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Abstract

We apply on-shell and integrability methods that have been developed in the context
of scattering amplitudes in N = 4 SYM theory to tree-level form factors of this theory.
Focussing on the colour-ordered super form factors of the chiral part of the stress-
energy multiplet as an example, we show how to systematically construct on-shell
diagrams for these form factors with the minimal form factor as further building block
in addition to the three-point amplitudes. Moreover, we obtain analytic representations
in terms of Graßmannian integrals in spinor helicity, twistor and momentum twistor
variables. While Yangian invariance is broken by the operator insertion, we find that
the form factors are eigenstates of the integrable spin-chain transfer matrix built from
the monodromy matrix that yields the Yangian generators. Constructing them via the
method of R operators allows to introduce deformations that preserve the integrable
structure. We finally show that the integrable properties extend to minimal tree-level
form factors of generic composite operators as well as certain leading singularities of
their n-point loop-level form factors.
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1 Introduction

In the last years, there has been tremendous progress in our understanding of N = 4 Super

Yang-Mills (SYM) theory in the planar limit primarily based on two different approaches,

namely the on-shell methods of modern quantum field theory and integrability techniques;

see [1, 2] and [3] for respective reviews. The former set of ideas and techniques has been suc-

cessfully applied to the perturbative study of on-shell scattering amplitudes of elementary

states. On the other hand, integrability-based methods, which rely on exploiting all the

symmetries of the theory, have proven to be very powerful in particular in calculating the

spectrum of anomalous dimensions of gauge-invariant local composite operators. Though

some of the integrable structures have also appeared in the study of scattering amplitudes,

the overlap between both approaches has been rather limited.

Along with scattering amplitudes and correlation functions, another very interesting

quantity in a quantum field theory is the form factor, which forms a bridge between the

previously mentioned on-shell amplitudes and off-shell correlation functions. For a given

gauge-invariant local composite operator O(x) in a quantum field theory, the form factor

FO is defined as the overlap of the off-shell state created by O from the vacuum |0〉 at the
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spacetime point x with an on-shell n-particle state |1, . . . , n〉.1 It can be Fourier transformed

to momentum space, where the operator O carries a momentum q with q2 6= 0, yielding

FO(1, . . . , n; q) =
∫

d4x e−ixq〈1, . . . , n|O(x)|0〉 . (1.1)

This quantity will be our focus of attention for this paper as it is a perfect candidate to

study the theory using both the on-shell and integrability techniques.

In N = 4 SYM theory, form factors have been first studied more than thirty years

back [4], and have received increasing attention of late, both at weak coupling [5–21] and

at strong coupling [22–24] via the AdS/CFT correspondence. They can be calculated using

many of the successful on-shell techniques that were developed in the context of amplitudes.

In particular, BCFW [25, 26] and MHV [27] recursion relations can be applied to construct

form factors at tree level [5, 7] and the resulting expressions can also be interpreted in

terms of the volume of polytopes [18]. Form factors have also been studied at loop level

using generalised unitarity [28–30] not just for the simplest BPS operator and its generali-

sations [5, 11, 17] but also for non-protected operators like the Konishi operator [20], the

operators in the SU(2) sector [21], and even completely generic operators [19]. All these re-

cent developments have shown that simplicity does exist also for form factors if one studies

them using the language of modern on-shell techniques.

However, not all of the interesting features of scattering amplitudes in N =4 SYM the-

ory have a counterpart for form factors yet. A novel way of studying scattering amplitudes

has been proposed in [31] using so-called on-shell diagrams, which are bipartite graphs built

out of two kinds of trivalent on-shell vertices and encode the information of the scattering

process using fully on-shell data. Moreover, each such scattering process is related to an

integral over a Graßmannian manifold. In fact, it has been conjectured that all leading

singularities of the scattering amplitudes of N = 4 SYM theory as well as the tree-level

scattering amplitudes can be obtained from an integral on a Graßmannian [32–34]. So far,

there has been no direct analogue of this geometric picture of scattering for the case of

form factors. One of the goals of this paper is to provide such a formulation, starting with

certain tree-level form factors.

Very little is known about the role of integrability in form factors of N = 4 SYM

theory.2 For amplitudes as well as for correlation functions, integrability manifests itself

in the appearance of an integrable spin chain at weak coupling. In the spectral problem,

single-trace operators are mapped to spin-chain eigenstates and the dilatation operator to

the spin-chain Hamiltonian, see [3]. This integrable Hamiltonian belongs to a whole family

of commuting operators which also include the corresponding transfer matrices. This family

can be diagonalised simultaneously using Bethe ansatz methods. More recently, a somewhat

different spin chain was discovered in the study of amplitudes in N =4 SYM theory [35–42].

It was pointed out in [43] that the superconformal symmetry and the newly discovered dual

1As for amplitudes, the on-shell state is specified by the momenta, helicities and flavours of the n

elementary particles.
2That is, at least at weak coupling. For an application of integrability to form factors at strong coupling,

see [23, 24].
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superconformal symmetry [44] combine into an infinite-dimensional Yangian symmetry,

which yields the underlying integrable spin-chain picture [35, 36]. Amplitudes at tree level

are invariant under this Yangian symmetry.

Recently, it was proposed that the problem of computing the dilatation operator, i.e.

the Hamiltonian of the integrable spin chain, in N = 4 SYM theory can be re-cast in

a compact form using generalised unitarity methods with form factors being the main

ingredients [19–21].3 In fact, a special class of form factors called minimal form factors,

with the number of external fields n equal to the number of fields in the corresponding

composite operator, realises this spin-chain picture of the spectral problem in the language

of on-shell super fields used for amplitudes [19].

Naively, due to the nature of form factors and also motivated by the results mentioned

above, we would expect to obtain a relation between the integrable spin chain of the spec-

tral problem and the one that appeared in the study of tree-level scattering amplitudes.

Indeed, in this paper, we will show that form factors are special states of the latter in-

tegrable spin chain, namely eigenstates of the transfer matrix built from the monodromy

that yields the Yangian generators studied in the context of amplitudes, provided that the

corresponding composite operator is an eigenstate of the former integrable spin chain. This

implies enhanced symmetries for the form factors, analogous to the Yangian symmetry of

scattering amplitudes.

This paper is structured as follows. In the remainder of this section, we discuss the

stress-tensor super multiplet and its super form factors, which we will be studying in

most of the rest of the paper. In section 2, we briefly review various ideas within the

framework of on-shell techniques for scattering amplitudes, like on-shell diagrams, their

construction via BCFW recursion relations and inverse soft limits as well as a Graßmannian

integral representation, and present the corresponding extensions of these ideas for the

case of form factors. Our constructions rely on the use of the integrability inspired R-

operator techniques and the identification of each on-shell graph with a permutation as

it was done for the scattering amplitudes. To allow for a pedagogical presentation, we

restrict ourselves to the MHV level in this section. Next, in section 3, we further extend the

techniques of the previous section in order to study similar form factors but at the NMHV

and higher NkMHV level. We also present some lower-point form factors as examples and

conjecture a general Graßmannian integral formulation for tree-level form factors. In section

4, we investigate the role of integrability for tree-level form factors using the spin-chain

monodromy matrix. Specifically, we show that all form factors of the chiral stress-tensor

multiplet are annihilated by the transfer matrix given by its super trace. We also study the

action of this transfer matrix on the minimal form factors of general operators as well as

on on-shell diagrams involving them. Finally, in section 5, we conclude with a summary of

our results and an outlook about future directions.

Note added On the day of submission, the paper [48] appeared, which has some overlap

with this article.
3For the calculation of the dilatation operator from on-shell methods via correlation functions, see

[13, 20, 45–47].
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Form factors of the stress-tensor super multiplet

In most of this paper, we focus on the form factors of the chiral part of the stress-tensor

super multiplet, which are the most widely studied ones. Using N = 4 harmonic superspace

[49], this part of the stress-tensor super multiplet can be written as

T (x, θ+) = tr(φ++φ++) + · · · +
1

3
(θ+)4L , (1.2)

where θ+a
α = θA

α u+a
A , θ−a′

α = θA
α u−a′

A with projectors u+a
A and u−a′

A . The indices a, a′ and

± correspond to SU(2) × SU(2)′ × U(1) ⊂ SU(4), see [7, 18, 50] for details and further

references. The lowest component in T (x, θ+) is the scalar operator tr(φ++φ++) with φ++ =
1
2ǫabu

+a
A u+b

B φAB , whereas its highest component is the chiral part of the on-shell Lagrangian

L.

The super form factor of this super multiplet is defined as

Fn,k(1, . . . , n; q, γ−) =
∫

d4x d4θ+ e−iqx−iθ+a
α γ−α

a 〈1, . . . , n|T (x, θ+)|0〉 , (1.3)

where γ−αa is the supermomentum of the multiplet and k denotes the (supersymmetric

extension of the) MHV degree. For the minimal MHV degree k = 2, the form factor of

T (x, θ+) reads [7]:

Fn,2(1, . . . , n; q, γ+) =
δ4(P )δ4(Q+)δ4(Q−)

〈12〉〈23〉 · · · 〈n−1 n〉〈n1〉
, (1.4)

where

P =
n∑

i=1

λiλ̃i − q , Q+ =
n∑

i=1

λiη̃
+
i , Q− =

n∑

i=1

λiη̃
−
i − γ− (1.5)

with Q+aα = ū+a
A QAα, Q−a′α = ū−a′

A QAα and η̃+a = ū+a
A η̃A, η̃−a′

= ū−a′

A η̃A.4

Note that throughout this paper we will be treating colour-ordered tree-level form

factors and amplitudes. Hence, we will not indicate this at each expression individually.

2 The MHV case

In this section, we demonstrate that many of the recent successful techniques that were de-

veloped for scattering amplitudes can also be applied to MHV form factors, namely on-shell

diagrams, deformations, R operators and a (deformed) Graßmannian integral representa-

tion.

2.1 On-shell diagrams, inverse soft limits, BCFW bridges and permutations

On-shell diagrams

On-shell diagrams have proven to be a useful tool in the construction of scattering ampli-

tudes. They are built from two different elements, namely the three-point MHV amplitude

4The projectors ū are related to the u’s by conjugation.

5



A3,2 and the three-point MHV amplitude A3,1:

1

3 2

= A3,2(1, 2, 3) =
δ4(λ1λ̃1 + λ2λ̃2 + λ3λ̃3)δ8(λ1η̃1 + λ2η̃2 + λ3η̃3)

〈12〉〈23〉〈31〉
,

1

3 2

= A3,1(1, 2, 3) =
δ4(λ1λ̃1 + λ2λ̃2 + λ3λ̃3)δ4([12] η̃3 + [23] η̃1 + [31] η̃2)

[12] [23] [31]
.

(2.1)

All scattering amplitudes can be built from BCFW recursion relations [25, 26], which can

be depicted as [31]

An,k =
∑

n′,n′′,k′,k′′

n′+n′′=n+2
k′+k′′=k+1

3

n′

n

n′ + 1

· ·
· · · ·
An′,k′ An′′,k′′

2 1

. (2.2)

Hence, they can also be encoded in on-shell diagrams. Similarly to the construction via

BCFW recursion relations, the on-shell diagram encoding an amplitude is not unique.

Equivalent on-shell diagrams can be transformed into each other via the so-called square

move and merge/unmerge move, which are depicted in figure 1 and can be applied to any

subdiagram of a given on-shell diagram.

1

3

2

4

=

1

3

2

4

(a) Square move.

1

3

2

4

=

4

2 1

3

=

4

2 1

3

(b) Merge/unmerge move for black vertices.

Figure 1: Moves connecting equivalent on-shell diagrams. Similarly to the case for black

vertices, the merge/unmerge move also exists for white vertices.

In order to construct form factors via BCFW recursion relations, the minimal form

factor is required as an additional building block. Hence, it is also required to extend on-

shell graphs to the construction of form factors. We depict the minimal form factor of T

6



as

2 1
= F2,2(1, 2) =

δ4(λ1λ̃1 + λ2λ̃2 − q)δ4(λ1η̃+
1 + λ2η̃+

2 )δ4(λ1η̃−
1 + λ2η̃−

2 − γ−)

〈12〉〈21〉
.

(2.3)

We can then use the construction of the form factors of T via BCFW recursion relations

[5, 7], which we depict as

Fn,k =
∑

n′,n′′,k′,k′′

n′+n′′=n+2
k′+k′′=k+1

3

n′

n

n′ + 1

· ·
· · · ·
Fn′,k′ An′′,k′′

2 1

+

3

n′

n

n′ + 1

· ·
· · · ·
An′,k′ Fn′′,k′′

2 1

. (2.4)

Inverse soft limit

The MHV form factors Fn,2 can also be constructed from the minimal form factors via the

so-called inverse soft limit [51–53] similarly to MHV amplitudes [54]. In total, two types of

inverse soft limits exist, which either preserve the MHV degree or increase it by one unit.

In terms of on-shell diagrams, the k-preserving inverse soft limit amounts to recursively

adding the structure

(2.5)

to two adjacent legs of the diagram.

For the four-point amplitude A4,2, this construction starts at the three-point amplitude

A3,2 and can be depicted as

−−−−→ . (2.6)

Similarly, the three-point form factor F3,2 can be constructed from the minimal form factor

F2,2 as5

−−−−→ . (2.7)

Note that the diagram in (2.7) is not cyclically invariant, although the expression it

is encoding is. Hence, we can add an equivalence move for on-shell graphs that involve

5The result of this construction can easily be seen to agree with the one obtained from the BCFW

recursion relation (2.4).
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the minimal form factor, which can also be applied to any subgraph of a given on-shell

graph. We call it rotation move and depict it in figure 2. Together with the equivalence

moves for amplitudes shown in figure 1, the rotation move guarantees the cyclic invariance

of all on-shell diagrams of MHV form factors. This is similar to the situation for scattering

amplitudes. By itself, also the on-shell diagram for the four-point MHV amplitude is not

cyclically invariant. Its cyclic invariance has to be imposed in the form of the square move.

However, this suffices to guarantee the cyclic invariance of all other MHV amplitudes when

combined with the merge/unmerge move.

1

2

3
=

2

3

1
=

3

1

2

Figure 2: Rotation move for on-shell diagrams involving the minimal form factor. An

analogous move exists for the inverse combination of black and white vertices.

Finally, note that we can also construct NmaxMHV amplitudes and form factors via

the inverse soft limit by adding the k-increasing structure

(2.8)

to two adjacent legs of the diagram. The resulting on-shell diagrams are related to those

of MHV type by exchanging the black and white vertices.6

Permutations

For amplitudes, it is possible to associate a permutation σ to every on-shell graph by

starting at some external particle i and turning right at every black vertex and left at

every white vertex [31]:

1

3 2

→ σ = (3, 1, 2) ,

1

3 2

→ σ = (2, 3, 1) . (2.9)

If the path ends on particle j, set σ(i) = j. We can extend this to form factor on-shell

graphs by the prescription to turn back at every minimal form factor:

2 1
→ σ = (1, 2) . (2.10)

6In fact, all NkMHV scattering amplitudes and form factors of T can be constructed via the inverse

soft limit using both (2.5) and (2.8) [54]. In the case of non-extremal k, however, the position and order of

adding these structures becomes important.
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As both MHV amplitudes and MHV form factors can be constructed by k-preserving

inverse soft limits, we find that their on-shell graphs encode the same permutation, namely

MHV : σ = (3, . . . , n, 1, 2) . (2.11)

Construction via BCFW bridges and permutations

Using the permutation, a corresponding on-shell graph for general tree-level amplitudes can

be constructed in a systematic way as follows [31]. First, the permutation is decomposed

into a chain of transpositions, where the multiplication of permutations corresponds to the

left action. Second, each transposition (i, j) is interpreted as a BCFW bridge

j i

(2.12)

connecting the legs i and j. Third, these BCFW bridges are applied to an empty diagram

composed of n lines that start in corresponding vacua,7 but in the inverse order compared

to the multiplication in the chain of transpositions. Fourth, the vacua, the edges starting at

the vacua and every vertex that is connected to less then three edges is removed to obtain

an on-shell diagram. This construction is illustrated for A3,2 in figure 3.

(3, 1, 2) = (2, 3)(1, 2) −→

− − +

3 2 1

−→

1

3 2

Figure 3: Constructing the on-shell diagram of A3,2 via permutations and BCFW bridges.

The on-shell diagrams of the MHV form factors can be systematically constructed via

BCFW bridges in analogy to the amplitude case. In contrast to the amplitude case, where

only one-site amplitude vacua appear, also the minimal form factor occurs as a vacuum.

This construction is illustrated in figures 4, 5 and 6.

(3, 1, 2) = (2, 3)(1, 2) −→

+

3 2 1

−→
1

2

3

Figure 4: Constructing the on-shell diagram of F3,2 via permutations and BCFW bridges.

7We will give further meaning to these vacua below.
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(3, 4, 1, 2) = (2, 3)(3, 4)(1, 2)(2, 3) −→

+ +

4 3 2 1

−→

1

4

3
2

Figure 5: Constructing the on-shell diagram of F4,2 via permutations and BCFW bridges.

(3, 4, 5, 1, 2) = (2, 3)(3, 4)(4, 5)(1, 2)(2, 3)(3, 4) −→

+ + +

5 4 3 2 1

−→

1

5

4

3
2

Figure 6: Constructing the on-shell diagram of F5,2 via permutations and BCFW bridges.

2.2 Deformed form factors and R operators

We can now introduce deformations of the form factors and construct these deformed form

factors in analogy to the amplitude case [35, 37, 39–42, 55]. For amplitudes, a sequence

of BCFW bridges can be translated into a chain of R operators that acting on a suitable

vacuum state produce a deformed version of the amplitude, or rather some BCFW term

of it. In this section, we will use the R operators primarily as means to obtain analytic

expressions for the form factors, in particular representations in terms of Graßmannian

integrals. However, the R-operator formalism is based on the spin-chain picture of integra-

bility and we will use this fact in section 4 to show that form factors are well defined states

in the integrable model and posses enhanced symmetry properties. There, we will also give

further details concerning the definition and the properties of the R operators and discuss

the integrability-preserving deformations.

The R operators [35] can be defined by their action on general functions f of the

kinematic data,8

Rij(u)f(λi, λ̃i, η̃i, λj , λ̃j , η̃j) =
∫

dα

α1+u
f(λi − αλj, λ̃i, η̃i, λj , λ̃j + αλ̃i, η̃j + αη̃j) . (2.13)

Here, the parameter u will eventually correspond to a (integrability-preserving) deformation

of the physical form factor. Moreover, the vacua that occurred in the previous discussion

8Note that we extend the usual definition to harmonic superspace.
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are given by
+

i
= δ+

i = δ2(λi) ,

−

i
= δ−

i = δ2(λ̃i)δ
4(η̃i) . (2.14)

There are two types of them, reflecting the different possible MHV degrees of the final

expression.

Let us consider the three-particle MHV amplitude A3,2 in figure 3 as example. The

sequence of transpositions (2, 3)(1, 2) translates into

R23(u32)R12(u31)δ+
1 δ−

2 δ−
3 =

δ4(
∑3

i=1 λiλ̃i)δ4(
∑3

i=1 λiη̃
+
i )δ4(

∑3
i=1 λiη̃

−
i )

〈12〉1−u23 〈23〉1−u31 〈31〉1−u12
, (2.15)

where ui are parameters associated to deformations of the local central charges (see section

4) and

uij = ui − uj . (2.16)

The undeformed three-particle MHV amplitude A3,2 is recovered in the limit ui → 0.

The previous discussion suggests that we can use essentially the same construction for

the three-particle MHV form factor; the only diagrammatic difference is the substitution

of the minimal form factor for the vacua at sites 2 and 3, cf. figure 4. Using the minimal

form factor (2.3), which we label by the two sites it occupies, we find that the same chain

of R operators produces a deformed version of the three-point MHV form factor:9

R23(u32)R12(u31)δ+
1 F2,2(2, 3) =

δ4(
∑3

i=1 λiλ̃i − q)δ4(
∑3

i=1 λiη̃
+
i )δ4(

∑3
i=1 λiη̃

−
i − γ−)

〈12〉1−u23 〈23〉1−u31 〈31〉1−u12
.

(2.17)

In the limit of vanishing deformation parameters, this reduces to (1.4) with n = 3.

Since all n-point MHV form factors can be obtained by iterated inverse soft limits, this

construction generalises to all n, in particular to the further examples shown in figures 5

and 6. The result is

Fn,2(1, . . . , n) =
δ4(
∑n

i=1 λiλ̃i − q)δ4(
∑n

i=1 λiη̃
+
i )δ4(

∑n
i=1 λiη̃

−
i − γ−)∏n

i=1〈i i+1〉1−ui+1 i+2
, (2.18)

which reduces to (1.4) in the limit of vanishing deformation parameters.

Instead of performing the construction of (2.18) via R operators explicitly, we will now

use the R operators to obtain a Graßmannian integral representation that is valid for all

n and evaluates to (2.18).

2.3 A (deformed) Graßmannian integral representation for the MHV form

factor

The minimal form factor (2.3) can be rewritten in a form that closely resembles the vacua

(2.14) used in the construction via R operators:

F2,2(1, 2) = δ2(λ̃1)δ4(η̃1)δ2(λ̃2)δ4(η̃2) ≡ δF
12 . (2.19)

9Here and in what follows, we will ignore phases that also appear in the amplitude case.
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Here, we have absorbed the off-shell (super) momentum of the operator into modified

kinematic variables for the on-shell states,

λ̃1 = λ̃1 −
〈2|q

〈21〉
, η̃−

1 = η̃−
1 −

〈2|γ−

〈21〉
, η̃+

1 = η̃+
1 ,

λ̃2 = λ̃2 −
〈1|q

〈12〉
, η̃−

2 = η̃−
2 −

〈1|γ−

〈12〉
, η̃+

2 = η̃+
2 .

(2.20)

Note that this expression looks exactly like δ−
1 δ−

2 , though with twisted kinematics λ̃ and η̃

that contain the information about the off-shell (super) momentum insertion.

Using this form of the minimal form factor, we can apply the same sequence of R

operators as in (2.17) to obtain, before integration,

F3,2(1, 2, 3) = R23(u32)R12(u31)δ+
1 δF

23

=
∫

dα2

α1+u32
2

∫
dα1

α1+u31
1

δ4(C(α1, α2) · λ̃) δ8(C(α1, α2) · η̃) δ2(C⊥(α1, α2) · λ) ,

(2.21)

where the super spinor helicity variables 2 and 3 are twisted as in (2.19) while 1 is untwisted.

The matrices C and C⊥ are orthogonal to each other, i.e. C(C⊥)T = 0, and given by

C(α1, α2) =

(
α1 1 0

0 α2 1

)
, C⊥(α1, α2) =

(
1 −α1 α1α2

)
. (2.22)

Their products with the external super spinor helicity variables are defined as

(C · λ̃)α̇
I =

3∑

i=1

CIiλ̃
α̇
i , (C · η̃)A

I =
3∑

i=1

CIiη̃
A
i , (C⊥ · λ)α

J =
3∑

i=1

C⊥
Jiλ

α
i , (2.23)

where I = 1, . . . , k and J = 1, . . . , n − k. We can also write (2.21) in a GL(2) invariant way,

as an integral over the Graßmannian G(2, 3):

F3,2(1, 2, 3) =
∫

d2×3C

(12)1−u23 (23)1−u31 (31)1−u12
δ4(C · λ̃) δ8(C · η̃) δ2(C⊥ · λ) , (2.24)

where (i j) denotes the minor of C that is built from the columns i and j. This is precisely

the (deformed) Graßmannian integral for the three-point MHV amplitude [41, 42] with the

twisted kinematics accounting for the operator insertion.

We can generalise the above derivation to an arbitrary number of external on-shell

fields:

Fn,2(1, . . . , n) =
∫

d2×nC∏n
i=1(i i+1)1−ui+1 i+2

δ4(C · λ̃) δ8(C · η̃) δ2n−4(C⊥ · λ) . (2.25)

Here, the shifted kinematic variables can actually be at any two positions. One can easily

check that the sequence of R operators necessary to derive this expression does not contain

BCFW shifts that would spoil this simple dependence on the modified kinematics λ̃, η̃. It is

also trivial to check that this integral representation gives the correct result upon localising

12



the integration on the support of the delta functions: we simply take the (deformed) Parke-

Taylor formula and replace the kinematic variables, λ̃ → λ̃, η̃ → η̃. Since the λ’s are

not modified, the Park-Taylor prefactor is unaffected by this replacement, and the only

effects are shifts in the (super) momentum conserving delta functions, P → P − q and

Q− → Q− − γ−. This follows from the identity

λα
i

(
λ̃α̇

i −
〈j|qα̇

〈ji〉

)
+ λα

j

(
λ̃α̇

j −
〈i|qα̇

〈ij〉

)
= λα

i λ̃α̇
i + λα

j λ̃α̇
j −

εγβ(λα
i λγ

j − λα
j λγ

i )

〈ji〉︸ ︷︷ ︸
=δα

β

qβα̇ , (2.26)

and a similar identity for the η̃’s. The above argument shows that (2.25) correctly repro-

duces (2.18) and in particular the undeformed result (1.4).

3 Beyond MHV

In the previous section, we have considered the simplest form factors, namely the MHV

form factors, to introduce many important concepts. In this section, we will see that these

concepts continue to apply beyond MHV, although with some modifications. In particular,

we will conjecture a Graßmannian integral representation for all form factors, both in spinor

helicity as well as in twistor and momentum twistor form, and provide several non-trivial

checks.

3.1 On-shell diagrams and R operators

Since all form factors can be constructed via BCFW recursion relations as shown in (2.4), we

can also directly associate on-shell diagrams to each BCFW term — completely independent

of the MHV degree k. One main difference between k = 2 and k > 2 is that all MHV

form factors can be constructed via the inverse soft limit without regard to the order and

insertion positions, which directly gives the on-shell diagram. For k > 2, the result of the

BCFW construction, and hence the correct on-shell diagram, is less obvious. A second main

difference between k = 2 and k > 2 is that, both for amplitudes as well as for form factors,

there are several BCFW terms and hence on-shell diagrams which have to be summed to

obtain the complete expression. However, for amplitudes, they can be combined into a single

top-cell diagram, which corresponds to a top-dimensional integral over the Graßmannian

and yields all required BCFW terms when taking suitable residues. We will find in section

3.2 that we can define such top-dimensional integrals also for form factors. However, we

will see below that a sum of several top-cell diagrams will be required.

Likewise, it is always possible to construct a given on-shell graph by acting with a chain

of BCFW bridges on suitable vacua. Translating these BCFW bridges to R operators, we

can build deformed BCFW terms and top-cell diagrams for form factors as in section 2.2.

Hence, in order to construct Graßmannian integrals and R operator representations, the

first important step is to identify the corresponding top-cell diagrams. Let us look at several

examples first.

13



NmaxMHV

A special class of form factors beyond k = 2 is given by NmaxMHV, which has k = n.

For amplitudes, the corresponding case is MHV, which has k = n − 2. Similarly to MHV

amplitudes, NmaxMHV form factors can be constructed via the inverse soft limit without

regard to the order and insertion points. Hence, the on-shell graph is immediate. The

permutation associated to these on-shell diagrams is

NmaxMHV : σ = (n − 1, n, 1, 2, . . . , n − 2) . (3.1)

In the construction via R operators, we now have n − 2 conjugate amplitude vacua δ−
i on

the right of the minimal form factor instead of n − 2 amplitude vacua δ+
i on its left. In the

simplest case of n = k = 3, this is depicted in figure 7.

(2, 3, 1) = (1, 2)(2, 3) −→

−

3 2 1

−→
1

2

3

Figure 7: Constructing the on-shell diagram of F3,3 via permutations and BCFW bridges.

NMHV

The first case that is truly beyond MHV is k = 3 for n ≥ 4. For the case of n = 4,

the BCFW sums for all adjacent shifts are shown in figure 8. They have been generated

using (2.4). Applying the moves in figures 1 and 2, it is easy to see that

Ai = D(i+2) mod 4 , Bi = C(i+2) mod 4 . (3.2)

These BCFW terms can be obtained as residues from the sum of two different top-cell

diagrams. The first of these is shown in figure 9 together with its permutation and con-

struction via R operators; the second one can be obtained from it by a cyclic shift of the

external on-shell legs by two. Concretely, all vertical edges in the top-cell diagram in figure

9 are removable. Deleting them, we obtain from left to right C2, A1, C3 and A2.

Several remarks are in order. First, we do require more than one top-cell diagram to

generate all BCFW terms. Second, the top-cell diagram is not cyclically invariant, and nei-

ther is the corresponding permutation. Instead, we (in principle) have to explicitly consider

all cyclic permutations of the top-cell diagram and the corresponding permutation. Third,

the permutation is not decomposed into a minimal number of transpositions.

It is possible to construct other cases with higher n, k in an analogous way.

NkMHV and a relation to amplitude on-shell diagrams

We conclude this subsection with a general observation relating the on-shell diagrams of

form factors with those of amplitudes. In particular, this will lead to (a conjecture for) the

form factor top-cell diagrams at general n, k.
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4

3
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1

+

3
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4

+
1

2

3
4

+

2

34

1

A4 B4 C4 D4

Figure 8: BCFW terms of F4,3 for all adjacent shift. The ith line stems from a shift in i

and i + 1.

(4, 2, 3, 1) = (1, 2)(3, 4)(2, 3)(1, 2)(3, 4) −→

+ −

4 3 2 1

−→

1

23

4

Figure 9: Constructing the top-cell diagram of F4,3 via permutations and BCFW bridges.

We note that the n-point form factor shares interesting features with the (n + 2)-point

amplitude. To begin with, the MHV degree k ranges from 2 to n in both cases. Moreover,

n + 2 is the expected number of kinematic dependencies if we consider that the off-shell

(super) momentum of the operator can be parametrised by two on-shell (super) momenta.
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Finally, we have found that we can obtain the top-cell diagrams of Fn,k from the top-

cell diagram of An+2,k by applying moves until a box appears and replacing this box with

the minimal form factor. Graphically, this relation reads

n · · · 3 2 1

n + 2n + 1

−→

n · · · 3 2 1

,

(3.3)

where we have replaced the box at the legs n + 1 and n + 2 for the sake of concreteness.

This relation is valid for all form factors presented in this paper.

At the level of the BCFW terms, a respective relation can be seen to be true by con-

sidering the BCFW recursion relations (2.2) and (2.4). Note that for n = 2 the amplitude

on-shell diagram is nothing but a box and entirely replaced by the minimal form factor.

Constructing the amplitude An+2,k recursively via (2.2), we find that boxes can only occur

at the boundary of the on-shell diagram. Then constructing Fn,k recursively via (2.4), we

find that each term in (2.4) can be obtained by replacing one of the boxes in a term of the

construction of An+2,k by the minimal form factor. It would be interesting to prove this

relation also at the level of the top-cell diagram(s).

Using the relation (3.3) between Fn,k and An+2,k, we can also relate the corresponding

permutations. By replacing the box by the minimal form factor, we can hide the corre-

sponding legs of the amplitude in the composite operator. At the level of permutations,

this connects the preimage of the hidden leg to its image. For An+2,k, the permutation

corresponding to the top-cell diagram reads

An+2,k : σ = (k + 1, . . . , n, n + 1, n + 2, 1, 2, . . . , k) . (3.4)

If we hide the legs n + 1 and n + 2, we obtain

Fn,k : σ = (k + 1, . . . , n, k − 1, k, 1, 2, . . . , k − 2) . (3.5)

Moreover, the top-cell diagram with the minimal form factor replaced by the open legs

n + 1 and n + 2 is characterised by

Fn,k without F2,2 : σ̃ = (k + 1, . . . , n, n + 2, n + 1, 1, 2, . . . , k, k − 1) . (3.6)

The permutation σ̃ allows us to directly generate this on-shell diagram e.g. using the

Mathematica package positroid.m [56].

Let us conclude with a comment about the role of the permutation for form factors.

As for scattering amplitudes, it is invariant under all equivalence moves. In contrast to

the case for tree-level scattering amplitudes, the permutation σ for the complete form
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factor on-shell diagram requires a decomposition into more than the minimal number of

transpositions to construct the corresponding on-shell diagram via BCFW bridges as shown

above. However, the modified permutation σ̃ can be directly used to obtain the on-shell

diagram with the minimal form factor replaced by the open legs n + 1 and n + 2. This

is similar to the situation for one-loop amplitudes, whose on-shell diagrams are also best

not constructed from their permutations but from the permutations of the corresponding

higher point amplitudes before taking the forward limit.

3.2 Graßmannian integrals for higher MHV degree

Having identified (a conjecture for) the general top-cell diagram, let us now turn to the

Graßmannian integral representation for form factors.

General considerations on the Graßmannian

The fundamental idea behind Graßmannian integral representations of scattering ampli-

tudes [31–33] is to express momentum conservation in a geometric way.10 Regarding the

external kinematic data as a pair of two-planes λ and λ̃ in n-dimensional space, momentum

conservation is expressed as the orthogonality of these planes:

λ · λ̃ ≡
n∑

i=1

λiλ̃i = 0 . (3.7)

The Graßmannian representation linearises this constraint by introducing an auxiliary hy-

perplane C ∈ G(k, n) such that

(C · λ̃)α̇
I =

n∑

i=1

CIiλ̃
α̇
i = 0 and (C⊥ · λ)α

J =
n∑

i=1

C⊥
Jiλ

α
i = 0 =⇒ λ · λ̃ = 0 , (3.8)

where C⊥ is the orthogonal complement of C fulfilling C(C⊥)T = 0 and I = 1, . . . , k, J =

1, . . . , n − k. The Graßmannian integral for scattering amplitudes integrates a holomorphic

form on G(k, n) on the support of these constraints.

As discussed in section 2.3, we can similarly geometrise momentum conservation for

form factors. Setting

λ̃k = λ̃k , k = 1, . . . , n , k 6= i, j , λ̃i = λ̃i −
〈j|q

〈ji〉
, λ̃j = λ̃j −

〈i|q

〈ij〉
(3.9)

for arbitrary i and j, we can express momentum conservation as λ · λ̃ = 0; cf. (2.26).

We also saw that in the MHV case a naive way of introducing an auxiliary Graßmannian

works. One can simply use the same Graßmannian and the same form as one would use for

the MHV amplitude with the same number of legs. It is clear, however, that this way of

linearising the geometrical constraint cannot work beyond MHV. For instance, the MHV

degree k ranges up to n for form factors, while for amplitudes it only ranges up to n − 2.

10Here, we focus on momentum for brevity. The same arguments apply to super momentum by replacing

λ̃ with η̃.
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Since G(n, n) is just a point, a larger Graßmannian is necessary for NmaxMHV, but in fact

already starting from NMHV.

The different range of MHV degrees already suggests that the correct Graßmannian is

G(k, n + 2); this also fits nicely with the observation (3.3) as well as with the general fact

that an off-shell momentum can be parametrised by two on-shell ones. Indeed, instead of

(3.9), we can define new kinematic variables as a pair of two-planes in an (n+2)-dimensional

space as
λi = λi , i = 1, . . . , n , λn+1 = ξA , λn+2 = ξB ,

λ̃i = λ̃i , i = 1, . . . , n , λ̃n+1 = −
〈ξB|q

〈ξBξA〉
, λ̃n+2 = −

〈ξA|q

〈ξAξB〉
,

(3.10)

where ξA and ξB are arbitrary non-collinear reference spinors. Momentum conservation is

then expressed as λ · λ̃ = 0. As shown in (2.26), the two additional on-shell momenta indeed

encode the off-shell momentum: λn+1λ̃n+1 + λn+2λ̃n+2 = −q. Analogously, we can define

fermionic variables

η̃+
i = η̃+

i , i = 1, . . . , n , η̃+
n+1 = 0 , η̃+

n+2 = 0 ,

η̃−
i = η̃−

i , i = 1, . . . , n , η̃−
n+1 = −

〈ξB |γ−

〈ξBξA〉
, η̃−

n+2 = −
〈ξA|γ−

〈ξAξB〉
,

(3.11)

which encode the off-shell super momentum as λn+1η̃−
n+1 + λn+2η̃−

n+2 = −γ−. Super-

momentum conservation can then be written as λ · η̃ = 0.

We can now linearise the constraint imposed by (super) momentum conservation by

requiring C ′ · λ̃ = 0, C ′ · η̃ = 0 and C ′⊥ · λ = 0 with C ′ ∈ G(k, n + 2).

From on-shell graphs to Graßmannian integrals

To show that form factors can be written as integrals over the Graßmannian G(k, n + 2),

we break the corresponding diagram into two pieces: the minimal form factor (2.19) and

a purely on-shell piece with n + 2 legs for which a Graßmannian integral representation is

known. We then glue these two pieces together, i.e. we perform the on-shell phase space

integration. We start by discussing this procedure in a general form that can be applied to

any diagram; then, we will look at some low-point examples to see how the explicit form

for top-cell diagrams looks like.

The on-shell piece that will be glued with the minimal form factor can be written

as [31]

I =
∫

dα1

α1
· · ·

dαm

αm
δk×2(C · λ̃) δk×4(C · η̃) δ(n+2−k)×2(C⊥ · λ) , (3.12)

where the matrix C depends on the αi’s, C = C(αi) ∈ G(k, n + 2) and m is the dimension

of the corresponding cell in the Graßmannian. Gluing the minimal form factor to the legs

n + 1 and n + 2 corresponds to calculating

∫ n+2∏

i=n+1

(
d2λi d2λ̃i

Vol[GL(1)]
d4η̃i

)
δF

n+1 n+2

∣∣∣
λ→−λ

I(1, . . . , n + 2) , (3.13)
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where δF was defined in (2.19) and the signs of the corresponding λ’s are inverted since

the two particles are ingoing with respect to δF . We can perform the λ̃ and η̃ integration

using the delta functions of the minimal form factor (2.19); this replaces

λ̃n+1 → −
〈n + 2|q

〈n+2 n+1〉
, η̃−

n+1 → −
〈n + 2|γ−

〈n+2 n+1〉
, η̃+

n+1 → 0 ,

λ̃n+2 → −
〈n + 1|q

〈n+1 n+2〉
, η̃−

n+2 → −
〈n + 1|γ−

〈n+1 n+2〉
, η̃+

n+2 → 0 .

(3.14)

To remove the GL(1)2 redundancy in the remaining λ integrations, we parametrise

λn+1 = ξA − β1ξB , λn+2 = ξB − β2ξA , (3.15)

where ξA and ξB are two arbitrary but linearly independent reference spinors, which will

be identified with the ones in (3.10). With this, 〈n+1 n+2〉 = (β1β2 − 1)〈ξBξA〉 and the

replacement (3.14) becomes

λ̃n+1 →
1

β1β2 − 1

〈ξB |q

〈ξBξA〉
+

β2

β1β2 − 1

〈ξA|q

〈ξAξB〉
,

η̃−
n+1 →

1

β1β2 − 1

〈ξB|γ−

〈ξBξA〉
+

β2

β1β2 − 1

〈ξA|γ−

〈ξAξB〉
,

λ̃n+2 →
1

β1β2 − 1

〈ξA|q

〈ξAξB〉
+

β1

β1β2 − 1

〈ξB |q

〈ξBξA〉
,

η̃−
n+2 →

1

β1β2 − 1

〈ξA|γ−

〈ξAξB〉
+

β1

β1β2 − 1

〈ξB|γ−

〈ξBξA〉
.

(3.16)

At the same time, the measure transforms to

∫
d2λn+1

Vol[GL(1)]

d2λn+2

Vol[GL(1)]
= 〈ξAξB〉〈ξBξA〉

∫
dβ1dβ2 . (3.17)

Applying the substitutions in (3.16), we can write (3.13) as

IF = 〈ξAξB〉〈ξBξA〉
∫

dα1

α1
· · ·

dαm

αm

dβ1 dβ2

(1 − β1β2)2

× δk×2(C ′(αi, βi) · λ̃) δk×4(C ′(αi, βi) · η̃) δ(n+2−k)×2(C ′⊥(αi, βi) · λ) , (3.18)

where we recombined the columns of the matrix C such that they form the coefficients of

the kinematic data λ̃, η̃ defined in (3.10) and (3.11). This new matrix C ′ = (C ′
1 · · · C ′

n+2)

depends both on the αi’s as well as the βi’s. Its first n columns coincide with those of C

and the last two columns are given respectively by

C ′
n+1 =

1

1 − β1β2
Cn+1 +

β1

1 − β1β2
Cn+2 , C ′

n+2 =
1

1 − β1β2
Cn+2 +

β2

1 − β1β2
Cn+1 .

(3.19)

Hence, also the first n columns of C ′⊥ coincide with those of C⊥ and the last two columns

are

C ′⊥
n+1 = C⊥

n+1 − β2C⊥
n+2 , C ′⊥

n+2 = C⊥
n+2 − β1C⊥

n+1 . (3.20)
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The factor of (1−β1β2)2 in (3.18) is a Jacobian from reorganising the C⊥ ·λ delta functions,

which we can write as

δ(n+2−k)×2(C⊥ · λ) =
k∏

K=1

∫
d2ρK δ(n+2)×2 (λi − ρLCLi) . (3.21)

where ρα
K with K = 1, . . . , k is a set of auxiliary variables. For the delta functions corre-

sponding to the columns n + 1 and n + 2, we have

δ2(λn+1 − ρLCL n+1)δ2(λn+2 − ρLCL n+2)

→ δ2(λn+1 − ρLC ′
L n+1 − β1(λn+2 − ρLC ′

L n+2))

δ2(λn+2 − ρLC ′
L n+2 − β2(λn+1 − ρLC ′

L n+1))

=
1

(1 − β1β2)2
δ2(λn+1 − ρLC ′

L n+1)δ2(λn+2 − ρLC ′
L n+2) .

(3.22)

The above shows that diagrams contributing to the form factor can be expressed natu-

rally as some Graßmannian integrals. Of course, it remains to find some general expression

for the form that is to be integrated over the support of the delta functions. For this we will

look at some concrete examples first; although the gluing procedure works for any on-shell

diagram, we will from now on focus on top-cell diagrams based on the conjectured relation

with the amplitude diagrams in section 3.1.

MHV revisited

In this section, we will show that the general procedure outlined in the last section reduces

to the results from section 2 for MHV degree k = 2. This will also give us a first idea of

how the form of the G(k, n + 2) Graßmannian integral looks like in the general case.

Consider the C ′ matrix in the standard gauge fixing,

C ′ =

(
1 0 c′

13 · · · c′
1 n+2

0 1 c′
23 · · · c′

2 n+2

)
, (3.23)

and kinematic data λ, λ̃, η̃ with the off-shell information encoded at positions n + 1 and

n+2. Compared to the G(2, n) integral given in (2.25), we have four additional integrations

as well as four additional bosonic delta functions δ(C ′⊥ · λ) involving the (n + 1)th and

(n + 2)th rows of C ′. If we choose the reference spinors ξA, ξB such that ξA ≡ λn+1 = λ2

and ξB ≡ λn+2 = λ1, these four additional delta functions impose

− c′
1 n+1 λα

1 − c′
2 n+1 λα

2 + λα
2 = 0 , −c′

1 n+2 λα
1 − c′

2 n+2 λα
2 + λα

1 = 0 . (3.24)

Upon integrating out these delta functions, we obtain a Jacobian 〈12〉−2 which cancels the

prefactor in the general expression (3.18), and the C ′ matrix is set to

C ′ =

(
1 0 c′

13 · · · c′
1n 0 1

0 1 c′
23 · · · c′

2n 1 0

)
. (3.25)
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By defining C as C ′ without the last two columns, the delta functions are now identical to

the ones in (2.25),

δ4(C · λ̃) δ8(C · η̃) δ2n−4(C⊥ · λ) (3.26)

with the twisted kinematics at position 1 and 2, as in (2.20).

We now have to check whether the form obtained by the gluing procedure yields the

same form as in section 2 after this integration. We have performed the gluing explicitly for

I =
3 1

4 5

2

, σ̃ = (3, 5, 4, 2, 1) , C =

(
1 0 −α2 −α2α4 −α1

0 1 α3 α3α4 0

)
.

Figure 10: On-shell sub-diagram I obtained by removing the minimal form factor from

the on-shell diagram of F3,2 shown in figure 4, corresponding permutation σ̃ and C matrix.

I =

1
3 2

4

5 6

, σ̃ = (3, 4, 6, 5, 2, 1) ,

C =

(
1 0 −α3 −α2 − α3α5 −α6(α2 + α3α5) −α1

0 1 α4 α4α5 α4α5α6 0

)
.

Figure 11: On-shell sub-diagram I obtained by removing the minimal form factor from

the on-shell diagram of F4,2 shown in figure 5, corresponding permutation σ̃ and C matrix.

the MHV form factors with up to six external particles. The on-shell subdiagrams obtained

by removing the minimal form factor from the on-shell diagrams, the corresponding permu-

tations σ̃ as well as the C matrices obtained from the Mathematica package positroid.m

[56] are shown in figures 10 and 11 for 3 and 4 points, respectively. We invariably found

that after changing from edge variables αi, β1, β2 to canonically gauge-fixed cij variables,

the integral could be written in the following form:11

〈ξAξB〉2
∫

d2(n+2)C ′

Vol[GL(2)]

Y (1 − Y )−1

(12)(23) · · · (n+1 n+2)(n+2 1)
δ4(C ′ · λ̃) δ8(C ′ · η̃) δ2n(C ′⊥ · λ)

(3.27)

where

Y =
(n n+1)(n+2 1)

(n n+2)(n+1 1)
. (3.28)

11Note that we have ignored overall signs in the gluing procedure since the sign of residues expressed in

edge variables is not readily determined. See [57] for an elaborate algorithm that determines these signs,

though.
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We checked up to n = 6 that, after integrating out the four additional delta functions as

in (3.24), the form reduces to one from section 2.3:

Y (1 − Y )−1

(12)(23) · · · (n n+1)(n+1 n+2)(n+2 1)

∣∣∣∣∣
C′

−→
1

(12)(23) · · · (n−1 n)(n1)

∣∣∣∣∣
C

. (3.29)

Three-point NMHV

I =
3 1

4 5

2

, σ̃ = (5, 4, 1, 3, 2) , C =




1 α3 α2 0 0

0 0 1 α1 0

α4 0 0 0 1


 .

Figure 12: On-shell sub-diagram I obtained by removing the minimal form factor from

the on-shell diagram of F3,3 shown in figure 7, corresponding permutation σ̃ and C matrix.

The simplest NMHV form factor is F3,3. Diagrammatically, it can be obtained from a k-

increasing inverse soft limit of the minimal form factor. Using the general gluing procedure

outlined above, we find after a change of variables the following Graßmannian integral

representation:

〈ξAξB〉2
∫

d3×5C ′

Vol[GL(3)]

Y (1 − Y )−1

(123)(234)(345)(451)(512)
δ6(C ′ · λ̃) δ12(C ′ · η̃) δ4(C ′⊥ · λ) , (3.30)

where

Y =
(234)(512)

(235)(412)
(3.31)

and the off-shell (super) momentum is encoded in the on-shell variables at position 4 and

5; cf. (3.10).

Let us now evaluate the Graßmann integral (3.30). After gauge fixing, the matrix C ′

reads

C ′ =




1 0 0 c′
14 c′

15

0 1 0 c′
24 c′

25

0 0 1 c′
34 c′

35


 . (3.32)

We can solve for c′
i4 and c′

i5 with i = 1, 2, 3 by contracting the terms inside δ6(C ′ · λ̃) with

λ̃4 and λ̃5. This yields

c′
i4 = −

[i5]

[45]
= −

〈ξA|q|i]

q2
, c′

i5 = −
[i4]

[54]
= −

〈ξB|q|i]

q2
, (3.33)

where we have used (3.10) in the second step. Inserting (3.33) into δ4(C ′⊥ ·λ), we obtain the

momentum-conserving delta function contracted with λ̃4 and λ̃5. Undoing this contraction

yields a Jacobian of [45]2, which, together with the Jacobian [45]−3 from the previous

contraction with λ̃4 and λ̃5, gives [45]−1.12

12Note that we have dropped the double underscore in the notation for the spinor brackets.
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Inserting the solutions (3.33) into (3.30) and applying the Schouten identity, we find

〈ξAξB〉2
∫

d3×5C ′

Vol[GL(3)]

Y (1 − Y )−1

(123)(234)(345)(451)(512)
δ6(C ′ · λ̃) δ12(C ′ · η̃) δ4(C ′⊥ · λ)

=
(q2)2

[12] [23] [31]
δ12(C ′ · η̃) δ4(

3∑

i=1

pi − q) ,

(3.34)

which agrees with the result of [7].

Note that the cyclic invariance of the form factor is not manifest in (3.30). The final

expression (3.34) obtained from its evaluation, however, is manifestly invariant under cyclic

relabelling of the legs 1, 2 and 3, as can be seen from (3.33).

Four-point NMHV

I =

4 1

3 2

65

, σ̃ = (4, 6, 5, 1, 3, 2) ,

C =




1 α2 + α4 0 −α2α3 −α2α3α6 0

0 1 0 −α3 −α3α6 −α1

0 0 1 α5 + α7 α5α6 0


 .

Figure 13: On-shell sub-diagram I obtained by removing the minimal form factor from

the top-cell diagram of F4,3 shown in figure 9, corresponding permutation σ̃ and C matrix.

As discussed in subsection 3.1, the four-point NMHV form factor is the first example

of a form factor for which it appears natural to combine different BCFW terms diagram-

matically into a top-cell diagram with additional edges. Note that the gluing procedure

outlined in the beginning of this subsection together with the connection (3.3) will indeed

generally lead to a top-dimensional integral over the Graßmannian G(k, n + 2).

From the general expression (3.18) and the on-shell diagram and C matrix shown in

figure 13, we obtain a result that can be written in the following form:

〈ξAξB〉2
∫

d3×6C ′

Vol[GL(3)]
Ω4,3 δ6(C ′ · λ̃) δ12(C ′ · η̃) δ6(C ′⊥ · λ) , (3.35)

where

Ω4,3 =
Y (1 − Y )−1

(123)(234)(345)(456)(561)(612)
, Y =

(345)(612)

(346)(512)
. (3.36)

Gluing the same diagram at legs 2 and 3 and relabelling to obtain the other top-cell

diagram, we find that with the same λ, λ̃, η̃ as for the first diagram:

〈ξAξB〉2
∫

d3×6C ′

Vol[GL(3)]

(
Ω4,3

∣∣∣(1 2 3 4 5 6

↓ ↓ ↓ ↓ ↓ ↓

3 4 1 2 5 6

)
)

δ6(C ′ · λ̃) δ12(C ′ · η̃) δ6(C ′⊥ · λ) . (3.37)
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Conjecture for all n, k

Based on the (conjectured) relation (3.3) between the top-cell diagrams of amplitudes and

form factors for generic n, k,13 we have computed the Graßmannian integrals for all form

factor top-cell diagrams up to six points, with the minimal form factor glued at positions

n + 1 and n + 2. The on-shell diagrams that need to be glued in this case are labelled by

the permutation given in (3.6). We have invariably found the following representation:

〈ξAξB〉2
∫

dk×(n+2)C ′

Vol[GL(k)]
Ωn,k δ2×k(C ′ · λ̃) δ4×k(C ′ · η̃) δ2×(n+2−k)(C ′⊥ · λ) , (3.38)

where

Ωn,k =
Y (1 − Y )−1

(1 · · · k)(2 · · · k+1) · · · (n · · · k−3)(n+1 · · · k−2)(n+2 · · · k−1)
,

Y =
(n−k+2 · · · n n+1)(n+2 1 · · · k−1)

(n−k+2 · · · n n+2)(n+1 1 · · · k−1)

(3.39)

and the off-shell data is encoded in the kinematical variables at the position n+1 and n+2

as in (3.10).14 In general, up to n copies of this form have to be considered, which arise

from cyclic shifts in the labels 1 to n.

We will present further checks for this conjecture in the next subsection.

Note on deformations In contrast to the MHV form factors considered in section 2, we

did not employ the method of R operators for more general form factors and hence we have

so far not included deformations in the Graßmannian for NkMHV as counterpart to what

was done for amplitudes in [41, 42]. The reason we preferred a direct gluing procedure is

that it immediately leads to a top-dimensional integral over the Graßmannian. The method

of R operators, while still applicable, will in general result in a Graßmannian integral with

some of the delta functions already integrated out. Nevertheless, a general expression for

the deformed top-dimensional form could be obtained in this way; we leave this for future

work.

3.3 Twistor and momentum twistor Graßmannians

Next, let us transform the previously obtained Graßmannian integral representation from

spinor helicity to twistor and momentum twistor variables. Throughout this subsection, all

kinematic variables are defined as in (3.10) and (3.11). In order to facilitate notation, we

will hence drop the double underscore from all spinor (and twistor) brackets.

13Above, we have explicitly checked that this conjecture leads to the correct result for k = 2, k = n = 3

and k = n − 1 = 3. Further checks will be given below.
14The quotient Y always corresponds to the product β1β2 from the gluing procedure (3.18) and thus the

factor Y (1 − Y )−1 always cancels a factor of [β1β2(1 − β1β2)]−1 that arise when the consecutive minors are

translated into edge variables αi, β1 and β2 and that is not present in (3.18).

24



Twistor space

Given the Graßmannian integral (3.38) in momentum space, we can transform it to twistor

space in analogy to what was done in the amplitude case in [32].

The super twistor space we use here corresponds to our special choice of spinor helicity

variables (3.10) and (3.11) and is given by the set of all super twistors

Wi = (µ̃i, λ̃i, η̃i) , (3.40)

where µ̃i is related to λi via Witten’s half Fourier transformation [58]

• →
∫

d2λj exp(−iµ̃α
j λjα) • . (3.41)

Via (3.41), the prefactor in (3.38) can be written as

〈ξAξB〉2 = 〈
∂

∂µ̃n+1

∂

∂µ̃n+2
〉2 . (3.42)

The delta function δ2×(n+2−k)(C ′⊥ · λ) can be written as in (3.21). Applying (3.41) to this

representation and performing the integrals over λi via the delta functions, we find

k∏

K=1

∫
d2ρK exp(−i

n+2∑

j=1

k∑

L=1

ρα
LC ′

Ljµ̃αj) = δ2k(C ′ · µ̃) . (3.43)

Hence, we can write (3.38) as

〈
∂

∂µ̃n+1

∂

∂µ̃n+2
〉2
∫

dk×(n+2)C ′

Vol[GL(k)]
Ωn,k δ4k|4k(C ′ · W) , (3.44)

where Ωn,k is given in (3.39).

It would be interesting to further investigate the structure of this expression; we leave

this for future work. Instead, we will now transform the Graßmannian integral to mo-

mentum twistor space, which will in particular facilitate the explicit calculation of some

example form factors.

Momentum twistor space

Next, we transform our result to momentum twistor space following the strategy of [34, 59].

In order to introduce the momentum twistor variables Zi = (λi, µi, ηi) [60] correspond-

ing to our choice of variables (3.10) and (3.11), we define the dual (super) momenta yi (ϑi)

via15

λiλ̃i = yi − yi+1 , λiη̃i = ϑi − ϑi+1 . (3.45)

Note that we base the dual (super) momenta on the closed contour obtained by adding

pn+1 and pn+2 instead of the periodic contour as done in [7, 18]; cf. figure 14. Then, we

define µi and ηi via the incidence relations

µi = λiyi = λiyi+1 , ηi = λiϑi = λiϑi+1 . (3.46)

15We use the definitions of [59], which coincide with the ones of [7] but differ from the ones of [18] by a

global sign and a cyclic relabelling.
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p1

p2
p3

p4

p5p6

y1

y2

y3

y4

y5

y6

Figure 14: Momenta and dual momenta in the case of form factors, shown for n = 4. In

contrast to the case of amplitudes, the n on-shell momenta do not add up to zero but to

the off-shell momentum q of the operator. Hence, the contour is not closed but periodic.

In order to obtain a closed contour, two on-shell momenta pn+1 and pn+2 can be inserted

between any yi and yi+1 of the periodic contour. Two different choices are shown in shaded

frames.

Inverting these relations, we have

λ̃i =
〈i+1 i〉µi−1 + 〈i i−1〉µi+1 + 〈i−1 i+1〉µi

〈i−1 i〉〈i i+1〉
,

η̃i =
〈i+1 i〉ηi−1 + 〈i i−1〉ηi+1 + 〈i−1 i+1〉ηi

〈i−1 i〉〈i i+1〉
.

(3.47)

We start the transformation of the Graßmannian integral from momentum space using

the representation of δ2×(n+2−k)(C ′⊥·λ) as (3.21). We can use part of the GL(k) redundancy

to fix

ρ =

(
0 · · · 0 1 0

0 · · · 0 0 1

)
. (3.48)

As a consequence, the delta functions in (3.21) fix the last two rows of C ′ as

C ′
k−1 i = λ1

i , C ′
k i = λ2

i . (3.49)

Then, (3.38) becomes

〈ξAξB〉2δ4(λ · λ̃) δ8(λ · η̃)
∫

d(k−2)×(n+2)C ′

Vol[GL(k − 2) ⋉ Tk−2]
Ωn,k δ2×(k−2)(C ′ · λ̃) δ4×(k−2)(C ′ · η̃) ,

(3.50)

where the integral and the delta functions contain only the first k − 2 rows of C ′. The shift

symmetry Tk−2 acts on these k − 2 rows as

C ′
Ii −→ C ′

Ii + r1Iλ1
i + r2Iλ2

i , I = 1, . . . , k − 2 , (3.51)

with r1I , r2I arbitrary. According to [59], (3.47) leads to

n+2∑

i=1

C ′
Iiλ̃i = −

n+2∑

i=1

DIiµi ,
n+2∑

i=1

C ′
Iiη̃i = −

n+2∑

i=1

DIiηi , I = 1, . . . , k − 2 , (3.52)
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where the matrix D is defined via

DIi =
〈i i+1〉C ′

I i−1 + 〈i−1 i〉C ′
I i+1 + 〈i+1 i−1〉C ′

I i

〈i−1 i〉〈i i+1〉
. (3.53)

Next, we rewrite the minors of C ′ in terms of minors of D. In [59], it was found that the

consecutive minors are related as

(C ′
1 . . . C ′

k) = −〈1 2〉 · · · 〈k−1 k〉(D2 . . . Dk−1) (3.54)

and its natural extension via cyclic shifts. However, we do also need non-consecutive minors,

as can be seen from (3.39). For these, we find

(C ′
1 . . . C ′

k−1C ′
k+1) = −〈1 2〉 · · · 〈k−2 k−1〉〈k−1 k+1〉(D2 . . . Dk−1)

−〈1 2〉 · · · 〈k−2 k−1〉〈k k+1〉(D2 . . . Dk−2Dk) ,

(C ′
1C ′

3 . . . C ′
k+1) = −〈1 3〉〈3 4〉 · · · 〈k k+1〉(D3 . . . Dk)

−〈1 2〉〈3 4〉 · · · 〈k k+1〉(D2D4 . . . Dk) .

(3.55)

Using (3.54), the product of consecutive minors in (3.39) becomes

(1 · · · k)C′ · · · (n+2 · · · k−1)C′ = (−1)n+2(〈1 2〉 · · · 〈n+2 1〉)k−1(1 · · · k)D · · · (n+2 · · · k−1)D .

(3.56)

For Y , we find using (3.55)

Y =
(n−k+2 · · · n n+1)C′(n+2 1 · · · k−1)C′

(n−k+2 · · · n n+2)C′(n+1 1 · · · k−1)C′

=
〈n n+1〉(n−k+3 · · · n)D

〈n n+2〉(n−k+3 · · · n)D + 〈n+1 n+2〉(n−k+3 · · · n−1 n+1)D

〈n+2 1〉(1 · · · k−2)D

〈n+1 1〉(1 · · · k−2)D + 〈n+1 n+2〉(n+2 2 · · · k−2)D
.

(3.57)

The remaining steps in the derivation of [59] go through unchanged. First, we use the

Tk−2 shift symmetry to set C ′
I1 = C ′

I2 = 0, which changes the measure as

d(k−2)×(n+2)C ′

Vol[GL(k − 2) ⋉ Tk−2]
= 〈12〉k−2 d(k−2)×(n)C ′

Vol[GL(k − 2)]
. (3.58)

Then, we perform the change of integration variables from C ′ to D, which yields

d(k−2)×(n)C ′

Vol[GL(k − 2)]
=
(

〈12〉 · · · 〈n+2 1〉

〈12〉2

)k−2 d(k−2)×(n)D

Vol[GL(k − 2)]
. (3.59)

Finally, we undo the gauge fixing of the first two columns of the C ′ matrix, which yields

factors of

〈12〉δ2(DIiλi) (3.60)

for I = 1, . . . , k − 2. See [59] for details of these steps.
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The final expression we find is

Fn,2

∫
d(k−2)×(n+2)D

Vol[GL(k − 2)]
Ωn,k δ4(k−2)|4(k−2)(D · Z) , (3.61)

where

Ωn,k =
〈n 1〉〈n+1 n+2〉

〈n n+1〉〈n+2 1〉

Y (1 − Y )−1

(1 · · · k−2)(2 · · · k−1) · · · (n · · · k−5)(n+1 · · · k−4)(n+2 · · · k−3)
(3.62)

and Y is given in (3.57).

A convenient choice of reference spinors

It turns out that one choice of reference spinors ξA, ξB is particularly convenient. If we set

ξA ≡ λn+1 = λ1 , ξB ≡ λn+2 = λn , (3.63)

the above momentum twistor Graßmannian integral for NkMHV becomes

Fn,2

∫
d(k−2)×(n+2)D

Vol[GL(k − 2)]

−Ỹ (1 − Ỹ )−1 δ4(k−2)|4(k−2)(D · Z)

(1 · · · k−2) · · · (n · · · k−5)(n+1 · · · k−4)(n+2 · · · k−3)
, (3.64)

with

Ỹ =
(n−k+3 · · · n)(1 · · · k−2)

(n−k+3 · · · n−1 n+1)(n+2 2 · · · k−2)
. (3.65)

Examples at MHV, NMHV and NNMHV

Let us look at some special cases of the above Graßmannian integral representation. For

k = 2, the matrix D is zero-dimensional and all consecutive minors of D are 1 whereas all

non-consecutive minors are 0. Hence, the integral in (3.64) is zero-dimensional while the

integrand is 1.16 Considering the prefactor Fn,2, this is precisely the correct result.

For k = 3,

D =
(
d1 d2 · · · dn+2

)
. (3.66)

The consecutive minors of D are equal to the single di included in them and the non-

consecutive minors are equal to the di that is alone on its side of the gap, cf. (3.55). Hence,

the Graßmannian integral (3.64) becomes

Fn,2

∫
d1×(n+2)D

Vol[GL(1)]

1

1 − dn+1dn+2

d1dn

1

d1 · · · dn

1

dn+1dn+2
δ4|4(D · Z) . (3.67)

Note that in all of the examples considered in this subsection we will use the convenient

choice of reference spinors (3.63) to obtain compact expressions. We have explicitly checked

that our results are indeed independent of this choice.

16Note that, although Ỹ is singular when inserting the above values for consecutive and non-consecutive

minors, the ratio −Ỹ

1−Ỹ
= −(n−k+3···n)(1···k−2)

(n−k+3···n−1 n+1)(n+2 2···k−2)−(n−k+3···n)(1···k−2)
is 1 in this case.
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The simplest example for k = 3 is n = 3:

F3,2

∫
d1×5D

Vol[GL(1)]

1

1 − d4d5
d1d3

1

d1d2d3d4d5
δ4|4(d1Z1 + d2Z2 + d3Z3 + d4Z4 + d5Z5) . (3.68)

We can use the GL(1) redundancy to fix d5 = 〈1 2 3 4〉, where the four-bracket is defined as

〈i j k l〉 = det(ZiZjZkZl) = ǫABCDZA
i ZB

j ZC
k ZD

l (3.69)

with Zi = (λi, µi). The remaining four integration variables are then completely determined

by the delta function:

d1 = 〈2 3 4 5〉 , d2 = 〈3 4 5 1〉 , d3 = 〈4 5 1 2〉 , d4 = 〈5 1 2 3〉 . (3.70)

Thus,

F3,3 = F3,2
[1 2 3 4 5]

1 − 〈5 1 2 3〉〈1 2 3 4〉
〈2 3 4 5〉〈4 5 1 2〉

, (3.71)

where the five-bracket is defined as

[i j k l m] =
δ4(〈i j k l〉ηm + cyclic)

〈i j k l〉〈j k l m〉〈k l m i〉〈l m i j〉〈m i j k〉
. (3.72)

This result numerically agrees with the one found in [18].

For general n, the denominator of (3.67) has poles for

di = 0 , i = 2, . . . , n − 1, n + 1, n + 2 ,

d1 =
dn+1dn+2

dn
, dn =

dn+1dn+2

d1
, dn+1 =

d1dn

dn+2
, dn+2 =

d1dn

dn+1
.

(3.73)

In principle, one can consider (composite) residues of (3.67) for zero and non-zero values

of the di. However, we find that it is sufficient to consider residues which are composed of

individual residues taken at zero.17 As in the amplitude case discussed in [59], these can

be characterised by the five di’s with respect to which no residues are taken. In contrast to

the amplitude case, these have to include d1 and dn. We have to consider two cases. In the

first case, no residues are taken with respect to dn+1 and dn+2. The resulting expressions

are

Resi =
1

1 − 〈n+2 1 n i〉〈1 n i n+1〉
〈n i n+1 n+2〉〈i n+1 n+2 1〉

[i n+1 n+2 1 n] , (3.74)

where i ∈ {2, . . . , n − 1}. In the second case, at least one residue is taken with respect to

either dn+1 or dn+2. The resulting expressions are

R̃esi,j,k = [i j k 1 n] , (3.75)

where i, j, k ∈ {2, . . . , n − 1, n + 1, n + 2}.

An additional property of form factor top-cell diagrams arising here is that we have to

take the sum of more than one form. This can also be achieved by shifting the legs between

17This can also be understood from the corresponding on-shell diagrams.
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which the minimal form factor is glued-in from (n, 1) to (n + s mod n, 1 + s mod n), cf.

figure 14.

Numerically comparing with the results of [18], we find

F4,3 = F4,2(+Res3 + R̃es2,3,5 + Ress=2
3 + R̃es

s=2

2,3,5) ,

F5,3 = F5,2(+Res4 + R̃es3,4,6 + R̃es
s=3

2,3,6 + Ress=3
3 − R̃es2,3,4

+ R̃es2,3,6 + R̃es
s=3

3,4,7 − R̃es
s=3

2,3,4 + Ress=1
5 ) ,

(3.76)

where the superscript s specifies the shift. This also gives further support for the relation

(3.3).

Finally, we look at the simplest example of k = 4, namely n = 4. In this case, the

matrix D can be gauge-fixed to be

D =

(
1 0 d13 d14 d15 d16

0 1 d23 d24 d25 d26

)
. (3.77)

The delta functions completely fix their entries to

di3 = −
〈i 4 5 6〉

〈3 4 5 6〉
, di4 = +

〈i 3 5 6〉

〈3 4 5 6〉
, di5 = −

〈i 3 4 6〉

〈3 4 5 6〉
, di6 = +

〈i 3 4 5〉

〈3 4 5 6〉
, (3.78)

where i = 1, 2. Hence,18

F4,4 = F4,2
〈1 3 4 5〉〈1 3 4 6〉〈1 3 5 6〉〈2 3 4 6〉〈2 3 5 6〉〈2 4 5 6〉 [1 3 4 5 6] [2 3 4 5 6]

〈1 2 3 4〉〈1 2 3 6〉〈3 4 5 6〉2 (〈1 2 4 6〉〈1 3 4 5〉 + 〈1 2 5 6〉〈3 4 5 6〉)
. (3.79)

We have successfully checked (components of this expression) against [7].

4 Integrability and form factors

After having already used the integrability-related R operators in section 2, we now study

the integrable structure of form factors in N = 4 SYM theory more carefully. Apart from

linking integrability approaches from the spectral problem and the study of amplitudes,

this is also motivated by the search for symmetries.

We approach this problem by introducing the spin-chain monodromy matrix as it

appeared in the context of tree-level amplitudes [35, 36]. While the on-shell part of the form

factors, studied in the previous sections and built from the R operators (2.13), is Yangian

invariant, we find that this symmetry is broken by the insertion of the minimal form factor,

i.e. the off-shell part. However, the off-shell part can be interpreted as an eigenvector of the

corresponding transfer matrix. From this we show that all form factors of the chiral stress-

tensor super multiplet are annihilated by the corresponding transfer matrix.19 This is the

analogue of Yangian invariance for form factors. Finally, we show that the transfer matrix

acts diagonally on a given minimal form factor of a generic operator if the corresponding

18Note that there is a subtle sign occurring in the evaluation of the momentum twistor Graßmannian

integral for F4,4, which is also present in the case of the corresponding amplitude A6,4.
19For this particular super multiplet, the corresponding eigenvalue is zero.
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operator renormalises multiplicatively, i.e. is an eigenstates of the integrable Hamiltonian

studied at one-loop order in the spectral problem. As a consequence, also certain planar

leading singularities of loop-level form factors of generic operators are eigenstates of the

transfer matrix.

4.1 Spin chains and Yangian invariance

In the following, we introduce the spin chain that appeared in the context of tree-level

amplitudes [35, 36, 39, 40]. In the spin-chain language, the integrability construction is

naturally formulated using the complex Lie algebra gl(4|4) instead of psu(2, 2|4).

The gl(4|4)-invariant Lax operator relevant for the construction of the integrable spin

chain naturally acts on the tensor product of two spaces and depends on the spectral

parameter u:

Li(u) =

i

= u + (−1)|B|eAB x̂B
i p̂A

i , (4.1)

where A = (α, α̇, A). We have introduced a graphical notation, usually used in the context

of vertex models, to depict the tensor structure of the Lax operator, see e.g. [36], and | · |

denotes the grading. While the auxiliary space is finite-dimensional with the generators

(eAB)CD = δA
C δB

D and illustrated by the dashed horizontal line, the quantum space at site

i is infinite-dimensional and is denoted by the vertical line. The corresponding generators

are realised in the Jordan-Schwinger form JAB = x̂A p̂B using the Heisenberg pairs

x̂A =
(

λα, −
∂

∂λ̃α̇
,

∂

∂η̃A

)
, p̂A =

(
∂

∂λα
, λ̃α̇, η̃A

)
, with [x̂A, p̂B] = (−1)|A|δAB ,

(4.2)

where [·, ·] denotes the graded commutator; see e.g. [37].

The spin-chain monodromy matrix is built from the n-fold tensor product of the Lax

operators (4.1) in the infinite-dimensional quantum space and matrix multiplication in the

auxiliary space. Graphically, multiplication from the left or the right in the auxiliary space

(quantum space) correspond to attaching vertices from left (bottom) or right (top). We

define

Mn(u, {vi}) = · · ·
· · ·

n 2 1

= Ln(u − vn) · · · L2(u − v2)L1(u − v1) ,
(4.3)

with inhomogeneities vi that are local shifts of the spectral parameter u.

For later purposes, we also introduce the corresponding transfer matrix, which is con-

structed from the monodromy matrix as the super trace over the auxiliary space:

Tn(u, {vi}) = · · ·
· · ·

n 2 1

= str Mn(u, {vi}) . (4.4)

As a consequence of the Yang-Baxter equation, this transfer matrix is gl(4|4) invariant:

[T (u, {vi}),
n∑

i=1

JAB
i ] = 0 . (4.5)
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Tree-level scattering amplitudes are Yangian invariant [43]. Instead of using Drinfeld’s

first realisation, this can be expressed as a set of eigenvalue equations involving the mon-

odromy matrix in (4.3), cf. [35, 36]:

Mn(u, {vi})A ∝ 1A . (4.6)

While for the physical amplitude the inhomogeneities vi are zero, they can be set to non-

zero values to obtain deformations of the amplitude with non-vanishing central charges

[37, 55].

From (4.6), it follows that the transfer matrix (4.4) acts diagonally on tree-level am-

plitudes yielding a vanishing eigenvalue. However, this condition is weaker than the set of

eigenvalue equations in (4.6).

4.2 Form factors of the chiral stress-tensor multiplet

Next, we study the action of the monodromy matrix (4.3) on more general form factor

expressions F̂ of the chiral stress-tensor multiplet, which we define as

F̂ = Ri1j1(z1) · · · Rimjm(zm) Fδ
2,2(k − 1, k) (4.7)

with

Fδ
2,2(k − 1, k) = δ+

1 · · · δ+
k−2 F2,2(k − 1, k) δ−

k+1 · · · δ−
n . (4.8)

They are constructed from a chain of R operators acting on a vacuum state that is composed

of the amplitude vacua δ+
i , δ−

i as well as the minimal form factor (2.19). The R operators

and amplitude vacua correspond to the on-shell part of the diagram, with the minimal form

factor cut out. The number m of R operators depends on the diagram under consideration.

Moreover, the R operators have to be chosen in such a way that the corresponding diagram

is planar.20 This generalises the construction we used in section 2 (see e.g. (2.17) and

figures 4, 5, 9), and is another way of writing the gluing of diagrams that was performed in

section 3. Note that these objects correspond to any planar on-shell diagram containing an

insertion of the minimal form factor, including top-cell diagrams, individual BCFW terms,

factorisation channels etc.

On-shell part

It was discussed in [35, 39, 40] that tree-level scattering amplitudes can be constructed via

the method of R operators which naturally include the inhomogeneities vi as deformations

of the local central charges [37].21 These operators, defined by their action on functions of

the kinematic data in (2.13), can be formally written as

Rij(u) =

j i

=
∫

dα

α1+u
e−α(x̂j ·p̂i) . (4.9)

20In particular, we assume that for each operator Rij the indices satisfy i < j; this corresponds to the

chosen convention for the BCFW shifts.
21See also [36], where Yangian invariants were constructed using Bethe ansatz methods.
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The operator R can be seen as one of two basic building blocks for Yangian invariants. It

satisfies the Yang-Baxter equation

Rij(uj − ui)Lj(uj)Li(ui) = Lj(ui)Li(uj)Rij(uj − ui) , (4.10)

with the Lax operators defined in (4.1). This equation can be depicted as

ij

=

ij

. (4.11)

The other basic building blocks are the vacuum states δ+i = δ2(λi) and δ−i = δ2(λ̃i)δ4(η̃i)

introduced in (2.14). They satisfy

Li(u) δ+
i = (u − 1) 1 δ+

i , Li(u) δ−
i = u 1 δ−

i , (4.12)

which can be depicted as

+

i
= (u − 1)

+

i
,

−

i
= u

−

i
. (4.13)

The properties (4.10) and (4.12) guarantee that an appropriate combination of R operators

with a suitable choice of inhomogeneities acting on the tensor product of vacuum states

δ+i and δ−i is Yangian invariant [35, 39, 40]; the required choice of inhomogeneities will be

discussed in the following. However, further below we will also see that Yangian invariance

is broken by the insertion of the minimal form factor.

As discussed in [35, 39, 40], the monodromy matrix (4.3) satisfies certain exchange

relations with a chain of R operators. As a consequence of (4.10), one finds

M(u, {vi}) Ri1j1(z1) · · · Rimjm(zm) = Ri1j1(z1) · · · Rimjm(zm) M(u, {vσ(i)}) , (4.14)

where M(u, {vσ(i)}) denotes the monodromy matrix in (4.3) with the inhomogeneity at

site i permuted such that vi is replaced by vσ(i). Here, σ is the permutation associated to

the on-shell diagram and can be read off as discussed in section 2.1. The inhomogeneities

vi and the spectral parameters zi have to satisfy the relations

zℓ = vτℓ(iℓ) − vτℓ(jℓ) with τℓ = (i1, j1) · · · (iℓ, jℓ) , ℓ = 1, . . . , m , (4.15)

see [35, 39, 40].22 The inhomogeneities vi associated to the ith external leg, i.e. to site i,

are related to the central charges ci via [38]

ci = vi − vσ(i) . (4.16)

Therefore, for a planar on-shell diagram with valid deformations, we can commute the

monodromy matrix through the chain of R operators in (4.7) using (4.14):

Mn(u, {vi})F̂ = Ri1j1(z1) · · · Rimjm(zm) Mn(u, {vσ(i)}) Fδ
2,2(k − 1, k) . (4.17)

22Recall that m denotes the number of R operators.
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Since the Lax operators act diagonally on the vacua (4.12), we can eliminate all Lax

operators that do not act on the minimal form factor. We end up with the monodromy

matrix

M2(u, {vσ(i)}) = Lk(u − vσ(k))Lk−1(u − vσ(k−1)) (4.18)

of length two acting on the minimal form factor F2,2(k − 1, k) at sites k − 1 and k:

Mn(u, {vσ(i)}) Fδ
2,2(k − 1, k)

= f(u, {vσ(i)}) δ+
1 · · · δ+

k−2

[
M2(u, {vσ(i)})F2,2(k − 1, k)

]
δ−

k+1 · · · δ−
n ,

(4.19)

where

f(u, {vσ(i)}) =
k−2∏

i=1

(u − vσ(i) − 1)
n∏

j=k+1

(u − vσ(i)) . (4.20)

As we will discuss below, this significant difference to tree-level amplitudes breaks the

Yangian invariance. However, as we will also see, some of the integrable structure remains.

Using the graphical language introduced earlier, we depict the formulas discussed above

for the case of Fn,2 in figure 15. The left picture in figure 15 represents the monodromy

matrix (4.3) acting on the chain of R operators (BCFW bridges) as introduced in (2.13)

and (4.9) contracted with the minimal form factor (2.3) and the corresponding vacua (2.14).

In (4.17), we commuted the monodromy matrix through the chain of R operators (BCFW

bridges) as shown in the middle picture. The action of the Lax operators on the delta

functions of the on-shell vacua was discussed in (4.12). As in (4.19), we end up with a

monodromy matrix of length two acting only on the minimal form factor as shown in the

right picture of figure 15.

+ +

n n−1 2 1

· · ·

· · ·

BCFW bridges
=

+ +

n n−1 2 1

· · ·

· · ·

BCFW bridges
= f(u)

+ +

n n−1 2 1

· · ·

· · ·

BCFW bridges

Figure 15: Action of the monodromy on Fn,2.

Minimal form factor

One can explicitly check that the minimal from factor is not an eigenstate of the length-

two monodromy matrix (4.3), and thus not Yangian invariant, cf. (4.6). This can be seen

since, for example, the momentum-like generators do not contain the off-shell momentum

q. Acting on the minimal form factor, this produces

(λk−1λ̃k−1 + λkλ̃k)δ4(λk−1λ̃k−1 + λkλ̃k − q) , (4.21)
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which does not vanish, as would be required for Yangian invariance in the sense of (4.6).

However, as we will show, the minimal form factor is annihilated by the graded sum of

the Yangian generators on the diagonal of the monodromy matrix, i.e. the transfer matrix

(4.4), for equal inhomogeneities:

T2(u − v) = str Lk(u − vσ(k))Lk−1(u − vσ(k−1)) , with vσ(k−1) = vσ(k) = v . (4.22)

This can be seen as follows. First, note that we can look at the action of the transfer

matrix (4.22) on a single component of F2,2 due to its gl(4|4) invariance (4.5). We take as

an example the component

η̃+1
k−1η̃+2

k−1η̃+1
k η̃+2

k (γ−)4δ4(P ) , (4.23)

which corresponds to the minimal form factor of the operator tr(φ++φ++) in (1.2) with

outgoing scalars label by k − 1 and k. Note that the transfer matrix does not depend on

γ−. Second, one can check that the transfer matrix annihilates the momentum-conserving

delta functions,

T2(u − v)δ4(λ1λ̃1 + λ2λ̃2 − q) = 0 , (4.24)

and thus acts only on the product of η̃’s, yielding

T2(u − v)η̃+1
k−1η̃+2

k−1η̃+1
k η̃+2

k

=
(
(u − v − 1)(x̂A

k−1p̂A
k−1 + x̂A

k p̂A
k ) + (−1)|A|p̂A

k−1x̂B
k−1p̂B

k x̂A
k

)
η̃+1

k−1η̃+2
k−1η̃+1

k η̃+2
k = 0 .

(4.25)

This shows that the minimal form factor is an eigenstate of the transfer matrix with

eigenvalue zero, i.e.

T2(u − v)F2,2 = 0 . (4.26)

Moreover, due to the fact that the monodromy matrix, and therefore also the transfer

matrix, commutes through the chain of R operators as discussed above (4.14), the same

statement applies to any planar on-shell diagram with an insertion of the minimal form

factor (4.7):

Tn(u, {vi})F̂ = 0 , (4.27)

with the constraints on the inhomogeneities given in (4.22). As for amplitudes, the whole

argument is in particular valid for vanishing inhomogeneities, i.e. for undeformed form

factors:

TnFn,k = 0 . (4.28)

Note the similarity to the Yangian invariance condition of scattering amplitudes (4.6):

taking the super trace for them shows that they are also eigenstates of the transfer matrix

with eigenvalue zero. Equation (4.27) implies that form factors, although not Yangian

invariant, are still annihilated by a certain combination of the Yangian generators.
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4.3 Generic operators

In the previous section, we have shown that form factors of the stress-tensor super multiplet

can be interpreted as eigenvectors of the transfer matrix (4.4) with vanishing eigenvalue.

In the following, we want to extend this to all operators. We will study the action of the

homogeneous transfer matrix on the minimal form factors of generic single-trace operators,

and find that they too are eigenvectors provided that the single-trace operators are chosen

as eigenvectors of the spectral problem. Combining this with an R-operator construction

similar to the one in the previous section, it follows that all planar on-shell diagrams that

include these minimal form factors are also eigenstates of the transfer matrix. In general,

these objects should correspond to leading singularities of loop-level form factors. For the

purposes of the following discussion it will be convenient to work in components and, in

contrast to the rest of this article, we do not employ harmonic superspace variables here.

Generic operators in N =4 SYM theory can be conveniently represented via two sets of

bosonic oscillators a†α
i and b†α̇

i and one set of fermionic oscillators d†A
i acting on a suitable

vacuum [61, 62]. The oscillators in this oscillator picture transform under psu(2, 2|4) in the

same way as the super spinor helicity variables λα
i , λ̃α̇

i and η̃A
i and the algebras are formally

the same if one identifies

a†α
i ↔ λα

i , b†α̇
i ↔ λ̃α̇

i , d†A
i ↔ η̃A

i ,

ai,α ↔ ∂i,α =
∂

∂λα
i

, bi,α̇ ↔ ∂i,α̇ =
∂

∂λ̃α̇
i

, di,A ↔ ∂i,A =
∂

∂η̃A
i

;
(4.29)

see [63] for a detailed comparison of these representations.

In [64], this identification was used to connect the one-loop dilatation operator to the

tree-level four-point scattering amplitude based on symmetry considerations. The field-

theoretic quantities behind such an identification in the composite operators are actually

form factors. Concretely, it was shown in [19] via an explicit Feynman diagram calcula-

tion that the colour-ordered minimal tree-level super form factors of generic single-trace

operators O can be obtained from their representation in the oscillator picture as

FO,L(1, . . . , L; q) = L δ4

(
L∑

i=1

λiλ̃i − q

)
O

∣∣∣∣∣∣

a
†α
i

→ λα
i

b
†α̇
i

→ λ̃α̇
i

d
†A
i

→ η̃A
i


 , (4.30)

where L is the number of fields in the single-trace operator which has been translated

according to (4.29).

Due to the gl(4|4)-invariance of the transfer matrix (4.5), it commutes with any

function f(
∑L

i=1 JAB
i ). This in particular implies that it commutes with the momentum-

conserving delta function in (4.30), which becomes clear after rewriting

δ4

(
L∑

i=1

λiλ̃i − q

)
=
∫

d4x e2πi(
∑L

i=1
λiλ̃i−q)·x (4.31)

and recalling that Jαα̇
i = λα

i λ̃α̇
i . Thus, the transfer matrix only acts on the operator trans-

lated into spinor helicity variables. Translating the spinor helicity variables in the transfer

36



matrix T to oscillators using (4.29) yields

T(u) = str LL(u) · · · L1(u) with Li(u) = Li(u)

∣∣∣∣∣∣

∂i,α, λα
i

→ ai,α, a
†α
i

∂i,α̇, λ̃α̇
i → bi,α̇, b

†α̇
i

∂i,A, η̃A
i

→ di,A, d
†A
i

. (4.32)

We obtain the relation

TL(u)FO,L = FTL(u)O,L , (4.33)

where

FTL(u)O,L = L δ4

(
L∑

i=1

λiλ̃i − q

)
(TL(u)O)

∣∣∣∣∣∣

a
†α
i

→ λα
i

b
†α̇
i

→ λ̃α̇
i

d
†A
i

→ η̃A
i


 . (4.34)

Having expressed the action of the transfer matrix T on the minimal form factor FO,L

in terms of the transfer matrix TL, cf. (4.33), we will now argue that TL acts diagonally

on O, i.e.

TL(u)O = t(u)O , (4.35)

if the state corresponding to the operator O is an eigenstate of the spin-chain Hamiltonian

H, i.e. the one-loop dilatation operator of N = 4 SYM theory. Here, t(u) is a polynomial

in the spectral parameter u.23 While the particular transfer matrix T(u) does not contain

the spin-chain Hamiltonian H, it is commonly used to diagonalise the commuting family of

operators [65]. Here, we show that for vi = 0 the transfer matrix T(u) commutes with H

using a criterion by Sutherland [66] and therefore belongs to the same family of commuting

operators, see also [67]. This is a consequence of the Yang-Baxter equation

Ri,i+1(u)Li(u + u′)Li+1(u′) = Li+1(u′)Li(u + u′)Ri,i+1(u) (4.36)

studied in [37] where the harmonic R matrix R was derived, see also [36]. The expansion

of the harmonic R matrix contains the Hamiltonian density Hi,i+1 at first order in the

spectral parameter Ri,i+1(u) = Pi,i+1(1+uHi,i+1 + . . .), see e.g. [67] as well as [37, 68]

where this relation was discussed in relation to N = 4 SYM theory. Taking the derivative

of (4.36) with respect to u and subsequently multiplying with the permutation operator

Pi,i+1, we obtain

[Hi,i+1, Li(u
′)Li+1(u′)] = Li(u

′) − Li+1(u′) . (4.37)

As a consequence, one finds that the Hamiltonian commutes with the transfer matrix

[H, T(u)] = 0 , with H =
L∑

i=1

Hi,i+1 , (4.38)

where periodic boundary conditions HL,L+1 = HL,1 are imposed.

Just as for the minimal form factor of the chiral stress-tensor multiplet in section 4.2,

we can glue planar on-shell diagrams to the minimal form factor (4.30) using R operators, cf.

(4.14). By construction, this part is Yangian invariant and the monodromy matrix can be

commuted through the chain of R operators as shown in (4.17). The commutation relations

23In the framework of the Bethe ansatz, the eigenvalues t(u) can be parametrised by the Bethe roots.
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for the transfer matrix built from that monodromy matrix follow immediately after taking

the trace in the auxiliary space, see the first step in figure 16. Using (4.33), we find

Tn(u) F̂O,n = f(u)F̂TLO,n , (4.39)

where f(u) denotes the factors arising from the action of the Lax operators on the vacuum,

see (4.12). Finally, from the argument presented above, we find that these generalisations

of (4.7) are eigenstates of the transfer matrix T ,

Tn(u) F̂O,n = f(u)F̂TLO,n = f(u)t(u) F̂O,n , (4.40)

if the operator satisfies the eigenvalue equation (4.35). This generalises the corresponding

identity (4.27) for the stress-tensor super multiplet and can be denoted graphically as

shown in figure 16.24

on-shell part = f(u) on-shell part = f(u)t(u) on-shell part

Figure 16: Action of the transfer matrix on an on-shell diagram with an insertion of the

minimal form factor of the operator O.

Note that F̂O,n does not necessarily correspond to a tree-level form factor of the com-

posite operator O. However, at least some of the on-shell diagrams correspond to leading

singularities of loop-level form factors. It would be interesting to see whether general tree-

level form factors are eigenstates of the transfer matrix, and whether the identities (4.39)

for leading singularities are hints of similar integrability properties at loop level.

5 Conclusion and outlook

In this paper, we have extended many concepts that were developed in the context of the

purely on-shell amplitudes to the partially off-shell form factors, focussing on the tree-level

form factors of the chiral part of the stress-tensor multiplet as an example.

We have shown that on-shell diagrams can be used to characterise form factors by

including the minimal form factor as a further building block in addition to the three-

point MHV and MHV amplitudes. Apart from the equivalence moves for amplitudes, this

requires a rotation move that reflects the cyclic invariance of the three-point form factors.

24In fact, the intermediate state in figure 16 depicts the generalisation of the right hand side of (4.19) to

the transfer matrix, which coincides with the intermediate step in (4.40) via (4.33).
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Moreover, we can extend the concept of a top-cell diagram to form factors. Whereas one

top-cell diagram suffices for amplitudes, we require several ones for form factors. We have

given a conjecture for the top-cell diagrams for all numbers of on-shell particles n and MHV

degree k, which is based on a relation to the amplitude case. We have explicitly checked

this conjecture against the known results for all n at MHV level, up to five external points

in the NMHV sector and for the simplest example at NNMHV.

Moreover, we have rewritten the previously obtained expressions into the form of a

(deformed) Graßmannian integral. As we use two on-shell momenta to parametrise the

off-shell momentum of the composite operator, it in general involves the Graßmannian

G(n+2, k), where n is the number of external on-shell states. This construction geometrises

the (super) momentum conservation and is based on gluing the minimal form factor to the

rest of the on-shell diagram. We have obtained the Graßmannian integral in spinor helicity

as well as twistor and momentum twistor variables. As can be seen from (3.39) and (3.38),

there are significant differences between the Graßmannian integral formulas for scattering

amplitudes and form factors. The form in the case of scattering amplitudes is expressed in

terms of consecutive cyclic minors labelled by the external particles. The gluing procedure

for form factors, however, results in a form that contains minors involving non-consecutive

labels as well. Moreover, we use two fictitious on-shell particles to parametrise the off-shell

momentum of the operator and hence the minors of the form factor Graßmannian are

labelled not just by physical external particles but by two additional ones and it seems

generally not possible to disentangle these ones from the rest.

Introducing a central-charge deformation to form factors, we could construct them via

R operators in analogy to the amplitude case. While amplitudes are Yangian invariant and

hence eigenvectors of the monodromy matrix, the behaviour of general n-point form factors

when acting with the monodromy matrix is entirely determined by its residual action on

the minimal form factor and hence the corresponding Yangian, see figure 15. In order to

obtain an eigenvalue equation for the form factor, we have taken the super trace of the

homogeneous monodromy matrix, which yields the homogeneous transfer matrix. In partic-

ular, we find that the minimal form factor of the stress-tensor super multiplet is annihilated

by this transfer matrix, which contains a subset of the Yangian generators. This equation

is shown in (4.28). Our construction of the n-point tree-level form factors of the chiral part

of the stress-tensor multiplet via the integrability-inspired method of R operators shows

that they satisfy (4.28) as well. Furthermore, we have shown that the minimal form factors

of all operators can be interpreted as eigenstates of the homogeneous transfer matrix and

established a connection between the integrable structure of the spin chain that appeared

in the spectral problem and the one that appeared in the study of tree-level amplitudes.

Finally, we have argued that the minimal form factor of generic operators can always be

dressed with a chain of R operators without spoiling the eigenvalue equation with respect

to the transfer matrix, see (4.39). The resulting objects can be interpreted as leading sin-

gularities of loop-level form factors.

The results discussed in this work open up very interesting directions of future research.

Our construction of the form factor top-cell diagram uses the corresponding diagram from

39



scattering amplitudes with a box replaced with the minimal form factor, see (3.3). This

construction has worked in all our examples and can be proven for individual BCFW terms,

but it is desirable to have a general proof that the conjectures (3.3) and (3.38), (3.39) for

the top-cell diagrams and the corresponding Graßmannian integrals for all NkMHV form

factors indeed produce all possible BCFW terms.

As mentioned earlier, we have tested our Graßmannian formula with known results

based on case studies. For the examples we have checked, we could determine the combi-

nation of the residues which gives the correct tree-level form factors, but it would be very

interesting to find a general prediction of a contour which gives the right combination. For

the scattering amplitudes, such a contour was determined by the twistor string theory for-

mulation of scattering amplitudes [69–71], which leads to the question whether form factors

also have an interpretation in terms of an underlying twistor string theory. The presence of

non-consecutive minors as well as the fact that we have multiple top-cell diagrams makes

the classification of residues a more formidable problem.

So far, a deeper understanding of the geometry of the Graßmannian formulation is

missing. In particular, it would be interesting to see whether the form in (3.38) follows

from a modified notion of positivity.

Another fruitful direction to pursue would be to extend our result to loop level and

to obtain a “formfactorhedron” as a counterpart to the amplituhedron [72]. It is known

that even for planar form factors at two-loop level we need Feynman diagrams that are

non-planar after removing the minimal form factor. It will be interesting to see how such

apparent non-planarity for loop-level form factor plays a role in the on-shell diagrams and

Graßmannian formulation.25 Moreover, there has been very interesting progress in study-

ing loop-level correlation functions in N = 4 SYM theory using the Lagrangian insertion

techniques [78] and it may be interesting to understand a similar picture for form factors at

loop level, or to investigate whether the minimal form factor insertions even have a direct

interpretation within this framework.

While we have focused on the form factor of the chiral part of the stress-tensor super

multiplet in first half of this paper, we are convinced that our results can be extended

to general operators; in particular to operators that are non-protected and have a length

L ≥ 3.

We expect that the minimal form factor allows for deformations consistent with the

deformation introduced through the R operators. The resulting eigenvalue equation for the

inhomogeneous transfer matrix suggest that any given on-shell diagram with an insertion

of a deformed minimal form factor is fully characterised by the inhomogeneities and Bethe

roots and as such can be determined using Bethe ansatz methods along the lines of [36].

Hopefully, this will yield a uniform description of the observables of planar N = 4 SYM

theory as an integrable model at weak coupling and beyond, see also the recent and very

promising approach in [79, 80]. Constructing the form factors as solutions to (4.39) at

loop level should in particular yield an integrability-based approach to the eigenvalues

25For a discussion of non-planar on-shell diagrams for amplitudes, see [73–77]. In particular, non-

consecutive minors also appear in this context.
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and eigenvectors of the dilatation operator.26 While the eigenvalues can be obtained to

very high loop orders via integrability, the corresponding eigenvectors are only known to

one-loop order for generic operators.

Going beyond form factors, it would be very interesting to glue the on-shell diagrams

of form factors together to obtain on-shell diagrams for correlations functions, which are

purely off-shell objects. The results of [13] suggest that this is meaningful at least at the

level of leading singularities.

Finally, it would be interesting to extend our results to other theories. In particular,

both form factors [82–85] as well as (deformed) on-shell diagrams and Graßmannians [41,

86, 87] were already studied in ABJM theory [88] and could be combined as was done in

this paper for N = 4 SYM theory.

Acknowledgements

It is a pleasure to thank Nils Kanning and Gregor Richter for initial collaboration and

discussions. We are grateful to Matthias Staudacher for comments on the manuscript. We

would like to thank Burkhard Eden, Paul Heslop, Tomasz Łukowski, Brenda Penante and

Gang Yang for helpful discussions. DM thanks the Caltech Particle Theory group for their

hospitality during a crucial stage of preparation of this work and DN and MW thank the

C.N. Yang Institute for Theoretical Physics SUNY Stonybrook for their hospitality where

parts of this work was done. DM, DN and MW acknowledge the support of the Marie

Curie International Research Staff Exchange Network UNIFY of the European Union’s Sev-

enth Framework Programme [FP7-People-2010-IRSES] under Grant Agreement No 269217,

which made the above visits possible. DM is supported by GK 1504 “Masse, Spektrum, Sym-

metrie”. This work was supported in part by the SFB 647 “Raum-Zeit-Materie. Analytische

und Geometrische Strukturen” and by the Marie Curie network GATIS (gatis.desy.eu)

of the European Union’s Seventh Framework Programme FP7/2007-2013/ under REA

Grant Agreement No 317089. MW dankt der Studienstiftung des deutschen Volkes für ein

Promotionsförderstipendium.

References

[1] H. Elvang and Y.-t. Huang, “Scattering Amplitudes,” arXiv:1308.1697 [hep-th].

[2] J. M. Henn and J. C. Plefka, “Scattering Amplitudes in Gauge Theories,”
Lect.Notes Phys. 883 (2014) 1–195.

[3] N. Beisert et al., “Review of AdS/CFT Integrability: An Overview,”
Lett.Math.Phys. 99 (2012) 3–32, arXiv:1012.3982 [hep-th].

[4] W. van Neerven, “Infrared Behavior of On-shell Form-factors in a N = 4 Supersymmetric
Yang-Mills Field Theory,” Z.Phys. C30 (1986) 595.

26An interesting approach toward the construction of the eigenvectors was pursued in [81]. It is based on

objects that are in some respects more general and in others more special than form factors of composite

operators, namely special kinematic limits of minimal form factors of light-ray operators.

41

http://gatis.desy.eu
http://arxiv.org/abs/1308.1697
http://dx.doi.org/978-3-642-54021-9, 10.1007/978-3-642-54022-6
http://dx.doi.org/10.1007/s11005-011-0529-2
http://arxiv.org/abs/1012.3982
http://dx.doi.org/10.1007/BF01571808


[5] A. Brandhuber, B. Spence, G. Travaglini, and G. Yang, “Form Factors in N = 4 Super
Yang-Mills and Periodic Wilson Loops,” JHEP 1101 (2011) 134,
arXiv:1011.1899 [hep-th].

[6] L. Bork, D. Kazakov, and G. Vartanov, “On form factors in N = 4 SYM,”
JHEP 1102 (2011) 063, arXiv:1011.2440 [hep-th].

[7] A. Brandhuber, O. Gurdogan, R. Mooney, G. Travaglini, and G. Yang, “Harmony of Super
Form Factors,” JHEP 1110 (2011) 046, arXiv:1107.5067 [hep-th].

[8] L. Bork, D. Kazakov, and G. Vartanov, “On MHV Form Factors in Superspace for N = 4
SYM Theory,” JHEP 1110 (2011) 133, arXiv:1107.5551 [hep-th].

[9] J. M. Henn, S. Moch, and S. G. Naculich, “Form factors and scattering amplitudes in N = 4
SYM in dimensional and massive regularizations,” JHEP 1112 (2011) 024,
arXiv:1109.5057 [hep-th].

[10] T. Gehrmann, J. M. Henn, and T. Huber, “The three-loop form factor in N = 4 super
Yang-Mills,” JHEP 1203 (2012) 101, arXiv:1112.4524 [hep-th].

[11] A. Brandhuber, G. Travaglini, and G. Yang, “Analytic two-loop form factors in N = 4
SYM,” JHEP 1205 (2012) 082, arXiv:1201.4170 [hep-th].

[12] L. Bork, “On NMHV form factors in N = 4 SYM theory from generalized unitarity,”
JHEP 1301 (2013) 049, arXiv:1203.2596 [hep-th].

[13] O. T. Engelund and R. Roiban, “Correlation functions of local composite operators from
generalized unitarity,” JHEP 1303 (2013) 172, arXiv:1209.0227 [hep-th].

[14] H. Johansson, D. A. Kosower, and K. J. Larsen, “Two-Loop Maximal Unitarity with
External Masses,” Phys.Rev. D87 no. 2, (2013) 025030, arXiv:1208.1754 [hep-th].

[15] R. H. Boels, B. A. Kniehl, O. V. Tarasov, and G. Yang, “Color-kinematic Duality for Form
Factors,” JHEP 1302 (2013) 063, arXiv:1211.7028 [hep-th].

[16] B. Penante, B. Spence, G. Travaglini, and C. Wen, “On super form factors of half-BPS
operators in N = 4 super Yang-Mills,” JHEP 1404 (2014) 083, arXiv:1402.1300 [hep-th].

[17] A. Brandhuber, B. Penante, G. Travaglini, and C. Wen, “The last of the simple remainders,”
JHEP 1408 (2014) 100, arXiv:1406.1443 [hep-th].

[18] L. Bork, “On form factors in N = 4 SYM theory and polytopes,” JHEP 1412 (2014) 111,
arXiv:1407.5568 [hep-th].

[19] M. Wilhelm, “Amplitudes, Form Factors and the Dilatation Operator in N = 4 SYM
Theory,” JHEP 1502 (2015) 149, arXiv:1410.6309 [hep-th].

[20] D. Nandan, C. Sieg, M. Wilhelm, and G. Yang, “Cutting through form factors and cross
sections of non-protected operators in N = 4 SYM,” JHEP 06 (2015) 156,
arXiv:1410.8485 [hep-th].

[21] F. Loebbert, D. Nandan, C. Sieg, M. Wilhelm, and G. Yang, “On-Shell Methods for the
Two-Loop Dilatation Operator and Finite Remainders,” arXiv:1504.06323 [hep-th].

[22] L. F. Alday and J. Maldacena, “Comments on gluon scattering amplitudes via AdS/CFT,”
JHEP 0711 (2007) 068, arXiv:0710.1060 [hep-th].

[23] J. Maldacena and A. Zhiboedov, “Form factors at strong coupling via a Y-system,”
JHEP 1011 (2010) 104, arXiv:1009.1139 [hep-th].

42

http://dx.doi.org/10.1007/JHEP01(2011)134
http://arxiv.org/abs/1011.1899
http://dx.doi.org/10.1007/JHEP02(2011)063
http://arxiv.org/abs/1011.2440
http://dx.doi.org/10.1007/JHEP10(2011)046
http://arxiv.org/abs/1107.5067
http://dx.doi.org/10.1007/JHEP10(2011)133
http://arxiv.org/abs/1107.5551
http://dx.doi.org/10.1007/JHEP12(2011)024
http://arxiv.org/abs/1109.5057
http://dx.doi.org/10.1007/JHEP03(2012)101
http://arxiv.org/abs/1112.4524
http://dx.doi.org/10.1007/JHEP05(2012)082
http://arxiv.org/abs/1201.4170
http://dx.doi.org/10.1007/JHEP01(2013)049
http://arxiv.org/abs/1203.2596
http://dx.doi.org/10.1007/JHEP03(2013)172
http://arxiv.org/abs/1209.0227
http://dx.doi.org/10.1103/PhysRevD.87.025030
http://arxiv.org/abs/1208.1754
http://dx.doi.org/10.1007/JHEP02(2013)063
http://arxiv.org/abs/1211.7028
http://dx.doi.org/10.1007/JHEP04(2014)083
http://arxiv.org/abs/1402.1300
http://dx.doi.org/10.1007/JHEP08(2014)100
http://arxiv.org/abs/1406.1443
http://dx.doi.org/10.1007/JHEP12(2014)111
http://arxiv.org/abs/1407.5568
http://dx.doi.org/10.1007/JHEP02(2015)149
http://arxiv.org/abs/1410.6309
http://dx.doi.org/10.1007/JHEP06(2015)156
http://arxiv.org/abs/1410.8485
http://arxiv.org/abs/1504.06323
http://dx.doi.org/10.1088/1126-6708/2007/11/068
http://arxiv.org/abs/0710.1060
http://dx.doi.org/10.1007/JHEP11(2010)104
http://arxiv.org/abs/1009.1139


[24] Z. Gao and G. Yang, “Y-system for form factors at strong coupling in AdS5 and with
multi-operator insertions in AdS3,” JHEP 1306 (2013) 105, arXiv:1303.2668 [hep-th].

[25] R. Britto, F. Cachazo, and B. Feng, “New recursion relations for tree amplitudes of gluons,”
Nucl.Phys. B715 (2005) 499–522, arXiv:hep-th/0412308 [hep-th].

[26] R. Britto, F. Cachazo, B. Feng, and E. Witten, “Direct proof of tree-level recursion relation
in Yang-Mills theory,” Phys.Rev.Lett. 94 (2005) 181602, arXiv:hep-th/0501052 [hep-th].

[27] F. Cachazo, P. Svrcek, and E. Witten, “MHV vertices and tree amplitudes in gauge theory,”
JHEP 0409 (2004) 006, arXiv:hep-th/0403047 [hep-th].

[28] Z. Bern, L. J. Dixon, D. C. Dunbar, and D. A. Kosower, “One loop n point gauge theory
amplitudes, unitarity and collinear limits,” Nucl.Phys. B425 (1994) 217–260,
arXiv:hep-ph/9403226 [hep-ph].

[29] Z. Bern, L. J. Dixon, D. C. Dunbar, and D. A. Kosower, “Fusing gauge theory tree
amplitudes into loop amplitudes,” Nucl.Phys. B435 (1995) 59–101,
arXiv:hep-ph/9409265 [hep-ph].

[30] R. Britto, F. Cachazo, and B. Feng, “Generalized unitarity and one-loop amplitudes in N = 4
super-Yang-Mills,” Nucl.Phys. B725 (2005) 275–305, arXiv:hep-th/0412103 [hep-th].

[31] N. Arkani-Hamed, J. L. Bourjaily, F. Cachazo, A. B. Goncharov, A. Postnikov, and J. Trnka,
“Scattering Amplitudes and the Positive Grassmannian,” arXiv:1212.5605 [hep-th].

[32] N. Arkani-Hamed, F. Cachazo, C. Cheung, and J. Kaplan, “A Duality For The S Matrix,”
JHEP 1003 (2010) 020, arXiv:0907.5418 [hep-th].

[33] L. Mason and D. Skinner, “Dual Superconformal Invariance, Momentum Twistors and
Grassmannians,” JHEP 0911 (2009) 045, arXiv:0909.0250 [hep-th].

[34] N. Arkani-Hamed, F. Cachazo, and C. Cheung, “The Grassmannian Origin Of Dual
Superconformal Invariance,” JHEP 1003 (2010) 036, arXiv:0909.0483 [hep-th].

[35] D. Chicherin, S. Derkachov, and R. Kirschner, “Yang-Baxter operators and scattering
amplitudes in N = 4 super-Yang-Mills theory,” Nucl.Phys. B881 (2014) 467–501,
arXiv:1309.5748 [hep-th].

[36] R. Frassek, N. Kanning, Y. Ko, and M. Staudacher, “Bethe Ansatz for Yangian Invariants:
Towards Super Yang-Mills Scattering Amplitudes,” Nucl.Phys. B883 (2014) 373–424,
arXiv:1312.1693 [math-ph].

[37] L. Ferro, T. Łukowski, C. Meneghelli, J. Plefka, and M. Staudacher, “Spectral Parameters
for Scattering Amplitudes in N = 4 Super Yang-Mills Theory,” JHEP 1401 (2014) 094,
arXiv:1308.3494 [hep-th].

[38] N. Beisert, J. Broedel, and M. Rosso, “On Yangian-invariant regularization of deformed
on-shell diagrams in N = 4 super-Yang-Mills theory,” J.Phys. A47 (2014) 365402,
arXiv:1401.7274 [hep-th].

[39] J. Broedel, M. de Leeuw, and M. Rosso, “A dictionary between R-operators, on-shell graphs
and Yangian algebras,” JHEP 1406 (2014) 170, arXiv:1403.3670 [hep-th].

[40] N. Kanning, T. Lukowski, and M. Staudacher, “A shortcut to general tree-level scattering
amplitudes in N = 4 SYM via integrability,” Fortsch.Phys. 62 (2014) 556–572,
arXiv:1403.3382 [hep-th].

43

http://dx.doi.org/10.1007/JHEP06(2013)105
http://arxiv.org/abs/1303.2668
http://dx.doi.org/10.1016/j.nuclphysb.2005.02.030
http://arxiv.org/abs/hep-th/0412308
http://dx.doi.org/10.1103/PhysRevLett.94.181602
http://arxiv.org/abs/hep-th/0501052
http://dx.doi.org/10.1088/1126-6708/2004/09/006
http://arxiv.org/abs/hep-th/0403047
http://dx.doi.org/10.1016/0550-3213(94)90179-1
http://arxiv.org/abs/hep-ph/9403226
http://dx.doi.org/10.1016/0550-3213(94)00488-Z
http://arxiv.org/abs/hep-ph/9409265
http://dx.doi.org/10.1016/j.nuclphysb.2005.07.014
http://arxiv.org/abs/hep-th/0412103
http://arxiv.org/abs/1212.5605
http://dx.doi.org/10.1007/JHEP03(2010)020
http://arxiv.org/abs/0907.5418
http://dx.doi.org/10.1088/1126-6708/2009/11/045
http://arxiv.org/abs/0909.0250
http://dx.doi.org/10.1007/JHEP03(2010)036
http://arxiv.org/abs/0909.0483
http://dx.doi.org/10.1016/j.nuclphysb.2014.02.016
http://arxiv.org/abs/1309.5748
http://dx.doi.org/10.1016/j.nuclphysb.2014.03.015
http://arxiv.org/abs/1312.1693
http://dx.doi.org/10.1007/JHEP01(2014)094
http://arxiv.org/abs/1308.3494
http://dx.doi.org/10.1088/1751-8113/47/36/365402
http://arxiv.org/abs/1401.7274
http://dx.doi.org/10.1007/JHEP06(2014)170
http://arxiv.org/abs/1403.3670
http://dx.doi.org/10.1002/prop.201400017
http://arxiv.org/abs/1403.3382


[41] T. Bargheer, Y.-t. Huang, F. Loebbert, and M. Yamazaki, “Integrable Amplitude
Deformations for N = 4 Super Yang-Mills and ABJM Theory,”
Phys.Rev. D91 no. 2, (2015) 026004, arXiv:1407.4449 [hep-th].

[42] L. Ferro, T. Łukowski, and M. Staudacher, “N = 4 scattering amplitudes and the deformed
Graßmannian,” Nucl. Phys. B889 (2014) 192–206, arXiv:1407.6736 [hep-th].

[43] J. M. Drummond, J. M. Henn, and J. Plefka, “Yangian symmetry of scattering amplitudes in
N = 4 super Yang-Mills theory,” JHEP 0905 (2009) 046, arXiv:0902.2987 [hep-th].

[44] J. Drummond, J. Henn, G. Korchemsky, and E. Sokatchev, “Dual superconformal symmetry
of scattering amplitudes in N = 4 super-Yang-Mills theory,”
Nucl.Phys. B828 (2010) 317–374, arXiv:0807.1095 [hep-th].

[45] L. Koster, V. Mitev, and M. Staudacher, “A Twistorial Approach to Integrability in N = 4
SYM,” Fortsch. Phys. 63 no. 2, (2015) 142–147, arXiv:1410.6310 [hep-th].

[46] A. Brandhuber, B. Penante, G. Travaglini, and D. Young, “Integrability and MHV diagrams
in N = 4 supersymmetric Yang-Mills theory,” Phys. Rev. Lett. 114 (2015) 071602,
arXiv:1412.1019 [hep-th].

[47] A. Brandhuber, B. Penante, G. Travaglini, and D. Young, “Integrability and unitarity,”
JHEP 05 (2015) 005, arXiv:1502.06627 [hep-th].

[48] L. Bork and A. Onishchenko, “On Soft Theorems And Form Factors In N = 4 SYM Theory,”
arXiv:1506.07551 [hep-th].

[49] G. Hartwell and P. S. Howe, “(N, p, q) harmonic superspace,”
Int.J.Mod.Phys. A10 (1995) 3901–3920, arXiv:hep-th/9412147 [hep-th].

[50] B. Eden, P. Heslop, G. P. Korchemsky, and E. Sokatchev, “The
super-correlator/super-amplitude duality: Part I,” Nucl.Phys. B869 (2013) 329–377,
arXiv:1103.3714 [hep-th].

[51] N. Arkani-Hamed, F. Cachazo, C. Cheung, and J. Kaplan, “The S-Matrix in Twistor Space,”
JHEP 1003 (2010) 110, arXiv:0903.2110 [hep-th].

[52] N. Arkani-Hamed, J. L. Bourjaily, F. Cachazo, S. Caron-Huot, and J. Trnka, “The All-Loop
Integrand For Scattering Amplitudes in Planar N = 4 SYM,” JHEP 01 (2011) 041,
arXiv:1008.2958 [hep-th].

[53] M. Bullimore, “Inverse Soft Factors and Grassmannian Residues,” JHEP 01 (2011) 055,
arXiv:1008.3110 [hep-th].

[54] D. Nandan and C. Wen, “Generating All Tree Amplitudes in N = 4 SYM by Inverse Soft
Limit,” JHEP 1208 (2012) 040, arXiv:1204.4841 [hep-th].

[55] L. Ferro, T. Lukowski, C. Meneghelli, J. Plefka, and M. Staudacher, “Harmonic R-matrices
for Scattering Amplitudes and Spectral Regularization,”
Phys.Rev.Lett. 110 no. 12, (2013) 121602, arXiv:1212.0850 [hep-th].

[56] J. L. Bourjaily, “Positroids, Plabic Graphs, and Scattering Amplitudes in Mathematica,”
arXiv:1212.6974 [hep-th].

[57] T. M. Olson, “Orientations of BCFW Charts on the Grassmannian,”
arXiv:1411.6363 [hep-th].

[58] E. Witten, “Perturbative gauge theory as a string theory in twistor space,”
Commun.Math.Phys. 252 (2004) 189–258, arXiv:hep-th/0312171 [hep-th].

44

http://dx.doi.org/10.1103/PhysRevD.91.026004
http://arxiv.org/abs/1407.4449
http://dx.doi.org/10.1016/j.nuclphysb.2014.10.012
http://arxiv.org/abs/1407.6736
http://dx.doi.org/10.1088/1126-6708/2009/05/046
http://arxiv.org/abs/0902.2987
http://dx.doi.org/10.1016/j.nuclphysb.2009.11.022
http://arxiv.org/abs/0807.1095
http://dx.doi.org/10.1002/prop.201400085
http://arxiv.org/abs/1410.6310
http://dx.doi.org/10.1103/PhysRevLett.114.071602
http://arxiv.org/abs/1412.1019
http://dx.doi.org/10.1007/JHEP05(2015)005
http://arxiv.org/abs/1502.06627
http://arxiv.org/abs/1506.07551
http://dx.doi.org/10.1142/S0217751X95001820
http://arxiv.org/abs/hep-th/9412147
http://dx.doi.org/10.1016/j.nuclphysb.2012.12.015
http://arxiv.org/abs/1103.3714
http://dx.doi.org/10.1007/JHEP03(2010)110
http://arxiv.org/abs/0903.2110
http://dx.doi.org/10.1007/JHEP01(2011)041
http://arxiv.org/abs/1008.2958
http://dx.doi.org/10.1007/JHEP01(2011)055
http://arxiv.org/abs/1008.3110
http://dx.doi.org/10.1007/JHEP08(2012)040
http://arxiv.org/abs/1204.4841
http://dx.doi.org/10.1103/PhysRevLett.110.121602
http://arxiv.org/abs/1212.0850
http://arxiv.org/abs/1212.6974
http://arxiv.org/abs/1411.6363
http://dx.doi.org/10.1007/s00220-004-1187-3
http://arxiv.org/abs/hep-th/0312171


[59] H. Elvang, Y.-t. Huang, C. Keeler, T. Lam, T. M. Olson, S. B. Roland, and D. E. Speyer,
“Grassmannians for scattering amplitudes in 4d N = 4 SYM and 3d ABJM,”
JHEP 1412 (2014) 181, arXiv:1410.0621 [hep-th].

[60] A. Hodges, “Eliminating spurious poles from gauge-theoretic amplitudes,”
JHEP 1305 (2013) 135, arXiv:0905.1473 [hep-th].

[61] M. Gunaydin, D. Minic, and M. Zagermann, “4-D doubleton conformal theories, CPT and
IIB string on AdS(5) x S-5,” Nucl.Phys. B534 (1998) 96–120,
arXiv:hep-th/9806042 [hep-th].

[62] N. Beisert, “The complete one loop dilatation operator of N = 4 superYang-Mills theory,”
Nucl.Phys. B676 (2004) 3–42, arXiv:hep-th/0307015 [hep-th].

[63] N. Beisert, “On Yangian Symmetry in Planar N = 4 SYM,” arXiv:1004.5423 [hep-th].

[64] B. I. Zwiebel, “From Scattering Amplitudes to the Dilatation Generator in N = 4 SYM,”
J.Phys. A45 (2012) 115401, arXiv:1111.0083 [hep-th].

[65] L. Faddeev, “How algebraic Bethe ansatz works for integrable model,”
arXiv:hep-th/9605187 [hep-th].

[66] B. Sutherland, “Exact Solution of a Two-Dimensional Model for Hydrogen-Bonded Crystals,”
Phys. Rev. Lett. 19 (Jul, 1967) 103–104.

[67] E. Sklyanin, “Quantum inverse scattering method. Selected topics,”
arXiv:hep-th/9211111 [hep-th].

[68] Y. Kazama, S. Komatsu, and T. Nishimura, “On the singlet projector and the monodromy
relation for psu(2, 2|4) spin chains and reduction to subsectors,”
arXiv:1506.03203 [hep-th].

[69] D. Nandan, A. Volovich, and C. Wen, “A Grassmannian Etude in NMHV Minors,”
JHEP 1007 (2010) 061, arXiv:0912.3705 [hep-th].

[70] N. Arkani-Hamed, J. Bourjaily, F. Cachazo, and J. Trnka, “Unification of Residues and
Grassmannian Dualities,” JHEP 1101 (2011) 049, arXiv:0912.4912 [hep-th].

[71] J. L. Bourjaily, J. Trnka, A. Volovich, and C. Wen, “The Grassmannian and the Twistor
String: Connecting All Trees in N = 4 SYM,” JHEP 1101 (2011) 038,
arXiv:1006.1899 [hep-th].

[72] N. Arkani-Hamed and J. Trnka, “The Amplituhedron,” JHEP 1410 (2014) 30,
arXiv:1312.2007 [hep-th].

[73] N. Arkani-Hamed, J. L. Bourjaily, F. Cachazo, and J. Trnka, “Singularity Structure of
Maximally Supersymmetric Scattering Amplitudes,”
Phys.Rev.Lett. 113 no. 26, (2014) 261603, arXiv:1410.0354 [hep-th].

[74] N. Arkani-Hamed, J. L. Bourjaily, F. Cachazo, A. Postnikov, and J. Trnka, “On-Shell
Structures of MHV Amplitudes Beyond the Planar Limit,” arXiv:1412.8475 [hep-th].

[75] B. Chen, G. Chen, Y.-K. E. Cheung, Y. Li, R. Xie, and Y. Xin, “Nonplanar On-shell
Diagrams and Leading Singularities of Scattering Amplitudes,” arXiv:1411.3889 [hep-th].

[76] S. Franco, D. Galloni, B. Penante, and C. Wen, “Non-Planar On-Shell Diagrams,”
arXiv:1502.02034 [hep-th].

[77] B. Chen, G. Chen, Y.-K. E. Cheung, R. Xie, and Y. Xin, “Top-forms of Leading Singularities
in Nonplanar Multi-loop Amplitudes,” arXiv:1506.02880 [hep-th].

45

http://dx.doi.org/10.1007/JHEP12(2014)181
http://arxiv.org/abs/1410.0621
http://dx.doi.org/10.1007/JHEP05(2013)135
http://arxiv.org/abs/0905.1473
http://dx.doi.org/10.1016/S0550-3213(98)00543-4
http://arxiv.org/abs/hep-th/9806042
http://dx.doi.org/10.1016/j.nuclphysb.2003.10.019
http://arxiv.org/abs/hep-th/0307015
http://arxiv.org/abs/1004.5423
http://dx.doi.org/10.1088/1751-8113/45/11/115401
http://arxiv.org/abs/1111.0083
http://arxiv.org/abs/hep-th/9605187
http://dx.doi.org/10.1103/PhysRevLett.19.103
http://arxiv.org/abs/hep-th/9211111
http://arxiv.org/abs/1506.03203
http://dx.doi.org/10.1007/JHEP07(2010)061
http://arxiv.org/abs/0912.3705
http://dx.doi.org/10.1007/JHEP01(2011)049
http://arxiv.org/abs/0912.4912
http://dx.doi.org/10.1007/JHEP01(2011)038
http://arxiv.org/abs/1006.1899
http://dx.doi.org/10.1007/JHEP10(2014)030
http://arxiv.org/abs/1312.2007
http://dx.doi.org/10.1103/PhysRevLett.113.261603
http://arxiv.org/abs/1410.0354
http://arxiv.org/abs/1412.8475
http://arxiv.org/abs/1411.3889
http://arxiv.org/abs/1502.02034
http://arxiv.org/abs/1506.02880


[78] B. Eden, G. P. Korchemsky, and E. Sokatchev, “From correlation functions to scattering
amplitudes,” JHEP 1112 (2011) 002, arXiv:1007.3246 [hep-th].

[79] B. Basso, A. Sever, and P. Vieira, “Spacetime and Flux Tube S-Matrices at Finite Coupling
for N = 4 Supersymmetric Yang-Mills Theory,” Phys.Rev.Lett. 111 no. 9, (2013) 091602,
arXiv:1303.1396 [hep-th].

[80] B. Basso, S. Komatsu, and P. Vieira, “Structure Constants and Integrable Bootstrap in
Planar N = 4 SYM Theory,” arXiv:1505.06745 [hep-th].

[81] S. Derkachov, G. Korchemsky, and A. Manashov, “Dual conformal symmetry on the
light-cone,” Nucl.Phys. B886 (2014) 1102–1127, arXiv:1306.5951 [hep-th].

[82] A. Brandhuber, Ö. Gürdoğan, D. Korres, R. Mooney, and G. Travaglini, “Two-loop Sudakov
Form Factor in ABJM,” JHEP 1311 (2013) 022, arXiv:1305.2421 [hep-th].

[83] D. Young, “Form Factors of Chiral Primary Operators at Two Loops in ABJ(M),”
JHEP 1306 (2013) 049, arXiv:1305.2422 [hep-th].

[84] L. Bianchi and M. S. Bianchi, “Nonplanarity through unitarity in the ABJM theory,”
Phys.Rev. D89 no. 12, (2014) 125002, arXiv:1311.6464 [hep-th].

[85] M. S. Bianchi, M. Leoni, M. Leoni, A. Mauri, S. Penati, and A. Santambrogio, “ABJM
amplitudes and WL at finite N ,” JHEP 1309 (2013) 114, arXiv:1306.3243 [hep-th].

[86] Y.-T. Huang and C. Wen, “ABJM amplitudes and the positive orthogonal grassmannian,”
JHEP 02 (2014) 104, arXiv:1309.3252 [hep-th].

[87] Y.-t. Huang, C. Wen, and D. Xie, “The Positive orthogonal Grassmannian and loop
amplitudes of ABJM,” J. Phys. A47 no. 47, (2014) 474008, arXiv:1402.1479 [hep-th].

[88] O. Aharony, O. Bergman, D. L. Jafferis, and J. Maldacena, “N = 6 superconformal
Chern-Simons-matter theories, M2-branes and their gravity duals,” JHEP 0810 (2008) 091,
arXiv:0806.1218 [hep-th].

46

http://dx.doi.org/10.1007/JHEP12(2011)002
http://arxiv.org/abs/1007.3246
http://dx.doi.org/10.1103/PhysRevLett.111.091602
http://arxiv.org/abs/1303.1396
http://arxiv.org/abs/1505.06745
http://dx.doi.org/10.1016/j.nuclphysb.2014.07.014
http://arxiv.org/abs/1306.5951
http://dx.doi.org/10.1007/JHEP11(2013)022
http://arxiv.org/abs/1305.2421
http://dx.doi.org/10.1007/JHEP06(2013)049
http://arxiv.org/abs/1305.2422
http://dx.doi.org/10.1103/PhysRevD.89.125002
http://arxiv.org/abs/1311.6464
http://dx.doi.org/10.1007/JHEP09(2013)114
http://arxiv.org/abs/1306.3243
http://dx.doi.org/10.1007/JHEP02(2014)104
http://arxiv.org/abs/1309.3252
http://dx.doi.org/10.1088/1751-8113/47/47/474008
http://arxiv.org/abs/1402.1479
http://dx.doi.org/10.1088/1126-6708/2008/10/091
http://arxiv.org/abs/0806.1218

	Introduction
	The MHV case
	On-shell diagrams, inverse soft limits, BCFW bridges and permutations
	Deformed form factors and R operators
	A (deformed) Graßmannian integral representation for the MHV form factor

	Beyond MHV
	On-shell diagrams and R operators
	Graßmannian integrals for higher MHV degree
	Twistor and momentum twistor Graßmannians

	Integrability and form factors
	Spin chains and Yangian invariance
	Form factors of the chiral stress-tensor multiplet
	Generic operators

	Conclusion and outlook

