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Abstract: Interesting deformations of AdS5×S5 such as the gravity dual of noncommuta-
tive SYM and Schödinger spacetimes have recently been shown to be integrable. We clarify
questions regarding the reality and integrability properties of the associated construction
based on R matrices that solve the classical Yang-Baxter equation, and present an overview
of manifestly real R matrices associated to the various deformations. We also discuss when
these R matrices should correspond to TsT transformations, which not all do, and briefly
analyze the symmetries preserved by these deformations, for example finding Schrödinger
superalgebras that were previously obtained as subalgebras of psu(2, 2|4). Our results con-
tain a (singular) generalization of an apparently non-TsT deformation of AdS5×S5, whose
status as a string background is an interesting open question.
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1 Introduction

Integrability of the string sigma model on AdS5 × S5 has provided important insight into
the AdS/CFT correspondence [1]. Given the power of the associated techniques [2, 3],
considerable effort has been spent on extending them beyond this maximally symmetric
example, by deforming the AdS5×S5 superstring while preserving its integrability [4]. One
important class of such deformations are strings on the Lunin-Maldacena background [5]
which were generalized and shown to be integrable in [6], see also [7].1 More recently, a
manifestly integrable deformation of the AdS5 × S5 superstring was constructed in [9], re-
sulting in a quantum deformation of the superconformal symmetry of AdS5×S5 [10].2 The
metric and B field of this model were found in [13], a spacetime with very interesting prop-
erties [10, 13–18], but its interpretation in terms of string theory and AdS/CFT remains
elusive.3 The construction of [9] is based on a solution of the so-called modified classical
Yang-Baxter equation which essentially has a unique solution [10]. However, shortly af-
terwards it was realized [20] that this construction can be conveniently adapted to yield

1See [8] for a review of the spectral problem in this setting.
2These papers generalize earlier work by Klimćık [11, 12].
3In the AdS2 × S2 and AdS3 × S3 cases some progress has been made on the supergravity front [19].
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integrable deformations based on the classical Yang Baxter equation (CYBE), which has
a large space of solutions. Moreover, many of these solutions have a nice interpretation
in terms of string theory and AdS/CFT, including cases such as the Lunin-Maldacena
background [21], the gravity dual of noncommutative supersymmetry Yang-Mills theory
(SYM) [22], as well as for example certain Schrödinger spacetimes [23], which were hereby
shown to be integrable. However, various confusing statements regarding the reality and
integrability properties of these classical Yang-Baxter based deformations, as well as open
questions regarding their symmetries and relation to gravity have arisen in the literature
[20–26], which we would like to clarify and expand upon in this short paper.

To go into some detail, the AdS5× S5 superstring action can be represented as a coset
sigma model on PSU(2, 2|4)/(SO(4, 1)× SO(5)) as [27]4

S = −T
2

∫
dτdσ 1

2(
√
hhαβ − εαβ)sTr(AαdAβ). (1.1)

Integrability of this model was established in [4]. By adapting the arguments of [9], in [20]
it was argued that deformations of the AdS5 × S5 superstring action of the form

S = −T
2

∫
dτdσ 1

2(
√
hhαβ − εαβ)sTr(AαdJβ) (1.2)

where J = (1 − Rg ◦ d)−1(A) with Rg(X) = g−1R(gXg−1)g, are also integrable sigma
models, provided R is antisymmetric,

sTr(R(m)n) = −sTr(mR(n)), (1.3)

and satisfies the classical Yang-Baxter equation (CYBE)5

[R(m), R(n)]−R([R(m), n] + [m,R(n)]) = 0. (1.4)

Here R is a linear map from a given Lie (super-)algebra g to itself, which can be conveniently
represented as

R(m) = rijti sTr(tjm) = sTr2(r(1⊗m)) (1.5)

for some anti-symmetric matrix rij , where r = rijti∧tj = 1
2rij(ti⊗tj−tj⊗ti), and the ti are

the generators of g. In [20] and subsequent works [22–25], this algebra is generically taken
to be gl(4|4), despite the fact that the parent construction [9] suggests su(2, 2|4). Indeed,
it is clear that if we want the deformed action to be real we have to restrict ourselves to
u(2, 2|4).6 Also, upon examination it is clear that the Lax representation of the equations
of motion given in [9, 20], requires a further restriction to su(2, 2|4).7 Nevertheless, using

4Here h is the world sheet metric, ετσ = 1, Aα = g−1∂αg with g ∈ PSU(2, 2|4), sTr denotes the
supertrace, and d = P1 + 2P2 − P3 where the Pi are the projectors onto the ith Z4 graded components of
the semi-symmetric space PSU(2, 2|4)/(SO(4, 1)× SO(5)) (super AdS5 × S5).

5The trivial solution R = 0 gives the undeformed action.
6Since A ∈ su(2, 2|4), the action will be real only when J satisfies the same reality condition, hence

J ∈ u(2, 2|4), and we see that R must preserve this real form.
7When considering gl(4|4) R matrices, we need to consider the derivation of [9, 20] over gl(4|4), not sl(4|4),

so that we can no longer drop the term in the (matrix valued) equations of motion that is proportional to
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what appear to be and are referred to as sl(4|4) R matrices8 several interesting deformations
of the AdS5 × S5 string action have been constructed that are real, at least at the bosonic
level. Furthermore, in [25] a deformation based on a gl(4|4) R matrix was stated to be
integrable, the status of which, given our statements above, requires further investigation.
We would like to clarify the situation by showing that all real deformations previously
considered in this setting, are, or can be, obtained from su(2, 2|4) R matrices, thereby
manifesting the reality of and the existence of Lax pairs for these models. In particular, we
give an su(2, 2|4) rather than gl(4|4) R matrix for the new type of deformation considered
in [24, 25].

Most of the deformations considered in this setting, such the gravity duals of noncom-
mutative SYM and dipole theories, as well as certain Schrödinger geometries, are based on
commuting symmetry generators, at least heuristically explaining their relation to (null)
TsT transformations. The R matrix for the deformation of [24, 25] is not of this type
however, which means it should not be possible to obtain it by TsT transformations alone.
Given this interesting status, we generalize the associated R matrix, resulting in a singu-
lar deformation of AdS5 × S5. We have not verified that this background is a solution of
supergravity in general. In one particular case however, this background can be obtained
as a TsT transformation in the variables dual to a Schödinger dilation and a perpendicular
null translation, indicating that singularities do not distinguish between TsT and non-TsT
R matrices, rather that the lack of commutativity of the building blocks of an R matrix
does.

We also give a simple description of the symmetries of the deformed theories, in the case
of Schrödinger spacetimes finding the six and twelve supercharge superalgebras of [28],9 up
to some subtleties that we explain. For a particular subclass of the deformed backgrounds
of [24, 25], we find a superalgebra with sixteen supercharges. Our generalization of this
deformation generically preserves no supersymmetry, but precisely in the case where it
corresponds to a TsT transformation, preserves eight supercharges.

In the next section we present an overview of su(2, 2|4) R matrices corresponding to
various deformations studied in the literature. In section 3 we discuss the link between R
matrices and TsT transformations, naturally singling out a nonzero class of deformations
that does not appear to be of TsT type. In section 4 we analyze the symmetries preserved
by an R matrix deformation.

2 Real CYBE deformations of AdS5 × S5

Confusion regarding the reality properties of the R matrices used in [20–26] appears to
originate from the nonstandard choice of basis for su(2, 2) used there. In fact, despite

the identity (see e.g. section 1.2.1 of [2]). This breaks the equivalence of the equations of motion to the
flatness of the proposed Lax pair. We have also checked this explicitly for a U(2) R matrix deformation of
the S2 = SU(2)/U(1) sigma model. Also note the related fact that without a restriction to su(2, 2|4) the
action loses its U(1) gauge symmetry A → A + dθ1, which normally guarantees that the physical degrees
of freedom live in psu(2, 2|4).

8By this we of course mean R matrices whose action is not restricted to su(2, 2|4).
9This also matches the Killing spinor analysis of [29].
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explicit claims to the contrary made in e.g. section 3.4 of [20] and section 2.2 of [24],
all R matrices that result in real actions that have been considered in this context [20–
25] preserve the real form u(2, 2|4). Hence, the actions of these deformed models are
manifestly real, including the fermions that have thus far not been investigated. For the
readers’ convenience, here we will explicitly give an su(2, 2|4) R matrix for each of the
previously considered deformations in the (standard) conventions of [2]. For completeness
we include the already manifestly real R matrix for the Lunin-Maldacena deformation. We
discuss the basis of [20–26] in appendix A.2.

As reviewed in appendix A.1, in our conventions the bosonic algebra su(2, 2) is spanned
by the γj and [γk, γl] for indices running from zero to four, while su(4) is spanned by iγj and
[γk, γl] for indices running from one through five. Note that real exponentials of generators
give group elements. We denote the Cartan generators of su(4) by hj where j runs from
one to three, which we take to be

h1 = diag(i, i,−i,−i), h2 = diag(i,−i, i,−i), h2 = diag(i,−i,−i, i). (2.1)

We will focus on the bosonic sector of the models, where we will work with the coset
representative

g =
(
ga 0
0 gs

)
, (2.2)

with
ga = exµp

µ
e

1
2 log zγ4 = (1 + xµp

µ)e
1
2 log zγ4

, (2.3)

and
gs = eφ

ihie−
ξ
2γ

1γ3
e
i
2 arcsin rγ1

. (2.4)

Here we have introduced
pµ = 1

2(γµ − γµγ4) ∈ su(2, 2). (2.5)

With these conventions the undeformed action is the string action of AdS5×S5 in Poincaré
coordinates. We will also use the light cone coordinates

x± = x0 ± x3
√

2
. (2.6)

2.1 su(2, 2|4) R matrices

The Lunin-Maldacena background [5] for real β and its three parameter generaliza-
tion by Frolov [6], can be found from the su(4) R matrix [21]

r = εijk γi4 hj ∧ hk. (2.7)

The case γ1 = ±γ2 = ±γ3 = β corresponds to the Lunin-Maldacena background. It is
perhaps interesting to note that there is no generalization of this solution of the CYBE
over su(4).
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The gravity dual of noncommutative SYM [30, 31] is obtained from the su(2, 2) R
matrix [22]

r = a2p0 ∧ p3 + a′
2
p1 ∧ p2, (2.8)

where a and a′ are the parameters used in [30]. Strictly speaking this R matrix gives
the Lorentzian continuation of the Euclidean metric presented there in eqn. (2.9). It is
of course possible to generalize this R matrix to a six parameter R matrix based on the
independent antisymmetric products of the pµ.

Dipole type backgrounds see e.g. [32], arise by su(2, 2)⊕ su(4) R matrices of the form
[23]

r = 1
2p

3 ∧ αihi, (2.9)

the sum over i running from one to three here and elsewhere.

Schrödinger geometries arise from su(2, 2)⊕ su(4) solutions of the CYBE of the form

r = p− ∧ f (2.10)

where f ∈ su(4). One solution that has been studied in particular is [23]

r = 1
2p− ∧ η

ihi. (2.11)

This gives a general class of backgrounds found in [33], see also [29, 34].10

Other generalized scaling geometries arise from the su(2, 2) R matrix

r = 1
2p− ∧ (a(γ4 + γ0γ3) + bγ1γ2). (2.12)

The associated backgrounds are equivalent to the ones constructed in [25] with a = c1 + c2
and b = i(c1− c2). For a = 0 the resulting background corresponds to one originally found
in appendix C.1 of [35]. Our R matrix is not quite equivalent to the one used in [25]
however, as the R matrix of [25] contained a u(2, 2) generator and hence did not strictly
speaking manifest integrability, see appendix A.3 for details. For future reference, we would
like to introduce the following generalization of (2.12)

r = 1
2p− ∧ (aγ4 + bγ1γ2 + cγ0γ3), (2.13)

which is also a solution of the CYBE. We will come back to these models later.
Finally, a number of other solutions to the CYBE are briefly listed in [23].11 We can

directly translate them to our basis by following the discussion in appendix A.2.
10The authors appear to present another independent R matrix in [23] (eqn. (3.25) there), while it in

fact appears to be exactly the same as the above R matrix (eqn. (3.8) there). We hope to hereby avoid
further confusion on this part.

11Again, note that example 5 in section 3.3 is identical to the subject of section 3.2 there.
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Solving the CYBE

Constructively classifying the constant solutions of the CYBE over a given Lie (super)algebra
is a complicated problem that to our knowledge has not been solved to date.12 On the
other hand, it is not hard to find various solutions to the CYBE (1.4). In fact, r = a ∧ b,
where a and b are any two commuting algebra elements, is an obvious general class of
solutions.13 All previously studied CYBE R matrices are of this type, with the exception
of those in eqs. (2.12) and (2.13), making them particularly interesting. We will come back
to this point below.

3 R matrices and (null) TsT transformations

The Lunin-Maldacena background, the background dual to noncommutative SYM, and
also dipole type backgrounds, can all be obtained by TsT transformations, also known as
Melvin twists, see e.g. [32]. Moreover, the required TsT transformations precisely involve
the pairs of coordinates dual to the pairs of generators appearing in the above R matrices.
Similarly, Schrödinger geometries are obtained by what is known as a null Melvin twist,
which as the name suggests is nothing but the null generalization of a TsT transformation,
and the R matrix picture is the same.14 Physically a null TsT transformation (null Melvin
twist) consists of (infinite) boosts in addition to pure TsT transformations, but at the
formal level a null TsT transformation is nothing but a regular TsT transformation where
we shift by a null direction. Let us briefly elaborate on this.

3.1 Null TsT transformations

A null Melvin twist can be applied to a background that has a time translation isometry,
a spatial translational isometry, and another rotational or translational isometry [35]. Let
us call the associated coordinates t, y and z. The first step of a null Melvin twist is to
(Lorentz) boost in the y direction. While in general the background need not have an
SO(1, 1) isometry, in our cases it will. Under this boost(

t

y

)
→
(

coshα sinhα
− sinhα coshα

)(
t

y

)
(3.1)

After the boost we T dualize in y, shift the z field z → z + βỹ by the T dual field ỹ,
and T dualize back. We inversely boost y, and finally consider the infinite boost limit
α → ∞, keeping βeα fixed. Clearly in the infinite boost limit the y field involved in
the intermediate steps scales as yint ' eα(−t + y) where t and y are the original t and
y coordinates. Hence we see that in the limit we are considering, we are doing nothing
but a TsT transformation where we shift z by the null direction x−. In fact, as a TsT

12See e.g. the introduction of [36] or §3.1.D of [37] for a discussion of what this would entail in terms of
Lie algebra theory.

13We immediately have [R(m), R(n)] ∼ [a, b] = 0, while the other terms are proportional to sTr(a[b, n/m])
or sTr(a[a, n/m]), which both also clearly vanish.

14Note that as g+− 6= 0, a TsT transformation with a shift in x− (generated by p−) results in a metric
deformation of g++.
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transformation involves two T dualities, formally a null TsT transformation is really just
a TsT transformation where we shift by a null coordinate, and we do not need to strictly
follow the above procedure. We refer to a (null) TsT transformation where we T dualize y
and shift z as a TsT transformation in (y, z).

Since a TsT transformation is based on two commuting isometries, it is clear that we
can associate a solution of the CYBE to any TsT transformation, which then should both
produce the same deformation.15 The converse does not appear to be the case however, as
already indicated by the results of [25].

3.2 Non TsT R matrices?

It is hard to directly relate an R matrix to a (null) TsT transformation when the associated
building blocks do not commute, i.e. r = c ∧ d with [c, d] 6= 0, since a TsT transformation
is inherently associated to two independent (commuting) isometries. An example of this
situation is given by the R matrix (2.12) with a 6= 0, since [p−, γ4 +γ0γ3] 6= 0. Correspond-
ingly it is apparently necessary to use S duality and TsT transformations that involve the
sphere in addition to TsT transformations on AdS5 to reproduce the background [25].

In this light it is interesting to consider the generalized R matrix (2.13). For b = 0 the
background is given by16

ds2 = −2z2dx+dx− + a(a− c)z−2(zdz + ρdρ)x+dx+ − a2(1 + ρ2z−2)(dx+)2

z4 − (a− c)2(x+)2

+ dρ2 + ρ2dψ2 + dz2

z2 ,

B = (a− c)x+dx− − a(ρdρ+ zdz)
z4 − (a− c)2(x+)2 ∧ dx+,

(3.2)

where we have used polar coordinates (ρ, ψ) in the (x1, x2) plane. This space has a (naked)
curvature singularity at z2 = |a−c|x+, and we should consider the region z2 > |a−c|x+ to
preserve the metric signature. The two terms making up the R matrix (2.13) only commute
when c = −a. In line with this, we have verified that precisely in this case the above
geometry also arises by a TsT transformation in (y, x−), where y is the coordinate associated
with the boost-dilation (Schrödinger dilation) x+ → e2αx+, z → eαz, ρ → eαρ generated
by γ4 − γ0γ3, thereby explicitly verifying that it is a (singular) solution of supergravity.
For other values of c − a there should be no such interpretation, and presumably further
duality transformations are required to reproduce the background. It would be interesting
to verify that this background is a solution of supergravity in general, especially in light of

15It is possible to explicitly prove that r = a∧ b with [a, b] = 0, sTr(a2) 6= 0, and sTr(b2) 6= 0, results in a
deformation of the (bosonic) background that is manifestly equivalent to a TsT transformation in (xa, xb),
where the xc are the corresponding dual coordinates [38]. Note however that all above deformations with
the exception of the Lunin-Maldacena one, involve pµ with pµpν = 0.

16The background can be readily extracted out of the deformed action following e.g. [13] or [24]. We
could have presented the associated background for b 6= 0, but its expression is rather large and uninsightful.
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the conjectures of [21, 26]. Note that for a = 0 the deformation looks remarkably elegant

ds2 = −2dx+dx−

z2 − c2z−2(x+)2 + dρ2 + ρ2dψ2 + dz2

z2 + ds2
S5 ,

B = cx+z−2

z2 − c2z−2(x+)2dx
+ ∧ dx−,

(3.3)

but is of course still singular.

4 (Super)symmetry analysis

The undeformed AdS5 × S5 superstring action has PSU(2, 2|4) symmetry, realized as left
multiplication of the coset representative g in the action (1.1) by a constant group element
G, up to a compensating gauge symmetry h ∈ SO(4, 1)× SO(5)

Gg = g′h. (4.1)

This gauge symmetry is preserved under the deformation, and we can ask which part of the
global PSU(2, 2|4) symmetry is preserved. Given the construction of the deformed action,
this is straightforwardly determined by Rg; any transformation g → Gg that leaves Rg
invariant represents an unbroken symmetry of the action. In other words, we want the set
of G for which

RG(x) = R(x). (4.2)

Translating this statement to the algebra, we want to find the generators t for which

R([t, x]) = [t, R(x)]. (4.3)

Analyzing this equation for a particular R matrix gives the subalgebra of psu(2, 2|4) that
is preserved by a given deformation.

4.1 Lunin-Maldacena, noncommutative SYM, and dipole theories

By the above analysis we can readily verify that none of the 32 supercharges of psu(2, 2|4)
are preserved by the R matrix (2.7) for the generic γi deformation, while for γ1 = ±γ2 =
±γ3 = β we find eight supercharges as appropriate for the N = 1 superconformal symmetry
of β deformed SYM.17 Similarly, we can verify that when the rank of αihi is three instead
of four, the R matrix (2.9) preserves four supercharges, while it preserves eight if the rank
is two, in agreement with the N = 1 and N = 2 nonconformal supersymmetry of the
dual theories [39]. For the dual of noncommutative SYM we find the sixteen supercharges
appropriate for a nonconformal N = 4 theory [31].

17In this paper we always count real supercharges.
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4.2 Schödinger spacetimes

Given the form of R matrix (2.11) the subalgebras of su(2, 2) and su(4) that satisfy eqn.
(4.3) are given by the centralizer of p− and ηihi respectively. Of course, the centralizer
of p− in su(2, 2) is precisely the Schrödinger algebra.18 For su(4) the Cartan subalge-
bra remains. Now, according to the (more general) Killing spinor analysis of [34], our
Schrödinger backgrounds of the form Schr5×S5 should preserve two Poincaré supercharges
when η1 ± η2 ± η3 = 0, and four Poincaré supercharges when in addition one of the ηi

vanishes. However, it was subsequently shown [29] that on special subclasses of solutions
which include our backgrounds, the number of supercharges gets enhanced to six, or even
twelve. Now our analysis indicates that when the rank of ηihi is three (i.e. η1±η2±η3 = 0),
six of the 32 supercharges survive, while if the rank is two (i.e. additionally one of the
ηi vanishes) we get twelve. These six and twelve are split as 2 + (2 + 2) and 4 + (4 + 4)
respectively, where the additional four respectively eight supercharges we find with respect
to [34] are precisely the extra two respectively four Poincaré plus two respectively four
superconformal supercharges of [29]. It is also easy to check that these extra superconfor-
mal supercharges are obtained from the extra Poincaré supercharges by the action of the
special conformal transformation of the Schrödinger algebra [29].

In fact, these superalgebras are closely related to those found in [28]. According to
[28], the Schrödinger subalgebras of N = 2 and N = 1 superconformal subalgebras of
psu(2, 2|4), give superalgebras with twelve supercharges and su(2)⊕2 ⊕ u(1) ⊂ su(4) R
symmetry, and six supercharges and u(1)⊕3 R symmetry respectively. The superalgebra
with six supercharges that we are dealing with here is precisely this latter one, u(1)⊕3

being the centralizer of ηihi in su(4) also when ηihi has rank three. When ηihi has rank
two on the other hand, our superalgebra with twelve supercharges contains su(2)⊕ u(1)⊕2

in addition to the Schrödinger algebra, instead of the su(2)⊕2 ⊕ u(1) R symmetry of [28].
However, looking more closely at the projectors used in [28] to derive the N = 2 subalgebra,
it is clear that one of the su(2) algebras actually acts trivially on the supercharges,19 and
we would reinterpret their twelve supercharge Schrödinger superalgebra as the direct sum
of a superalgebra with R symmetry su(2)⊕ u(1) = u(2) and a separate su(2) factor. Here
we simply have this minimal Schrödinger superalgebra extended by a central u(1) instead of
su(2). Similar statements of course apply to the u(1)⊕3 of the six supercharge superalgebra,
where the minimal superalgebra in fact has only u(1) R symmetry,20 and it is not hard
to check that the six supercharges we find from eqn. (4.3) are indeed charged under only
one independent linear combination of our Cartan generators. We believe this answers

18This is easy to see using the results of [40]. The Schrödinger algebra can be found there.
19In the notation of [28] the generators of the so(4) = su(2)⊕2 are realized via (products of) γ matrices as

Γa
′b′

with indices running from 5 to 8, acting on supercharges from the right. Now their N = 2 supercharges
satisfy Q̃ = Q̃Γ5678 and S̃ = S̃Γ5678, meaning that the action of any Γa

′b′
is equal or opposite to the action

of Γc
′d′

, where c′ and d′ are the elements of {5, 6, 7, 8} complementary to a′ and b′ . Now so(4) can be
decomposed as su(2)⊕ su(2) precisely via such linear combinations of complementary pairs of Γa

′b′
, and we

can easily check that one of the two su(2)s then acts trivially on the N = 2 supercharges.
20In [28] all fermions have the same charge under each of the three u(1)s, hence we can decouple two

(linear combinations) of the u(1)s.
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the question raised in [23] regarding the relation between R matrices and Schrödinger
superalgebras.

4.3 Generalized scaling spacetimes

Repeating our analysis for the background (3.2), we find that it preserves eight supercharges
for a = −c, sixteen for a = c, and none otherwise.21 These eight resp. sixteen supercharges
form one resp. two fundamental representations of su(4), which itself is untouched. Taking
b 6= 0 breaks all supersymmetry regardless of the values of a and c. Regarding the remaining
bosonic symmetries, note that these geometries do not have full Schrödinger symmetry
for nonzero a or c, generically only preserving rotations in the (x1, x2) plane and the
Schrödinger dilation mentioned earlier, as can also be easily seen from the background.

5 Conclusions

We hope to have clarified the reality and manifest integrability properties of various R
matrices used to construct integrable deformations of the AdS5×S5 superstring, aspects of
the (lack of a) link between R matrices and TsT transformations, as well as the symmetries
of our R matrix deformed models. We believe that one of the most interesting remaining
open questions is the classification of solutions to the classical Yang-Baxter equation, which
may not be entirely out of reach for the specific case of su(2, 2) ⊕ su(4) and its lower
dimensional analogues. For example, the CYBE has a two parameter family of solutions
over su(1, 1) and no solution over su(2). This two parameter su(1, 1) R matrix is of the
form r ∼ aσ1∧σ2 +a cos θ(iσ3)∧σ1 +a sin θ(iσ3)∧σ2. Unfortunately this does not appear
to yield a very pleasant deformation of AdS2, giving a metric dependent on global time t22

ds2 =
(

1− a2
(

2ρ2 + (1 + 2 cos(2(t+ θ)))(1 + ρ2)− 4ρ
√

1 + ρ2 cos(t+ θ)
))−1

ds2
AdS2 ,

preserving none of the SU(1, 1) symmetry of AdS2. In Poincaré coordinates this metric
depends on time as well. Of course, many of the nice deformations we considered in the
previous sections were simpler, based on commuting elements, inherently requiring higher
rank algebras. A related interesting direction would be to investigate and if possible prove
the equivalence of R matrices built on commuting elements to (null) TsT transformations.
Even more relevant is the question whether any solution of the CYBE corresponds to a
string background as conjectured in [21, 26], and if so, what the link is between an R
matrix built out of noncommuting elements, and e.g. S duality in addition to TsT trans-
formations.23 One way to gain further insight here would be to investigate the supergravity
embedding of the generalized background (3.2), and others of its kind.

Finally, many of the powerful tools associated with the integrability of the AdS5 × S5

superstring [3], arise in the so-called exact S matrix approach [2]. This approach relies
21Strictly speaking, we are finding supersymmetries of the string sigma model that do not always have

to arise from supersymmetries of the supergravity background, see e.g. [16, 18, 41, 42].
22We work with the coordinates of e.g. [13].
23S duality does not generically preserve integrability.
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on the ‘BMN’ light cone gauge that requires isometries in global AdS time and one of
the angles on the sphere. Correspondingly, while tools such as the thermodynamic Bethe
ansatz can be extended from AdS5×S5 [43–46] to quantum deformations [15, 47, 48], based
on the associated quantum deformed exact S-matrix [13, 49, 50], it is not immediately clear
whether this can be done for most of the deformations described here. All deformations
here, except the Lunin-Maldacena-Frolov deformation,24 are naturally suited to Poincaré
AdS, and result in a metric with time dependence in (naive) global coordinates. It would
be great to understand whether we can extend the exact S matrix approach to e.g. the
dual of noncommutative SYM or to Schrödinger spacetimes.
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A Appendices

A.1 Algebra conventions

In this paper we are mainly concerned with the bosonic subalgebra su(2, 2) ⊕ su(4) of
psu(2, 2|4). For details on the material presented here, as well as its supersymmetric
extension, we refer to the pedagogical review [2]. We will only briefly list the facts we
need, beginning with the γ matrices

γ0 = iσ3 ⊗ σ0, γ1 = σ2 ⊗ σ2, γ2 = −σ2 ⊗ σ1,

γ3 = σ1 ⊗ σ0, γ4 = σ2 ⊗ σ3, γ5 = −iγ0,
(A.1)

where σ0 = 12×2 and the remaining σi are the Pauli matrices. With these matrices the
generators of so(4, 1) in the spinor representation are given by nij = 1

4 [γi, γj ] where the
indices run from zero to four, while for so(5) we can give the same construction with indices
running from one to five. The algebra su(2, 2) is spanned by these generators of so(4, 1)
together with the γi for i = 0, . . . , 4, while su(4) is spanned by the combination of so(5)
and iγj for j = 1, . . . , 5. Concretely, these generators satisfy

m†γ5 + γ5m = 0 (A.2)

for m ∈ su(2, 2), and
n† + n = 0 (A.3)

24The thermodynamic Bethe ansatz can indeed be extended to this case [51–53], see also [8].

– 11 –



for n ∈ su(4). This means that we are dealing with the canonical group metric γ5 =
diag(1, 1,−1,−1) for SU(2, 2), and eαn and eαm give group elements for real α.

The generator Ω of the Z4 automorphism of psu(2, 2|4) acts on these bosonic subalge-
bras as

Ω(m) = −KmtK, (A.4)

where K = −γ2γ4, which leaves the subalgebras so(4, 1) and so(5) invariant.

A.2 A different basis

The conventions of [20–26] are based on γ matrices introduced there as25

γ̃0 = iσ2 ⊗ σ3, γ̃1 = σ2 ⊗ σ2, γ̃2 = −σ2 ⊗ σ1,

γ̃3 = σ1 ⊗ σ0, γ̃5 = iγ̃1γ̃2γ̃3γ̃0, γ̃4 = −iγ̃0.
(A.5)

su(2, 2) is then defined by imposing the reality condition

ñ†γ̃0 + γ̃0ñ = 0, (A.6)

on elements of sl(4) [23]. With this definition, su(2, 2) is spanned by {γ̃j , 1
4 [γ̃k, γ̃l]}, where

indices run over 0, 1, 2, 3, and 5. Since the eigenvalues of γ̃0 are ±i, strictly speaking we
should define not γ̃0 but e.g. γ̃4 as the group metric. Real exponentials of algebra elements
again give group elements. Note however that the ‘Cartan generators’ introduced in e.g.
appendix A of [23], are not all elements of su(2, 2); h̃1 there does not respect the real form,
being defined as h̃1 ≡ iγ̃1γ̃2.

Also here we can again use the γ matrices to provide a basis for su(4), now given by
the iγ̃j and 1

4 [γ̃k, γ̃l] for indices running from one through five.26

Of course it is possible to relate the basis described in this section to the one of [2] by
a GL(16) transformation. In fact, γ̃i = γi for i = 1, 2, 3, and all we need to do is identify
γ̃4 = γ5, in line with the above discussion of the group metric. Note that γ̃4 → γ5 cannot
be achieved by a GL(4) transformation on the matrices themselves, if we wish to preserve
the remaining γi.

A.3 An example R matrix

Our prototypical example of a Jordanian R matrix27 written in the above nonstandard
basis will be

r = e24 ∧ (c1e22 − c2e44) (A.7)

as considered in [25] and for c1 = c2 ∈ R in [24]. Here the eij denote the matrix unities,
with a one in row i, column j. In [20] it is explicitly stated that Jordanian R matrices do

25As these conventions differ from the above, the statement in appendix A of [24] that they basically
follow [2] is somewhat confusing.

26There appears to be a typographical error in [23] where it is stated that su(4) is given by the real span
of the γ̃j and 1

4 [γ̃k, γ̃l]}; su(4) reality requires an i on the γ̃s.
27Jordanian R matrices are antisymmetric solutions of the CYBE that are nilpotent; Rk(m) = 0 for

k ≥ 3.

– 12 –



not preserve the real form su(2, 2|4). This was repeated in [24] for this particular R matrix,
while noting that in the case c1 = c2 ∈ R it nevertheless results in a real action. However,
provided c∗2 = c1, the above R matrix clearly is built out of generators that satisfy the
reality condition (A.6), and therefore it does preserve the real form u(2, 2|4). This explains
the observation of [25] that c1 = c∗2 is a sufficient condition for reality of the action.

Now c1e22 − c2e44 can have nonzero trace, meaning (A.7) is generically a u(2, 2) R
matrix, obscuring its status with regard to integrability. Still, we claim to reproduce the
same background via the su(2, 2) R matrix (2.12). To explain this, we need to discuss the
inversion of the operator 1 − Rg ◦ d in the action. By construction, the domain of the
inverse operator is (p)su(2, 2|4), and by the supertrace only the su(2, 2|4) projection of its
range appears in the action. Hence, the only place where one can distinguish between a
u(2, 2|4) and an su(2, 2|4) R matrix, is in the space over which we invert 1 − Rg ◦ d. As
the projection of a u(2, 2|4) R matrix onto su(2, 2|4) is also a solution of the CYBE over
su(2, 2|4), we can (attempt to) invert such an R matrix over both u(2, 2|4) and su(2, 2|4).
The outcome will generically be different however; consider for example(

1 r

−r 1

)−1

11
(A.8)

and compare it to 1−1. Now, if we invert the R matrix over su(2, 2|4), no u(2, 2|4) aspect
of the R matrix ever enters the problem, and we should simply consider the projection of
the R matrix onto su(2, 2|4) as our R matrix. Of course, were we to invert over u(2, 2|4),
we would generically find problems in the matching of the Lax pair construction with the
equations of motion. It is easy to check this explicitly for the S2 sigma model.28 Going
over the derivation in [24, 25] we see that they in fact invert over su(2, 2|4), so that they
are really using an su(2, 2|4) R matrix disguised as a u(2, 2|4) one. Our R matrix (2.12) is
the su(2, 2|4) projection of this R matrix translated to our basis.
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