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Abstract

We discuss homogeneous Yang-Baxter deformations of integrable sigma models in terms

of twist operators. We show that the twist operators behave as the classical analogue of a

Drinfeld twist, for all abelian and almost abelian deformations. We also use twist operators

to rederive the well-known interpretation of TsT transformations – equivalent to abelian de-

formations – in terms of twisted boundary conditions. We discuss complications in extending

this boundary condition picture to non-abelian deformations.
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1 Introduction

The integrability of the AdS5×S5 superstring allows for it to be solved exactly, at finite coupling,

by Bethe ansatz type methods [1–3]. The same methods can be extended to certain integrable

deformations of this string, namely the β deformation [4] and the η deformation [5], see e.g. [6]

and references therein. These models are examples of Yang-Baxter deformations [7–9] of the

AdS5 × S5 string. In this setting, the η deformation of [5] is an inhomogeneous deformation,

while the β deformation is a simple homogeneous deformation [10,11]. While the inhomogeneous

η deformation is essentially unique, there are many different homogenous deformations. It is an

open question how to describe general homogeneous deformed models at the quantum level. The

technology built for the undeformed model can, in essence, be adapted to the β deformation,

because the deformed model can be mapped back to the undeformed model with non-periodic

(twisted) boundary conditions [12, 13], and these boundary conditions are compatible with the

Bethe ansatz. Here we discuss a setup that reproduces these results, and that can be extended

to generic homogeneous models. We will discuss how generic homogeneous models differ signifi-

cantly from the β deformation, leading to interesting and challenging open problems.

The analysis of [12] is built on the interpretation of the β deformation as a T duality-shift-T

duality (TsT) transformation. The resulting duality relations between the coordinates, which

can be interpreted as a non-local field redefinition, lead to the relation between the deformed

model and the undeformed one with twisted boundary conditions. This analysis is not limited

to the β deformation, and applies to an arbitrary sequence of commuting TsT transformations

[13]. In Yang-Baxter terminology, such transformations are equivalent to abelian deformations

[14]. Generic homogeneous deformations are equivalent to non-abelian T duality transformations

[15,16], see e.g. [17] and references therein for recent developments.

The main goal of this note is to set up a clean framework to start to systematically generalize

aspects of the abelian boundary condition picture to non-abelian cases. To do so, we work
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in the twist operator picture of [18] for homogeneous models, see also [19]. In this picture,

arbitrary homogeneous deformations can be formally rephrased as non-local redefinitions of the

undeformed group valued fields, expressed via a twist operator. We will discuss how this twist

operator can be expressed in terms of the R operator defining the deformation, and a matrix

current that contains the conserved Noether currents of the deformed model. In the abelian case

we can use this to see that the twist operator manifestly behaves as the classical analogue of a

Drinfeld twist. Moreover, the twist operator naturally encodes the known boundary condition

picture for TsT transformations – the type of relation we would like to generalize. For non-

abelian homogeneous deformations, however, the interpretation of the twist operator is more

complicated. Due to the non-abelian nature of the twist operator it is in general not possible

to pick sigma model fields that result in diagonalized twisted boundary conditions expressed in

terms of conserved charges. As an illustrative example we consider almost abelian deformations,

where we can also see that the twist operator behaves as the analogue of a Drinfeld twist. These

explicit links between twist operators and Drinfeld twists moreover provide further support for

the argumentation of [20].

In the next section we give a brief overview of homogeneous Yang-Baxter deformations of

principal chiral models, and discuss how to rephrase them via twist operators. Next we briefly

recall the link between Drinfeld twists and r matrices, and recall how the twist operator affects

the monodromy matrix. Then in section 4 we discuss the Noether currents of deformed models,

and their relation to the twist operator. In section 5 we cover abelian deformations, followed by

non-abelian ones in section 5. We conclude by summarizing open challenges, at both the classical

and the quantum level. In the main text we focus on deformations of principal chiral models,

providing a corresponding summary for deformations of symmetric space models in appendix A.

2 Yang-Baxter models

Consider a principal chiral model based on a (semi-)simple Lie group G with Lie algebra g. The

Yang-Baxter deformation of this model [7, 8] is based on an antisymmetric operator R : g → g

which solves the classical Yang-Baxter equation, guaranteeing integrability of the resulting model.

We will consider only homogeneous Yang-Baxter deformations [18], where R satisfies

[R(x), R(y)]−R([R(x), y] + [x,R(y)]) = 0, ∀x, y ∈ g, (2.1)

the homogeneous classical Yang-Baxter equation. Antisymmetry means Tr(R(x)y) = −Tr(xR(y)).

Given g ∈ G we construct a current A = −g−1dg, and use it to define the Lagrangian

L = Pαβ− Tr

(
Aα

1

1− ηRg
(Aβ)

)
, (2.2)

where Rg = Ad−1
g ◦ R ◦ Adg, indices α, β, . . . take values corresponding to the worldsheet coor-

dinates τ and σ, and Pαβ± = 1
2(γαβ ± εαβ) with γαβ =

√
−hhαβ, h the worldsheet metric, and

ετσ = −εστ = 1. The P± project one-forms onto their Hodge (anti-)self-dual components, i.e.

?X± = ±X±, where Xα
± ≡ P

αβ
± Xβ.1

1The projection operators come with various other useful identities such as P βα± = Pαβ∓ , Pαδ± γδζP
ζβ
± = Pαβ± ,

Pαδ± γδζP
ζβ
∓ = 0, and the related XαY

α
± = X∓αY

α
± .
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We get a simple description of this model in terms of the current

I =
1

1 + ηRg
(A+) +

1

1− ηRg
(A−). (2.3)

Conversely,

A = (1 + ηRg) (?I) . (2.4)

For future reference, we also consider the left current Al = Adg(A), with accompanying

I l = Adg(I) =
1

1 + ηR
(Al+) +

1

1− ηR
(Al−). (2.5)

The equations of motion of the model are

E = ∂αI
α = 0, (2.6)

or in terms of left currents

E l = ∂αI
lα − ηεαβ[R(I lα), I lβ] = 0, (2.7)

demonstrating the relative elegance of working in the right formulation for a left deformation.

The flatness of A expressed in terms of I, using the homogeneous classical Yang-Baxter equa-

tion, becomes

εαβ (∂αIβ − ∂βIα − [Iα, Iβ]) = −2ηRg(E). (2.8)

We see that, on shell, I is flat. We can take the associated Lax connection to be

L(z) =
1

1 + z
I+ +

1

1− z
I−, (2.9)

where z is the spectral parameter.

Twist operator

On shell, everything about the deformed models looks exactly like the undeformed model – just

replace A by I. We can try to translate this relation back to the group level, inspired by similar

discussions in the symmetric space case [18]. As equation (2.8) shows, on shell I is flat, meaning

that then we can parametrize it as a standard right current, I = −g̃−1dg̃. By definition I and A

are then related by the gauge transformation

I = fAf−1 + dff−1, f = g̃−1g. (2.10)

If we now define the twist operator F as an explicit relation between g̃ and g

g = F g̃, (2.11)

we find that it must solve the fundamental linear problem

dF = (I l −Al)F . (2.12)

Using the left analogue of equation (2.4) this means

dF = −η R(?I l)F . (2.13)
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We can formally solve for F in monodromy form as

F(τ, σ) = P
{

exp

(
η

∫ σ

0
R(I lτ )dσ′

)}
F(τ, 0). (2.14)

This gives a non-local expression for g̃. Note that the definitions of A and I, together with

equations (2.11) and (2.13), imply the original definition of I above.

Formally, undeformed quantities become their deformed counterparts upon replacing g by g̃.

We will use accompanying notation, where we use a tilde to indicate replacing g by g̃ in an

undeformed expression, e.g. Ã = −g̃−1dg̃ = I.

3 Drinfeld twisted symmetry and r matrices

At the level of the symmetry algebra, inhomogeneous Yang-Baxter deformations are known to

correspond to trigonometric q deformations [9, 21], in line with general expectations based on

deformation quantization theory. By analogy, as argued in more detail [20], we expect homo-

geneous deformed models to have Drinfeld twisted symmetry. This idea is also supported by

analysis of specific models, see e.g. [22,23]. In this picture, it would be natural if the above twist

operator is (closely related to) the classical analogue of a Drinfeld twist.

Drinfeld twists are used to deform Hopf algebras. Relatedly, they appear in twisted quantum

integrable models, where a Drinfeld twist F ∈ U(g) ⊗ U(g) deforms the R matrix of the model

under consideration as

R12 → F21R12F
−1
12 . (3.1)

Twists depend on a deformation parameter – we call it α to distinguish it from η in the classical

model – and if we expand F = 1 ⊗ 1 + αF (1) + O(α2), the anti-symmetrization of its leading

piece

r12 = F
(1)
12 − F

(1)
21 ∈ g⊗ g, (3.2)

is guaranteed to solve the homogeneous classical Yang-Baxter equation

[r12, r13] + [r12, r23] + [r13, r23] = 0, (3.3)

where the subscripts indicate the tensor spaces in which an object acts nontrivially. This equation

is related to our operator equation (2.1), and r is related to R, via

R(x) = Tr2(r12x2), (3.4)

where antisymmetry of r translates to antisymmetry of R under the trace.

The Drinfeld twists that we will need, are associated to abelian and almost abelian r matrices.

An r matrix is abelian if it is built out of commuting generators. The standard example is

r = h1 ∧ h2 ≡ h1 ⊗ h2 − h2 ⊗ h1, (3.5)

where h1, h2 are Cartan generators of g. We can take the Drinfeld twist associated to an abelian

r matrix to be

F = eiαr. (3.6)
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Almost abelian r matrices are sums of abelian pieces – each an r matrix itself – where each added

piece is constructed out of symmetries of the sum of the previous pieces, but not everything

commutes. For example, consider r = r̂ + r̄ with r̂ = a ∧ b and r̄ = c ∧ d, and [a, b] = 0 and

[c, d] = 0. This sum solves the classical Yang-Baxter equation provided r̄ is subordinate to r̂,

meaning

[adc ⊗ 1 + 1⊗ adc, r̂] = [add ⊗ 1 + 1⊗ add, r̂] = 0, (3.7)

or equivalently

[r̄13 + r̄23, r̂12] = 0. (3.8)

For example, if we consider the Poincaré algebra (a subalgebra of the simple algebra so(2, 4))

and use light cone coordinates x± = x0 ± x1, the r matrix

r = r̂ + r̄ = m+2 ∧ p+ + p2 ∧ p−, [m+2, p2] = p+, (3.9)

is almost abelian. Further examples can be found in [24]. As discussed in [25], thanks to the

almost abelian structure we can take the Drinfeld twist for such r matrices to be

F = F̄ F̂ , F̄ = eiγr̄, F̂ = eiβr̂, (3.10)

where we introduced a second deformation parameter, replacing αr̂ + αr̄ by βr̂ + γr̄. Below we

will see that the twist operator F perfectly matches this structure, for both abelian and almost

abelian deformations. The twist operator also shows up in the classical analogue of equation

(3.1).

Twisted monodromy matrix

We can use the twist operator F to relate the monodromy matrices of deformed models to the

monodromy matrix of the undeformed model. We define the monodromy matrix Mg as

Mg = P
{

exp

∫ 2π

0
Lgσdσ

′
}
, (3.11)

where Lg is gauge-equivalent to the Lax matrix above,

Lg = gLg−1 + dgg−1. (3.12)

Doing a further gauge transformation by F−1 we get

M g̃ = P
{

exp

∫ 2π

0
Lg̃σdσ

′
}

= F−1(2π)MgF(0), (3.13)

where we only indicate σ arguments explicitly. Now, when expressed entirely in terms of g̃, M g̃

is identical in form to the undeformed monodromy matrix, which we denote Mg
0 . We hence have

Mg = F(2π)M̃g
0F
−1(0), (3.14)

where we recall that the tilde indicates replacing g by g̃. We see that the deformed monodromy

matrix is obtained from the formally undeformed one by multiplying it by twist operators. This

is reminiscent of equation (3.1) for Drinfeld twists, as used in the argumentation of [20]. For

abelian deformations we will come back to this in detail.
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While formally undeformed, we should keep in mind that M g̃ is built on the non-local fields

making up g̃. In particular, assuming the original g to be periodic, g̃ has twisted periodicity

g̃(2π)g̃(0)−1 = F−1(2π)F(0) = AdF−1(0)

(
P
{

exp

(
−η
∫
S1

R(I lτ )dσ′
)})

. (3.15)

Alternatively, g̃(2π)−1g̃(0) = g−1(2π)P
{

exp(η
∫
S1 R(I lτ )dσ′)

}
g(0), in line with [19].

4 Global symmetries and conserved currents

Yang-Baxter deformations break varying amounts of symmetry, depending on the R operator

under consideration. In our case the right G symmetry of the principal chiral model, g → gh,

where h is a constant element of G, is manifestly preserved. The left G symmetry, however, is

broken to a subgroup with algebra spanned by the generators t for which

[t, R(x)] = R([t, x]), ∀x ∈ g. (4.1)

What are the Noether currents corresponding to these symmetries? In terms of right symmetry,

I is clearly conserved, and is the deformed analogue of A. For the left symmetry, it is the

components of I l corresponding to solutions of equation (4.1) that are preserved. Indeed, using

equation (2.7), then cyclicity of the trace (Tr(a[b, c]) = Tr([a, b]c)), and finally equation (4.1)

and antisymmetry of εαβ, we have

∂αTr(tI lα) = ηεαβTr(t[R(I lα), I lβ])

= ηεαβTr([t, R(I lα)]I lβ + I lαR([t, I lβ])) = 0.
(4.2)

Note that it is the partially conserved current I l that appears in F .

In terms of g̃, the equations of motion actually imply that all of Ãl is conserved, seeming to

suggest that the model has more symmetries than just claimed. However, the non-local definition

of g̃ interferes with boundary conditions, so that not all of the would-be charges are actually

conserved. Concretely we have

I l = gg̃−1Ãlg̃g−1 = FÃlF−1, (4.3)

illustrating the twisted nature of the conserved current. The relevant components are equal when

Tr(FtF−1I l) = Tr(tI l), (4.4)

i.e. in particular when F commutes with the relevant t.

For abelian deformations, the above allows us to express everything we need about F via

conserved charges of the deformed model under consideration.

5 Abelian deformations

Abelian deformations correspond to R operators built out of commuting generators. These

deformations are equivalent to performing sequences of TsT transformations [14]. It is well known
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that TsT transformations of sigma models can be accounted for purely in terms of boundary

conditions [12,13]. Here we will derive this result in the general language of twist operators.

The definition of F now involves an abelian current, so that we can write

F(τ, σ) = exp

(
−η
∫
γ
εαβR(I lβ)

dσ′α

ds
ds

)
F(0, 0), (5.1)

where γ is any path parametrized by s that starts at (0, 0) and finishes at (τ, σ), and F(0, 0) is

just a global left G transformation of our parametrization g̃. Moreover, R now projects I l onto

(some of) its conserved components, so that

F(τ, 2π)F−1(τ, 0) = exp

(
η

∫
S1

R(I lτ )dσ′
)

= eηR(Ql), (5.2)

where Ql denotes the matrix of conserved charges associated to I l, i.e. the conserved quantities in

the deformed model. We explicitly see that the twist operator behaves as the classical analogue

of an abelian Drinfeld twist eiαr; R(Ql) acts in the tensor product of matrices and fields, in the

latter case via the Poisson bracket, so that upon quantization we match the i in the Drinfeld

twist.2 Finally, since everything commutes, the components of I l corresponding to generators

appearing in R are conserved, and agree with the same components of the formally undeformed

current Ãl.

Twisted boundary conditions. Denoting the commuting generators appearing in the R

operator by hi, we can always parametrize our group elements in the form

g(X,Y ) = eXih
i
ḡ(Y ), g̃(X̃, Ỹ ) = eX̃ih

i
ḡ(Ỹ ), (5.3)

where g̃ of course only appears on shell. The relation g̃ = F−1g, now becomes

eX̃ih
i
ḡ(Ỹ ) = e(Xi+η

∫
γ εαβRi(I

lβ) dσ
′α
ds

ds)hi ḡ(Y ), (5.4)

where we write the R operator in terms of its components, R = Rih
i. In other words, g and g̃

are related by the non-local field redefinition

X̃i(τ, σ) = Xi(τ, σ) + η

∫
γ
εαβRi(I

lβ)
dσ′α

ds
ds, Ỹ = Y.

When (X,Y ) satisfy the deformed equations of motion, (X̃, Y ) satisfy the undeformed ones, up

to a modification of boundary conditions. Assuming X to be periodic, we find that

X̃i(τ, 0)− X̃i(τ, 2π) = η

∫
S1

Ri(I
lτ )dσ′ = ηRi(Q

l). (5.5)

When a field X is periodic from the target space perspective, i.e. X ∼ X + L, worldsheet peri-

odicity also allows field configurations that wind around the corresponding cycle, i.e. X(τ, 0)−
X(τ, 2π) = kL, k ∈ Z. This winding directly translates through the above analysis.

2By equations (3.1) and (3.14), eηR(Ql) is the analogue of e−i2αr. For our present purposes we can ignore the

constant of proportionality relating α and η – it depends on the definition of Q relative to the generators, and in

particular includes a factor of the effective string tension.
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As an example we can consider G = SO(6) (or G/H = S5) with Cartan generators hi, i =

1, 2, 3, where we denote the associated coordinates and charges by φi and J i respectively. Then

the abelian deformation for r = εijkη
−1γihj ∧ hk corresponds to φ̃i(τ, 2π)− φ̃i(τ, 0) = εijkγ

jJk,

in agreement with [12]. In summary, abelian deformations can be purely accounted for in terms

of the boundary conditions of the Xi fields, those boundary conditions determined by the R

operator and the conserved charges of the deformed model.

Twisted monodromy matrix. The above boundary conditions completely characterize the

monodromy matrix as well. Since the non-local redefinition affects only the Xi fields in the

parametrization (5.3), following [13] we would like to explicitly factor these out of the monodromy

matrix of the model. We start from the undeformed Lax connection

L0 = L0+ + L0−, L0± =
1

1± z
A±, (5.6)

and perform a double gauge transformation

L0 → Lg0 = gL0g
−1 + dgg−1 → Lh0 = m−1Lg0m−m

−1dm, (5.7)

where m = eXih
i

is the piece of g associated to the generators in the R operator and twist

operator. This gives

Lh0± =
∓z

1± z
m−1Al±m−

1

1± z
d±mm

−1 =
∓z

1± z
d±ḡ(Y )ḡ−1(Y ) +

1

1± z
d±Xih

i, (5.8)

where d±X = P±α
β∂βXdσ

α. This Lax connection depends only on the dXi, and hence the

deformed Lax connection expressed via g̃, L̃h0 , depends only on the dX̃i. The above field redef-

inition then gives a “local” substitution rule dX → dX̃(dX) that produces the deformed Lax

pair and monodromy matrix,

Mh = P
{

exp

∫ 2π

0
Lhσdσ

}
, (5.9)

from their undeformed counterparts [13].

To really put everything about the deformation of Mg in terms of boundary conditions, we

compare Mg
0 to Mh

0 . As they are related by a gauge transformation,

Mg
0 = m(2π)Mh

0m
−1(0), (5.10)

where, again, Mh
0 depends only on the dXi. This means that at the deformed level, up to a

similarity transformation that does not affect the generated conserved quantities,

M g̃ = M̃g
0 ' m̃

−1(0)m̃(2π)M̃h
0 = e−ηR(Ql)M̃h

0 , (5.11)

where on the right-hand side M̃h
0 is identical to the undeformed monodromy matrix Mh

0 , up to

only the boundary conditions imposed on the X̃i. This of course matches the general picture

of equation (3.14), except that we were able to push ahead and express M g̃ entirely in terms

of undeformed quantities, up to only simple boundary conditions in field and matrix space,

determined by (the classical analogue of) the Drinfeld twist.

Strictly speaking this is a circular definition of abelian deformed models, using twisted bound-

ary conditions in terms of conserved charges that should be computed in the deformed models.

However, we can split any model into sectors with fixed values for its conserved charges, and

study each such sector independently. Moreover, we can supply the values that the conserved

charges take, as separate external input. This breaks us out of the circle.
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6 Non-abelian deformations

If we think about non-abelian deformations in completely general terms, we immediately en-

counter several complications. First, the components of I l appearing in the twist operator are

now no longer guaranteed to be associated to local conserved Noether currents of the deformed

model. Second, there need not be a group parametrization that allows us to absorb the twist

operator in a redefinition of the sigma model fields, with associated twisted boundary conditions.

Of course, the algebraic constraints imposed by the classical Yang-Baxter equation do implicitly

restrict the non-abelian structures under consideration – they should be quasi-Frobenius – so

that perhaps some of these complications can be avoided in particular cases. To illustrate these

points, let us consider almost abelian deformations.

Almost abelian deformations

Almost abelian deformations correspond to particular ordered sequences of TsT transformations

[24,25]. After doing a TsT transformation there may be commuting isometries left that allow for

another TsT transformation, while the reverse order need not be possible, matching the algebraic

discussion of almost abelian r matrices in section 3. This structure allows us to factorize the

twist operator F , analogously to the Drinfeld twist (3.10).

For clarity we introduce a second deformation parameter, replacing ηR̂ + ηR̄ by µR̂ + νR̄.

Consider F̂ as the solution to the fundamental linear problem

dF̂ = −µR̂(?Y )F̂ , (6.1)

where Y is some to be determined current, required to reduce to the current Î l for the R̂ defor-

mation in the limit ν → 0. We would like to perform a “subsequent” deformation corresponding

to R̄, where we expect the argument of R̄ to be simply I l,

dF̄ = −νR̄(?I l)F̄ . (6.2)

With these relations, we get that F = F̄F̂ satisfies

dF = −
(
νR̄(?I l) + µF̄R̂(?Y )F̄−1

)
F . (6.3)

This solves the fundamental linear problem for F , provided

F̄R̂(Y )F̄−1 = R̂(I l). (6.4)

Translating equation (3.8) to operator form gives

[R̄(x), R̂(y)] = R̂([R̄(x), y]), ∀x, y ∈ g (6.5)

so that

F̄R̂(z)F̄−1 = R̂(F̄zF̄−1), ∀z ∈ g. (6.6)

Hence we should take Y = F̄−1I lF̄ . As required, Y reduces to Î l in the limit ν → 0.

The above is perfectly in line with the factorized structure of the TsT transformations, and

shows explicitly that the twist operator is the analogue of an almost abelian Drinfeld twist.3 We

3Coincidentally we have now covered all unimodular cases [24] for which Drinfeld twists are explicitly known [25].
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can tentatively think of the F̄ deformation of the current appearing in R̂ as the counterpart to

the nontrivial field redefinitions required to perform the second TsT transformation in geometric

terms.4 In fact, while in the general form of F we encounter R̂(I l) which is manifestly not

conserved, it is nice to see that R̂(Y ) is conserved, since by equation (4.3),

R̂(Y ) = R̂(F̄−1I lF̄) = R̂(F̂−1ÃlF̂) = R̂(Ãl), (6.7)

and ∂αÃ
lα = 0 by definition; F̂ disappears in the third equality since it commutes with the

generators making up R̂, cf. equation (3.4). Unfortunately, Y is not a local current, and does

not integrate to a standard conserved charge. We see that despite some nice features, the first

complication indicated above remains in the almost abelian case. We can definitely formulate

the r̂ deformation in terms of twisted boundary conditions, but the charges in these boundary

conditions lose their meaning after the subsequent r̄ deformation.

If we gloss over the first complication and try to push the analogy to the abelian case further

and consider boundary conditions, we encounter our second complication. In the abelian case

we have a natural group parametrization that allows us to absorb the twist operator in the

sigma model fields in a “diagonalized” fashion. By definition this exact thing is impossible for

non-abelian deformations – in the r̂ deformed model we can do it for F̂ ; in the r̂ + r̄ deformed

geometry we can do it for F̄ , but not for F̂ . Presumably we should instead consider substantially

different types of group parametrization and field redefinition.

The upshot is that at this stage the deformation cannot be directly absorbed in simple bound-

ary conditions for the sigma model fields. As such, also the formally undeformed monodromy

matrix M̃h
0 is not simply obtained from the true undeformed M0 by just putting twisted boundary

conditions for the sigma model fields.

7 Conclusions

In this note we discussed the twist operator formulation of homogeneous Yang-Baxter deformed

sigma models, with the larger aim of systematically tackling these models at the quantum level.

We manifestly demonstrated that the twist operator looks like the classical analogue of a Drinfeld

twist, in all abelian and almost abelian cases. While the twist operator approach formally

accomplishes a mapping from deformed models to the undeformed model, its use in e.g. the

spectral problem is not immediately clear beyond abelian deformations, because there the twist

operator cannot be straightforwardly diagonalized in terms of sigma model fields and conserved

charges. What is the most useful approach to take in these cases? Is this even a sensible question

to ask in general? It would be interesting to develop a more sophisticated perspective on this

problem, perhaps starting by investigating various specific r matrix examples, and deformations

of simple models like the flat space sigma model, where some of these obstacles may be partially

avoided. It may also help to consider these models from the perspective of non-abelian T duality.

In terms of a broader outlook, if we think about the quantum AdS5 × S5 string, obstacles

actually already arise in certain abelian cases. The r matrix and associated twist of an abelian

4If no such field redefinition is required, the TsT transformations by definition commute, reducing us to the

abelian case where kl = Al − dF̂F̂−1 − dF̄F̄−1, and R(FXF−1) = R(X) (for any combination of hats and bars).

11



deformation need not be diagonalizable, as e.g. discussed for a particular dipole deformation

in [26]. In this case, the Bethe ansatz is not applicable due to a lack of suitable vacuum. In

principle one may overcome such problems by for example considering Baxter’s approach instead,

as indeed was done at one loop in [26]. However, the true power of integrability for the AdS5×S5

string lies in using integrability not just perturbatively, but actually at finite coupling. At least

to date, this approach relies essentially on the exact S matrix of the string, which is fixed by the

global symmetries of the string in the BMN light-cone gauge, see e.g. [1]. For deformations that

break these symmetries – any non-diagonalizable one does – we need to re-determine the finite

coupling data that goes in to the integrability machinery, be it Baxter or Bethe. Put differently,

it is not clear how to apply methods that label states by Cartan charges, when these charges are

no longer meaningful. It would be interesting to understand how to efficiently describe generic

deformed models at the quantum level. We may hope that there is a yet undiscovered, refined

description of the undeformed AdS5 × S5 string, where arbitrary Drinfeld twists can just be

inserted appropriately, analogously to how this can currently be done for the diagonal case.
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A Symmetric space models

The relevant added structure of a symmetric space G/H compared to the group manifold case

of the main text, is a decomposition of g as

g = h + k, with [h, h] ⊂ h, [h, k] ⊂ k, [k, k] ⊂ h, (A.1)

where h is the Lie algebra of H. We introduce P as the projection operator from g to k. This

structure is compatible with the Killing form, namely Tr(xP (y)) = Tr(P (x)P (y)), ∀x, y ∈ g.

The Yang-Baxter deformation of the symmetric space sigma model [9] has Lagrangian

L = Pαβ− Tr

(
AαP

1

1− ηRg ◦ P
(Aβ)

)
. (A.2)

Again we consider only homogeneous deformations [10,18]. We now introduce

I =
1

1 + ηRg ◦ P
(A+) +

1

1− ηRg ◦ P
(A−). (A.3)

The equations of motion of the model are then

E = ∂αP (Iα)− [Iα, P (Iα)] = 0. (A.4)

The flatness of A expressed in terms of I, as in the group case, becomes

εαβ (∂αIβ − ∂βIα − [Iα, Iβ]) = −2ηRg(E), (A.5)

12



and we can take our Lax connection to be

L(z) = I + (z − 1)P (I+) + (z−1 − 1)P (I−). (A.6)

We can introduce a twist operator F [18], as in the main text. We just get a slight modification

in the fundamental linear problem,

dF = (I l −Al)F = −η R(gP (?I)g−1)F . (A.7)

This was to be expected, since now k = gP (I)g−1 should be the partially conserved deformed

current. Indeed, on shell,

∂αk
α = Adg (∂αP (Iα)− [Aα, P (Iα)])

= Adg ([Iα −Aα, P (Iα)])

= ηεαβAdg

(
[Rg(I

α), P (Iβ)]
)

= ηεαβ[R(kα), kβ],

(A.8)

which is of the form of the equation of motion (2.7) for I l in the group case. Hence, as in the

group case, ∂αTr(tkα) = 0 for those t that generate symmetries, cf. equation (4.1).

The minimal differences from the group case do not change the twist picture at the level of

the monodromy matrix or general boundary conditions. The analysis of the sigma model field

boundary conditions for the abelian case also goes through as before. Only the discussion of

the abelian deformed monodromy matrix requires some extra structure, due to the projection

operators. Following [12] we effectively rephrase the symmetric space sigma model as a principal

chiral model, see e.g. section 1.5.2 of [1]. Focussing on AdS5 × S5, working in the conventions

of [1], we introduce G = gKgt which depends only on the coset degrees of freedom. After a

gauge transformation by g, the undeformed symmetric space Lax pair can then be brought to

exactly the form of the group case

Lg =
x

1− x
(−d−GG−1)− x

1 + x
(−d+GG

−1), (A.9)

where x = (1 + z)/(1 − z). If we then parametrize g as g(X,Y ) = eXih
i
ḡ(Y ) = mḡ, with

G = mḠmt, the dependence of m−1Lgm −m−1dm on the Xi is only through their derivatives,

and we end up exactly with the relation of equation (5.11). This abelian analysis can be directly

adapted to include fermions [13].

Of course, the subtleties surrounding non-abelian deformations discussed in the main text,

equally apply to the symmetric space case.
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