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Abstract
This paper describes a new algorithm for the computation of consistent

initial values for Differential-Algebraic Equations (DAEs). The main idea
is to formulate the task as a constrained optimization problem in which, for
the differentiated components, the computed consistent values are as close
as possible to user-given guesses.
The generalization to compute Taylor coefficients results immediately, where-
as the amount of consistent coefficients will depend on the size of the deriva-
tive array and the index of the DAE.
The algorithm can be realized using Automatic Differentiation (AD) and se-
quential quadratic programming (SQP). The implementation in Python us-
ing AlgoPy and SLSQP has been tested successfully for several higher index
problems.
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1 Introduction
We consider DAEs of the form

f (x′,x, t) = 0, f : Rn×Rn×R→ Rn. (1)

In comparison with ODEs, the numerical treatment of DAEs needs additional
computations. For ODEs initial values can be prescribed by x(t0) = α , for ar-
bitrary α ∈ Rn. In contrast, for DAEs of index µ greater than 0, x(t0) has to
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be consistent. This means that some constraints have to be fulfilled and that we
cannot prescribe values α for the complete vector x(t0). Consistent initial values
have to fulfill obvious constraints and, in the case of higher index DAEs, also hid-
den constraints that define the solution manifold. Consequently, arbitrary initial
guesses are not consistent in general. In terms of the notation we introduce below,
the formulation of suitable initial values will be described by

Π(x(t0)−α) = 0 (2)

for a suitable matrix Π with rank Π = d, whereas d corresponds to the so-called
degree of freedom.

The computation of consistent initial values is a difficult task that has to be
tackled for solving DAEs and is closely related to the determination of the index µ .
In this context, in [12] we introduced a specific orthogonal projector Π. Here, we
present an equivalent approach formulated as a plausible constrained optimization
problem. This new formulation is specially convenient because it does not require
the computation of Π, which depends in the nonlinear case, in general, on the
solution.

For our purposes we will not consider consistent initial values only, but con-
sistent Taylor coefficients x(t0),x′(t0),

x′′(t0)
2 , . . . of the solution at t0, which ad-

ditionally have to fulfill equations obtained by the differentiation of the con-
straints. These Taylor coefficients are of interest for the numerical approximation
of x(t0 +h) for a step-size h.

The article is organized as follows. In Section 2 we briefly recall the definition
of the differentiation index and reconsider it according to [11], which leads to a
formulation with a 1-full matrix. Section 3 illustrates the main idea of our new ap-
proach for a simple linear example and emphasizes the differences to other meth-
ods from the literature. Our new algorithm is then presented in Section 4, where
the initialization problem is formulated as a constrained optimization problem.
The objective function is quadratic and the constraints are precisely the derivative
array. The general properties of this optimization problem are outlined in Section
5, whereupon, in Section 6, the Lagrange formulation is considered for the linear
and the nonlinear case. Finally, in Section 7 we report the numerical results we
obtained for several higher index examples. Some essential results from linear
algebra are summarized in the Appendix.

2 The Derivative Array and the Index
Defining

Fj(x( j+1),x( j), . . . ,x′,x, t) :=
d j

dt j f (x′,x, t)
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for k ∈ N we consider

f (x′,x, t) = 0, (3)
F1(x′′,x′,x, t) = 0, (4)

...

Fk(x(k+1), . . . ,x, t) = 0. (5)

The differentiation index µ is defined as the smallest integer k for which the
so-called derivative array (3)-(5) determines x′ as a function of (x, t) (cf. [3, 2]). If
this condition is given, the derivative array permits locally the formulation of the
underlying ODE.

To characterize the index by a rank check, for zi ∈ Rn, i = 0, . . . ,k we define

g[k+1](z0,z1, . . . ,zk+1, t) :=


f (z1,z0, t)

F1(z2,z1,z0, t)
...

Fk(zk+1, . . . ,z0, t),

 (6)

for k ∈ N. If we denote by

A [k+1](z0,z1, . . . ,zk+1, t) ∈ Rn·(k+1)×n·(k+1)

the Jacobian matrix of g[k+1](z0,z1, . . . ,zk+1, t) with respect to (z1, . . . ,zk+1), then,
in practice, the differentiation index µ is determined by verifying whether

ker A [k+1] ⊆


 z1

...
zk+1

 , zi ∈ Rn : z1 = 0


is given for k≥ µ and zi ∈Rn in the region of interest. This means that the matrix
A [k+1] is 1-full, cf. [3], [16] and Appendix.

In [11] we presented a different point of view that turns out to be very conve-
nient for consistent initialization. Let

G[k](z0,z1, . . . ,zk, t) ∈ Rn·k×n·(k+1)

denote the Jacobian matrix of g[k](z0,z1, . . . ,zk, t) with respect to (z0,z1, . . . ,zk).
For our purposes we will focus on the first columns of G[k] that correspond to z0,
instead of the first columns of A [k+1] that correspond to z1.

Since the equations of the DAE should not be redundant, we assume that
G[k](z0,z1, . . . ,x(k), t) has full row rank, i.e., rank G[k] = n · k for all zi ∈ Rn and
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t ∈ R in the region of interest. Recall that for linear DAEs with constant coeffi-
cients this is equivalent to the regularity of the matrix pencil.

Furthermore, we assume that ker fz1(z1,z0, t) does not depend on z1,z0 and
that there is a continuously differentiable projector valued function Q such that

ker fz1(z1,z0, t) = im Q(t)

with the complementary projector P(t) = I−Q(t). For convenience we omit the
argument t in the following and consider the decoupling x′ = (Px)′+(Qx)′ for
an alternative definition of the differentiation index. Reformulating the DAE (1)
according to [18],

f (x′,x, t) = f (Px′,x, t) = f ((Px)′−P′x,x, t) = 0 (7)

we see that (cf. [11])

• (Px)′ is determined by (7). In this sense, Px describes the differentiated
component and Qx the undifferentiated component of x.

• (Qx)′ has to be determined by g[µ+1](x,x′, . . . ,x(µ+1), t).

Therefore, to find out the index µ ≥ 1, it is in fact sufficient to check whether

g[µ](x,x′, . . . ,x(µ), t)

uniquely determines Qx as a function of (Px, t), i.e., Qx = ϕ(Px, t). The differen-
tiation of this function ϕ leads then to the missing expression for (Qx)′. Accord-
ingly, in [11] we defined the DAE-index µ as the smallest integer k for which

ker
(

P 0 . . . 0
G[k](z0,z1, . . . ,zk, t)

)
⊆




z0
z1
...

zk

 , zi ∈ Rn : z0 = 0

 (8)

is given for x(i)(t0) = zi ∈ Rn in the region of interest, i = 0, . . . ,k, i.e., for which
the matrix

B[k] :=
(

P 0 . . . 0
G[k](z0,z1, . . . ,zk, t)

)
∈ Rn·(k+1)×n·(k+1) (9)

is 1-full. In the present article, we take advantage of this property with regard to
consistent initialization, realizing that (9) is precisely the Jacobian of

P(z0−α) = 0, (10)

g[k](z0,z1, . . . ,zk, t) = 0. (11)
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Note that, although (9) is singular, for µ > 1 the system (10)-(11) is overdeter-
mined with respect to z0, because, indeed, only Π(z0−α) = 0 can be prescribed
for a matrix Π fulfilling rank Π = d < rank P, cf. (2).

Formulating a suitable constrained optimization problem based on property
(8), we compute uniquely defined initial values without an explicit computation
of a matrix Π, cf. Section 4. In the next section, we will illustrate the main new
idea of this approach before introducing it formally.

3 An Introductory Example
Although the computation of a consistent initialization has been identified as a
crucial task when dealing with DAEs, in practice the state of the art is still unsat-
isfactory, in particular when considering that for the same initial guess different
solvers may deliver different consistent values and, correspondingly, different nu-
merical solutions of the DAE are computed. Even worse, the same solver may
deliver different results depending on the formulation of the problem. In our
opinion, the demands on the properties of the computed initial values are often
not taken into account sufficiently.

The large body on literature on the initialization problem can be classified,
very roughly speaking, into three categories:

(a) methods based on a structural analysis like [19], [20] and the references
therein, which trace back to [7] and [21].

(b) methods that compute a minimal deviation from a given guess, cf. [14],
[17], [8], among others,

(c) methods that use projectors to describe the different components, cf. [10],
[18], and the related work.

Here, we aim at a combination of (b) and (c). In contrast to (a), our projector
based approach obtains the information about the properties of matrices using the
singular value decomposition (see Appendix). We illustrate the main differences
to other well-established methods by means of the following example:

Example 1.

x′1 + x′2 + x1 + x3 = 2, (12)
x′1 +2x′2 + x1 + x2 + x3 = 3, (13)

x1 +2x2 = 4. (14)
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Obviously, the differentiation index is 2 and the hidden constraint reads:

x1 + x2 + x3 = 3.

We suppose that an (inconsistent) initial guess

α =

1
2
9

 , (15)

for the initial value x0 is given. A summary of some results for the different con-
sistent values we compute below is presented in Table 1.

3.1 A Structural Method
Let us focus on the results we obtain for Example 1 with Dymola1, cf. [19]. For

model InitializationDAE
Real x1(start=1),x2(start=2),x3(start=9);

equation
der(x1) + der(x2) + x1+x3 = 2;
der(x1) +2*der(x2)+ x1+x2+x3 = 3;
x1+2*x2 = 4;
annotation (uses(Modelica(version="3.2.1")));

end InitializationDAE;

we obtain the consistent value

x0 =

0
2
1

 .

Obviously, the program prescribes the initial value for x2. Afterwards x1, x3 are
computed accordingly, using the constraints. In contrast, rewriting the latter equa-
tion as

2*x2+x1 = 4;

provides

x0 =

 1
1.5
0.5

 .

1Dymola – Dynamic Modeling Laboratory, Dynasim AB, Lund, Sweden. Homepage:
http://www.Dynasim.se

6



In this case, the program prescribes the initial value for x1. Afterwards, x2, x3 are
computed, accordingly, using the constraints.

Evidently, the choice made by the structural algorithms depends on the order in
which we write down the variables in the equations. As a consequence, although
this is completely against our expectation, the obtained numerical results may
depend on the order of the variables in the DAE formulation.

3.2 A Minimal Deviation Approach
An approach that does not exhibit the above described dependence computes the
solution of minimizing

‖x0−α‖2

subject to the constraints(
1 2 0
1 1 1

)
︸ ︷︷ ︸

=:N

x1
x2
x3

=

(
4
3

)
︸︷︷︸
=:b

. (16)

The unique solution can be represented using the Moore-Penrose inverse N+of N,
i.e.,

x0 = α−N+(Nα−b) =

−2
3
2


with ‖x0−α‖2 = 7.6811 and α according to (15). This result was also obtained
using GELDA, cf. [17].

The drawback of this approach is that, by construction, the results obtained
for x1 and x2 depend on the value for the third component of α , i.e. the initial
guess for the undifferentiated component x3. For e.g. α̂ =

(
1 2 0

)T we obtain
the value x̂0 =

(
1 1.5 0.5

)T .

We want to mention that according to the documentation of GELDA, when
setting the option INFO(12)=1, only the ”differential variables” are prescribed.
However, since the strangeness-free formulation is used, these ”differential vari-
ables” do not coincide with Px in the higher index case. The option INFO(12)=1
is implemented, although it has to be activated. For (12)-(14) and α according to
(15), GELDA yields

x0 =

2
1
0

 ,

7



provided that INFO(12)=1 is forced. A comparison of this result and our new
approach from below can be found in Table 1.

3.3 New Approach
Our purpose is to combine both advantages:

• on the one hand, unique solvability should be given at least for linear DAEs,

• on the other hand, the specification of consistent initial values should focus
on differentiated components only.

For the simple example presented above, the differentiated component may be
described by Px for the orthogonal projector

P =

1 0 0
0 1 0
0 0 0

 (17)

and the approach we present in Section 4 consists in minimizing ‖P(x−α)‖2, i.e.,

min
√

(x1−α1)2 +(x2−α2)2, (18)

subject to

x1 +2x2 = 4, (19)
x1 + x2 + x3 = 3. (20)

For this problem we obtain the unique solution:

x0 =

0.8
1.6
0.6

 , ‖P(x0−α)‖2 =
√

0.2≈ 0.45. (21)

Notice that for this x0 we have ‖x0−α‖2 ≈ 8.42, but this is not the norm we want
to minimize.

In our previous work [12], we described a completely different algorithm to
compute the same minimal norm solution. There we used a projector based for-
mulation with a uniquely defined orthogonal projector Π. With the notation from
(16), the orthogonal projector P from (17), Q = I−P, and an arbitrary projector
W along im NQ, for Example 1 Π is defined as the unique orthogonal projector
onto

ker
(

Q
WNP

)
= ker Q∩ker WNP = ker

(
0 0 1
1 2 0

)
.
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Dymola GELDA New

α =

1
2
9

 x0 =

0
2
1

 x0 =

 1
1.5
0.5

 x0 =

−2
3
2

 x0 =

2
1
0

 x0 =

0.8
1.6
0.6


‖x0−α‖2 8.0623 8.5147 7.6811 9.1104 8.4119
‖P(x0−α)‖2 1 0.5000 3.1623 1.4142 0.4472

Table 1: Comparison of the values obtained for Example 1 by the different ap-
proaches. The framed values are minimal.

Consequently, we obtain

Π =
1
5

 4 −2 0
−2 1 0
0 0 0

 .

According to [12], with this projector, the consistent value x0 from (21) can be
determined as the unique solution of

Πx0 = Πα,

Nx0 = b.

Using our new formulation from Section 4 as a constrained optimization prob-
lem, we avoid the explicit computation of Π. This is of special interest for the
nonlinear case since Π is not constant in general. Let us also emphasize that, in
the nonlinear case, a formulation of the constraints like (19)-(20) may not be pos-
sible without algebraic manipulations. Therefore, the complete derivative array
will be considered below, cf. (23)-(25) and Example 2.

4 Consistent Initialization by Constrained Optimiza-
tion

For given α ∈ Rn, t0 ∈ R, P(t0) ∈ Rn×n we minimize

‖P(x0−α)‖2 (22)

subject to

f (x′0,x0, t0) = 0, (23)
F1(x′′0,x

′
0,x0, t0) = 0, (24)

...

Fk(x
(k+1)
0 , . . . ,x0, t0) = 0, (25)
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whereas X := (x0,x′0, . . . ,x
(k+1)
0 ) represent initial values for x(t) and its derivatives

at t0.

As will be shown below, the crucial aspect of this elegant formulation is that
P has to be the unique orthogonal projector fulfilling

ker P = ker fx′.

In fact, the requirement (22) is a user-friendly condition that (for linear DAEs)
uniquely determines consistent initial Taylor coefficients if k is sufficiently large,
depending on the index. Moreover, it means that for the differentiated component
the consistent initial value is computed as close as possible to an initial guess,
whereas initial guesses for the undifferentiated component are ignored.

Example 2. For the example from Section 3 and k = 1 the approach (22)-(25)
minimizes √

(x1−α1)2 +(x2−α2)2 (18)

subject to

x′1 + x′2 + x1 + x3 = 2, (26)
x′1 +2x′2 + x1 + x2 + x3 = 3, (27)

x1 +2x2 = 4, (28)

x′′1 + x′′2 + x′1 + x′3 = 0, (29)
x′′1 +2x′′2 + x′1 + x′2 + x′3 = 0, (30)

x′1 +2x′2 = 0. (31)

Recall that the computed values for x′3,x
′′
1,x
′′
2 will not be consistent in general,

and the optimization problem is underdetermined for

X = (x1,x2,x3︸ ︷︷ ︸
z0

,x′1,x
′
2,x
′
3︸ ︷︷ ︸

z1

,x′′1,x
′′
2,x
′′
3︸ ︷︷ ︸

z2

).

In fact, x′′3 does not even appear in the above equations. However, z0 = (x1,x2,x3)
result to be uniquely determined since the constraints (19)-(20) are contained in
(26)-(31). Increasing k, we would analogously obtain consistent values for higher
derivatives.
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5 Properties of the Optimization Problem
For convenience we suppose that k ∈ N is fixed and define

P̃ :=
(

P 0
0 0

)
∈ Rn·(k+1)×n·(k+1), α̃ :=

(
α

∗

)
∈ Rn·(k+1), (32)

and
X := (x0,x′0, . . . ,x

(k)
0 )

such that P̃X̃ = P̃α̃ is equivalent to Px0 = Pα . Moreover, we skip the index [k] for
g and G.

With this notation and (6), the above constrained problem is equivalent to
minimizing

1
2

∥∥P̃(X− α̃)
∥∥2

2 (33)

subject to

g(X , t0) = 0. (34)

Obviously, we consider a constrained optimization problem with only equality
constraints. Moreover, for a fixed α ∈ Rn, the objective function

f (X) =
1
2
(X− α̃)T P̃(X− α̃)

=
1
2
(XT P̃X−2α̃

T P̃X + α̃
T P̃α̃)

=
1
2

XT P̃X +qT X + c, (35)

for qT = −α̃T P̃, c = 1
2 α̃T P̃α̃ is quadratic, whereas P̃ is symmetric and positive

semidefinite, due to the fact that it is an orthogonal projector. Consequently, f is
convex but not strictly convex, since P̃ is singular, cf. e.g. [1].

Our constraints g(X , t0) are nonlinear and not convex in general, and the set of
feasible solutions of the optimization problem

G (t0) :=
{

X ∈ Rk+1 : g(X , t0) = 0
}

contains all possible consistent initial values for [x(t0),x′(t0), . . . ,x(k)(t0)]. More-
over, the Jacobian matrix G of g is supposed to have full row rank.

For our optimization problem the components of interest are uniquely deter-
mined, even though some other components are not, as will be pointed out in the
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next section. In particular, the values for some initial values for higher Taylor co-
efficients are not uniquely determined by the equations, such that in practice we
compute the minimum norm solutions for them. We illustrate this discussing the
Lagrange approach and using the 1-full property from B[k].

6 The Lagrange Approach
In this section we focus on the Lagrange equations resulting from (22)-(25). For
linear DAEs a closer look allows us to show that the initial value x0 is uniquely
determined if k is sufficiently large.

The Lagrange approach leads to

L(X ,λ ) =
1
2
(X− α̃)T P̃(X− α̃)+λ

T g(X , t0)

with

∂L
∂X

= (P̃(X− α̃))T +λ
T G(X , t0) = 0 (36)

and

∂L
∂λ

= g(X , t0) = 0. (37)

Therefore, we consider the system

P̃(X− α̃)+GT (X , t0)λ = 0, (38)
g(X , t0) = 0. (39)

The Jacobian of (38)-(39) reads(
P̃(t0)+Γ(X ,λ , t0) GT (X , t0)

G(X , t0) 0

)
(40)

for Γ(X ,λ , t0) := ∂

∂X (G
T (X , t0)λ ). Recall that, e.g. in [1], conditions for the local

quadratic convergence of the Lagrange-Newton method are established, but they
are not fulfilled in our case since

∂ 2L
∂X∂X

= P̃(t0)+Γ(X ,λ , t0)

is singular in general. In fact, if g is linear, then ∇2
XX L = P̃ holds.

It will be shown below that this system is underdetermined in general while
the first components of X are uniquely determined. This will also be illustrated in
the Example 3 of Section 7.

12



6.1 Linear DAEs
We suppose that k ≥ µ−1 is given and drop the arguments of the matrices. With
regard to the Lagrange approach, in the linear case we suppose that

g(X , t0) = G(t0)X + r(t0), r(t) =

 q(t)
. . .

q(µ−1)(t)

 ,

and, consequently, that the Jacobian matrix corresponding to (38)-(39) reads(
P̃ GT

G 0

)
∈ Rn(2k+1)×n(2k+1). (41)

Let us have a closer look on matrices presenting this structure.

Theorem 1. Let P̃ ∈ Rñ×ñ be an orthogonal projector. Then for an arbitrary
matrix G ∈ Rm̃×ñ with rank (G) = m̃ it holds

ker
(

P̃ GT

G 0

)
=

{(
z
0

)
∈ Rñ+m̃ : z ∈ ker

(
P̃
G

)}
.

Proof. For (
z
λ

)
∈ ker

(
P̃ GT

G 0

)
it holds for Q̃ := I− P̃ that

P̃z+GT
λ = 0,

G(P̃+ Q̃)z = 0,

and consequently

Q̃GT
λ = 0,

GQ̃z = GGT
λ ,

i.e.,
λ = (GGT )−1GQ̃z,

and therefore

0 = zT Q̃GT
λ︸ ︷︷ ︸

=0

= zT Q̃GT (GGT )−1GQ̃z =
Q̃=Q̃T

(GQ̃z)T (GGT )−1GQ̃z.

From the positive definiteness of (GGT )−1 it follows that GQ̃z = 0 and, hence,
λ = 0, P̃z = 0. Summarizing, we obtain

z ∈ ker
(

P̃
GQ̃

)
= ker

(
P̃
G

)
, λ = 0.
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The following result, which, for our purposes, will be considered when N
describes the matrix corresponding to all constraints, follows immediately.

Corollary 1. For any orthogonal projector P ∈ Rn×n and any matrix N ∈ Rm×n

fulfilling

ker
(

P
N

)
= {0} , rank N = m,

the matrix (
P NT

N 0

)
is regular.

Hence, in order to obtain a uniquely solvable optimization problem, the ex-
plicit computation of all constraints Nx = b can be realized for linear DAEs.

Corollary 2. For k≥ µ−1 all solutions of the underdetermined system (38)-(39)
for linear DAEs, i.e. of (

P̃ GT

G 0

)(
X
λ

)
=

(
P̃α

r(t)

)
involve a uniquely determined first component x0. If k > µ−1, then also unique
values for higher derivatives up to order k− µ are obtained for the s-full matrix
(cf. Definition 3 from the Appendix) with s = k−µ +1. Further, the unique value
x0 solves the minimization problem (22).

Proof. Since B[k] is 1-full for k ≥ µ (cf. (9)), Theorem 1 implies that x0 is
uniquely determined by the underdetermined system. Since any solution of the
system is a solution of the Lagrange-formulation of the minimization problem, x0
results to be the solution of (22). For the higher derivatives, the corresponding
result follows from Definition 3 from the Appendix.

6.2 Nonlinear DAEs
In the nonlinear case, some iterative approaches that construct quadratic program-
ming (QP) subproblems replace

• the objective function f by its local quadratic approximation

f (X)≈ f (X i)+∇ f (X i)(X−X i)+
1
2
(X−X i)T

∇
2 f (X i)(X−X i) (42)

• the constraint function g by the local affine approximation

g(X , t0) = g(X i, t0)+∇X g(X i, t0)(X−X i).
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Setting
dX := X−X i

and using
∇

2
XX f (X i) = P̃, ∇X g(X i, t0) =: G,

we obtain the following QP subproblem:

minimize

∇ f (X i)T dX +
1
2

dT
X P̃dX

subject to

g(X i, t0)+GdX = 0.

For this QP subproblem the Lagrange approach leads to(
P̃ GT

G 0

)(
dX
dλ

)
=−

(
∇ f (X i)
g(X i, t0)

)
.

Consequently, Theorem 1 reveals why the linear system obtained in the iteration
has a unique solution for the first components.

However, if instead of (42)

f (X)≈ f (X i)+∇ f (X i)(X−X i)+
1
2
(X−X i)T

∇
2L(X i,λ i)(X−X i) (43)

is considered, then no structural information is given in general.

Nevertheless, comparing the formulation from Section 4 with the formulation
from [12] for nonlinear DAEs we have several advantages:

• one crucial advantage is that there is plenty of theory and software for con-
straint optimization available.

• in important applications like Hessenberg DAEs, DAEs from network sim-
ulation, the orthogonal projector P results to be constant, whereas the pro-
jector Π depends on the solution in general. Using the formulation with P,
we avoid the computation and handling of Π.
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7 Examples
We implemented the algorithm for nonlinear DAEs in Python using:

• Automatic Differentiation (AlgoPy, cf. [22]) to compute all the derivatives
of f (x′,x, t), considering Taylor coefficients for D = k+1:x(t) x′(t)

x′′(t)
2

. . .
x(k)(t)

k!︸ ︷︷ ︸
(k+1)=D elements

 .

• Sequential Least Squares Programming (SLSQP) to solve the optimization
problem (see scipy.optimize.minimize, and [15]).

By the first example, we illustrate for the higher-index case the consequences
of the fact that B[k] is 1-full, but does not have full column rank.

Example 3. For illustrative reasons we start with a simple example in Kronecker
canonical form with index 4 and an obvious solution:

1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

x′+


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

x =


0
0
0
0

sin(t)

 , x =


Ce−t

cos(t)
−sin(t)
−cos(t)

sin(t)

 .(44)

In this particular case, we obtain Π = diag (1,0,0,0,0) since x′1 + x1 = 0 cor-
responds to the inherent ODE. Concerning the values obtained for the Taylor
coefficients, we see in Table 2 that, corresponding to the description from [12],
the last four coefficients are not correct for x2, and so are the last three for x3 and
the last two for x4. In contrast, for x1 all coefficients are exact up to numerical
accuracy and for x5 only the last coefficient is not correct. For unstructured DAEs
these properties will apply to components that, in general, do not correspond to a
particular variable x j, but to a linear combination of several variables. In terms
of Corollary 2 this means that B[k] for k = D−1 = 5 is s-full for s = 2, i.e., that
at least two Taylor coefficients of the computed solution are correct.

In the Tables 3 - 6, we summarize the results we obtained for some well-known
meaningful examples from applications described in literature. We report the nor-
malized pendulum, the trajectory prescribed path control from [2], the robotic arm
from [5], and the catalyst mixing from [9].

The following details are provided:
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x1 x2 x3 x4 x5

x∗( π

4 ) 1.00000000e+00 7.07106781e-01 -7.07106781e-01 -7.07106781e-01 7.07106781e-01
x′∗(

π

4 ) -1.00000000e+00 -7.07106781e-01 -7.07106781e-01 7.07106781e-01 7.07106781e-01
1
2 x′′∗(

π

4 ) 5.00000000e-01 0.00000000e+00 3.53553391e-01 3.53553391e-01 -3.53553391e-01
1
3! x′′′∗ (

π

4 ) -1.66666667e-01 1.07580963e-16 0.00000000e+00 -1.17851130e-01 -1.17851130e-01
1
4! x(iv)∗ ( π

4 ) 4.16666667e-02 0.00000000e+00 -2.68952407e-17 0.00000000e+00 2.94627825e-02
1
5! x(v)∗ ( π

4 ) -8.33333333e-03 0.00000000e+00 0.00000000e+00 5.37904813e-18 0.00000000e+00

Table 2: Solution of the system (44) from Example 3 for t0 = π/4 and α =
[1,0,0,0,0] using Taylor coefficients with D = 6. The framed values are obvi-
ously not consistent, since the Taylor coefficients are correct up to the second
coefficients (µ = 4, D−µ = 2).

• Number n of equations (and variables), index µ of the DAE. The index
is known from the literature and confirmed using the approach from [11]
considering the linearization at the consistent values.

• Some information for the matrices from Section 6.2:

– rP := rank P

– rΠ := rank Π corresponds to the so-called degree of freedom d.

• Number of Taylor coefficients D used in AlgoPy.

• f tol precision goal for the value of f in the minimizer of SciPy.

• ||P(x0−α)||2

• cond B[D−1] := σ1
σr

for the singular values for B[D−1], cf. Definition 1 from
the Appendix.

• s according to Corollary 4 from the Appendix. For the computation of s we
check the amount of zero-valued rows of the last (D−1) ·n− r columns of
the matrix V . An entry vi, j is considered to be zero if∣∣vi j

∣∣≤ eps · cond B[D−1],

whereas eps corresponds to the relative machine precision.

• The used initial guess α and the obtained consistent initial value x0. The
Taylor coefficients computed simultaneously are reported for Example 3
only, cf. Table 2.

17



Pendulum

DAE properties (α,0) (x0,x′0)
n 5 x1 1 7.07106781e-01

index 3 x2 1 7.07106781e-01
rP 4 x3 0 -1.26938674e-16
rΠ 2 x4 0 1.26938680e-16

Numerical information x5 0 7.07106781e-01
D 7 x′1 0 -1.26938667e-16

ftol 1e-10 x′2 0 1.26938667e-16
||P(x0−α)||2 0.4142 x′3 0 5.00000000e-01
cond B[D−1] 73.5249 x′4 0 -5.00000000e-01

s 4 x′5 0 3.80816078e-16

Table 3: Characteristics and results for the normalized pendulum, i.e., g = 1,
m = 1, l = 1 .

Trajectory Prescribed Path Control Example

DAE properties α x0
n 8 x1 1.0e+05 1.00000000e+05

index 2 x2 0.0e+00 3.78720216e-22
rP 6 x3 0.0e+00 1.12338674e-06
rΠ 4 x4 1.2e+04 1.20000000e+04

Numerical information x5 -2.0e+00 -1.00000000e+00
D 11 x6 5.0e+01 4.50000000e+01

ftol 1e-10 x7 2.6e+00 2.67287005e+00
||P(x0−α)||2 5.0990 x8 -5.0e-02 -5.22099022e-02
cond B[D−1] 1.2769e+8

s 9

Table 4: Results for the trajectory prescribed path control example from [2].
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Robotic Arm

DAE properties α x0
n 8 x1 -1.71828183e+00 -1.71828183e+00

index 5 x2 0 3.90881478e-01
rP 6 x3 1.71828183e+00 1.71828183e+00
rΠ 0 x4 0 -2.71828183e+00

Numerical information x5 0 4.28789456e+00
D 11 x6 0 1.71828183e+00

ftol 1e-10 x7 0 1.35912606e+01
||P(x0−α)||2 4.3057 x8 0 1.93304288e+01
cond B[D−1] 2.1623e+7

s 6

Table 5: Results for the robotic arm from [5]. For a better comparison with the
results from [4] we used the exact values of the solution for two components of
α , namely [x1,x3] = [1− et,et− t] at t = 1.

Catalyst Mixing

DAE properties α x0
n 7 x1 9.40853360e-01 9.39924293e-01

index 3 x2 5.91466397e-02 7.14104593e-02
rP 4 x3 -1.15356546e-02 3.39241956e-02
rΠ 2 x4 -1.54643453e-01 -2.14479270e-01

Numerical information x5 1.0e+00 2.27142083e-01
D 7 x6 1.0e+00 2.27142083e-01

ftol 1e-10 x7 1.0e-01 7.72857917e-01
||P(x0−α)||2 0.0761
cond B[D−1] 72.0672

s 4

Table 6: Results for the catalyst mixing from [9].
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Although the results obtained for these particular examples are highly encour-
aging, the convergence of the iteration depends on the choice of α in general.

In the latter tables, we included only the values obtained for x0, even though
the Taylor coefficients were computed for all examples. Notice that the main
difference to [6], where some of these examples were already discussed, is that in
[6] a consistent x0 was supposed to be given.

In [12] we reported the results for these examples, computing the same consis-
tent initial values by the approach based on the explicit computation of the orthog-
onal projector Π and setting up a suitable nonlinear system of equations, which is
solved with Newton-like methods. The obtained numerical values coincide up to
rounding errors.

8 Summary
In this article we present a new approach to compute consistent initial values and
consistent Taylor coefficients for higher index DAEs. The consistent values re-
sult from the constraints and a specification that, for given values, minimizes the
correction for the differentiated components. For the optimization problem we
analyzed the consequences of the fact that the relevant matrix of the underde-
termined system of equations is 1-full. The derivative array is computed using
automatic differentiation and the computation is done using algorithms from con-
strained optimization. Due to its plausible formulation and the possibility to use
advanced solvers from constraint optimization for the computation, the new ap-
proach is well-suited to be integrated into existing DAE-solvers. It is of special
interest for the restart of integration methods after discontinuities and for the in-
tegration with Taylor-series methods. First numerical tests have confirmed our
expectations.

Appendix: Toolbox from Linear Algebra
Definition 1. (cf. [13])
For A ∈ Rm×n, r = rank A the singular value decomposition (SVD) reads

A =UΣV T

for orthogonal matrices U ∈ Rm×m, V ∈ Rn×n, and the diagonal matrix

Σ = diag (σ1, . . . ,σr,0, . . . ,0) =:
(

Σr 0
0 0

)
∈ Rm×n

for the positive singular values σ1 ≥ σ2 ≥ . . .σr > 0, r := rank A≤min{m,n}.
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Recall that the unique orthogonal projector onto ker A, i.e., a square matrix
Q ∈ Rn×n with the properties

AQ = 0, Q2 = Q, rank Q = n− rank A = n− r, Q = QT ,

can be described by

Q =V
(

0
In−r

)
V T =V (:,r+1 : n) · (V (:,r+1 : n))T (45)

using MATLAB-notation for the last expression. For the complementary orthog-
onal projector P := I−Q

P = I−Q =V
(

Ir
0

)
V T = (V (:,1 : r))(V (:,1 : r))T (46)

is given by definition. The rectangular matrix B :=V (:,1 : r) contains an orthonor-
mal basis.

Lemma 1. For an orthogonal projector P = BBT it holds

‖Px‖2 =
∥∥BT x

∥∥
2 for all x ∈ Rn.

Proof.
‖Px‖2

2 = xT PT Px = xT Px = xT BT Bx =
∥∥BT x

∥∥2
2 .

Hence, in practice (22) can be formulated with
∥∥BT x

∥∥
2. For the theory we

preferred the formulation using projectors.

It is known from linear algebra (the row echelon normal form) that the first
components j of a consistent system of equations Ax = b with A ∈ Rm×n are
uniquely defined iff there is a nonsingular matrix R ∈ Rm×m and a matrix H ∈
R(m− j)×(n− j) such that

RA =

(
I j 0
0 H

)
.

This property has often been used to define the differentiation index, cf. [3], [2],
[16]. Since we consider an alternative characterization, we prove the equivalency
below for completeness. The proof provides deep insights into the information
that can be obtained from the SVD.
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Theorem 2. For A∈Rm×n, there are a nonsingular matrix R∈Rm×m and a matrix
H ∈ R(m− j)×(n− j) such that

RA =

(
I j 0
0 H

)
,

iff the unique orthogonal projector Q ∈ Rn×n onto ker A has the structure

Q =

(
0 0
0 T

)
for an orthogonal projector T ∈ R(n− j)×(n− j).

Proof. (⇒):
Since ker A = ker RA, Q has the block structure

Q =

(
Q1 Q2
Q3 Q4

)
=

(
0 0
0 T

)
.

This follows immediately from RAQ= 0 and Q2 =QT
3 for the orthogonal projector

T onto ker H.

(⇐):

With the singular value decomposition A =UΣV T and j≤ r≤min{m,n}, the
block matrix representation

V =

V11 V12 V13
V21 V22 V23
V31 V32 V33

 , V11 ∈R j× j, V22 ∈R(r− j)×(r− j), V33 ∈R(n−r)×(n−r)

and (45)– (46) lead to

Q =

V13
V23
V33

(V T
13 V T

23 V T
33
)

=

(
0 0
0 T

)
, (47)

P =

V11 V12
V21 V22
V31 V32

(V T
11 V T

21 V T
31

V T
12 V T

22 V T
32

)T

=

(
I j 0
0 In− j−T

)
. (48)

Comparing the block matrices we obtain

T =

(
V23
V33

)(
V T

23 V T
33
)
, 0 =V13 ∈ R j×(n−r)
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and

I j = V11V T
11 +V12V T

12,

0 = V11V T
21 +V12V T

22,

0 = V11V T
31 +V12V T

32,

0 = V21V T
11 +V22V T

12,

0 = V31V T
11 +V32V T

12,

In− j−T = In− j−
(

V23
V33

)(
V T

23 V T
33
)
=

(
V21 V22
V31 V32

)(
V T

21 V T
31

V T
22 V T

32

)
.

We can then construct a nonsingular matrix R

R :=

V11 V12 0
V21 V22 0
0 0 Im−r

(Σ−1
r 0
0 Im−r

)
UT ∈ Rm×m.

For this particular R it holds

RA =

V11 V12 0
V21 V22 0
0 0 Im−r

(Σ−1
r 0
0 Im−r

)
︸ ︷︷ ︸

m×m

UTU︸ ︷︷ ︸
=Im

(
Σr 0
0 0

)
︸ ︷︷ ︸

m×n

V T

=

V11 V12 0
V21 V22 0
0 0 Im−r

(Ir 0
0 0

)
︸ ︷︷ ︸

m×n

V T

=

V11 V12 0
V21 V22 0
0 0 Im−r

V T
11 V T

21 V T
31

V T
12 V T

22 V T
32

0 0 0


︸ ︷︷ ︸

m×n

=

I j 0 0
0 H11 H12
0 0 0

=

(
I j 0
0 H

)

for H11 =V21V T
21 +V22V T

22, H12 =V21V T
31 +V22V T

32.

Corollary 3. If, for a matrix A ∈ Rm×n with A = UΣV T , we denote the largest
integer fulfilling

V13 =V (1 : r,n− j+1 : n) = 0, (49)

by j, then exactly the first j components of any consistent system of equations
Ax = b with b ∈ Rm are uniquely determined.
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Proof. With the notation from above we obtain, according to (47),

Q =

V13
V23
V33

(V T
13 V T

23 V T
33
)
=

(
0 0
0 T

)
,

whereas 0 =V13 ∈ Rr× j.

In practice, the basis of the orthogonal projector Q may also be computed by
the QR-decomposition of AT .

For DAEs the following definition for block matrices is often considered.

Definition 2. (see e.g. [3], [2], [16])
A block matrix A ∈Rkn×ln is called 1-full (with respect to the block structure built
from n×n-matrices) if there exists a nonsingular matrix R ∈ Rkn×kn such that

RA =

(
I 0
0 H

)
for the identity matrix I ∈ Rn×n and a matrix H ∈ Rk(n−1)× j(n−1).

For our purposes we prefer the following characterization. The equivalence
follows directly from Theorem 2. We formulate it more generally for s-full matri-
ces, cf. [3], [2].

Definition 3. A block matrix A ∈ Rkn×ln is s-full (with respect to the block struc-
ture built from n×n-matrices) iff

ker A⊆


x1

...
xl

 , xi ∈ Rn i = 1, . . . , l : xi = 0 i = 1, . . . ,s

 .

From Theorem 2 we obtain an elegant criterion to check the s-fullness of a
matrix.

Corollary 4. If, for a block matrix A ∈Rkn×ln, the index j ≥ 1 from (49) is given,
then A is s-full for all s ∈ N fulfilling s ·n≤ j.
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