set of admissable functions defined by

A(T) = {ve C([R?) : v(z) = up(z) for all ze N(092)} and
,Z((T) ={ve A(T) : v satisfies (4.1))}.
These functions violate the exact Dirichlet boundary condition, see Subsection [£.4] for a

remedy. Furthermore, £(T") := {E € £ : E < I'} defines the set of edges along the skeleton
J
I = Uj:l aQ]

4.1. Piecewise quadratic interpolation. A nodal averaging of us as in [I3] leads to the

piecewise quadratic and continuous function vaps € P(T;R2) A A(T), defined via piecewise
quadratic interpolation of the values at the nodes z € N/

e {uD(Z) for z € N (09Q),
UVAP2 ZTET(Z) u2|T(z)/{7‘(z)| for z e N(2),

and in the midpoints of the edges E € £ with the two adjacent triangles 7 (mid(E)) of
E € £(Q) and the two endpoints N (F)

S rer miagey U2l (mid(E)) /| T(mid(E))| for B e E@)\ET),

UAPZ(mid(E)) = {3UOR(mld( ))/2 ZzEN 'UAP2( )/4 for £ e g(F)

Let (¢, : z € N umid(£)) denote the piecewise quadratic and globally continuous basis
functions of Po(7) n C(Q2). The definition of vaps implies

f vapy - Vds = Z J’UAPQ vds
0Q;

Ee&(095)

2 (UAP2(mid(E)) JE Pmiam) s+ ) vapa(2) L Pz ds) v,lE

Ee&(9;) zeN(E)

- Y |E|/s (4vAp2(mid(E)) + Y vAPQ(z)) vo,|p
Ee&(39;) zeN(E)

= ) |Blicrmid(E)) - vo,|s = J R - v, ds = f div Gicg dz = 0.
Ee£(09;) 082, &

Hence, v = vapy satisfies condition (4.1)).



ERROR CONTROL FOR STOKES PSEUDOSTRESS FEM 9

4.2. Minimal piecewise quadratic interpolation. A global minimization of the guaran-
teed upper bound from Theorem @ leads to

J

2
UMP2 = argmin Z (H Dnc(v — UQ)HLZ(Qj) + || div UHLQ(QJ_)/cj)
vEP (T R2)NA(T) j=1
J
= argmin min ((1 + 145)|| Dnc(v — u2) 2 '
UGPQ(T;RQ)H.Z(T)J';O<MJ'<OC I H N 2 HL2(QJ)

. 2
+ (1 + 1/py)|| d1vaL2(Qj)/c?>
and is realised by the following algorithm.

Algorithm 4.1 (global minimization). Input @iz € Po(T;R?),c1,...,¢j,Q1,...,Q7 and the
number of iterations K € N,
Initialize pj =1 for j =1,...,J.
fork=1 ... K do
Compute vnpa(k) =
J
argmin Z ((1 + 115)|| Dxe(v — uQ)HiQ(Qj) + (1 + /)| divaiQ(Qj)/cg),
veP (T5R2)NA(T) j=1

ni = || diV”MP2(k)HL2(Qj)/(CJH Dre(vampa(r) _UQ)”LZ(Qj)) forj=1,....J.  od
Output vyipyk) € Po(T; R2) A .;l(T)

The condition (involved in A(T)) may be enforced by Lagrange multipliers A € R”.
The computation of vypy(x) requires a solution of a linear system in each step. In order to
reduce the computational costs, we use three iterations of a preconditioned conjugate gradient
method for inexact solve and denote the solution with vypacas(x)- The preconditioner is
the diagonal of the system matrix named after Jacobi. Note that this solution might not
satisfy condition exactly. For a remedy, the reader is referred to Subsection

Undisplayed numerical experiments show that the values after K = 3 iterations do not
significantly change anymore.

4.3. Piecewise linear interpolation on red-refinement. This subsection designs piece-
wise linear veq € Py (red(T); R?) nA(T) with respect to the uniform red-refinement red(7") of
triangulation 7 [7, 13]. The nodes of red(7") consists of the nodes N and the edge midpoints

mid(€) of T. Define vyeq € Pi(red(7T); R2) n A(T) via piecewise linear interpolation of the
values, for the node z € NV,

(4.2) Ured (%) = {“D(Z) for 2 € N(0),

Uy for z e N(Q)
with some particular choice of v, € R?, and in the midpoints of the edges E € &,

ficr (mid(B)) for £ € E(Q\ED),

(4.3) Ured (mid(E)) = {QQCR(mid(E)) — Yen(p) Vred(2)/2 for E'€ £(T).
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Define (¢2*d : 2 € AU mid(€)) as the nodal basis functions in P;(red(7)) n C(Q). The
definition of vpoq implies

J VUped - Vds = f Vred * V dS
0% EBes(o0;) VE

= Z (Ured(mid(E)) J Spfﬁ?d(E) ds + Z Ured(z) f QDI,;,ed dS) “VQ; |E
BeE(09;) E 2eN(E) E

- 3 |E|M (2vred(mid(E)) + ) vred(z)) vo, |
BeE(09;) 2eN(E)

= Z ’E‘QCR(mid(E)) vo,lE = J Ucr - v, ds = f divicr dz = 0.
Ee&(09;) 0% &y

Hence, v = v,¢q satisfies condition (4.1)).

P4 P3 P3

Q3
P =Fs Py

(a) Interior Patch (b) Central Subtriangle Ty =
conv{mid(E(T))} in red(T) for T € T.

FIGURE 4.1. Notation for red-refinements.

interpolation wvyeq is fixed on all central subtriangles as Ty in Figure [4.1((b)|and it remains
to determine the values v, at the free nodes z € N'(2), e.g. by nodal averaging

(4.4) v, = Z Ucrlr(2)/|T(2)] for all z € N(Q).
TeT ()
Algorithm 4.2 below suggests the one-dimensional minimization problem around each node

patch w™ with respect to the red-refined triangulation as in Figure under the side
condition of the fixed values at the edge midpoints @; of the adjacent edges.

Algorithm 4.2 (patchwise minimization). Input iicg € CR(T;R?),c1,...,c5,Q1,...,Qy
and the number of iterations K € N.
Initialize VpMred = D pes QCR(mid(E))golrfl?d(E) and pj :=1 forj=1,...,J.
fork=1 ... K do
W0 = 3 pee VPMred (id ()@l 5y
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Vze N(Q) compute

J
. 2
vz = argmin Z ((1 + ,uj)H D (v + weted — ’U/Z)HLQ(wreanj)
weR2 z
7j=1

(L4 1/p15)/¢3 || div(vo + w0 [ o eangy ) )

UPMred = V0 + ZzeN(Q) v,
Vi=1,...,J compute j1; = H div varedHLQ(Qj)/(ch Dnc(vpMred — UQ)HLQ(Qj)). od
Output vpyireq € Py (red(T); R?) N /Nl(T)

Undisplayed numerical experiments show that the values after K = 3 iterations do not
significantly change anymore.

We distinguish between the optimal version vppyreq from Algorithm and UpAreq With
the suboptimal choice v, from .

4.4. Inhomogeneous Dirichlet boundary conditions. In case of inhomogeneous Di-
richlet boundary conditions all designs in Subsections result in some vy, which does
not necessarily belong to A. To heal this shortcoming, a virtual boundary reconstruction
wp € HY(Q) with wp = up — Uxyz along 0Q as in [21], [7, 13] allows v = vyy, + wp € A and
the estimates

| Dxc(v — UQ)HLQ(QJ-) + || diVUHLQ(Qj)/Cj < || Dxe(vxys — “2)||L2(Qj) + divvxyZHLz(Qj)/Cj
+ || DwDHm(Qj) + || diV“’DHm(Qj)/CJ*

The divergence and energy norm of wp can be estimated by [2I, Theorem 4.2]
: 3/2 2 2
I le“’DHm(Qj) < V2| DwDHLQ(Qj) < V20, |17 0% (up — vey2) /0 HL2(anmEQ)'

The construction of wp ensures SE wpds = 0 for all £ e £(052;). Hence, v = vyy, + wp €
A(T) for any vyy, € A(T).

For right isosceles triangles, numerical calculations in [7] suggest the constant C-, = 0.4980.
If vgy,|E equals up|p at N(E) and mid(E) for all E € £(d), wp can be designed on
the red-refined triangulation with halved edge lengths and accordingly reduced constant
C., = 0.4980/2%2 = 0.1761.

4.5. Projection. This subsection designs a projection operator that projects a given func-
tion v € Po(T;R?) n A(T) onto a function ¥ € Po(T;R?) n A(T). Consider the constrained
minimization problem

J

. 2 . 2 2
T ] ([ P R L )|

where 0 < p; < o0 is chosen as follows

sl div o] a0,/ (@51 PNC© = 02)|2(q,) i © € {ntparae), vpacasio
’ 1 otherwise.

For a given enumeration N' U mid(€) = {z1,...,zp} of the M = ’./\/" + ‘5‘ nodes of the
triangulation, define the index set of all nodes on the boundary

M:={me{l,...,M} : zy € 0Q}.
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Let (. : z € N umid(£)) denote the piecewise quadratic and globally continuous basis
functions of P,(7) nC(2) enumerated according to the nodes of the triangulation, i.e. ¢, =
@, form =1,... .M. Let z,y € R?™ denote the coefficients of the basis representation of

w respectively v,

M M
w = Z CEm(‘PmaO)—r + CUMer(Oa Sam)—r and v = Z ym(‘PmaO)T + yMer(Oa Pm
m=

m=1

)"

Then, the minimization problem reads

min (y — ) Ay — ) s.t. (Tm, Tarem)' = up(2zm) for m e M and Bz = 0,

IERZZM
where A € R2M>2M g defined via
J
Appy = 2 <(1 + uj)f Dyr:Dypdr+ (14 l/uj)f div pp div o, da;/c?)
j=1 Q; Q;

for £,m =1,...,2M and condition ([4.1]) is expressed by the rectangular matrix B € R/*2M
with the entries

B; —f Ym-vds forj=1,...,Jandm=1,...,2M.
o).

J

Introduce J many Lagrangian multipliers A1,...,As to ensure the side condition (4.1)).
Minimizing the Lagrange functional

Ly;z,N) = (y—=2) Ay —z) + AT Bz

leads to the saddle point problem

Il

In order to reduce the computational costs, replace the matrix A by its diagonal A = diag(A).
Finally, define the desired projection

M
5= > Tmlpm, ) + 2arem(0,0m) T € Po(T:R2) A A(T).

m=1

5. NUMERICAL EXPERIMENTS

This section presents some benchmark examples with convergence history plots for the
energy error and history plots of efficiency indices for error estimators as a function of
numbers of degrees of freedom (ndof). The labels of the graphs refer to the subscripts of the
estimator term 7). as follows, "AP2’ indicates the piecewise quadratic interpolation vapa
and "MP2’ the minimal piecewise quadratic interpolation vppo, where the following number
in brackets indicates the number of iterations K in Algorithm "MAred’ and 'PMred’
indicate the two different piecewise linear interpolations vyiareq and vppreq On the red-refined
triangulation. The annotation ’(mod)’ indicates the modified interpolations according to the
side condition and ’(proj)’ indicates the usage of the projection from Subsection
Both allow for the upper bound from Theorem @
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5.1. Adaptive algorithm. The benchmark examples employ the following adaptive al-
gorithm which includes an equivalent modification of the a posteriori error estimator npt
from [3].

Algorithm 5.1 (APSFEM). Input Initial reqular triangulation Ty with refinement edges of
the polygonal domain ) into triangles and bulk parameter 0 < 6 < 1.
for any level £ = 0,1,2,... do
Solve f with respect to reqular triangulation Ty with solution (o, up).
Compute (n,(Ty, T),T € Ty) with

ngpt(ﬁ,T) = osc(f,T) + ‘T‘H curl(dev oy) Hiz

1/2 Z H[dev(ag )TE EHLQ(E
Ee&(T)

+ |7

and
T]opt 72 Z nopt 727 )
TeT
Mark a subset My of Ty of (almost) minimal cardinality ‘M@‘ with

Ong <nj(Mg)= > np(T).
TeM,
Refine. Compute the smallest reqular refinement Ty 1 of Ty
with M € T\ Te+1 by newest vertex bisection.  od

Output Sequence of discrete solutions (oy, u)sen, and meshes (Tr)een,-

Recall from [4], that this algorithm leads to quasi-optimal convergence in the notion of
approximation classes.

5.2. Classical example on L-shaped domain. The first benchmark problem employs
f(x,y) = 0 with the exact solution in polar coordinates

u(r,9) = r((1 + a) sin(9)w(9) + cos()w'(9), —(1 + a) cos()w () + sin()w’(9)) ",
p(r,0) = —r* (1 + a)*w'(9) + w" (9)/(1 - a)
on the L-shaped domain Q = (—1,1)\((0,1) x (—1,0)), where

w(¥) = 1/(a + 1) sin((a + 1)¥9) cos(aw) — cos((a + 1))
+1/(a— 1) sin((a — 1)1) cos(aw) + cos((a — 1))

for v = 856399/1572864 and w = 37/2 from [22]. The inhomogeneous Dirichlet boundary
data are prescribed by the exact solution up(z,y) = u(x,y) on 0Q2. The L-shaped domain
is partitioned into the three unit squares 1 = (—1,0)%,Q = (—1,0) x(0,1) and Q3 = (0,1)2.
Due to theoretical lower bounds by [10, [I1], use 0.1601 < ¢y and 0.3826 < ¢; for j = 1,2, 3.

Figure[5.I]shows the convergence history of the exact energy error for uniform and adaptlve
mesh refinement by Algorithm 5.1 with # = 0.5. As known for this example, the convergence
rate for the uniform mesh refinement is not optimal, i.e. 0.25 with respect to the number of
degrees of freedom (or 0.5 with respect to the mesh width as h = ndof~/?).

Figure shows the efficiency indices for all error estimators for uniform mesh refine-
ment. The main observation is that the efficiency indices for the ’(mod)’ and ’(proj)’ error
estimators, that allow for the refined upper bounds with the local inf-sup constant from
Theorem are dramatically improved compared to the error estimators that operate
with unmodified designs. In other words, the gain from the change from global to local
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A\H‘ T T \\HH‘ T T \\HH‘ T T \\HH‘ T T \\HH‘ T T \\HH‘ T T 1
| | | —e— uniform
| | |—a—adaptive

107

error

1071

T T T T 1717

| Lol Lol Lol Lol Lol L1
10t 102 10 10* 10° 106
ndof

FiGURE 5.1. Convergence history of the energy error for uniform and adapt-
ive mesh refinement for the problem from Subsection

—o— AP2
——  AP2 (mod)
a ||+ AP2 (proj)
—— MP2(1)
s O 1 |-= MP2(3)
< —e—  MP2(3) (mod)
25 1] e MP2(3) (proj)
> v MP2CG3(3)
g 4f 1 | o MP2CG3(3) (proj)
= = MAred
Y3l 1] o MAred (mod)
A PMred
9l || v PMred (mod)
1 Ll Ll Lol Lol Ll Lol |
10t 10 10 10* 10° 106

ndof

FIGURE 5.2. History of efficiency indices 1)y /||u—up|| of various a posteriori
error estimators labelled zyz in the figure as functions of the number of
unknowns on uniform meshes for the problem from Subsection

inf-sup constants is larger than the loss of freedom from the additional constraints in the
designs. As an example the efficiency index for naps drops from about 4.5 to almost 3.0 for
TAP2 (mod) and the efficiency index for nyiared drops from 4.4 to about 3.5 for Mmyared (mod)-
Also the global designs with a truncated minimization benefit from the modifications and
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]| | |—e— AP2
—4—  AP2 (mod)
7| | |-+ AP2 (proj)
e MP2(1)
s 6| 1= MP23)
2 e MP2(3) (mod)
g 5l | |- MP2(3) (proj)
> v MP2CG3(3)
g 4l | | MP2CG3(3) (proj)
&LE?) = MAred
e 3l || o MAred (mod)
A PMred
o v PMred (mod)
1 Ll Lol Lol Ll Ll Lol [

10t 102 103 104 10° 109
ndof

FIGURE 5.3. History of efficiency indices 7,y /||u—wup|| of various a posteriori
error estimators labelled xyz in the figure as functions of the number of
unknowns for adaptive mesh refinement for the problem from Subsection

O O

2%

FiGURE 5.4. Subdivision of the domain € in the stretched colliding flow
example from Subsection

the projection. For example, the efficiency index of mypacas(3) of about 2.7 is improved
to 1.8 by its modified form 7ypacas(3) (proj)- Lhe estimator with the least improvement is
mvp2(3) Which is due to the fact that its inf-sup constant dependable part of the error estim-
ator is very small at least on fine meshes. The variant nypa(3) (proj) 1S slighlty less efficient
than the variant n\pa(3) (mod)- Hence, it seems advisable to add the additonal constraint
as a side constraint in the minimization problem. However, in case of napz, the ’(proj)’
variant is slightly more efficient than the '(mod)’ variant. The efficiency indices for adaptive
mesh refinement depicted in Figure [5.3] allow similar conclusions with even more remarkable
improvements for the local designs.

5.3. Colliding flow example on stretched domain. Given a ratio ¢ € N, let Q =
(—1,2¢ — 1) x (—1,1) denote a stretched domain. The subdivision €y, ..., of 2 consists
of the ¢ squares with edge length 2 as displayed in Figure and lower bounds of the local
inf-sup constants 0.3826 < ¢; for j = 1,...,¢ from [I0, 1I]. A computation of a lower
bound for the inf-sup constant on star-shaped domains €2 according to [I1], Corollary 7 and
Proposition 9 i)] yields the lower bounds of ¢y as displayed in Table
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—e— uniform (¢ = 1)
102 | | |- adaptive (£ =1)
i 1 |—v— uniform (¢ = 2)
i | |—*— adaptive (¢ = 2)
| | |-= uniform (¢ = 4)
—o— adaptive (¢ = 4)
- 101 | | |4 uniform (¢ = 8)
o C B .
g | 1 |-v— adaptive (£ = 8)
g | | ¢ uniform (¢ = 16)
I | | = adaptive (¢ = 16)
109 1
Ll Ll Ll Ll Ll Ll L

10! 102 103 104 10° 106
ndof

FicUre 5.5. Convergence history of the exact energy error for uniform and
adaptive mesh refinements for the problem from Subsection

The second benchmark problem employs f(z,y) = (240(/~*(z+1) —1)y?, 24003 (¢~ (x +
1) —1)%y)T with the exact solution which is derived by transformation of the solution from
the colliding flow example to the stretched domain €2, i.e.,

u(z,y) = (2000 Yz +1) - Dy* —4( Hz+1) = 15,2007 (0 Yz +1) — 1)y — 407257,
p(z,y) = =200 (0 (z + 1) — 1) — 2071y,

Figure [5.5 shows the exact error graphs of the 6 computations with varying parameter
¢ =1,2,4,816. The error gets worse for larger domains, but its convergence rates stays
optimal.

Table[I]|displays the efficiency indices for the computations on a six times red-refined initial
triangulation of Q with £ = 1,2, 4, 8,16. In all cases, the error estimators 7ap2, IMP2 (mod)s IMP2 (proj)»
and Nvp2cas (proj) Yield the best results with indices between 1 and 2. When the anisotropy
of the domain grows, the global versions of the simple estimators mapo, MMAred, TPMred et
worse. For ¢ = 16, they reveal extremely poor efficiency indices between 15 and 26 (except
for npared). However, their local versions exhibit almost no change for increasing ¢. Their ef-
ficiency indices range from 1.8 to 3.7. This is due to the deterioration of the inf-sup-constant
co for anisotropic domains, which behaves asymptotically like O(¢~1) [12, Theorem 3].

5.4. Backward facing step example. The third benchmark problem employs f(z,y) =0
on the domain Q = ((—2,8) x (—1,1))\((—2,0) x (—1,0)) with Dirichlet boundary data

(—y(y — 1)/10,0) if v = -2,
up(z,y) = { (—(y +1)(y —1)/80,0) ifz =3,
0 otherwise

with a unique, but unknown, weak solution. Therefore the discrete solution on the twice
red-refined triangulation is used as a reference solution in the computation of the displayed
approximations to the unknown errors. For the refined estimates, the domain €2 is split into
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O O O O

Q4 Qo
Q3 Qy Qs Qe
Q

O O

FiGURE 5.6. Subdivision of the domain €2 in the backward facing step ex-
ample from Subsection

10 [

—e— uniform
—— adaptive

error

1072 -

Ll (| (| (| Lol
102 103 104 105 108
ndof
FiGURE 5.7. Convergence history of the energy error with respect to a ref-
erence solution on a twice red-refined triangulation for uniform and adaptive

mesh refinements for the problem from Subsection

six squares as depicted in Figure|5.6| with lower bounds of the local inf-sup constants 0.3826 <
¢j for j = 1,...,6 from [I0, I1]. The lower bound of the inf-sup constant 0.049814 < ¢
in this computation is derived from the formula in [II, Corollary 7]. Up to the authors’
knowledge, the assumption in this corollary is not satisfied for €. In fact, the true inf-sup
constant cg might be smaller.

As seen in the previous examples, the adaptive mesh-refinement results in an optimal
convergence rate of 0.5 (cf. Figure .

Figures [5.8) and present the efficiency indices for the error estimators from Section [4
The versions with global inf-sup constant exhibit extremely bad efficiency indices in the
range of 8 to 22 for naps and Myared. Significantly better, but still worse are the efficiency
indices for npyreq Of about 8 to 10 for adaptive mesh refinement. These error estimators are
most affected by the very small global inf-sup constant of the specific domain 2. However,
the global version of nype still yields good efficiency indices close to 1 because the computed
test function vyps is almost divergence free. Its computationally much cheaper modification
mvip2cas is slightly worse with an index of about 3 for adaptive mesh refinement.
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e AP2
—4—  AP2 (mod)
207 | |-+ AP2 (proj)
18 - 1l MP2(1)
£ 16| || MP2(3)
g “o- MP2(3) (mod)
E M 1a MP20G3(3)
g 12| 1 |-+ MP2CG3(3) (proj)
5 10 |- Il MAred
= -8 MAred (mod)
M A || © PMred
6 g || & PMred (mod)
A
4l |
%immfffﬁr —— m‘*
10? 103 10% 10° 106
ndof

FI1GURE 5.8. History of efficiency indices 1),y /||u—wup|| of various a posteriori
error estimators labelled xyz in the figure as functions of the number of
unknowns on uniform meshes for the problem from Subsection

This benchmark problem once again highlights the exceptional superiority of the pro-
posed designs based on the division of 2 into subdomains and the computation with local
inf-sup constants by Theorem @ as suggested by [9]. From the very beginning the
estimators with local modification or projection exhibit efficiency indices below 5 in the
uniform case and below 4 in the adaptive case. Even the index of the moderate estim-
ator mvpacas can be drastically reduced by a factor of at least 2 by using the projected
version. It is also remarkable that the computationally cheap but localized upper bounds

TIAP2 (mod)s TTAP2(proj)» TTMAred (mod)s and TIPMred (mod) Compare favourably well with the global
estimator nmypacas.
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¢ ndof AP2  AP2(mod) MAred MAred(mod) PMred PMred(mod)
1 32,513 2.1455 2.1781 2.7207 2.7610 2.2257 2.2324
2 65,153  3.0522 2.3069 4.3233 3.1558 2.6221 2.1078
4 130,433 4.8789 2.3780 7.5121 3.3666 2.9824 1.9815
8 260,993 8.5031 2.3906  13.6768 3.4124 3.7073 1.9542
16 522,113 15.7631  2.3901  25.9517 3.4199 5.3061 1.9556
¢ MP2(3) MP2(3)(mod) MP2CG3(3) MP2CG3(3)(proj) c
1 1.0377 1.0377 1.2131 1.2131 3.8268 - 107!
2 1.0439 1.0280 1.3304 1.2382 2.2975- 107!
4 1.0520 1.0174 1.5122 1.2489 1.2218-101
8 1.0612 1.0100 1.8327 1.2481 6.2137 - 10~2
16 1.0747 1.0057 2.4606 1.2458 3.1204 - 1072

TABLE 1. Efficiency indices for a collection of estimators for the problem
from Subsection [5.3] with different domains for ¢ = 1,2,4,8,16. The tables
show the results of a computation on the 6 times uniformly red-refined initial
triangulation.
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