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Abstract

These notes introduce the thermodynamic Bethe ansatz, a method that allows us
to describe the thermodynamics of integrable models whose spectrum is found via the
(asymptotic) Bethe ansatz. We set the stage by deriving the Fermi-Dirac distribution
and associated free energy of free electrons, and then in a similar though technically more
complicated fashion treat the thermodynamics of integrable models, focusing on the one
dimensional Bose gas with delta function interaction as a clean pedagogical example, sec-
ondly the XXX spin chain as an elementary (lattice) model with prototypical complicating
features in the form of bound states, and finally the SU(2) chiral Gross-Neveu model as a
field theory example. Throughout this discussion we emphasize the central role of particle
and hole densities, whose relations determine the model under consideration. We then
discuss tricks that allow us to use the same methods to describe the exact spectra of inte-
grable field theories on a circle, in particular the chiral Gross-Neveu model. We moreover
discuss the simplification of TBA equations to Y systems, including the transition back
to integral equations given sufficient analyticity data, in simple examples.
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1 Introduction

Integrable models are an important class of physical models because they are “solvable” –
meaning we can often exactly compute various quantities – while sharing important fea-
tures with more complicated physical models. In other words, they make great pedagogical
tools. Integrability makes it possible to diagonalize the chiral Gross-Neveu model’s Hamil-
tonian for instance [1, 2], giving exact formulas that explicitly demonstrate deep quantum
field theoretical concepts such as dimensional transmutation and asymptotic freedom. As
part of a series of articles introducing aspects of integrability [3], in this article we describe
how integrability is used to describe the exact thermodynamics of integrable models, and
relatedly the spectra of integrable field theories defined on a circle, using a method known
as the “thermodynamic Bethe ansatz”.

As the name implies, the thermodynamic Bethe ansatz (TBA) revolves around apply-
ing the Bethe ansatz in a thermodynamic setting. In essence, the Bethe ansatz description
of an integrable model provides us with momenta and energy distributions of particles,
which in principle contains the information needed to determine the density of states in
the thermodynamic limit, and the associated particle and hole distributions in thermo-
dynamic equilibrium. This approach was pioneered in the late sixties by Yang and Yang
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[4] who applied it to the Bose gas with delta function interaction, also known as the
Lieb-Liniger model [5]. It was quickly adapted to lattice integrable models such as the
Heisenberg spin chain [6, 7, 8] and Hubbard model [9, 10].1 The TBA can be used to com-
pute the free energy of integrable field theories as well, which upon doing a double Wick
rotation has an alternative use in finding their exact ground state energies in finite volume
[12]. By a form of analytic continuation excited state energies can also be computed in
the TBA approach [13, 14]. These equations can be simplified and reduced to a so-called
Y system [15], which is a set of functional relations not limited to a particular state which
can be the same for different models. Providing a sufficient amount of analyticity data
then singles out a model and state.2

In the context of the AdS/CFT correspondence, the worldsheet theory of the AdS5×S5

string is an integrable field theory, see e.g. [17, 18] for reviews, and its exact energy
spectrum can be computed by means of the thermodynamic Bethe ansatz [19, 20, 21, 22,
23], as first suggested in [24].3 This energy spectrum is AdS/CFT dual to the spectrum of
scaling dimensions in planar N = 4 supersymmetric Yang-Mills theory (SYM). Provided
we take the AdS/CFT correspondence to hold rigorously, the thermodynamic Bethe ansatz
therefore allows us to find exact two point functions in an interacting, albeit planar, four
dimensional quantum field theory, nonperturbatively. From a different point of view, this
approach provides high precision tests of the AdS/CFT conjecture. The TBA approach
has for instance been successfully matched by explicit field theory results up to five loops
for the so-called Konishi operator [30, 31, 32, 33]. The TBA can also be used to compute
the generalized cusp anomalous dimension (the “quark–anti-quark potential”) [34, 35], and
for instance extends to the duality between strings on the Lunin-Maldacena background
and β deformed SYM [36, 37] and the AdS4×CP3 string dual to three dimensional N = 6
supersymmetric Chern-Simons theory [38, 39]. Though TBA-like equations have not yet
made a clear appearance in the computation of three point correlation functions in SYM,
we can expect they will do so in the exact solution.

Taking in the above, our motivation for studying the TBA is therefore broadly speaking
twofold: with it we can describe the thermodynamics of nontrivial interacting models of
for instance magnetism and strongly correlated electrons of relevance in condensed matter
physics, as well as the exact spectra of integrable field theories that play an important role
in for example string theory and the gauge/gravity duality. We will not aim to describe the
technical details required for particular applications. Rather, we will focus on the unifying
features of the TBA approach, and explain them such that it is clear where and how details
of a particular model are to be inserted. We will nevertheless use concrete examples, first
of all the original case of the Bose gas as a particularly clean example where the transition
from Bethe ansatz to thermodynamic Bethe ansatz is a fairly rigorous derivation. We will
also discuss the XXX Heisenberg magnet in the context of spin chains, and the SU(2)
chiral Gross-Neveu model in integrable field theory. These models illustrate complicating
hypotheses in the TBA approach to general integrable models: the presence of multiple

1While we aim to focus on the basic structure, the TBA and related methods also play an important role in
computing more complicated observables such as correlation functions at finite temperature, see e.g. [11].

2Going a bit beyond the scope of the present article, such Y systems together with analyticity data can be
“reduced” even further via so-called T systems to Q systems. Sometimes we can derive such functional relations
by direct computations in a model, which can then be turned into integral equations possibly of TBA type.
This comes back in the article by S. Negro [16].

3In this context the Y system was conjectured in [25] and the required analyticity data clarified in [26, 27, 28].
Reducing this results in a Q system, in this context dubbed the quantum spectral curve [29].
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interacting particle species, as well as bound state solutions.
We will begin our discussion with free electrons, a trivially integrable model, where

we can link our approach to standard statistical physics. This allows us to introduce
the concept of density of states, particle and hole density, and the computation of the
associated free energy, and reproduce the well known Fermi-Dirac distribution. Following
Yang and Yang’s original paper, we then extend this framework to the delta function
Bose gas. Continuing to the XXX spin chain and SU(2) chiral Gross-Neveu model in
the same spirit, requires us to introduce the so-called string hypothesis, which ultimately
results in an infinite set of TBA equations. We discuss how these TBA equations can be
“simplified” and reduced to a so-called Y system. Next we discuss the TBA approach
to exact ground state energies, and indicate how excited state TBA equations can be
obtained by analytic continuation, motivated by a toy model example. Relatedly, we
discuss the link between the TBA equations and so-called Lüscher corrections, providing
analyticity data for excited states. We briefly discuss universality of the Y system for
excited states, how to transfer between TBA and Y system plus analyticity data, and the
relation of the analyticity data to specific models and states. Two appendices contain
details on integral identities and some comments on numerically solving TBA equations.

2 The thermodynamic Bethe ansatz

In an integrable model we usually have a set of Bethe ansatz equations that determines
the momenta of particles of any state of the theory, either exactly, or approximately in
a large volume limit. In what follows we will assume these to be given, for instance
following the discussion in [40]. Combining these Bethe equations with the dispersion
relation of the theory under consideration, we can determine its (approximate) energy
spectrum. What if we are interested in the thermodynamic limit? Since we can in principle
determine the possible and actual momentum distributions of particles for any given set
of finite quantum numbers (at large volume), we might be able to determine nontrivial
thermodynamic quantities by summing up many contributions. The technical way to do
this goes under the name of the thermodynamic Bethe ansatz, as originally developed by
Yang and Yang for the one dimensional Bose gas with delta function interaction potential
[4]. We will get to this model and the chiral Gross-Neveu model shortly, but let us begin
with a trivially integrable model: free electrons. Our discussion will be similar to section
5.1 of [10].

2.1 Free Fermi gas

Free electrons on a circle are an exactly solvable model. Since the particles do not interact
(except for Pauli exclusion), wavefunctions are just superpositions of standing waves on
the circle, each coming with a momentum quantization condition

eipjL = 1 =⇒ pj =
2πnj
L

. (2.1.1)

Were we to consider fermions on a periodic lattice (with spacing one), mode numbers
would of course only be meaningful modulo L. The Pauli exclusion principle now simply
requires that each state is made up of electrons with distinct sets of quantum numbers
(including spin). Note that the above equations are nothing but the simplest of Bethe
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Figure 1: The quantum number lattice for electrons. States of an N free electron state on a
circle can be labeled by a set of N integers, split in sets of distinct ones for each spin. Here these
integers are represented by filled dots, open dots representing available (unoccupied) quantum
states, depicting a state with two spin up electrons and four spin down electrons, with momenta
−2π/L and 0, and −6π/L,−4π/L,−2π/L, and 8π/L respectively.

equations. In fact, you might recall that in the Bethe ansatz two identical particles
by construction cannot have equal momenta either, which is why we are looking at free
fermions rather than free bosons. An N particle state can now be classified by N quantum
numbers nj , split in two sets {nσj } of distinct numbers, where σ = ±1

2 denotes spin of the
electrons, cf. figure 1. In this integer space, the number of possible states per unit interval
– the total density of states – is one. Due to the linear relation between momentum and
these integers, the total density of states for free electrons of spin σ in momentum space
is also constant,

ρσ(pi) ≡
1

L

1

pi+1 − pi
=

1

2π
. (2.1.2)

As usual in thermodynamics we will introduce the partition function

Z =
∑
n

〈ψn|e−βH |ψn〉 = e−βF , (2.1.3)

where β = 1/T is the inverse temperature, and F is the free energy. From here you can
compute various thermodynamic quantities, especially upon including chemical potentials
(in H if you wish). In particular, via various paths familiar from basic statistical mechan-
ics, you can derive the momentum distribution of free fermions in thermal equilibrium

ρFD(p) =
1

2π

1

1 + eE(p)/T
, (2.1.4)

known as the Fermi-Dirac distribution. Here E(p) is the dispersion relation of the
fermions. We will directly compute the full partition function for free fermions in the
large volume limit, in a way that will extend to general integrable models where we only
have an implicit description of states at asymptotically large volume.

In the large volume limit, states with finite numbers of particles contribute negligibly
to the partition function so we will consider the limit L → ∞ considering states with
finite density Nσ/L, Nσ denoting the number of electrons with spin σ. These Nσ particles
have distinct momenta that need to occupy Nσ of the allowed values of momentum. If
a momentum value is taken we will talk of a particle with this momentum, and if it is
not, a hole, as in figure 1. Since we want to describe finite density states, let us introduce
densities for particles and holes as

Lρfσ(p)∆p = #of particles with spin σ and momentum between p and p+ ∆p,

Lρ̄fσ(p)∆p = #of holes with spin σ and momentum between p and p+ ∆p.
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By definition these add up to the total momentum density of states, i.e.

ρfσ(p) + ρ̄fσ(p) = ρσ(p) =
1

2π
. (2.1.5)

Now, to compute the partition function in a thermodynamic picture we need the free
energy F = E−TS, in other words the energy and entropy of possible configurations. By
definition the energy density of any given state is

e =
1

L

∑
σ

Nσ∑
j=1

Eσ(pj), (2.1.6)

=
∑
j

∑
σ

Eσ(pj)
pj+1 − pj

L(pj+1 − pj)
, (2.1.7)

=
∑
j

∑
σ

Eσ(pj)(pj+1 − pj)ρfσ(pj), (2.1.8)

where the last line is nicely of the form of a discretized integral, appropriate for the large
volume limit. There we get

e =

∫ ∞
−∞

dp
∑
σ

Eσ(p)ρfσ(p), (2.1.9)

where we write ρfσ(p) for the L→∞ limit of ρfσ(pj). In a lattice model we would integrate
from 0 to 2π (given appropriate normalization choices). Next we want to find an expression
for the entropy, the logarithm of the number of available states. By definition

∆S(pj) = log
∏
σ

(L∆pjρσ(pj))!

(L∆pjρ
f
σ(pj))!(L∆pj ρ̄

f
σ(pj))!

(2.1.10)

which in the large volume limit we can approximate via Stirling’s formula, log n! =
n log n− n+O(log n), as

∆S(pj) = L∆pj
∑
σ

ρσ(pj) log ρσ(pj)− ρfσ(pj) log ρfσ(pj)− ρ̄fσ(pj) log ρ̄fσ(pj). (2.1.11)

In the thermodynamic limit the entropy density is thus given by

s =

∫ ∞
−∞

dp
∑
σ

ρσ(p) log ρσ(p)− ρfσ(p) log ρfσ(p)− ρ̄fσ(p) log ρ̄fσ(p). (2.1.12)

Putting all this together we find that the free energy density f at temperature T , f =
e− Ts, is given by

f =

∫ ∞
−∞

dp
∑
σ

Eσ(p)ρfσ(p)− T (ρσ(p) log ρσ(p)− ρfσ(p) log ρfσ(p)− ρ̄fσ(p) log ρ̄fσ(p)).

(2.1.13)
This is a functional of the densities ρ, and thermodynamic equilibrium corresponds to its
stationary point. To find this stationary point we should vary f with respect to ρfσ and
ρ̄fσ, but these are not independent! The hole and particle densities are constrained by eqn.
(2.1.5), which means

δρ̄fσ = −δρfσ. (2.1.14)
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We then have

δf =

∫ ∞
−∞

dp
∑
σ

Eσ(p)δρfσ(p)− T

(
log

ρσ(p)

ρfσ(p)
δρfσ(p) + log

ρσ(p)

ρ̄fσ(p)
δρ̄fσ(p)

)
(2.1.15)

=

∫ ∞
−∞

dpδρfσ(p)

(∑
σ

Eσ(p)− T log
ρ̄fσ(p)

ρfσ(p)

)
= 0, (2.1.16)

from which we conclude
ρ̄fσ(p)

ρfσ(p)
= eEs(p)/T . (2.1.17)

Together with eqn. (2.1.5) this gives

ρfσ(p) =
1

2π

1

1 + eEσ(p)/T
, (2.1.18)

which is nothing but the Fermi-Dirac distribution (2.1.4) (here derived in infinite volume).

Now we can insert this and the corresponding ρ̄fσ back into the free energy to find

f = −T
∫ ∞
−∞

dp

2π

∑
σ

log(1 + e−Eσ(p)/T ). (2.1.19)

This is the well known infinite volume free energy of a Fermi gas.
We would like to follow this approach to describe the thermodynamics of general

integrable models, where the relation between particle and hole densities is not as simple
as eqn. (2.1.5), but nevertheless known. Let us begin with the integrable model for which
this was originally done.

2.2 The Bose gas

The Bose gas, also known as the Lieb-Liniger model, is a system of N bosons interacting
via a repulsive delta function interaction. The Hamiltonian is given by

H = −
N∑
j=1

∂2

∂x2
i

+ 2c
∑
i>j

δ(xi − xj), (2.2.1)

with c > 0, and we consider it on a circle of circumference L. This model was ‘solved’ by
Bethe ansatz in [5]. Based on this the thermodynamics of the model were described by
Yang and Yang [4], leading to what is now known as the thermodynamic Bethe ansatz.
In this section we follow their timeless 1968 paper fairly directly. The nice point about
this model is that some things we will have to assume later, can be made precise here.
The starting point for our analysis will be the Bethe equations of the Bose gas

eipjL =
N∏
k 6=j

pj − pk + ic

pj − pk − ic
, (2.2.2)

from which we see that we have an S-matrix given by

S(pl, pm) = S(pl − pm) =
pl − pm − ic
pl − pm + ic

. (2.2.3)
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The solutions of these equations are real.4 The dispersion relation of these bosons is just
the free E(p) = p2.

To get the momentum density of states we need to take a logarithm of the Bethe
equations, just as we did for free particles above. To do so we note that

S(p) = −e2i arctan p/c ≡ −eiψ(p), (2.2.4)

so that we get

2πIj = pjL− i
∑
k

logS(pj − pk) = pjL+
∑
k

(ψ(pj − pk) + π) , (2.2.5)

which is all defined up to the integer Ij defining the branch of the logarithm that we
take. In the original paper the factor of Nπ is absorbed in these (then possibly half)
integers; we simply take the logarithm of the S-matrix on the right hand side, as this
naturally generalizes to any model. These integers Ij are in one to one correspondence
with solutions of the Bethe equations, just as for the free particle. To prove this, Yang
and Yang introduced what is now known as the Yang-Yang–functional.

2.2.1 The Yang-Yang–functional

Let us define

B(p1, . . . , pN ) = 1
2L

N∑
l=1

p2
l − π

N∑
j=1

(2Ij +N − 1)pj + 1
2

∑
n,m

(ψ1(pn − pm)) , (2.2.6)

where

ψ1(p) =

∫ p

0
ψ(p′)dp′ =

∫ p

0
2 arctan p′

c dp
′. (2.2.7)

The nice thing is that by construction B is an ‘action’ with the Bethe equations (2.2.2)
as ‘equations of motion’. Moreover, the matrix ∂2B/∂ki∂kj is positive definite, since
the first term in B contributes positively, the second nothing, and the third is positive-
semidefinite since ψ′(p) ≥ 0. So B has a unique extremum, a minimum, whose location
is determined by solutions to the Bethe equations. Furthermore, all involved quantities
clearly depend continuously on c (via the S matrix). Now in the limit c → ∞ we want
to find the wavefunction for N free particles, under the constraint that it vanishes when
any two of its arguments coincide, thanks to the infinitely strong repulsion at coincidence.
Playing around with this problem a bit in the way that we learn in a course on quantum
mechanics, we would find that such wave functions are precisely of Bethe ansatz form,
with S = −1, precisely the c→∞ limit of our S matrix. At this point we have

pj = (2Ij +N − 1)π/L, (2.2.8)

i.e. the momenta are uniquely identified by the integers I (for a given number of particles
N). By continuity in c we see that the solutions of the Bethe equations are given by
unique sets of distinct momenta in one to one correspondence with sets of distinct integers
I, which form a complete set of solutions. We can view these I’s as quantum numbers for
our problem, just as they were for free electrons.

4Consider the equation for the momentum with maximal imaginary part (pick one in case there are multiple),
then the right hand side of the equation necessarily has norm greater than or equal to one. The left hand side
however has norm less than or equal to one. Therefore we conclude the maximal imaginary part is zero.
Similarly, the minimal imaginary part is zero.
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Figure 2: The counting function for a hypothetical distribution of roots. The blue line denotes
L times the counting function, which takes integer values at fixed values of momenta, indicated
along the function by dots. Open dots indicate unoccupied integers (holes), filled dots particles.
For instance the first particle momentum p1 corresponds to quantum number Lc(p1) = 4. The
red line is the (everywhere positive) derivative of the counting function.

2.2.2 Thermodynamics

Now we are in a position to apply the ideas of the previous section on free fermions to the
Bose gas. To start with, we should understand the relation between the quantum numbers
and the momenta in more detail. Let us introduce the so-called counting function c(p) as

Lc(p) =
L

2π
p+

1

2πi

∑
k

logS(p− pk). (2.2.9)

For the Bose gas you can explicitly see that this is a monotonically increasing function.
Now, if we have a state with quantum numbers {I}, by definition the particle momenta
correspond to the p’s for which Lc(pj) = Ij . By analogy we then say that any allowed
quantum number J 6∈ {I} represents a hole with momentum Lc(p) = J . We can schemat-
ically depicted this situation in figure 2. The corresponding physical picture is as follows.
Since each particle carries energy p2, by monotonicity of the counting function it is clear
that the N particle ground state has quantum numbers running between −b(N − 1)/2c
and b(N − 1)/2c (in unit steps). Excited states now correspond to particles living on the
same quantum number lattice (cf. the previous subsection). One or more of them have
been moved out of the ground state interval to higher quantum numbers, however, leaving
one or multiple ‘holes’ behind in the ground state lattice, cf. figures 1 and 2.

As before we introduce densities for the particles and holes as

Lρb(p)∆p = #of particles with momentum between p and p+ ∆p,

Lρ̄b(p)∆p = #of holes with momentum between p and p+ ∆p.
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Again the total density of states in quantum number space is one, which in momentum
space picks up a measure factor (Jacobian), cf. figure 2, and we find

ρb(p) + ρ̄b(p) = ρ(p) =
dc(p)

dp
, (2.2.10)

where we have replaced the discrete derivative by the continuous one appropriate for the
thermodynamic limit, and we keep the normalization by 2π/L introduced when discussing
free electrons. In the Bethe equations we encounter sums over particles, which become
integrals over densities since as before

1

L

N∑
k 6=j

logS(pj − pk) =
N∑
k 6=j

logS(pj − pk)
pk − pk+1

L(pk − pk+1)
→
∫ ∞
−∞

dp′ logS(p(j) − p′)ρb(p′).

Using relation (2.2.10) to also express the left hand side of the Bethe equations in terms
of densities we find

ρb(p) + ρ̄b(p) =
1

2π
+K ? ρb(p), (2.2.11)

where

K(p) =
1

2πi

d

dp
logS(p), (2.2.12)

and ? denotes the convolution5

f ? g (p) ≡
∫ ∞
−∞

dp′f(p− p′)g(p′). (2.2.13)

Equation (2.2.11) is the thermodynamic analogue of the Bethe equations, and the analogue
of the constraint (2.1.5) for free particles (note that eqn. (2.2.11) actually reduces to
(2.1.5) for a trivial S matrix). Now we are in the same position as we were for free
electrons.

The free energy is of the same form as before,

f =

∫ ∞
−∞

dp
(
Eρb − T

(
ρ log ρ− ρb log ρb − ρ̄b log ρ̄b

))
, (2.2.14)

where we recall that for our almost free bosons E(p) = p2. To describe thermodynamic
equilibrium we should now vary f with respect to ρb and ρ̄b, subject to eqn. (2.2.11)
meaning

δρ̄b = −δρb +K ? δρb. (2.2.15)

The result is a little more complicated than before

δf =

∫ ∞
−∞

dp

(
Eδρb − T

(
log

ρ

ρb
δρb + log

ρ

ρ̄b
δρ̄b
))

(2.2.16)

=

∫ ∞
−∞

dp δρb
(
E − T (log

ρ̄b

ρb
+ log

(
1 +

ρb

ρ̄b

)
?̃ K)

)
(2.2.17)

5In models where the momenta do not enter the S matrix in difference form, the derivative in K refers to
the first argument (p of S(p, p′)), while the convolution would become an integral over the second (p′). We will
only encounter models where we can pick a parametrization that gives a difference form.
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where ?̃ denotes ‘convolution’ from the right,

f ?̃K(p) =

∫ ∞
−∞

dp′f(p′)K(p′ − p). (2.2.18)

Introducing the pseudo-energy ε by analogy to the free fermion case

ρ̄b

ρb
(p) = eε(p)/T , (2.2.19)

we see that in thermodynamic equilibrium it needs to satisfy

ε(p) = E(p)− T log(1 + e−ε/T ) ?̃ K (2.2.20)

known as a thermodynamic Bethe ansatz equation. This equation can be numerically
solved by iteration, as clearly discussed in appendix A of the original paper [4]. We
briefly discuss some general aspects of solving TBA equations numerically in appendix B.
Given a solution of this equation, the free energy in thermodynamic equilibrium is given
by

f = −T
∫ ∞
−∞

dp

2π
log(1 + e−ε/T ). (2.2.21)

The above formulae are frequently written in terms of a Y function Y = eε(p)/T .
In summary, starting with the Bethe ansatz solution of the one dimensional Bose gas

with δ function interaction, we can continue to use concepts like density of states as we
did for free electrons, because individual momenta are still conserved. The nontrivial
S matrix of the model now results in an integral equation for the particle density in
thermodynamic equilibrium. In this way we reduce the computation of the infinite volume
partition function of an interacting theory to an integral equation that we can solve rather
easily at least numerically, for any value of the coupling c.

In a general integrable model the situation is a little more complicated if its excitation
spectrum contains bound states of elementary excitations. The XXX spin chain is such a
model, and furthermore represents the internals of the chiral Gross-Neveu model.

2.3 The XXX spin chain

The Heisenberg XXX spin chain is a one dimensional lattice model with Hamiltonian

H = −J
4

Nf∑
i=1

(~σi · ~σi+1 − 1) , (2.3.1)

where ~σ is the vector of Pauli matrices. We take the lattice to be periodic; σNf+1 = σ1.
This Hamiltonian acts on a Hilbert space given by Nf copies of C2, one for each lattice
site i. Identifying (1, 0) as |↑〉 and (0, 1) as |↓〉 , states in this Hilbert space can be viewed
as chains of spins, in this case closed. For J > 0 this is a model of a ferromagnet where
spins prefer to align, while for J < 0 we have an antiferromagnet where spins prefer to
alternate.

The Bethe equations for this model are

eipiNf
Na∏
j=1

S11(vi − vj) = −1, (2.3.2)
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where
pi = p(vi), p(v) = −i logS1f (v), (2.3.3)

and

S11(w) =
w − 2i

w + 2i
, S1f (w) =

w + i

w − i
. (2.3.4)

These equations are the homogeneous limit of the auxiliary Bethe equations of the chiral
Gross-Neveu model we will encounter later, where the “f” will stand for the fermions
of this model. The reason for the remaining notation will become apparent soon. The
energy eigenvalue associated to a solution of these Bethe equations is

E =
∑
i

E1(vi), where E1(v) = −2J
1

v2 + 1
. (2.3.5)

2.3.1 The string hypothesis

To describe the thermodynamics of this model, we would like to understand the type of
solutions these equations can have, specifically as we take the system size Nf to infinity.6

The situation will be considerably different from the Bose gas that we just discussed,
because here we can have solutions with complex momenta,7 For real momenta nothing
particular happens in our equations, and we simply get many more possible solutions as
Nf grows. If we consider a solution with complex momenta, however, say a state with
Im(p1) > 0, we have an immediate problem:

eipqNf → 0, as Nf →∞. (2.3.6)

We see that the only way a solution containing p1 can exist in this limit is if this zero is
compensated by a pole in one of the S11 (eqn. (2.3.4)), which can be achieved by setting

v2 = v1 + 2i. (2.3.7)

At this point we have fixed up the equation for p1, but we have introduced potential
problems in the equation for p2. Whether there is a problem can be determined by
multiplying the equations for p1 and p2 so that the singular contributions of their relative
S-matrix cancel out

ei(p1+p2)Nf

Na∏
i 6=1

S11(v1 − vi)
Na∏
i 6=2

S11(v2 − vi) = ei(p1+p2)Nf

Na∏
i 6=1,2

S11(v1 − vi)S11(v2 − vi) = 1,

and the two particles together effectively scatter with the others by the S matrix

S21(v − vi) = S11(v1 − vi)S11(v2 − vi) =
v − vi − 3i

v − vi + 3i

v − vi − i
v − vi + i

,

where v = (v1 + v2)/2 = v1 + i. If the sum of their momenta is real this equation is fine,
and the momenta can be part of a solution to the Bethe equations. In terms of rapidities
this solution would look like

v1 = v − i, v2 = v + i, v ∈ R. (2.3.8)

6Here we directly follow the discussion of this topic in [41].
7They exist for instance for the Bethe equations with Nf = 5, Na = 2.
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Figure 3: Bethe strings. Bethe strings are patterns of rapidities with spacing 2i. Here we illus-
trate strings of length three, eight, one and four, with center 1/8, 3/8, 5/8 and 7/8 respectively.

On the other hand, if the sum of our momenta has positive imaginary part we are still
in trouble.8 In this case, since we should avoid coincident rapidities in the Bethe ansatz,
the only way to fix things is to have a third particle in the solution, with rapidity

v3 = v2 + 2i. (2.3.9)

As before, if now the total momentum is real the equations are consistent and these three
rapidities can form part of a solution. If not, we continue this process and create a bigger
configuration, or run off to infinity. These configurations in the complex rapidity plane
are known as Bethe strings, illustrated in figure 3. Since our spin chain momentum p has
positive imaginary part in the lower half of the complex rapidity plane and vice versa,
strings of any size can be generated in this fashion by starting appropriately far below the
real line.9 Concretely, a Bethe string with Q constituents and rapidity v is given by the
configuration

{vQ} ≡ {v − (Q+ 1− 2j)i|j = 1, . . . , Q}, (2.3.10)

where v ∈ R is called the center of the string. Full solutions of the Bethe equation in the
limit Nf →∞ can be built out of these string configurations. Let us emphasize that these
string solutions only “exist” for Nf → ∞. At large but finite Nf root configurations are
typically only of approprimate string form.

These (Bethe) strings can be interpreted as bound states, having less energy than sets
of individual real magnons.10 For example, the energy of the two-string (2.3.8) is

E2(v) = E(v1) + E(v2) = −2J

(
1

(v − i)2 + 1
+

1

(v + i)2 + 1

)
= −2J

2

v2 + 22
, (2.3.11)

which is less than that of any two-particle state with real momenta:

E2(v) < E(ṽ1) + E(ṽ2) for v, ṽ1,2 ∈ R (real momenta). (2.3.12)

8By rearranging the order of our argument (the particles considered) we do not have to consider the case
where the remaining imaginary part is of different sign.

9In other models the pattern of possible string configurations can be quite complicated, see e.g. chapter 9
of [8] for the XXZ spin chain as a classic example, or [42] and [43] for more involved examples.

10The corresponding Bethe wave-function also shows an exponential decay in the separation of string con-
stituents.
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Similarly, the energy of a Q-string is lower than that of Q separate real particles and is
given by

EQ(v) =
∑

vj∈{vQ}

E(vj) = −2J
Q

v2 +Q2
. (2.3.13)

This is most easily shown by noting that

E(v) = J
dp(v)

dv
, (2.3.14)

and the particularly simple expression for the momentum of a Q-string

pQ(v) = i log
v −Qi
v +Qi

, (2.3.15)

as follows by cancelling numerators and denominators in the product v1−i
��v1+i

��v2−i
v2+i . . .

vQ−i
vQ+i as

indicated.
We have just determined that the possible solutions of the Bethe equations in the

limit Nf →∞ are built out of elementary objects called Bethe strings (a one-string being
a normal magnon). Interpreting them as bound states, the spectrum thus obtained is
reflected by an appropriate pole in the two-particle S-matrix. This example is not a field
theory, but such patterns generically hold there (as well).

So far so good, but ultimately we are interested in thermodynamic limits, meaning
we should take Nf → ∞ with Na/Nf ≤ 1/2 fixed – the number of magnons goes to
infinity as well. In this limit the analysis above is no longer even remotely rigorous since
an ever growing product of magnon S-matrices with complex momenta can mimic the role
of the pole in our story for example. Still, since such solutions seem rather atypical and
at least low magnon density solutions should essentially conform to the string picture, we
can hypothesize that ‘most’ of the possible solutions are made up of string complexes, in
the sense that they are the ones that give measurable contributions to the free energy.
Indeed in the XXX spin chain there are examples of solutions that do not approach string
complexes in the thermodynamic limit [44, 45, 46], but nonetheless the free energy is
captured correctly by taking only string configurations into account [47]. The assumption
that all thermodynamically relevant solutions to the Bethe equations are built up out
of such string configurations, and which form these configurations take, goes under the
name of the string hypothesis. More details and references on the string hypothesis can
for example be found in chapter four of [10].

Bethe equations for string configurations

With our string hypothesis for possible solutions in the thermodynamic limit, we would like
to group terms in the Bethe equations accordingly – the Na magnons of a given solution
of the Bethe equations should arrange themselves into combinations of string complexes.
Denoting the number of bound states of length Q occurring in a given configuration by
NQ we have

Na∏
j=1

→
∞∏
Q=1

NQ∏
l=1

∏
j∈{vQ,l}

, (2.3.16)

under the constraint
∞∑
Q=1

QNQ = Na. (2.3.17)
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We can then appropriately represent the Bethe equations as

eipiNf
∞∏
Q=1

NQ∏
l=1

S1Q(vi − vQ,l) = −1, (2.3.18)

where

S1Q(v − wQ) ≡
∏

wj∈{wQ}

S11(v − wj). (2.3.19)

At this point not all Na Bethe equations are independent anymore, as some magnons are
bound in strings – only their centers matter. We already saw that we can get the Bethe
equation for the center of a bound state by taking a product over the Bethe equations of
its constituents, so that our (complete) set of Bethe equations becomes

eip
P
r Nf

∞∏
Q=1

NQ∏
l=1

SPQ(vP,r − vQ,l) = (−1)P , (2.3.20)

where

SPM (vP − w) ≡
∏

vi∈{vP }

S1M (vi − w). (2.3.21)

Note that we include the term with (Q, l) = (P, r) in the product above since we took the
product in the Bethe equations (2.3.2) to run over all particles. Since SPP (0) = (−1)P

2
=

(−1)P however, we could cancel this (Q, l) = (P, r) term against the (−1)P in the Bethe
equations for string configurations if we wanted to.

Physically these expressions represent the scattering amplitudes between the particles
indicated by superscripts. These products of constituent S-matrices typically simplify,
but their concrete expressions are not important for our considerations (yet); what is
important is that they exist and only depend on the centers of the strings, i.e. the
overal momenta of the bound state configurations. Combining a set of magnons into a
string (bound state) is known as fusion, and the above product denotes the fusion of the
corresponding scattering amplitude. You might have encountered similar ideas applied to
obtain bound state S-matrices from fundamental ones for instance in [48], here we just
did it at the diagonalized level.

2.3.2 Thermodynamics

We now have a grasp on the types of solutions of our Bethe equations in the thermody-
namic limit, though this is far from rigorous. We will assume that our classification of pos-
sible solutions in terms of strings accurately describes the system in the thermodynamic
limit. With this assumption we can proceed as before and derive the thermodynamic
Bethe ansatz equations.

We begin with the Bethe equations in logarithmic form, introducing an integer I in
each equation which labels the possible solutions

−2πIPr = Nfp
P (vP,r)− i

∞∏
Q=1

NQ∏
l=1
l 6=r

logSPQ(vP,r − vQ,l). (2.3.22)
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We choose to define the integer with a minus sign for reasons we will explain shortly. As
by now usual, the solutions to these equations become dense

vi − vj ∼ O(1/Nf ), (2.3.23)

and we generalize the integers I to counting functions of the relevant rapidity (momen-
tum). Concretely

Nfc
P (u) = −Nf

pP (u)

2π
− 1

2πi

∞∑
Q=1

NQ∑
l=1
l 6=r

logSPQ(u− vQ,l), (2.3.24)

so that
Nfc

P (vl) = IPl . (2.3.25)

Importantly, in this case we assume that the counting functions are monotonically in-
creasing functions of u provided their leading terms are,11 and here indeed we have

1

2π

dpP (v)

dv
< 0, (2.3.26)

the reason for our sign choice above. Clearly in general we have

c(wi)− c(wj) =
Ii − Ij
Nf

. (2.3.27)

Introducing particle and hole densities as before, except now in rapidity space, we get

ρP (v) + ρ̄P (v) =
dcP (v)

dv
, (2.3.28)

and explicitly taking the derivative of the counting functions gives us the thermodynamic
analogue of the Bethe-Yang equations as

ρP (v) + ρ̄P (v) = − 1

2π

dpP (v)

dv
−KPQ ? ρQ(v), (2.3.29)

where we implicitly sum over repeated indices, and defined the kernels K as the logarith-
mic derivatives of the associated scattering amplitudes

Kχ(u) = ± 1

2πi

d

du
logSχ(u), (2.3.30)

where χ denotes an arbitrary set of particle labels. The sign is chosen such that the kernels
are positive, in this case requiring a minus signs for KM .12 As before the Bethe-Yang

11Here we do not have a convenient positive definite Yang-Yang functional at our disposal. It is not obvious
how to prove that these functions are monotonically increasing for given excitation numbers without knowing
the precise root distribution, which is what we are actually trying to determine. We may consider it part of the
string hypothesis by saying we are not making a mistake in treating the thermodynamic limit as the ordered
limits Nf → ∞, then Na → ∞, in which case the statement does clearly hold. A discussion with similar
statements can be found on the first page of section six in [49].

12Unfortunately we cannot define a notation which uniformizes both the Bethe-Yang equations in the way we
did and automatically gives positive kernels.
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equations come in by giving us the hole densities as functions of the particle densities.
Varying eqs. (2.3.29) gives

δρP + δρ̄P = −KPQ ? δρQ, (2.3.31)

Writing this schematically as13

δρi + δρ̄i = Kij ? δρj , (2.3.32)

after a little algebra we get the variation of the entropy

δs

δρj(u)
= log

ρ̄j

ρj
(u) + log

(
1 +

ρi

ρ̄i

)
?̃ Kij(u), (2.3.33)

where again ?̃ denotes ‘convolution’ from the right (now in u). The variation of the other
terms is immediate, and δF = 0 results in the thermodynamic Bethe ansatz equations

log
ρ̄j

ρj
=
Ej
T
− log

(
1 +

ρi

ρ̄i

)
? Kij , (2.3.34)

where by conventional abuse of notation we dropped the tilde on the ‘convolution’. We will

henceforth denote the combination ρ̄j

ρj
by the Y functions Yj , meaning the TBA equations

read

log Yj =
Ej
T
− log

(
1 +

1

Yi

)
? Kij . (2.3.35)

Taking into account the generalized form of eqs. (2.3.29) as

ρi + ρ̄i =
1

2π

dpi

du
+Kij ? ρj , (2.3.36)

on a solution of the TBA equations the free energy density is given by

f = −T
∫ ∞
−∞

du
1

2π

dpj
du

log

(
1 +

1

Yj

)
. (2.3.37)

Specifying our schematic notation to eqs. (2.3.29) gives

log YP =
EP
T

+ log

(
1 +

1

YQ

)
? KQP , (2.3.38)

and

f = T
∑
P

∫ ∞
−∞

du
1

2π

dpP
du

log

(
1 +

1

YP

)
. (2.3.39)

Note the changes of signs due to our conventions on K and p compared to eqs. (2.2.20)
and (2.2.21). In stark contrast to the Bose gas, here we are dealing with an infinite set of
equations for infinitely many functions, all functions appearing in each equation.

At this point the generalization to an arbitrary model is hopefully almost obvious, with
the exception of the string hypothesis which depends on careful analysis of the Bethe(-
Yang) equations for a particular model. If we have this however, we can readily determine

13Apologies for the immediate mismatch of signs, but this is the general form we would like to take, and cf.
eqn. (2.2.11) there is clearly no uniform sign choice.
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the complete set of Bethe(-Yang) equations analogous to the procedure to arrive at eqs.
(2.3.20). From there we immediately get the analogue of eqs. (2.3.29) by a logarithmic
derivative. Note that since we like to think of densities as positive we may have to invert
the Bethe(-Yang) equations for a specific particle type to make sure the counting function
is defined to be monotonically increasing, just like we did above. This is all we need to
specify the general TBA equations (2.3.35) to a given model. Let us quickly do this for
our main field theory example of the chiral Gross-Neveu model.

2.4 The chiral Gross-Neveu model

The SU(N) chiral Gross-Neveu model is a model of N interacting Dirac fermions with
Lagrangian14

LcGN = ψ̄ai/∂ψ
a +

1

2
g2
s

(
(ψ̄aψ

a)2 − (ψ̄aγ5ψ
a)2
)
− 1

2
g2
v(ψ̄aγµψ

a)2, (2.4.1)

where a = 1, . . . , N labels the N Dirac spinors. This Lagrangian has U(N)×U(1)c sym-
metry, where viewed as an N -component vector the spinors transform in the fundamental
representation of U(N), and U(1)c denotes the chiral symmetry ψ → eiθγ5ψ. The full
spectrum of this theory contains N − 1 SU(N) multiplets of interacting massive fermions,
and massless excitations which carry this chiral U(1) charge that decouple completely.15

We will focus on the SU(2) model.
As a relativistic model the dispersion relation of the fermions is

E2 − p2 = m2, (2.4.2)

where m is the mass of the fermions. It will be convenient to parametrize energy and
momenta in terms of a rapidity u as16

E = m cosh πui
2 , p = m sinh πui

2 . (2.4.3)

Note that Lorentz boosts act additively on the rapidity, and therefore by Lorentz in-
variance the two-body S-matrix is a function of the difference of the particles’ rapidities
only.

The spectrum of the SU(2) chiral Gross-Neveu model contains two species of fermions
corresponding to SU(2) spin up and down. This model can be “solved” in the spirit of
factorized scattering [50], as discussed for instance in the article by D. Bombardelli [48].
For the SU(2) chiral Gross-Neveu model the upshot is that the scattering of two fermions
of equal spin has amplitude

Sff (u) = −
Γ(1− u

4i)Γ(1
2 + u

4i)

Γ(1 + u
4i)Γ(1

2 −
u
4i)
. (2.4.4)

14Our γ matrices are defined as γ0 = σ1, γ1 = iσ2, γ5 = γ0γ1, where γ0,1 form the Clifford algebra {γµ, γν} =
2ηµν with η = diag(1,−1). Note that γ5 is Hermitian. As usual ψ̄ = ψ†γ0 and /∂ = γµ∂µ.

15These facts are far from obvious looking at the Lagrangian, see e.g. section 2.4.1 in [41] for a brief discussion
with references. Because of the decoupling of the U(1) mode, gv is typically put to zero in the chiral Gross-Neveu
Lagrangian. Keeping gv 6= 0, however, is useful in demonstrating equivalence to the SU(N) Thirring model.

16We choose this unconventional normalization of u to get Bethe-Yang equations in ‘the simplest’ form. The
relation to the rapidity of D. Bombardelli’s article [48] is simply θ = πu/2.
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The relative scattering of fermions with opposite spin is fixed by SU(2) invariance, which
leads to a matrix structure matching the R matrix of the XXX spin chain. Diagonalizing
the associated transfer matrix results in the Bethe-Yang equations

eipjL
Nf∏
m=1

Sff (uj − um)

Na∏
i=1

Sf1(uj − vi) = −1, (2.4.5)

Nf∏
m=1

S1f (vi − um)

Na∏
j=1

S11(vi − vj) = −1. (2.4.6)

which apply in an asymptotically large volume limit, suiting us just fine in the thermody-
namic limit. The amplitudes S11, S1f and Sf1(v) = S1f (v) are as defined in the previous
section in equation (2.3.4). The Na auxiliary excitations with rapidities vj correspond to
changing the SU(2) spin fermions from up to down; the “vacuum” of the transfer matrix
was made up of spin up fermions (cf. spin up states in the XXX spin chain). Note that the
equations for the auxiliary excitations become the XXX Bethe equations of the previous
section in the limit um → 0.

String hypothesis

The two types of fermions of the chiral Gross-Neveu model do not form physical bound
states – there is no appropriate pole in the S matrix.17 However, to take a thermodynamic
limit we need to consider finite density states, meaning we will be taking the limit L→∞,
but alsoNf →∞ andNa →∞ keepingNf/L andNa/Nf fixed and finite. At the auxiliary
level we are hence taking the infinite length limit of our XXX spin chain, where we did
encounter bound states. The analysis leading to these string solutions is not affected by
including the real inhomogeneities um corresponding to the physical fermions of the chiral
Gross-Neveu model. The only difference is that here the XXX magnons are auxiliary
excitations, meaning they carry no physical energy or momentum, and hence the Bethe
string solutions lose their interpretation as physical bound states. Nothing changes with
regard to them solving the Bethe-Yang equations in the thermodynamic limit however,
and we need to take them into account. For the SU(2) chiral Gross-Neveu model we will
hence make the string hypothesis that the solutions of its Bethe-Yang equations are given
by

• Fermions with real momenta

• Strings of auxiliary magnons of any length with real center

Fusing the Bethe-Yang equations (2.4.5) and (2.4.6) then gives

eipjL
Nf∏
m 6=j

Sff (uj − um)

∞∏
Q=1

NQ∏
l=1

SfQ(uj − vQ,l) = −1, (2.4.7)

Nf∏
m=1

SPf (vP,r − um)

∞∏
Q=1

NQ∏
l=1

SPQ(vP,r − vQ,l) = (−1)P , (2.4.8)

17In our conventions, bound states must have Im(u) ∈ (0, 2i), see e.g. [51] or section 2.4.1 of [41].
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where

SχQ(v − wQ) ≡
∏

wj∈{wQ}

Sχ1(v − wj), χ = f, 1, (2.4.9)

and

SPχ(vP − w) ≡
∏

vi∈{vP }

S1χ(vi − w), χ = f,Q. (2.4.10)

Thermodynamics

Via the counting functions we get the thermodynamic analogue of the Bethe-Yang equa-
tions

ρf (u) + ρ̄f (u) =
1

2π

dp(u)

du
+Kff ? ρf (u)−KfQ ? ρQ(u), (2.4.11)

ρP (v) + ρ̄P (v) = KPf ? ρf (u)−KPQ ? ρQ(u), (2.4.12)

where again the kernels are defined as in eqn. (2.3.30), positivity of the kernels here
requiring minus signs for KfP and KMf . From our general result above we then find the
TBA equations

log Yf =
E

T
− log

(
1 +

1

Yf

)
? Kff − log

(
1 +

1

YQ

)
? KQf , (2.4.13)

log YP = log

(
1 +

1

YQ

)
? KQP + log

(
1 +

1

Yf

)
? KfP , (2.4.14)

and free energy density

f = −T
∫ ∞
−∞

du
1

2π

dp

du
log

(
1 +

1

Yf

)
. (2.4.15)

The thermodynamics of the chiral Gross-Neveu model (and the XXX spin chain), are
determined through an infinite number of integral equations, each directly coupled to all
others. Fortunately, this structure can be simplified.

2.5 From TBA to Y system

In problems where there are (auxiliary) bound states the TBA equations can typically be
rewritten in a simpler fashion. This is possible for the intuitive reason illustrated in figure
4. Since we obtained all bound state S matrices by fusing over constituents, provided S
has no branch cuts the figure shows that

SχQ+1(v, u)SχQ−1(v, u)

SχQ(v, u+ i)SχQ(v, u− i)
= 1, (2.5.1)

where χ is any particle type and we have reinstated a dependence on two arguments for
clarity. We see that (the logs of) our S-matrices satisfy a discrete Laplace equation. Hence
the associated kernels would naively satisfy

KχQ(v, u+ i) +KχQ(v, u− i)− (KχQ+1(v, u) +KχQ−1(v, u)) = 0. (2.5.2)
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Figure 4: The discrete Laplace equation for strings. Shifting a length Q string configuration
up by i and another down by i gives a configuration equivalent to two unshifted strings, one of
length Q + 1 and another of length Q− 1, here illustrated for Q = 4. The small dots indicate
the position of the rapidities before shifting.

However, when we shift u by ±i we may generate a pole in K(v, u+ i) for some real value
of v. This can lead to a discontinuity in integrals involving K such as those in the TBA
equations. Therefore we need to understand what exactly we mean by this equation. To
do so, let us introduce the kernel s

s(u) =
1

4 cosh πu
2

, (2.5.3)

and the operator s−1 that in hindsight will properly implement our shifts

f ? s−1(u) = lim
ε→0

(f(u+ i− iε) + f(u− i+ iε)) , (2.5.4)

which satisfy
s ? s−1(u) = δ(u). (2.5.5)

Note that s−1 has a large null space, so that f ?s−1?s 6= f in general; we will see examples
of this soon. This kernel can now be used to define

(K + 1)−1
PQ = δP,Q − IPQs, (2.5.6)

where the incidence matrix IPQ = δP,Q+1 + δP,Q−1, and δM,N is the Kronecker delta
symbol. This is defined so that

(K + 1)MP ? (K + 1)−1
PN = 1M,N , (2.5.7)

where 1 denotes the identity in function and index space: 1M,N = δ(u)δM,N . In other
words, the kernel KPQ introduced above is supposed to satisfy

KPQ − (KPQ+1 +KPQ−1) ? s = s IPQ, (2.5.8)

which we can prove by Fourier transformation, see appendix A for details. Similarly we
have

KfQ − (KfQ+1 +KfQ−1) ? s = s δQ1. (2.5.9)

Note how the naive picture of eqn. (2.5.2) misses the right hand side of these identities.
If a set of TBA equations contains other types of kernels these typically also reduce to
something nice after acting with (K + 1)−1.
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Simplified TBA equations

With these identities we can rewrite the auxiliary TBA equations (2.4.14) for the chiral
Gross-Neveu model as

log YQ = log(1 + YQ+1)(1 + YQ−1) ? s+ δQ,1 log

(
1 +

1

Yf

)
? s. (2.5.10)

This follows from convoluting the equations for YQ±1 with s and subtracting them from
the equation for YQ. Note the remarkable simplification that all infinite sums have disap-
peared! These TBA equations are not surprisingly known as simplified TBA equations,
versus the canonical ones we derived them from.

We should be careful not to oversimplify however. The fact is that (K + 1)−1 has
a null space that is typically of physical relevance. For example, if we take our chiral
Gross-Neveu model and turn on a (constant) external magnetic field B coupling to the
SU(2) spin of a particle, this would manifest itself as a constant term in the ‘energy’ of
magnons (i.e. a chemical potential), and would lead to a term ∼ B × P in the TBA
equation for YP , cf. eqs. (2.3.35). Since c ? s = c/2 for constant c, such a term is in the
null space of (K + 1)−1

PQ (cf. eqn. (2.5.6)), and hence the simplified TBA equations would
not distinguish between different values of this magnetic field. In short, the canonical
TBA equations carry more information than the simplified TBA equations. Though this
point will come back below in section 3.3, we will not explicitly resolve this technical point
here.18 The extra information required to reconstruct our magnetic field for example, lies
in the large u asymptotics of the Y functions, and upon specifying this information our
simplified TBA equations are good to go.

The infinite sum in the main TBA equation can also be removed. Noting that similarly
to KfQ, KQf satisfies

KQf − IQP s ? KPf = sδQ1, (2.5.11)

we can rewrite the above simplified equations as

log YQ − IQP log YP ? s = IQP log

(
1 +

1

YP

)
? s+ δQ,1 log

(
1 +

1

Yf

)
? s. (2.5.12)

Integrating with KQf and using eqn. (2.5.11) we get

log Y1 ? s = log

(
1 +

1

YQ

)
? KQf − log

(
1 +

1

Y1

)
? s+ log

(
1 +

1

Yf

)
? s ? K1f , (2.5.13)

or in other words

log

(
1 +

1

YQ

)
? KQf = log (1 + Y1) ? s− log

(
1 +

1

Yf

)
? s ? K1f . (2.5.14)

The main TBA equation (2.4.13) then becomes

log Yf =
E

T
− log (1 + Y1) ? s, (2.5.15)

18Further discussion can be found in e.g. chapter four of [41].
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0 1 M2 ...

Figure 5: The TBA structure for the chiral Gross-Neveu model in diagrammatic form. This
graph illustrates the coupling between nearest neighbours in the simplified TBA equations
(2.5.16) or Y system (2.5.17), where the different colour on the first node signifies the fact that
it is ‘massive’ corresponding to the δM,0 term in the simplified equations (this is also frequently
denoted by putting a × in the open circle).

Figure 6: The SU(3) Y system in diagrammatic form.

upon noting that magically enough the Yf contribution drops out completely thanks to
Kff = s ? K1f .19 For uniformity we can define Y0 ≡ Y −1

f and get

log YM = log(1 + YM+1)(1 + YM−1) ? s− δM,0

(
E

T

)
(2.5.16)

with YM ≡ 0 for M < 0.

Y system

To finish what we started, we can now apply s−1 to these equations to get

Y +
M Y −M = (1 + YM+1)(1 + YM−1), (2.5.17)

where the ± denote shifts in the argument by ±i; f±(u) ≡ f(u ± i). Note that the
energy is in the null space of s−1. These equations are known as the Y system [15]. In
general, the structure of simplified TBA equations and Y systems can be represented
diagrammatically by graphs. For example, in this case eqs. (2.5.16) and (2.5.17) can be
represented by figure 5. For more general models the Y system is defined on a certain two
dimensional grid, for instance the SU(3) chiral Gross-Neveu model and SU(3) version of
the Heisenberg spin chain would have a Y system corresponding to the diagram in figure
6. These diagrams have a group theoretical interpretation. We got extra Y functions for
the XXX spin chain and chiral Gross-Neveu model due to the presence of bound states.
These bound states of Q particles carry total spin Q/2, which we can put into correspon-
dence with the irreducible representations of SU(2). For higher rank symmetry algebras
like SU(3), the story is similar: the Y functions correspond to inequivalent non-singlet

19To show this we can for example compute the integral in the second term by residues. The cancellation
of the complicated scalar factor of the S matrix in the simplified TBA equations appears to be ubiquitous, an
observation first made in [15], as an intriguing manifestation of what must be crossing symmetry. Interestingly,
at least in some cases we can reverse-engineer the scalar factor from this property [52].
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irreducible representations. The irreducible representations of SU(3) can be represented
by Young diagrams of maximal height three. All inequivalent non-singlet ones correspond
to diagrams of height two, however, which match the entire diagram of figure 6 if we draw
a square around every node.20

Let us emphasize again that in this process we lose information at each step along the
way: both (K + 1)−1 and s−1 have null-spaces. Therefore the simplified TBA equations
are only equivalent to the canonical TBA equations provided we specify additional infor-
mation on the Y functions such as their large u asymptotics. An alternative but when
applicable equivalent specification often encountered in the literature is to give the large
Q asymptotics of the YQ functions.21 The Y system requires even further specifications
to really correspond to a particular model. For example the Y system for the XXX spin
chain is given by dropping Y0 from the chiral Gross-Neveu Y system altogether, but this
is nothing but the chiral Gross-Neveu Y system again, just shifting the label M by one
unit.

3 Integrability in finite volume

So far we have used integrability to get an exact description of the large volume limit
of our theory, and used this to find a description of its thermodynamic properties in
this limit. When the system size is finite however, the notion of an S-matrix – let alone
factorized scattering – does not exist, making our integrability approach fundamentally
inapplicable. Interestingly however, there is a way around this, allowing us to compute
the finite size spectrum of an integrable field theory exactly. Parts of this section directly
follow the corresponding discussion in chapter 2 of [41].

3.1 The ground state energy in finite volume

Let us not be too ambitious and begin by attempting to compute the ground state energy
of our theory in finite volume. This is possible thanks to a clever idea by Zamolodchikov
[12]. To describe this idea let us recall that the ground state energy is the leading low
temperature contribution to the (Euclidean) partition function

Z(β, L) =
∑
n

e−βEn ∼ e−βE0 , as β ≡ 1

T
→∞. (3.1.1)

We can compute this partition function with our original quantum field theory by Wick
rotating τ → σ̃ = iτ and considering a path integral over fields periodic in σ̃ with period
β. Geometrically we are putting the theory on a torus which in the zero temperature
limit degenerates to the cylinder we began with. Analytically continuing σ̃ back to τ

20There are also many integrable models with so-called quantum group symmetry. The representation theory
in these cases is more involved, and for instance can result in a maximal spin. Correspondingly, in such cases
TBA analysis results in a Y system with finitely many Y functions, see e.g. chapter 7 of [41] for more details.
An extensive review on Y systems and so-called T systems can be found in [53].

21Already for constant solutions of say the simplified TBA equations of the chiral Gross-Neveu model with
Y0 → 0 there is large ambiguity: for constant Y functions the simplified TBA equations are equivalent to the Y
system (of course without rapidities to shift), which is now nothing but a recursion relation fixing everything in
terms of Y1. As will come back below, only one value of this constant corresponds to a solution of the canonical
equations with fixed chemical potentials.
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Figure 7: The mirror trick. The partition function for a theory on a finite circle at finite
temperature lives on a torus (middle). In the zero temperature limit this torus degenerates and
gives the partition function on a circle at zero temperature (left), dominated by the ground
state energy. Interchanging space and time we obtain a mirrored view of this degeneration as
the partition function of the mirror theory at finite temperature but on a decompactified circle,
determined by the infinite volume mirror free energy (or Witten’s index).

gives back our original Lorentzian theory. We could, however, also analytically continue
σ → τ̃ = −iσ. This gives us a Lorentzian theory where the role of space and time have
been interchanged with respect to the original model – it gives us its mirror model.22

Putting it geometrically, we could consider Hamiltonian evolution along either of the two
cycles of the torus. Note that at the level of the Hamiltonian and the momentum the
mirror transformation corresponds to

H → ip̃, p→ −iH̃, (3.1.2)

where mirror quantities are denoted with a tilde. To emphasize its role as the mirror
volume, let us from now on denote the inverse temperature β by R. In principle we can
compute the Euclidean partition function both through our original model at size L and
temperature 1/R and through the mirror model at size R and temperature 1/L. These
ideas are illustrated in figure 7.

To find the ground state energy of our model then, we could equivalently compute
the infinite volume partition function of our mirror model at finite temperature, i.e. its
(generalized) free energy F̃ since

Z = e−LF̃ . (3.1.3)

In fact, cf. eqn. (3.1.1), the ground state energy is related to the free energy density of
the mirror model as

E0 =
L

R
F̃ = Lf̃. (3.1.4)

22A double Wick rotation leaves a relativistic field theory invariant, and hence we do not really need to
carefully make this distinction here. Still, we will occasionally do so for pedagogical purposes. The integrable
models encountered in the context of the AdS/CFT correspondence are not Lorentz invariant for instance,
meaning the double Wick rotation produces a different model. The term mirror model and mirror transformation
were introduced in this context in [19]. Interestingly, the AdS5 × S5 mirror model – the model on which the
AdS5/CFT4 TBA is based – can be interpreted as a string itself [54, 55]. The spectrum of this string is thereby
related to the thermodynamics of the AdS5 × S5 string, and vice versa [56].
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The key point of this trick is that we are working with the mirror model in the infinite
volume limit where we can use factorized scattering and the asymptotic Bethe ansatz of
the previous section, since any exponential corrections to them can be safely neglected.23

The price we have to pay is dealing with a finite temperature. Fortunately we just
learned how to do precisely this, and we can compute our ground state energy from the
thermodynamic Bethe ansatz applied to the double Wick rotated (mirror) model.

We should be a little careful about the boundary conditions in our model however.
Where fermions are concerned the Euclidean partition function is only the proper statis-
tical mechanical partition function used above, provided the fermions are anti-periodic in
imaginary time. Turning things around, if the fermions are periodic on the circle then
from the mirror point of view they will be periodic in imaginary time, so that our goal in
the mirror theory is not to compute the standard statistical mechanical partition function
but rather what is known as Witten’s index

ZW = Tr
(

(−1)F e−LH̃
)
, (3.1.5)

where F is the fermion number operator. This means we are adding iπF/L to the Hamil-
tonian – a constant imaginary chemical potential for fermions.24

We should also note that the mirror transformation actually has a nice meaning on
the rapidity plane, provided we adapt it slightly. From our discussion above, we see that
the energy and momentum of a particle should transform as

E → ip̃, p→ −iẼ, (3.1.6)

which leaves its relativistic dispersion relation E2−p2 = m2 invariant. This means we can
parametrize Ẽ and p̃ exactly as before (E(u) = cosh πu

2 and p(u) = sinh πu
2 ), but let us

say now in terms of a mirror rapidity ũ. We can then wonder what the relation between
u and ũ should be. By definition we want

E(u) = ip(ũ), p(u) = −iE(ũ). (3.1.7)

Now we recall that sines and cosines are related by shifts of π/2, which in the hyperbolic
case tells us that

E(u− i) = i sinh πu
2 = −ip(−u), p(u− i) = −i cosh πu

2 = −iE(±u). (3.1.8)

Hence we see that if we identify −ũ = u− i, we get what we want. In the literature you
will however typically encounter the transformation u→ u+ i (θ → θ+ iπ2 in the standard
relativistic rapidity parametrization ) which is quite convenient and we will use from here

23Note again that the mirror of a relativistic model is equal to the original (up to the specific boundary
conditions required to compute the same partition function), and therefore the mirror model is immediately
integrable as well. In general the conservation laws responsible for factorized scattering are preserved by Wick
rotations, so that the mirror theory has many conserved quantities and mirror scattering should factorize.
Moreover we can obtain the S-matrix from four point correlations functions via the LSZ reduction formula, and
correlation functions can be computed by Wick rotations.

24Continuing along these lines, if we were to consider quasi-periodic boundary conditions instead of (anti-
)periodic boundary conditions a more general operator enters in the trace, which leads to more general chemical
potentials. For details see e.g. chapter two and four of [41].
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on out.25 Here the rapidity on the right hand side actually implicitly refers to the mirror
rapidity ũ, matching our story so that

u→ ũ+ i, i.e. ũ = u− i. (3.1.9)

This means that in addition to what we are doing here, people frequently do a parity
transformation in between. For parity invariant theories this does absolutely nothing, and
even if a theory is not parity invariant, we could simply proceed this way and compute
things in the parity flipped theory, reverting back only at the final stage.

Applying the above discussion to the chiral Gross-Neveu model, we see that we can
compute its ground state energy on a circle of circumference L by taking our derivation of
the free energy above, replacing the length L by the mirror length R, replacing the tem-
perature T by the inverse length 1/L, and adding a constant term iπ/L to the dispersion
relation for the fermions. The ground state energy is then given by

E0 = −
∫ ∞
−∞

du
1

2π

dp

du
log (1 + Y0) , (3.1.10)

where Y0 satisfies the (mirror) TBA equations

log YM = log(1 + YM+1)(1 + YM−1) ? s− δM,0(LE + iπ), (3.1.11)

together with the YM>0. Note the added iπ in line with the periodicity of the fermions in
imaginary mirror time.

3.2 Tricks with analytic continuation

At this point we have actually done something quite impressive: we have found a system
of equations we can solve (admittedly numerically) to find the exact finite volume ground
state energy of a two dimensional field theory. It would be great if we could extend
this approach to the entire spectrum. If we look back at our arguments however, we are
immediately faced with a big conceptual problem; the mirror trick and infinite volume
limit work nicely precisely for the ground state and the ground state only! Still it is hard
to believe that a set of complicated TBA equations knows about the ground state only,
especially since they are derived from the mirror Bethe-Yang equations which are just
an analytic continuation away from describing the complete large volume spectrum. In
this section we will take an approach often taken in physics; we will (try to) analytically
continue from one part of a problem to another, in this case from the ground state en-
ergy to excited state energies. The idea that excited states can be obtained by analytic
continuation is an old one, discussed in e.g. [57] in the case of the quantum anharmonic
oscillator.

3.2.1 A simple example

Before moving on, we would like to motivate these ideas and illustrate them on a simple
quantum mechanical problem26

Hψ = Eψ, with H =

(
1 0
0 −1

)
+ λ

(
0 1
1 0

)
. (3.2.1)

25While widely used, the name mirror transformation is appropriate for the case we started with, as you
can readily convince yourself of by drawing a picture in the complex (σ, τ) plane. What does the second
transformation do?

26This nice example can be found in slides of a talk by P. Dorey at IGST08 [58].
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Figure 8: Analytic continuation. The left figure shows the analytic continuation of λ (blue)
around the branch point at i, corresponding to flipping the sign of −

√
1 + λ2 upon returning to

the real line. The right figure shows the corresponding movement of the pole at i/λ (blue) which
drags the integration contour (red, dashed) in eqn. (3.2.3) along with itself for continuity. Upon
taking the integration contour back to the real line we retain a residual contribution (yellow,
dashed).

After considerable effort we realize that the spectrum in this model is given by

E(λ) = ±
√

1 + λ2, (3.2.2)

and hence the ground state energy is −
√

1 + λ2. Allowing ourselves to analytically con-
tinue in the coupling constant we realize that the equation for the ground state energy has
branch points at λ = ±i. As a consequence, analytically continuing around either of these
branch points and coming back to the real line we do not quite get back the ground state
energy, but rather the energy of the excited state. This is illustrated in figure 8(a). The
message we can take away from this [58] is that by analytically continuing a parameter
around a “closed contour” – meaning we come back to the “same” value though not nec-
essarily on the same sheet – we end up back at the same problem although our eigenvalue
may have changed. As we are still dealing with the same problem, if the eigenvalue has
changed under analytic continuation it must have become one of the other eigenvalues.
Note that this does not imply all eigenvalues can be found this way – the spectrum may
split into distinct sectors closed under analytic continuation.

Let us now forget about the description of this problem in terms of linear algebra,
and suppose for the sake of the argument that in solving our spectral problem we had
obtained

E(λ) = −
∫ 1

−1
dz

1

2πi
f(z)g(z)− 1, (3.2.3)

where

f(z) =
1

z − i/λ
, and g(z) = 2λ

√
1− z2. (3.2.4)

We can determine that this integral has branch points at λ = ±i without knowing anything
about f(z) other than that it is meromorphic with a single pole at i/λ. Conceptually we
consider g(z) to be some nice known function, while f is not explicitly known. Analytically
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continuing the integral in λ we get a function that is well defined everywhere except for
the half-lines iλ > 1 and iλ < −1 where the pole moves into the integration domain.
Continuing around the point λ = i as in figure 8(a), nothing happens when we first
cross the line Re(λ) = 0 but when we cross the second time, the pole moves through the
integration contour on the real line and drags the contour along, as illustrated in figure
8(b). We can rewrite the resulting contour integral in terms of the original one by picking
up the residue, giving

Ec(λ) = −
∫ 1

−1
dz

1

2πi
f(z)g(z) + g(i/λ)− 1. (3.2.5)

Since Ec(λ) − E(λ) = g(i/λ) 6= 0 there must be a branch point inside the contour. In
this integral picture we do not need to know the precise analytic expression of E or f to
determine the expression for the excited state energy. All we need to know is the pole
structure of f relative to the integration contour.

3.2.2 Analytic continuation of TBA equations

Inspired by this example, we can try to analytically continue our expression for the ground
state energy, eqn. (3.1.10), in some appropriate variable and see whether we encounter
any changes in the description. We could try continuing in the mass variable of the
chiral Gross-Neveu model for example. This approach to excited states in the TBA was
proposed and successfully applied to what is known as the scaling Lee-Yang model in [13].
The authors there observed that in the process of analytic continuation the Y functions
solving the TBA equations undergo nontrivial monodromies. They moreover noted that
changes in the form of the TBA equations are possible if singular points of 1 + 1/Y move
in the complex plane during the analytic continuation. These changes are analogous to
the changes in the energy formula of our example above. Here the integral is a typical
term on the right hand side of the TBA equations

y(u) ≡ log

(
1 +

1

Y

)
? K(u), (3.2.6)

where we recall that ? denotes (right) convolution on the real line. If there is a singular
point

Y (u∗) = −1, (3.2.7)

and its location u∗ crosses the real line during the analytic continuation, we can pick up
the residue just as in our simple example to get

yc(u) = log

(
1 +

1

Y

)
? K(u)± logS(u∗, u), (3.2.8)

where we recall that K(v, u) = 1
2πi

d
dv logS(v, u) and the sign is positive for singular points

that cross the contour from below and negative for those that cross it from above. If Y
vanishes at a particular point, this leads to the same considerations, just resulting in an
opposite sign.27 If we wanted to do this at the level of the simplified equations, all we

27The singular points of different Y functions in the complex plane are typically related. A driving term arises
from a special point u∗ for a Y function on the right hand side of a TBA equation. Since this term typically
has poles at u∗± i, however, this shifted point corresponds to a zero or pole for the Y function on the left hand
side. Analyzing the Y system (discussed just below) we arrive at the same conclusion.
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need is the S-matrix associated to s:

S(u) = − tanh
π

4
(u− i). (3.2.9)

The energy itself is also determined by an integral equation in the TBA approach, meaning
it can change explicitly as well as implicitly through the solution of a changed set of TBA
equations.

The upshot of this is that we obtain excited state TBA equations that differ from
those of the ground state by the addition of logS terms, which we will call driving terms.
It should not matter whether we consider this procedure at the level of the canonical
equations or at the level of the simplified equations, and indeed the results agree because
of the S-matrix analogue of identities like eqn. (2.5.8).

3.3 Excited states and the Y system

The case of the Y system is a bit more peculiar, since the distinguishing features of an
excited state completely disappear. This is because the S-matrix (3.2.9) vanishes under
application of s−1. From this we see that whatever excited state TBA equations we obtain
by the above reasoning, the Y system equations are the same as those of the ground state:
the Y system is universal.28 The important distinction is that as we just said the Y
functions for excited states have singular points. If there are no further singularities like
branch cuts (which we would expect to be universal features of a model rather than state
dependent), specifying the number of simple poles and zeroes of all Y functions in the
strip between i and −i is almost enough to ‘integrate’ the Y system back to the simplified
TBA equations. First, however, we need to address the fact that different physical models
can have the same Y system. This also brings us back to the discussion of information
loss in the simplifying steps of section 2.5.

Asymptotics of Y functions

For concreteness, let us consider the simplified TBA equations (2.5.16) for the chiral
Gross-Neveu model. The distinguishing feature of these equations with respect to say the
XXX ones is the energy contribution to Y0. This term leads to log Y0 ∼ −eπ/2|u|/T at
large |u|, meaning Y0 goes to zero quite rapidly. If we take these asymptotics as given and
assume Y0 is analytic in the strip between i and −i, for the time being interpreting Y1 as
some given external function, we can ‘integrate’ the Y system equation Y +

0 Y −0 = (1 +Y1)
to the associated simplified TBA equation. Namely

Y0 = e−E/T elog(1+Y1)?s (3.3.1)

satisfies the Y system (note again that e−E/T drops out of this), has the right asymptotics,
and is analytic, which by Liouville’s theorem means it is unique (the difference with any
other function with these properties is zero).

To get the simplified TBA equations for the remaining Y functions, which have no
energy terms, it turns out we should demand constant asymptotics YN → ŶN . These
constants are all recursively determined by one of them, e.g. Ŷ1, by the constant limit of

28Exemptions to this rule can arise under very specific circumstances, see e.g. [59] and chapter seven of [41].
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the Y system (where Ŷ0 = 0 in line with its asymptotics), i.e.

Ŷ2 = Ŷ 2
1 − 1,

ŶN+1 =
Ŷ 2
N

1 + ŶN−1

− 1, N > 1.
(3.3.2)

A simple solution to this set of equations is YM = M(M + 2), essentially due to the
identity M2 = (M + 1)(M − 1) + 1. We can generalize this solution to

ŶM = [M ]q[M + 2]q, (3.3.3)

where we introduced the so-called q numbers

[M ]q =
qM − q−M

q − q−1
, (3.3.4)

which retain the property [M ]2q = [M + 1]q[M − 1]q + 1 for any q ∈ C. In the limit

q → 1, [N ]q → N again. Since everything is recursively fixed by Ŷ1 = [3]q and by picking
q appropriately we can make [3]q any complex constant, this is the general constant
solution of our Y system. Given a value of Ŷ1 and hence all ŶM , the expression for the
associated full Y functions as the right hand sides of their TBA equations follows uniquely
from analyticity and the Y system as it did for Y0.

To fix the constant asymptotic of Y1 we can feed our constant “solution” in to the
canonical TBA equations, where now integration with the kernels amounts to multipli-
cation by their normalizations. Then performing the infinite sums in the canonical TBA
equations we get a set of equations that admits only one value for Ŷ1. In our chiral Gross-
Neveu case this fixes the asymptotes of YM>0 to be M(M + 2). If we had included a
nontrivial chemical potential µ for the spin down fermions in a thermodynamic picture,
or cf. footnote 24 double Wick rotated quasi-periodic boundary conditions, we would
instead be required to take a different constant q number solution with log q ∼ µ, showing
the physical interpretation of these constant asymptotics.29 This link between chemical
potentials and asymptotics actually allows us to move between canonical TBA equations
and simplified equations plus (constant) asymptotics.

As mentioned earlier, the XXX spin chain has the same Y system, but different (sim-
plified) TBA equations. These simplified TBA equations would follow along the same
lines, but with different asymptotics. Similarly, the iπ contribution in eqs. (3.1.11) affects
the asymptotics relative to eqs. (2.5.16).

Poles and zeroes of Y functions

Now that we have seen how to get basic simplified TBA equations from a Y system, let
us try to add driving terms. To do so, we need to know the simple poles and zeroes of
the Y functions. Provided we are given this data, we can explicitly factor out poles and
zeroes of Y via products of t(u) = tanh π

4u and 1/t. In other words for a Y function with
poles at ξi and zeroes at χj we define

Y̌ (u) =

∏
j t(u− χj)∏
i t(u− ξi)

Y (u), (3.3.5)

29More details can be found in e.g. chapters 2 and 4, and appendix A.4 of [41]. In particular, evaluating the
infinite sums actually requires an iε prescription in case of nonzero chemical potential.
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which is analytic. We now start from the schematic Y system Y +Y − = R, which implies
also Y̌ +Y̌ − = R because t+t− = 1. Morever, since Y̌ is analytic and has the same
asymptote as Y because t(u) asymptotes to one, we are essentially in the situation we
had above (the relation of t(u) to S(u) of eqn. (3.2.9) is not accidental). By our previous
analysis we get

Y̌ = elogR?s, (3.3.6)

so that

Y =

∏
i t(u− ξi)∏
j t(u− χj)

elogR?s, (3.3.7)

where we should include e−E/T as before if necessary. This is precisely of the form of a
simplified excited state TBA equation. To reiterate, this formula by definition gives the
Y system upon applying s−1, and has the right poles, zeroes, and asymptotics, making
it our unique desired answer. For more complicated TBA equations with branch cuts we
would need to know the discontinuities of the Y functions across the cuts, in addition to
poles, zeroes and asymptotics, but morally we would do the same thing.

In short, by supplying analyticity data in the form of poles, zeroes, and asymptotics, we
can derive a set of integral equations of simplified TBA form, with precisely the expected
type of energy and driving terms. Some form of integral equations is of course useful,
as they can typically be iteratively solved, perhaps by starting from a seed solution in
some part of parameter space (an asymptotic solution), which should in particular include
appropriate starting values for the zeroes and poles. The notion that analytic properties
might “label” excited states also appears in e.g. the discussion of the “Bethe ansatz” for
the harmonic oscillator in the article by F. Levkovich-Maslyuk [40].

The Y system and its universality are closely related to other approaches of obtaining
equations that describe excited state energies. In some cases it is possible to construct a
functional analogue of the Y system directly, as discussed in the article by S. Negro [16].
If we can then get satisfactory insight into the analytic structure of the corresponding
objects, we can ‘integrate’ these functional relations in the above spirit to obtain integral
equations describing the energy of excited states [60, 61, 14, 62]. Depending on how these
functional equations are ‘integrated’ we can obtain equations of TBA form but also various
other forms that can be more computationally efficient. The latter equations generically
go under the name of “non-linear integral equations” [60], but depending on the context
are also called “Klümper-Pearce” [63, 64, 60, 65] or “Destri-de Vega” [66, 67] equations.
While not obvious from their form, when different types of equations are possible they
should of course be equivalent [68, 69].

3.4 Lüscher formulae

In general, we may wish to use an amalgamation of the above ideas to find excited state
TBA equations, in the form of something which we will refer to as the contour deformation
trick. The basic idea goes as follows. We will find a candidate solution of the Y system
for an excited state with some limited regime of applicability. We then assume that the
form of the TBA equations for an excited state is uniform and does not change outside
of the regime of applicability of our candidate solution. Next, drawing lessons from the
analytic continuation story above we expect that the only changes in the equation should
be the addition of possible driving terms. Furthermore, although our limited solution
only gives us a static picture, we expect that we can qualitatively view these terms as if
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coming from singular points that crossed the integration contour. Since in this picture
such singular points would have dragged the contour along with them, we expect that an
excited state TBA equation should be of the same form as the ground state, except with
modified integration contours. Analyzing the analytic structure of the candidate solution
will allow us to consistently define these contours in such a way that the TBA equations
are satisfied, and by taking the integration contours back to the real line we can explicitly
pick up the corresponding driving terms. Coming back to our simple example, it would be
as if internal consistency of the problem (perhaps in the form of some other equation) told
us that the natural integration contour for the excited state was not the interval (−1, 1),
but a contour that starts at one and finishes at minus one while enclosing i/λ between
itself and the real line. Such a contour is of course equivalent to the red contour in figure
8(b) obtained by direct analytic continuation.

Through a bit of physical reasoning we can obtain a candidate solution of the TBA
equations that should describe an excited state. If we take our theory at face value as a
field theory on a cylinder, it is natural to expect the energy of states to get corrections from
virtual particles travelling around the circle, a phenomenon investigated in particular by
Lüscher [70]. Concretely, Lüscher showed how polarization effects lead to mass corrections
for a standing particle in massive quantum field theory in a periodic box, computing their
effect to leading order in e−mL where m is the mass of the particle and L the size of the
periodic box [70]. These (leading order) corrections come in two types illustrated in figure
9. The first of these is the so-called µ term corresponding to the particle decaying into a
pair of virtual particle which move around the circle (in two dimensions) and recombine,
while the second is the F-term which corresponds to a virtual particle loop around the
circle which involves scattering with the physical particle.

Figure 9: The Lüscher µ- and F-term. On the left we have the decay of a physical particle
(blue) into a pair of virtual particles (green) which fuse to a physical particle on the other
side of the cylinder, while the right shows the scattering of a virtual particle with the physical
particle as it loops around the cylinder.

Generalizing these ideas to moving particles and interacting multi-particle states based
on the original diagrammatic methods of [70] seems daunting. In the context of simple
relativistic integrable models, however, Lüscher’s formulae readily follow by explicitly
expanding the TBA equations in the large volume limit. By carefully generalizing the
expansions in such models to interacting multi-particle states we can try to obtain a type
of generalized Lüscher’s formulae. To leading order this energy correction takes the form
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[71]

∆E = −
∑
Q

∫ ∞
−∞

dp̃

2π
e−ẼLλQ,1(p̃|{pj}), (3.4.1)

where we have indicated double Wick rotated (mirror) quantities by a tilde to show their
origin, though the distinction will not matter for us here. This is the multi-particle
generalization of the contribution corresponding to the F term on the right side of figure
9. In many integrable models the µ term does not appear to show up at leading order for
most states. In this formula, λQ,1(p̃|{pj}) denotes the eigenvalue of the transfer matrix
for the state of the integrable model under consideration, with its auxiliary space taken
to be the mirror (double Wick rotated) representation for a mirror particle of type Q. In
other words, the energy shift is given by scatter any possible virtual particle30 with the
physical excitations of our large volume state, and summing over all of them, weighed by

e−ẼL.
Now we argued above that the excited state TBA equations should differ from the

ground state ones by a set of driving terms, but should otherwise be of the exact same
form. Considering the energy formula (3.1.10) in this light, we realize that at large mass
or large volume the Yf function should be small due to the −LẼ = −mL coshπu/2 term in
their canonical TBA equations. Expanding the energy formula for small Y0 and comparing
this to the leading weak coupling correction (3.4.1), where for the chiral Gross-Neveu
model there is no sum over Q since there are no physical bound states, for an excited
state described by a set of rapidities {ui} it is natural to identify

Y o
0 (ũ) = e−E(ũ)L

Nf∏
i=1

Sff (ũ, ui)λ(ũ|{ui}), (3.4.2)

where the tilde is a label to indicate that the associated quantities are to be evaluated in
the mirror theory, and λ refers to the XXX spin chain transfer matrix eigenvalue without
the scalar factor Sff , which we hence have to reinstate to describe our chiral Gross-Neveu
model. The superscript o indicates that this is an asymptotic solution that only applies
to leading order in e−EL. One immediate promising feature of this formula is that if we
analytically continue this function from the mirror theory to the physical theory we are
interested in, this precisely looks like the right hand side of the Bethe equations, and we
get that asymptotically

Y o
0 (u∗i ) = −1, (3.4.3)

the ∗ denoting that we have analytically continued. This precisely corresponds the kind
of singular point we encountered in our general discussion around eqn. (3.2.7)! In fact,
assigning appropriate driving terms to these singular points precisely results in an energy
formula of the form

E =

Nf∑
i=1

E(pi)−
∫
du

1

2π

dp

du
log (1 + Y0) , (3.4.4)

where E(pi) is the asymptotic energy of the ith particle (recall that p evaluated on an
analytically continued rapidity is just −iE). Of course there can be further modifications
to this energy formula depending on possible further singular points of Y0, see for in-
stance [72] for a situation with rather involved analytic properties. Actually, the auxiliary

30At least pictorially it is clear that a virtual particle is like a regularly propagating mirror particle.
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equations could change as well, leading us to wonder what asymptotic solution we should
consider there. Not going into technical details, we hope the following sounds reasonable.
The auxiliary YQ functions are physically associated to the Bethe-string solutions of the
XXX spin chain (with inhomogeneities), which as we discussed are bound states, and
their S-matrices can be found by fusion. We could construct transfer matrices based on
each of the bound state S-matrices labeled by the string length P , and find their eigen-
values. By construction these objects will satisfy a relation similar to, but slightly more
complicated than the one for the diagonalized scattering amplitudes of eqn. (2.5.1), and
by using these relations one can consistently express the YP>0 in terms of these bound
state transfer matrix eigenvalues. This then gives us a full asymptotic solution, and we
can analyze its analytic properties to find excited state TBA equations whose solution we
can extend beyond the asymptotic regime.

3.5 Y/T/Q-system and nonlinear integral equations

The structure of fusion relations between bound state transfer matrix eigenvalues actually
relates nicely to a structure that is known as the T system, a system encountered in
S. Negro’s article [16] in a particular model. Let us go over the basic story, avoiding
formulas. The T system is a set of equations known as Hirota equations for a set of
T functions, functions of the rapidity (momentum) defined on a grid with a border one
wider than the Y system on all sides. The identification between the Ys and the Ts admits
gauge transformations on the Ts, but in an appropriate gauge the asymptotic Y functions
are expressed in terms of asymptotic T functions, for which the (asymptotic) T system
becomes precisely equivalent to the fusion relations of the transfer matrix eigenvalues.
The T system is a generic rewriting of the Y system however, which applies beyond the
asymptotic limit. Its gauge freedom actually proves useful, as one can (try to) shift the
analytic properties of the Y functions that we require from the TBA, between the various
T functions. Doing so appropriately, we can represent the (typically infinite set of) T
functions in terms of a set of much simpler elementary functions known as Q functions with
transparent analytic properties. Turning the resulting algebraic equations plus analyticity
constraints back into integral equations for these “fundamental” variables gives a set of
nonlinear integral equations for a finite number of functions, of the general Klümper-
Pearce–Destri-de Vega type mentioned above. This hence provides a means of rewriting
the TBA equations in a simpler form in these more complicated cases with infinitely many
Y functions. In the context of integrability in AdS/CFT these equations are known as
the quantum spectral curve [29]. S. Negro’s article [16] discusses that deriving such Y, T,
or Q systems and their analytic properties from first principles is possible in particular
models. While a highly involved problem, doing so in a particular model would provide
a great check on the chain of reasoning involved in the TBA approach (for excited states
in models with bound states). For the AdS5 × S5 string first steps in this direction were
made in [73].

4 Conclusion

The thermodynamic Bethe ansatz is an important technical tool with applications ranging
from (but not limited to) describing the thermodynamic properties of one dimensional spin
chains to computing the spectra of integrable field theories on a cylinder. In this article
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we provided an introduction to the basic ideas behind this method, and applied them in a
number of illustrative and representative examples. We started from the simplest Bethe
ansatz integrable model – free electrons – where we introduced the thermodynamic limit
and the concept of density of states and holes and their relation via momentum quantiza-
tion conditions. The stationarity of the free energy in thermodynamic equilibrium resulted
in a simple algebraic equation, whose solution gave the famous Fermi-Dirac distribution.
We then applied the same ideas with the free particle momentum quantization condition
replaced by more complicated Bethe(-Yang) equations, to describe the thermodynamics
of the Bose gas, XXX spin chain, and chiral Gross-Neveu model. These latter two models
required us to introduce a string hypothesis describing the possible solutions of the Bethe
equations in the thermodynamic limit. The stationarity condition now results in one or or
an infinite number of coupled integral equations – the TBA equations – for the Bose gas,
and XXX spin chain and chiral Gross-Neveu model respectively. We discussed how such
infinite sets of TBA equations can be simplified and ultimately reduced to a Y system
together with analyticity data, including technical details on integration kernel relations
presented in an appendix. We then moved on to using the same ideas to describe the
ground state energy of integrable field theories in finite volume via the mirror trick of
interchanging space and time, and how these ideas can be adapted and applied to excited
states. The Y system structure is the same for all such excited states, and we discussed
the analyticity data required to link a Y system to a given model and within that to a
given state. We also briefly discussed the basics of and some tips on numerically solving
TBA equations. The conceptual background we discussed and applied to our concrete ex-
amples make up the essence of the TBA approach, and as such can be applied to (m)any
other integrable model(s).
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A Integral identities

In eqn. (2.5.8) of section 2.5, we claimed that the kernels KMN satisfy

KPQ − (KPQ+1 +KPQ−1) ? s = s IPQ. (A.1)

We also made claims regarding KfQ = KQf , namely

KfQ − (KfQ+1 +KfQ−1) ? s = s δQ1. (A.2)
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We can prove these by Fourier transform. We begin by noting that similarly to the fused
XXX momentum of eqn. (2.3.15),

SfQ(u) =
u+ iQ

u− iQ
, KfQ(u) ≡ − 1

2πi

d

du
logS1Q(u) =

1

π

Q

Q2 + u2
. (A.3)

Note that S11 = 1/Sf2, but that we defined the kernels with opposite sign, so K11 = Kf2.
Now the Fourier transform of KfQ (Q ≥ 1) is

K̂fQ(k) ≡
∫ ∞
−∞

dueikuKfQ(u) = e−|k|Q, (A.4)

while

ŝ(k) =
1

2 cosh k
. (A.5)

In Fourier space, identity (A.2) is now simply an equality between functions. The identity
for KQM similarly follows by its definition as a sum over string states (Kf0 = 0)

KQM (u) ≡
∑

strings

K11 =
∑

strings

Kf2 (A.6)

= Kf(Q+M)(u) +Kf(M−Q)(u) + 2

Q−1∑
i=1

KM−Q+2i(u) (A.7)

= Kf(Q+M)(u) +Kf(|M−Q|)(u) + 2

min(M,Q)−1∑
i=1

K|M−Q|+2i(u) (A.8)

which we get by combining appropriately shifted numerators and denominators in the
product of S matrices underlying these kernels. Its Fourier transform, cf. eqn. (A.4), is

K̂QM =
∑

K̂fX = coth |k|
(
e−|Q−M ||k| − e−(Q+M)|k|

)
− δQ,M , (A.9)

from which eqn. (A.1) follows.

B Numerically solving TBA equations

We mentioned in 2.2 that we can numerically solve TBA equations by iterations. Let us
consider the general form of a TBA equation

log Yj = log

(
1 +

1

Yk

)
? Kkj + aj , (B.1)

where the a denote a set of driving terms, including for instance the energy term in
eqn. (2.2.20). To solve these equations by iterations, we start with some guess for the

Y function(s) as a seed – the Y
(0)
j – and use these initial functions to compute the right

hand side of the TBA equations. We then use this to define the updated Y
(1)
j , or more

generally

log Y
(n+1)
j = log

(
1 +

1

Y
(n)
k

)
? Kkj + aj . (B.2)
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In practice we hope these iterations converge to a stable solution.31 Of course, the trick
lies in the technical implementation of this basic concept, which is a bit of an art.

First, a good guess for the initial Y functions will at the very least speed up the
process. If we wanted to solve the Bose gas equations (2.2.20), for instance, in a low
temperature regime a good guess would be ε(0)(p) = E(p). Second, depending on the
details of the equations and kernels, nothing guarantees that eqn. (B.2) will converge
fastest. For instance, it may be advantageous to consider

log Y
(n+1)
j = x

(
log

(
1 +

1

Y
(n)
k

)
? Kkj + aj

)
+ (1− x) log Y

(n)
j , (B.3)

for some 0 < x ≤ 1, cf. e.g. section 2 of [13]. This is mostly useful if we need to run
similar equations many times, since finding a suitable value for x through experimenta-
tion takes time as well. Third, the convolution computations can typically be sped up
by means of (fast) Fourier transform (FT), i.e. we compute the convolution f ? g as
FT−1(FT(f)FT(g)).32 Alternatively we could try to solve the equations in Fourier space
directly, for example by using a multidimensional version of Newton’s method at a discrete
set of values in the Fourier variable. It may in fact be useful to use Newton’s method when

iterating in whatever form, see e.g. [75]: rather than updating as Y
(n+1)
M = Y

(n)
M + ∆

(n)
M ,

where ∆
(n)
M denotes the error of the solution at iteration n, we could update in the di-

rection of greatest linear improvement, i.e. as Y
(n+1)
M = Y

(n)
M + ξ

(n)
M where ξ

(n)
M solves

(δNM − ∂RHSM (Y (n))/∂YN )ξ
(n)
N = ∆

(n)
M and RHSM (Y (n)) denotes the right hand side of

the TBA equations at iteration n.
Regarding the technical implementation of these convolutions and sums, on a computer

we cannot work with infinitely many Y functions or integrals over the whole real line. This
means that in case of infinitely many Y functions we will have to cut them off at some
point, and in any case the integrals will need to be done through some discretized finite
interval. Regarding this first point, typically the Y functions for bound states fluctuate
less and give smaller contributions to the free energy as the bound state size grows.
Consider for instance the constant asymptotics of YQ ∼ Q(Q + 2) that we mentioned in
section 3.3, meaning that log(1 + 1/YQ) decreases with Q, unless its relative fluctuations
grow in Q, which would be odd. So for practical numerical purposes it may suffice to
keep only e.g. the first ten Y functions, unless self-consistency checks based on these first
ten indicate that the contributions of higher Y functions are not negligible with regard
to the desired accuracy. Importantly, we should not simply drop the other Y functions
altogether, but rather add for instance the contribution of their constant asymptotics.
This brings us to the second point, integrating over a finite interval. Since we need to
cut off the integration domain in some fashion, we need to take care of the asymptotics
anyway: cutting the integration domain off at a fixed value means we will introduce a
boundary error of order of the asymptotic value at the extrema of the external parameter
in the convolution.33 To reduce this error to an acceptable value we can subtract the

31In the case of the free energy for the Bose gas this can be explicitly shown [4], but let us simply assume
this is ok in general at least as long as we do not choose our initial Y functions too poorly.

32There are nice exercises with solutions illustrating this as part of the 2012 edition of the Mathematica
summer school on theoretical physics available on the web [74].

33K(u− v) with u ∼ v is of order K(0) which is a relevant scale.
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equation satisfied by the constant asymptotics, i.e. we solve

log Yj = logAj + log

(
1 +

1

Yk

)
/

(
1 +

1

Ak

)
? Kkj + aj , (B.4)

where Ai denotes the asymptote of Yi, which here we assumed to solve the TBA equations
with ai = 0. If there are constant nonzero asymptotics in the game, subtracting them
is also essential if we wish to Fourier transform. Nonzero constants Fourier transform
to delta functions which cannot be reliably implemented numerically. Put differently,
functions with constant nonzero asymptotics are not square integrable on the line, so
cannot be Fourier transformed in the traditional sense. If we subtract the asymptotics,
however, we can readily Fourier transform the fluctuations of interest.

The discussion in this appendix applies equally well to simplified TBA equations –
nothing referred to the canonical form of eqn. (B.2) – which importantly are typically
faster for numerical purposes as they do not involve infinite (large) sums, but nearest
neighbour couplings instead. As discussed we need to be careful about the asymptotics
we subtract: in contrast to the canonical equations there are many constant solutions of
the basic simplified TBA equations, and we have to choose the one appropriate for our
physical situation.
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[64] A. Klümper and P. A. Pearce, Analytic calculation of scaling dimensions:
Tricritical hard squares and critical hard hexagons, Journal of Statistical Physics 64
(1991) 13–76.

41

http://arxiv.org/abs/1605.xxxxx
http://arxiv.org/abs/hep-th/9605187
http://arxiv.org/abs/hep-th/9810026
http://arxiv.org/abs/0804.4295
http://arxiv.org/abs/1010.1344
http://arxiv.org/abs/1406.2304
http://arxiv.org/abs/1412.5137
http://arxiv.org/abs/1403.6104
http://web.science.uu.nl/IGST08/pdf/Dorey.pdf
http://arxiv.org/abs/1210.8185
http://arxiv.org/abs/hep-th/9608091
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