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Abstract

While waveform relaxation (also known as dynamic iteration or co-

simulation) methods are known to converge for coupled systems of or-

dinary di↵erential equations (ODEs), they may su↵er from instabilities

for coupled di↵erential-algebraic equations (DAEs). Several convergence

criteria have been developed for index-1 DAEs. We present here a con-

vergence criterion for a coupled system of an index-2 DAE with an ODE.

The analysis is motivated by the wish to combine electromagnetic field

simulation with circuit simulation in a stable manner. The spatially dis-

cretized Maxwell equations in vector potential formulation with Lorenz

gauging represent an ODE system. A lumped circuit model via the estab-

lished modified nodal analysis is known to be a DAE system of index  2.

Finally, we present su�cient network topological criteria to the coupling

that are easy to check and that guarantee convergence.

1 Introduction

The modeling of a large number of today’s applications is increasingly com-
plex and in many cases calls for a multiphysical approach resulting in coupled
systems. Waveform relaxation (WR) methods are well-established for coupled
problems. They allow for each subsystem to be solved by a dedicated numer-
ical solver taking into account the di↵erent structure and time scales of the
subsystems. WR methods are known to be convergent on bounded intervals
for coupled ordinary di↵erential equations (ODEs) [9]. This is not necessarily
true in the case of coupled di↵erential-algebraic equations (DAEs) [1, 10, 11].
Therefore, a number of studies were dedicated to finding convergence criteria
for di↵erent classes of coupled DAEs, e.g. [1, 2, 5, 6, 10, 11, 13, 14] to name only
some of them. Here, we investigate a novel class of systems: coupled systems
of implicit quasilinear DAEs of (tractability) index  2 [8, p.485] and ODEs.
The choice of this class of equations is motivated by the interest in finding
su�cient criteria for convergence of co-simulation approaches for coupled elec-
tromagnetic field (EM)/circuit systems. Convergence results are well-known
for coupled EM/circuit systems for index-1 DAEs, see e.g. [2, 13, 14]. Here,
we provide convergence results for the Gauss-Seidel WR for EM couplings with
index-2 circuit DAEs. The Gauss-Seidel WR method is chosen as one prototype
example of many di↵erent WR methods.
In Section 2, we provide a general convergence criterion for the Gauss-Seidel
method applied to index-2 DAEs coupled with an ODE. Section 3 discusses
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the consequences for circuit systems coupled to an ODE (e.g. spatially dis-
cretized Maxwell equations in potential formulation including Lorenz gauging)
and provides a network topological interpretation of the convergence criterion.
Furthermore, the criterion is illustrated by two simple examples.

2 An abstract convergence criterion

This work presents convergence criteria for an iterative method applied to initial
value problems (IVPs) of the form

u̇+ b(t, u) = c1(x), u(t0) = u0 2 Rnu , (1)

E(x)ẋ+ f(x) = q(t) + c2(u), x(t0) = x0 2 Rnx . (2)

on a finite time interval I, where E(x) 2 Rnx⇥nx is square. The right hand side
functions c1 and c2 describe the coupling of both systems.
We assume that the IVP of the form

E(x)ẋ+ f(x) = s(t), x(t0) = x0, t 2 I, (3)

whith E, f as in (2), can be equivalently transformed into equations of the form

ẏ = f0(y, z1, z2, s), y(t0) = y0, t 2 I (4a)

z1 = M1(y, z2)ṡ+ f1(y, s) (4b)

z2 = f2(y, s), (4c)

where the functions f0, f1, f2,M1 satisfy some smoothness conditions, i.e.

Assumption 2.1 (decoupled form) There exists a nonsingular transforma-

tion matrix T = (T0 T1 T2) and functions f0, f1, f2,M1, defined on euclidean

spaces Rk
, with the properties

• M1, f0, f1, f2 2 C
1

• f1(y, s) and f2(y, s) are Lipschitz continuous w.r.t. y

• f0(y, z1, z2, s) is Lipschitz continuous w.r.t. y, z1, z2

• M1 is Lipschitz continuous

such that for any s 2 C
2(I), the function (y, z1, z2) 2 C

1(I), uniquely defined

by T0y + T1z1 + T2z2 = x, solves IVP (4) if and only if x 2 C
1(I) solves the

IVP (3).

Assumption 2.1 implies some essential properties regarding the nature of Equa-
tion (3):
The di↵erential equation in (3) is a di↵erential-algebraic equation (DAE), that is,
E(x) is singular for all x 2 Rn. It is implicitly composed of a dynamic part (4a),
sometimes called inherent ODE in the literature [8], and algebraic constraints

(4b),(4c). This mixed di↵erential-algebraic nature is the basic feature of DAEs.
The tractability index of the DAE in (3) is 2, since in equation (4b) the first
derivative but no higher derivatives are involved in the algebraic constraints
(see [8]).
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There exists a consistent initial value for the problem (3), that is, an initial
value such that there exists a solution x. This can be seen if we successively
insert z1 and z2 into Equation (4a). That way, we obtain an ODE in y, with a
vector field which is Lipschitz continuous w.r.t. y as it is composed of Lipschitz
continuous functions. Hence, a global version of the Picard Lindelöf Theorem
[15] yields global unique solvability of this ODE. Inserting this unique solution
y successively into the algebraic Equations (4c),(4b) yields unique solutions
z1, z2, and thence x = T (y>, z>1 , z

>
2 )> solves the problem (3). Consequently,

the initial value x0 = T (y>0 , z
>
1,0, z

>
2,0)

> is consistent if and only if the initial
value y0 is chosen arbitrarily and z1,0, z2,0 are the resulting fixed initial values
of the algebraic constraints.
Given a consistent inital value x0, the corresponding solution x of problem (3)
is unique and global on the finite time interval I.

Assumption 2.2 We consider the coupled system (1)-(2). The vector field

b(t, ·) is Lipschitz continuous for all t 2 R. The coupling function c1 is contin-

uously di↵erentiable, and c2 and the source function q are twice continuously

di↵erentiable.

2.1 Convergence for Gauß-Seidel waveform relaxation

When applying the Gauss-Seidel WR method on (1)-(2), we obtain the iterative
scheme

u̇
k + b(t, uk) = c1(x

k�1), u
k(t0) = u0 (5)

E(xk)ẋk + f(t, xk) = q(t) + c2(u
k), x

k(t0) = x
k

0 (6)

for t 2 I and the iteration parameter k 2 N \ {0}. The initial guess function u
0

can be found through extrapolation of the initial values u0. The initial value xk

0

is defined by

x
k

0 := T0y0 + T1M1(y0, z2,0)[q̇ + C2(u
k)u̇k] + T2z2,0,

with C2 the Jacobian of c2. This definition seems cumbersome, but is necessary
to obtain consistent initial values as can be seen from the transformed equations
(4). For a given u

k and s(t) := q(t) + c2(uk(t)), Equations (3) and (6) are
identical. If Assumption 2.1 holds for Equation (3), it consequently holds for
Equation (6) as well, with x

k = T (yk, zk1 , z
k

2 )
>. Since Equation (4b) involves

the derivative of uk, the algebraically fixed initial value z
k

1 (t0) depends on k.

The following theorem about the convergence of solutions of a sequence of ODEs
is the groundwork for our convergence results of waveform relaxation for coupled
ODE-DAE systems. The investigated sequence therein resembles the Picard
iteration or waveform relaxation methods for ODEs, which are described in [3,9].
In contrast to these works, we deal with an ODE that depends not only on the
solution of the ODE in the previous iteration step but also on its derivative.

Theorem 2.3 For [t0, T ] = I ⇢ R, we consider the function

f : I ⇥ Rm ⇥ Rm ⇥ Rm ! Rm
, (t, x, y, z) 7! f(t, x, y, z).
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Let f be continuously di↵erentiable, contractive w.r.t. z with the contraction

constant c for all t 2 I and Lipschitz continuous w.r.t. x, y with the Lipschitz

constants L1, L2 for all t 2 I. Let furthermore the IVP

ẋ = f(t, x, x, ẋ), x(t0) = x0, t 2 I (7)

have a unique solution on I. If the time interval I is su�ciently small to satisfy

T � t0 <
1� c

L1 + L2
,

then the sequence of IVP-solutions

ẋ
k = f(t, xk

, x
k�1

, ẋ
k�1), x

k(t0) = x0 8k 2 N, x
0 2 C

1
, t 2 I (8)

converges in (C1(I), k · kC1(I)) to the solution of (7), i.e. xk ! x, for all initial

functions x
0 2 C

1
.

Proof: Rewriting the di↵erence of the equations (8), (7) in the integral form,
we get

x
k(t)� x(t) =

Z
t

t0

f(s, xk(s), xk�1(s), ẋk�1(s))ds�
Z

t

t0

f(s, x(s), x(s), ẋ(s))ds.

We define

vk := kxk � xkC0(I), wk := kẋk � ẋkC0(I)

based on an arbitrary vector norm k · k. We will show that vk and wk converge
to zero. For clarity, we write down the argument t whenever it occurs in the
following. Using that for arbitrary z 2 C

0[a, b] it holds

k
Z

b

a

z(t)dtk  (b� a)kzkC0[a,b],

we obtain with H := T � t0

vk  H sup
t2I

kf(t, xk(t), xk�1(t), ẋk�1(t))� f(t, x(t), x(t), ẋ(t))k

 H sup
t2I

kf(t, xk(t), xk�1(t), ẋk�1(t))� f(t, x(t), xk�1(t), ẋk�1(t))k

+H sup
t2I

kf(t, x(t), xk�1(t), ẋk�1(t))� f(t, x(t), x(t), ẋk�1(t))k

+H sup
t2I

kf(t, x(t), x(t), ẋk�1(t))� f(t, x(t), x(t), ẋ(t))k

 HL1 sup
t2I

kxk(t)� x(t)k+HL2 sup
t2I

kxk�1(t)� x(t)k

+Hc sup
t2I

k(ẋk�1(t)� ẋ(t))k

= HL1vk +HL2vk�1 +Hcwk�1.

Forming the di↵erence of the equations (8) and (7) yields analogously

wk = sup
t2I

kf(t, xk(t), xk�1(t), ẋk�1(t))� f(t, x(t), x(t), ẋ(t))k

 L1vk + L2vk�1 + cwk�1.
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In matrix form, we obtain
✓
1�HL1 0

�L1 1

◆

| {z }
T

✓
vk

wk

◆

✓
HL2 Hc

L2 c

◆✓
vk�1

wk�1

◆

with the inequality understood component-wise. For H <
1�c

L1+L2
and 0 < c < 1,

it follows H <
1
L1

. Thus, the matrix T is invertible. Since all components of

T
�1 are non-negative we obtain

0 
✓
vk

wk

◆
 T

�1

✓
HL2 Hc

L2 c

◆✓
vk�1

wk�1

◆

=
1

1�HL1

✓
HL2 Hc

L2 c

◆

| {z }
=:K

✓
vk�1

wk�1

◆
 K

k

✓
v0

w0

◆
.

For the spectral radius ⇢(K) = HL2+c

1�HL1
of K it holds

HL2 + c

1�HL1
< 1 () H <

1� c

L1 + L2
.

Thus vk and wk converge to zero if 0 < c < 1 and H <
1�c

L1+L2
. This yields the

conclusion

kxk � xkC1(I) = kxk � xkC0(I) + kẋk � ẋkC0(I) = vk + wk

k!1! 0.

⇤

The following theorem represents the main convergence results for waveform
relaxation methods applied to coupled ODE-DAE systems with index-2 DAEs
that can be decoupled into a form described by Assumption 2.1.

Theorem 2.4 Let the Assumptions 2.1 and 2.2 be satisfied. Then, the sequence

(uk
, x

k) of iterative solutions of the Gauss-Seidel method (5)-(6) converges in

(C0(T ), k · kC0(T )) to the solution (u, x) of (1)-(2), if the time interval T ✓ I
is su�ciently small and it holds

⇢ [C1(x)T1M1(y, z2)C2(u)] < 1 8x, y, z2, u (9)

with C1(x) := c
0
1(x) and C2(u) := c

0
2(u).

Proof: The proof consists of two steps. First, we use Theorem 2.3 in order to
show that the criterion (9) implies that the solutions of the inherent ODE of
the iterated scheme (5)-(6) converge in (C1(T ), k · kC1(T )) to the solution of the
inherent ODE of the original system (1)-(2).We write C

1 := (C1(T ), k · kC1(T ))
and C

0 := (C0(T ), k · kC0(T )) throughout this proof. The second step proves
that C

1 convergence of the inherent ODE implies C
0 convergence of the full

system.

First step: Exploiting Assumption 2.1 with s(t) = q(t)+u
k(t), we can substitute

the equivalent equations

ẏ
k = f0(y

k
, z

k

1 , z
k

2 , q + c2(u
k)), y

k(t0) = y0 (10)

z
k

1 = M1(y
k
, z

k

2 )
d

dt
(q + c2(u

k)) + f1(y
k
, z

k

2 , q + c2(u
k)) (11)

z
k

2 = f2(y
k
, q + c2(u

k)) =: f̄2(t, y
k
, u

k) (12)
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for Equation (6). Notice that xk = T0y
k + T1z

k

1 + T2z
k

2 . Defining

M̄1(t, y
k
, u

k) := M1(y
k
, f̄2(t, y

k
, u

k)),

f̄1(t, y
k
, u

k) := M̄1(t, y
k
, u

k))q̇ + f1(y
k
, z

k

2 , q + c2(u
k))

and inserting Equation (12) into (11) yields

z
k

1 = M̄1(t, y
k
, u

k)C2(u
k)u̇k + f̄1(t, y

k
, u

k). (13)

We replace x
k in (5) by T (yk, zk1 , z

k

2 )
> and substitute the right hand sides of

(13),(12) for the algebraic components of zk1 , z
k

2 in (5) and (10).

u̇
k = �b(t, uk) + c1(x

k�1)

= �b(t, uk) + c1(T0y
k�1 + T1z

k�1
1 + T2z

k�1
2 )

= �b(t, uk) + c1(T0y
k�1 + T1M1(t, y

k�1
, u

k�1)C2(u
k�1)u̇k�1

+ f̄1(t, y
k�1

, u
k�1) + T2f̄2(t, y

k�1
, u

k�1))

=: ✓1(t, u
k
, u

k�1
, y

k�1
, u̇

k�1) (14)

ẏ
k = f0(y

k
, z

k

1 , z
k

2 , q(t) + c2(u
k))

= f0(y
k
, M̄1(t, y

k
, u

k)C2(u
k)u̇k + f̄1(t, y

k
, u

k), f̄2(t, y
k
, u

k), q + c2(u
k))

In the above equations, u̇k depends only on u
k and (derivatives of) previous

solutions, whereas ẏ
k depends additionally on u̇

k. To obtain an explicit ODE
in (uk

, y
k)>, we eliminate u̇

k in the right hand side by simply substituting ✓1

for u̇k.

ẏ
k = f0(y

k
, M̄1(t, y

k
, u

k)C2(u
k)✓1(t, u

k
, u

k�1
, y

k�1
, u̇

k�1)

+ f̄1(t, y
k
, u

k), f̄2(t, y
k
, u

k), q + c2(u
k))

=: ✓2(t, u
k
, y

k
, u

k�1
, y

k�1
, u̇

k�1) (15)

Together, we have the ODE system

u̇
k = ✓1(t, u

k
, u

k�1
, y

k�1
, u̇

k�1),

ẏ
k = ✓2(t, u

k
, y

k
, u

k�1
, y

k�1
, u̇

k�1).
(16)

Next, we perform the analogous transformations on equations (1),(2), using
Assumption 2.1 once more. We obtain

z2 = f2(t, u, y), z1 = M1(y,'3(t, u))M2C2(u)u̇+ '1(t, u, y).

Analogously to the inherent ODE (16) of the system (5)-(6), this leads to the
inherent ODE of the overall system (1)-(2)

u̇ = ✓1(t, u, u, y, u̇),

ẏ = ✓2(t, u, y, u, y, u̇).
(17)

For all t 2 T , the right hand side functions ✓1(t, ·) and ✓2(t, ·) defined in (14)
and (15) are compositions of Lipschitz continuous functions due to Assumption
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2.1. Consequently, they are Lipschitz continuous. Applying Theorem 2.3 to the
systems (17) and (16), we only need to consider the spectral radius of

M :=

 
@✓1

@u̇k�1
@✓1

@ẏk�1

@✓2

@u̇k�1
@✓2

@ẏk�1

!
=

 
@✓1

@u̇k�1 0
@✓2

@u̇k�1 0

!
.

Finally, C1 convergence of (uk
, y

k) ! (u, y) is given if if the time interval T is
su�ciently small and

⇢(M) = ⇢
�

@✓1

@u̇k�1

�
= ⇢ [C1(x)T1M1(y, z3))M3C2(u)] < 1 8x 8y 8z3 8u. (18)

Second step: By inequality (18) we know that (uk
, y

k) ! (u, y) in C
1. We

recall that M̄1, f̄1, f̄2, defined in (12), (13), are continuous as compositions of
(Lipschitz) continuous functions. Hence we can exploit the continuity to switch
functions and limits in C

0 as follows

lim
k!1

z
k

2 = lim
k!1

f̄2(t, u
k
, y

k) = f̄2(t, u, y) =: z2

lim
k!1

z
k

1 = lim
k!1

[M̄1(t, y
k
, u

k)C2(u
k)u̇k + f̄1(t, y

k
, u

k)]

= M̄1(t, y, u)C2(u)u̇+ f̄1(t, y, u) =: z1.

The last equation holds since (uk
, y

k) ! (u, y) in C
1, which implies u̇k ! u̇ in

C
0. Hence, additionally to u

k ! u, we obtain in C
0

lim
k!1

x
k = lim

k!1
(T0y

k + T1z
k

1 + T2z
k

2 ) = T0y + T1z1 + T2z2 = x.

⇤

3 Convergence criteria for circuit coupled sys-
tems

In this section, we consider a coupled system (1),(2) whose DAE arises from an
electrical circuit, modeled by the modified nodal analysis. That is,

E(x) : =

2

4
ACC(A>

C
e)A>

C
0 0

0 �L(il) 0
0 0 0

3

5 , x =

0

@
e

il

iv

1

A , q =

0

@
qi

0
qv

1

A ,

f(t, x) : =

2

4
ARg(A>

R
e) +ALil +AV iv + qi(t)

A
>
L
e

A
>
V
e� qv(t),

3

5

(19)

where AC , AR, AL, AV are incidence matrices (see Definition 3.7) of the
capacitances, resistances, inductances and voltage sources in the circuit [4].
L(·) 2 Rnl⇥nl , C(·) 2 Rnc⇥nc are state-dependent square matrices describing
the inductances and capacitances, respectively. The function g : Rnr ! Rnr

describes the voltage-current relation of resistive elements.

Motivated by physical reasons we make some additional assumptions for the
system (3),(19), including strong monotonicity, which allow us to decouple the
circuit equations and to derive su�cient convergence criteria.
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Definition 3.1 (Strong Monotonicity) Let a function f : Rn ⇥ Rm ! Rm

be given. Then, f is strongly monotone w.r.t. the second argument if there

exists a constant µf > 0 such that

(y2 � y1)
>(f(x, y2)� f(x, y1)) � µfky2 � y1k2, 8x 2 Rn

, y1, y2 2 Rm
. (20)

Note that for functions f̃(x, y) := A(x)y which are linear w.r.t. y, the strong
monotonicity criterion (20) reduces to the existence of a µA such that

y
>
A(x)y � µAkyk2, 8x 2 Rn

, y 2 Rm
. (21)

Assumption 3.2 The system (3),(19) has the following properties:

(i) g is strongly monotone, and the functions C̃, L̃, defined by C̃(x, z) :=
C(x)z, L̃(x, z) := L(x)z, are strongly monotone w.r.t. z.

(ii) g(·), C(·) and L(·) are C
1
and Lipschitz continuous, and q is C

2
.

(iii) AV has full column rank, and
�
AC AV AR AL

�
has full row rank.

(iv) For any matrix Qc with full column rank satisfying im Qc = kerA>
C
, the

product Q
>
c
AV has full column rank.

Assumption (i) reflects the global passivity of the respective elements. Section
3.3 provides topological equivalents to the rank assumptions. Namely, Assump-
tion (iii) excludes the electrically forbidden configurations of loops of voltage
sources and cutsets of current sources. Assumption (iv) excludes loops of ca-
pacitances and voltage sources with at least one voltage source. The latter
assumption is not necessary for the decoupling, but allows for a simpler deriva-
tion of convergence criteria.

3.1 Decoupling

We introduce the auxillary matrices Qcvr and ÃL which allow us to describe
the decoupling in a simple manner.

Definition 3.3 We denote by Qcvr a matrix with full column rank satisfying

imQcvr = ker (AC AV AR)>. Furthermore, we denote ÃL := Q
>
cvr

AL.

Lemma 3.4 Let (AC AV AR AL) have full row rank. Then, ÃL has full row

rank.

Proof: For any y 2 ker Ã>
L

and x := Qcvry we get

Ã
>
L
y = 0 =) A

>
L
Qcvry = 0 =) A

>
L
x = 0 ^ (AC AV AR)

>
x = 0

=) (AC AV AR AL)
>
x = 0 =) x = 0 =) y = 0. ⇤

As a consequence of Lemma 3.4, the matrix ÃL(L(il))�1
Ã

>
L

is invertible if the
Assumption 3.2 is satisfied.
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Theorem 3.5 Let the Assumption 3.2 be satisfied and let M1 be a matrix-valued

function, defined by

M1(x) := (ÃL(L(x))
�1

Ã
>
L
)�1(Q>

cvr
0).

Then, there exists a nonsingular transformation matrix T = [T0 T1 T2] with T1 =
(Q>

cvr
0)> and Lipschitz continuous functions f0, f1, f2, h 2 C

1
with h(y, z2) =

il, such that the IVP

ẏ = f0(y, z1, z2, s), y(t0) = y0 (22)

z1 = M1(h(y, z2))ṡ+ f1(y, s) (23)

z2 = f2(y, s), (24)

is equivalent to the IVP (3) with x = [T0 T1 T2](y>, z>1 , z
>
2 )>.

A proof following the dissection concept presented in [7] is given in [12].

3.2 Convergence results

Combining Theorem (2.4) and Theorem (3.5), we obtain the following conver-
gence theorem for coupled circuit systems.

Theorem 3.6 Let the Assumptions 2.2 and 3.2 be satisfied. The Gauss-Seidel

iteration (5)-(6),(19) converges in C
0(I) to the exact solution of (1)-(2), (19)

if the time interval I is su�ciently small and the spectral radius satisfies

⇢

h
Ĉ1(x)Qcvr(ÃL(L(il))

�1
Ã

>
L
)�1

Q
>
cvr

Ĉ2(u)
i
< 1 8x 2 Rnx , u 2 Rnu , il 2 Rnl

(25)

where Ĉ1(x) 2 Rnu⇥ne are the first nu columns of C1(x) = c
0
1(x) and Ĉ2 2

Rne⇥nu are the first ne rows of C2(x) = c
0
2(x).

Proof: Provided Assumptions 3.2 and 2.2 hold for a coupled circuit system (1)-
(2), (19), the Decoupling Theorem 3.5 shows that Assumption 2.1 also holds.
Hence, we can apply the Convergence Theorem 2.4. The Decoupling Theorem
3.5 provides a specific structure of the matrix T1 and the matrix valued function
M1(h(·)). Insertion into the critical matrix product (9) of the 2.4 yields

C1(x)T1M1(h(y, z2))C2(u) = C1(x)

✓
Qcvr

0

◆
(ÃL(L(x))

�1
Ã

>
L
)�1(Q>

cvr
0)C2(u)

= Ĉ1Qcvr(ÃL(L(x))
�1

Ã
>
L
)�1

Q
>
cvr

Ĉ2(u).

⇤

3.3 Topological interpretation

The next results show how the assumptions and the convergence criterion (25)
can be interpreted topologically.
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Definition 3.7 ((reduced) incidence matrix) Let G be a graph with N + 1
nodes and B oriented branches. Then, Ā is called the incidence matrix of G if

Ā = (aij) 2 R(N+1)⇥B
with

aij =

8
><

>:

+1 if node i is start node of branch j,

�1 if node i is end node of branch j,

0 else.

(26)

A matrix A 2 RN⇥B
obtained by deleting the row which corresponds to a freely

chosen reference node is called reduced incidence matrix of G.

Lemma 3.8 Let G be a graph with N +1 nodes and incidence matrix Ā. Then,

G is connected if and only if rk Ā = rkA = N .

Proof: It is a well known result in circuit theory [4] that rk Ā = rkA = N if G
is connected. If G is not connected then we find a connected component Gc of G
that does not contain the reference node. Consequently, the sum of all rows of
A belonging to nodes of Gc equals zero, i.e., A does not have full row rank. ⇤

Remark. With Lemma 3.8 we see that
�
AC AV AR AL

�
has full row rank as

assumed in 3.2(iii) if and only if the circuit has no cutset of remaining branches,
i.e., it has no cutset of current sources.

Lemma 3.9 Let G be a graph with reduced incidence matrix A. Then, G is a

forest if and only if A has full column rank.

Proof: The columns of A are linearly independent if and only if the columns
of Ā are linearly independent since the sum of all rows of Ā equals zero. Due to
Lemma 3.8 the rank of each connected component Gc of G equals nc�1 when nc

denotes the number of nodes of Gc. Consequently, the columns of the incidence
matrix Āc of each connected component Gc are linearly independent if and only
if Āc has nc�1 columns, i.e., if and only if Gc is a tree. Hence, Ā has full column
rank if and only if G is a forest. ⇤

Remark. With Lemma 3.9 we see that AV has full column rank as assumed in
3.2(iii) if and only if the circuit has no loop of voltage sources.

Lemma 3.10 Let A : Rn ! Rm
, B : Rk ! Rm

be two linear mappings. It

holds

im B = kerA> , kerB> = im A.

Proof: Obviously,

im B ✓ kerA> , A
>
B = 0 , B

>
A = 0 , im A ✓ kerB>

.

Considering the rank nullity theorem, we obtain

rk B = dimkerA> , m� rk B
> = m� dimkerA> , dimkerB> = rk A.

⇤

10



Lemma 3.11 Let G be a graph, and let Gl be a subgraph with B branches and

reduced incidence matrix Al such that the branches of Gl form a loop L in G.
Then, for each column a

i

l
of Al, it holds

9 �1, . . . ,�B 2 {1,�1} : ai
l
=
X

j 6=i

�ja
j

l
.

Proof: W.l.o.g., let the nodes be labeled such that n1, . . . , nm 2 L, and
nm+1, . . . , nk /2 L. Since a node n /2 L can not be incident with a branch
b 2 L, it holds Al = (A>

l⇤
0)>, with Al⇤ the (possibly reduced) incidence matrix

of L. We set an arbitrary orientation for the loop L, and we define

�j =

(
1, if branch bj is oriented in the sense of the loop L,

�1 if branch bj is oriented against the sense of the loop L

for j = 1, . . . , B. We denote the columns of Al⇤ by a
i

l⇤
. Since each node of L

connects precisely two branches in L, each row of the matrix (�1a
1
l⇤

. . . �Ba
B

l⇤
),

has one +1, one �1 and otherwise zeros as entries. It follows
P

B

j=1 �ja
j

l⇤
= 0,

and hence
P

B

j=1 �ja
j

l
= 0. ⇤

Lemma 3.12 Let G1,G2 be two graphs with identical node sets and disjoint

branch sets, and let A1, A2 be their reduced incidence matrices. Let furthermore

Q1 be a matrix with full column rank such that im Q1 = kerA>
1 . Then, Q

>
1 A2

has full column rank if and only if there exists no loop in G1 [ G2 with at least

one branch b 2 G2.

Proof: “ =) ” First, we note that full column rank of Q1A2 implies full column
rank of A2. Furthermore, we obtain

kerQ>
1 A2 = {0} =) im A2 \ kerQ>

1 {0}
3.10
=) im A2 \ im A1 = {0}.

Hence, no column of A2 can be represented as a linear combination of columns
of A1. Lemma 3.11 implies that if a column of the reduced incidence matrix
can not be represented as a linear combination of other columns of the reduced
incidence matrix, then the corresponding branch is not element of a loop, which
yields the desired result.
“ (= ” Let F1 be an arbitrary maximal spanning forest of G1 with incidence
matrix AF1 . Then, F1 [ G2 is a maximal spanning forest of G = G1 [ G2 since
loops exist only in A1, but not in A2. Thus, the incidence matrix (AF1 A2)
has full column rank with Lemma 3.9. This implies im AF1 \ im A2 = {0}.
Together with Lemma 3.10 and kerA2 = {0}, we obtain the desired result. ⇤

Remark. Lemma 3.12 implies that Q>
c
AV has full column rank as assumed in

3.2(iv) if and only if the circuit has no loops of capacitances and voltage sources
with at least one voltage source.
In the following, we choose a specific matrix for Qcvr. The definition of it
requires so called CVR-components.

Definition 3.13 A CVR-component of a graph is a maximal connected sub-

graph which consists of only capacitances, voltage sources and resistances and

their incident nodes.

11



Remark. A CVR-component can consist of only one node.
We consider an electrical circuit with c + 1 CVR-components S0, S1, . . . , Sc,
where w.l.o.g. the reference node belongs to S0. We choose

(Qcvr)ij :=

(
1, if node i 2 Sj , j � 1

0, else.

Clearly, this choice of Qcvr complies with Definition 3.3. For linear coupling
functions c1 = C1, c2 = C2, we obtain the following corollary.

Corollary 3.14 Let an electrical circuit with the nodes n0, . . . , nN and c + 1
CVR-components S0, S1, . . . , Sc be given, and w.l.o.g. let the reference node

belong to S0. Let the Assumptions 2.2, 3.2 and 3.2 be satisfied. The Gauss-

Seidel iteration (5)-(6),(19) converges with ⇢ = 0 in C
0(I) to the exact solution

of (1)-(2),(19),if one of the following criteria is satisfied.

(1) Ĉ1 = 0, i.e. the node potentials e do not contribute to the ODE.

(2) Ĉ2 = 0, i.e. the ODE-variable u does not contribute to the Kirchho↵ node

equations of the circuit.

(3)
P

nj2Sk,k�1
(Ĉ1)ij = 0 8i, i.e. for each CVR-component Sk, k � 1, the sum

P
ni2Sk

�iei of node potentials coupled into the ODE can be written as a

sum of di↵erences
P

ni,nj2Sk
µij(ei � ej).

(4)
P

ni2Sk,k�1
(Ĉ2)ij = 0 8j, i.e. in each CVR-component Sk, k � 1, the exter-

nal current inflow equals the external current outflow.

The first two criteria follow trivially from Theorem 3.6. Considering the all-ones
structure of Qcvr within CVR-components, the latter two criteria lead to the
products Ĉ1Qcvr = 0 and Q

>
cvr

Ĉ2 = 0. Then, ⇢ = 0 follows again with 3.6.
Note that the first condition implies the third one, and the second condition
implies the fourth one.

3.4 Examples

The example of a linear circuit with a two-terminal coupling as shown in Figure
3.4 illustrates Corollary 3.14. The blue inductance is a simple representative of
the ODE in (1), whereas the red part of the circuit represents the circuit subsys-
tem (2),(19). The element equation for the inductance of the ODE-subsystem
is i

0
l1

= e1�e2
L1

, where e1, e2 are node potentials of the red cirucit subsystem

which are coupled into the blue ODE-subsystem. Hence, Ĉ1 = 1
L
(1 � 1 0) and

Criterion 3.14(3) is satisfied. Indeed, the coupling nodes n1, n2 belong to the
same CVR-component which contains n1, n2, n3, and the circuit contributes the
di↵erence 1

L1
(e1 � e2) to the ODE. Since the external current inflow into and

outflow of this CVR-component are equally given by il1 , Criterion 3.14(4) is
also satisfied.
In the similar circuit in Figure 3.4, only the choice of one coupling node has
changed, which is now nr instead of n2. Since these nodes belong to di↵er-
ent CVR-components, 1

L1
e1 is the only node potential of the corresponding

12



qi

L2G

qv

C

n2
n1

n3

nr

L1

Figure 1: The left side shows an electrical circuit with inductances L1, L2, con-

ductance G, capacitance C, and independent sources providing current qi and

voltage qv. The coupling nodes n1, n2 belong to the same CVR-component. The

right side shows simulation plots of the potential e3 at n3. The reference solution

is monolithical. The graphs “Iteration 1, 2, 3” are the respective solutions of the

Gauss-Seidel WR method. We observe convergent behaviour w.r.t. the iteration

parameter k, which is in accordance with Corollary 3.14.

CVR-component which is coupled into the ODE, and we cannot write this as
a potential di↵erence of the CVR-component. Since also the other criteria of
Corollary 3.14 are not satisfied in this case, we cannot guarantee convergence
of the Gauss-Seidel WR method. Indeed, it is divergent as Figure 3.4 shows.

4 Conclusions

With Theorem 3.6, a general convergence criterion for the Gauss-Seidel WR
method applied to an index-2 DAE coupled with an ODE has been presented.
It requires that the DAE can be decoupled as given in Assumption 2.1. For
circuit systems, such a decoupling is presented in Theorem 3.5. Theorem 3.6
describes the convergence criterion for circuit DAEs in terms of the coupling
and particular transformation matrices. Certain topological properties of the
circuit are maintained in the transformed system, which is shown in Section 3.3.
The topological considerations allowed us to provide simple network topologi-
cal criteria leading to convergence of the Gauss-Seidel waveform relaxation, see
Corollary 3.14. Finally, we demonstrated the relevance of the presented conver-
gence criteria by the examples presented in Figure 3.4 (convergence) and Figure
3.4 (divergence).
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qi

L2G

qv

C

n2
n1

n3

nr

L1

Figure 2: The electrical circuit on the left di↵ers from the circuit presented

in Figure 3.4 only in the coupling nodes, i.e. nr instead of n2 is the second

coupling node here. All element parameters and the topology of the red circuit

remain the same. The coupling nodes n1, nr now belong to two di↵erent CVR-

components. In contrast to Figure 3.4, the simulation plots on the right show a

highly divergent behaviour of the Gauss-Seidel WR method w.r.t. the iteration

parameter k. This is possible since 3.14 does not apply here.
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