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Abstract

A large class of the recently found unimodular nonabelian homogeneous Yang-Baxter

deformations of the AdS5×S5 superstring can be realized as sequences of noncommuting TsT

transformations. I show that many of them are duals to various noncommutative versions of

supersymmetric Yang-Mills theory, structurally determined directly in terms of the associated

r matrices, in line with previous expectations in the literature.



1 Introduction

Integrable models arise throughout physics as useful case studies balancing complexity and solv-

ability. In the context of the AdS/CFT correspondence [1], it is possible to perform detailed

tests of this conjecture, and get remarkable insight into four dimensional planar gauge theory,

based on the integrability of the AdS5 × S5 superstring and its dual, planar N = 4 supersym-

metric Yang-Mills theory (SYM).1 Beyond appearing in further lower dimensional examples of

AdS/CFT, integrability is also preserved by certain deformations of this canonical duality, such

as the β deformation of SYM dual to strings on the Lunin-Maldacena background [3, 4]. Rather

than looking for integrability in specific AdS/CFT dual pairs however, recent years have instead

seen a focus on finding integrable deformations of just the AdS5×S5 string σ model. Many such

models can be generated as Yang-Baxter (YB) deformations [5] of the string σ model, intro-

duced in [6].2 The original YB deformation gives the η model, which algebraically corresponds

to quantum deforming the symmetry algebra of the string [6, 8]. This deformation is based

on an inhomogeneous r matrix solving the modified classical Yang-Baxter equation (mCYBE),

but it can be generalized to homogeneous r matrices solving the regular classical Yang-Baxter

equation (CYBE) [9]. This leads to Drinfeld twisted symmetry [10]. Being manifestly integrable,

the important questions are now: are the resulting models still string theories, and if so, do they

have an AdS/CFT interpretation?

The first of these question has recently been answered in general. Namely, the resulting

model is conformally invariant (represents a string) at one loop if and only if the associated r

matrix is unimodular [11]. At present no unimodular solution of the mCYBE is known, and

indeed the η model is not a string [12], nor are two closely related formulations with inequivalent

backgrounds [13]. In terms of the CYBE, abelian r matrices correspond to TsT transformations

(Melvin twists) [14, 15], hence give string theories, and are trivially unimodular. The other

previously studied case of bosonic jordanian r matrices does not give string theories [16, 17, 18]

– many of the models are in fact related to inhomogeneous η-type models by singular boosts

[17] – and indeed is not unimodular.3 It turns out that the symmetry algebra of AdS5, so(4, 2),

admits 17 inequivalent homogeneous nonabelian unimodular r matrices of rank four, and at least

one of rank six [11]. Including an 18th one that cannot be realized just within so(4, 2), these

can all be extended using generators of so(6), leading to many more options for the full bosonic

symmetry algebra of the string. Their nonabelian structure always resides in so(4, 2) however.

The associated deformations correspond to nonabelian T duality in string theory [21, 22]. This

leaves the question whether the resulting models have an AdS/CFT interpretation, and if so,

what their duals are.

Before these new unimodular models were known, I conjectured that homogeneous YB defor-

mations with a string theory interpretation are in general dual to noncommutative (NC) field

theories [10]. In this picture, the twisted symmetry of these YB models is implemented on

the field theory side by introducing ? products in spacetime or (super)field space. This pro-

1For reviews see e.g. [2].
2A second type of deformation gives the λ model [7] that can be naturally viewed as a deformation of the

nonabelian T dual of the σ model.
3The backgrounds of all YB models solve modified supergravity equations [19], as required by κ-symmetry [20].

2



vides a uniform picture for many known AdS/CFT pairs such as the β deformation dual to the

Lunin-Maldacena background and canonical NC SYM and its gravity dual [23, 24], which can

be realized as abelian YB deformations [25, 16]. Here I will briefly show that, as expected, this

picture indeed applies to many of the new unimodular models.

Of the new deformations found in [11], I will consider those that: 1) have an “almost abelian”

structure that allows them to be interpreted as sequences of noncommuting TsT transformations

in string theory,4 and 2) are generated by elements of so(3, 1) ⊂ so(4, 2), meaning part of the

symmetries of ten dimensional flat space. This covers 12 out of the 17 possible so(4, 2) rank four

deformations, and the rank six deformation, given in [11]. This structure naturally suggests a

deformation of flat space to place branes in, where an appropriate low energy limit gives either

an open string picture for NC field theories of the desired type in the spirit of [26, 27], or as its

dual precisely the associated YB deformation of AdS5 × S5. In particular, on the field theory

side I show that the NC parameter θ is simply the r matrix, providing an explicit match with

the expected ? product. As issues are known to arise in taking low energy field theory limits

when considering time-space noncommutativity (electric B fields) [28], combinations involving

such cases should be excluded however. Up to this restriction, the resulting pairs of theories are

dual in the sense of AdS/CFT, at least in supersymmetric cases. I illustrate this construction

explicitly for two examples.

This picture can be readily extended to include nonabelian r matrices with generators of

so(6), also acting naturally on flat space. From the TsT picture one expects to find dipole

deformations, see e.g. [29], of the above types of NC SYM. This is precisely in line with the

general twist proposal of [10], cf. footnote 11 below.

In the next section I briefly recall the AdS5×S5 string σ model and its YB deformation, and the

type of r matrices to be considered, with two explicit nonabelian examples that can be realized

via noncommuting TsT transformations. In section 3 I discuss the AdS/CFT interpretation of

these almost abelian twisted models, with two explicit examples. I conclude with open questions.

2 Yang-Baxter σ models

Homogeneous YB deformations of the AdS5 × S5 superstring action are of the form [6, 9]5

S = −T
2

∫
dτdσ 1

2(
√
hhαβ − εαβ)sTr(Aαd+Jβ), (2.1)

where J = (1 − ηRg ◦ d+)−1(A) with Rg(X) = g−1R(gXg−1)g. The operator R is a linear

map from g = psu(2, 2|4) to itself. η = 0 (R = 0) corresponds to the undeformed AdS5 × S5

superstring action of [30]. Now, provided R is antisymmetric, sTr(R(m)n) = −sTr(mR(n)), and

satisfies the classical Yang-Baxter equation (CYBE)

[R(m), R(n)]−R([R(m), n] + [m,R(n)]) = 0, (2.2)

4TsT transformations, standing for T duality - shift - T duality as discussed below, can be viewed as a special

case of nonabelian T duality [21].
5Here T is the would-be effective string tension, h is the world sheet metric, ετσ = 1, Aα = g−1∂αg with

g ∈ PSU(2, 2|4), sTr denotes the supertrace, and d± = ±P1 + 2P2 ∓ P3 where the Pi are the projectors onto the

ith Z4 graded components of the semi-symmetric space PSU(2, 2|4)/(SO(4, 1)× SO(5)) (super AdS5 × S5).

3



this deformed model is classically integrable and has a form of κ symmetry.

These R operators are related to r matrices via a nondegenerate bilinear form on psu(2, 2|4),

induced by the Killing form of su(2, 2|4). Using a matrix representation of su(2, 2|4)

R(m) = sTr2(r(1⊗m)), (2.3)

with

r =
∑
i,j

αijt
i ∧ tj ∈ g⊗ g, (2.4)

where the ti generate g, αij ∈ R, a ∧ b = a⊗ b− b⊗ a, and sTr2 denotes the supertrace over the

second space in the tensor product. Equation (2.2) translates to equation (B.6) in matrix form.

I will refer to both the operator R and the matrix r as the r matrix.

A YB deformation preserves symmetries generated by those t ∈ g for which

R([t, x]) = [t, R(x)] ∀x ∈ g. (2.5)

These are symmetries of the r matrix in the sense that

adt ⊗ adt r = 0, (2.6)

where ad denotes the adjoint action. The remaining symmetry is deformed by the Drinfeld twist

associated to r [10].

Given an r matrix and a coset parametrization g, inverting 1−ηRg ◦d+ and comparing to the

standard Green-Schwarz superstring action gives an explicit background for the σ model.

Almost abelian r matrices

I will consider rank6 four r matrices of the form [11]

r = a ∧ b+ c ∧ d, (2.7)

where the generators a, b, c and d generate a unimodular quasifrobenius subalgebra of so(4, 2)

[31]. Of the possible nonabelian cases I consider

• h3 ⊕ R
[c, a] = b (2.8)

• r′3,0 ⊕ R
[c, a] = −b, [c, b] = a (2.9)

• r3,−1 ⊕ R
[c, a] = a, [c, b] = −b (2.10)

where I have indicated their defining Lie brackets. For all these, [a, b] = 0, and d is central.

Due to above relations, c and d are symmetries of the r matrix.7 I will refer to these r matrices

6The rank is the number of independent algebra elements used to construct it.
7The r matrices associated to the fourth type of subalgebra in [11], n4, do not have this property.
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as “almost abelian”, compared to abelian r matrices constructed out of a set of commuting

generators. It will be useful to split such r in two abelian pieces r̂ and r̄ as

r = r̂ + r̄, r̂ = a ∧ b, r̄ = c ∧ d. (2.11)

The fact that r̄ is built out of generators of symmetries of r̂ is also referred to as r̄ being

subordinate to r̂, see e.g. [32]. The rank six r matrix given in [11] is also of this form, i.e.

r = r̂ + r̄ + r̃, (2.12)

where r̃ is subordinate to r̂ and r̄, and r̄ is subordinate to r̂, and all pieces are abelian. This

structure makes it possible to directly construct the associated twists.

Examples

Consider8

r1 = 2m+3 ∧ p+ + 1
2p2 ∧ p3 = r̂1 + r̄1, (2.13)

and

r2 = 1
2m12 ∧ p3 + 1

2p2 ∧ p1 = r̂2 + r̄2, (2.14)

where the p and m denote translation and Lorentz generators of so(4, 2) respectively (see ap-

pendix A), and I use light cone coordinates x± = x0 ± x1. This r1 and r2 are examples of r

matrices associated to h3 ⊕ R and r′3,0 ⊕ R as given above respectively.9

The background of the σ model associated to r1 is [11]

ds2
1 =
−dx−dx+ + dz2

z2
+

(dx2)2 + (dx3)2 + η2z−4x−dx−(2dx2 − x−dx−)

z2 + η2/z2
+ dΩ2

5

B1 =
η(dx2 − x−dx−) ∧ dx3

(η2 + z4)
, (2.15)

where dΩ2
5 denotes the metric on S5 and xµ, z are Poincaré coordinates for AdS5. The background

associated to r2 is

ds2
2 =
−(dx0)2 + dz2

z2
+
z4(dρ2 + ρ2dξ2 + (dx3)2) + η2(ρdρ− dx3)2

z6 + η2z2(r2 + 1)
+ dΩ2

5

B2 =
η ρ dξ ∧ (dρ+ ρdx3)

z4 + η2 (ρ2 + 1)
. (2.16)

where ρ and ξ are the radial and angular coordinate in the x1, x2 plane respectively. Beyond their

existence, I will not need the dilaton and RR fields that complete these to full string backgrounds.

Importantly, these backgrounds can be realized by sequences of noncommuting TsT trans-

formations [11]. Denoting T duality along an isometry coordinate x by Tx, and the dualized

coordinate by x̃, the first background is obtained from undeformed AdS5 × S5 by the sequence

Tψ, w
+ → w+− η ψ̃, Tψ̃, Tx2 , x

3 → x3 − η x̃2, Tx̃2 , (2.17)

8I use 1/2 times the r matrices used in [11]. Moreover, for dimensional reasons one might want to formally

insist on separate deformation parameters for the separate terms. They can be set numerically equal by an so(4, 2)

automorphism however.
9As r3,−1 ⊕R is an analytic continuation of r′3,0 ⊕R and this carries through the derivation, I will not consider

an explicit example in this class. As discussed below, this formal continuation can have important consequences

in the context of AdS/CFT however.
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where the first TsT transformation corresponding to r̂1 uses coordinates

x+ = 2(ψ2w− + w+), x− = 2w−, x3 = −2ψw−. (2.18)

The second background corresponds to

Tx1 , x
2 → x2 − η x̃1, Tx̃1 , Tx3 , ξ → ξ + η x̃3, Tx̃3 . (2.19)

Similar considerations apply to any r matrix of the above types [11], see also footnote 11 below.

An abelian building block such as r̂ = a ∧ b is associated to a TsT transformation in (y(a), y(b)),

meaning dualization in y(a) and shifting y(b), where y(z) denotes the coordinate dual to z [14].

The sequence of the TsT transformations is determined by the subordinate structure. Let me

now discuss the AdS/CFT interpretation of these almost abelian deformed strings.

3 AdS/CFT

Since the symmetries of these deformed strings are Drinfeld twisted, their hypothetical AdS/CFT

duals should be able to realize twisted symmetry. This naturally leads to NC field theory, see

e.g. the reviews [33]. Briefly, on the field theory side so(4, 2) is a spacetime symmetry, acting

on the algebra of functions (fields) on Minkowski space. To define Drinfeld twisted so(4, 2)

symmetry one needs to work with a different module, a deformed algebra of functions. Indeed,

F ∈ U(g)⊗ U(g) can be used to define a twisted product between functions

f ? g ≡ µ ◦ F−1(f ⊗ g), (3.1)

where we understand so(4, 2) to be realized in terms of differential operators, see appendix A,

and µ(f ⊗ g) = fg denotes formal multiplication. For more details on twists, see appendix B.

Taking f and g to be the coordinate functions on Minkowski space, this gives the basic NC

structure of the theory as

[xµ ?, xν ] ≡ xµ ? xν − xν ? xµ. (3.2)

For almost abelian r matrices,

F = eiηr̄eiηr̂ (3.3)

is an associated twist, matching the picture of the associated deformations being equivalent to a

TsT transformation associated to r̂, followed by the one for r̄. For the rank six case we simply add

a third term corresponding to r̃ to F , respectively apply the corresponding TsT transformation

to the background. With this twist the formula above simplifies to

[yµ ?, yν ] = −2iηµ(r(yµ ⊗ yν)) = −2iηaµν , (3.4)

for all rank four r matrices, in a set of appropriate coordinates y where

r = aµν(y)∂yµ ∧ ∂yν . (3.5)

Namely, since the generators a, b, and d of the r matrix commute, it is possible to choose

coordinates (y(a), y(b), y(d), ỹ) on R1,3 such that z ∼ ∂y(z) . Then the remaining generator c ∼
y(b)∂y(a) for h3⊕R, c ∼ y(a)∂y(b) − y(b)∂y(a) for r′3,0⊕R, and c ∼ y(a)∂y(a) − y(b)∂y(b) for r3,−1⊕R.
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In these coordinates rn(yµ⊗yν) vanishes for n > 1 as r lowers the polynomial order of the product

of functions it acts on. This is not the case for e.g. r̃ = m01 ∧m23 in cartesian coordinates –

part of the rank six r = p0 ∧ p1 + p2 ∧ p3 +m01 ∧m23 [11] – where the full twist is needed.

The twists for r1 and r2 for instance give nonvanishing

[x+ ?, x3]1 = −2iηx−, [x2 ?, x3]1 = −iη, (3.6)

and

[x1 ?, x3]2 = iηx2, [x2 ?, x3]2 = −iηx1, [x1 ?, x2]2 = iη. (3.7)

In a conventional picture of the AdS/CFT correspondence, this structure should arise out

of the low energy limit of open strings stretching between D3 branes, while the near horizon

low energy limit of the same configuration should give the backgrounds of the corresponding

deformed σ models. To get a NC field theory in this picture, the background in which the

branes are placed needs to be deformed. Restricting to r matrices which only involve generators

of so(3, 1) as acting on R1,3 ⊂ R1,9, finding such deformed backgrounds is not complicated.10

Namely, they follow by applying the TsT transformations associated to an r matrix, directly to

flat space. In the spirit of [27], this gives an effective open string geometry corresponding to a

field theory which is indeed noncommutative. In fact, its NC structure is encoded directly in the

r matrix.

TsT transformations in the open string picture

To see the link between TsT transformations and the open string NC structure, consider the

O(D,D) formulation of TsT transformations (see e.g. [15] in the present context). Under a TsT

transformation with shift parameter γ, an arbitrary background Eµν = gµν +Bµν with sufficient

isometries transforms as

E → Ẽ = E (1 + ΓE)−1 = g̃ + B̃, (3.8)

where

Γ = −2γ r, (3.9)

with the abelian r matrix r realized in terms of differential operators as in equation (3.5), i.e.

Γµν = −2γ aµν . Of course, here r matrices are just convenient bookkeeping devices to label

TsT transformations [14, 15]. Following [26, 27], see also [34], the effective open string geometry

attached to such a metric and B field is

Gµν =

(
1

E

)µν
S

,

θµν = 2πα′
(

1

E

)µν
A

,

(3.10)

10This takes out r5 and r6 in [11], which involve generators outside of any one so(3, 1) subalgebra. Any so(3, 1) r

matrix that is connected by an inner automorphism to the “R1,3” so(3, 1) one gives an equivalent σ model, where the

latter offers the natural choice of frame within its equivalence class, also on the field theory side. An automorphism

that leaves the Poincaré patch, however, may a priori lead to an inequivalent model in the AdS/CFT context.

I will not address this interesting point in more detail here – it already applies to the algebraically equivalent

abelian cases pi ∧ pj and ki ∧ kj for instance.
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where S and A denote the symmetric and antisymmetric part of the matrix respectively. In this

open string picture the background simplifies considerably, becoming

Gµν + θµν = gµν − 4πα′γ aµν . (3.11)

In other words, θ = −4πα′γ r. Doing a second TsT transformations simply adds the appropriate

r matrix term, and hence the above holds for a sequence of TsT transformations. These trans-

formations are not required to commute. Of course it must be possible to find coordinates in the

geometry such that the added TsT transformation can actually be performed. This is precisely

the case with almost abelian r matrices – the TsT associated to r̂ preserves the symmetries

needed to do the TsT associated to r̄, which both preserve the symmetries needed for r̃ in the

rank six case. Hence at any stage in the sequence there is a choice of coordinates that permits

the desired TsT transformation.11

To get to a field theory from the open strings requires taking a low energy α′ → 0 limit. With

γ̃ = α′γ fixed, this gives finite noncommutativity

θ = −4πγ̃ r, (3.12)

where12

[yµ ?, yν ] = iθµν . (3.13)

Note that θ need not be constant. There is one caveat in taking this limit: there are TsT setups

where there are physical obstructions to taking this naive low energy limit, such as the would-be

setup for canonical time-space NC SYM [28], corresponding to a TsT transformation involving

time (giving electric components in the B field). There one gets four dimensional NC open string

theory instead [28]. Its gravitational dual [36] is also different from the corresponding naive

TsT transformation of AdS5 × S5. Note that this caveat for instance applies to the “analytic

continuation” of indices (123) → (012) that would take r2 to the example of an r3,−1 ⊕ R r

matrix considered in [11]. Cases where time is explicitly involved, i.e. cases with electric B field

components, should hence be investigated on a case by case basis. This applies to r6, r7, r10, r12,

r13 and r14 of [11]. Null components are connected to spacelike ones by boosts and are ok, see

e.g. [37]. Modulo this caveat, applying commuting or noncommuting TsT transformations to flat

space with D3 branes, gives a setup that limits to NC SYM, with its NC structure determined by

the r matrix. This matches the Drinfeld twist picture described above – the factor of 2π is part

of the difference between parameters in the closed string and field theory pictures respectively,

as indicated below.

11 With this structure, the proof of equivalence between sequences of commuting TsT transformations and

abelian r matrices of [15] immediately extends to the almost abelian case, providing a rigorous version of the

arguments of [11]. Moreover, dipole deformations – also obtained via TsT transformations, now involving S5 or

R6 respectively – can be similarly viewed in terms of a twisted product [29] associated to a noncommutativity

parameter. Combining this with the spacetime noncommutativity parameter above then gives a combination of

the two types of deformation. For compatible TsT transformations this noncommutativity parameter is again just

the r matrix, in line with the general twist picture.
12In general one should use the Kontsevich formula [35, 34] here, giving higher order terms in agreement with

the twisted product. This linear formula holds for rank four r matrices in appropriate coordinates.
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Closed string picture

The closed string geometry follows by applying the TsT transformations to the brane geometry

directly. This limits to the appropriate YB σ model background by construction, as the TsT

transformations only involve R1,3. Hence, abelian YB deformed strings are dual to NC versions

of SYM, in line with the proposal of [10]. Let me illustrate this general picture on the two

examples above.

Examples – r1 – h3 ⊕ R

In the conventions of [24], the standard D3 brane metric is given by13

ds2 =
1√
f

(dxµdx
µ +

√
f(dr2 + r2dΩ2

5),

B = 0, f(r) = 1 + (α′R2)2/r4. (3.14)

Applying transformations (2.17) with γ instead of η gives

ds2 = −dx
+dx−√
f

+
γ2x−dx−(2dx2 − x−dx−) + f

(
(dx2)2 + (dx3)2

)
√
f(f + γ2)

+
√
f(dr2 + r2dΩ2

5),

B =
γ

f + γ2
(−x−dx− ∧ dx3 + dx2 ∧ dx3). (3.15)

For the near horizon low energy limit, take r = α′R2/z, η̃ = γα′ fixed, and α′ → 0, to find

ds2

α′R2
=
−dx−dx+ + dz2

z2
+

(dx2)2 + (dx3)2 + η̃2R4x−dx−(2dx2 − x−dx−)/z4

z2 + η̃2R4/z2
+ dΩ2

5,

B

α′R2
=
η̃R2(dx2 − x−dx−) ∧ dx3

(η̃2R4 + z4)
, (3.16)

which, as expected, is precisely the background of the YB σ model associated to r1 as in eqn.

(2.15), with radius R̃ =
√
α′R reinstated, and η = η̃R2 = η̃

√
λ, where λ is the ’t Hooft coupling.

This background admits eight real supercharges.

To see the geometry the branes are placed in, consider instead the limit r →∞ to get

ds2 = −dx+dx− +
(dx2)2 + (dx3)2 + γ2x−dx−(2dx2 − x−dx−)

1 + γ2
+ dykdy

k,

B =
γ

1 + γ2
(−x−dx− ∧ dx3 + dx2 ∧ dx3), (3.17)

where the yk, k = 1, . . . , 6, are cartesian coordinates for R6. This is just the result of applying

the above sequence of TsT transformations to flat space directly. In the low energy limit α′ → 0

with γ̃ = γα′ fixed, the effective open string geometry of equations (3.10) becomes14

θ = −2πγ̃(2x−∂x+ ∧ ∂x3 + ∂x2 ∧ ∂x3) = −4πγr1, (3.18)

13The remaining supergravity fields do not affect our considerations. They are guaranteed to exist as all we are

doing is T dualities and field redefinitions, in fact following immediately from them.
14In this limit we effectively get B ∼ γ−1 and hence θ ∼ 1/B, as in [27]. Moreover, note that there is no critical

value for γ at which B blows up, as there would be for canonical space-time noncommutativity [28]. There the

p0 ∧ p1 type TsT transformation gives a B field proportional to (1− γ2)−1.
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and G a flat ten dimensional metric. This corresponds to noncommutativity of the kind

[x+ ?, x3] = −4πiγ̃x−, [x2 ?, x3] = −2πiγ̃, (3.19)

matching equations (3.6) where we should use η̃ instead of η, with deformation parameters related

by the effective string tension T =
√
λ/2π. This is the same relation as one finds for canonical

NC SYM15 or the β deformation.

Examples – r2 – r3,−1 ⊕ R

The situation for the second example is completely analogous. Applying transformations (2.19)

to the brane background gives

ds2 = − 1√
f

(dx0)2 +
f(dρ2 + ρ2dξ2 + (dx3)2) + γ2(ρdρ− dx3)2

√
f(f + γ2(1 + ρ2))

+
√
f(dr2 + r2dΩ2

5),

B =
γ

f + γ2(1 + ρ2)
(−ρdρ ∧ dξ + ρ2dξ ∧ dx3). (3.20)

which as above limits to the associated YB background of equations (2.16), admitting no super-

symmetry. The open string picture now gives

θ = 2πγ̃(ρ−1∂ρ ∧ ∂ξ − ∂ξ ∧ ∂x3) = 2πγ̃(∂x1 ∧ ∂x2 − (x1∂x2 ∧ ∂x3 − x2∂x1 ∧ ∂x3)), (3.21)

matching equations (3.7). This is just a combination of canonical (x2, x1) NC SYM and its

(ξ, x3) analogue of [38], in both the field theory and string pictures, matching the TsT structure.

Similar explicit constructions can be readily pursued for the other r matrices listed in [11].

Remarks regarding supersymmetry

The brane picture discussed above should be stable to provide a notion of duality. This would

be guaranteed by supersymmetry of the backgrounds. There are unimodular deformations that

preserve a quarter of the original superstring, such as the first example above. Others do not

preserve any supersymmetry, however, and here the proposed duality may well break down due to

quantum effects. The γi deformation [4], a three parameter generalization of the β deformation

that breaks all supersymmetry, is an illustrative example. Here conformal symmetry is broken

even in the planar limit of the field theory [39]. Correspondingly, without supersymmetry certain

string modes are expected to become tachyonic and lead to a deformation of AdS5. Similar

subtleties presumably affect (some of) the nonsupersymmetric cases here as well. Even in these

cases some notion of duality may nevertheless remain – despite lacking a clean AdS/CFT picture,

for the γi deformation spectra can be matched for a large class of states in the planar limit [40, 41].

15Canonical NC SYM is contained in our present considerations. Concretely, rescaling xµ → bxµ, z → bz in the

present deformation of AdS5 × S5 and considering the limit b→ 0 with b−2η = a2 constant gives the gravity dual

of canonical NC SYM in the conventions of [24]. In this limit the commutator [x+ ?, x3] correspondingly vanishes,

leaving only the standard (x2, x3) noncommutativity. To make contact with [24] at the level of the brane geometry

directly, rescale x2 and x3 by cos θ and identify γ = tan θ.
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4 Concluding remarks

I showed that most almost abelian YB deformations of the AdS5×S5 superstring are AdS/CFT

duals of NC versions of SYM, where the corresponding noncommutativity parameter is the r

matrix, matching the general picture of [10]. These deformations of AdS5×S5 can be realized via

noncommuting sequences of noncommuting TsT transformations. The corresponding dual NC

structure is a combination of the NC structures associated to the individual TsT transformations,

mirroring the r matrix picture.

There are some almost abelian deformation that involve generators of the conformal algebra

that do not have a natural action in the brane geometry. It is important to understand whether

and if so, how, one can find similar brane constructions for them. The same applies to their

abelian building blocks already. This has been done for the abelian twist of SYM on R × S3

built out of the Cartan generators of so(4) ⊂ so(4, 2) [42]. Beyond almost abelian deformations,

there are nonabelian unimodular deformations that cannot be represented as sequences of TsT

transformations, instead requiring nonabelian T duality. It would be interesting to provide

explicit open string pictures for the NC structures expected to be associated to these, and, at the

algebraic level, to construct the associated twists. In this case the open string noncommutativity

should be equal to the r matrix as well. It is also worth mentioning that general YB models can

be viewed as adding a B field equal to the inverse of the r matrix in a nonabelian T dual picture

[22] which appears closely related to the present picture for almost abelian models, where a B

field equal to the r matrix is added to the “inverse” geometry. The latter applies both before and

after the near horizon limit, and it would be interesting to see how the former carries through

the brane construction. Moreover, it is important to understand whether in the Poincaré patch

there is a physical distinction between r matrices related by inner automorphisms that leave this

patch. Clarifying the meaning of generic unimodular YB models with electric B field in string

theory and AdS/CFT is also relevant.

In broader terms, it would be great to classify the possible unimodular deformations of

AdS5×S5 for the full superalgebra psu(2, 2|4), and investigate their AdS/CFT duals in detail. In

particular, it would be nice to understand conclusively whether an inhomogeneous but unimod-

ular r matrix exists. One might hope that at least an r matrix exists that becomes unimodular

in a contraction limit [43], as there is a natural string candidate there [44].16 Nonunimodular

models may prove worth further investigation as well, as they are formally T dual to string

models [46, 19, 21] and it would be interesting to see what they correspond to. Finally, while the

spectrum of the η model can be found (assuming formal light-cone gauge fixing) [47], it remains

an important open question to understand homogeneous deformed models, beyond those based

on the Cartan subalgebra, see e.g. [41], at the quantum level.
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A The conformal algebra

The four dimensional conformal algebra, so(4, 2), can be represented as

?[mµν , pρ] = ηνρpµ − ηµρpν , [mµν , kρ] = ηνρkµ − ηµρkν ,

[mµν , D] = 0, [D, pµ] = pµ, [D,Kµ] = −Kµ,

[pµ, kν ] = 2mµν + 2ηµνD, [mµν ,mρσ] = ηµρmνσ + perms.

(A.1)

These anti-Hermitian generators can be realized as differential operators on R1,3 as

pµ = ∂µ, kµ = xαx
α∂µ − 2xµx

ν∂ν

mµν = xµ∂ν − xν∂µ, D = −xµ∂µ,
(A.2)

where the p generate translations, the m rotations and boosts, and the k special conformal

transformations, or for instance in the fundamental representation of su(2, 2) ' so(4, 2) as

pµ =
1

2
(γµ − γµγ4), kµ =

1

2
(γµ + γµγ4),

mµν =
1

2
γµγν , D =

1

2
γ4.

(A.3)

Here the γi are 4× 4 γ matrices, for instance

γ0 = iσ3 ⊗ σ0, γ1 = σ2 ⊗ σ2, γ2 = −σ2 ⊗ σ1,

γ3 = σ1 ⊗ σ0, γ4 = σ2 ⊗ σ3, γ5 = −iγ0,
(A.4)

where σ0 = 12×2 and the remaining σi are the Pauli matrices.

B Drinfeld twists and r matrices

Consider the standard Hopf algebra associated to U(g), the universal enveloping algebra of a

semisimple Lie algebra g, with coproduct ∆, counit ε and antipode s. A Drinfeld twist F is an

invertible element of U(g)⊗ U(g) which satisfies the cocycle condition [48, 49]

(F ⊗ 1)(∆⊗ 1)F = (1⊗ F )(1⊗∆)F, (B.1)

and normalization condition

(ε⊗ 1)F = (1⊗ ε)F = 1⊗ 1. (B.2)

Moreover, for F to represent a deformation,

F = 1⊗ 1 + iηF (1) +O(η2), (B.3)
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where η is a deformation parameter.17 Let us express F as a sum of terms in U(g)⊗ U(g)

F = fβ ⊗ fβ, F−1 = f̄β ⊗ f̄β, (B.4)

where fβ, fβ, f̄β, and f̄β denote in principle distinct elements of U(g), and we have an implicit

(infinite) sum over β. The Drinfeld twist F can now be used to deform (twist) the Hopf algebra

by changing the original coproduct and antipode s to

∆F (X) = F∆(X)F−1,

sF (X) = fαs(fα)s(X)s(f̄β)f̄β.
(B.5)

The cocycle condition on F guarantees coassociativity of the twisted coproduct, as well as asso-

ciativity of the ? product used in the main text.

A classical r matrix for g is an r ∈ g⊗ g that solves the classical Yang-Baxter equation

[r12, r13] + [r12, r23] + [r13, r23] = 0. (B.6)

Here rmn denotes the matrix realization of r acting in spaces m and n in a tensor product.

Classical r matrices are in one to one correspondence with Drinfeld twists in the following sense

[48] (see also e.g. [50]). First, the classical r matrix

r12 = 1
2(F (1)

12 −F
(1)
21 ), (B.7)

solves the CYBE. Second, twists that have the same classical r matrix give equivalent deforma-

tions of the algebra. Third, a twist exists for any solution of the CYBE, though a general explicit

construction is not known.

Almost abelian twists

Given an abelian r matrix such as r̂ one can define an associated abelian twist F̂ as

F̂ = eiηr̂, (B.8)

which is readily verified to satisfy the required properties. Due to the special structure of almost

abelian r matrices one can then define a twist for r = r̂ + r̄ as

F = F̄ F̂ . (B.9)

This construction works due identities like adr̄13+r̄23 r̂12 = 0 which hold thanks to the possible

defining commutation relations (2.8-2.9). For the rank six case of the main text, F = F̃ F̄ F̂ .
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