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1 Introduction

Usually, a differential-algebraic equation (DAE) has a family of solutions; to pick
one of them, one has to supply additional conditions. In an initial value problem
(IVP), the solution is specified by its value at a single point. A genuine boundary
value problem (BVP) assigns solution and derivative values at more than one point.
Most commonly, the solutions are fixed at just two points, the boundaries. IVPs can
be seen as relatively simple special cases of BVPs.

BVPs constitute an important area of applied mathematics already for explicit
ordinary differential equations (ODEs), e.g., [12]. This applies even more for DAEs.
We follow [12] in mainly concentrating on two-point BVPs.

Till now, both analytical theory and numerical treatment of DAEs are mainly
focused on IVPs. The more complex BVPs have not been studied with similar in-
tensity. The related early work until 2001 is carefully summarized in [102, Section
81]. With the present paper we intend to provide an actual survey of this field.

Optimal control is one of the traditional sources of BVPs for DAEs. As it is
well-known, extremal conditions for optimal control problems subject to constraints
given by explicit ODEs yield BVPs for semi-explicit DAEs. If the constraints them-
selves are given by DAEs, the extremal conditions lead to BVPs for DAEs (e.g.,
[33, 54]) even more.

An important area yielding DAEs is network modeling in different application
fields, for instance, electrical networks ([104, 103, 83]), and multibody systems ([45,
109]). One is interested in BVPs transforming one state or position into another,
often also in periodic solutions.

DAEs in applications usually need an involved technical description and show
high dimensions. Here we avoid repeating extensive case studies and prefer small,
clear, possibly academic examples. We hint at some essentials by means of easy
examples. We recognize features coming over from the well-known classical ODE
theory, but we indicate also further difficulties emerging from the DAE context. The
first example is taken from [20].

Example 1.1. Minimize the cost

J(x) =

t f∫
0

(x3(t)2 +(x4(t)−R2)2)dt

subject to the constraints

x′1(t)+ x2(t) = 0, x1(0) = r,

x′2(t)− x1(t)− x3(t) = 0, x2(0) = 0,

x1(t)2 + x2(t)2− x4(t) = 0,



6 Introduction

with constants r > 0, R > 0. The component x3 can be seen as a control function.
For arbitrary given function x3 the resulting components x1,x2,x4 are uniquely deter-

Fig. 1 Solution of the optimal BVP in Example 1.1

mined. In particular, if x3(t) vanishes identically, the remaining IVP has the unique
solution x1(t) = r cos t, x2(t) = r sin t, x4(t) = r2. Then the point (x1(t),x2(t)) orbits
the origin with radius r and the cost amounts to J (x) = 13.5.
By minimizing the cost, the point (x1(t),x2(t)) becomes driven to the circle of radius
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R, with low cost of x3(t). Figure 1 shows a locally optimal solution for t f = 3, r = 1,
R = 2, yielding the cost J (x) = 4.397, which was generated by means of the asso-
ciated extremal condition, the so-called optimality BVP,

x′1(t)+ x2(t) = 0,
x′2(t)− x1(t)− x3(t) = 0, x1(0) = r,

x1(t)2 + x2(t)2− x4(t) = 0, x2(0) = 0,
−x′5(t)− x6(t)−2x1(t)x7(t) = 0, x5(t f ) = 0,
−x′6(t)+ x5(t)−2x2(t)x7(t) = 0, x6(t f ) = 0,

x6(t)+ x3(t) = 0,

x7(t)− x4(t)+R2 = 0.

This BVP is solvable and locally well-posed, see [94, Example 6.4]. Owing to the
given initial condition in the minimization problem, the optimality BVP shows sepa-
rated boundary conditions. We emphasize that, for well-posedness of the optimality
BVP, one necessarily needs appropriate initial conditions in the minimization prob-
lem. For instance, requiring there additionally x4(0) = 0 is not a good idea.

We observe that any solution of the DAE, among them the solution of the BVP,
must reside in the obvious restriction set

M0 = {x ∈ R7 : x2
1 + x2

2− x4 = 0, x6 + x3 = 0, x7− x4 +R2 = 0}.

Replacing the given constant R in the problem by a time-varying function R(·) does
not change the well-posedness of the BVP. However, then one is confronted with a
time-varying restriction setM0(t) such that x(t) ∈M0(t) holds for all DAE solu-
tions wherever they exist. ut
The next example ([31], cf. [84]) shows a semi-explicit DAE describing a minimal
instance of an electrical network.

Example 1.2. The DAE

x′1(t) =−
GL

C1
x1(t)+

F(−(x1(t)+ x3(t)))
C1

,

x′2(t) =−
1

C2RQ
(x2(t)+ x3(t)+E(t)),

0 =− 1
RQ

(x2(t)+ x3(t)+E(t))+F(−(x1(t)+ x3(t)))−F(x3(t)),

describes the voltage doubling network from Figure 2, where

E(t) = 3.95 sin
(

2π
t
T

)
kV, T = 0.064, F(u) = 5 ·10−5(e630u−1)mA

and
C1 =C2 = 2.75nF, GL =

1
RL

, RQ = 0.1MΩ, RL = 10MΩ.
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Fig. 2 Voltage doubling network in Example 1.2

We ask for a solution of this DAE which satisfies the nonseparated boundary condi-
tion

x1(0)− x1(T ) = 0,
x2(0)− x2(T ) = 0.

The BVP proves to be solvable and locally well-posed in its natural setting. Again,
the right number of boundary conditions plays its role for well-posedness. The so-
lution results to be T -periodic. It is displayed in Figure 3. It can be provided numer-
ically, only.
Replacing the above boundary condition by x(0) = x(T ) leads to a solvable BVP,
but it is no longer well-posed because of too much conditions.
Furthermore, the T -periodic solution is asymptotically stable. A fact which is
checked in [84], via the eigenvalues of the monodromy matrix. Again all solutions

Fig. 3 T -periodic solution of the DAE in Example 1.2
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of the DAE must reside in a restriction set, now in

M0(t) = {x ∈ R3 :− 1
RQ

(x2 + x3 +E(t))+F(−(x1 + x3))−F(x3) = 0}.

Though here the dimension is lower than in Example 1.1, the restriction set looks
less transparent. ut

Time-varying restriction sets are typical for DAEs in applications, and the solutions
are not expected to feature high smoothness. From this point of view, the popular
opinion that DAEs are nothing else vector fields on smooth manifolds is somehow
limited. Nevertheless, corresponding case studies are helpful to gain insights.

Example 1.3. Consider the DAE

x′1(t)+ x1(t)− x2(t)− x1(t)x3(t)+(x3(t)−1)sin t = 0,
x′2(t)+ x1(t)+ x2(t)− x2(t)x3(t)+(x3(t)−1)cos t = 0,

x1(t)2 + x2(t)2 + x3(t)−1−α(t) = 0,

with a given scalar function α , and the separated, nonlinear boundary condition

x1(0) = 0,

x1(2π)2 + x2(2π)2 = 1.

Here we have the transparent restriction set

M0(t) = {x ∈ R3 : x2
1 + x2

2 + x3−1−α(t) = 0}

moving in R3. The BVP has the solution

x∗1(t) = sin t, x∗2(t) = cos t, x∗3(t) = α(t).

This BVP will turn out to be locally well-posed, no matter how α behaves, see
Example 2.6.

Replacing the boundary conditions by the new ones

x1(0)− x1(2π) = 0,
x2(0)− x2(2π) = 0,

the situation changes. Assume α to be a 2π-periodic function, so that the restriction
setM0(t) moves periodically and each BVP solution has the property x(0) = x(2π).
We speak then shortly of a periodic BVP. Clearly, the above solution x∗ of the DAE
satisfies at the same time the periodic BVP.
The periodic BVP turns out to be locally well-posed for most functions α , among
them α = 0, see Example 2.6.

In contrast, the periodic BVP is no longer well-posed for α ≡ 1. Then there is
an entire family of solutions: For arbitrary parameters c1,c2 ∈ R, c2

1 + c2
2 = 1, the
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function

x∗∗(t) =

c1 cos t + c2 sin t
c2 cos t− c1 sin t

1


is a 2π-periodic solution of the DAE. Here we see a phenomenon coming over
from classical BVPs in explicit ODEs. A correct number of boundary conditions is
necessary but not sufficient for the well-posedness of a BVP. It is also necessary that
the boundary conditions are consistent with the flow. Of course, the same remains
true for DAEs.

It is quite difficult to picture the flow of a DAE. Figure 4 sketches the flow onM0
for the easier case α ≡ 0. It is dominated by the asymptotically stable 2π-periodic
solution

x∗1(t) = sin t, x∗2(t) = cos t, x∗3(t) = 0,

of the DAE which satisfies also our BVPs and the unstable stationary solution

x∗1(t) = 0, x∗2(t) = 0, x∗3(t) = 1.

ut

Fig. 4 Flow on the constraint set in Example 1.3 for α vanishing identically

Example 1.4. The solutions of the DAE
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x′1(t)+ x1(t) = 0,
x2(t) x′2(t)− x3(t) = 0,

x1(t)2 + x2(t)2−1+
1
2

cos(πt) = 0,

reside in the set

M0(t) := {x ∈ R3 : x2
1 + x2

2−1+
1
2

cos(πt) = 0}.

A further look at this DAE makes clear that there is another set the solution val-
ues have to belong to. Namely, for any solution x∗(.), differentiating the identity
x∗1(t)2 + x∗2(t)2− 1+ 1

2 cos(πt) = 0 and replacing the expressions for the deriva-
tives we obtain the new identity

−2x∗1(t)2 +2x∗3(t)−
1
2

π sin(πt) = 0.

Therefore, all solution values x∗(t) must also satisfy this hidden constraint, that is,
they must belong to the set

H(t) := {x ∈ R3 :−2x2
1 +2x3−

1
2

π sin(πt) = 0}.

The presence of hidden constraints complicates the matter. The obvious restriction
setM0(t) contains points which are no longer consistent, but the consistent values
must belong to the proper subset

M1(t) :=M0(t)∩H(t)⊂M0(t).

Figure 5 showsM1(t) for t = 0 and t = 1
2 .

Fig. 5 Constraint set M1 at t = 0 and t = 1
2 in Example 1.4

Regarding the boundary condition
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x1(0)− x1(2) = α, |α|< 1
2
(1− e−2),

the BVP has the two solutions

x∗ 1 = ce−t , x∗ 2 = (1− 1
2

cosπt− c2e−2t)
1
2 , x∗ 3 =

1
4

π sinπt + c2e−2t ,

and

x∗∗ 1 = ce−t , x∗∗ 2 =−(1−
1
2

cosπt− c2e−2t)
1
2 , x∗∗ 3 =

1
4

π sinπt + c2e−2t ,

where c := α/(1− e−2). In particular, for α = 0, thus c = 0, the first solution com-
ponent which governs the inherent dynamics becomes stationary.

The boundary condition proves to be accurately stated locally around x∗. Namely,
for each arbitrary sufficiently small γ , the BVP with perturbed boundary condition

x1(0)− x1(2) = α + γ,

possesses a unique solution x in the neighborhood of x∗ and the inequality

‖x− x∗‖∞≤
2

1− e−2 |γ|

is valid. This can be checked by straightforward computations. An analogous result
can be derived regarding the reference solution x∗∗. Nevertheless, the BVP fails to
be locally well-posed in the natural setting. Still, it will be shown to become well-
posed in an special advanced setting, see Example 2.7. ut

Usually, DAEs are given either in standard form

f(x′(t),x(t), t) = 0 (1)

or in the advanced form
f ((Dx)′(t),x(t), t) = 0, (2)

with an extra matrix function D indicating which derivatives are actually involved.
Most of the DAEs arising in applications originally show the latter form ([45, 103,
35]). For large classes of DAEs being of interest in the context of BVPs, for instance
semi-explicit DAEs, the equation (1) can be also written in the form (2) as

f((Dincx)′(t),x(t), t) = 0,

with a constant incidence matrix Dinc. For instance, in Example 1.3 we can simply
choose

D =

[
1 0 0
0 1 0

]
, f (y,x, t) =

y1 + x1− x2− x1x3 +(x3−1)sin t
y2 + x1 + x2− x2x3 +(x3−1)cos t

x2
1 + x2

2 + x3−1−α(t)

 .
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In the present paper we deal with DAEs of the form (2), which is more comfort-
able from the analytic point of view ([83, 96]). Most results remain valid accordingly
for the standard form (1).

The well-posed BVPs in Examples 1.1, 1.2, and 1.3 rely on regular index-1 DAEs
which behave quite similarly to regular ODEs. In contrast, the solutions of any
higher index DAE show an ambivalent character unlike the solutions of explicit
ODEs: they are smooth with respect to the integration constant as expected com-
ing from explicit ODEs, however, concerning perturbations of the right-hand side,
the solution becomes discontinuous in the natural setting. We refer to the illustra-
tive example [83, Example 1.5] and its functional-analytic interpretation in [96].
The discontinuity concerning the right-hand side causes well-known difficulties in
numerical integration procedures and in the numerical treatment of BVPs as well.

Our exposition relies on the projector-based analysis ([83]). In particular, if not
explicitly indicated otherwise, the notion index stands for tractability index. We
notice to this end that, for large classes of DAEs, the tractability index coincides
with the differentiation index and the perturbation index.

We see here a twofold benefit of the projector based analysis: It serves as integra-
tive framework of the wide survey material and, at the same time, as source of new
developments such as the linear BVP theory as counterpart of the classical version
in [12]).
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2 Analytical theory

2.1 Basic assumptions and terminology

To tie in with the general discussion in [83, 96] we deal with DAEs of the form

f ((Dx)′(t),x(t), t) = 0, (3)

which exhibits the involved derivative by means of an extra matrix valued function
D. The function f : Rn×D f ×I f −→ Rm, D f ×I f ⊆ Rm×R open, is continuous
and has continuous partial derivatives fy and fx with respect to the first two vari-
ables y ∈ Rn, x ∈ D f . The partial Jacobian fy(y,x, t) is everywhere singular. The
matrix function D : I f →L(Rm,Rn) is at least continuous, often continuously dif-
ferentiable, and D(t) has constant rank r on the given interval I f . Always, imD is
supposed to be a C1-subspace varying in Rn.

We concentrate on two-point boundary conditions

g(x(a),x(b)) = 0 (4)

described by the continuously differentiable function g : D f ×D f → Rl and two
different points a,b∈I f . The number l≤m of boundary conditions will be specified
below. It strongly depends on the structure of the DAE.

We are looking for classical solution of the DAE (3), that is, for functions from
the function space

C1
D(I,Rm) := {x ∈ C(I,Rm) : Dx ∈ C1(I,Rn)},

defined on an interval I ⊆ I f , with values x(t) ∈ D f , t ∈ I, and satisfying the DAE
pointwise on I.
Evidently, for each arbitrary given function x ∈ C1

D(I,Rm), with values x(t) ∈ D f ,
t ∈ I ⊆ I f , the resulting expression

q(t) := f ((Dx)′(t),x(t), t), t ∈ I,

yields q ∈ C(I,Rm). We say that this function space setting is the natural setting of
our DAE.

The element x0 ∈ D f is said to be a consistent value of the DAE at time t0 ∈ I f ,
if there is a solution x ∈ C1

D(I,Rm) given on an interval I 3 t0 such that x(t0) = x0.
When dealing with BVPs (3), (4) we suppose the compact interval I = [a,b] and
seek functions from C1

D(I,Rm) that satisfy the DAE (3) and, additionally, the bound-
ary condition (4).

Supposing a compact interval I we equip the function spaces C(I,Rm) and
C1

D(I,Rm) with the norms
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‖x‖∞ := max
t∈I
|x(t)|, x ∈ C(I,Rm),

‖x‖C1
D

:= ‖x‖∞ +‖(Dx)′‖∞, x ∈ C1
D(I,Rm),

respectively. This yields Banach spaces.

Definition 2.1. The DAE (3) has a properly involved derivative, also called properly
stated leading term, if ker fy is another C1-subspace varying in Rn, and the transver-
sality condition

ker fy(y,x, t)⊕ imD(t) = Rn, (y,x, t) ∈ Rn×D f ×I f , (5)

is valid.

Below, except for Subsection 3.4 on singular problems, we always assume the
DAE (3) to have a properly stated leading term. To simplify matters we further
assume the nullspace ker fy(y,x, t) to be independent of y and x. Then, the transver-
sality condition (5) pointwise induces a projector matrix R(t)∈L(Rn), the so-called
border projector, such that

imR(t) = imD(t), kerR(t) = ker fy(y,x, t), (y,x, t) ∈ Rn×D f ×I f . (6)

Since both subspaces imD and ker fy are C1-subspaces, the border projector function
R : I f →L(Rn) is continuously differentiable, see [83, Lemma A.20].
Note that, if the subspace ker fy(y,x, t) actually depends on y. then one can slightly
modify the DAE by letting f̃ (y,x, t) := f (D(t)D(t)+y,x, t) such that ker f̃y(y,x, t) =
(imD(t))⊥ depends on t only.

Since D(t) has constant rank r, we may choose a continuous projector valued
function P0 ∈ C(I f ,L(Rm)) such that

kerP0(t) = kerD(t) = ker fy(y,x, t)D(t)

for all possible arguments. Denote the complementary projector function by Q0,

Q0(t) := I−P0(t).

Additionally, the four conditions

D(t)D(t)−D(t) = D(t),

D(t)−D(t)D(t)− = D(t)−,

D(t)D(t)− = R(t),

D(t)−D(t) = P0(t),

determine the pointwise generalized inverse D(t)− of D(t) uniquely, and the matrix
function D−(t) :=D(t)− depends continuously on its argument, see [83, Proposition
A.17].
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A considerable part of the relevant literature (e.g. [51, 106]) restricts the interest
to semi-explicit DAEs consisting of m = m1 +m2 equations,

x′1(t)+ k1(x1(t),x2(t), t) = 0,
k2(x1(t),x2(t), t) = 0, (7)

with n = m1,

f (y,x, t) =
[

y+ k1(x, t)
k2(x, t)

]
, D(t) =

[
I 0
]
, P0(t) =

[
I 0
0 0

]
, D(t)− =

[
I
0

]
, R = I.

Notice that special semi-explicit DAEs play their role in multibody dynamics [45].
The semi-explicit form confirms the clear significance of our solution notion. Here
we seek continuous functions x having a continuously differentiable component x1.
We emphasize that there is no natural reason for requiring x2 also to be differen-
tiable.

Well-posedness in the sense of Hadamard in appropriate settings constitutes the
classical basis of a safe numerical treatment. In view of the numerical treatment, as
for most nonlinear problems, we suppose that there exist a solution to be practically
approximated and we agree upon a local variant of well-posedness.

Definition 2.2. Let x∗ ∈ C1
D(I,Rm) be a solution of the BVP (3), (4), I = [a,b]. The

BVP (3), (4) is said to be well-posed locally around x∗ in its natural setting, if the
slightly perturbed BVP

f ((Dx)′(t),x(t), t) = q(t), t ∈ I, (8)
g(x(a),x(b)) = γ, (9)

is locally uniquely solvable for each arbitrary sufficiently small perturbations q ∈
C(I,Rm) and γ ∈ Rl , and the solution x satisfies the inequality

‖x− x∗‖C1
D
≤ κ(|γ|+‖q‖∞), (10)

with a constant κ . Otherwise the BVP is said to be ill-posed in the natural setting.

Instead of the inequality (10) one can use the somewhat simpler inequality

‖x− x∗‖∞ ≤ κ(|γ|+‖q‖∞), (11)

which is sometimes more convenient, see Remark 2.12.
The constant κ in the inequality (11) is called the stability constant of the BVP, e.g.,
in [12, 9, 51]. Here we do not share in this notation.

Representing the linear BVP

A(t)(Dx)′(t)+B(t)x(t) = q(t), t ∈ I, Gax(a)+Gbx(b) = γ,

as operator equation T x = (q,γ) by the linear bounded operators
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T x := A(Dx)′+Bx, T x := (T x,Gax(a)+Gbx(b)), x ∈ C1
D(I,Rm),

T ∈ L(C1
D(I,Rm),C(I,Rm)), T ∈ L(C1

D(I,Rm),C(I,Rm)×Rl),

it becomes evident that the linear BVP is well-posed, if and only if T is bijective,
and then κ in (10) is nothing else an upper bound of ‖T −1‖.

The next notion is concerned with the boundary conditions only. It is, of course,
important to apply exactly the right number of conditions, neither to under specify
nor to over specify. As we will see later, this task is essentially more difficult to
realize for DAEs than for explicit ODEs. Also stating initial conditions accurately
is a challenging task for DAEs quite unlike the case of explicit ODEs.

Definition 2.3. Let x∗ ∈ C1
D(I,Rm) be a solution of the BVP (3), (4), I = [a,b]. The

BVP (3), (4) has accurately stated boundary conditions locally around x∗ if the BVP
with slightly perturbed boundary conditions

f ((Dx)′(t),x(t), t) = 0, (12)
g(x(a),x(b)) = γ, (13)

is uniquely solvable for each arbitrary sufficiently small γ ∈ Rl , and the solution
satisfies the inequality

max
t∈I
|x(t)− x∗(t)| ≤ κ|γ|, (14)

with a constant κ .

It is evident, that x∗ is locally the only solution of a BVP with accurately stated
boundary conditions. In contrary, local uniqueness does not necessarily require ac-
curately stated boundary conditions, see Example 2.1 below.

Even though, for explicit ODEs, a BVP is well-posed, exactly if its boundary
conditions are accurately stated (cf.[12]), the situation is different for DAEs. Here,
well-posedness implies accurately stated boundary conditions, too. However, the
opposite is not true as the following example shows.

Example 2.1. Consider several BVPs (actually IVPs) for the DAE

x′1(t)+ x3(t) = 0,
x′2(t)+ x3(t) = 0, (15)

x2(t)− sin(t−a) = 0,

and the different sets of boundary conditions

x1(a) = 0, x2(a) = 0, x3(a) = 0, (16)
x1(a) = 0, x2(a) = 0, (17)

x1(a)+αx2(a)+βx3(a) = 0, α,β ∈ R, (18)
x2(a) = 0. (19)
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The DAE possesses the general solution

x(t) =

c+ sin(t−a)
sin(t−a)
−cos(t−a)

 , t ∈ I,

with an arbitrary constant c ∈ R.
Obviously, the BVP (15), (16) fails to be solvable, and the BVP (15), (19) is

satisfied by all solutions with arbitrary c.
The BVP (15), (17) and the BVP (15), (18) are both uniquely solvable, and their

solutions x∗ are given by c = 0 and c = β , respectively. However, inspecting the
corresponding BVPs with perturbed boundary conditions, we learn that only the
BVP (15), (18) has accurately stated boundary conditions.

To check whether the BVP (15), (18) is also well-posed we consider the fully
perturbed BVP. This BVP possesses a unique solution for each γ ∈ R and each
continuous function q having a continuously differentiable component q3, but not
for all continuous q. The solution reads

x(t) =

γ + sin(t−a)+q3(t)−q3(a)+
∫ t

a(q1(s)−q2(s))ds
sin(t−a)+q3(t)

q2(t)−q′3(t)− cos(t−a)

 , t ∈ I.

The difference

x(t)− x∗(t) =

γ +q3(t)−q3(a)+
∫ t

a(q1(s)−q2(s))ds
q3(t)

q2(t)−q′3(t)

 , t ∈ I,

can not be estimated by an inequality (10). The BVP is ill-posed in its natural setting.
ut

Besides the original BVP (3), (4) we consider also the DAE linearized along the
reference solution x∗,

A∗(t)(Dx)′(t)+B∗(t)x(t) = 0, t ∈ I, (20)

with continuous coefficients

A∗(t) := fy((Dx∗)′(t),x∗(t), t),

B∗(t) := fx((Dx∗)′(t),x∗(t), t), t ∈ I,

and the linearized boundary conditions

G∗ax(a)+G∗bx(b) = 0, (21)

where
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G∗a :=
∂g
∂xa

(x∗(a),x∗(b)), G∗b :=
∂g
∂xb

(x∗(a),x∗(b)).

The linear DAE (20) inherits the properly stated leading term from the original
DAE (3). The linearized BVP (20), (21) is said to be the variational problem for the
original BVP (3), (4) at x∗ (e.g., [12, p. 90]).

Next we tie in with the notions locally unique solution and isolated solution
commonly used in the context of BVPs for explicit ODEs (cf. [12]).

Definition 2.4. A solution x∗ ∈ C1
D(I,Rm) of the BVP (3), (4) is said to be locally

unique if there is a “tube” around it where it is unique, i.e., there is a ρ > 0 such that
in the class of functions{

x ∈ C1
D(I,Rm) : ‖x− x∗‖∞ ≤ ρ

}
=: BC(x∗,ρ)

x∗ is the only solution of the BVP.

This notion is consistent with the general meaning that a solution x∗ ∈ C1
D(I,Rm)

is locally unique if it has a neighborhood in C1
D(I,Rm) with no further solution.

Namely, if there are no further solution in BC(x∗,ρ), then a fortiori x∗ is the only
solution in the ball{

x ∈ C1
D(I,Rm) : ‖x− x∗‖C1

D
≤ ρ

}
=: BC1

D
(x∗,ρ)⊂ BC(x∗,ρ).

Conversely, assume that there is no such ρ > 0 as required in Definition 2.4. Then
there is a sequence of solutions xi ∈ C1

D(I,Rm) of the BVP such that

‖xi− x∗‖∞

i→∞−−→ 0. Applying the arguments from Remark 2.12 we obtain the in-
equality ‖(Dxi−Dx∗)′‖∞ ≤ k1‖xi− x∗‖∞; and hence ‖xi− x∗‖C1

D

i→∞−−→ 0. Then x∗
has no neighborhood in C1

D(I,Rm) with no further solution.

Definition 2.5. A solution x∗ ∈ C1
D(I,Rm) of the BVP (3), (4) is said to be isolated

if the variational problem (20), (21) has the unique solution x = 0.

In the case of explicit ODEs, an isolated solution x∗ of a BVP is locally unique,
the BVP is well-posed if and only if the boundary conditions are accurately stated.
The notion of isolatedness can be seen as practical tool to check local uniqueness
and well-posedness. An explicit ODE of dimension m has m degrees of freedom,
and it is beyond dispute to formulate l = m boundary conditions. If then the varia-
tional problem has only the zero solution, then the boundary conditions are stated
accurately, thus the BVP is locally well-posed.

A similar situation is given for regular index-1 DAEs, with l = r = rankD(t),
e.g., [90, 55, 111, 96], cf. also Subsection 2.5 below, and for certain singular index-
1 DAEs ([43]).

In general, for DAEs, it is no longer plain to secure the right number l of bound-
ary conditions. It is further an open question to what extent the notion isolatedly
solvable is justified in a similar sense. We refer to Remark 2.7 for further details.
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2.2 The flow structure of regular linear DAEs

Each linear DAE

A(t)(Dx)′(t)+B(t)x(t) = q(t), t ∈ I, (22)

which is regular with arbitrary tractability index µ ∈ N in the sense of [83, Defini-
tion 2.25] (cf. Definition 6.2 below) and has sufficiently smooth (at least continuous)
coefficients, can be decoupled into its two structurally characteristic parts, namely
the inherent explicit regular ODE (IERODE) and the algebraic part housing all dif-
ferentiations, by means of certain smartly constructed continuous projector valued
functions beginning with P0. If P0, . . . ,Pµ−1 ∈C(I,L(Rm)) are those fine decoupling
projector functions for the DAE (3), then the products

Πcan := (I−H0)Πµ−1, Πµ−1 := P0 · · ·Pµ−1, DΠcanD− = DΠµ−1D−, (23)

with a coefficient H0 described in terms of the coefficients A,D,B in Appendix
6.1.2, are also projector valued functions. In particular, Πcan has a special mean-
ing independent of the choice of the corresponding factors (e.g., [83, Section 2.4]).
Namely, for every t ∈ I it holds that

imΠcan(t) = {x(t) ∈ Rm : x ∈ C1
D(I,Rm), A(Dx)′+Bx = 0},

kerΠcan(t) = kerΠµ−1(t) = kerP0(t)+ · · ·+kerPµ−1(t).

Both subspaces imΠcan(t) and kerΠcan(t) are independent of the choice of the
admissible projector functions P0, . . . ,Pµ−1 (e.g., [83, Chapter 2]). The subspace
imΠcan(t) represents the linear space of all consistent values at time t of the homo-
geneous DAE. On the other hand, kerΠcan(t) is such that

x ∈ C1
D(I,Rm), A(Dx)′+Bx = 0, and x(t) ∈ kerΠcan(t)

imply x to vanish identically.
The projector function Πcan is said to be the canonical projector function associ-

ated with the DAE (22). Πcan has constant rank; denote

l := rankΠcan(t) = rankΠµ−1(t), t ∈ I. (24)

The rank l can be computed by means of the matrix function sequence supporting
the regularity notion, see [83, Section 7.4], also Definitions 6.1, 6.2 below.

In the simpler case of constant coefficients A,D,B, the projector matrix Πcan
takes the role of the spectral projector of the matrix pair {AD,B} ([83, Section
1.4]).

The canonical projector function depends strongly on the index. In particular, the
canonical projector function of a regular index-1 DAE (22) is given by the subspaces
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imΠcan(t) = S0(t) := {z ∈ Rm : B(t)z ∈ imA(t) = imA(t)D(t)},
kerΠcan(t) = N0(t) := kerD(t) = kerA(t)D(t),

but for all regular higher-index DAEs the intersection N0(t)∩ S0(t) is no longer a
trivial one.

The following example describes the canonical projector function of semi-
explicit index-1 DAEs in more detail.

Example 2.2. We have

A(t) =
[

I
0

]
, D(t) =

[
I 0
]
, B(t) =

[
B11(t) B12(t)
B21(t) B22(t)

]
,

with B22(t) remaining nonsingular,

imΠcan(t) = S0(t) := {z ∈ Rm : B21(t)z1 +B22(t)z2 = 0},
kerΠcan(t) = N0(t) := {z ∈ Rm : z1 = 0},

and hence

Πcan(t) =
[

I 0
−B22(t)−1B21(t) 0

]
.

We observe that Πcan(t) often is far from being symmetric, and the subspaces are far
from being orthogonal, and |Πcan(t)|2 can become large. In the particular instance
m1 = m2, B21(t) = I, B22(t) = αI, α > 0 small, if α > 0 tends to zero, the angle
between the subspaces N0(t) and S0(t) becomes more and more acute, and |Πcan(t)|2
becomes larger and larger. ut

In the following, we suppose the DAE (22) to be regular with index µ ∈N. We omit
the less interesting case µ = 0.
For arbitrary fixed t̄ ∈ I, there is a unique matrix function X(·, t̄) satisfying the IVP
([83, Section 2.6])

A(t)(DX)′(t)+B(t)X(t) = 0, t ∈ I, X(t̄) = Πcan(t̄). (25)

The columns of X(·, t̄) are functions from C1
D(I,Rm). X(t, t̄) is named maximal-size

fundamental solution matrix normalized at t̄. It can be determined also by the IVP

A(t)(DX)′(t)+B(t)X(t) = 0, t ∈ I, Πµ−1(t̄)(X(t̄)− I) = 0, (26)

with initial conditions built by arbitrary admissible projector functions. This is con-
siderably easier to realize in practice than providing the canonical projector Πcan(t̄)
and fine decoupling projectors (cf. [83]).

For DAEs, different kind of fundamental solution matrices make sense, in par-
ticular so-called maximal size and minimal size ones (cf. [28, 29, 83]). The minimal
size fundamental solution is rectangular with full column-rank l, the maximal size
(shortly: maximal) fundamental solution has m columns. The great advantage of the
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latter consists in useful group properties to describe the flow ([83, Section 2.6], also
Remark 2.4).

In contrast to regular ODEs with always nonsingular fundamental solution ma-
trices, any fundamental solution matrix of a regular DAE fails to be nonsingular.

We have (e.g., [83, Section 2.6])

imX(t, t̄) = imΠcan(t), kerX(t, t̄) = kerΠcan(t̄), rankX(t, t̄) = l. (27)

In the particular case of a regular constant coefficient DAE in Weierstraß-Kronecker
form [

Il 0
0 N

]
x′+

[
W 0
0 Im−l

]
x = q, (28)

with a nilpotent matrix N, it simply results that

Πcan =

[
Il 0
0 0

]
, X(t, t̄) =

[
e−(t−t̄)W 0

0 0

]
.

In the general case, the (maximal) fundamental solution matrix X(t, t̄) can be de-
scribed by

X(t, t̄) = Πcan(t)D(t)−U(t, t̄)D(t̄)Πcan(t̄), (29)

whereby U(t, t̄) denotes the classical nonsingular fundamental solution matrix of
the IERODE

u′− (DΠµ−1D−)′u+DΠµ−1G−1
µ Bµ D−u = DΠµ−1G−1

µ q (30)

normalized by the condition U(t̄, t̄) = I. Recall that the matrix functions Gµ and Bµ

are built from the DAE coefficients A,D,B and Gµ is nonsingular (cf. Definitions
6.1, 6.2 below).

The generalized inverse X(t, t̄)− of X(t, t̄) being determined by the four relations

XX−X = X , X−XX− = X−, XX− = Πcan(t), X−X = Πcan(t̄),

shows the structure

X(t, t̄)− = Πcan(t̄)D(t̄)−U(t, t̄)−1D(t)Πcan(t).

For all t1, t2, t3 ∈ I we have that

X(t1, t2)− = X(t2, t1), X(t1, t2)X(t2, t3) = X(t1, t3). (31)

The general solution of the DAE (22), with admissible right-hand side q, can now
be expressed as

x(t) = X(t, t̄)c+ xq(t), t ∈ I, (32)

whereby xq ∈ C1
D(I,Rm) is the unique solution of the IVP ([83, Theorem 2.52])

A(Dx)′+Bx = q, Πcan(t̄)x(t̄) = 0, (33)
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and c ∈ Rm is a free constant. It follows that

x(t) = X(t, t̄)c+ xq(t) = X(t, t̄)Πcan(t̄)c+ xq(t), t ∈ I,
x(t̄) = X(t̄, t̄)c+ xq(t̄) = Πcan(t̄)c+ xq(t̄).

Obviously, only the component Πcan(t̄)c serves as effective integration constant.
The complementary component (I−Πcan(t̄))c has no impact on the solution. The
dynamical degree of freedom results as l = rankΠcan(t̄).

Take a closer look at the solution xq of the IVP (33), which has a quite involved
structure. Let q be admissible and the function uq be the classical solution of the
explicit ODE (30) that satisfies the initial condition u(t̄) = 0. By means of fine de-
coupling projector functions we obtain the coefficients applied below ([83, Section
2.4], also Appendix 6.1.2) from the given coefficients A,D,B and then we determine
consecutively

vµ−1 = Lµ−1q,

vµ−2 = Lµ−2q−Nµ−2,µ−1(Dvµ−1)
′,

. . .

v1 = L1q−
µ−1

∑
l=2
N1, l(Dvl)

′−
µ−1

∑
l=3
M1, lvl ,

v0 = L0q−
µ−1

∑
l=1
N0, l(Dvl)

′−
µ−1

∑
l=2
M0, lvl−H0D−uq.

Introduce further

ṽ0 = v0 +H0D−uq.

We have v0 = ṽ0 in case of completely decoupling projector functions. We empha-
size that for obtaining vµ−2 one has to differentiate the term Dvµ−1 = DLµ−1q and
so on. That means, an admissible right-hand side q is basically continuous, possibly
with certain additional smoothness properties. We refer to [83, Section 2.4] for a
detailed description.
Inspecting the decoupling procedure (Appendix 6.1.2) we find that Πcanvi = 0 for
i = 0, . . . ,µ−1. We introduce the additional function

vq := ṽ0 + v1 + · · ·+ vµ−1. (34)

Regarding the identity DΠcanD−uq = uq we then obtain the relations

xq = D−uq + vq−H0D−uq = (I−H0)D−uq + vq = ΠcanD−uq + vq,

(I−Πcan)xq = vq,

DΠcanxq = DΠcanD−uq = uq, Πcanxq = ΠcanD−uq = D−uq.
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The solution component (I−Πcan)xq is fully fixed by the part (I−Πcan)G−1
µ q of

the right-hand side q. Furthermore, we derive the useful representations

Πcan(t)xq(t) = Πcan(t)D(t)−
∫ t

t̄
U(t,s)D(s)Πcan(s)G−1

µ (s)q(s)ds

=
∫ t

t̄
X(t,s)G−1

µ (s)q(s)ds

and
xq(t) =

∫ t

t̄
X(t,s)G−1

µ (s)q(s)ds+ vq(t), t ∈ I.

In summary, the general solution of the DAE (22) reads

x(t) = X(t, t̄)c+
∫ t

t̄
X(t,s)G−1

µ (s)q(s)ds+ vq(t), t ∈ I, (35)

and the consistent values at t̄ have the form

x(t̄) = Πcan(t̄)c+ vq(t̄). (36)

Comparing with the general solution of an explicit ODE, the first and second terms
of the general DAE solution (35) have counterparts, however, in the DAE solution
there emerges the additional new term vq.

For each fixed right-hand side q, and thus fixed vq, the flow of the regular DAE
(22) is restricted to the time-varying affine subspace

Mµ−1(t) = {x+ vq(t) : x ∈ imΠcan(t)}
= {Πcan(t)c+ xq(t) : c ∈ Rm},

which precisely consists of all consistent values at time t.
We recall that, in all higher index cases, for obtaining vq one has to carry out

certain differentiations of parts of q. Therefore, an admissible right-hand side q has
to be smooth enough. Solely for index-1 DAEs, the space of admissible functions
coincides with the continuous function space C(I,Rm). For all higher-index DAEs,
the spaces of admissible functions Cind µ(I,Rm) represent proper nonclosed subsets
of the continuous function space, [83, 96], also Appendix 6.1.4. This fact consti-
tutes the ambivalent character of the solutions of higher-index DAEs: they are as
smooth as expected coming from explicit ODEs with respect to the integration con-
stant Πcan(t̄)c, but, in strict contrast to the ODE case, they behave discontinuously
concerning the right-hand side.

We refer to [83, Example 1.5] and its functional-analytic interpretation in [96]
for a deeper insight. The discontinuity concerning the right-hand side causes well-
known difficulties in numerical integration procedures.

We take a closer look to the special cases of index-1 and index-2 DAEs (22) (cf.
[83, pp. 104-107] for the specification for semi-explicit systems).
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Index-1 DAE: Let (22) be regular with tractability index 1.
Form G0 := AD, r0 = rankG0 = rankD < m, Π0 = P0 and G1 := G0 +BQ0. G1
remains nonsingular. The DAE decoupling reads

(Dx)′−R′Dx+DG−1
1 BD−Dx = DG−1

1 q,

Q0x+Q0G−1
1 BD−Dx = Q0G−1

1 q,

vq = ṽ0 = Q0G−1
1 q,

x = (I−H0)D−Dx+Q0G−1
1 q.

We have here u = Dx, furtherH0 = Q0G−1
1 BP0. The dynamical degree of freedom is

l = r0. The canonical projector Πcan(t) = (I−H0(t))Π0(t) is actually the projector
onto

S0(t) := {z ∈ Rm : B(t)z ∈ imG0(t)} along kerG0(t).

The DAE is solvable for each arbitrary q ∈ C(I,Rm).

Index-2 DAE: Let (22) be regular with tractability index 2.
Form G0 := AD, r0 = rankG0 = rankD < m, Π0 = P0, G1 := G0 + BQ0,
r1 = rankG1 < m. Owing to the index-2 property the decomposition Rm = S1(t)⊕
kerG1(t) is valid, with

S1(t) := {z ∈ Rm : B1(t)z ∈ imG1(t)}.

We choose P1(t) to be the projector onto S1(t) along kerG1(t). Then we form
Π1 = P0P1, B1 := BP0−G1D−(DΠ1D−)′DΠ0, and G2 := G1 +B1Q1. G2 remains
nonsingular. The DAE decoupling results in

(DΠ1x)′− (DΠ1D−)′DΠ1x+DG−1
2 B1D−DΠ1x = DΠ1G−1

2 q,

v1 = Π0Q1G−1
2 q,

ṽ0 = Q0P1G−1
2 q+Q0Q1D−(DΠ0Q1G−1

2 q)′,

vq = ṽ0 + v1,

x = (I−H0)D−DΠ1x+ vq.

We have here u = DΠ1x. The dynamical degree of freedom is l = r0 + r1−m. The
coupling coefficientH0 is now more elaborated,

H0 = Q0P1G−1
2 BΠ1 +Q0P1D−(DΠ1D−)′DΠ1.

The DAE is solvable for precisely each arbitrary

q ∈ {w ∈ C(I,Rm) : DΠ0Q1G−1
2 w ∈ C1(IRn)}=: Cind 2(I,Rm),

which is a proper nonclosed subset in C(I,Rm). We take a closer look at the size-2
Hessenberg DAE.

Example 2.3. For the Hessenberg size 2 system of m1+m2 =m equations, m2 ≤m1,
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x′1 +B11x1 +B12x2 = q1,

B21x1 = q2,

with nonsingular product B21B12, we obtain r0 = m1,r1 = m1, l = m1−m2, and

Πcan =

[
I−Ω 0

B−12(B11−Ω ′)(I−Ω) 0

]
, Ω = B12B−12, B−12 := (B21B12)

−1B21.

Further the projectors

P0 =

[
I 0
0 0

]
,P1 =

[
I−Ω 0
B−12 I

]
,

provide a fine decoupling, DΠµ−1D− = I−Ω , and

DΠ0Q1G−1
2 = [0 B12(B21B12)

−1].

The set of admissible right-hand sides is

Cind 2(I,Rm) = {q ∈ C(I,Rm) : B12(B21B12)
−1q2 ∈ C1(I,Rm2)}.

2.3 Accurately stated two-point boundary conditions

This section provides solvability statements for the BVPs

A(Dx)′+Bx = q, Gax(a)+Gbx(b) = γ. (37)

The DAE is supposed to be regular with l := rankΠcan(a) = rankΠµ−1(a) on the
compact interval I = [a, b]. The right-hand side q is supposed to be admissible
such that the DAE has a solution in C1

D(I,Rm) (cf. [83, Subsubsection 2.6.4]). The
boundary condition is given by the matrices Ga,Gb ∈L(Rm,Rl), which is in full ac-
cordance with the number of free integration constants as described in the previous
section.

We follow the well-known classical lines to treat BVPs for ODEs (e.g., [12]). We
apply the general solution expression (35) with t̄ = a,

x(t) = X(t,a)c+
∫ t

a
X(t,s)G−1

µ (s)q(s)ds+ vq(t), t ∈ I. (38)

and insert it into the boundary condition. This yields an equation system for c,
namely
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(GaX(a,a)+GbX(b,a))c = γ̂, (39)

γ̂ : = γ− γq−Gb

∫ b

a
X(b,s)Gµ(s)−1q(s)ds,

γq := Gavq(a)+Gbvq(b).

Now it is evident that the so-called solvability matrix

S := GaX(a,a)+GbX(b,a) (40)

actually plays the key role for solvability of the BVP. By construction, it holds that
kerΠcan(a) ⊆ kerS. This fits to the fact that the components (I−Πcan(a))c do not
at all matter for the DAE solutions. The boundary condition must precisely fix the
component Πcan(a)c. Consequently, we have to request that kerS = kerΠcan(a). If
this is given, then S has full row-rank l. Then we introduce the generalized inverse
S− of S by

SS−S = S, S−SS− = S−, SS− = I, S−S = Πcan(a), (41)

and further the so-called Green’s matrix function of the BVP

G(t,s) :=
{

X(t,a)S−GaX(a,a)X(s,a)−, if t ≥ s
− X(t,a)S−GbX(b,a)X(s,a)−, if t < s. (42)

After the idea of conditioning constants for classical BVPs (e.g., [12]) we denote

κ1 := max
t∈I
|X(t,a)S−|, κ2 := sup

s,t∈I
|G(t,s)|, κ3 := max

t∈I
|Πcan(t)Gµ(t)−1|.

As in the classical ODE case, the expressions X(t,a)S− and G(t,s) do not change
if one uses an arbitrary t̄ ∈ I instead of t̄ = a. The first two quantities κ1 and κ2
are counterparts of the classical conditioning constants for ordinary BVPs. The ex-
tra quantity κ3 is independent of the boundary condition; for an explicit ODE we
would have Πcan(t)Gµ(t)−1 ≡ I, thus κ3 = 1.
In general, the expression Πcan(t)Gµ(t)−1 represents a generalized inverse of
Gµ(t)Πcan(t) = G0(t)Πcan(t).
Inspecting the regularity notion one observes that scaling a given regular DAE by
Gµ(t)−1 and using the same admissible projector functions for the scaled DAE
again, leads to Gµ(t) ≡ I and κ3 := maxt∈I |Πcan(t)| for the scaled version. As
pointed out in Subsection 2.2, the canonical projector function Πcan is an essential
inherent feature of the DAE.

Theorem 2.1. Let the DAE in (37) be regular with index µ ∈ N on the interval
I = [a,b] and l = rankΠcan(a). Πcan is the canonical projector function of the DAE.
Given are the matrices Ga,Gb ∈ L(Rm,Rl). Then the following assertions are true:

(1) The BVP (37) is uniquely solvable for each arbitrary γ ∈ Rl and each arbi-
trary admissible right-hand side q, if and only if the conditions
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im [Ga Gb] = Rl and kerS = kerΠcan(a) (43)

are valid.
(2) If (43) is satisfied, then the BVP solution can be represented as

x(t) = X(t,a)S−(γ− γq)+
∫ b

a
G(t,s)Gµ(s)−1q(s)ds+ vq(t),

by means of the fundamental solution matrix normalized at t̄ = a (25), the solv-
ability matrix (40), Green’s matrix function (42), the function vq defined by (34),
γq given in (39), and the matrix function Gµ constructed via Definition 6.1.

(3) If (43) is satisfied, then the BVP solution can be estimated by

max
t∈I
|x(t)| ≤ κ1|γ− γq|+κ2κ3 max

t∈I
|q(t)|+max

t∈I
|vq(t)|.

(4) If (43) is satisfied, then the BVP (37) has accurately stated boundary condition
in the sense of Definition 2.3.

(5) Let (43) be satisfied. Then the BVP (37) is well-posed in its natural setting, if
and only if µ = 1, and ill-posed otherwise.

We mention that the first condition in (43) is a consequence of the second one, since
kerS = kerΠcan(a) implies rankS = l thus Rl = imS ⊆ im [Ga Gb] ⊆ Rl . Here we
explicitly indicate that condition because of its practical meaning.

Proof. Let γ ∈ Rl be given, q be admissible, and γ̂ := γ −Gavq(a)−Gbvq(b)−
Gb
∫ b

a X(b,s)Gµ(s)−1q(s)ds. Owing to condition (43), the equation Sc = γ̂ yields
Πcan(a)c = S−γ̂ , hence a solution of the BVP. The BVP solution is unique, since the
homogenous BVP has the zero solution only.

Conversely, if all BVPs are uniquely solvable, then S must have full rank, and
kerS = kerΠcan(a) must be valid for reasons of dimensions. The first assertion is
verified.

The assertions (2), (3), and (4) can be proved by straightforward standard calcu-
lations.

By Definition 2.2, well-posedness necessarily requires the inequality ‖vq‖∞ ≤
k‖q‖∞, but that is valid exactly for the case µ = 1, with vq = L0q. This proves
assertion (5). ut

In particular, condition (43) serves as a criterion indicating whether the initial con-
ditions are stated accurately.

Corollary 2.1. Let the DAE be regular, l = rankΠcan(a) and C ∈ L(Rm,Rl). Then
the IVP

A(Dx)′+BX = q, Cx(a) = γ (44)

is uniquely solvable for each arbitrary γ ∈ Rl and each arbitrary admissible right-
hand side q, if and only if kerC∩ imΠcan(a) = {0} is valid.

Proof. This is a special BVP with solvability matrix S =CX(a,a) =CΠcan(a). ut
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The most natural way to state initial conditions is letting kerC = kerΠcan(a) which
directly implies kerC∩ imΠcan(a) = {0}. By this, the initial condition is immedi-
ately directed to the IERODE.

In contrast, for practical reasons one can be interested in prescribing other com-
ponents. Then one has to take into account that the condition kerC∩ imΠcan(a) =
{0} possibly requires additional regularity conditions concerning the DAE as in the
following example.

Example 2.4. Consider the semi-explicit system with m1 +m2 = m equations

x′1 +B11x1 +B12x2 = q1,

B21x1 +B22x2 = q2.

Let B22 be nonsingular such that the DAE is regular with index 1 and l = m1,

Πcan(a) =
[

I 0
−B22(a)−1B21(a) 0

]
.

For C = [C1 C2] we compute S = CΠcan(a) = [C1 −C2B22(a)−1B21(a), 0 ]. This
makes clear that letting C = [I 0] is the natural choice of initial conditions.
Put, in contrast, m1 =m2 and C = [0 I] yielding S=CΠcan(a)= [−B22(a)−1B21(a), 0 ].
Now for accurate initial conditions it is necessary that also B21 is nonsingular. ut

Our next small example demonstrates how the condition kerC∩ imΠcan(a) = {0}
restricts the possible choice of the initial condition in a reasonable way.

Example 2.5. Consider the semi-explicit index-2 system

x′1 + x1 = 0,
x′2 + x1 + x3 = 0,

x2 + x4 = 1,
x4 = 1+ sin t,

yielding the canonical projector

Πcan(a) =


1 0 0 0
0 0 0 0
−1 0 0 0
0 0 0 0

 .
We have l = rankΠcan(a) = 1, thus we state the initial condition using the matrix

C =
[
c1 c2 c3 c4

]
.

The condition kerC∩ imΠcan(a) = {0} is satisfied exactly if c1 6= c3. Therefore, the
initial condition Cx(a) = γ is accurately stated, if and only if c1 6= c3. A look at the
DAE shows that this condition is reasonable. If c1 = c3, then the condition Cx(a)= γ
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represents a certain consistency requirement, but the free integration constant is no
longer fixed. ut

The structure of the fundamental solution matrix X(t,a) given by (29) tempts to
consider the associated BVP induced for the IERODE (30).

We rewrite the solvabilty matrix S as

S = GaX(a,a)+GbX(b,a)

= GaΠcan(a)D(a)−U(a,a)D(a)Πcan(a)+GbΠcan(b)D(b)−U(b,a)D(a)Πcan(a)

= (GaΠcan(a)D(a)−U(a,a)+GbΠcan(b)D(b)−U(b,a))︸ ︷︷ ︸
=:SIERODE

D(a)Πcan(a)

=: SIERODED(a)Πcan(a). (45)

By construction, owing to the property

Πcan(t)D(t)−U(t,a) = Πcan(t)D(t)−U(t,a)D(a)Πcan(a)D(a)−

it results that

SIERODED(a)Πcan(a)D(a)− = SIERODE ,

kerD(a)Πcan(a)D(a)− ⊆ kerSIERODE ,

rankSIERODE ≤ l.

The solvability matrix S has rank l exactly if SIERODE ∈ L(Rn,Rl) has rank l, and
equivalently, if kerSIERODE = kerD(a)Πcan(a)D(a)−.
Let the additional matrix Ca ∈ L(Rn,Rn−l) be such that

kerCa = imD(a)Πcan(a)D(a)−.

Then, Ca has rank n− l, and the classical inherent BVP

u′− (DΠµ−1D−)′u+DΠµ−1G−1
µ Bµ D−u = DΠµ−1G−1

µ q, (46)

Cau(a) = 0, (47)

GaΠcan(a)D(a)−u(a)+GbΠcan(b)D(b)−u(b) = γ̂ (48)

is uniquely solvable and well-posed. This yields the further representation of the
solution of the BVP (37), namely

x = D−u+ vq,

with the solution u of the BVP (46)-(48). We summarize what we have in the next
proposition.

Proposition 2.1. Let the DAE in (37) be regular with index µ and l = rankΠcan(a).
Given are the matrices Ga,Gb ∈ L(Rm,Rl). Then the BVP (37) is uniquely solvable



Analytical theory 31

for each arbitrary γ ∈ Rl and each arbitrary admissible right-hand side q, if and
only if the homogeneous version of the classical inherent BVP (46)-(48) has the zero
solution only.

If one is able to provide vq by analytically performing the differentiations, and if
the IERODE is available, then it remains only to solve the classical well-posed BVP
(46)–(48).

It is noteworthy that the IERODE (46) which lives in Rn can be condensed to a
so-called essential underlying ODE living in Rl ,

η
′+Wη = ρq,

by letting η = Γlu, with a suitable transformation Γl ∈ C1(I,L(Rn,Rl)) ([83, Theo-
rem 4.5]). Then, condition (47) becomes redundant and the boundary condition (48)
transforms via u = Γ

−
l η .

In [102, Section 13], for linear DAEs, a gradual index reduction procedure is es-
tablished, which comprises analytical transformations and differentiations. Thereby,
the given linear BVP for the DAE is reduced to a BVP for an explicit ODE, which
is in essence a condensed version of our BVP (46)–(48).

A comparable approach consists in forming analytically the derivative array sys-
tem, extracting a relevant index-0 or index-1 DAE from the derivative array system,
and then turning to the regularized form for further investigations as in [111].

2.4 Conditioning constants and dichotomy

Already in the classical theory of ordinary BVPs it is established (cf. [12]) that the
key quantity for well-conditioning of a BVP is κ2. There are problems where κ1 is
moderate but κ2 can be made arbitrary large. Moreover, for though a scaling of the
boundary condition does not change the solution, the quantity κ1 changes. Namely,
if we multiply the boundary condition by the nonsingular matrix L ∈ L(Rl), we
arrive at X(t,a)S−L−1 instead of X(t,a)S−.

For appropriately scaled boundary conditions the quantity κ1 can be bounded by
κ2. Furthermore, there is a close relation between dichotomy, appropriately bound-
ary conditions, and moderate size of κ2. We are going to adapt these well-known
classical results to the case of DAEs. The following lemma allows an useful scaling
of the boundary conditions.

Lemma 2.1. Given is the matrix [Ba Bb] ∈ L(Rm,Rl) with full row-rank l,
ka := rankBa ≤ l, kb := rankBb ≤ l.
Then ka+kb≥ l and there are orthogonal matrices Qa,Qb ∈L(Rm), and V ∈L(Rl),
and a nonsingular R ∈ L(Rl) such that

BaΠcan(a) =V

Il−kb
∆a 0 · · ·0

0

Qa, BbΠcan(b) =V

0
∆b 0 · · ·0

Il−ka

Qb,
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whereby the blocks ∆a,∆b ∈ L(Rka+kb−l) have diagonal form with diagonal ele-
ments belonging to the interval [0,1].

Proof. First, applying a Householder factorization we obtain

[B̃a B̃b] := R−1[Ba Bb] = [Il 0︸︷︷︸
m−l

0︸︷︷︸
m

]H,

with orthogonal H, such that [B̃a B̃b] has orthogonal rows and B̃aB̃∗a + B̃bB̃∗b = I.
Then we apply the singular value decomposition G̃∗a = Q∗aΣ ∗aV ∗, with Σa = [Da 0]
and

Da =



σ1
σ2

. . .
σka

0
. . .

0


∈ L(Rl), σ1 ≥ ·· · ≥ σka > 0.

It follows that B̃aB̃∗a = V ∗D2
aV and B̃bB̃∗b = V ∗(I−D2

a)V . It holds that 1−σ2
i ≥ 0,

since B̃bB̃∗b is positive semi-definite. Because of rank B̃bB̃∗b = kb it must hold that
l−kb≤ ka and σ1 = · · ·=σl−kb = 1. Finally we obtain the factorization B̃∗b =Q∗bΣ ∗bV
with Σb = [Db 0], Db = diag(0,∆b, Il−kb). ∆b is absent if ka + kb = l. For ka + kb ≥
l +1, the values (1−σ2

l−kb+i)
1
2 , i = 1, . . . , l− kb− ka, form the diagonal of ∆b. ut

Theorem 2.2. Let the DAE in (37) be regular with index µ and l = rankΠcan(a).
Πcan denotes the canonical projector function of the DAE. Given are the matrices
Ga,Gb ∈L(Rm,Rl). Let condition (43) be valid. Then the following assertions hold:

(1) The matrix function φ defined by φ(t) := X(t,a)S−, t ∈ I, is the minimal fun-
damental solution matrix of the DAE associated with the BVP such that

SBV P := Gaφ(a)+Gbφ(b) = I.

Thereby X(t,a) denotes the fundamental solution matrix normalized at a (see
(25)), and S is the solvability matrix (40).

(2) The Green’s function can be represented as

G(t,s) :=
{

φ(t)Gaφ(a)φ(s)−, if t ≥ s
− φ(t)Gbφ(b)φ(s)−, if t < s,

with the generalized inverse φ(t)− = SX(t,a)− satisfying the four conditions

φφ
−

φ = φ , φ
−

φφ
− = φ

−, φφ
− = Πcan, φ

−
φ = I.

(3) The boundary conditions can be scaled so that
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GaΠcan(a) =

Il−kb
∆a 0 · · ·0

0

Qa, GbΠcan(b) =

0
∆b 0 · · ·0

Il−ka

Qb,

with orthogonal matrices Qa,Qb ∈ L(Rm), ka := rankGaΠcan(a), and
kb := rankGbΠcan(b). The blocks ∆a,∆b ∈ L(Rka+kb−l) have diagonal form with
diagonal elements belonging to the interval (0,1), and ∆ 2

a +∆ 2
b = I.

(4) If the boundary conditions are scaled as described in (3), then it holds that

|φ(t)|2 ≤ |G(t,a)|2 + |G(t,b)|2, t ∈ I,

which leads to κ1 ≤ 2κ2 when applying the Euclidean and spectral norms.

Proof. (1) φ(t) has full column-rank l since φ(t)z = 0, i.e., X(t,a)S−z = 0, implies
S−z = (I−Πcan(a))S−z, thus z = SS−z = S(I−Πcan(a))S−z = 0.
(2) can be shown by straightforward calculation.
(3) Writing

S = GaX(a,a)+GbX(b,a) = [GaΠcan(a) GbΠcan(b)]
[

X(a,a)
X(b,a)

]
(49)

makes clear that the factor [Ba Bb] := [GaΠcan(a) GbΠcan(b)] has also full row-rank
l. We apply Lemma 2.1 and scale by V−1.
(4) We recall that

|φ(t)|2 =

∣∣∣∣∣∣φ(t)
I 0 0

0 ∆ 2
a 0

0 0 0

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣φ(t)
0 0 0

0 ∆ 2
b 0

0 0 I

∣∣∣∣∣∣
2

≤

∣∣∣∣∣∣φ(t)
I 0 0

0 ∆a 0
0 0 0

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣φ(t)
0 0 0

0 ∆b 0
0 0 I

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣φ(t)
I 0 0 0 . . . 0

0 ∆a 0 0 . . . 0
0 0 0 0 . . . 0

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣φ(t)
0 0 0 0 . . . 0

0 ∆b 0 0 . . . 0
0 0 I 0 . . . 0

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣φ(t)
I 0 0 0 . . . 0

0 ∆a 0 0 . . . 0
0 0 0 0 . . . 0

Qa

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣φ(t)
0 0 0 0 . . . 0

0 ∆b 0 0 . . . 0
0 0 I 0 . . . 0

Qb

∣∣∣∣∣∣
2

= |φ(t)GaΠcan(a)|2 + ||φ(t)GbΠcan(b)|2 = ||G(t,a)|2 + ||G(t,b)|2 .

ut

For dichotomic explicit ODEs, one obtains a moderate conditioning quantity κ2, if
the asymptotically noninreasing mode is fixed by boundary conditions at the left
border of the interval and the asymptotically nondecreasing mode is fixed at the
right boundary. In other words, the conditioning constants, if they have moderate
size, indicate that the boundary conditions fit well into the dynamics of the ODE.
For dichotomic DAEs the situation is quite similar. To be more precise we quote the
dichotomy notion ([83, Definition 2.56]).
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Definition 2.6. The regular DAE (22) with index µ is said to be dichotomic, if there
are constants K,α,β ≥ 0 and a nontrivial projector (not equal to the zero or iden-
tity matrix) Pdich ∈ L(Rm) such that Pdich = Πcan(a)Pdich = PdichΠcan(a), and the
following inequalities apply for all t,s ∈ I:

|X(t,a)PdichX(s,a)−| ≤ Ke−α(t−s)

|X(t,a)(I−Pdich)X(s,a)−| ≤ Ke−β (s−t).

If α,β > 0 one speaks of an exponential dichotomy.

The notion is independent of the choice of the reference point a; one can use any
other point t̄ ∈ I. An equivalent definition works with the minimal fundamental
solution φ and the projector Pφ ,dich = SPdichS− ∈ L(Rl):

|φ(t)Pφ ,dichφ(s)−| ≤ Ke−α(t−s),

|φ(t)(I−Pφ ,dich)φ(s)−| ≤ Ke−β (s−t).

Theorem 2.3. Let the DAE in (37) be regular with index µ and l = rankΠcan(a).
Πcan denotes the canonical projector function of the DAE. Given are the matrices
Ga,Gb ∈ L(Rm,Rl). Let condition (43) be valid. Let the DAE be dichotomic and let
the boundary condition be such that

GaΠcan(a)(I−Pdich) = 0, GbΠcan(b)Pdich = 0. (50)

Then the Green’s function satisfies the inequalities

|G(t,s)| ≤ Ke−α(t−s) for s≤ t,

|G(t,s)| ≤ Ke−β (s−t) for s > t.

Proof. The conditions (50) can be rewritten as

Gaφ(a)(I−Pφ ,dich) = 0, Gbφ(b)Pφ ,dich = 0.

We derive

Gbφ(b) = Gbφ(b)(I−Pφ ,dich) = (I−Gaφ(a))(I−Pφ ,dich)

= I−Pφ ,dich−Gaφ(a)+Gaφ(a)Pφ ,dich,

thus Pφ ,dich = Gaφ(a)Pφ ,dich. Then we compute for s < t

G(t,s) = φ(t)Gaφ(a)φ(s)− = φ(t)Gaφ(a)Pφ ,dichφ(s)−

= φ(t)Pφ ,dichφ(s)−,

which yields
|G(t,s)|= |φ(t)Pφ ,dichφ(s)−| ≤ Ke−α(t−s).
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The part s > t is proven analogously. ut

We emphasize that the concerns mentioned in [12] related to the fact that dichotomy
of ODEs is thought for infinite intervals to feature the asymptotic flow behavior
apply likewise for DAEs, too.

2.5 Nonlinear BVPs

The solutions of linear regular DAEs always exist on the entire given interval
I = [a,b]. We are able to precisely describe all these solutions. In particular, if
x∗ ∈ C1

D(I,Rm) satisfies the regular index-µ DAE

A(t)(Dx)′(t)+B(t)x(t)−q(t) = 0, t ∈ I, (51)

and the matrix C ∈ L(Rm,Rl) describing the initial condition

Cx(a) =Cz, z ∈ Rm, (52)

satisfies the condition kerC = kerΠcan(a), then the solutions of all IVPs (51), (52)
are given on the entire interval e.g., by

x(t,z) = x∗(t)+X(t,a)(z− x∗(a)), t ∈ I. (53)

The nonlinear regular DAE (3), that is,

f ((Dx)′(t),x(t), t) = 0 (54)

is much more difficult to deal with. If x∗ ∈ C1
D(I,Rm) satisfies this DAE on the entire

interval I = [a,b], we form the linearized DAE

A∗(t)(Dx)′(t)+B∗(t)x(t) = 0, t ∈ I. (55)

If the graph of the reference function x∗ resides within an index-µ regularity re-
gion of the DAE, then the linear DAE (55) is also regular with index µ and shares
with (54) further characteristics, see Appendix 6.1.3. We then denote by Π∗can and
X∗(t,a) the canonical projector function associated with (55), and the fundamental
solution matrix of (55) normalized by X∗(a,a) = Π∗can(a).
After the idea of (53) we form the function

x̃(t,z) = x∗(t)+X∗(t,a)(z− x∗(a)), t ∈ I, (56)

with values x̃(t,z) ∈D f for all z sufficiently close to x∗(a). This function fulfills the
condition

C∗x̃(a,z) =C∗z, z ∈ Rm, (57)
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with any matrix C∗ ∈ L(Rm,Rl) such that kerC∗ = kerΠ∗can(a). In the nonlinear
case, the function x̃ satisfies the DAE only approximately. We have

max
t∈I
| f ((Dx̃)′(t,z), x̃(t,z), t)|= o(|z− x∗(a)|)

for all z close enough to x∗(a).
Regarding the boundary condition (4), i.e.,

g(x(a),x(b)) = 0, (58)

and introducing the solvability matrix of the linearized BVP,

S∗ := G∗aX∗(a,a)+G∗bX∗(b,a), (59)

we may derive that

g(x̃(a,z), x̃(b,z)) = S∗(z− x∗(a))+o(|z− x∗(a)|).

If the linearized BVP has accurately stated boundary conditions, then the property
(57) implies S∗(z− x∗(a)) = 0, and hence |g(x̃(a,z), x̃(b,z))| = o(|z− x∗(a)|). In
summary, the function x̃ satisfies the BVP approximately for all sufficiently small
z− x∗(a).

The last consideration raises the expectation that solutions of nonlinear DAEs can
be provided under reasonable conditions, at least that there exist solutions neighbor-
ing to a given reference solution on the entire interval.

For index-1 and index-2 DAEs useful perturbation results are available which
ensure the existence of DAE solutions satisfying perturbed initial conditions on the
entire interval and allow the shooting approach and an sensitivity analysis. In case
of higher-index DAEs the hitherto known respective results are much too restrictive.
We describe more details in the next two parts.

As yet, there is a lack of precise general conditions ensuring the existence of so-
lution. In the literature the existence of solutions is usually assumed, either frankly
by a comprehensive solvability notion (e.g. in [38]) or somewhat covertly in spe-
cial hypotheses (e.g. in [75, 74]), cf. Remark 2.7 for details. In [5] solvability of
multipoint BVPs for special weakly nonlinear index-1 DAEs is proved by means of
Schauder’s fixed point theorem.

In contrast to the flow of a regular ODE that propagates in the entire Rm, the flow
of a DAE (54) is restricted to certain lower-dimensional subsets determined by the
so-called obvious constraint and possibly additional hidden constraints which are
quite difficult to recognize. In any case, the solution values at time t must reside
within the obvious constraint set (cf. [83, pp. 317–318])

M0(t) : = {x ∈ D f : ∃y ∈ Rn : f (y,x, t) = 0}
= {x ∈ D f : ∃y ∈ Rn : y ∈ imD(t), f (y,x, t) = 0}
= {x ∈ D f : ∃!y ∈ Rn : y ∈ imD(t), f (y,x, t) = 0}.
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We note that also the obvious constraint set is not necessarily clearly manifested in
fact, as e.g., in Example 1.2.

2.5.1 BVPs well-posed in the natural setting

Theorem 2.4. Let x∗ ∈ C1
D(I,Rm) satisfy the BVP (54), (58), r := rankD(a). Then

the following assertions are equivalent:

(1) The original nonlinear BVP is locally well-posed in the natural setting.
(2) The linearized along x∗ BVP is well-posed in the natural setting.
(3) The linearized DAE is regular with index 1, and the linearized BVP has accu-

rately stated boundary conditions with l = r.
(4) The graph of x∗ resides in a index-1 regularity region of the DAE (54), and the

linearized BVP has accurately stated boundary conditions with l = r.
(5) x∗ is an isolated solution of the BVP, l = r, and the linearized DAE is regular

with index 1.

Proof. We first formulate the DAE (54) and the BVP (54), (58) as the operator
equations F(x) = 0 and F(x) = 0 in Banach spaces, with F : domF ⊆ C1

D(I,Rm)→
C(I,Rm), F : domF ⊆ C1

D(I,Rm)→C(I,Rm)×Rl ,

(Fx)(t) := f ((Dx)′(t),x(t), t), t ∈ I, x ∈ domF,

Fx := (Fx,g(x(a),x(b))), x ∈ domF.

The definition domain domF is a neighborhood of x∗ in C1
D(I,Rm) (e.g. [89, 83,

96]). F and thus F are Fréchet differentiable,

F ′(x∗)x = A∗(Dx)′+B∗x, x ∈ C1
D(I,Rm).

The linear equationF ′(x∗)x= 0 represents the homogenous version of the linearized
along x∗ BVP.
(1)→(2): In the context of nonlinear functional analysis, local well-posedness of the
equation Fx = 0 means that F is a local diffeomorphism at x∗. Then the derivative
F ′(x∗) is necessarily a homeomorphism. In turn, the boundedness of (F ′(x∗))−1

means that the linearized BVP is well-posed.
(2)→(3): This is a consequence of Theorem 2.1(5).
(3)→(4): Consider the matrix function

G(y,x, t) := fy(y,x, t)D(t)+ fx(y,x, t)Q0(t), y ∈ Rn,x ∈ D f , t ∈ I f .

Owing to the index-1 property of the linearized DAE,

G((Dx∗)′(t),x∗(t), t) := A∗(t)D(t)+B∗(t)Q0(t), t ∈ I,

remains nonsingular. Since the interval I and thus the graph are compact, there is an
open neighborhoodN∗ ⊆Rn×D f ×I f of the graph so that G(y,x, t) is nonsingular
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also on N∗. This means, that N∗ is actually an index-1 regularity region.
(4)→(1): Here the linearized DAE is regular with index 1 and its boundary condi-
tions are stated accurately. This means that F ′(x∗) is a homeomorphism and F is a
local diffeomorphism.
(5)�(3):This is a direct consequence of Definitions 2.4 and 2.5. ut

Example 2.6. We continue considering Example 1.3. The homogenous DAE lin-
earized along the solution x∗ reads1 0

0 1
0 0

([1 0 0
0 1 0

]
x)′(t)+

1−α(t) −1 0
1 1−α(t) 0

2sin t 2cos t 1

x(t) = 0, t ∈ I = [a,b],

where a = 0 and b = 2π . Compute

Q0 =

1 0 0
0 1 0
0 0 0

 , G∗ 1(t) =

1 0 0
0 1 0
0 0 1

 .
The linearized DAE has index 1 owing to the nonsingularity of G∗ 1(t). We obtain
the canonical projector function

Π∗ can(t) =

 1 0 0
0 1 0

−2sin t −2cos t 0

 ,
and the homogenous IERODE

u′(t)+
[

1−α(t) −1
1 1−α(t)

]
u(t) = 0,

with the fundamental solution matrix

U∗(t,0) = e
−

t∫
0
(1−α(s))ds

[
cos t sin t
−sin t cos t

]
.

The fundamental solution matrix of the linearized DAE results as

X∗(t,0) = Π∗ can(t)

1 0
0 1
0 0

U∗(t,0)
[

1 0 0
0 1 0

]
Π∗ can(0)

=

 1 0
0 1

−2sin t −2cos t

U∗(t,0)
[

1 0 0
0 1 0

]
.

The linearization of the nonlinear boundary condition leads to
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G∗ a =

[
1 0 0
0 0 0

]
, G∗ b =

[
0 0 0
0 2 0

]
,

thus

S∗ =
[

1 0 0
0 0 0

]
+

[
0 0
0 2

]
U∗(2π,0)

[
1 0 0
0 1 0

]
=

1 0 0

0 2e
−

2π∫
0
(1−α(s))ds

0

 .
This proves that the linearized boundary condition are accurately stated, and hence
the linearized BVP and also the nonlinear BVP are well-posed.

The BVP with periodic boundary condition in Example 1.3 leads to

G∗ a =

[
1 0 0
0 1 0

]
, G∗ b =

[
−1 0 0
0 −1 0

]
,

thus

S∗ =

1− e
−

2π∫
0
(1−α(s))ds

0 0

0 1− e
−

2π∫
0
(1−α(s))ds

0

 ,
so that the periodic BVP is well-posed if

∫ 2π

0 (1−α(s))ds 6= 0. In particular, this
is the case for identically vanishing α as drafted in Figure 4 in Example 1.3 in the
Introduction.

If
∫ 2π

0 (1−α(s))ds = 0, the BVP is no longer well-posed. If α(t) ≡ 1, then, for
arbitrary parameters c1,c2 ∈ R, c2

1 + c2
2 = 1, the functions given as

x∗∗(t) =

c1 cos t + c2 sin t
c2 cos t− c1 sin t

1


are 2π-periodic and satisfy the DAE. ut

Theorem 2.4 clearly points out that only BVPs for index-1 DAEs can be well-posed
in the natural setting. This fact is in full concert with the general computational
experience. At this place we allude to a peculiar definition of well-posed BVPs in
[75, 74], which seemingly says that also BVPs for higher index DAEs could be
well-posed. We refer to Remarks 2.6 and 2.7 for a further discussion.

We concentrate now briefly on index-1 problems which are well understood for
a long time. So the next perturbation results are nothing else than useful updates of
[89, Theorem 4]. We refer to [83, Part II] for a recent elaborate exposition.

Theorem 2.5. Let x∗ ∈ C1
D(I,Rm) satisfy the DAE (54), and the linearized along x∗

DAE (55) be regular with index 1. Let Π∗can denote the canonical projector function
of the linear DAE (55). Let the matrix C ∈ L(Rm,Rl), l = r, be such that



40 Analytical theory

kerC∩ imΠ∗can(a) = {0} (60)

Then the IVP
f ((Dx)′(t),x(t), t) = 0, t ∈ I, Cx(a) =Cz. (61)

has a locally unique solution x(·;a,z) ∈ C1
D(I,Rm) for each arbitrary z ∈ Rm,

|Π∗can(a)(z− x∗(a))| sufficiently small.
Moreover, there exists the sensitivity matrix

X(t,z) :=
∂

∂ z
x(t;a,z)

with columns in C1
D(I,Rm), and it satisfies the variational equation

fy((Dx)′(t;a,z),x(t;a,z), t)(DX)′(t,z)+ fx((Dx)′(t;a,z),x(t;a,z), t)X(t,z) = 0,
C(X(a,z)− I) = 0.

Proof. The assertion follows from the implicit function theorem applied to the equa-
tionH(x,z) = 0,

H(x,z) := (Fx,C(x(a)− z)), x ∈ domF, z ∈ Rm,

with the differential-algebraic operator F from the proof of Theorem 2.4. ut

An index-1 regularity region G of the DAE (54) is an open connected subset of
the definition domain of f characterized by the nonsingularity of the matrix function

G(y,x, t) := fy(y,x, t)D(t)+ fx(y,x, t)Q0(t), y ∈ Rn,x ∈ D f , t ∈ I f .

on G, or, equivalently, by the decomposition

Rm = S(y,x, t)⊕kerD(t), (62)
S(y,x, t) : = {z ∈ Rm : fx(y,x, t)z ∈ im fy(y,x, t)}.

or, equivalently, by a regular matrix pencil λ fy(y,x, t)D(t) + fx(y,x, t) with Kro-
necker index 1 (e.g., [83, Part II]).

The decomposition (62) defines the canonical projector function Πcan of the
index-1 DAE by

imΠcan(y,x, t) = S(y,x, t), kerΠcan(y,x, t) = kerD(t).

It holds that

Πcan(y,x, t) = I−Q0(t)G−1(y,x, t) fx(y,x, t).

Formulating the initial condition in (61) by a matrix C that has the same nullspace
as D(a) or choosing C = D(a) makes condition (60) to be trivially fulfilled. This
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means that the initial condition is directed promptly to the dynamical component
and yields the following practically most useful special case of Theorem 2.5.

Corollary 2.2. The assertions of Theorem 2.5 remain valid, if the condition (60) is
replaced by the easier condition

kerC = kerD(a).

For the further analysis the decoupled form (e.g. [55, 83])

u′(t)−R′(t)u(t) = D(t)ω(u(t), t), (63)

x(t) = D(t)−u(t)+Q0(t)ω(u(t), t), (64)

of the index-1 DAE (54) is approved to be useful. The decoupling function w =
ω(u, t) is uniquely defined from the equation

f (D(t)w,D(t)−u+Q0(t)w, t) = 0

locally around a reference solution solution x∗(·) or points x̄ ∈M0(t̄) by the im-
plicit function theorem. The function ω is continuous and has the continuous partial
derivative ([83, Theorem 4.5])

ωu(u, t) =−(G−1 fx)(D(t)ω(u, t),D(t)−u+Q0(t)ω(u, t), t).

We additionally quote a solvability result from [83, Theorem 4.11]:

Theorem 2.6. Given is the DAE (54) with the index-1 regularity region G, and
(y0,x0, t0) ∈ G. Then, if additionally x0 ∈ M0(t0), the DAE possesses a solution
x∗ ∈ C1

D(I∗,Rm) defined at least on a neighborhood I∗ ⊆ I f of t0 and passing
through x∗(t0) = x0. The solution x∗ ∈ C1

D(I∗,Rm) is locally unique.

The solution x∗ from Theorem 2.6 can be continued at least as long as its graph
resides in the regularity region. It also may happen that a solution crosses the border
of a maximal regularity region ([83, Section 3.3]).

2.5.2 BVPs well-posed in an advanced setting

By Theorem 2.4, BVPs for higher-index DAEs are essentially different since they
are never well-posed in the natural setting – even if the boundary conditions are
accurately stated. In some situations, a weaker well-posedness by means of an
adapted image space Y with stronger topology instead of the continuous function
space might be helpful, but, as described in detail in [96], one should be highly cau-
tious concerning the actual practical meaning. The following can be seen as quite
straightforward generalization of index-2 results from [96, Subsection 4.3.3] and
[83, Section 3.9] for the case of arbitrary higher index.

Definition 2.7. Let x∗ ∈ C1
D(I,Rm) be a solution of the BVP (3), (4), I = [a,b]. Let

Y ⊆ C(I,Rm) be a complete normed linear space, and ‖q‖Y ≥ ‖q‖∞, q ∈ Y . The
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BVP (3), (4) is said to be well-posed in the advanced setting with image space Y
locally around x∗, if the slightly perturbed BVP

f ((Dx)′(t),x(t), t) = q(t), t ∈ I, (65)

g(x(a),x(b)) = γ, (66)

is locally uniquely solvable for each arbitrary sufficiently small perturbations q ∈Y ,
γ ∈ Rl , and the solution x satisfies the inequality

‖x− x∗‖C1
D
≤ κ(|γ|+‖q‖Y ), (67)

with a constant κ . Otherwise the BVP is said to be ill-posed in the advanced Y -
setting.

Instead of the inequality (67) one can use the somewhat simpler inequality

‖x− x∗‖∞ ≤ κ(|γ|+‖q‖Y ), (68)

which is sometimes more convenient, see Remark 2.12.

Representing the linear BVP

A(t)(Dx)′(t)+B(t)x(t) = q(t), t ∈ I, Gax(a)+Gbx(b) = γ, (69)

with a regular index-µ DAE, as operator equation T x = (q,γ) by the linear bounded
operators

T x := A(Dx)′+Bx, T x := (T x,Gax(a)+Gbx(b)), x ∈ C1
D(I,Rm),

T ∈ L(C1
D(I,Rm),Y ), T ∈ L(C1

D(I,Rm),Y ×Rl), Y = Cind µ(I,Rm),

we know (cf. Appendix 6.1.4) that the linear BVP is well-posed in the advanced
setting with Y , if and only if T is bijective, and then κ in (10) is nothing else an
upper bound of ‖T −1‖[Y×Rl→C1

D]
.

Theorem 2.7. Let x∗ ∈ C1
D(I,Rm) satisfy the DAE (54). Let the linearized along x∗

DAE (55) be regular with index µ , Π∗can denotes the canonical projector function
of the linear DAE (55), and l = rankΠ∗can(a). Let Y∗ denote the associated Banach
space of admissible right-hand sides with the norm ‖ · ‖Y∗ .
Assume that there exists a radius ρ > 0 such that

x ∈ C1
D(I,Rm), ‖x− x∗‖C1

D
≤ ρ =⇒ f (Dx)′(·),x(·), ·) ∈ Y∗. (70)

Then the following assertions are valid:

(1) Let x∗ also satisfy the boundary condition (58). Then the BVP (55), (58) is
locally well-posed in the advanced setting with Y∗ if and only if x∗ is an isolated
solution.
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(2) Let the matrix C ∈ L(Rm,Rl) be such that

kerC∩ imΠ∗can(a) = {0} (71)

Then the IVP

f ((Dx)′(t),x(t), t) = 0, t ∈ I, Cx(a) =Cz. (72)

has a locally unique solution x(·;a,z) ∈ C1
D(I,Rm) for each arbitrary z ∈ Rm

with sufficiently small difference |Π∗can(a)(z−x∗(a))|. Moreover, there exists the
sensitivity matrix

X(t,z) :=
∂

∂ z
x(t;a,z)

with columns in C1
D(I,Rm), and it satisfies the variational equation

fy((Dx)′(t;a,z),x(t;a,z), t)(DX)′(t,z)+ fx((Dx)′(t;a,z),x(t;a,z), t)X(t,z) = 0,
C(X(a,z)− I) = 0.

Proof. We again formulate the DAE (54) and the BVP (54), (58) as the operator
equations F(x) = 0 and F(x) = 0 in Banach spaces, this time, owing to condition
(70), with definition domain domF = {x ∈ C1

D(I,Rm) : ‖x− x∗‖C1
D
< ρ} and ad-

vanced image spaces,

F : domF ⊆ C1
D(I,Rm)→ Y∗, F : domF ⊆ C1

D(I,Rm)→ Y∗×Rl ,

(Fx)(t) := f ((Dx)′(t),x(t), t), t ∈ I, Fx := (Fx,g(x(a),x(b)), x ∈ domF.

Regarding condition (70) and Appendix 6.1.4, the operators F and F can be shown
to be Fréchet-differentiable also in this setting, and

F ′(x∗)x = (A∗(Dx)′+B∗x, G∗ax(a)+G∗bx(b)), x ∈ C1
D(I,Rm).

(1) The composed map F is a local diffeomorphism if and only if F ′(x∗) ∈
L(C1

D(I,Rm),Y∗×Rl) is bijective. Since F ′(x∗) is surjective by construction of Y∗,
bijectivity becomes equivalent with injectivity. In turn, F ′(x∗) is injective exactly if
the solution x∗ is isolated.
(2) The assertion follows from the implicit function theorem applied to the equation
H(x,z) = 0, withH(x,z) := (Fx,C(x(a)− z)), x ∈ domF, z ∈ Rm. ut

Example 2.7. We turn once again to Example 1.4 and take x∗ as reference solution.
Similar arguments will then apply to the case of the second solution x∗∗. Inspecting
the matrix function sequence we know that the DAE has two maximal regularity
regions, both with characteristics r0 = r1 = 2, r2 = 3, µ = 2, and l = 1. The border
of the regularity regions is given by the plane x2 = 0. It holds that x∗(t)≥ 1

4 for all
t ∈ [0,2], so that the graph of x∗ resides within an index-2 regularity region. Then,
Theorem 2.4 excludes well-posedness in the natural setting.
The homogenous BVP linearized along x∗
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0 x∗2
0 0

([1 0 0
0 1 0

]
x)′+

 1 0 0
0 x′∗2 0

2x∗1 2x∗2 0

x = 0,

x1(0)− x1(2) = 0.

has only the trivial solution, and hence x∗ is an isolated solution. The linearized DAE
inherits from the nonlinear original the characteristics r0 = r1 = 2, r2 = 3, µ = 2,
and l = 1. Inspecting the admissible right-hand sides of the linearized DAE we find
that

Cindex2
∗ (I,R3) = {q ∈ C(I,R3) : q3 ∈ C1(I,R)}

does not depend on x∗. We set Y = Cindex2
∗ (I,R3). Equipped with the norm

‖q‖Y := ‖q‖∞ +‖q′3‖∞,

Y is a Banach space. Furthermore, for each arbitrary x ∈ C1
D(I,R3) and

q(t) := f ((Dx)′(t),x(t), t) =

 x′1(t)+ x1(t)
x2(t)x′2(t)− x3(t)

x1(t)2 + x2(t)2−1+ 1
2 cosπt

 , t ∈ I,

it results that q ∈ Y . Finally, owing to Theorem 2.7 the nonlinear BVP proves to be
well-posed in the advanced setting with image space Y . In particular, the perturbed
BVPs with sufficiently small |γ| and ‖q‖∞+‖q′3‖∞ are locally uniquely solvable and
the solutions satisfy the inequality

‖x− x∗‖∞ ≤ κ(|γ|+‖q‖∞ +‖q′3‖∞).

ut

Although Theorem 2.7 sounds promising there are serious objections to it concern-
ing the relevance for practical computations:

(1) The advanced image space Y∗ and its norm are rarely available in practice.
(2) The higher the index µ the more unsuitable is the norm ‖ · ‖Y∗ for practical

needs, see [96, Section 2].
(3) Condition (70) seems to be quite acceptable. However, in the light of possible

variations of imF ′(x) with x (see [96, Example 4.3]), there are more restrictions
on the classes of nonlinear DAEs the higher the index is.

The situation turns out to remain more or less acceptable only in the easier index-
2 case, as already demonstrated by Example 2.7. The general solution of a linear
regular index-2 DAE is established in Subsection 2.2, in particular, the canonical
projector function is given there. In Example 2.3 the particular case of index-2 DAEs
in Hessenberg form is specified.

The subspace
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Cind 2(I,Rm) := {w ∈ C(I,Rm) : DΠ0Q1G−1
2 w ∈ C1(I,Rn)}.

serves as set of admissible right-hand sides of the linear index-2 DAE (51). The
dynamical degree of freedom amounts to l = r0 + r1−m. It becomes clear that the
linear BVP (69) for an index-2 DAE, with accurately stated boundary condition is
well-posed in the advanced setting with Y = Cindex2(I,Rm).
In [8], for linear Hessenberg index-2 DAEs, an inequality like (68) is obtained and
the constant κ is called stability constant. Further, if κ is of moderate size, the BVP
is said to be well-conditioned. In essence, in our context this means well-posedness
in the advanced setting, and moderate conditioning constants.

Accordingly, if the linearized DAE (55) is regular with index 2, then the associ-
ated set of admissible right-hand sides is given by

Y∗ = Cind 2
∗ (I,Rm) := {w ∈ C(I,Rm) : DΠ0Q∗1G−1

∗2 w ∈ C1(I,Rn)}.

The asterisk-index indicates the possible dependence of the reference solution x∗.
For index-2 DAEs (54), we are aware of more transparent sufficient criteria for

condition (70) to be valid. Namely, if the structural restriction (cf. [92], [83, Sub-
section 3.9.2])

W∗0(t){ f (y,x, t)− f (0,P0(t)x, t)} ∈ imW∗0(t)B∗(t)Q0(t), (73)

with W∗0(t) = I−A∗(t)A∗(t)−, or, equivalently,

f (y,x, t)− f (0,P0(t)x, t) ∈ imG∗1(t), (74)

is satisfied, then condition (70) is guarantied. Fortunately, often the subspaces
imA∗(t) and imG∗1(t) are actually independent of the reference solution x∗. Index-2
DAEs in Hessenberg form serve as particular instance of DAEs satisfying condition
(73).

Formulating the initial condition in (72) by a matrix C that has the nullspace as
kerC = kerΠ∗can(a) = kerΠ∗µ−1(a) makes condition (71) to be trivially fulfilled.
This means that the initial condition is directed promptly to the dynamical compo-
nent and yields the following useful assertion.

Corollary 2.3. The second assertion of Theorem 2.7 remains valid, if the condition
(71) is replaced by the simpler condition

kerC = kerΠ∗µ−1(a) = kerD(a)⊕kerG∗1(a). (75)

Example 2.8. For the index-2 DAE in Hessenberg form in Example 2.3 we obtain
kerΠ∗can(a) = {z ∈ Rm1+m2 : z1 = Ω∗z1}, with Ω∗ = B∗12B−∗12. ut

In contrast to the index-1 case in Corollary 2.2, now also the matrix C in formula
(75) depends on x∗, in fact. This foreshadows one of the challenging difficulties
concerning higher index DAEs, the determination of consistent initial values.
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2.6 Other boundary conditions

As established for explicit ODEs in [12], various conditions are applied to fix so-
lutions in different applications, for instance, multipoint conditions, integral con-
ditions, and separated conditions, and BVPs of different forms can be converted to
each other. The same happens for DAEs. Here we address some of the related topics.

We call attention to the fact that the dynamical degree of freedom l ≤ m of a
regular DAE strongly depends on the structure of this special DAE. In the context
of the projector based analysis (cf. Appendix 6.1) l is determined as

l = m−
µ−1

∑
i=0

(m− ri). (76)

Another way providing l using derivative arrays is described in [38]. Evidently the
number of initial or boundary conditions must be chosen accordingly.

Except for the index-1 case, where l = r0 = r = rankD(a), the number l is rarely
a priori available. Usually, l has to be computed (e.g. [83, Chapter 7], [38]).

In the present paper we decide on mainly stating the boundary condition in Rl

(following [38, 8, 41, 22], [12, p. 474]) and most notably accenting that the right
number of conditions should be given.

In contrast, it is also just and equitable to state the boundary condition in Rm

(e.g. [89, 90, 55, 4, 5]) and so to emphasize that l has to be determined. Then, a
consistency condition has to be respected. We address this topic in Subsubsection
2.6.2 below.

For practical computations it is recommended to regard the relation

kerΠcan = kerΠµ−1 = N0 + · · ·+Nµ−1,

which is an inherent property of all admissible matrix function sequences for a reg-
ular DAE. It is much easier to calculate some admissible sequence than to provide
the canonical projector function by a completely decoupling sequence (cf. [83]). In
general, the canonical projector function is of great avail in theory, however, though
there are constructive approaches, as yet, there are no efficient means to provide it
practically.

2.6.1 General boundary conditions in Rl

The most general linear condition for fixing solutions of DAEs is given by a linear
bounded map as

Γ x = γ, Γ : C(I,Rm)→ Rl .

In particular, this comprises IVPs, two-point BVPs, multipoint BVPs, and problems
with integral condition by
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Γ x : =Cx(a),

Γ x : = Gax(a)+Gbx(b),

Γ x : =
s

∑
i=0

Gix(ηi), a = η0 < · · ·< ηs = b,

Γ x : =
∫ b

a
G(t)x(t)dt,

respectively. The notion of well-posedness and accurately stated boundary condition
can be immediately resumed.

Supposing a regular index-µ DAE

A(Dx)′+Bx = q (77)

and applying the solution representation (32) with t̄ = a we see that Γ x = γ actually
means Γ X(·,a)c = γ−Γ xq. The solvability matrix

S := Γ X(·,a) ∈ L(Rm,Rl)

inherits the property kerΠcan(a) = kerX(t,a)⊆ kerS. The general BVP for (77) has
accurately stated boundary condition exactly if (cf. (43))

imΓ = Rl , kerS = kerΠcan(a). (78)

The general linear BVP is well-posed in the natural setting exactly if the boundary
condition is accurately stated and, furthermore, the DAE has index 1. Then, one has
simply l = rankD(a), cf. Subsubsection 2.5.1.

Nonlinear versions of those well-posed BVPs are treated e.g. in [41, 22].

It might be often convenient to utilize for problems originally given with different
boundary conditions well approved software written for two-point BVPs – as is
common practice for regular ODEs (cf. [12]).

For a BVP with integral condition one introduces the additional continuously
differentiable function y by

y(t) =
∫ t

a
G(s)x(s)ds.

The augmented two-point BVP[
A 0
0 I

]
(

[
D 0
0 I

][
x
y

]
)′+

[
B 0
−G 0

][
x
y

]
=

[
q
r

]
, (79)

[
0 I
0 0

][
x(a)
y(a)

]
+

[
0 0
0 I

][
x(b)
y(b)

]
=

[
ψ

γ

]
, (80)
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is uniquely solvable for each arbitrary q ∈ Cind µ(I,Rm), r ∈ C(I,Rl), γ,ψ ∈ Rl , if
and only if condition (78) is valid. If so, then the augmented BVP with r = 0 and
ψ = 0 reproduces as x-component the solution of the original BVP.

A multipoint BVP with given points a = η0 < · · ·< ηs = b can be converted by
linear changes of the variable t mapping each subinterval [ηi−1,ηi] to [0,1]. Intro-
duce the functions xi,Ai,Di,Bi,qi, all given on the interval [0,1], by

xi(τ) = x(t) = x(ηi−1 + τ(ηi−ηi−1)), t = ηi−1 + τ(ηi−ηi−1), τ ∈ [0,1],

and so on. Then we turn to the sm-dimensional two-point BVP on [0,1],

Ai
1

ηi−ηi−1
d

dτ
(Dixi)+Bixi = qi, i = 1, . . . ,s, (81)

Ci(xi(1)− xi+1(0)) = 0, i = 1, . . . ,s−1,
s−1

∑
i=0

Gixi+1(0)+Gsxs(1) = γ. (82)

It is evident that the augmented DAE (81) is regular with index µ and dynami-
cal degree of freedom is sl, if the original DAE (77) is regular with index µ and
dynamical degree of freedom l. If we choose matrices Ci ∈ L(I,Rl) such that
kerCi = kerΠcan(ηi), we put the right number of boundary conditions. It is straight-
forward to prove that the boundary conditions (82) are accurately stated if the orig-
inal BVP has accurately stated boundary condition, i.e., if

kerS = kerΠcan(a), S :=
s

∑
i=0

GiX(ηi,a) ∈ L(Rm,Rl).

Replacing in (82) the matrices Ci by the identity I ∈ L(Rm) and so requiring the
l +(s−1)m boundary conditions

xi(1) = xi+1(0), i = 1, . . . ,s−1,
s−1

∑
i=0

Gixi+1(0)+Gsxs(1) = γ. (83)

leads to a consistent overdetermined problem.

BVPs for explicit ODEs with so-called switching points are discussed in [12].
In the case of DAEs, this corresponds in some sense to the BVP (81), (82) with
unknown points η1, . . . ,ηs−1. Till now it remains open whether the usual trick to
introduce constant functions ηi by adding the trivial differential equations η ′i = 0,
i = 1, . . . ,s−1, can be here also adapted to work.

2.6.2 General boundary conditions in Rm

Often one formulates IVPs with the initial condition
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x(a) = xa ∈ Rm, (84)

This makes good sense for regular ODEs. For DAEs, this initial condition fails to
be accurately stated. Such an IVP is solvable if and only if xa is a consistent value,
otherwise the IVP is overdetermined. Recall that the number of initial conditions
should be chosen in accordance with the dynamical degree of freedom l < m of the
DAE.

Consider the general BVP for the DAE (77) with boundary conditions stated in
Rm,

Γ x = γ, Γ : C(I,Rm)→ Rm, (85)

whereby Γ is a linear bounded map describing initial, two-point boundary, mul-
tipoint boundary, and integral conditions as in Subsection 2.6.2. Let the DAE be
regular with index µ . The so-called solvability matrix (also: shooting matrix)

S := Γ X(·,a) ∈ L(Rm,Rm)

has the properties
kerΠcan(a)⊆ kerS, rankS≤ l.

We represent the BVP as operator equation T x = (q,γ) by means of Γ and the
additional bounded linear operators (cf. Appendix 6.1.4)

T : C1
D(I,Rm)→C(I,Rm))×Rm, T x : = (T x,Γ x),

T : C1
D(I,Rm)→C(I,Rm)), T x : = A(Dx)′+Bx.

The subspace imΓ ⊆ Rm has necessarily finite dimension. Also the nullspace of T
is finite-dimensional, more precisely,

kerT = {X(·,a)c : c ∈ kerS∩ imΠcan(a)}, dimkerT = l− rankS.

The boundary condition (85) is said to be accurately stated if and only if

imS = imΓ , kerS = kerΠcan(a). (86)

Condition (86) requires rankS = l and dimimΓ = l. If the condition (86) is valid,
then the operator T is a bijection between C1

D(I,Rm) and Cind µ(I,Rm)× imΓ . In
comparison with the basic Definition 2.3 now the role of Rl is resumed by the l-
dimensional subspace imΓ ⊆ Rm. The condition γ ∈ imΓ can be seen as trivial
consistency condition.

If, additionally, the DAE has index 1, then C(I,Rm) = Cind µ(I,Rm), and T has
a bounded inverse. Then the inequality

‖x‖∞ ≤ ‖x‖C1
D
≤ ‖T −1‖(‖q‖∞ + |γ|)
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is satisfied by each arbitrary pair (q,γ) ∈ C(I,Rm)× imΓ and the solution x =
T −1(q,γ). Then the BVP is said to be well-posed – in accordance with the basic
Definition 2.2, with imΓ substituting Rl .

Nonlinear versions of well-posed two-point BVPs for standard form index-1
DAEs and boundary conditions stated in Rm are treated, e.g., in [89, 55, 87, 91].
Linear and nonlinear multipoint BVPs for index-1 DAEs are studied [6, 4, 5]. Re-
call that in several early papers after [55] one speaks of transferable DAEs instead
of (regular) index-1 DAEs. In [6, 4, 5], the BVP for an transferable DAE is said
to be regular if the condition (86) is satisfied, and irregular otherwise. We do not
resume this notation.

In [6] it is shown that well-posedness of multipoint BVPs persists under some
special small perturbations.

If the DAE is regular with index 1, but the condition (86) does no longer hold,
then the operator T has the closed image imT = C(I,Rm)× imS with finite codi-
mension m− rankS (cf.[4]). This means that T is actually a Fredholm operator
(Noether operator in [4]) with ind f redholm = l−m =−(m−r0) =−dimkerD(a). A
representation of the general solution of such an BVP including the resulting con-
sistency condition is developed in [4] by means of projectors onto kerT and imT .

We emphasize that for higher-index DAEs this approach does no longer work
since then imT fails to be closed in the given natural setting (cf. [96]).

By the initial condition of the form

Cx(a) =Cz, with z ∈ Rm,

mostly written as C(x(a)− z) = 0, one trivially ensures the consistency condition
Cz =: γ ∈ imC. The component of z belonging to the nullspace of C does not impact
the solution of the IVP.

The condition (86) simplifies here to kerC ∩ imΠcan(a) = {0}. Recall that
kerΠµ−1(a) = kerΠcan(a) is valid for arbitrary admissible projector functions.

An important special case is given, if C is any matrix C ∈ L(Rm,Rm) such that
kerC = kerΠµ−1(a). Then this condition is evidently satisfied. In particular, one can
put C = Πµ−1(a) and C = Πcan(a).

2.6.3 Separated boundary conditions

The boundary condition
Gax(a)+Gbx(b) = γ (87)

is said to be separated, if

Ga =

[
Ga,1

0

]
, Gb =

[
0

Gb,2

]
.
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Separated boundary conditions turn out to be pleasant. Exploiting this structure the
computational costs of shooting algorithms can be reduced ([38]) and, furthermore,
if the boundary conditions are placed in accordance with a dichotomy (see The-
orem 2.3), then the conditioning constant κ2 is moderate, thus the BVP is well-
conditioned. Moreover, transfer methods relying on the description of solution sub-
spaces (cf. Subsection 5.2) can be applied.

If the boundary condition (87) fails to be separated, then the BVP can be con-
verted to an augmented BVP with separated boundary condition by the same trick
used for ODEs, see [12, Section 1.1]. For this one can utilize if either Ga or Gb is
rank deficient

Consider the BVP with boundary condition (87) of the form

Ga =

[
Ga,1
Ga,2

]
, Gb =

[
0

Gb,2

]
∈ L(Rm,Rl), Gb,2 ∈ L(Rm,Rl−s), γ =

[
γ1
γ2

]
,

with 0≤ s≤ l, for the regular index-µ DAE

A(Dx)′+Bx = q. (88)

Introduce the additional function z ∈ C1(I,Rl−s) and add the equation z′ = 0 to the
DAE. The resulting DAE[

A 0
0 I

]
(

[
D 0
0 I

][
x
z

]
)′+

[
B 0
0 0

][
x
z

]
= q̂ (89)

is regular with index µ , too. The dynamical degree of freedom is l̂ = l+ l− s. State
for (89) separated boundary condition[

Ga K
0 0

][
x(a)
z(a)

]
+

[
0 0

Gb,2 I

][
x(b)
z(b)

]
= γ̂, K =

[
0
−I

]
∈ L(Rl−s,Rl). (90)

Letting

q̂ =

[
q
0

]
, γ̂ =

γ1
0
γ2

 ,
the function z becomes constant, thus z(a) = z(b). Then the boundary condition (90)
yields

Ga,1x(a) = γ1,

Ga,2x(a)− z(a) = 0,
Gb,2x(b)+ z(b) = γ2,

and hence Gax(a)+Gbx(b) = γ . Therefore, then the x-component of the solution
of the BVP (89), (90) reproduces the solution of the original BVP (87), (88). If
the boundary condition of the original BVP are stated accurately, then so are the
boundary condition of the augmented one.



52 Analytical theory

Another possibility to convert a BVP to a new one with separated boundary con-
ditions is Moszyński’s trick ([99]). We adapt this tool for converting the BVP (87),
(88) to the augmented BVP on the half interval [a, a+b

2 ],[
A(t) 0

0 A(a+b− t)

]
(

[
D(t) 0

0 D(a+b− t)

]
x̂(t))′+

[
B 0
0 0

]
= q̂ (91)

with

x̂(t) =
[

x(t)
x(a+b− t)

]
, q̂(t) =

[
q(t)

q(a+b− t)

]
, t ∈ [a,

a+b
2

],

and the separated boundary condition[
Ga Gb
0 0

]
x̂(a)+

[
0 0

C a+b
2
−C a+b

2

]
x̂(b) =

[
γ

0

]
, (92)

with a matrix C a+b
2
∈ L(Rm,Rl) such that kerC a+b

2
= kerΠcan(

a+b
2 ). This manipu-

lation changes neither the index of the DAE nor the accurateness of the boundary
condition. The new solvability matrix is

Ŝ =

[
GaX(a,a) GbX(b,a)

0 0

]
+

[
0 0

C a+b
2

X( a+b
2 ,a) −C a+b

2
X( a+b

2 ,a)

]
∈ L(R2m,R2l).

(93)
The inclusion kerΠµ−1(a)× kerΠµ−1(a) ⊆ ker Ŝ is a consequence of the respec-
tive property of the fundamental solution matrix. On the other side, Ŝz = 0 yields
GaX(a,a)z1 + GbX(b,a)z2 = 0 and Πcan(a)(z1 − z2) = 0, thus
(GaX(a,a) + GbX(b,a))z1 + GbX(b,a)(z2 − z1) = Sz1 = 0. Therefore, if kerS =
kerΠcan(a) then it follows that z1 ∈ kerΠcan(a), further z1 ∈ kerΠcan(a), and fi-
nally

ker Ŝ = kerΠµ−1(a)×kerΠµ−1(a).

2.7 Further references, comments, and open questions

Remark 2.1 (C1-solutions). Often in the literature one insists on C1-solutions. This
is less appropriate from a functional-analytic viewpoint as shown in detail in [96]. In
any case, the basic structural characteristics of the DAE such as index, characteristic
values, and regularity regions, are independent of the smoothness of the wanted so-
lutions. Occasional additional smoothness requirements concerning the data imply
each existing C1

D-solution also to belong to class C1.
The axiomatic use of C1-solutions, e.g., in [75, 74], necessitates additional

smoothness requirements in principle. For instance, in the linear index-1 system,
to ensure surjectivity in the respective setting C1(I,Rm)→C(I,Rm1)×C1(I,Rm2),
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I 0
0 0

]
x′(t)+

[
B11(t) B12(t)
B21(t) B22(t)

]
x(t) =

[
q1(t)
q2(t)

]
,

with B22(t) remaining nonsingular, they (have to) suppose that B21,B22 as well as
q2 are continuously differentiable. Therefore, in this approach, q2 can not serve as a
control function being only continuous.

Remark 2.2 (The class of DAEs). Relations between DAEs in standard form (1) and
DAEs showing a properly involved derivative (2) have been discussed at great length
in [83, 96]. The setting with properly involved derivative indicates solutions from
C1

D(I,Rm). We emphasize that this are classical solutions; they satisfy the DAE at
all points t ∈ I. The present paper is concerned with a classical analytical theory
and the respective numerical treatment.

We do not consider generalized solutions. To this end we mention that, for spe-
cial DAEs, measurable solutions satisfying the DAE a.e. on I and distributional
solutions are treated, e.g., in [56, 83, 54, 96, 112].

Remark 2.3 (Regularization). The structure of solutions of BVPs for certain linear
index-1 and index-2 DAEs is investigated in [64] via regularization by singular per-
turbations. In particular, it is discussed how consistent boundary conditions can be
stated. Already these case studies show the immense complexity of that approach.
Further related profound studies concerning classes of linear and nonlinear BVPs
are reported in [57, 58, 46, 59].

Remark 2.4 (Fundamental solution matrices). Given is a regular linear DAE (22)
with index µ , l = rankΠcan(a), and l ≤ k ≤ m. Each matrix function X : I →
L(Rk,Rm) with columns from C1

D(I,Rm), satisfying

A(DX)′+BX = 0,

is said to be a fundamental solution matrix of the DAE if the relation

imX(t) = imΠcan(t), t ∈ I,

is valid. One speaks of maximal(-size) and minimal(-size) fundamental solution ma-
trices if k = m and k = l, respectively. These notions have been introduced in [28]
for index-1 DAEs in standard form and in [29] for properly stated DAEs with index
1 and index 2, and in [83] for regular DAEs with arbitrary index.

Given a maximal-size fundamental solution matrix X , a time t̄ ∈ I, and a matrix
C ∈ L(Rl ,Rm) with full column-rank l such that

kerX(t̄)∩ imC = {0}, (94)

then the product XC is a minimal-size fundamental solution matrix and X(t̄)C rep-
resents a basis of imΠcan(t̄). Namely, X(t̄)Cz = 0 implies Cz = 0, thus z = 0.

If, the maximal-size fundamental solution matrix X is normalized at t̄ by X(t̄) =
Πcan(t̄), then the above condition (94) simplifies to
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kerΠcan(t̄)∩ imC = {0}.

Conversely, if the given fundamental solution matrix X has minimal size and the
matrix C ∈ L(Rm,Rl) has full row-rank l, the product XC is a maximal-size funda-
mental solution matrix. For getting an at t̄ normalized one, we choose the special
C = X(t̄)− being the generalized inverse of X(t̄) defined by

X(t̄)X(t̄)−X(t̄) = X(t̄)−, X(t̄)−X(t̄)X(t̄)− = X(t̄)−,

X(t̄)X(t̄)− = Πcan(t̄), X(t̄)−X(t̄) = I.

We have then X(t̄)C = X(t̄)X(t̄)− = Πcan(t̄) in fact.
A considerable part of the relevant former literature relies on minimal-size funda-

mental solution matrices, e.g. [38], whereas normalized maximal-size fundamental
solution matrices are used in other parts, e.g. [55]. We mention that maximal-size
fundamental solution matrices are applied for obtaining general solution represen-
tations for linear time-invariant DAEs by means of Drazin inverses and Wong se-
quences (e.g., [55, 112]).

The relations between the different fundamental solution matrices of a given
DAE and those of the adjoint DAE are studied in [28, 29, 26]. A generalization
for arbitrary index DAEs is open so far, it seems to be possible in the light of the
projector based analysis.

Remark 2.5 (Shooting approach). The solvability matrix is often named shooting
matrix. The shooting approach by maximal fundamental solution matrices for ob-
taining solvability results is already applied for nonlinear index-1 DAEs in [89, 55]
and for linear standard form DAEs with arbitrary index in [91]. Here we present a
comprehensive generalization for linear DAEs with arbitrary index by means of the
projector-based analysis given in [83], which is straightforward within this frame-
work. We also adress nonlinear DAEs.

Supposing in essence the solution structure (32) by a special involved solvabil-
ity notion for linear DAEs, the shooting approach is justified for linear arbitrary
index (standard form) DAEs in [38]. It is also pointed out that one has to provide
the correct number of boundary conditions l, whereby l is determined by the in-
vestigation of the derivative array system. In contrast to our approach, an arbitrary
minimal fundamental solution matrix ψ(t,a) ∈ L(Rl ,Rm) which has full column-
rank is applied in [38] instead of the maximal solution matrix X(t,a) ∈ L(Rm,Rm).
Because of the relations X(t,a)W =ψ(t,a), with a full column-rank constant matrix
W ∈ L(Rl ,Rm), this yields the quadratic solvabilty matrix

S̃ := Gaψ(a,a)+Gbψ(b,a) = (GaX(a,a)+GbX(b,a))W = SW,

which depends on W , that is on the chosen basis ψ(a) of imΠcan(a). Nevertheless,
S̃ is nonsingular, if and only if kerS = kerΠcan(a).

The approach in [111] repeats and extends that of [38] on the slightly different
background of the strangeness-index regularization concept. In particular, a basis
ψ(a) of the subspace imΠcan(a) with orthogonal columns is constructed.
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Remark 2.6 (Well-posedness). Well-posedness and ill-posedness are traditionally
named correctness and noncorrectness in the Russian literature.

The Definition 2.2 constitutes a local specification of Hadamard’s well-posedness
notion. It has been used, e.g., in [55, 90]. Actually, it says that the operator represent-
ing the BVP in its natural setting as operator equation is a local diffeomorphism at
x∗. (cf. [90, 96]). General nonlinear BVPs for index-1 DAEs with accurately stated
boundary conditions are shown to be well-posed in [90] and the ill-posedness for
DAEs with higher index is indicated.

In [111] one can find a further proof of well-posedness in the natural setting for
the so-called regularized BVP, which consists of a special form index-1 DAE and
appropriate boundary conditions.
In [75] well-posedness of BVPs for index-1 DAEs in reduced form (100), (101) is
obtained in the setting (cf. also Remarks 2.1 and 2.7)

C1(I,Rm)→C(I,Rl)×C1(I,Ra)×Rl ,

which looks about C1- solutions.
A different well-posed notion purpose-built for Hessenberg form DAEs describ-

ing multibody systems is agreed upon in [51]. There certain components of the
perturbation are set to be zero.

Remark 2.7 (Isolated solvability). We conjecture that, if the solution x∗ of the BVP
is located within a regularity region of the DAE, then x∗ is locally unique exactly if
it is isolated in the sense of Definition 2.5.

Till now, explicit proofs are known for the general index-1 case and also for
higher-index cases under certain structural restrictions. Such a result is obtained
in [51] for periodic solutions of multibody DAEs. The hitherto applied structural
restrictions become more and more annoying with increasing index, see Subsection
2.5, [83, Remark 4.5]. It is open to what extent one can do without those restrictions.

Of course, if the original DAE can be reduced locally around the wanted solution
x∗ to an index-1 DAE possessing the same solutions as the original DAE, and if x∗
is an isolated solution of the reduced BVP, then x∗ is at the same time an locally
unique solution of the original BVP. Unfortunately, this fine idea is not quite easy
to be predicated on precise criteria. With the notion of a regular solution of the BVP
the authors of [75] attempt to provide such a criterion. We take a closer look.

In [75, 74], nonlinear BVPs

f(x′(t),x(t), t) = 0, t ∈ I = [a,b], (95)
g(x(a),x(b)) = 0, (96)

with sufficiently smooth data, are addressed by means of the strangeness-index
reduction framework. A solution is defined to be a sufficiently smooth function
x∗ ∈ C(I,Rm) satisfying the system
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f(x′∗(t),x∗(t), t) = 0, t ∈ I, (97)
fµ(P∗(t),x∗(t), t) = 0, t ∈ I, (98)

g(x∗(a),x∗(b)) = 0, (99)

where fµ denotes the derivative array function and P∗ : I → Rm(µ+1) is some
smooth function that coincides with x′∗(t) in its first m components. Under quite
involved hypotheses, there are functions Z∗1,Z∗2, and K∗, all depending on x∗, such
that the reduced system of l +a = m equations

f̂1(x′(t),x(t), t) = 0, (100)

f̂2(x(t), t) = 0, t ∈ I, (101)

results, with

f̂1(x1,x, t) := Z∗1(t)T f(x1,x, t),

f̂2(x, t) := Z∗2(t)T fµ(K∗(x, t),x, t).

The reduced system has index 0 if a = 0, and otherwise index 1.
Then the solution x∗ is said to be a regular solution of the original BVP ([75]),

if the linearized at x∗ reduced BVP has the trivial solution only. In our context
this means that the reduced BVP is locally well-posed in the related setting (cf.
Remark 2.6). However, this does not say that the original BVP is well-posed! On
this background the claim ([75]) that the original BVP (95), (96) takes the form of
the operator equation F(x) = 0, with F acting in Banach spaces X and Y (perhaps
X = C1(I,Rm), Y = C(I,Rl)×C1(I,Ra)×Rl),

F(x)(t) :=

f̂1(x′(t),x(t), t)f̂2(x(t), t)
g(x(a),x(b))

 , t ∈ I,

with a bijective Fréchet derivative F ′(x∗), becomes rather misleading.
As the specific feature of derivative array approaches all involved derivatives are

prepared analytically. This is, in the linear case, comparable to preparing analyti-
cally the functions vq in Subsections 2.2, 2.3.

Remark 2.8 (Segregation of solution subspaces by means of the adjoint equation).
Similarly as it is well-known for explicit ODEs, any affine linear subspace of
solutions within the whole solution set of a regular index-µ DAE, µ = 1 or
µ = 2, can be segregated by means of solutions of the homogeneous adjoint DAE
([27, 101, 100, 30]). Thereby, the interval I is not necessarily compact. The gen-
eralization for arbitrary high index seems to be possible. We quote the main result
from [30].

Let the DAE (51) be regular with index 1 or index 2, and the right-hand side q be
admissible, l = rankΠcan(a), 1≤ k ≤ l, s = l− k.
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Then a set L⊂ C1
D(I,Rm) is a k-dimensional affine-linear subspace of solutions

of the DAE if and only if it is described by

L(t) = {x ∈ Rm : Y (t)∗A(t)D(t)x+ν(t) = 0, x ∈Mµ−1(t)}, t ∈ I,

with matrix functions Y : I → L(Rs,Rm), ν : I → Rs such that rankY (t) = s and

−D∗(A∗Y )′+B∗Y = 0,
ν
′+Y ∗q = 0.

Linear BVPs for explicit ODEs with separated boundary conditions can be success-
fully solved by so-called transfer methods. Relying on the above representation,
correspondent methods can be created for DAEs, see Subsection 5.2.

Remark 2.9 (Conditioning constants). In [12], dealing with BVPs for explicit ODEs,
the constant κ in the inequality (11) and the quantities κ1,κ2 introduced in Sub-
section 2.3 are called conditioning constants. If they have moderate size, then one
speaks of well-conditioned BVPs.

Our presentation in Subsections 2.3 and 2.4 are generalizations of the results in
[87, 88] by means of the projector-based analysis from [83].

It should be emphasized once again, that there is an essentially different meaning
of the conditioning constants for index-1 DAEs and higher-index DAEs. For index-
1 DAEs, the quantities κ1,κ2,κ3 can be seen as specification of κ , which is in turn
actually a bound of the inverse of the operator representing the BVP in its natural
setting.

In case of higher index DAEs the BVP is necessarily ill-posed in the natural
setting such that a constant κ no longer does exist, but κ1,κ2,κ3 do exist and can
show moderate size. Therefore, for higher-index DAEs, it may happen that a BVP
can be ill-posed but well-conditioned! One should avoid confusions! Here, a well-
conditioned BVP is given, if the boundary condition fits well to the dynamic part of
the DAE. Thereby, the index does not matter.

Special studies concerning the conditioning constants of IVPs for linear Hes-
senberg index-1 and index-2 DAEs, their sensitivity with respect to several small
parameters are described in [114]. The conditioning of BVPs for index-2 Hessen-
berg systems is adressed in [8] by means of the reduction to the essential underlying
ODE. In essence, in our context this means well-posedness in the advanced index-2
setting along with conditioning constants κ1,κ2,κ3 of moderate size.

Remark 2.10 (Structural restriction in Theorem 2.7). Consider the nonlinear DAE
(54). If the reference solution x∗ resides within an index-µ regularity region, then
the linearized along x∗ DAE (55) is regular with index µ , too, see Appendix 6.1.3.

The converse is true only for the index-1 case. If the linearized along x∗ DAE
(55) is regular with index 1, then there is a neighborhood of the graph of x∗ being
an index-1 regularity region.
In contrast, it may well happen that (55) is regular with index µ ≥ 2, but there is no
regularity region housing the graph of x∗, e.g., [95, 83].
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If µ = 2, Then the additional condition (70) ensures that x∗ resides in a regularity
region ([92]). We think that the same is true also for arbitrary µ ≥ 2, but a correct
proof is not yet available.

There arises a challenging question: To what extend the objectionable condition
(70) could be replaced by the requirement that x∗ resides within a regularity region?
Till now, no idea is in sight.

Remark 2.11 (Scaling of the DAE). It is convenient to analyze the regular implicit
ODE A(t)x′(t)+B(t)x(t) = 0 in the explicit form x′(t)+A(t)−1B(t)x(t) = 0. How-
ever, for practical computations one usually prefers the implicit form.

As mentioned in Subsection 2.3, the scaling of a given regular index-µ DAE
by G−1

µ leads, for the scaled DAE, to Gµ = I. As for regular implicit ODEs, it is
unlikely that this fact could be qualified to practical consequences.

Nevertheless, some useful basic scalings would be welcome for both implicit
regular ODEs and regular DAEs. As yet, there is no idea in sight.

Remark 2.12 (Inequalities (11) and (10)). In the context of BVPs for explicit ODEs
(e.g., [12]), with good cause, one commonly uses the practically more convenient
norm ‖ · ‖∞ instead of ‖ · ‖C1 . Analogously, one is allowed to replace the inequality
(10) by the simpler inequality (11) by the following arguments: The inequality (10)
immediately implies (11), that is,

‖x− x∗‖∞ ≤ ‖x− x∗‖C1
D
≤ κ(|γ|+‖q‖∞).

Conversely, (10) follows from (11). Namely, for x ∈ BC1
D
(x∗,ρ), the identities

f ((Dx∗)′(t),x∗(t), t) = 0, f ((Dx)′(t),x(t), t) = q(t), t ∈ I,

imply

A[x,x∗](t)(Dx−Dx∗)′(t)+B[x,x∗](t)(x(t)− x∗(t)) = q(t), t ∈ I, (102)

with uniformly bounded coefficients

A[x,x∗](t) : =
∫ 1

0
fy((Dx∗)′(t)+ s((Dx)′(t)− (Dx∗)′(t),x∗(t)+ s(x(t)− x∗(t)), t)ds,

B[x,x∗](t) : =
∫ 1

0
fx((Dx∗)′(t)+ s((Dx)′(t)− (Dx∗)′(t),x∗(t)+ s(x(t)− x∗(t)), t)ds.

We have rankA[x,x∗](t) ≤ rankA∗(t) = rankD(t) = r because of kerA[x,x∗](t) =
kerR(t) and, if ρ is sufficiently small, rankA[x,x∗](t) ≥ rankA∗(t) = rankD(t) = r,
since

A[x,x∗](t) = A∗(t)+R[x,x∗](t), |R[x,x∗](t)| ≤ k0‖x− x∗‖C1
D
≤ k0ρ,

and hence

kerA[x,x∗](t) = kerA∗(t) = kerR(t) = imD(t), rankA[x,x∗](t) = r, t ∈ I.
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Choosing a continuous generalized inverse A[x,x∗](t)
− such that A[x,x∗](t)

−A[x,x∗](t)=
R(t) and multiplying equation (102) by A[x,x∗](t)

− leads to

R(t)(Dx−Dx∗)′(t)+A[x,x∗](t)
−B[x,x∗](t)(x(t)− x∗(t)) = A[x,x∗](t)

−q(t), t ∈ I,

further

(Dx−Dx∗)′(t)−R′(t)(Dx−Dx∗)(t)+A[x,x∗](t)
−B[x,x∗](t)(x(t)− x∗(t))

= A[x,x∗](t)
−q(t), t ∈ I,

and then
‖(Dx−Dx∗)′‖∞ ≤ k1‖(x− x∗‖∞ + k2‖q‖∞.

Regarding (11) we finally obtain

‖x− x∗‖C1
D
≤ (k1 +1)κ(|γ|+‖q‖∞)+ k2‖q‖∞ ≤ K(|γ|+‖q‖∞).

The same arguments apply also to the respective inequalities associated with well-
posedness in advanced settings.
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3 Collocation methods for well-posed BVPs

Piecewise polynomial collocation is an accepted method to approximately solve
classical well-posed BVPs for regular ODEs. Several general purpose codes are
implemented, which have been successfully applied to a great variety of practi-
cal problems. For instance, the package COLSYS ([10]) and its later modification
COLNEW ([21, 12]) can be used to solve multipoint boundary value problems for
mixed-order systems of explicit ODEs. This leads to the idea to treat additional con-
straints, i.e., derivative-free equations, as zero-order ODEs as it is done in [62] for
semi-explicit DAEs

x′1(t)+ k1(x1(t),x2(t), t) = 0, (103)
k2(x1(t),x2(t), t) = 0, (104)

with index 1. The package COLDAE ([13]) also plays on this approach, but now
for a wider class of DAEs. The MATLAB code BVPSUITE ([15]) is designed to
solve systems of implicit ordinary differential equations of arbitrary order including
order zero, which includes an implicit version of (103).

We restrict our interest to two-point BVPs and refer to Subsection 2.6 for other
boundary conditions.

As pointed out in Subsection 2.5, BVPs for DAEs may be locally well-posed
in different senses: in the natural setting, in the advanced setting and in the setting
associated to the special reduced form, see Remark 2.6,

f1(x′(t),x(t), t) = 0, (105)
f2(x(t), t) = 0, (106)

which inter alia arises by reduction from derivative array systems (e.g., [75]). Ad-
ditionally to the regular DAEs we consider also singular index-1 DAEs featuring
a singular inherent explicit ODE. In the latter case, it is more difficult to state the
boundary conditions and to achieve well-posedness.

The semi-explicit DAE (103), (104) indicates the different smoothness of the first
and second components, which can be reasonably resumed for their approximations
(e.g., [62, 73, 22, 42, 13]). A useful generalization of this class of DAE is given by
DAEs with properly involved derivatives

f ((Dx)′(t),x(t), t) = 0, (107)

which satisfy the basic assumption from Subsection 2.1, and, additionally,

imD(t) = Rn, t ∈ [a,b] = I, (108)

which leads to the border projector R(t)≡ I. Then the enlarged DAE
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f (u′(t),x(t), t) = 0, (109)
u(t)−D(t)x(t) = 0. (110)

features partitioned variables. For each solution x∗ of (107), the pair (Dx∗,x∗) solves
the enlarged DAE. Conversely, if (u∗,x∗) is a solution of the enlarged DAE, then the
component x∗ is a solution of (107).

Furthermore, the enlarged DAE is regular with index 1, exactly if the original
DAE is regular with index 1. It can be checked by straightforward computations,
that, in the index-1 case, both DAEs have the same IERODE

u′(t) = D(t)ω(u(t), t) (111)

and the dynamical degree of freedom l = n = rankD(a). Thereby, ω is the decou-
pling function introduced in Subsubsection 2.5.1 for index-1 problems.

With the boundary condition

g(x(a),x(b) = 0, (112)

a wellposed BVP (107), (112), yields a well-posed BVP (109), (110), (112), and
vice versa.

As pointed out in [61], [83, Chapter 5], in the context of integration methods, it
is reasonable to turn to models with constant border projector, so-called numerically
qualified DAEs and to arrange numerical approximations via the enlarged DAE. Ow-
ing to the time-invariance of the border projector, the methods are transferred to the
IERODE with no mutation. Otherwise the methods might change substantially, for
instance, the implicit Euler method might be converted into its explicit counterpart.

For the collocation methods, we define meshes

π := {a = t0 < t1 < · · ·< ti < ti+1 < .. . < tN = b},

with stepsizes hi := ti+1− ti, i = 0, . . . ,N − 1. We allow equidistant meshes hi =
h, i = 0, . . . ,N− 1, and non-uniform meshes which have a limited variation in the
step sizes, i.e.,

h := max
i=0,...,N−1

hi ≤ κ min
i=0,...,N−1

hi,

with a general constant κ .
In each subinterval [ti, ti+1] we insert s collocation points τik := ti + hiρk,

k = 1, . . . ,s, using s distinct canonical points

0≤ ρ1 < · · ·< ρs ≤ 1.

A grid with equidistant interior collocation points is illustrated in Figure 6.
We denote by B j

π,s the linear space of vector-valued functions with j components
given on [a,b] so that, according to the mesh π , each component is a piecewise
polynomial function of degree ≤ s. To be precise, we agree upon right continuity at
the mesh points t0, . . . , tN−1.
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a = t0 . . . ti

. . . τik . . .

ti+1 . . . b = tN︸ ︷︷ ︸
hi

Fig. 6 The computational grid

An attractive feature of collocation schemes is their possible high accuracy at the
mesh points t0, . . . , tN , called superconvergence ([39]). For classical BVPs in reg-
ular first order ODEs one usually approximates the solution by continuous piece-
wise polynomial functions. This leads to a uniform error order s. Depending on
the canonical collocation points, the order at the mesh points can be higher. More
precisely, if there is an integer s < s+ ≤ 2s, and the canonical collocation points
ρ1 < · · ·< ρs satisfy the orthogonality relations∫ 1

0
t j

s

∏
i=1

(t−ρi)dt = 0, j = 0, . . . ,s+− s, (113)

then s+ is the superconvergence order in the context of nonstiff regular explicit
ODEs. For instance, one has s+ = 2s for Gauß schemes, s+ = 2s− 1 for Radau
schemes, and s+ = 2s−2 for Lobatto schemes ([39]).

There is a variety of possible collocation approaches for DAEs. As emphasized
in [13], collocating the differential components by continuous piecewise polyno-
mial functions and allowing generally discontinuous piecewise polynomial func-
tions for the algebraic components is most natural, see Subsubsection 3.1.1 and
Subsection 3.3. Alternative approaches suppose continuous (Approach A in Sub-
subsection 3.1.2, Approach C in Subsubsection 3.1.4, and Subsection 3.2) or dis-
continuous (Approach B in Subsubsection 3.1.3) piecewise polynomial functions
uniformly for all components.
In contrast to regular ODEs, any solution x∗ of a DAE proceeds within the so-called
obvious constraint set of the DAE, x∗(t) ∈M0(t) for all t. This leads to the extra
question in the context of DAEs whether the approximation values xπ(ti) are con-
sistent, that means xπ(ti) ∈M0(ti).

3.1 BVPs being well-posed in the natural setting

Let the BVP (107), (112), satisfy the basic assumptions described in Subsection 2.1,
let the DAE have a properly involved derivative, and let (108) be valid. Let x∗ denote
the wanted solution, and u∗ = Dx∗.
Theorem 2.4 provides exact criteria for the local well-posedness in the natural set-
ting. Therefore, we assume that the DAE is regular with index 1, the boundary con-
ditions are stated accurately and l = rankD(a).
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3.1.1 Partitioned component approximation

We continue considering the well-posed BVP (107), (112) by means of the enlarged
version (109), (110), (112). Let uπ ∈ Bn

π,s ∩C(I,Rn) and xπ ∈ Bm
π,s−1 serve as ap-

proximations of u∗ and x∗, respectively. The required continuity of uπ means

uπ(t−i ) = uπ(ti), i = 1, . . . ,N−1, (114)

and therefore, we have to determine n(s+1)N +msN−n(N−1) = (n+m)sN +n
remaining unknowns. The boundary condition (112) yields

g(xπ(a),xπ(b)) = γ, (115)

which contains n equations. To create a balanced system, we apply the (n+m)sN
collocation equations

f (u′π(τik),xπ(τik),τik) = 0, (116)
uπ(τik)−D(τik)xπ(τik) = 0, k = 1, . . . ,s, i = 0, . . . ,N−1. (117)

If ρ1 = 0, then u′π(τi1) is the right derivative at τi1 = ti, if ρs = 1, then u′π(τis) is
defined as left derivative at τis = ti+1.

By means of the decoupling function the scheme (116), (117) transforms to

xπ(τik) = D(τik)
−uπ(τik)+Q0(τik)ω(uπ(τik),τik), (118)

u′π(τik) = D(τik)ω(uπ(τik),τik), k = 1, . . . ,s, i = 0, . . . ,N−1. (119)

On the other hand, we are given the solution representation (cf. (63), (64))

x∗(t) = D(t)−u∗(t)+Q0(t)ω(u∗(t), t), (120)
u′∗(t) = D(t)ω(u∗(t), t), t ∈ [a,b]. (121)

In particular, u∗ satisfies the IERODE (111). Obviously, the collocation scheme
(116), (117), (114) results in the classical collocation scheme for the IERODE sub-
ject to the boundary conditions. Therefore, uπ is uniquely determined, and, in turn,
xπ is also unique by (118).

The next theorem represents a straightforward extension of [22, Theorem 3.2]
which concerns semi-explicit index-1 DAEs. It can be proved analogously.

Theorem 3.1. Let the BVP (107), (112) be well-posed locally around its solution x∗
in the natural setting. Let condition (108) hold and the data of the DAE be suffi-
ciently smooth for respective order conditions.
Then, for the collocation scheme (116), (117), (115), (114), the following statements
hold:

(1) There is a h∗ > 0, such that, for meshes with h ≤ h∗, there exists a unique
collocation solution uπ , xπ in the sufficiently close neighborhood of u∗, x∗.
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(2) With a sufficiently good initial guess, the collocation solution can be generated
by the Newton method, which converges quadratically.

(3) It holds that

‖x∗− xπ‖∞ = O(hs), ‖u∗−uπ‖∞ = O(hs).

(4) If there is an integer s < s+ ≤ 2s, and the canonical collocation points satisfy
the orthogonality relations (113), then the superconvergence property

max
i=0,...,N

|u∗(ti)−uπ(ti)|= O(hs+)

holds for the smooth component.
(5) If ρ1 = 0, ρs = 1, then the approximations become smoother. More precisely,

uπ ∈ Bn
π,s∩C1(I,Rn) and xπ ∈ Bm

π,s−1∩C(I,Rn).
(6) For Lobatto points the superconvergence applies to all components,

max
i=0,...,N

|x∗(ti)− xπ(ti)|= O(h2s−2).

Except for methods with canonical points ρ1 = 0, ρs = 1, such as Lobatto methods,
the generated values at mesh points xπ(ti) do not necessarily belong to the obvious
constraint M0(ti), that means, they may fail to be consistent. This might be seen
to be a drawback. For methods with canonical points ρ1 > 0, ρs = 1, such as the
Radau IIA method, one obtains xπ(ti)∈M0(ti) for i > 0. This is widely appreciated
in the context of numerical integration.

3.1.2 Uniform approach A

Again we consider the well-posed BVP (107), (112) by means of the enlarged
version (109), (110), (112). Now we approximate all components by continuous
piecewise polynomials of the same degree. Let uπ ∈ Bn

π,s ∩ C(I,Rn) and xπ ∈
Bm

π,s ∩ C(I,Rm) serve as approximations of u∗ and x∗, respectively. The required
continuity means

uπ(t−i ) = uπ(ti), xπ(t−i ) = xπ(ti), i = 1, . . . ,N−1, (122)

and we have to determine (n+m)(s+ 1)N − (n+m)(N − 1) = (n+m)(sN + 1)
further coefficients. The boundary condition (112) contains n equations. We now
apply the (n+m)sN collocation equations and the boundary conditions

f (u′π(τik),xπ(τik),τik) = 0, (123)
uπ(τik)−D(τik)xπ(τik) = 0, k = 1, . . . ,s, i = 0, . . . ,N−1, (124)

g(xπ(a),xπ(b)) = γ, (125)

with ρ1 > 0. If ρs = 1, then u′π(τis) is defined as the left derivative at τis = ti+1.
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By inspection, we see that m further conditions are necessary to close the system
for the numerical treatment and these additional conditions have to be consistent
with the original DAEs. For this purpose we introduce a matrix function W̃ (y,x, t) ∈
L(Rm,Rm−n) such that kerW̃ (y,x, t) = im fy(y,x, t) and complete the above scheme
by the following n+(m−n) = m equations:

D(a)xπ(a)−uπ(a) = 0, W̃ (u′π(a),xπ(a),a) f (u′π(a),xπ(a),a) = 0. (126)

Observe that ρ1 = 0 would lead to τ01 = t0 = a and cause the second part of the
consistency condition (126) and the collocation (123) for i = 0, k = 1 to become
redundant.

If the DAE is given with separated derivative free equations

f1((D(t)x(t))′,x(t), t) = 0,
f2(x(t), t) = 0,

where f1 and f2 have n and m− n components, respectively, then we can augment
the scheme by

D(a)xπ(a)−uπ(a) = 0, f2(xπ(a),a) = 0.

We observe that, ρ1 = 0 yields τ01 = t0 = a. Again, the equations (123), (124) can
be decoupled,

xπ(τik) = D(τik)
−uπ(τik)+Q0(τik)ω(uπ(τik),τik), (127)

u′π(τik) = D(τik)ω(uπ(τik),τik), k = 1, . . . ,s, i = 0, . . . ,N−1. (128)

Therefore, the related equations from (123), (124), (122), (125) result in the classical
collocation scheme for the IERODE, and hence, uπ is uniquely determined. In turn,
for given uπ , the approximation xπ is uniquely determined by the conditions (127),
(126) together with the continuity conditions (122).

The following theorem is a byproduct of the investigations in [71, 43] which were
originally devoted to problems featuring a singularity at t = a. An analogous result
is valid for ρs < 1 instead of ρ1 > 0, if one states condition (126) accordingly at the
right interval end b.

Theorem 3.2. Under the assumptions of Theorem 3.1 , the following statements
hold for the collocation scheme (123), (124), (125), (122), (126) with ρ1 > 0:

(1) There is a h∗ > 0, such that, for meshes with h ≤ h∗, there exists a unique
collocation solution uπ , xπ in the sufficiently close neighborhood of u∗, x∗.

(2) For a sufficiently good initial guess, the collocation solution can be generated
by the Newton method, which converges quadratically.

(3) It holds
‖x∗− xπ‖∞ = O(hs), ‖u∗−uπ‖∞ = O(hs).

At the time being, there is only an experimental observation of the superconvergence
properties described below. The analysis of this aspect of the collocation is still
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missing. For collocation points satisfying (113) the following observation have been
made:

‖x∗− xπ‖∞ = O(hs), ‖u∗−uπ‖∞ = O(hs+1)

and
|u∗(ti)−uπ(ti)|= 0(hs+), i = 0, . . . ,N.

In case of a sufficiently smooth solution x∗, its global error for s equidistant collo-
cation points is O(hs) uniformly in t, while for Gauß and Radau points, the global
error is O(hs+1) uniformly in t. For the global error concerning the part u, the su-
perconvergence order seems to hold, at least for Radau points. Clearly, when the
solution of the problem is not sufficiently smooth, order reductions are observed, in
line with classical collocation theory.

Example 3.1. The BVP1 −t t2

0 1 −t
0 0 0

x′(t)+

1 −(t +1) t2 +2t
0 −1 t−1
0 0 1

x(t) =

 0
0

sin t

 , t ∈ I = [0,1],

x1(0) = 1,
x2(1)− x3(1) = e,

serves as test problem in [38]. The unique solution is

x1(t) = e−t + tet , x2(t) = et + t sin t, x3(t) = sin t.

We used the equivalent formulation of the DAE with properly stated leading term1 −t
0 1
0 0

([1 0 0
0 1 −t

]
x
)′

(t)+

1 −(t +1) t2 + t
0 −1 t
0 0 1

x(t) =

 0
0

sin t

 .
The DAE is regular with index 1, the boundary conditions are accurately stated,
and the BVP is well-posed. In [38] the implicit midpoint rule is applied, and it is

s=1,uniform gexπ gexuni f
N h error order error order
40 0.025 2.92676e-04 1.999 4.53226e-04 1.976
80 0.0125 7.31839e-05 2.000 1.14392e-04 1.986
160 0.00625 1.82969e-05 2.000 2.87355e-05 1.993
320 0.00313 4.57429e-06 2.000 7.09675e-06 2.018

s=1,uniform geuπ geuuni f
N h error order error order
40 0.025 2.02790e-04 2.000 4.53226e-04 1.976
80 0.0125 5.06967e-05 2.000 1.14392e-04 1.986
160 0.00625 1.26741e-05 2.000 2.87355e-05 1.993
320 0.00313 3.16853e-06 2.000 7.09675e-06 2.018

Table 1

reported that the error behaves consistently as O(h2). Tables 1–6 show the results
generated by the collocation scheme (122)–(125), for s = 1,2,3, each with uniform
and Gauß collocation. gexπ and geuπ denote the maximal global errors in the mesh
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s=1,gaussian gexπ gexuni f
N h error order error order
40 0.025 2.92676e-04 1.999 4.53226e-04 1.976
80 0.0125 7.31839e-05 2.000 1.14392e-04 1.986
160 0.00625 1.82969e-05 2.000 2.87355e-05 1.993
320 0.00313 4.57429e-06 2.000 7.09675e-06 2.018

s=1,gaussian geuπ geuuni f
N h error order error order
40 0.025 2.02790e-04 2.000 4.53226e-04 1.976
80 0.0125 5.06967e-05 2.000 1.14392e-04 1.986
160 0.00625 1.26741e-05 2.000 2.87355e-05 1.993
320 0.00313 3.16853e-06 2.000 7.09675e-06 2.018

Table 2

s=2,uniform gexπ gexuni f
N h error order error order
40 0.025 5.48222e-05 2.000 5.48222e-05 2.000
80 0.0125 1.37054e-05 2.000 1.37054e-05 2.000
160 0.00625 3.42635e-06 2.000 3.42635e-06 2.000
320 0.00313 8.56588e-07 2.000 8.56588e-07 2.000

s=2,uniform geuπ geuuni f
N h error order error order
40 0.025 5.48222e-05 2.000 5.48222e-05 2.000
80 0.0125 1.37054e-05 2.000 1.37054e-05 2.000
160 0.00625 3.42635e-06 2.000 3.42635e-06 2.000
320 0.00313 8.56588e-07 2.000 8.56588e-07 2.000

Table 3

s=2,gaussian gexπ gexuni f
N h error order error order
40 0.025 1.59617e-05 2.000 1.59617e-05 2.000
80 0.0125 3.99043e-06 2.000 3.99043e-06 2.000
160 0.00625 9.97608e-07 2.000 9.97608e-07 2.000
320 0.00313 2.49402e-07 2.000 2.49402e-07 2.000

s=2,gaussian geuπ geuuni f
N h error order error order
40 0.025 2.98818e-09 4.000 1.29681e-06 2.984
80 0.0125 1.86771e-10 4.000 1.62452e-07 2.997
160 0.00625 1.16747e-11 4.000 2.04121e-08 2.993
320 0.00313 7.24754e-13 4.010 2.52902e-09 3.013

Table 4

s=3,uniform gexπ gexuni f
N h error order error order
40 0.025 4.22512e-09 3.999 4.93475e-09 3.976
80 0.0125 2.64144e-10 4.000 3.10976e-10 3.988
160 0.00625 1.65843e-11 3.993 1.93570e-11 4.006
320 0.00313 1.04050e-12 3.994 1.21325e-12 3.996

s=3,uniform geuπ geuuni f
N h error order error order
40 0.025 2.96391e-09 4.000 4.93475e-09 3.976
80 0.0125 1.85253e-10 4.000 3.10976e-10 3.988
160 0.00625 1.15774e-11 4.000 1.93570e-11 4.006
320 0.00313 7.23421e-13 4.000 1.21281e-12 3.996

Table 5

points, and gexuni f and geuuni f are discrete maxima taken over 1000 equidistributed
points. �

s=3,gaussian gexπ gexuni f
N h error order error order
40 0.025 2.50651e-09 3.999 2.77352e-09 3.993
80 0.0125 1.56677e-10 4.000 1.74531e-10 3.990
160 0.00625 9.78662e-12 4.001 1.09468e-11 3.995
320 0.00313 6.16396e-13 3.989 6.83453e-13 4.002

s=3,gaussian geuπ geuuni f
N h error order error order
40 0.025 2.13163e-14 5.965 2.77352e-09 3.993
80 0.0125 8.88178e-16 4.585 1.74530e-10 3.990
160 0.00625 1.77636e-15 -1.000 1.09472e-11 3.995
320 0.00313 5.32907e-15 -1.585 6.83009e-13 4.003

Table 6
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3.1.3 Uniform approach B

Any regular index-1 DAE in standard form

E(t)x′(t)+F(t)x(t) = q(t) (129)

can be reformulated as regular index-1 DAE with properly stated leading term

A(t)(Dx)′(t)+B(t)x(t) = q(t) (130)

by means of a proper factorization E = AD, and B = E−AD′. The BVP for (129)
and the boundary condition

Gax(a)+Gbx(b) = γ (131)

is well-posed in the natural setting exactly if this is the case for the BVP (130),
(131).

This time we approximate the solution x∗ of the linear well-posed BVP by a
possibly discontinues xπ ∈ Bm

π,s and consider the system

A(τik)(Dxπ)
′(τik)+B(τik)xπ(τik) = q(τik), k = 1, . . . ,s, i = 0, . . . ,N−1, (132)

D(ti)(xπ(t−i )− xπ(ti)) = 0, i = 1, . . . ,N−1, (133)
xπ(ti) ∈M0(ti), i = 0, . . . ,N−1, (134)

Gaxπ(a)+Gbxπ(b) = γ, (135)

which consists of the usual smN collocation conditions (132), (N− 1)n continuity
conditions applying only to the component Dxπ which approximates the smooth
solution component Dx∗, further, N(m− n) consistency conditions (134), and the
n boundary conditions. Altogether one has (s+ 1)Nm conditions to determine all
(s+1)Nm coefficients of xπ .
If ρ1 = 0, then (132) already contains the condition xπ(τ01) = xπ(t0) ∈M0(t0) and
the equation (134) with i = 0 is redundant.
For ρ1 > 0, the approximation xπ is uniquely determined. It should be empha-
sized that xπ is not necessarily continuous, but the product Dxπ is so. The values
xπ(t1), . . . ,xπ(tN) are consistent by construction. In case of ρs = 1, in particular for
Radau IIa, xπ is continuous in t1, . . . , tN .

This approach partly reflects ideas of both Subsubsections 3.1.2 and 3.1.1. It was
introduced and studied in [22, 23, 24] for BVPs in standard form DAEs with the
aim to preserve superconvergence properties of Gauß and Radau collocations. The
system originally proposed in [22, p. 39] reads:
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E(τik)x′π(τik)+F(τik)xπ(τik) = q(τik), k = 1, . . . ,s, i = 0, . . . ,N−1, (136)

E1(ti)(xπ(t−i )− xπ(ti)) = 0, i = 1, . . . ,N−1, (137)
F2(ti)xπ(ti)−q2(ti) = 0, i = 0, . . . ,N−1, (138)
Gaxπ(a)+Gbxπ(b) = γ, (139)

whereby the transformation

S(t)E(t) =
[

E1(t)
0

]
, S(t)F(t) =

[
F1(t)
F2(t)

]
, S(t)q(t) =

[
q1(t)
q2(t)

]
,

is applied. Since rankE1(t) = n, this corresponds to the factorization

E(t) = S(t)−1
[

E1(t)
0

]
= (S(t)−1

[
I
0

]
)E1(t) =: A(t)D(t)

Consequently, equations (133)–(135) coincide with (137)–(139), respectively. The
relation

E(τik)x′π = A(τik)D(τik)x′π = A(τik)(Dxπ)
′(τik)−A(τik)D′(τik)xπ(τik)

is valid for the right derivatives. This shows that also (132) and (136) coincide. The
next theorem is a consequence of [22, Theorem 5.11].

Theorem 3.3. Let the linear BVP (129), (131) be well-posed in the natural setting.
Let the data of the DAE be sufficiently smooth for respective order conditions.
Then, for the collocation scheme (116)–(139), with ρ1 > 0 , the following statements
hold:

(1) There is a h∗ > 0, such that, for meshes with h ≤ h∗, there exists a unique
collocation solution xπ .

(2) It holds
‖x∗− xπ‖∞ = O(hmin(s+1,s+)).

(3) For Radau and Gauß points the superconvergence order holds,

max
i=0,...,N

|x∗(ti)− xπ(ti)|= O(hs+).

The method is applied in [22] to well-posed nonlinear BVPs

f(x′(t),x(t), t) = 0, t ∈ [a,b],

g(x(a),x(b)) = 0.

To this aim, it is supposed that there is a transformation S depending at most on x
and t such that

S(x, t)fx′(x
′,x, t) =

[
E1(x′,x, t)

0

]
, rankE1(x′,x, t) = n.
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Then it follows that the second part of Sf is independent of x′ ([22, Lemma 7.1]),
and thus

S(x, t)f(x′,x, t) =:
[

F1(x′,x, t)
F2(x, t)

]
.

Finally the corresponding collocation scheme reads:

f(x′π(τik),xπ(τik),τik) = 0, k = 1, . . . ,s, i = 0, . . . ,N−1, (140)

E1(x′π(τik),xπ(τik),τik)(xπ(t−i )− xπ(ti)) = 0, i = 1, . . . ,N−1, (141)
F2(xπ(τik),τik) = 0, i = 0, . . . ,N−1, (142)
g(xπ(a),xπ(b)) = 0. (143)

For s > 2, Theorem 3.3 applies accordingly also to this nonlinear case, in particular
the desired superconvergence properties for Radau and Gauß points are reached, see
[22, Theorems 7.5 and 7.6]. If the function f is linear in x′, this is also valid for s= 2.

3.1.4 Uniform approach C

As proposed in [111], one can approximate the solution x∗ of the linear well-
posed BVP (129), (131) by an continuous piecewise polynomial function xπ ∈
Bm

π,s∩C(I,Rm) using the system

E(τik)x′π(τik)+F(τik)xπ(τik) = q(τik), k = 1, . . . ,s, i = 0, . . . ,N−1, (144)

xπ(t−i )− xπ(ti) = 0, i = 1, . . . ,N−1, (145)
F2(a)xπ(a)−q2(a) = 0, (146)
Gaxπ(a)+Gbxπ(b) = γ, (147)

or, equivalently (cf. Subsubsection 3.1.3), by

A(τik)(Dxπ)
′(τik)+B(τik)xπ(τik) = q(τik), k = 1, . . . ,s, i = 0, . . . ,N−1, (148)

xπ(t−i )− xπ(ti) = 0, i = 1, . . . ,N−1, (149)
xπ(a) ∈M0(a), (150)

Gaxπ(a)+Gbxπ(b) = γ. (151)

Again, one has to determine (s+1)Nm coefficients of xπ by means of the (s+1)mN
collocation conditions, m(N − 1) continuity conditions, the consistency condition
with m− n equations, and the n boundary conditions. We see, that the number of
unknown coefficients and the number of conditions are the same. In [111], the dis-
cussion is restricted to the case

ρ1 > 0, ρs = 1,
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and Radau methods are in the focus of interest. We quote results given in [111, Sätze
5.1, 5.2, and 5.3].

Theorem 3.4. Let the linear BVP (129), (131) be well-posed in the natural setting.
Let E and F be twice continuously differentiable.
Then, for the collocation scheme (144)–(147), with ρ1 > 0 and ρs = 1, the following
statements hold:

(1) There is a h∗ > 0, such that, for meshes with h ≤ h∗, there exists a unique
collocation solution xπ ∈ Bm

π,s∩C(I,Rm).
(2) If the data of the DAE is sufficiently smooth, then

‖x∗− xπ‖∞ = O(hs).

(3) For Radau points the superconvergence order holds,

max
i=0,...,N

|x∗(ti)− xπ(ti)|= O(h2s−1).

3.2 Partitioned equations

For the DAE (105), (106) featuring explicitly the derivative-free equation one has
the option to apply different collocation points in the first and second equations.
This is proposed in [76, 75, 74] by combining the Gauß scheme with s points for the
first equation and the Lobatto scheme with s+1 points for the second one.
The BVP for the DAE (105), (106), with n and m− n equations, and the boundary
condition (112) is now assumed to be well-posed in the modified setting with pre-
image space C1(I,Rm) and image space C(I,Rn)×C1(I,Rm−n)×Rn, see Remarks
2.1 and 2.6. We discuss here the case when m−n > 0. This means that the DAE has
index 1.

The linear BVP for the partitioned index-1 DAE with n and m−n equations

E1(t)x′(t)+F1(t)x(t) = q1(t), (152)
F2(t)x(t) = q2(t), (153)

is treated in [76] by means of the symmetric scheme

E1(τik)x′π(τik)+F1(τik)xπ(τik) = q1(τik), k = 1, . . . ,s, i = 0, . . . ,N−1, (154)

F2(τ
L
ik)xπ(τ

L
ik) = q2(τ

L
ik), k = 0, . . . ,s, i = 0, . . . ,N−1, (155)

T2(ti)∗(xπ(t−i )− xπ(ti)) = 0, i = 1, . . . ,N−1, (156)
Gaxπ(a)+Gbxπ(b) = γ. (157)

with Gauß points 0 < ρ1 < · · ·< ρs < 1 and Lobatto points 0 = ρL
0 < · · ·< ρL

s = 1.
The matrix T2(t) ∈ L(Rn,Rm) has, by construction, full column-rank n and satisfies
the condition F2(t)T2(t) = 0 for all t ∈ [a,b].
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To compute the m(s+1)N unknowns of xπ ∈ Bm
π,s one has sNn+(s+1)N(m−n)+

n(N−1)+n = (s+1)Nm conditions so that the system is balanced. The following
theorem combines parts of [76, Theorems 3.1, 3.2, and 3.3].

Theorem 3.5. Let the linear BVP (152), (153), (112) be well-posed in the modified
index-1 setting. Let E and F be twice continuously differentiable.
Then, if h is sufficiently small, the following statements hold:

(1) There is a unique continuous collocation solution xπ ∈ Bm
π,s ∩C(I,Rm) that

satisfies the collocation conditions (154) and (155), the boundary condition (112)
as well as the consistency conditions (156).

(2) It holds
‖x∗− xπ‖∞ = O(hs).

(3) If the data of the DAE is sufficiently smooth, then superconvergence order
holds,

max
i=0,...,N

|x∗(ti)− xπ(ti)|= O(h2s).

Condition (156) is no longer mentioned in Theorem 3.5. It only ensures the conti-
nuity of the differential component, similar to condition (137). In fact, (156) could
be replaced by the easier conditions (137). Namely, for each fixed 1 ≤ i ≤ N− 1,
one has from (155) the equations

0 = F2(ti)xπ(τ
L
i−1s)+q2(ti) = F2(ti)xπ(t−i )+q2(ti),

0 = F2(ti)xπ(τ
L
i 0)+q2(ti) = F2(ti)xπ(ti)+q2(ti),

thus F2(ti)(xπ(t−i )− xπ(ti)) = 0. Regarding, additionally, one of the two conditions

T2(ti)∗(xπ(t−i )− xπ(ti)) = 0, E1(ti)(xπ(t−i )− xπ(ti)) = 0,

implies xπ(t−i )− xπ(ti) = 0, since both matrices,[
T2(ti)∗

F2(ti)

]
and

[
E1(ti)
F2(ti)

]
,

are nonsingular.

The approach is extended in [75, 74] to nonlinear BVPs with partitioned DAEs
(105), (106) by means of the scheme

f1(x′π(τik),xπ(τik),τik) = 0, k = 1, . . . ,s, i = 0, . . . ,N−1, (158)

f2(xπ(τ
L
ik),τ

L
ik)) = 0, k = 0, . . . ,s, i = 0, . . . ,N−1, (159)

g(xπ(a),xπ(b)) = 0. (160)

For the above scheme, a result analogous to Theorem 3.5 is given. The continuity
conditions are now hidden in the claim concerning the continuity of xπ ∈ Bm

π,s. The
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convergence and error investigations in [76, 75, 74] are solely directed to the par-
titioned index-1 DAE, which is seen there as reduced system of a general arbitrary
index DAE satisfying a series of hypotheses, see Remark 2.7. The collocation pro-
cedure described in [75, 74] is strongly interlinked with the reduction procedure via
the derivative array system. Possible errors in the reduction procedure are neglected.

3.3 BVPs for index-2 DAEs

BVPs for higher-index DAEs are ill-posed in the natural setting even though the
boundary conditions are accurately stated—this is the clear message of Theorem
2.4. Fortunately, for a large class of index-2 DAEs, the BVPs with accurately stated
boundary conditions become well-posed in the advanced setting, see Subsubsection
2.5.2. In this case, the associated inequality (68) reads:

‖x− x∗‖∞ ≤ κ ( |γ|+‖q‖∞ +‖(DQ∗1G−1
∗2 q)′‖∞). (161)

The linear Hessenberg system of m1 and m2 ≤ m1 equations,

x′1(t)+B11(t)x1(t)+B12(t)x2(t) = q1(t),

B21(t)x1(t) = q1(t),

with sufficiently smooth coefficients and B21(t)B12(t) remaining nonsingular, be-
longs to this class, cf., Example 2.3. We have to provide l = m1 −m2 boundary
conditions

Gax(a)+Gbx(b) = γ.

For boundary conditions which are accurately stated, the homogeneous linear BVP
has the trivial solution x∗ = 0, only. For the solutions of the inhomogeneous linear
BVPs the inequality (161) simplifies to

‖x− x∗‖∞ ≤ κ ( |γ|+‖q‖∞ +‖(B12(B21B12)
−1q2)

′‖∞) (162)
≤ κ̃ ( |γ|+‖q‖∞ +‖q′2‖∞).

A direct investigation of the linear index-2 DAE by the linear decoupling makes
evident that the first solution component x1 is actually independent of the term q′2.
A related inequality is derived in [7], and the BVP is said to be well-conditioned, if
κ̃ has moderate size.
Here, it should be again emphasized that the notions well-posed, stable, and well-
conditioned are used in different places with different meanings, cf., Remarks 2.9
and 2.6.

In particular, the inequality (162) applies to the nonlinear index-2 DAE
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x′1(t)+b1(x1(t),x2(t), t) = 0, (163)
b2(x1(t), t) = 0, (164)

with Bi j(t) replaced by the partial derivatives B∗ i j(t) := ∂bi
∂x j

(x∗(t), t), and nonlinear
boundary conditions.

Regarding the discretization of index-2 problems, errors in the derivative-free
equation (164) can be significantly amplified, at least by a factor h−1. Therefore, it is
a good idea to keep the defects in this equations reasonable small. For this purpose,
so-called projected Runge–Kutta methods and projected collocation are introduced
in [8, 7].

It is proposed to complete the standard collocation methods locally at fixed time
points by an additional backward projection onto the constraint given by equation
(164). More precisely, let tl be fixed and xl,1,xl,2 denote already computed approxi-
mations of x1(tl), x2(tl). The defect b2(xl,1, tl) represents the deviation of the given
approximation away from the obvious constraint. If b2(xl,1, tl) 6= 0, a new approxi-
mation xnew

l,1 ,xnew
l,2 is constructed such that

b2(xnew
l,1 , tl) = 0. (165)

This is accomplished by the ansatz

xnew
l,1 := xl,1 +B12(xnew

l,1 ,xnew
l,2 , tl)λl , (166)

xnew
l,2 := xl,2, (167)

where Bi j := ∂bi
∂x j

. If the given approximation are sufficiently accurate, then the val-
ues xnew

l and λl are locally uniquely determined by (165)-(167). A Newton step

starting from the initial guess xnew,(0)
l = xl , λ

(0)
l = 0 yields

xnew,(1)
l,1 = xl,1−Flb2(xl,1,xl,2, tl), (168)

where Fl denotes B12(B21B12)
−1 taken at (xl,1,xl,2, tl). The m1 × m1 matrix

Ωl := FlB21(xl,1,xl,2, tl) represents a projector, and hence, formula (168) means in
more detail

Ωlx
new,(1)
l,1 = Ωlxl,1−Flb2(xl,1,xl,2, tl),

(I−Ωl)x
new,(1)
l,1 = (I−Ωl)xl,1,

which shows that the particular Ω -component is affected, only. The (I −Ωl)-
component corresponds to the IERODE, cf., Example 2.3, thus the true differential
component is not changed.

In contrast to the index-1 case, the accurate number of boundary conditions is
now m1−m2. For completing the collocation schemes one has always to find addi-
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tional m2 conditions. The usual choice is b2(x(a),a) = 0 and ρ1 > 0. This seems to
exclude uniform approaches for the different components.

Completing a collocation scheme at the mesh points ti > a, by equations corre-
sponding to (165)-(167) has proved its value in various cases. If the BVP is locally
well-posed (in the advanced setting) with a moderate κ̃ and the problem data is suf-
ficiently smooth, then, owing to [7, Theorem 3.3], there are locally unique approx-
imations xπ,1 ∈ Bm1

π,s and xπ,2 ∈ Bm2
π,s−1 satisfying the projected collocation scheme

and the error estimates

‖x∗,1− xπ,1‖∞ = O(hmin(s+1,s+)), ‖x∗,2− xπ,2‖∞ = O(hs),

|x∗,1(ti)− xπ,1(ti)|= O(hs+), i = 0, . . . ,N,

hold. In contrast to the results for index-1 problems, now xπ,1 is generally discon-
tinues due to the backward projection.

The projected collocation is extended to some more general semi-explicit index-2
DAEs ([13, 11]), whereby the components to be changed by projections are locally
identified by means of a singular value decompositions. This procedure is called
selective projected collocation.

The package COLDAE ([13]) includes the options to treat BVPs for index-2
DAEs in Hessenberg form by projected collocation and for more general semi-
explicit index-2 DAEs by selective projected collocation.

3.4 BVPs for singular index-1 DAEs

In recent years, motivated by numerous applications a lot of efforts has been put
into the analysis and numerical treatment of BVPs in ODEs which can exhibit sin-
gularities (e.g., [12, 16, 17, 68, 71, 43] and references therein). Such problems are
typically given as

tα u′(t) = M(t)u(t)+h(u(t), t), t ∈ (0,1], g(u(0),u(1)) = 0, (169)

with α ≥ 1. For α = 1, one speaks of a singularity of the first kind. For instance, a
singularity of the first kind may come from a reduction of a PDE to an ODE owing to
cylindrical or spherical symmetry. Naturally, DAEs may feature those singularities
more than ever, as it is the case in the following two examples.

Example 3.2. The DAE taken from [71],[
1
1

]([
1 −1

]
x
)′
(t)+

[
2 0
0 t +2

]
x(t) = 0, (170)

has index 1 on the interval (0,1] and yields there the inherent ODE

t u′(t) =−(2t +4)u(t), u(t) = x1(t)− x2(t), (171)
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showing a singularity of the first kind. The inherent ODE (171) possesses the general
solution

u(t) = c0 e−2tt−4,

with a constant c0. Except for the trivial solution, that is, for c0 = 0, all solutions of
the inherent ODE grow unboundedly for t→ 0. The canonical projector of the DAE
(170)

Πcan(t) = I−Qcan(t) =

1+ 2
t −

2+t
t

2
t 1− 2+t

t


is unbounded for t→ 0. The general DAE solution is given by

x(t) = Πcan(t)
[

1
0

]
u(t) = Πcan(t)

[
1
0

]
c0 e−2tt−4 = c0 e−2tt−4

[
1+ 2

t
2
t

]
.

Except for the case c0 = 0, the DAE solutions are unbounded. By means of the
condition D(0)x(0) = 0 one picks up the only bounded solution. �

Example 3.3. The DAE (cf. [98]),t 0
0 t
0 0

([1 0 0
0 1 0

]
x
)′

(t)+

1 0 1
1 0 0
0 1

2
1
2

x(t) = q(t), (172)

has index 1 on the interval (0,1] and yields the inherent ODE

t u′(t) =
[
−1 1
−1 0

]
u(t)+

[
q1(t)−2q3(t)

q2(t)

]
, u(t) =

[
x1(t)
x2(t)

]
. (173)

The canonical projector is now constant,

Πcan(t) =

0 0 0
0 0 0
0 1 1

 ,
and it trivially has a continuous extension for t→ 0. All solutions of the DAE (172)
can be expressed as

x(t) = Πcan(t)

1 0
0 1
0 0

u(t)+

 0
0

q3(t)

=

1 0
0 1
0 −1

u(t)+

 0
0

q3(t)

 ,
which shows that the bounded solutions of the inherent ODE (173) correspond to
the bounded solutions of the DAE (172). �

In the context of classical singular BVPs (169), seeking a solution being contin-
uous on the closed interval, one has to state the boundary conditions in a special
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smart way depending on the spectrum of the matrix M(0) (see [40, 68]). In case
of DAEs, this procedure becomes a much more tough job. Below, we bring out the
mathematical background of the case when the DAE represents an index-1 DAE
with a singularity at t = 0 and the inherent ODE is singular with a singularity of the
first kind. We deal with the BVP

f ((D(t)x(t))′, x(t), t) = 0, t ∈ (0,1], (174)
Gax(0)+Gbx(1) = γ, (175)

where, as before, f (y,x, t) ∈ Rm, D(t) ∈ Rn×m, y ∈ Rn, x ∈ D, with D ⊆ Rm open,
t ∈ [0,1], n ≤ m, and the data f , fy, fx,D are assumed to be at least continuous on
their definition domains. Moreover, now we require that

ker fy(y,x, t) = {0}, (y,x, t) ∈ Rn×D× (0,1], (176)
im(D(t)) = Rn, t ∈ [0,1]. (177)

Conditions (176) and (177) mean that the matrix D(t) has again full row rank n
on the closed interval, but fy(y,x, t) has full column rank n on Rn×D× (0,1] only.
At t = 0 the matrix fy(y,x, t) may undergo a rank drop as it is the case for the DAE
(172). The structural conditions (176) and (177) guarantee that the system (174) has
a properly stated leading term at least on Rn×D× (0,1], with the border-projector
function R(t) = I.

Let the boundary condition (175) be such that

Ga = B0D(0), Gb = B1D(1), B0,B1 ∈ L(Rn),

which will result in a BVP for the inherent ODE with respect to the component Dx.
Put I = [0,1]. We are looking for a solution of the BVP (174),(175) which be-

longs at least to the function space C(I,Rm)∩C1
D((0,1],Rm).

The further structure of the boundary conditions (175) which is necessary and
sufficient for the BVP (174)–(175) to become well-posed in a special sense will be
specified in the course of the discussion. Here we do without function space settings,
but adopt the understanding of well-posed BVPs common in the framework of sin-
gular ODEs (e.g., [68]). Though first existence and uniqueness results are given for
a special class of singular DAEs in [98], more general solvability assertions justi-
fying well-posedness of BVPs in appropriate function spaces are missing till now.
As we will see, well-posedness in this special sense incorporates aspects of well-
conditioning.

We put
N0(t) := kerD(t), t ∈ [0,1],

and note that

ker fy(y,x, t)D(t) = N0(t), (y,x, t) ∈ Rn×D× (0,1],
ker fy(y,x, t)D(t)⊃ N0(t), (y,x, t) ∈ Rn×D×{0}.
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Below, the pointwise generalized inverse D− of D is defined as in the regular case
in Subsection 2.1.

In [71, 43], well-posed BVPs in linear and nonlinear index-1 DAEs featuring
inherent ODEs with a singularity of the first kind are specified and approximated by
polynomial collocation. It is shown that for a well-posed BVP having a sufficiently
smooth solution the global error of the collocation scheme converges with the order
O(hs), where s is the number of collocation points. Superconvergence cannot be
expected in general due to the singularity, not even for the differential components
of the solution. We outline the main results; for proofs and technical details, we refer
to [71, 43].

3.4.1 Linear case

Following the lines of [71] we first decouple the DAE in order to formulate sufficient
conditions ensuring a singularity of the first kind for the inherent ODE and then
well-posed boundary conditions. Consider the linear DAE

A(t)(Dx)′(t)+B(t)x(t) = q(t), t ∈ (0,1], (178)

and assume that the DAE is regular with index 1 on (0,1]. Here, A(t) may undergo
a rank drop at t = 0. We have from (176),(177) that

kerA(t) = {0}, t ∈ (0,1], (179)
imD(t) = Rn, t ∈ [0,1]. (180)

We decouple the DAE on the interval (0,1] as described in Subsection 2.2. With Q0
being a continuous projector function onto kerD, and P0 := I−Q0 we form

G0(t) := A(t)D(t), t ∈ [0,1], (181)
G1(t) := G0(t)+B(t)Q0(t), t ∈ [0,1]. (182)

Owing to the index-1 property, the matrix G1(t) is nonsingular for t ∈ (0,1]. Now
we assume G1(0) to be singular.

If A(t), and therefore G0(t), undergoes a rank drop at t = 0, as in Example 3.3,
then G1(0) is necessarily singular. Applying the classification of critical points aris-
ing in DAEs from [105, 97, 103, 83], in this case, t = 0 represents a critical point of
type 0. As in Example 3.2, it may happen that G0(t) has constant rank on the closed
interval I, but G1(0) is singular. Then t = 0 is said to be a critical point of type 1–A.

We incorporate the case where the inherent ODE associated with (178) exhibits
a singularity of the first kind. To this end, we decouple the solution of DAE (178) on
(0,1] into the differential component Dx and the algebraic component Q0x. While
u = Dx satisfies the inherent explicit ODE,

u′(t)+D(t)G−1
1 (t)B(t)D(t)−u(t) = D(t)G−1

1 (t)q(t), t ∈ (0,1], (183)
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the algebraic component is given by

Q0(t)x(t) =−Q0(t)G−1
1 (t)B(t)D(t)−u(t)+Q0(t)G−1

1 (t)q(t), t ∈ (0,1]. (184)

If u(t) represents the general solution of the inherent ODE (183). then the general
solution of the DAE (178) can be expressed as

x(t) = D(t)−u(t)+Q0(t)x(t) = Πcan(t)D(t)−u(t)+Q0(t)G−1
1 (t)q(t), t ∈ (0,1],

whereby

Πcan(t) = I−Q0(t)G−1
1 (t)B(t), t ∈ (0,1],

is the canonical projector function. We are interested in solutions being at least con-
tinuous on the whole interval [0,1], The asymptotic behavior of the ODE (183) re-
lated to a singularity of the first kind arises when G1(0) is singular but tG−1

1 (t) has a
continuous extension on [0,1]. Then, we can rewrite the matrix D(t)G−1

1 (t)B(t)D(t)−

and obtain
D(t)G−1

1 (t)B(t)D(t)− =:−1
t

M(t), (185)

where M ∈ C([0,1],L(Rn)). For the subsequent existence and uniqueness analysis
we require M ∈ C1([0,1],L(Rn)) which means that the problem data needs to be
appropriately smooth. Denoting the right-hand side of (183) by p(t) we arrive at the
inherent explicit ODE of the form

u′(t) =
1
t

M(t)u(t)+ p(t), t ∈ (0,1]. (186)

As mentioned before, we are interested in bounded solutions x and therefore u needs
to be at least in C([0,1],Rn). It turns out that the smoothness of u depends on the
smoothness of p and, additionally, the eigen-structure of M(0). The theoretical back-
ground for this problem class, where p ∈ C([0,1],Rn), is discussed in detail in [40].
In order to use this standard theory, we assume that G−1

1 (t)q(t) and thus p(t) are
continuous in the whole interval [0,1]. Then, by [40], the bounded solutions of the
ODE (186) can be represented in the form

u(t) = Ec+ t f (t), t ∈ [0,1], (187)

where the columns of the matrix E form a basis of kerM(0) and f ∈ C([0,1]),Rn).
Next we provide conditions to guarantee that, given a bounded solution u(t), the
solution x(t) of the DAE resulting via (184) is also bounded.

Proposition 3.1. Let the DAE (178) be regular with index 1 on (0,1] and satisfy
conditions (179), (180), and let the coefficients be sufficiently smooth.
Let G1(0) be singular, but the matrix functions

tG−1
1 (t), G−1

1 (t)q(t), Q0(t)G−1
1 (t)B(t)D(t)−E, t ∈ (0,1], (188)
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have continuous extensions on the closed interval [0,1],

[tG−1
1 (t)]ext , [G−1

1 (t)q(t)]ext , [Q0(t)G−1
1 (t)B(t)D(t)−E]ext .

Then the inherent explicit ODE of the DAE exhibits a singularity of the first kind
and each bounded solution of the DAE has the form

x(t) =[Πcan(t)D(t)−E]extc+[tΠcan(t)]extD(t)− f (t)+Q0(t)[G1(t)−1q(t)]ext ,

t ∈ [0,1],

with a constant c ∈ Rn0 , n0 := n− rankM(0).

If the matrix M(0) is nonsingular, then E disappears. In this case, the last term in
(188) vanishes identically and has trivially the continuous extension.
If the canonical projector Qcan(t) = I−Πcan(t) has a continuous extension on [0,1],
which is possible if t = 0 is critical point of type 0, see Example 3.3, then also the
term Q0(t)G−1

1 (t)B(t)D(t)−E = Qcan(t)D(t)−E has the continuous extension.

The inherent ODE (186) is augmented by the boundary conditions

Bau(0)+Bbu(1) = γ. (189)

These boundary conditions have to be chosen such that a well-posed singular bound-
ary value problem results for u. In [71], the attention is focused on boundary value
problems for singular ODE systems (186) which can equivalently be expressed as
a well-posed initial value problem with initial conditions at t∗ = 0 or terminal con-
ditions at t∗ = 1. This means a restriction on the spectrum of the matrix M(0) from
(185), see [69, 72], for a detailed explanation of this fact. The reason for the above
assumption is that a shooting argument is applied in the course of the analysis of
polynomial collocation approximation.

A singular initial value problem posed at t∗= 0 for the differential equation (186)
is well-posed if and only if the spectrum of M(0) contains no eigenvalues with pos-
itive real parts and the initial value satisfies u(0) ∈ kerM(0). A singular terminal
value problem posed at t∗ = 1 is well-posed if and only if the spectrum of M(0)
contains no eigenvalues with negative real parts and the invariant subspace associ-
ated with the eigenvalue zero coincides with the nullspace of M(0) ([40, 69]).

Under the assumptions of Proposition 3.1, polynomial collocation methods are
analyzed in[70, 71]. The meshes π are specified as before in this section. Motivated
by the singularity, the collocation points are chosen in the interior of the subinter-
vals, with ρ1 > 0 and ρs < 1. We approximate x and u by continuous piecewise
polynomial functions xπ ∈ Bm

π,s ∩C(I,Rm)) and uπ ∈ Bn
π,s ∩C(I,Rn)) as in Sub-

subsection 3.1.1. The numerical scheme defining xπ and uπ has the form
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A(τik)u′π(τik)+B(τik)xπ(τik) = q(τik), (190)
D(τik)xπ(τik)−uπ(τik) = 0, k = 1, . . . ,s, i = 0, . . . ,N−1, (191)

B0uπ(0)+B1uπ(1) = γ. (192)

As in Subsubsection 3.1.1, further conditions are necessary to close the system for
the numerical computations. We choose these additional conditions as,

B(0)xπ(0)−q(0) ∈ lim
t→0+

im(A(t)), uπ(0) = D(0)xπ(0), (193)

or
B(1)xπ(1)−q(1) ∈ im(A(1)), uπ(1) = D(1)xπ(1). (194)

The convergence results in case of a singular inherent ODE are quite similar to
the regular index-1 DAE case. Owing to the assumptions of Proposition 3.1, for
arbitrary collocation points, stage order s uniformly in t is ensured in case that the
solutions of the DAE and the inherent ODE, respectively, are sufficiently smooth,

‖u∗−uπ‖∞ = O(hs), ‖x∗− xπ‖∞ = O(hs).

Note that for Gauß collocation points the superconvergence behavior O(h2s) in π

does not hold in general, a well known fact in the context of singular ODEs. Rather,
the orders

‖u∗−uπ‖∞ = O(hs+1)

hold. If the BVP for the inherent ODE is a terminal value or boundary value prob-
lem, the analysis in [71] additionally requires

Qcan ∈ C([0,1],L(Rm)) (195)

to ensure this optimal convergence behavior. If the assumptions (188) and (195)
are violated, order reductions in the algebraic components might occur. Especially,
order reductions can be due to the behavior of the canonical projector Qcan(t) for
t → 0+, in the case when Qcan becomes unbounded in this limit. We illustrate this
important aspect by the next example picked from [70, 71]. Therein, we highlight
additional order reductions in the sense that the stage order is no longer observed.

Example 3.4. We consider the following four-dimensional semi-explicit DAE

A(Dx)′+
[

B11 B12
B21 B22(t)

]
x(t) = q(t), (196)

with

A =

[
I
0

]
, D = [ I 0 ], D− =

[
I
0

]
,

B11 =

[
0 0
0 0

]
, B12 =

[
3 −1
−2 1

]
, B21 =

[
1 1
2 3

]
, B22(t) =

[
t 0
0 t

5

]
.

This yields
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G1(t) =
[

I B12
0 B22(t)

]
, G1(t)−1 =

[
I −B12B22(t)−1

0 B22(t)−1

]
, B22(t)−1 =

1
t

[
1 0
0 5

]
which shows that tG1(t)−1 has a continuous extension onto [0,1]. In contrast, the
canonical projector

Qcan(t) = Q0G−1
1 (t)B(t) =

[
0 0

B22(t)−1B21 I

]
(197)

is unbounded on (0,1]. Moreover, it holds that

DG−1
1 (t)B(t)D− = B11−B12B22(t)−1B21 =−

1
t

[
−7 −12
8 13

]
=:−1

t
M.

Since M is nonsingular, we have E = 0, and the matrix function Q0G1(t)−1B(t)D−E =
0 has trivially a continuous extension on [0,1]. We consider the continuously differ-
entiable solution

x(t) =


tγ sin(t)

tδ et

cos(t)
t`e−t

 ,
with parameters specified below. The respective right-hand side q(t) is such that
G1(t)−1q(t) is actually continuous on [0,1]. In summary, all three matrix function
in (188) possess the requested continuous extensions on [0,1].

The matrix M has the eigenvalues 1 and 5. Since they are both positive, we may
state a well-posed terminal problem prescribing the values of the differential com-
ponents x1(t) and x2(t) at t = 1.

Therefore, we consider system (196) subject to the boundary conditions

x1(1) = sin(1), x2(1) = e1.

The additional conditions

x1(1)+ x2(1)+ x3(1) = q3(1),

2x1(1)+3x2(1)+
1
5

x4(1) = q4(1)

are consistent boundary conditions for the algebraic components to complete the
collocation scheme used in BVPSUITE. These condition simply reflect the obvious
constraint at time t = 1.

Note, that we solve a terminal value problem which is more likely to show order
reductions when Qcan(t) becomes unbounded when t→ 0.

Problem 1: Set `= 3, γ = 1, δ = 1. All solution components are smooth.
Problem 2: Set ` = 5

2 , γ = 6
5 , δ = 5

2 . The differential components x1 and x2
become unsmooth.
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s = 3s = 3s = 3 s = 4s = 4s = 4
gexgexgex geugeugeu gexgexgex geugeugeu

Problem Collocation π πcoll π πcoll π πcoll π πcoll

Problem 1 equidistant 3 3 4 4 4 4 4 4
Gaussian 3 3 4 4 4 4 5 5

Problem 2 equidistant 0.3 0.3 1.2 1.2 0.3 0.3 1.2 1.2
Gaussian 0.3 0.3 1.3 1.3 0.3 0.3 1.2 1.2

Table 7 Problems 1 and 2: Experimentally observed convergence rates for different collocation
schemes with s = 3,4, cf. [71] for details. Here, the global error in x is denoted by gex and the
global error in u by geu. π means that the maximum of the global error was calculated using its
values at the mesh points in π . We denote by πcoll the union of the mesh points and the collocation
points. Then, πcoll indicates that the maximum of the global error is computed using its values at
points in πcoll . Order reductions are highlighted in italic.

The numerical results obtained by means of BVPSUITE for this example are given
in Table 7. For more details see [70, Tables 192 to 200, 228 to 236]. For the case
when the differential solution components, u(t), are smooth no order reduction is
observed, although the projection matrix (197) is unbounded for t→ 0.
In Problem 2 we observe order reductions due to the fact that the canonical projec-
tor (197) is unbounded for t → 0. One would expect to see the convergence order
O(h2.5) owing to the properties of x, especially the differential components. How-
ever, one looses approximately one additional power of h which can be attributed to
the O(1/t) behavior of Qcan(t). �

3.4.2 Nonlinear Problem

Now we turn to the nonlinear BVP (174), (175). We assume the DAE to be regular
with index 1 all overall for t > 0, but allow a critical point at the left boundary
which causes a singularity in the inherent nonlinear ODE. In [43], the case when the
inherent ODE system is singular with a singularity of the first kind is studied and
polynomial collocation applied to the original DAE system is analyzed. It is shown
that for a certain class of well-posed boundary value problems in DAEs having
a sufficiently smooth solution, the global error of the collocation scheme converges
uniformly with the stage order. Due to the singularity, superconvergence at the mesh
points does not hold in general. We outline some aspects from [43].

Regarding the experience with conditions (188) for linear BVPs, it is assumed
that

tG1(y,x, t)−1 (198)

has a continuous extension for t→ 0, where

G0(y,x, t) := fy(y,x, t)D(t),

G1(y,x, t) := G0(y,x, t)+ fx(y,x, t)Q0(t), (y,x, t) ∈ Rn×D× [0,1].
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Additionally, to prevent the additional difficulties caused by unbounded canonical
projectors known in the linear case, in [43] the canonical projector function Πcan
along kerD given by

Πcan(y,x, t) := I−Q0(t)G1(y,x, t)−1 fx(y,x, t)

is assumed to remain bounded for t → 0. The following practical criterion of the
latter property is given in [43]. Let W (y,x, t) ∈ Rm denote the orthoprojector matrix
onto im fy(y,x, t)⊥, pointwise for all arguments. Since fy(y,x, t) has constant rank
n for t > 0, W (y,x, t) depends continuously on its arguments for t > 0. We assume
that W has a continuous extension W ext for t→ 0, such that, for t > 0,

W ext(y,x, t) =W (y,x, t).

We emphasize that, due to a possible rank drop of fy(y,x, t) at t = 0, in general
W ext(y,x,0) 6=W (y,x,0), but W ext(y,x,0) fy(y,x,0) = 0. Then the canonical projec-
tor function Πcan has a continuous extension exactly if

rank
[

W ext(y,x,0) fx(y,x,0)
D(0)

]
= m. (199)

An inspection of Examples 3.2 and 3.3 confirms this criterion.

To apply standard linearization arguments, the BVP (174)–(175) is supposed to
possesses a solution x? ∈ C1

D([0,1],Rm) and the linearization of the DAE (174) along
x?,

A?(t)(D(t)z(t))′+B?(t)z(t) = 0, t ∈ (0,1], (200)

is considered. Since the matrix

G?1(t) := A?(t)D(t)+B?(t)Q0(t) = G1((D(t)x?(t))′,x?(t), t)

is nonsingular for t ∈ (0,1], the linear DAE (200) is regular with tractability index
1 on the interval (0,1]. Thus the linearized BVP can be treated as in Subsubsection
3.4.1.

In analogy to Definition 2.5 , one says that the solution x? of the BVP (174)–(175)
is isolated if and only if its linearization

A?(t)(D(t)z(t))′+B?(t)z(t) = 0, t ∈ (0,1],
B0D(0)z(0)+B1D(1)z(1) = 0,

has only the trivial solution. In this case, as common in the theory of singular explicit
ODEs (e.g., [69, 68]), also the nonlinear BVP (174), (175) is said to be well-posed
in [43].

The decoupling function ω :Dω×(0,1]→Rm and the decoupled form (cf., (63),
(64)) of the nonlinear DAE (174),



Collocation methods 85

u′(t) = D(t)ω(u(t), t), t ∈ (0,1]. (201)

x(t) = D(t)−u(t)+Q0(t)ω(u(t), t), t ∈ (0,1], (202)

can be used for t > 0 in order to specify the inherent explicit ODE associated with
the nonlinear DAE.

To apply the standard analysis for singular boundary value problems, cf. [40, 68],
it is assumed that the decoupling function ω satisfies

D(t)ω(u, t) =
1
t

M(t)u+q(u, t), u ∈ Dω , t ∈ (0,1], (203)

where the n×n matrix function M and the function q are appropriately smooth for
t → 0. Note that in [43] a special class of quasi-linear DAEs is shown to meet the
conditions 198), (203), as well as to feature a bounded canonical projector function.

This yields the BVP

u′(t) =
1
t

M(t)u(t)+q(u(t), t), t ∈ (0,1], (204)

B0u(0)+Bbu(1) = γ. (205)

In turn, the linearization of the last BVP reads,

ζ
′(t) = D(t)ωu(u?(t), t)ζ (t) =

1
t

M?(t)ζ (t), t ∈ (0,1], (206)

B0ζ (0)+B1ζ (1) = 0, (207)

with

M∗(t) :=−tD(t)G∗,1(t)−1B∗(t)D(t)−, t ∈ (0,1].

We can now specify the necessary and sufficient conditions for the linear ODE prob-
lem (206)–(207) to have only the trivial solution. It was shown in [40] that the form
of the boundary conditions (207) which guarantee that (206)–(207) has only the
trivial solution depends on the spectral properties of the coefficient matrix M?(0).
Note that (203) implies

M?(t) = M(t)+ tgu(u?(t), t), t ∈ (0,1]

and therefore M?(0) = M(0). To avoid fundamental modes of (206) which have
the form cos(σ ln(t))+ isin(σ ln(t)), we assume that zero is the only eigenvalue of
M(0) on the imaginary axis.

Now, let R+ denote the projection onto the invariant subspace which is associ-
ated with eigenvalues of M(0) which have strictly positive real parts. Let QM be a
projection onto the kernel of M(0). Finally, define

U := R++QM, V := I−U, (208)
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The BVP (206)–(207) is well-posed if and only if the boundary conditions (207)
can equivalently be written as ([40])

V ζ (0) = 0, R+ζ (1) = 0, QMζ (0) = 0, or QMζ (1) = 0. (209)

The first set of homogeneous initial conditions specified in (209) are necessary and
sufficient for ζ to be continuous on the closed interval [0,1].

The polynomial collocation methods (uniform approach A) described in Subsub-
section 3.1.2 are used in [43] to approximate the solution of well-posed singular
nonlinear BVPs (174), (175). The basic collocation scheme

uπ(t−i )−uπ(ti) = 0, i = 1, . . . ,N−1,

xπ(t−i )− xπ(ti) = 0, i = 1, . . . ,N−1,
f (u′π(τik),xπ(τik),τik) = 0, k = 1, . . . ,s, i = 0, . . . ,N−1

uπ(τik)−D(τik)xπ(τik) = 0, k = 1, . . . ,s, i = 0, . . . ,N−1,
B0uπ(a)+B1uπ(b)) = γ,

is completed by the consistency conditions

D(a)xπ(a)−uπ(a) = 0, W ext(u′π(a),xπ(a),a) f (u′π(a),xπ(a),a) = 0.

By means of the analytical decoupling and the commutativity of discretization
and decoupling, one obtains a classical collocation scheme for the component
uπ . According to [68, Theorem 3.1], there exists a unique collocation solution
uπ ∈ Bn

π,s∩C([0,1],Rn), under the assumptions that the underlying analytical prob-
lem is well-posed with sufficiently smooth data, and that the mesh is sufficiently
fine. Finally, xπ ∈ Bm

π,sC([0,1],Rm) is uniquely specified by its values at all colloca-
tion points, see (127), and the consistency conditions. It results that

‖x∗− xπ‖∞ = O(hs), ‖u∗−uπ‖∞ = O(hs).

3.5 Defect-based a posteriori error estimation for index-1 DAEs

When designing error estimation procedures, one usual has different choices. One
of the most popular is a very robust and easy to implement h−h/2 strategy, where
the basic method is carried out first on a given, not necessarily uniform, grid and
then repeated on a grid with doubled number of subintervals. This procedure is used
often in software for boundary value problems in ODEs and DAEs, for instance,
in COLNEW, COLDAE, see [13]. Since this procedure in context of collocation
methods is quite expensive, it seems reasonable to look for cheaper alternatives.
Here, we describe a computationally efficient a posteriori error estimator for collo-
cation solutions to linear index-1 DAEs in properly stated formulation proposed in
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[18]. The procedure is based on a modified defect correction principle, extending an
established technique from the ODE context to the DAE case. The resulting error
estimate is proved to be asymptotically correct and tested in numerical experiments
with IVPs. For all technical details, we refer the reader to [18].

Let us consider a regular index-1 DAE with properly stated leading term

A(t)(Dx)′(t)+B(t)x(t) = q(t), t ∈ [a,b], (210)

satisfying the general assumptions in Subsection 2.1, and, additionally, condition
(108) yielding the border projector R = I. Moreover, here we assume the coefficient
D to be even constant. Otherwise one can turn to the enlarged version according to
(109), (110) of the DAE under consideration.

We consider a well-posed BVP (cf. Subsection 2.3) for the DAE (210) and the
collocation equations

A(τik)u′π(τik)+B(τik)xπ(τik) = q(τik), (211)
Dxπ(τik)−uπ(τik) = 0, k = 1, . . . ,s, i = 0, . . . ,N−1, (212)

with

s even, ρs = 1.

Note, in particular, that ρs = 1 is essential for the analysis. This ensures in a natural
way stability of the integration schemes, cf. [60, 83] for a more detailed discussion.
We also assume that s is even, which will be necessary to guarantee the asymptotic
correctness of our error estimator to be defined in Section 3.5.2.

The focus is now on the effective design and analysis of an asymptotically correct
a posteriori error estimator for collocation solutions to (210), with a uniform, ‘black
box’ treatment of the differential and algebraic components, and an appropriate han-
dling of the case where D(t) is not constant. The generalization of the method and
its analysis for DAEs with a singular inherent ODE can be found in [19].

3.5.1 The main idea of the defect-based error estimation

A posteriori error estimation in ODEs based on the defect correction principle is an
old idea originally due to Zadunaisky [115] and further developed by Stetter [110].
In the context of regular and singular ODEs, this approach was refined and ana-
lyzed in [16, 17] and implemented in [14]. In particular, for a special realization of
the defect, an efficient, asymptotically correct error estimator, the QDeC estimator,
was designed in [16] for collocation solutions on arbitrary grids. These ideas have
been extended to the DAE context in [18], which appears not to be straightforward
because of the coupling between differential and algebraic components. In abstract
notation, the basic structure of a defect-based estimator can be described as follows:
Consider a numerical solution ξπ which approximates the vector of exact solution
values x∗π , ξπ ≈ x∗π , for a problem
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F(x(t)) = 0, t ∈ [a,b], (213)

on a grid π . Define the defect d = d(t) by interpolating ξπ by a continuous piecewise
polynomial function p(t) of degree ≤ s and substituting p(t) into (213),

d(t) := F(p(t)), t ∈ [a,b]. (214)

Obviously, p(t) is the exact solution to a neighboring problem

F(x(t)) = d(t) (215)

related to the original problem (213). Now we use a procedure of low effort (typi-
cally a low order scheme), the so-called auxiliary scheme F̃ , to obtain approximate
discrete solutions x̃π and x̃de f

π for both the original and neighboring problems on the
grid π , i.e., F̃(x̃π) = 0 and F̃(x̃de f

π ) = dπ , where dπ is an appropriate restriction of
d(t) to the grid π .

Since (213) and (215) differ only by the (presumably) small defect d, we expect
that

επ := x̃de f
π − x̃π (216)

is a good estimate for the global error

eπ := ξπ − x∗π . (217)

In other terms,

eπ := ξπ − x∗π ≈ F−1(d)−F−1(0) (218)

≈ F̃−1(dπ)− F̃−1(0) = x̃de f
π − x̃π = επ .

This is exactly the procedure originally proposed in [110]. However, in concrete
applications, the auxiliary scheme F̃ and a suitable representation for the defect
dπ have to be carefully chosen. In particular, in [16] collocation for the ODE case
was considered. For F̃ chosen as the backward Euler scheme, it was shown that a
modified version of the pointwise defect (214) has to be used in order to obtain an
asymptotically correct estimator for the error of a given collocation approximation
xπ(t) yielding ξπ . In the following section this approach (the ‘QDeC estimator’) is
described in more detail and will be extended to the DAE case.

3.5.2 The QDeC estimator for DAEs

Now we apply the procedure described in Section 3.5.1 to the linear DAE (210). In
addition to the collocation method, we use a scheme of backward Euler type over
the collocation nodes as an auxiliary method. Let hik := τik−τi,k−1 and consider the
grid function εik satisfying the auxiliary scheme
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A(τik)
Dεik−Dεi,k−1

hik
+B(τik)εik = d̄ik, (219)

with homogeneous initial condition ε0,0 = 0 and the backward Euler scheme playing
the role of F̃ . According to (214), the straightforward, classical way to define the
defect d̄ik would be to substitute xπ(t) into (210) in the pointwise sense,

d(t) := A(t)(Dxπ)
′(t)+B(t)xπ(t)−q(t), t ∈ [a,b], (220)

and using the pointwise defect d̄ik := d(τik) in (219). However, as has been pointed
out in [16] in the ODE context, this procedure does not lead to successful results.
For collocation this is obvious: Since, by definition of the collocation solution (211),
the defect d(τik) which enters the backward Euler scheme, vanishes at each point
τik (i = 0 . . .N−1, k = 1 . . .s), the error estimate ε(τik) would always be zero.

In slight variation of the procedure introduced in [16], we now define a modified
defect via the integral means

d̄ik :=
s

∑
l=0

αkld(τil) =
1

hik

∫
τik

τi,k−1

d(t)dt +O(hs+1), (221)

for i = 0, . . . ,N− 1, k = 1, . . . ,s, where the αkl are quadrature coefficients for the
integral means in (221), i.e.,

αkl =
1

ρk−ρk−1

∫
ρk

ρk−1

Ll(t)dt, k = 1 . . .s, l = 0 . . .s, (222)

with the Lagrange polynomials Ll of degree s, such that Ll(ρk) = δkl . Note that, in
contrast to collocation at s nodes in each subinterval excluding the left endpoint ti,
we now include the additional node τi0 := ti +hiρ0 with ρ0 = 0, for the polynomial
quadrature defining (221).

The following result is proved in [18].

Theorem 3.6. While the global error of the collocation method (211) is of order hs,
i.e.,

e(t) = xπ(t)− x∗(t) =O(hs), (223)

the error estimate of the global error (223) based on the modified defect (221) and
the auxiliary scheme (219) is asymptotically correct, i.e.,

εi j− e(τi j) =O(hs+1). (224)

Example 3.5. We consider the initial value problem[
et

et

]
(
[
1 0
]

x)′(t)+
[

et(1+ cos2 t) cos2 t
et(−1+ cos2 t) −cos2 t

]
x(t) =

[
sin2 t(1− cos t)− sin t

sin2 t(−1− cos t)− sin t

]
,

(225)
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Fig. 7 log10 - plot for first solution component, N = 4 of Example 3.5

◦ . . . error |e1(t)|= |xπ,1(t)− x∗,1(t)|
� . . . error estimate |ε1(t)|� . . . error of error estimate |ε1(t)− e1(t)|

on [a,b] = [0,1], with initial condition x1(0) = 1. We use a realization of our
method in MATLAB, based on collocation at equidistant points with s = 4, on
N = 2,4,8,16,32 subintervals of length 1/N. In the following tables, the asymp-
totical order ε− e =O(hs+1) is clearly visible; see also Figure 7.
• First solution component, at t = 1 :

N e ord e ε− e ord ε−e

4 −2.466e−06 3.8 8.513e−08 4.6
8 −1.634e−07 3.9 2.989e−09 4.8

16 −1.051e−08 4.0 9.886e−11 4.9
32 −6.664e−10 4.0 3.180e−12 5.0

• First solution component, maximum absolute values over all collocation points
∈ [0,1] :

N e ord e ε− e ord ε−e

4 2.732e−06 4.0 1.272e−07 5.3
8 1.711e−07 4.0 3.578e−09 5.2

16 1.074e−08 4.0 1.074e−10 5.1
32 6.734e−10 4.0 3.311e−12 5.0

• Second solution component, at t = 1 :
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N e ord e ε− e ord ε−e

4 2.906e−05 3.8 −7.927e−07 4.6
8 1.522e−06 3.9 −2.783e−08 4.8

16 9.788e−08 4.0 −9.206e−10 4.9
32 6.205e−09 4.0 −2.961e−12 5.0

�

3.6 Further references, comments, and open questions

Remark 3.1. In essence, for s = 3 and Lobatto points ρ1 = 0,ρ2 =
1
2 ,ρ3 = 1, The-

orem 3.1 reflects results obtained in [73, 41, 42] in a quite different way using
a rigorous functional-analytic discretization theory. This work applies to DAEs
f (Px)′(t),x(t), t) = 0 showing a constant projector matrix instead of the matrix
function D in (107), which allows to restrict the consideration directly to u∗ = Px∗,
v∗ = (I−P)x∗ and their approximations. [41, Theorem 4.13] provides superconver-
gence order 4. Moreover, a stability inequality is verified and global error estima-
tions by defect correction are provided.

Remark 3.2. The early work [113] deals with BVPs providing periodical solutions.
A special collocation method using trigonometrical polynomials is developed.

Remark 3.3. Here, we did not regard the possible implementations of the various
collocation approaches for BVPs in DAEs. Of course, the special ansatz of the piece-
wise polynomial functions xπ , the arrangement of the finite-dimensional nonlinear
equations to be solved, the linear and nonlinear equation solvers play an important
role and the error estimates and mesh control as well.
As noted, e.g., in [89, 55], if integration methods approved for regular ODEs are
applied to index-1 DAEs, then additional stability conditions might appear. In par-
ticular, the implicit midpoint rule applied to the simple equation x(t) = 0, t ∈ [0,1],
leads, in the worst case, to a linear growth of the involved perturbations. It is unclear
whether and to what extend those effects can be resolved.
Concerning the different collocation approaches to DAEs, till now it remains gen-
erally open which versions will prove to be more favorable. This question is closely
related to the aspects of possible implementations.

Remark 3.4. Singularities of the flow of an DAE might be caused by a singular in-
herent ODE as in Subsection 3.4, but also by the other components of a DAE, see
[102, 103, 83]. In the context of the projector based DAE analysis, regular points
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are supported by several constant-rank conditions. By definition, for critical points
at least one of these rank conditions is violated. In general, among critical points
might be so-called harmless ones ([83, 44]), however, this does not happen for sin-
gular index-1 DAEs.
Attempts to detect DAE singularities in practice are reported in [49, 50]. First solv-
ability results justifying the notion well-posed BVPs for singular index-1 DAEs are
proved in [98].

Remark 3.5. Linear BVPs in DAEs are treated in [56] by means of least squares
collocation, which represents a special method created for ill-posed problems. It is
an open question whether such approaches could be advanced to become practicable
for a considerable class of BVPs.

Remark 3.6. The projected collocation is adapted in [51] to work for BVPs associ-
ated with periodic motions in multibody system dynamics. The collocation scheme
is applied to an index-2 formulation of the related DAE. Besides the projections at
the meshpoints, an extra boundary projection is introduced.

Remark 3.7. The idea of backward projection has been used for numerical integra-
tion of regular ODEs and index-1 DAEs for maintaining given invariants numer-
ically, e.g., [52, 106, 108]. A generalization of backward projection and selective
backward projection as projected defect correction is developed in [93] for a quite
large class of nonlinear index-2 DAEs. We conjecture, that it would work also for
general regular index-2 DAEs (107) satisfying (108). Further, this way, projected
collocation for the corresponding BVPs possibly could work well.
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4 Shooting methods

The shooting method or initial-value adjusting method - a description used in very
former publications - is a classical method to solve two-point boundary value prob-
lems (TPBVP) but also multi-point boundary value problems for ODEs and DAEs.
The first appeared papers dealing with DAEs and shooting methods are [89], [55],
[38], [79]. The idea is to imbed the BVP into a family of IVPs, with unknown initial
values, and then to seek among them the true one.
We consider the TPBVP

f ((Dx)′(t),x(t), t) = 0, t ∈ [a,b] (226)
g(x(a),x(b)) = 0. (227)

We assume that the DAE (226) is regular with index µ and that the TPBVP has a
locally unique solution x∗. Set z∗ := x∗(a).

As it is well-known, for explicit ODEs there is a neighborhoodN∗ ⊆ Rm around
z∗ so that all IVPs with the initial condition x(a) = z ∈ N∗ are uniquely solvable,
their solutions exist on the entire interval [a,b] and depend smoothly on z.

In contrast, for DAEs, the extra condition z ∈Mµ−1(a) is necessary for solv-
ability, whereby the associated set of consistent initial valuesMµ−1(a) is a lower
dimensional subset of Rm. For linear DAEs, an explicit theoretical description is
given in Subsection 2.2. Generally, no direct description is available, except for the
index-1 case, whereM0(a) is the obvious restriction set.

We try to overcome this difficulty by formulating the corresponding IVPs with
the initial condition

C(x(a)− z) = 0, z ∈N∗ (228)

with an appropriate singular matrix C ∈ L(Rm,Rl). As shown in Section 2, linear
IVPs have unique solutions existing on [a,b], if C is such that

kerC = kerΠcan = kerΠµ−1, (229)

and IVPs in nonlinear index-1 DAEs are uniquely solvable with solutions existing
on [a,b], if

kerC = kerΠcan = kerΠ0 = kerD(a).

For nonlinear higher index DAEs the situation is much more difficult since then C
itself might become solution dependent.

If the IVPs (226), (228) are uniquely solvable on [a,b], then one looks for a z such
that the boundary condition (227) is satisfied. This is the basic idea of the shooting
method.
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4.1 Solution of linear DAEs

Suppose a properly stated linear regular DAE with index µ . We consider the linear
TPBVP (37) and a related IVP

A(Dx)′+Bx = q, (230)
C(x(a)− z) = 0 (231)

and C is chosen fulfilling (229) with given value z. The solution of the IVP is repre-
sented in (35) as

x(t) = X(t,a)z+
∫ t

a
X(t,s)G−1

µ (s)q(s)ds+ vq(t)

and we discover using the structure of X (cf. (29)) from

X(t,a)z = X(t,a)D(a)−D(a)Πµ−1(a)z

that the solution x depends for a given right-hand side q from the initial value
ξ := D(a)Πµ−1(a)z only and not from the whole vector z. The component (I −
Πcan(a))z does not matter at all.

We denote the solution of an IVP (230), (231) by x(t;a,ξ ). This means that we
implicitly assume for the moment, that we know the solution also at t = a (This is
the difficult problem of computing consistent initial values, which is discussed later
on). Thus x(a;a,ξ ) = x(a) = X(a,a)ξ + vq(a). At t = b we have with the general
solution expression (38) that

x(b;a,ξ ) = x(b) = X(b,a)D−(a)ξ +
∫ b

a
X(b,s)G−1

µ (s)q(s)ds+ vq(b).

x(·;a,ξ ) solves the DAE (230) and to solve the TPBVP (37) also the boundary
condition has to be fulfilled. The relation to determine ξ is given by

Gax(a)+Gbx(b) = Ga(X(a,a)D−(a)ξ + vq(a))+Gb(X(b,a)D−(a)ξ

+
b∫
a

X(b,s)G−1
µ (s)q(s)ds+ vq(b)) = γ.

(232)

We obtain the linear system

(GaX(a,a)+GbX(b,a))︸ ︷︷ ︸
=S

D−(a)ξ = γ̂

with γ̂ = γ−Gavq(a)−Gb(
∫ b

a X(b,s)G−1
µ (s)q(s)ds+vq(b)) (cf. (39)). Theorem 2.1

provides a unique initial value D−(a)ξ . The solution of the IVP (230) and the initial
condition
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D(a)Πµ−1(a)(x(a)−D−(a)ξ ) = 0,

i.e., C =D(a)Πµ−1(a), has the solution of the TPBVP represented by the solution of
an IVP with the initial value ξ . Because of C(x(a)−D−(a)ξ )=D(a)Πµ−1(a)(x(a)−
D−(a)ξ ) = 0 follows D(a)Πµ−1(a)x(a) = D(a)Πµ−1(a)D−(a)ξ = ξ .

For the practical application of the shooting method two of our assumptions are
difficult to realize. First, the used choice of the matrix C in the initial condition
differs usually from D(a)Πcan(a) (see Remark 4.1) and second, in general, the inte-
gration codes do not provide consistent initial values, i.e., the full vector x(a). But
in contrast to IVPs we have to know the whole vector x(a), to evaluate the boundary
condition (227). Additionally, consistent initial values are very helpful to start an
integration itself.

4.1.1 Computation of consistent initial values

The computation of consistent initial values in the index-µ case is a nontrivial task.
In the literature we find several papers, which focus on that topic using various
ways to compute consistent initial values. [79] and [47] propose for index-1 DAEs
the use of the tractability index concept, [2], [36] and [67] assume a semiexplicit
structure of the DAE, which makes the computation much easier. [53] considers
special structured index-2 DAEs, which are reduced to index 1 by differentiation.

We investigate proper formulated linear index-µ DAEs. We have to compute at
an interesting time point t̄ vectors y := (D−(Dx)′)(t̄) and v := (I−Πµ−1(t̄))x(t̄).
These values have with known value ξ := D(t̄)Πµ−1(t̄)x(t̄) at least to fulfill

ADy+B(D−ξ + v) = q(t̄). (233)

Because of rankD = r0 and rank(I − Πµ−1) = m − l we have to determine
d := r0 +m− l unknowns but we have m natural conditions only. Using the dynam-
ical degree l (cf. (76)) we see that for µ = 1 we have d = m and if µ > 1 we obtain
d > m, i.e. we need additional conditions to compute consistent initial values. These
additional conditions are the so-called hidden constraints, which are computed by
differentiating suitable relations.

We define an operator Iµ , which computes for linear index-µ DAEs y and v
depending from a known ξ as (

y
v

)
= Iµ(ξ , t̄). (234)

We demonstrate the operator Iµ for index-1 and index-2 DAEs.
The index-1 case:

We have to compute d = r0 +m− l = m values. We define y as before and v :=
(I−P0(t̄))x(t̄) = Q0(t̄)x(t̄). Eq. (233) looks
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ADy+B(D−ξ + v) = q(t̄), (235)
Q0y+P0v = 0. (236)

Eq. (236) ensures that y and v lie in the right subspaces. The initial condition reads
with C = D(t̄) as

D(t̄)(x(t̄)− z) = 0

with given z. The Jacobian matrix of (235), (236) with respect to y,v is the regular

matrix J1 :=
(

G0 B
Q0 P0

)
. Using the inverse J−1

1 =

(
P0G−1

1 Q0−P0G−1
1 BP0

Q0G−1
1 (I−Q0G−1

1 P0)P0

)
we

obtain (
y
v

)
= J−1

1

(
q−BD−ξ

0

)
=: Iµ(ξ ).

With

v = Q0G−1
1 (q−BD−ξ ) (237)

we obtain ∂v
∂ξ

=−Q0G−1
1 BD− =−H0 for index 1 (cf. (291)).

The index-2 case:

The number of unknowns is d = r0 +m− l = 2m− r1. We are looking as in the
index-1 case for y = D−(Dx)′(t̄) and now v := (I−Π1(t̄))x(t̄). In contrast to the
index-1 case we have to add a relation to describe the hidden constraint (cf. [83, Ch.
2.10.3 and 10.2.2.1]). For that reason we differentiate the equation

W1Bx =W1q

resulting from the multiplication of (230) by the projector W1 projecting along imG1
and we obtain with W1BQ0 = 0

W1BD−(Dx)′︸ ︷︷ ︸
=y

+(W1BD−)′Dx = (W1q)′.

This leads to the system

ADy+B(D−ξ + v) = q(t̄), (238)

W1By+(W1BD−)′(ξ +Dv) = (W1q)′(t̄), (239)
Q0y+Π1v = 0. (240)

We solve Eqn. (238)–(240) explicitly for a given value ξ = DΠ1D−ξ . Multiply-
ing (238) by Q1G−1

2 provides using the relations v = (I−Π1)v from (240) and the
admissible projector Q1 = Q1G−1

2 B1, which realizes a fine decoupling,
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Q1G−1
2 Bv = Q1G−1

2 q(t̄)−Q1G−1
2 BD−D︸ ︷︷ ︸

Q1

P1D−ξ and we obtain

Q1v = Q1G−1
2 q(t̄),

i.e., P0v = Π1v︸︷︷︸
=0

+P0Q1v = P0Q1G−1
2 q(t̄). The multiplication of (239) by Q1G−1

2 re-

sults because of Q1G−1
2 W1 = Q1G−1

2 and Dv = DP0v as

Q1G−1
2 BP0︸ ︷︷ ︸

=Q1

y = Q1G−1
2 ((W1q)′(t̄)− (W1BD−)′(ξ +Dv)).

From Eq. (238) we obtain by scalation with G−1
2

G−1
2 G0y+G−1

2 BQ0v = G−1
2 (q(t̄)−BD−(ξ +Dv)),

(Π1−Q0Q1)y+Q0v = G−1
2 (q(t̄)−BD−(ξ +Dv)),

Π1y+Q0v = G−1
2 (q(t̄)−BD−(ξ +Dv))+Q0Q1y. (241)

Multiplying Eqn. (241) by Π1 respectively Q0, we obtain

Π1y = Π1G−1
2 (q(t̄)−BD−(ξ +Dv)), respectively

Q0v = Q0G−1
2 (q(t̄)−BD−(ξ +Dv))+Q0Q1y.

Summarizing the components of y and v we obtain

y = Π1G−1
2 (q(t̄)−BD−(ξ +Dv))+P0Q1G−1

2 ((W1q)′(t̄)− (W1BD−)′(ξ +Dv)),

v = (I−Π1)G−1
2 q(t̄)−Q0G−1

2 BD−(ξ +Dv)+Q0Q1y. (242)

Later on we will need the relation between v and ξ . With (242) we obtain

∂v
∂ξ

=−Q0G−1
2 BD−−Q0Q1G−1

2 (W1BD−)′ =−H0 (243)

for the index-2 case (cf. Appendix (291)).

Lemma 4.1. The linear DAE (233) has index 2 and let v be the solution of Eqn.
(238)–(240). We choose the fine decoupling projector Q1 = Q1G−1

2 B1 and assume
that Q0Q1G−1

2 ,Q0Q1D− ∈ C1 then (D−− ∂v
∂ξ

)DΠ1 = Πcan,2.

Proof. Using Eq. (243) we consider

(D−− ∂v
∂ξ

)DΠ1 = (D−−Q0G−1
2 BD−−Q0Q1G−1

2 (W1BD−)′)DΠ1.

It holds that Q0G−1
2 BΠ1 = Q0(P1 +Q1)G−1

2 BΠ1︸ ︷︷ ︸
=0

= Q0P1G−1
2 BΠ1 and
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Q0Q1G−1
2 (W1BD−)′DΠ1 = Q0((Q0Q1D−)′− (Q0Q1G−1

2 )′W1BD−)DΠ1D−DΠ1,

=−Q0Q1D−︸ ︷︷ ︸
=−Q0P1D−

(DΠ1D−)′DΠ1

−Q0(Q0Q1G−1
2 )′W1G2 Q1G−1

2 BD−DΠ1︸ ︷︷ ︸
=0

because of W1 =W1G2Q1G−1
2 . Now we have with (243) the representation

(D−− ∂v
∂ξ

)DΠ1 = (D−− (Q0P1G−1
2 BD−+Q0P1D−(DΠ1D−)′))DΠ1,

= (D−−H0D−)DΠ1 = (I−H0)D−DΠ1 = Πcan,2.

ut

The relation described in Lemma 4.1 between the v-component of Iµ and the canon-
ical projector also holds for arbitrary index µ .

Lemma 4.2. We consider the regular index-µ DAE (230). We choose fine decou-
pling projectors Q0,Q1, . . . ,Qµ−1 (cf. Subsection 6.1.2) then

∂Iµ,v

∂ξ
(ξ , t̄)) =

∂Iµ,v

∂ξ
(ξ , t̄))D(t̄)D−(t̄) and (244)

(D−(t̄)−
∂Iµ,v

∂ξ
(ξ , t̄))D(t̄)Πµ−1(t̄) = Πcan(t̄). (245)

hold.

Proof. We are interested in the v-component of Iµ only. It holds that v = (I −
Πµ−1x) and v = v0 + · · ·+vµ−1. We refer to the decomposition (291) which explic-
itly represent the components vi, i = 0, . . . ,µ − 1. For a fine decoupling (291) spe-
cializes to H1, . . . ,Hµ−1 = 0. We observe that v0 depends on ξ only and therefore
∂Iµ,v

∂ξ
=H0D−. This relation shows (244). With (D−(t̄)−H0D−(t̄))D(t̄)Πµ−1(t̄) =

(I−H0)D−(t̄)D(t̄)Πµ−1(t̄) = Πcan(t̄) (cf. Subsection 6.1.2) the proof is done. ut

The realization of algorithms to compute consistent initial values using (291) is very
expensive. For higher index systems it would be helpful to take advantage from a
given structure like Hessenberg form etc.

4.1.2 Single shooting

Here we deal with linear regular index-µ DAEs. In contrast to the ODE-case a shoot-
ing method consists not only in the integration of the DAE but also in providing con-
sistent initial values. In [38] we find that the “Knowledge of the solution manifold
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. . . is required . . . at the initial time point t0 = a . . .”. The shooting method proposed
in [79] combined the computation of consistent initial values with the shooting pro-
cedure for index-1 DAEs. We generalize this idea to index-µ DAEs.
We consider the TPBVP (37) and a related IVP

A(Dx)′+Bx = q, (246)
C(x(a)− z) = 0. (247)

The solution of the IVP (246), (247) at t = b is applying (35) given by

x(b;a,u) = X(b,a)D−(a)ξ +
∫ b

a
X(b,s)G−1

µ (s)q(s)ds+ vq(b)

and at t = a we obtain from (35) x(a) = X(a,a)D−(a)ξ + vq(a). The boundary
condition fixes the unknown ξ we are looking for

Ga(X(a,a)D−(a)ξ + vq(a))+Gbx(b;a,ξ ) = 0, (248)

(I−D(a)Πµ−1(a)D−(a))ξ = 0 (249)

and (249) fixes that ξ ∈ imD(a)Πµ−1(a). But for a realization of (248) we have to
know vq(a) too. Therefore we combine (248) with the equations describing consis-
tent initial values at t = a (cf. (234))(

y
v

)
−Iµ(ξ ,a) = 0. (250)

Lemma 4.3. Let the BVP (37) be uniquely solvable and the admissible projectors
Qi, 0 ≤ i ≤ µ − 1 realize a fine decoupling. The Jacobian matrix of (248)–(250)
with respect to ξ ,y,v has full column rank.

Proof. The Jacobian matrix is given by

Jµ =


(Ga +GbX(b,a))D−(a) 0 Ga

I−D(a)Πµ−1(a)D−(a) 0 0
∂Iµ,y

∂ξ
I 0

∂Iµ,v
∂ξ

0 I

 .

We consider the equation Jµ

zξ

zy
zv

= 0 and we show that z = 0. If (37) is uniquely

solvable then kerS = kerΠµ−1(a) (cf. Theorem 2.1). We obtain zv = −
∂Iµ,v

∂u zξ =

− ∂Iµ,v
∂u D(a)D−(a)zξ using (244). From the second equation of Jµ z = 0 we have the

relation zξ = D(a)Πµ−1(a)D−(a)zξ and therefore
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(Ga(D−(a)−
∂Iµ,v

∂ξ
D(a)D−(a))+GbX(b,a)D−(a))zξ = 0,

(Ga(D−(a)−
∂Iµ,v

∂ξ
)D(a)Πµ−1(a)D−(a))+GbX(b,a)D−(a))zξ = 0,

Applying Lemma 4.2 (D−(a)− ∂Iµ,v
∂ξ

)D(a)Πµ−1(a) = Πcan(a) = X(a,a), we con-
sider SD−(a)zξ = 0 which leads to Πµ−1(a)D−(a)zξ = 0 and finally to zξ = 0.
Applying the last two equations results zy = 0, zv = 0. ut

The implementation of a single shooting method for index-µ DAEs requires an
algorithm to compute consistent initial values and an integration method to solve an
IVP and to compute the fundamental matrix X(b,a).

The algorithmic procedure solving a BVP by single shooting method starts with
an initial guess z0. Consistent initial values are computed obtaining the related val-
ues ξ0,v0,y0. We solve the IVP (246)-(247) and obtain the solution x(b;a,u0). The
correction ∆ξ ,∆v are the solutions of the linear system(Ga +GbX(b,a))D−(a) Ga

I−D(a)Πµ−1(a)D−(a) 0
H0 I

(∆ξ

∆v

)
=

Ga(D−(a)ξ0 + v0)+Gbx(b;a,ξ0)− γ

0
0

 .

(251)

The solution of the TPBVP (37) at t = a is x(a) = D−(a)(ξ0−∆ξ )+ v0−∆v.
It is straightforward that the relation for ∆ξ finally looks like

(GaX(a,a)+GbX(b,a))D−(a)∆ξ = SD−(a)∆ξ

= Ga(D−(a)ξ0 + v0)+Gbx(b;a,ξ0)− γ.

The rectangular coefficient matrix can be arranged in such a way that may handle
with quadratic matrices. We have to combine the first two rows of equation system
(251) (cf. for the index-2 case [77]), because the first row contains the l boundary
conditions and the second row the m− l-dimensional subspace condition for ∆ξ .

4.1.3 Multiple shooting

The single shooting has also for DAEs the disadvantages known from the ODE case.
The chosen (unknown) initial value may not have a calculable solution of the IVP
over the whole interval [a,b]. We overcome that by the multiple shooting method.
The idea of multiple shooting is the subdivision of [a,b] into smaller subintervals

a = t0 < t1 < .. . < tN−1 < tN = b.

The aim is the reduction of the sensitivity of the initial value problems by shorter
integration intervals and a smaller condition number of the resulting coefficient ma-
trix of the linear systems compared with the single shooting coefficient matrix (cf.
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(251)).
We discuss here the case of multiple forward (parallel) shooting only. Methods
shooting in different direction are analogously applicable like in the ODE case (cf.
[78]).
On every subinterval [t j−1, t j], j ∈ [1,N] we solve an IVP. At a matching points t j
we require continuity of the dynamic component u of the solution (cf. Section 2.2).
We obtain

DΠµ−1(t j)(D−(t j)ξ j− x(t j; t j−1,ξ j−1)) = 0, 1≤ j ≤ N−1 or shorter (252)
u j−DΠµ−1(t j)x(t j; t j−1,ξ j−1) = 0, (253)

with ξ j := u(t j) and from the boundary condition

Ga(D−ξ0 + v0)+Gbx(tN ; tN−1,ξN−1) = 0. (254)

The unknowns are (ξ0,ξ1, . . . ,ξN−1,v0,y0), i.e., that we have to extend the system
by the computation of consistent initial values at t0 to determine v0,(

y0
v0

)
−Iµ(ξ0, t0) = 0 (255)

and the restriction of ξi to the subspace imDΠµ−1(ti), i = 0, . . . ,N−1 by

(I−D(ti)Πµ−1(ti)D−(ti))ξi = 0 (256)

as in the single shooting case. For an implementation of the multiple shooting meth-
ods for DAEs these additional equations computing consistent initial values are nec-
essary at every shooting point. (This was mentioned the first time in [38]).
We obtain the following Jacobian matrix of the system (253)–(256) with respect to
ξ0, . . . ,ξN−1,y0,v0 using the abbreviations Y (t j, ti) := D(t j)Πµ−1(t j)X(t j, ti)D−(ti)
and πµ−1(t j) := D(t j)Πµ−1(t j)D−(t j)
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Jµ =



GaD−(t0) GbX(tN , tN−1)D−(tN−1) 0 Ga
−Y (t1, t0) πµ−1(t1)

−Y (t2, t1) πµ−1(t2)
. . . . . .

−Y (tN−1, tN−2) πµ−1(tN−1)
I−πµ−1(t0)

I−πµ−1(t1)
I−πµ−1(t2)

. . .
I−πµ−1(tN−1)

∂Iµ,y0
∂ξ0

I 0
∂Iµ,v0

∂ξ0
0 I


(257)

There is, for practical reasons, the possibility to compress Jµ mixing (252) with
(256). We obtain

J̄µ =



GaD−(t0) GbX(tN , tN−1)D−(tN−1) 0 Ga
−Y (t1, t0) I

−Y (t2, t1) I
. . . . . .
−Y (tN−1, tN−2) I

I−πµ−1(t0)
∂Iµ,y0

∂u0
I 0

∂Iµ,v0
∂u0

0 I


(258)

The use of (253) for computing of the Jacobian matrix leads immediately to (258).
As for the single shooting method, we show a regularity condition for the matrix
(257).

Lemma 4.4. Let the BVP (37) be uniquely solvable and the admissible projectors
Qi, 0≤ i≤ µ−1 realize a fine decoupling.
The interval [a,b] is subdivided into N subintervals

a = t0 < t1 < .. . < tN−1 < tN = b,

then the Jacobian matrix (257) has full column rank.

Proof. To show the column regularity of Jµ we consider Jµ z = 0 with
z = (zT

0 ,z
T
1 , . . . ,z

T
N−1,z

T
y ,z

T
v )

T . Because of πµ−1(ti)zi = D(ti)X(ti, ti−1)D−(ti−1)zi−1
for i = 1, . . . ,N−1, the second up to the N th equation leads to πµ−1(tN−1)zN−1 =
D(tN−1)X(tN−1, t0)D−(t0)z0. Using this result, the first equation looks
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(Ga +GbX(tN , t0))D−(t0)z0 +Gazv = 0

and the last but one equation gives zv =−
∂Iµ,v
∂ξ0

z0. From the last equation we obtain
z0 = πµ−1(t0)z0 which leads for the first equation to

(GaX(t0, t0)+GbX(tN , t0))D−(t0)z0 = SD−(t0)z0 = 0.

From (41) we have that then Πµ−1(t0)D−(t0)z0 = 0, therefore z0 = 0 and succes-
sively using (256) zi = 0, i = 1, . . . ,N−1 and at last follows that zv = 0, zy = 0. ut

We are interested in the relation of the multiple shooting method of an DAE
with the inherent ODE. For that we use the v-component of (255) in (254) and we
consider the system (252) and (254). Its Jacobian matrix looks

Smult =



GaX(t0, t0)D−(t0) GbX(tN , tN−1)D−(tN−1)
0n−l,n
−Y (t1, t0) πµ−1(t1)

−Y (t2, t1) πµ−1(t2)
. . . . . .

−Y (tN−1, tN−2) πµ−1(tN−1)


.

(259)

For (259) we have the representation Smult = ΠlSmult,ODEΠr with

Πl =


In

πµ−1(t1)
. . .

πµ−1(tN−1)

 ,

Smult,ODE =


GaΠcan(t0)D−(t0) GbΠcan(tN)D−(tN)U(tN , tN−1)

Ca
−U(t1, t0) I

. . . . . .
−U(tN−1, tN−2) I

 ,

Πr =


πcan,µ−1(t0)

πcan,µ−1(t1)
. . .

πcan,µ−1(tN−1)


with πcan,µ−1 = DΠcan,µ−1D−. The matrix Smult,ODE has the known structure of the
Jacobian matrix of the parallel shooting method for ODEs, here the inherent ODE,
and is related to the TPBVP (46)–(48) with Ca = K−1(I−πcan,µ−1(t0)). K is chosen
such that Ca ∈ Rn−l (see [77]). Its inverse is given by
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S−1
mult,ODE =

 U(t0, t0)S−1
ODE Ḡ(t0, t1) · · · Ḡ(t0, tN−1)

...
...

...
U(tN−1, t0)S−1

ODE Ḡ(tN−1, t1) · · · Ḡ(tN−1, tN−1)


with the nonsingular matrix SODE =

[
SIERODE

Ca

]
and the Green’s function

Ḡ(t,s) =


U(t, t0)S−1

ODE

[
GaΠcanD−(t0)

Ca

]
U(s, t0)−1, t ≥ s

−U(t, t0)S−1
ODE

[
GbΠcanD−(tN)

0n−l,n

]
U(tN , t0)U(s, t0)−1, t < s

(cf. for the Green’s function (42) and for SIERODE (45)).
The factors Πl and Πr are projectors and have projectors on its diagonal. The eigen-
values of projectors are 0 or 1, which allows an appropriate estimation ||Πl || ≤ K
and ||Πr|| ≤ K with moderate K. This makes clear that we obtain an estimation of
the condition number of Smult as cond Smult ≈ ||Smult,ODE || ||S−1

mult,ODE || of the same
structure as in the ODE case (cf. [12]).

Theorem 4.1. The reflexive inverse S−mult of the multiple shooting matrix Smult is
given by

S−mult =ΠrS−1
mult,ODEΠl = diagD

 X(t0, t0)S− G(t0, t1) · · · G(t0, tN−1)
...

...
...

X(tN−1, t0)S− G(tN−1, t1) · · · G(tN−1, tN−1)

diagD−

with diagD := diag(D(t0), . . . ,D(tN−1)) and diagD− := diag(D(t0)−, . . . ,D(tN−1)
−).

Proof. We have to show the reflexivity properties Smult = SmultS−multSmult and
S−mult = S−multSmultS−mult . We consider S−multSmult = ΠrS−1

mult,ODEΠlΠlSmult,ODEΠr. It
holds that

(I−Πl)Smult,ODEΠr = 0.

This follows from U(t,s)D(s)Πcan,µ−1(s)=D(t)Πcan,µ−1(t)D(t)−U(t,s)D(s)Πcan,µ−1(s)
(cf. [83, (2.82)]) and DΠcan,µ−1D− = DΠµ−1D− (cf. (23)). We obtain S−multSmult =
Πr which proves the assertion. ut

The relation of Theorem 4.1 was shown for index-1 DAEs in [87].

4.2 Nonlinear index-1 DAEs

The most realizations of shooting methods are done for index-1 DAEs or for DAEs
reduced to index-1. A reduction of the index is mostly done applying the differentia-
tion index concept ([38]) or the strangeness index concept ([111], [74]). In the latter,
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the realization of the shooting procedure is strongly interlocked with the reduction
from the derivative array system. [53] investigated a special structured index-2 DAE,
which is reduced to index 1 by differentiation. See also Remark 2.5. In [79], [80],
[37], [47]and [25] the shooting method is investigated for index-1 DAEs. We find
many papers considering very special applications. [80] and [25] focus on periodic
BVPs. The necessary conditions of optimal control problems are investigated and
shooting methods applied in [37], [32], [53], and [63]. A lot of papers are dealing
with single problems in sciences and technique which are then solved by shooting
methods.

We consider the TPBVP (3), (4). We subdivide the interval [a,b] into N subin-
tervals a = t0 < t1 < · · · < tN = b. At every subinterval we have to integrate and to
compute consistent initial values. The IVP at a point t̄ is represented by

D(t̄)(x(t̄)− ᾱ) = 0

for given ᾱ . The computation of consistent initial values at t̄ using y :=D−(t̄)(Dx)′(t̄)
can be done by the solution of the equations

f (D(t̄)y,P0(t̄)ᾱ +Q0v, t̄) = 0, (260)
Q0y+P0v = 0, (261)

which have in the index-1 case the nonsingular Jacobian matrix (cf. for a related
proof [83, Lemma 4.12] ) [

fyD fxQ0
Q0 P0

]
.

The matching conditions are given by

D(ti)(D−(ti)ξi− x(ti; ti−1,ξi−1)) = 0 for i = 1, . . . ,N−1. (262)

The system to solve consists of (4) as

g(D−(t0)ξ0 + v0,x(b; tN−1,ξN−1)) = 0, (263)

the matching conditions (262) and the determination of v0 using (260), (261) at
t̄ = t0.
The Jacobian matrix with respect to ξ0,ξ1, . . . ,ξN−1,y0,v0 is related to (257) with
the linearization (cf. Subsection 2.5) of g and Y∗(t j, ti) := D(t j)X∗(t j, ti)D−(ti)
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J1 =



G∗aD−(t0) G∗bX∗(tN , tN−1)D−(tN−1) 0 G∗a
−Y∗(t1, t0) R(t1)

−Y∗(t2, t1) R(t2)
. . . . . .
−Y∗(tN−1, tN−2) R(tN−1)

I−R(t0)
I−R(t1)

. . .
I−R(tN−1)

−P0G−1
1 fxD−(t0) I 0

−Q0G−1
1 fxD−(t0) 0 I


with R(ti) := D(ti)D−(ti). The column regularity of J1 follows from Lemma 4.4. All
techniques solving nonlinear overdetermined systems are applicable. As mentioned
above also a formulation as square system is possible, which results in a nonsingular
Jacobian matrix of the system.

If the DAE is represented with a full rank matrix D the system dimension de-
creases because of R(t) ≡ I. This holds because of the nonsingularity of DDT

(D = DD−D⇒ DD− = I), i.e., all equations related to (256) vanish.
Very often a semi-explicit structure of f is assumed (see (7)). Semi-explicit struc-

ture means that D = [I 0] and D− =

[
I
0

]
. Therefore R = DD− = Im1 and I−R = 0.

This reduces the dimension of J1 drastically, because the blocks, e.g. Y∗(t j, ti), have
now dimension m1×m1 and not the full dimension of the DAE m×m and D has
also full rank.
A semiexplicit structure of the DAE is assumed, e.g., in [67], [106], [63].

4.3 Further references, comments, and open questions

Remark 4.1 (Take advantage of (partially) separated boundary conditions). If the
boundary condition Gax(a)+Gbx(b) = γ are structured such that a part is separated
at t = a we should use advantage of such explicitly required initial values. This
can be done by using for shooting an adapted inital value condition C(x(a)− z) =
0 which includes the separated boundary conditions. For DAEs up to index 2 a
proposal can be found in [48], [81].
The advantage of partially separated boundary conditions is also considered in [38].
Here a possible reduction of “the number of IVPs to be solved” is discussed.

Remark 4.2 (Avoiding inconsistent values for semiexplicit index-1 DAEs). In [34],
(cf. also [45]) for semiexplicit index-1 DAEs, a special way to avoid the computation
of consistent initial values at every shooting point is proposed. Considered is the
DAE
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y′ = f (t,y,u, p)

0 = g(t,y,u, p)

The algebraic condition g(t,y,u, p) = 0 is replaced at every shooting interval by
g(t,y,u, p)− g(r j,s

y
j,s

u
j , p) = 0, where y(r j) = sy

j,u(r j) = su
j describes the current

values of the Newton iteration values of the jth interval. Additionally it is secured
that g(r j,s

y
j,s

u
j , p)→ 0 over the Newton iteration.

Remark 4.3 (Realizations for higher index DAEs). Very few papers investigate
higher index DAEs directly, i.e., without an index reduction.
In [77] a shooting method for index-2 DAEs in standard formulation is proposed;
the necessary differentiation for calculating consistent initial values are realized by
finite differences.
Consistent initial values for Hessenberg index-2 and index-3 DAEs using boundary
value methods are considered in [3] and for general index 3 DAEs in [86].
The computation of consistent initial values of index-2 DAEs in standard formula-
tion using the tractability index concept is considered in [48] and for properly stated
index-2 DAEs in [81].
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5 Miscellaneous

5.1 Periodic solutions

Periodic solutions of DAEs are studied in the context of applications in multibody
system dynamics and circuit simulation, e.g., [113, 25, 51, 107]. As for explicit
ODEs, one can provide periodic solutions via BVPs with periodic boundary condi-
tions.

As pointed out already in [80], when formulating periodic boundary conditions,
one should try for a well-posed BVP and regard the accurate number of boundary
conditions. In contrast to the classical ODE case, the full condition x(0)−x(T ) = 0
is overdetermined for DAEs, cf. our Examples 1.2, 1.3.

In full analogy to explicit ODEs, the right number of boundary conditions is
necessary but not sufficient for well-posedness, cf. Example 1.3. The boundary con-
ditions must be consistent with the flow.

For autonomous DAEs one applies the usual trick to introduce the auxiliary equa-
tion T ′ = 0 for the unknown period T and an additional boundary condition for
fixing the phase (e.g., [80, 51]).

Lyapunov stability criteria for periodic solutions of index-1 and index-2 DAEs
are provided in [84, 85] by means of an appropriate generalization of the Floquet
theory. Thereby the maximal normalized fundamental solution matrix plays its role
yielding the monodromy matrix and Floquet exponents. Note that certain structural
conditions restrict the class of index-2 DAEs in [85]. In essence, from an actual point
of view, these conditions ensure that the reference solution belongs to an index-
2 regularity region. We conjecture that the respective results remain valid if the
structural conditions are replaced by assuming the reference solution to proceed in
a stability region.

5.2 Abramov transfer method

The Abramov transfer method is extended to BVPs for index-1 DAEs in [27, 100]
and for index-2 DAEs in [101, 30]. We do not go into detail, but explain the main
idea for the case of explicit ODEs only.

It is well-known that the solution spaceM(t)⊂ Rm of the classical IVP

x′(t)+B(t)x(t) = 0, t ∈ [a,b], (264)
Cax(a) = 0, (265)

with Ca ∈ L(Rm,Rk), rankCa = k ≤ m, can be described by the relation

ya(t)∗x(t) = ya(a)∗x(a) = 0,
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if the matrix-valued function ya solves the IVP

y′(t)−B(t)∗y(t) = 0, t ∈ [a,b], (266)
y(a) =C∗a . (267)

The subspaceM(t) = kery(t)∗ = (imy(t))⊥ has dimension m− k. BVPs for (264)
and separated boundary conditions

Cax(a) = 0, Cbx(b) = 0 (268)

can be traced back to the linear system

ya(t)∗x(t) = 0,
yb(t)∗x(t) = 0,

by solving an IVP and a terminal value problem for the adjoint equation. We em-
phasize that there is no need for well-posedness of the BVP. As a byproduct one
gathers a constructive criterion of uniquely solvability.

Generally the adjoint ODE is not easier to integrate than the original ODE. The
idea behind the Abramov transfer method ([1]) consists in a continuous orthogonal-
ization by demanding y∗y′ = 0 and turning to the nonlinear equation

y′(t)− (I− y(t)(y(t)∗y(t))−1y(t)∗)B(t)∗y(t) = 0, t ∈ [a,b], (269)

instead of (266). The equation (269) has nice theoretical and practical solvability
properties. Slightly modified versions of this approach apply to inhomogeneous
BVPs. To provide an opinion of the capability of the Abramov transfer method we
mention the test problem [12, p. 121],

x′(t)−
[
−λ cos(2ωt) ω +λ sin(2ωt)
−ω +λ sin(2ωt) λ cos(2ωt)

]
x(t) = 0, t ∈ [0,π],

with the fundamental solution matrix

X(t) =
[

cos(ωt) sin(ωt)
−sin(ωt) cos(ωt)

][
e−λ t 0

0 eλ t

]
.

As noted in [12], the Riccati method does not work well for λ = 1 and greater ω ,
whereas it performs well for ω = 1 and greater λ . In [100, 101] it is recorded that
the Abramov transfer method provides good results for ω from 1 to 1000 and λ

from 1 to 200.
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5.3 Finite-difference methods

For classical BVPs in explicit ODEs, finite-difference methods generally turn out to
be less efficient than collocation methods. The same is true for BVPs in DAEs. We
will take only a quick look at the topic.

Diverse one-step and multi-step finite-difference schemes for approximating the
solution of the BVP

f ((Dx)′(t),x(t), t) = 0, t ∈ [a,b],

g(x(a),x(b) = 0,

on a grid π : a = t0 < · · · < tN = b have been studied already in [89]. For well-
posed BVPs, thus for regular index-1 DAEs, stability inequalities and convergence
results are provided by means of the well-known discretization theory developed in
[65, 66]. From the difference approach concerning the DAE on each subinterval,
one generally obtains mN equations for determining the unknowns x0, . . . ,xN . In
contrast to the case of explicit ODEs, the boundary condition yields n= rankD(a)<
m conditions, and hence, one needs additional m−n consistency equations to obtain
a balanced scheme. In comparison to the case of explicit ODEs, also certain extra
stability conditions are needed.

Finite-difference methods for index-1 DAEs in standard form have been treated
in [55] accordingly.

Respective convergence results have been offered in [38] for smoothly solvable
linear BVPs with no restriction concerning the DAE index. Instead, the availability
of a globally O(hs)-convergent method for solving the corresponding IVPs is pos-
tulated and the additionally needed consistency conditions are supposed to be given
by means of a derivative array system.

A further detailed convergence proof is described in [111] for linear index-1
DAEs with separated derivative-free equations.

In general, it seems that multi-step methods may be affected by varying inherent
subspaces and one-step methods perform better (e.g., [91, p.169]).

5.4 Newton-Kantorovich iterations

Newton–Kantorovich iteration methods applied to BVPs for index-1 and -index-2
DAEs are studied in [92, 101], see also [96].

The BVP

f ((Dx)′(t),x(t), t) = 0, t ∈ [a,b] = I, (270)
g(x(a),x(b) = 0, (271)

can be formulated as operator equation (cf. the proofs of Theorems 2.4 and 2.7). Let
DF ⊆D f be open. We associate with the DAE (270) the nonlinear operator
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F :domF ⊆ C1
D(I,Rm)→C(I,Rm),

domF : = {x ∈C1
D(I,Rm) : x(t) ∈ DF for all t ∈ I},

(Fx)(t) : = f ((Dx)′(t),x(t), t), t ∈ I, x ∈ domF, (272)

such that the DAE (270) is represented as the operator equation

Fx = 0. (273)

F is said to be a nonlinear differential-algebraic operator. The operator equation
(273) reflects the classical view on a DAE: the solutions belong to C1

D(I,Rm) and
satisfy the DAE pointwise for all t ∈ I. The arguments in [96] enable us to speak of
the natural Banach space setting.

The operator F is Fréchet differentiable and the map F ′(x∗) defined by

F ′(x∗)x = A∗(Dx)′+B∗x, x ∈ C1
D(I,Rm),

is the Fréchet derivative of F at x∗. The linear operator equation

F ′(x∗)x = q

stands now for the linearization of the original DAE at x∗, that is, for the linear DAE

A∗(Dx)′+B∗x = q. (274)

The composed operator

F : domF ⊆ C1
D(I,Rm)→C(I,Rm)×Rm−l ,

Fx : = (Fx, g(x(a),x(b))), x ∈ domF, (275)

is Fréchet differentiable since F is so. The equation Fx = 0 represents the BVP
(270), (271), whereas the equation Fx = (q,γ) is the operator form of the perturbed
BVP

f ((D(t)x(t))′,x(t), t) = q(t), t ∈ I, g(x(a),x(b)) = γ. (276)

Suppose that the composed operator F associated with the BVP is a local diffeo-
morphism at x∗ ∈ domF and F(x∗) = 0, then the well-known Newton–Kantorovich
iteration

xk+1 = xk−F ′(xk)
−1F(xk), k ≥ 0, (277)

can be applied to approximate x∗. If the initial guess x0 is sufficiently close to x∗,
then these iterations are well-defined and xk tends to x∗. Practically, one solves the
linear equations

F ′(xk)z =−F(xk), k ≥ 0, (278)

and, having the solution zk+1 of the linear problem (278), one puts

xk+1 = xk + zk+1. (279)
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The linear problem (278) represents the linear BVP

fy((Dxk)
′(t),xk(t), t))(Dz)′(t)+ fx((Dxk)

′(t),xk(t), t))z(t) =− f ((Dxk)
′(t),xk(t), t)),

t ∈ I,
Ga(xk(a),xk(b))z(a)+Gb(xk(a),xk(b))z(b) =−g(xk(a),xk(b)),

with partial derivatives Ga,Gb of the function g with respect to its first and second
arguments.

Mostly, a damping parameter is incorporated, and instead of (279) one applies

xk+1 = xk +αk+1zk+1, with αk+1 ∈ (0,1]. (280)

Usually the damping parameter is chosen so that the residuum F(xk+1) becomes
smaller in some sense, that is

‖F(xk+1)‖res < ‖F(xk)‖res,

with a suitable measure of the residuum, for instance,

‖F(x)‖res := ‖F(x)‖= ‖F(x)‖∞ + |g(x(a),x(b))|
and ‖F(x)‖2

res := ‖F(x)‖2
L2 + |g(x(a),x(b))|2.

Sufficient conditions for the composed operator F to be a local diffeomorphism
in the natural setting are described in [96, Subsubsection 4.3.2]. Then the BVP is
well-posed in the natural setting and the DAE has index 1, see Subsubsection 2.5.1.

In [96, Subsubsection 4.3.3] and Subsubsection 2.5.2 one finds conditions for
BVPs for a class of index-2 problems being well-posed in an advanced setting.

Next we take a look at the differentiable functional

J(x) :=
1
2
‖F(x)‖2

L2 +
1
2
|g(x(a),x(b))|2, x ∈ domF . (281)

Of course, the problem to solve the equation F(x) = 0 can be regarded as the prob-
lem to minimize this functional.
For x ∈ domF and z ∈ C1

D(I,Rm), the directional derivative reads

J′(x)z = (F ′(x)z,F(x))L2

+ 〈ba(x(a),x(b))z(a)+be(x(a),x(b))z(b), b(x(a),x(b))〉.

If x0 ∈ domF is fixed, F(x0) 6= 0, and if there exists a solution zN of the linear
equation,

F ′(x0)z =−F(x0), k ≥ 0, (282)

then it results that

J′(x0)zN =−‖F(x0)‖2
L2 −|g(x0(a),x0(b))|2 < 0
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thus J(x0 +αzN) < J(x0) for all sufficiently small α > 0. Therefore, the so-called
Newton direction zN serves as descent direction. Constructing a descent method
by applying Newton directions is essentially the same as the damped Newton–
Kantorovich iteration. This works under the conditions described above, that is, for
index-1 and a restricted class of index-2 problems (cf.,[92, 101].

In [101] the Newton–Kantorovich iteration has been applied in combination with
the Abramov transfer method for solving the linear BVPs, with different succes.
Though the linear BVPs could be solved succesfully, the intermediate processing to
prepare the next iteration could not be managed in an efficient way. Though a collo-
cation solver for the linear BVPs seems to be less accurate than the transfer method,
because of a possibly much better intermediate processing from one iteration level
to the next one, the Newton–Kantorovich iteration combined with collocation can
be expected to work well for the mentioned classes of DAEs. No related practical
experience is reported till now.

Following [96], for equations F(x) = 0 involving higher index differential-
algebraic operators F , there are two principal difficulties concerning Newton de-
scent and Newton–Kantorovich iteration:

1. The linear equation (278) resp. (282) is essentially ill-posed and might not be
solvable. Changing to least-squares solutions does not make great sense, since the
linearizations F ′(x) are not normally solvable.

2. For an essentially ill-posed problem a small residuum F(xk) does not mean
that xk is close to a solution, see [83, Section 1.1].

Among the methods for ill-posed problems one finds generalizations of Newton-
like methods using outer inverses. Instead of the unbounded inverse F(xk)

−1 in
(277) one uses a bounded outer inverse. Such an outer inverse is provided by [96,
Theorem 4.2]. It seems, no practical experience is available in this context till now.
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6 Appendix

6.1 Basics concerning regular DAEs

We collect basic facts on the DAE

f ((Dx)′(t),x(t), t) = 0, (283)

which exhibits the involved derivative by means of an extra matrix valued function
D. The function f : Rn×D f ×I f −→ Rm, D f ×I f ⊆ Rm×R open, is continuous
and has continuous partial derivatives fy and fx with respect to the first two variables
y ∈ Rn, x ∈ D f . The partial Jacobian fy(y,x, t) is everywhere singular. The matrix
function D : I f → L(Rm,Rn) is continuously differentiable and D(t) has constant
rank r on the given interval I f . Then, imD is a C1-subspace in Rn. We refer to [83]
for proofs, motivation, and more details.

6.1.1 Regular DAEs, regularity regions

The DAE (283) is assumed to have a properly stated leading term. To simplify mat-
ters we further assume the nullspace ker fy(y,x, t) to be independent of y. Then, the
transversality condition (5) pointwise induces the continuously differentiable (see
[83, Lemma A.20]) border projector R :D f ×I f →L(Rn) given by

imR(x, t) = imD(t), kerR(x, t) = ker fy(y,x, t), (y,x, t) ∈ Rn×D f ×I f . (284)

Next we depict the notion of regularity regions of a DAE (283). For this aims we
introduce admissible matrix function sequences and associated projector functions
(cf. [83]). Denote

A(x1,x, t) : = fy(D(t)x1 +D′(t)x,x, t) ∈ L(Rn,Rm),

B(x1,x, t) : = fx(D(t)x1 +D′(t)x,x, t) ∈ L(Rm),

G0(x1,x, t) : = A(x1,x, t)D(t) ∈ L(Rm),

B0(x1,x, t) : = B(x1,x, t) ∈ L(Rm) for x1 ∈ Rm,x ∈ D f , t ∈ I f .

The transversality condition (5) implies kerG0(x1,x, t) = kerD(t). We introduce
projector valued functions Q0,P0,Π0 ∈ C(I f ,L(Rm)) such that for all t ∈ I f

imQ0(t) = N0(t) := kerD(t), Π0(t) := P0(t) := I−Q0(t). (285)

Since D has constant rank, the orthoprojector function onto N0 is as smooth as D.
Therefore, as Q0 we can choose the orthoprojector function onto N0 which is even
continuously differentiable. Next we determine the generalized inverse D(x, t)− of
D(t) pointwise for all arguments by
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D(x, t)−D(t)D(x, t)− = D(x, t)−,

D(t)D(x, t)−D(t) = D(t),

D(x, t)−D(t) = P0(t),

D(t)D(x, t)− = R(x, t).

The resulting function D− is continuous, if P0 is continuously differentiable then so
is also D−.

Definition 6.1. Let the DAE (283) have a properly involved derivative. G ⊆D f ×I f
be open connected.
For the given level κ ∈ N, we call the sequence G0, . . . ,Gκ an admissible matrix
function sequence associated with the DAE (283) on the set G, if it is built pointwise
for all (x, t) ∈ G and all arising x j ∈ Rm by the rule:
set G0 := AD, B0 := B, N0 := kerG0,
for i≥ 1:

Gi := Gi−1 +Bi−1Qi−1, (286)

Ni := kerGi,
_
Ni := (N0 + · · ·+Ni−1)∩Ni,

find a complement Xi such that N0 + · · ·+Ni−1 =
_
Ni⊕Xi,

choose a projector Qi such that imQi = Ni and Xi ⊆ kerQi,

set Pi := I−Qi, Πi := Πi−1Pi,

Bi := Bi−1Pi−1−GiD−(DΠiD−)′DΠi−1, (287)

and, additionally,

(a) the matrix function Gi has constant rank ri on Rmi×G, i = 0, . . . ,κ ,

(b) the intersection
_
Ni has constant dimension ui := dim

_
Ni there,

(c) the product function Πi is continuous and DΠiD− is continuously differen-
tiable on Rmi×G, i = 0, . . . ,κ .

The projector functions Q0, . . . ,Qκ linked with an admissible matrix function se-
quence are said to be admissible themselves.

An admissible matrix function sequence G0, . . ., Gκ is said to be regular admis-
sible, if

_
Ni = {0} for all i = 1, . . . ,κ.

Then, also the projector functions Q0, . . . ,Qκ are called regular admissible.
The numbers r0 = rankG0, . . . ,rκ = rankGκ and u1, . . . ,uκ are named character-
istic values of the DAE on G.

To shorten the wording we often speak simply of admissible projector functions
having in mind the admissible matrix function sequence built with these admissible
projector functions. Admissible projector functions are always cross-linked with
their matrix function sequence. Changing a projector function yields a new matrix
function sequence.
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We refer to [83] for many useful properties of the admissible matrix function
sequences. It always holds that

r0 ≤ ·· · ≤ rκ−1 ≤ rκ .

The notion of characteristic values makes sense, since these values are independent
of the special choice of admissible projector functions and invariant under regular
transformations.

In case of a linear constant coefficient DAE, the construct simplifies to a sequence
of matrices. In particular, the second term in the definition of Bi disappears. It is
long-known that a pair {E,F} of m×m matrices E,F is regular with Kronecker
index µ exactly if an admissible sequence of matrices starting with G0 = AD = E,
B0 := F yields

r0 ≤ ·· · ≤ rµ−1 < rµ = m. (288)

Thereby, neither the factorization nor the special choice of admissible projectors do
matter. The characteristic values describe the structure of the Weierstraß–Kronecker
form : we have l = ∑

µ−1
j=0 (m− r j) and the nilpotent part N contains altogether s =

m− r0 Jordan blocks, among them ri− ri−1 Jordan blocks of order i, i = 1, . . . ,µ ,
see [83, Corollary 1.32].

For linear DAEs with time-varying coefficients, the term (·)′ in (287) means the
derivative in time, and all matrix functions are functions in time. In general, the
term (·)′ in (287) stands for the total derivative in jet variables and then the matrix
function Gi depends on the basic variables (x, t) ∈ G and, additionally, on the jet
variables x1, . . . ,xi+1 ∈Rm. Owing to the total derivative (DΠiD−)′ the new variable
xi+2 ∈ Rm comes in at this level, see [83, Section 3.2].

Owing to the constant-rank conditions, the terms DΠiD− are basically continu-
ous. It may happen, for making these terms continuously differentiable, that the data
function f must satisfy additional smoothness requirements. A precise description
of those smoothness is much too involved and an overall sufficient condition, say
f ∈ Cm, is much too superficial. To indicate that there might be additional smooth-
ness demands we restrict us to the wording f is sufficiently smooth.

The next definition ties regularity up to the inequalities (288) and so generalizes
regularity of matrix pencils for time-varying linear DAEs as well as for nonlinear
DAEs. We emphasize that regularity is supported by several constant-rank condi-
tions.

Definition 6.2. Let the DAE (283) have a properly involved derivative. Let G ⊆
D f ×I f be an open, connected subset. The DAE (283) is said to be

(1) regular on G with tractability index 0, if r0 = m,
(2) regular on G with tractability index µ , if an admissible matrix function se-

quence exists such that (288) is valid on G.
(3) regular on G, if it is, on G, regular with any index (i.e., case (1) or (2) apply).

The open connected subset G is called a regularity region or regularity domain.
A point (x̄, t̄) ∈ D f ×I f is a regular point, if there is a regularity region G 3 (x̄, t̄).
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IfD⊆D f is an open subset and I ⊆I f is a compact subinterval, then the DAE (283)
is said to be regular on D×I, if there is a regularity region G such that D×I ⊂ G.

Example 6.1 (Regularity regions). We write the DAE

x′1(t)+ x1(t) = 0,
x2(t)x′2(t)− x3(t) = 0,

x1(t)2 + x2(t)2−1− γ(t) = 0,

in the form (283), with n = 2, m = k = 3,

f (y,x, t) =

 y1 + x1
x2y2− x3

x2
1 + x2

2− γ(t)−1

 , fy(y,x, t) =

1 0
0 x2
0 0

 ,
D(t) =

[
1 0 0
0 1 0

]
,

for y ∈ R2, x ∈ D f = R3, t ∈ I f = R.
The derivative is properly involved on the open subsets R2×G+ and R2×G−, G+ :=
{x ∈ R3 : x2 > 0}×I f , G− := {x ∈ R3 : x2 < 0}×I f . We have there

G0 = AD =

1 0 0
0 x2 0
0 0 0

 , B0 =

 1 0 0
0 x1

2 −1
2x1 2x2 0.

 .
Letting

Q0 =

0 0 0
0 0 0
0 0 1

 , yields G1 =

1 0 0
0 2x2 −1
0 0 0

 .
G1 is singular but has constant rank. Since N0∩N1 = {0} we find a projector func-
tion Q1 such that N0 ⊆ kerQ1. We choose

Q1 =

0 0 0
0 1 0
0 1

x2
0

 , P1 =

1 0 0
0 0 0
0 − 1

x2
1

 , Π1 =

1 0 0
0 0 0
0 0 0

 , DΠ1D− =

[
1 0
0 0

]
,

and obtain B1 = B0P0Q1, and then

G2 =

1 0 0
0 2x2 + x1

2 −1
0 2x2 0

 .
The matrix G2 = G2(x1,x, t) is nonsingular for all arguments (x1,x, t) with x2 6= 0.
The admissible matrix function sequence terminates at this level. The open con-
nected subsets G+ and G− are regularity regions, here both with characteristics
r0 = 2, r1 = 2, r2 = 3, and tractability index µ = 2. �
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For regular DAEs, all intersections
_
Ni are trivial ones, thus ui = 0, i ≥ 1. Namely,

because of the inclusions

_
Ni ⊆ Ni∩Ni+1 ⊆ Ni+1∩Ni+2 ⊆ ·· · ⊆ Nµ−1∩Nµ ,

for reaching a nonsingular Gµ , which means Nµ = {0}, it is necessary to have
_
Ni = {0}, i≥ 1. This is a useful condition for checking regularity in practice.

Observe that each open connected subset of a regularity region is again a regu-
larity region. A regularity region consist of regular points having uniform charac-
teristics. The union of regularity regions is, if it is connected, a regularity region,
too. Further, the nonempty intersection of two regularity regions is also a regularity
region. Only regularity regions with uniform characteristics may yield nonempty
intersections. Maximal regularity regions are then bordered by so-called critical
points. Solutions may cross the borders of maximal regularity regions and undergo
there bifurcations et cetera, see examples in [83, 95, 82]. No doubt, much further
research is needed to elucidate these phenomena.

6.1.2 The structure of linear DAEs

The general DAE (283) captures linear DAEs

A(t)(Dx)′(t)+B(t)x(t)−q(t) = 0 (289)

as f (y,x, t) := A(t)y + B(t)x− q(t), t ∈ I f . Now, admissible matrix function se-
quences depend only on time t; and hence, we speak on regularity intervals instead
of regions. A regularity interval is open by definition. We say that the linear DAE
with properly leading term is regular on the compact interval [ta, te], if there is an
accommodating regularity interval, or equivalently, if all points of [ta, te] are regular.
If the linear DAE is regular on the interval I, then it is also regular on each subin-
terval of I with the same characteristics. This sounds as a triviality; however, there
is a continuing profound debate about some related questions, cf. [96, Subsection
4.4].

If the linear DAE (289) is regular on the interval I, then (see [83, Section 2.4]) it
can be decoupled by admissible projector functions into an inherent explicit regular
ODE (IERODE)

u′− (DΠµ−1D−)′u+DΠµ−1G−1
µ Bµ D−u = DΠµ−1G−1

µ q (290)

and a triangular subsystem of several equations including differentiations
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0 N01 · · · N0,µ−1

0
. . .

...
. . . Nµ−2,µ−1

0




0
(Dv1)

′

...
(Dvµ−1)

′

 (291)

+


I M01 · · · M0,µ−1

I
. . .

...
. . . Mµ−2,µ−1

I




v0
v1
...

vµ−1

+

H0
H1

...
Hµ−1

D−u =


L0
L1
...
Lµ−1

q.

The subspace imDΠµ−1 is an invariant subspace for the IERODE (290).
This structural decoupling is associated with the decomposition

x = D−u+ v0 + v1 + · · ·+ vµ−1.

The coefficients are continuous and explicitly given in terms of an admissible matrix
function sequence as

N01 :=−Q0Q1D−

N0 j :=−Q0P1 · · ·Pj−1Q jD−, j = 2, . . . ,µ−1,

Ni,i+1 :=−Πi−1QiQi+1D−,

Ni j :=−Πi−1QiPi+1 · · ·Pj−1Q jD−, j = i+2, . . . ,µ−1, i = 1, . . . ,µ−2,
M0 j := Q0P1 · · ·Pµ−1M jDΠ j−1Q j, j = 1, . . . ,µ−1,
Mi j := Πi−1QiPi+1 · · ·Pµ−1M jDΠ j−1Q j, j = i+1, . . . ,µ−1, i = 1, . . . ,µ−2,

L0 := Q0P1 · · ·Pµ−1G−1
µ ,

Li := Πi−1QiPi+1 · · ·Pµ−1G−1
µ , i = 1, . . . ,µ−2,

Lµ−1 := Πµ−2Qµ−1G−1
µ ,

H0 := Q0P1 · · ·Pµ−1KΠµ−1,

Hi := Πi−1QiPi+1 · · ·Pµ−1KΠµ−1, i = 1, . . . ,µ−2,
Hµ−1 := Πµ−2Qµ−1KΠµ−1,

with

K := (I−Πµ−1)G−1
µ Bµ−1Πµ−1 +

µ−1

∑
l=1

(I−Πl−1)(Pl−Ql)(DΠlD−)′DΠµ−1,

M j :=
j−1

∑
k=0

(I−Πk){PkD−(DΠkD−)′−Qk+1D−(DΠk+1D−)′}DΠ j−1QlD−,

l = 1, . . . ,µ−1.
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The IERODE is always uncoupled of the second subsystem, but the latter is tied to
the IERODE (290) if among the coefficients H0, . . . ,Hµ−1 is at least one who does
not vanish. One speaks about a fine decoupling, ifH1 = · · ·=Hµ−1 = 0, and about
a complete decoupling, if H0 = 0, additionally. A complete decoupling is given,
exactly if the coefficient K vanishes identically.

If the DAE (289) is regular and the original data are sufficiently smooth, then
the DAE (289) is called fine. Fine DAEs possess always fine and complete decou-
plings, see [83, Subsection 2.4.3] for the constructive proof. The coefficients of the
IERODE as well as the so-called canonical projector function Πcan = (I−H0)Πµ−1
are independent of the special choice of the fine decoupling projector functions.

It is noteworthy that, if Q0, . . . ,Qµ−1 generate a complete decoupling for a con-
stant coefficient DAE Ex′(t)+Fx(t) = 0, then Πµ−1 is the spectral projector of the
matrix pencil {E,F}. This way, the projector function Πµ−1 associated with a com-
plete decoupling of a fine time-varying DAE represents the generalization of the
spectral projector.

6.1.3 Linearizations

Given is now a reference function x∗ ∈C1
D(I∗,Rm) on an individual interval I∗⊆I f ,

whose values belong to D f . For each such reference function (here not necessarily
a solution!) we may consider the linearization of the (283) along x∗, that is, the
linearized DAE

A∗(t)(Dx)′(t)+B∗(t)x(t) = q(t), t ∈ I∗, (292)

with coefficients

A∗(t) := fy((Dx∗)′(t),x∗(t), t), B∗(t) := fx((Dx∗)′(t),x∗(t), t), t ∈ I∗.

The linear DAE (292) inherits from the nonlinear DAE (283) the properly stated
leading term.

We denote by Cm
re f (G) the set of all Cm functions x∗, defined on individual in-

tervals Ix∗ , and with graph in G, that is, (x∗(t), t) ∈ G for t ∈ Ix∗ . Clearly, then we
have also x∗ ∈ C1

D(Ix∗ ,Rm). By the smoothness of the reference functions x∗ and the
function f we ensure that also the coefficients A∗ and B∗ are sufficiently smooth for
regularity.

Next we adapt the necessary and sufficient regularity condition from [83, Theo-
rem 3.33] to our somewhat simpler situation.

Theorem 6.1. Let the DAE (283) have a properly involved derivative and let f be
sufficiently smooth. Let G ⊆ D f ×I f be an open connected set. Then the following
statements are valid:

(1) The DAE (283) is regular on G if the linearized DAE (292) along each arbi-
trary reference function x∗ ∈ Cm

re f (G) is regular, and vice versa.



Appendix 121

(2) If the DAE (283) is regular on G with tractability index µ and characteristic
values r0 ≤ ·· · ≤ rµ−1 < rµ = m, then all linearized DAEs (292) along refer-
ence functions x∗ ∈ Cm

re f (G) are regular with uniform index µ and characteristics
r0 ≤ ·· · ≤ rµ−1 < rµ = m.

(3) If all linearized DAEs (292) along reference functions x∗ ∈ Cm
re f (G) are reg-

ular, then they have uniform index and characteristics, and the nonlinear DAE
(283) is also regular on G, with the same index and characteristics.

Corollary 6.1. Let the DAE (283) have a properly involved derivative and let f be
sufficiently smooth. Let D ⊆D f be an open connected set and I ⊂ I f be a compact
interval. Then the following statements are valid:

(1) The DAE (283) is regular on D×I if the linearized DAE (292) along each
arbitrary reference function x∗ ∈ Cm(I,Rm) with values in D is regular, and vice
versa.

(2) If the DAE (283) is regular on D×I with tractability index µ and charac-
teristic values r0 ≤ ·· · ≤ rµ−1 < rµ = m, then all linearized DAEs (292) along
reference functions x∗ ∈ Cm(I,Rm) with values in D are regular with uniform
index µ and characteristics r0 ≤ ·· · ≤ rµ−1 < rµ = m.

(3) If all linearized DAEs (292) along reference functions x∗ ∈ Cm(I,Rm) with
values in D are regular, then they have uniform index and characteristics, and
the nonlinear DAE (283) is also regular on D×I, with the same index and
characteristics.

Proof. Statement (1) is a consequence of the Statements (2) and (3).
Statement (2) follows from the construction of the admissible matrix function se-
quences. Namely, for each x∗ ∈ Cm(I,Rm), with values in D, we have

G0(x′∗(t),x∗(t), t) =: G∗ 0(t),

Bi−1(x
(i+1)
∗ (t), · · · ,x′∗(t),x∗(t), t) =: B∗ i−1(t),

Gi(x
(i+1)
∗ (t), · · · ,x′∗(t),x∗(t), t) =: G∗ i(t), t ∈ I, i = 1, . . . ,µ,

which represents an admissible matrix function sequence for the linearized along x∗
DAE.

Statement (3) proves along the lines of [83, Theorem 3.33 ] by means of so-called
widely orthogonal projector functions. The prove given in [83] also works, if one
supposes solely compact individual intervals Ix∗ .

By Lemma 6.1 below, each reference function given on an individual compact
interval can be extended to belong to x∗ ∈ Cm(I,Rm), with values in D. ut

The next assertion is proved in [96].

Lemma 6.1. Let D ⊆ Rm be an open set and I ⊂ R be a compact interval. Let
I∗ ⊂ I be a compact subinterval and s ∈ N.
Then, for each function x∗ ∈ Cs(I∗,Rm), with values in D, there is an extension
x̂∗ ∈ Cs(I,Rm), with values in D.
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6.1.4 Linear differential-algebraic operators

Let the linear DAE (289) be regular with tractability index µ ∈ N on the interval
I = [a,b]. The function space

C1
D(I,Rm) = {x ∈ C(I,Rm) : Dx ∈ C1(I,Rn)}

equipped with the norm ‖x‖C1
D

:= ‖x‖∞ +‖(Dx)′‖∞ is a Banach space. We consider
the regular linear differential-algebraic operator (cf. [96])

T x := A(Dx)′+Bx, x ∈ C1
D(I,Rm),

and, supposing accurately stated boundary conditions in the sense of Definition 2.3,
the composed operator

T x := (T x, Gax(a)+Gbx(b)), x ∈ C1
D(I,Rm),

so that the equations T x = q and T x = (q,γ) represent the DAE and the BVP, re-
spectively.

We consider different image spaces Y and Y ×Rl for the operators T and T . The
natural one is

Y = C(I,Rm).

T and T are bounded in this setting:

‖T x‖∞ ≤ (‖A‖∞‖(Dx)′‖∞ +‖b‖∞‖x‖∞)≤ k‖x‖C1
D
, x ∈ C1

D(I,Rm).

The operator T is surjective exactly if the index µ equals one. Otherwise imT is
a proper nonclosed subset in C(I,Rm), see [83, Subsection 3.9.1], also Appendix
6.1.2. More precisely, one obtains

imT = {q ∈ C(I,Rm) : vµ−1 := Lµ−1q, Dvµ−1 ∈ C1(I,Rn), for j = µ−2, . . . ,1 :

v j := L jq+
µ−1

∑
i= j+1

M j,ivi +
µ−1

∑
i= j+1

N j,i(Dvi)
′, Dv j ∈ C1(I,Rn)}=: Cind µ(I,Rm).

If µ = 1, then T acts bijectively between Banach spaces so that the inverse T −1

is also bounded and the BVP T x = (q,γ) is well-posed.
If µ > 1, then the BVP T x = (q,γ) is essentially ill-posed in this natural setting

because of the nonclosed image of T .

Let be µ > 1. In an advanced setting we put

Y = Cind µ(I,Rm)

and, by introducing the norm ‖q‖ind µ := ‖q‖∞+‖(Dvµ−1)
′‖∞+ · · ·+‖(Dv1)

′‖∞ we
obtain again a Banach space. Regarding the structure of the DAE (cf. Subsubsection
6.1.2) one knows the operators t and T to be bounded again. Namely, we derive for



Appendix 123

each arbitrary x ∈ C1
D(I,Rm) that

‖T x‖ind µ := ‖T x‖∞ +‖(DΠµ−2Qµ−1x)′‖∞ + · · ·+‖(DΠ0Q1x)′‖∞.

Taking into account that

(DΠµ−2Qµ−1x)′ = (DΠµ−2Qµ−1D−)′Dx+DΠµ−2Qµ−1D−(Dx)′

etc. one achieves the wanted inequality ‖T x‖ind µ ≤ kind µ‖x‖C1
D

in fact.
In this advanced setting, as a bounded bijection acting in Banach spaces, T has a

bounded inverse and the BVP is well-posed. This sounds fine, but it is quite illusory.
The advanced image space Cind µ(I,Rm) as well as its norm ‖.‖ind µ strongly depend
on the special coefficients A,D,B. To describe them, one has to be aware of the full
special structure of the given DAE. Except for the index-2 case, there seems to be
no way to practice this formal well-posedness.

Furthermore, the higher the index the stronger the topology given by the norm
‖.‖ind µ , see [83, Subsubsection 3.9.1], [96, Section 2]. It seems to be impossible to
capture errors in practical computational procedures by those norms.

6.2 List of symbols and abbreviations

L(X ,Y ) set of linear operators from X to Y
L(X) = L(X ,X)
L(Rm,Rn) is identified with Rn×m

K∗ transposed matrix
K− generalized inverses
K+ orthogonal generalized (Moore-Penrose) inverse
domK definition domain of the map K
kerK nullspace (kernel) of the operator K
imK image (range) of the operator K
ind{E,F} Kronecker index of the matrix pair {E,F}
〈·, ·〉 scalar product in Rm

(·, ·) scalar product in function spaces
| · | vector and matrix norms
‖ · ‖ norms on function spaces, operator norms
DAE differential-algebraic equation
ODE ordinary differential equation
IVP initial value problem
BVP boundary value problem
IERODE inherent explicit ODE
LSS least squares solution
TPBVP two-point BVP
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characteristic value, 115
conditioning constants, 27
consistent value, 14
critical point, 78

decoupling
complete, 120
fine, 120

ill-posed
BVP, 16

index
Kronecker, 116
tractability, 25, 116

inherent explicit regular ODE, 118
isolated solution, 19, 84

linearization, 120
linearized DAE, 120
locally unique solution, 19

Newton descent, 113
Newton–Kantorovich iteration, 111

properly
involved derivative, 15, 115
stated leading term, 15

regular DAE, 116, 118
regularity region, 116

setting
advanced

ill-posed, 42
well-posed, 42

natural, 28, 37
singularity

of first kind, 75
solution

isolated, 19, 84
locally unique, 19

solvability matrix, 27
stability constant, 16

tractability index, 25, 116
transversality condition, 15

Weierstraß–Kronecker form, 116
well-posed

BVP, 16
singular BVP, 77

131


