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Abstract We consider coupled dynamical systems, arising from electric circuit cou-
pled electromagnetic devices. The resulting subsystems are an ordinary differential
equation reflecting the spatially discretized electromagnetic field equations, see [15]
and a differential-algebraic equation describing the equations of a lumped circuit
obtained by the modified nodal analysis, e. g. see [11]. Notice that the systems di-
mension may easily reach millions of unknowns motivating the need of different
methods such as the waveform relaxation method, see [12]. We discuss how to im-
prove the convergence behavior in terms of Gauss-Seidel approach by changing the
coupled system’s formulation. Tests show, that an acceleration of magnitudes can
be reached.

1 Introduction

As we consider coupled electric circuit and electromagnetic devices, as in previous
works, e. g. [19], we first focus ourselves on the modeling and analysis of lumped
circuits in Sec. 2 where we extend the decoupling theorem presented in [17] to fit
in our framework. Next, in Sec. 3 we briefly introduce electromagnetic devices and
their modeling as well as their spatial discretization before turning to the coupled
modeling in Sec. 4, which mainly builds upon the approach presented in [2]. Here,
we propose different formulations for the resulting coupled systems. With these
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preliminaries established, we then focus on the analysis of a waveform relaxation
method, cf. [12], applied on one of these systems in Sec. 5. The subsequent section
deals with numerical experiments where we observe an enormous impact of the
coupling formulation onto the waveform relaxation method’s convergence behavior.
This work is concluded by Sec. 6 where we give an outlook on future work.

2 Electric Circuits

First we focus on so-called lumped circuits that rely on the assumption that the
circuit elements do not interfere with each other due to their spatial distance, see
[6]. We cover their modeling and the analysis of the resulting equations, especially
with regards to their decoupling.

2.1 Modeling

In the simulation of electrical circuits within the framework of industrial applica-
tions, the so-called modified nodal analysis (MNA) is a frequently employed ap-
proach, cf. [4], to which we give a brief introduction. This modeling philosophy has
(like many others) an intimate relation to graph theory motivating a special consid-
eration when it comes down to implementation, see e. g. [22].

We start with the observation that an electrical circuit can be interpreted topolog-
ically as an oriented, connected hypergraph H = (V ,E ), consisting of a vertex
set V and a hyperedge set E , where a hyperedge is a non-empty ordered tuple of
vertices in V . The circuit nodes and elements are then identified with the vertices
and hyperedges, respectively. A junction of two or more elements is called a node.
The nodes that a circuit element is connected to, are referred to as the element’s
terminals and define the hyperedge’s vertex tuple. Further, one of these terminals is
set as the element’s reference terminal and to each left terminal so-called branches
are defined and named, which fixes the vertex tuple’s order and hence yields the
above-mentioned hypergraph’s orientation.

To give an example, let the first vertex represent the reference terminal and succes-
sively, for every following vertex, enumerate the branches going from the reference
terminal to the current terminal identified by the vertex. A three-terminal device
represented by Ei = (Vi1 ,Vi2 ,Vi3) 2 E connects the nodes i1, i2, and i3. The element
has the reference terminal i1 which is connected to the terminals i2 and i3 via the
branches (Vi1 ,Vi2) and (Vi1 ,Vi3), respectively.
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Kirchhoff’s laws are the basis of circuit equations for almost every model ap-
proach [6], and read:

• Kirchhoff’s current law: For any node and at any time the algebraic sum of all
branch currents entering or leaving the node is zero.

• Kirchhoff’s voltage law: For any loop and at any time the algebraic sum of branch
voltages around the loop is zero.

Hence, the circuits unknowns are the currents and voltages on each branch and po-
tentials at each node, acting on time.

Let n 2 N be the number of circuit nodes and m 2 N the amount of total branches.
From the graph structure we deduce the incidence matrix Afull 2 {1,�1,0}n⇥m de-
fined by

(Afull)i, j :=

8
><

>:

1 if node i is a non-reference terminal of branch j
�1 if node i is the reference terminal of branch j

0 else

Let I := [t0,T ]⇢ R be some time interval. With i,v : I ! Rm and efull : I ! Rn

being the vector-functions of all branch currents, branch voltages and node poten-
tials, respectively, Kirchhoff’s laws for current and voltage yield

Afulli = 0 , v = A>
fullefull .

As the rows in A are linear dependent, i. e. they sum up to zero, we encounter redun-
dancy which can lead to an ill defined problem with respect to unique solvability.
Therefore, one row is eliminated which can be interpreted as choosing one node to
be the circuit’s reference node, usually the ground, and fix its potential, generally
zero. By neglecting this node, we analogously obtain the reduced incidence matrix
A 2 {1,�1,0}(n�1)⇥m with the left node potentials collected in e : I !R(n�1). For
the Kirchhoff’s circuit laws nothing changes, i. e.

Ai = 0 , v = A>e . (1)

Constitutive element equations contain/define relations between the branch’s cur-
rents and voltages and thus complete the Kirchhoff’s laws. Most of them can be
categorized into the two classes of current and voltage controlling elements. For
an arbitrary circuit element consider the quantity dissection i = (ielem, icompl) and
v = (velem,vcompl) according to the quantities belonging to the element branches
and the complementary ones. A circuit element is called current controlling if it has
a constitutive equation which explicitly determines its branch currents, e. g.

ielem = felem(
d
dt delem(icompl,v, t), icompl,v, t) (2)

or voltage controlling if the voltages are explicitly determined, e. g.
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velem = felem(
d
dt delem(i,vcompl, t), i,vcompl, t) , (3)

for some functions felem and delem. These constitutive equations do not cover all
element types, but more than just the basic ones.

Modified nodal analysis. According to the above classification (2) and (3) sort the
quantities and reduced incidence matrix such that i= (icurr, ivol), v= (vcurr,vvol) and
A =

⇥
Acurr Avol

⇤
. Further, we collect all the current and voltage controlling consti-

tutive equations into fcurr, dcurr and fvol, dvol, respectively. Inserting fcurr into KCL
and replacing all the branch voltages in terms of potentials, we obtain from (1):

Acurr fcurr(
d
dt dcurr(i,A>e, t), i,A>e, t)+Avolivol = 0 , (4)

fvol(
d
dt dvol(i,A>e, t)i,A>e, t)�A>

vole = 0 . (5)

The system (4)-(5) is called the modified nodal analysis (MNA) and represents a
system of differential-algebraic equations (DAE) which is usually completed to an
initial value problem (IVP)

f ( d
dt d(x, t),x, t) = 0 , x(t0) = x0 , (6)

where x = (e, i), while x0 is some initial value for t0 and the functions f and d
deduced by (4)-(5).

Considered Elements. The first set of considered elements are the two-terminals

• current source: ielem = is(t)

velem

ielem

• resistor: ielem = g(velem)
velem

ielem

• inductor: ielem = d
dt f(velem)

velem

ielem

• voltage source: velem = vs(t)

velem

ielem

• capacitor: velem = d
dt q(ielem)

velem

ielem

with scalar source functions vs : I !R and is : I !R and characteristic functions
g,f : R⇥I ! R and q : R⇥I ! R since each of them act on one branch only.
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For later investigation, we introduce another current controlling element, the multi-
terminal

• electromagnetic device: ielem = E [velem, . . . ]
velem

ielem

where the branch currents are obtained by some operator E acting on the branch
voltages, their derivatives etc. The operator E is left to be defined, e. g. involving a
solution operator for Maxwell’s equation.

This leads us to the following assumption concerning the elements that are the sub-
ject of our investigation.
Assumption 1. Let the electrical circuit consist of capacitors, resistors, inductors,
voltage and current sources plus one electromagnetic device according to the previ-
ously defined models, inducing mC,mR,mL,mV ,mI and mEM 2 N branches, respec-
tively.

The quantities and incidence matrix are sorted according to the order of the ele-
ments, i. e.

i = (iC, iR, iL, iV , iI , iEM) 2 RmC+mR+mL+mV+mI+mEM ,

A =
⇥
AC AR AL AV AI AEM

⇤
2 {1,�1,0}(n�1⇥(mC+mR+mL+mV+mI+mEM)) .

With qC : RmC ⇥I ! RmC ,gR : RmR ⇥I ! RmR ,fL : RmL ⇥I ! RmL , is : I !
RmI and vs : I ! RmV we describe the element type-wise resulting characteristic
functions. Then the MNA (4)-(5) is of the form:

AC
d
dt qC(A>

C e)+ARgR(A>
R e)+ALiL +AV iV +AIis(t)+AEME = 0 , (7)

d
dt fL(iL)�A>

L e = 0 , (8)

vs(t)�A>
V e = 0 . (9)

2.2 Analysis of the Electric Circuit System

Assumption 2 (Global Passivity). All resistances, inductances and capacitances in
the electric circuit show a passive behavior, i. e. qC,qR and fL are strongly mono-
tone.
Assumption 3 (Cutsets and Loops). The electric circuit does neither have a cutset
of current sources and electromagnetic devices nor a loop of voltage sources.

Ass. 3 is met since these kind of circuits are generally forbidden and lead to non-
specific mathematical solutions.

Lemma 1. If Assumption 3 is satisfied, then
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kerAV = {0} , and ker
⇥
AC AV AR AL

⇤>
= {0} .

Assumption 4. The resistive function gR and inductance function fL are globally
Lipschitz continuous. The source functions is and vs are sufficiently often continu-
ously differentiable.

Theorem 5. If Assumptions 2, 3 and 4 are satisfied, then there exist globally Lips-
chitz continuous functions f0, f1, f2 and an operator function s(u) for each t 2 I

and a function f3 2 C2(I ) as well as a matrix M3 and nonsingular matrices
M1(y,z3) and T =

⇥
T0 T1 T2 T3

⇤
, the latter one being composed matrix of blocks,

such that the IVP (6) with an arbitrary given u 2C2(I ) can be globally decoupled
into an equivalent system of the form

d
dt y = f0(y,z1,z2,z3,sc(E ),si(t)) , y(t0) = y0 , (10)

z1 = M1(y,z3)
d
dt z3 + f1(y,z2,z3,sc(E ),si(t)) , (11)

z2 = f2(y,z3,sc(E ),si(t),sv(t)) , (12)

z3 = M3

✓
sc(E )+ si(t)

sv(t)

◆
. (13)

For a given C1 function E on I , the function x 2 C1(I ) solves the IVP (6) if and
only if x̄ defined by x = T x̄ = T0y+T1z1 +T2z2 +T3z3 is a C1 solution of the IVP
(21)-(13) on I with the uniquely defined initial value y0 for which

x0 = T0y0 +T1z1(t0)+T2z2(t0)+T3z3(t0) .

Proof. The proof mainly follows the one of the decoupling theorem in [17, ]. Here
we use a different notation and extended it to the setting outlined by Assumptions
2, 3 and 4. For the inverses’ existences and assumptions’ influences we also refer
to the latter reference. We use the Dissection-Index concept, introduced in [10], in
order to split the DAE (6) into its different types of equations.

We start with some practical definitions:

sc(E ) := AEME , si(t) := AIis(t) , sv := vs(t) .

Let {Q,P} be co-kernel splitting pairs of the matrices M as follows:

{Q,P} {Qc,Pc} {Qv,Pv} {Qr,Pr} {Q̄v, P̄v} {Q̄l , P̄l} {Qe,Pe}

M AC Q>
c AV Q>

v Q>
c AR A>

V QcPv A>
L QcQvQr P>

c AV Q̄v

By definition, for each splitting pair {Q,P} it is [Q P] a nonsingular matrix, imQ =
kerM> and kerQ = {0}. Justifying the unique split of e, iL and iV as follows:
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e = Qc[Qv(Qrz1l +Prz2r)+Pvz2v]+Pc[Qeye +Pez3e] , (14)
iL = Q̄l ȳl + P̄l z̄3l , (15)
iV = Q̄vz̄1v + P̄vz̄2v , (16)

where we collect the new variables as y :=(ye, ȳl), z1 :=(z1l , z̄1v), z2 :=(z2v,z2r, z̄2v)
and z3 := (z3e, z̄3l). Exploiting the splitting pairs’ properties we introduce

gR(z2r,z2v,ye,z3e) :=gR(A>
R (Qc(QvPrz2r +Pvz̄2v)+Pc(Qeye +Pez3e)) = gR(A>

R e) ,
q̂C(ye,z3e) :=P>

c ACqC(A>
C Pc(Qeye +Pez3e))A>

C Pc = P>
c ACqC(A>

C e)A>
C Pc ,

fL(ȳl , z̄3l) :=fL(Q̄l ȳl + P̄l z̄3l) = fL(iL) .

Furthermore, we need some additional splitting pairs to split the equations. We
choose co-kernel splitting pairs {Wc,Vc(ye,z3e)} and {W̄l ,V̄l(ȳl , z̄3l)} of the matrices
P>

c AV Q̄v and A>
L QcQvQr, respectively, with W>

c q̂C(ye,z3e)Qe and W̄>
l fL(ȳl , z̄3l)Q̄l

nonsingular and

V>
c (ye,z3e)q̂C(ye,z3e)

⇥
Qe Pe

⇤
=
⇥
0 I
⇤
,

V̄>
l (ȳl , z̄3l)fL(ȳl , z̄3l)

⇥
Q̄l P̄l

⇤
=
⇥
0 I
⇤
.

We derive equations of the form (21)-(13) in four steps, starting with (13) and fin-
ishing with (21):

1. Multiplying (7) by Q>
r Q>

v Q>
c and (9) by Q̄>

v from the left yields:

z̄3l = M̄3l(AIis(t)+AEME ) , with M̄3l :=�(Q>
r Q>

v Q>
c ALP̄l)

�1Q>
r Q>

v Q>
c ,
(17)

z3e = M3evs(t) , with M3e :=�(Q̄>
v A>

V PcPe)
�1Q̄>

v . (18)

Introducing M3 :=


M̄3l
M3e

�
yields (13).

2. Multiplying (9) by P̄>
v and (7) by P>

r Q>
v Q>

c and P>
v Q>

c from the left yields:

z2v = f2v(ye,z3e,sv(t)) := (P̄>
v A>

V QcPv)
�1P̄>

v (�A>
V Pc(Qeye +Pez3e)+ vs(t)) ,

z2r = f2r(y,z3,sc(E ),si(t)) , with f2r satisfying
hR( f2r(y,z3,sc(E ),si(t)),y,z3,sc(E ),si(t)) = 0 ,

z̄2v = f̄2v(y,z3,sc(E ),si(t)) :=�(P>
v QcAV P̄v)

�1P>
v Q>

c [ARgR(z2r, z̄2v,ye,z3e)

AL(Q̄l ȳl + P̄l z̄3l)+AV Q̄vz̄1v +(AIis(t)+AEME )] ,

where

hR(z2r,y,z3,sc(E ),si(t)) :=P>
r Q>

v Q>
c [ARgR(z2r, f2v(ye,z3e, t),ye,z3e)

+AL(Q̄l ȳl + P̄l z̄3l)+(AIis(t)+AEME )] .
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Introducing f2(y,z3,sc(E ),si(t),sv(t)) :=

0

@
f2v(ye,z3e,sv(t))

f2r(y,z3,sc(E ),si(t))
f̄2v(y,z3,sc(E ),si(t))

1

A gives (23).

3. Multiplying (8) by V̄>
l (ȳl , z̄3l) and (7) by V>

c (ye,z3e)P>
c from the left yields:

z1l = M1l(ȳl , z̄3l)
d
dt z̄3l + f1l(y,z2,z3) , (19)

z̄1v =�M̄1v(ye,z3e)
d
dt z3e + f̄1v(y,z2,z3,sc(E ),si(t)) . (20)

with

M1l(ȳl , z̄3l) :=(V̄>
l (ȳl , z̄3l)Ā>

L )
�1 ,

M̄1v(ye,z3e) :=(V>
c (ye,z3e)P>

c AV Q̄v)
�1 ,

f1l(y,z2,z3) :=�M1l(ȳl , z̄3l)V̄>
l (ȳl , z̄3l)

· [A>
L (Qc(QvPrz2r +Pvz2v)+Pc(Qeye +Pez3e))] ,

f̄1v(y,z2,z3,sc(E ),si(t)) :=� M̄1v(ye,z3e)V>
c (ye,z3e)P>

c

· [ARgR(z2r,z2v,ye,z3e)+AL(Q̄l ȳl + P̄l z̄3l)

+AV P̄vz̄2v +(AIis(t)+AEME )] .

Introducing M1(y,z3) :=


0 M1l(ȳl , z̄3l)
�M̄1v(ye,z3e) 0

�
and

f1(y,z2,z3,sc(E ),si(t)) :=
✓

f1l(y,z2,z3)
f̄1v(y,z2,z3,sc(E ),si(t))

◆
gives (22).

4. Multiplying (8) by W̄>
l and (7) by W>

c P>
c from the left and using (19)-(20) yields:

d
dt ȳl = f̄0l(y,z1,z2,z3) :=

(W̄>
l fL(ȳl , z̄3l)Q̄l)

�1W̄>
l · [I �fL(ȳl , z̄3l)P̄lV̄>

l (ȳl , z̄3l)]

· [A>
L (Qc(QvPrz2r +Pvz2v)+Pc(Qeye +Pez3e))+ Ā>

L z1l ] ,
d
dt ye = f0e(y,z1,z2,z3,sc(E ),si(t)) :=

(W>
c q̂C(ye,z3e)Qe)

�1W>
c P>

c · [I � q̂C(ye,z3e)PeV>
c (ye,z3e)]

· [AL(Q̄l ȳl + P̄l z̄3l)+AV (Q̄vz̄1v + P̄vz̄2v)

+ARgR(z2r,z2v,ye,z3e)+(AIis(t)+AEME )] .

Introducing f0(y,z1,z2,z3,sc(E ),si(t)) :=
✓

f0e(y,z1,z2,z3,sc(E ),si(t))
f̄0l(y,z1,z2,z3)

◆
gives

(21).

Regarding (14)-(16), the initial condition y0 and the nonsingular transformation ma-
trix T =

⇥
T0 T1 T2 T3

⇤
are given by
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T0 =

2

4
PcQe 0

0 Q̄l
0 0

3

5 ,T1 =

2

4
QcQvQr 0

0 0
0 Q̄v

3

5 ,T2 =

2

4
QcPv QcQvPr 0

0 0
0 0 P̄v

3

5 ,T3 =

2

4
PcPe 0

0 P̄l
0 0

3

5

with the unique decomposition x(t0) = x0 = T0y0 +T1z10 +T2z20 +T3z30. Finally,
we can conclude that the system (7)-(9) is equivalent to the system (21)-(13) as the
matrices with which we multiplied through steps 1-4 form a nonsingular one by
construction. ut

Assumption 6. The EM device is not a subset of an LI-cutset.

Lemma 2. With Ass. 6 to hold, the decoupled system (21)-(13) can be equivalently
transformed into a system of the form

d
dt y = f̂0(y,z1,z2,sc(E ),si(t),sv(t)) , y(t0) = y0 , (21)

z1 = M̂1(y,si(t),sv(t)) d
dt

✓
si(t)
sv(t)

◆
+ f̂1(y,z2,sc(E ),si(t),sv(t)) , (22)

z2 = f̂2(y,sc(E ),si(t),sv(t)) . (23)

With transformation matrices T̂0, T̂1 and T̂2.

Proof. Due to Ass. 6 we deduce that Q>
r Q>

v Q>
c AEM = 0 by the co-kernel splitting

pair properties. Hence, z̄3l = M̄3lAIis(t) in (17) which makes z3 dependent on t only,
to be more precise on si(t). Now define new functions f̂0, f̂1, f̂2 and M̂1 by inserting
z3 and incorporating M3. ut

3 Electromagnetic Devices

As of the high importance of these devices in everyday life, on chips become smaller
in size whereby the operating frequency increases. In order to serve this trend, in-
dustry persuades the development of new models and simulation techniques to en-
hance these devices while saving expenditures by virtue of laboratory testing etc.
These models require to cover all the physical phenomena which no longer can be
ignored, e. g. cross-talking and skin effect. Hence, modern models make use of the
full set of Maxwell’s equations, since they are believed to govern all large-scaled
electromagnetic phenomena, cf. [21]. Depending on the particular application and
the numerics, various equivalent formulations have been developed of which the
so-called potential formulation is widely used.
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3.1 Modeling

As we intend to incorporate electromagnetic devices (EM), such as incorporated
circuits or other on-chips, into an electric circuit, we first have to provide a suitable
EM model.

Maxwell’s equations as published by James Clerk Maxwell’s in 1865 [14] are a
set of equations unifying the electric and magnetic field theory into classical elec-
tromagnetism. Given in their modern macroscopic differential vector-valued formu-
lation using the SI-unit convention, Maxwell’s equations (ME) consist of four first
order partial-differential equations:

Gauss’s law (GL) — ·D(r, t) = r(r, t) , (24)
Gauss’s law for magnetism (GLM) — ·B(r, t) = 0 , (25)

Maxwell-Faraday’s law (MF) —⇥E(r, t) =� ∂
∂ t B(r, t) , (26)

Maxwell-Ampère’s law (MA) —⇥H(r, t) = J(r, t)+ ∂
∂ t D(r, t) , (27)

They describe the behavior of four vector-valued functions of space W ✓ R3 and
time I ✓ R. The quantities are the electric and magnetic induction D,B : W ⇥
I ! R3 and the electric and magnetic field E,H : W ⇥I ! R3 depending on the
distribution of charge and conduction current density given by r,J : W ⇥I ! R3.

Constitutive equations Similar to the constitutive element equations of electrical
circuits, we need additional quantity relations in order to make the system (24)-(27)
determinate, cf. [9]. The idea is to deduce D,H and J from E and B, by making use
of empirical observations when material comes into play.
Assumption 7 (Linear and Inhomogeneous Media). The constitutive equations
read:

D(r, t) = e(r)E(r, t) , H(r, t) = n(r)B(r, t) , J(r, t) = s(r)E(r, t) , (28)

with permittivity e , reluctivity (or inverse permeability) n = µ�1 and conductivity
s being rank-2 tensors W ! R3⇥3.

As we typically consider linear inhomogeneous media which are neither ferromag-
netic nor ferroelectric, we let Ass. 7 hold.

Boundary conditions are of importance when solving ME, e. g. during simula-
tions. As we intend to spatially discretize ME we would lack resources if we would
not restrict the domain W to some bounded area of interest.
Assumption 8 (Lipschitz Domain). The spatial domain W ⇢ R3 is a Lipschitz do-
main, i. e. open, bounded, connected and the boundary ∂W is a Lipschitz boundary.
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Let Ass. 8 hold. In order to keep ME (24)-(27) determinate we need to introduce
boundary conditions. A typical choice is to assume W being surrounded by a per-
fectly electric conducting (PEC) medium, see e. g. [1, 7, 3, 18]:
Assumption 9 (PEC Boundary). The tangential component of the electric field at
the boundary vanishes, i. e. with n being the outer unit normal

E⇥n = 0, on ∂W ⇥I .

A�j Formulation

Instead of solving ME in their classical form, one typically makes use of alternative
formulations. Here, we focus on the widely-spread A�j formulation, see e. g. [16,
23], which formulates ME in terms of so-called potentials.

First, we observe that the electric field E and the magnetic induction B can be ex-
pressed as

E = —j + ∂
∂ t A , B = —⇥A , (29)

for some A : W ⇥I ! R3 and j : W ⇥I ! R which we call magnetic vector po-
tential and electric scalar potential, respectively. With (29) the homogeneous ME,
i. e. GLM (25) and MF (26), are implicitly satisfied, which originally motivated this
approach. What is left to solve are the GL (24) and MA (27) which, after incorpo-
rating the constitutive equations (28), yield the so-called called A�j formulation:

�— ·
h
e
⇣

—j + ∂
∂ t A
⌘i

= r , (30)

—⇥ (n—⇥A)+ ∂
∂ t

h
e
⇣

—j + ∂
∂ t A
⌘i

+s
⇣

—j + ∂
∂ t A
⌘
= 0 . (31)

Gauging As with the reduction of equations comes ambiguity, i. e. system (30)-
(31) is not uniquely solvable, we follow the grad-div regularization approach from
[5] and introduce the generalized gauge condition

Je— ∂
∂ t j +z — [x — · (z A)] = 0 , (32)

for some material tensors z 2 R3⇥3 and x 2 R3⇥3, see [2].
Assumption 10. We fix the A�j formulation’s ambiguity by choosing a grad-type
Lorenz gauge condition, i. e. (32) with J = 1.

Boundary conditions A possible choice for the A�j formulation’s boundary con-
ditions can be deduced from Ass. 9 as follows, see e. g. [8]:
Assumption 11 (Boundary Conditions for A� j formulation). We assume PEC
medium at artificial boundaries:
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A⇥n = 0 , on ∂W ⇥I , (33)
—j ⇥n = 0 , on ∂W ⇥I . (34)

As proposed in [2] we end up with the following set of partial differential equations
in order to solve an EM problem:

e— ∂
∂ t j +z — [x — · (z A)] = 0 , (35)

—⇥ (n—⇥A)+ ∂
∂ t [e (—j +P)]+s

⇣
—j + ∂

∂ t A
⌘
= 0 , (36)

∂
∂ t A�P = 0 , (37)

plus the boundary conditions (33)-(34), where P : W ⇥I !R3 is a quasi-canonical
momentum in order to avoid second order derivatives.

3.1.1 Spatial Discretization

The EM system (33)-(37) needs to be spatially discretized in order to apply time in-
tegration schemes. For this purpose we make use of the Finite-Integration-Technique
(FIT), originally introduced 1977 by Thomas Weiland [25]. In the following we are
not going into the details of FIT, but refer to the aforementioned reference for further
reading.

From the FIT we obtain two struggling meshes defined on W which are dual to each
other. Let nP ,nL ,nF and nV 2 N be the number of geometrical objects, i. e. mesh
points, links, faces and volumes, respectively, of the primal mesh. According to the
mesh’s duality this are the amounts of dual mesh volumes, facets, links and points,
respectively, of the dual mesh.

Motivated by the boundary conditions 11 we deduce that the discrete vector poten-
tial tangential to the boundary vanishes and that the scalar potential at the boundary
is constant in space, i. e. described by some component identical fG : I !RnP�nint

P .
Incorporating these conditions leads us to consider mainly the nint

P
2 N mesh points

and nint
L

2 N links which do not belong to the boundary ∂W .

For the potential A and j we obtain as spatially discretized versions the discrete
vector potential a : I ! Rnint

L and the discrete scalar potential f : I ! Rnint
P as

integral quantities on the internal mesh links and points, respectively. On the meshes
we introduce discrete operators for the gradient, divergence and curl as matrices,
where the dual ones are notated with a tilde above:
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primal gradient matrix: G 2 {1,�1,0}nint
L
⇥nint

P ,

dual divergence matrix S̃ 2 {1,�1,0}nint
P
⇥nint

L ,

primal curl matrix: C 2 {1,�1,0}nF⇥nint
L ,

dual curl matrix: C̃ 2 {1,�1,0}nint
L
⇥nF .

The constitutive material parameters turn into diagonal matrices Me 2Rnint
L
⇥nint

L ,Mn 2
Rnint

L
⇥nint

L and Ms 2 RnF⇥nF and are connecting the primal and dual meshes fields.
The parameters’ modeling opens a whole new field of investigation, see e. g. [24].
From the gauging we obtain further material matrices Mz 2 Rnint

L
⇥nint

L and Mx 2
Rnint

L
⇥nint

L . As the boundary’s discrete scalar potentials will be put in the role of in-
teracting with the outer environment, such as lumped circuits, they still need to
be considered in the ME. Considering them again results in an additional operator
GG 2 Rnint

L
⇥(nP�nint

P
) extending the gradient operator.

Finally, the discrete pendant of the A�j formulation with Lorenz gauge (35)-(37)
incorporating the boundary conditions (33)-(34) reads

S̃Me G d
dt f + S̃Mz GMx S̃Mz a = 0 , (38)

C̃MnCa+ d
dt (Me (Gf +GG fG (t)+p))+Ms

�
Gf +GG fG (t)+ d

dt a
�
= 0 , (39)

d
dt a�p = 0 , (40)

again with the discrete quasi-canonical momentum p : I ! Rnint
L . System (38)-

(40) is referred to as Maxwell’s grid equations (MGE) in this article. In addition,
we introduce u0 as an initial value for t0 such that there is a solution complying to
u(t0) = u0. According to [2] MGE, the above met assumptions form an ordinary
differential equation system. With u = (f ,a,p) 2RnU for nU = nint

P
+nint

L
+nint

L
and

MEM :=

2

4
S̃Me G 0 0
Me G Ms Me

0 I 0

3

5 , BEM :=

2

4
0 S̃Mz GMx S̃Mz 0

Ms G C̃MnC 0
0 0 I

3

5 ,

bEM(u) :=M�1
EMBEMu , c(t) :=�M�1

EM

0

@
0

d
dt (Me GG fG (t))+Ms GG fG (t)

0

1

A ,

we know that M�1
EM exists and the equations (38)-(40) with u0 can be expressed as

an IVP

d
dt u+bEM(u) = c(t) , u(t0) = u0 . (41)
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4 Coupled Electric Circuits and Electromagnetic Devices

In this section wen want to provide a coupled model for electric circuits, incorpo-
rating EM devices, cf. Fig. 1, that follows the approach in [2] and [20].

First, we have to introduce the EM device as a circuit element that complies to a
constitutive equation, i, e. that satisfies either (2) or (3). Second, we try to interpret
it in terms of the considered elements only. Finally, we will be able to write down
the complete coupled system.

4.1 Modeling

Let the EM models’ boundary ∂W fall into mEM + 1 disjoint nonempty parts Gj ⇢
∂W , for 0 j mEM . It holds ∂W =

S
1 jmEM Gj[G0. Further, each part is assumed

to be connected to exactly one node of the electric circuit which makes the EM
device an (mEM +1)-terminal element that has mEM branches, according to Sec. 2.1.

By convention, the 0-th terminal is attached to the ground and can be considered
as the element’s reference terminal. The boundary parts can now be mapped to the
circuit nodes by the devices incidence matrix AEM 2 {1,�1,0}n�1⇥mEM with n being
the total number of circuits.

vs

qC

gR

�L

gR

e1 e2 e3 e4

Fig. 1 Electric circuit incorporating an EM device
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Coupling branch voltages: vEM

In order to archive an excitation of the EM fields via the boundary, a possible choice
would be to vary the Dirichlet boundary conditions, e. g. fG , in a reasonable way.

First, we select the primal mesh points belonging to the j-th terminal, for 0  j 
mEM , by making use of the matrix

L = (li j)i2N bound
P

,1 jmEM
, li j =

(
1 if P(i)⇢ Gj

0 else
.

Next, we denote the EM device’s branch voltages by vEM : I ! RmEM . Since they
can be considered as potentials with respect to the ground as well, we map these
quantities directly to the adjacent scalar potential, which yields

fG = LvEM . (42)

Note that with (42) the scalar potential at the reference terminal’s boundary part is
excited with 0 potential.

Coupling branch currents: iEM

Let Jt : W ⇥I ! R3 be the model for total current density flowing through a point
in space at a certain time. The current through an arbitrary surface G , with unit
normal n, is then obtained by

R
G Jt ·nds.

Assumption 12. The total current density is given by the sum of displacement and
conduction current density: Jt := ∂

∂ t D+J, as it is implemented in devEM, see [13].

With Ass. 12 the current through G expressed in potentials reads
Z

G
� ∂

∂ t [e (—j +P)]�s
⇣

—j + ∂
∂ t A
⌘
·nds =

Z

G
—⇥ (n—⇥A) ·nds ,

according to MA. From the latter variant we observe that the cumulated sum through
all terminals, i. e. the whole boundary ∂W , equals zero:

Z

∂W
—⇥ (n—⇥A) ·nds =

Z

W
— ·—⇥ (n—⇥A)dr = 0 . (43)

From (43) it becomes clear that the model assumption Ass. 12 is compatible to
Kirchhoff’s current law. Hence, we can omit one current quantity, here the reference
terminal’s current, and define the EM device’s branch currents iEM : I !RmEM for
the left terminals.

As the discrete variables for both J and D originated on dual mesh facets, we intro-
duce a mapping and selection to the boundary’s primal mesh points by �G>

G . Then
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the branch currents in terms of discrete potentials read

iEM =L>G>
G
⇥ d

dt (Me (Gf +GG fG (t)+p))+Ms
�
Gf +GG fG (t)+ d

dt a
�⇤

(44)

or analogously, according to MA (39) in MGE,

iEM =�L>G>
G C̃MnCa . (45)

Element description

In the following, we derive all the functions and operators that are necessary in
order to incorporate the EM device as a current controlling element in the sense of
Sec. 2.1.

Since the MNA approach substitutes branch voltages by node potentials e, we re-
place vEM in (42) by A>

EMe and obtain

fG = LA>
EMe . (46)

Defining

dEM(x) := Me GG LA>
EMe

and

cEM(wEM,x) :=�M�1
EM

0

@
0

wEM +Ms GG LA>
EMe

0

1

A ,

incorporating the branch voltage coupling equation (46) into (41) yields

d
dt u+bEM(u) = cEM( d

dt dEM(x),x) , u(t0) = u0 , (47)

Similarly, we incorporate (46) into (44) and obtain

iEM = fEM( d
dt dEM(x), d

dt u,x,u) , (48)

for

fEM(wEM, d
dt u,x,u) :=

L>G>
G

h
Me
�
G d

dt f + d
dt p
�
+wEM +Ms

⇣
Gf +GG LA>

EMe+ d
dt a
⌘i

.

Note that shifting the differentiation operator in front of each component of u does
not require any further smoothness as we need them anyway and bypass matrix
vector calculations only. According to (48), this EM model fits the EM device in
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Sec. 2.1 for some suitable operator E . As it explicitly determines the EM device’s
branch currents, the EM device can be considered as a current controlling element.
Therefore, its constitutive element equation should be incorporated into KCL to
follow the regime of the MNA. By splitting up the summands in fEM , we obtain
new functions

qEM(A>
EMe) := L>G>

G Me GG LA>
EMe ,

gEM(A>
EMe) := L>G>

G Ms GG LA>
EMe ,

iEM( d
dt u,u) := L>G>

G
⇥
Me
�
G d

dt f + d
dt p
�
+Ms

�
Gf + d

dt a
�⇤

.

such that (48) is equivalent to

iEM = d
dt qEM(A>

EMe)+gEM(A>
EMe)+ iEM( d

dt u,u) . (49)

Remark 1. L>G>
G Me GG L and L>G>

G Ms GG L are diagonal.

According to Rem. 1, the derivative operator can be pulled out of the first summand
without requiring further smoothness. Moreover, the constitutive element equation
(49) allows us to interpret the EM device as a composition of parallel capacitor,
resistor and controlled current source alongside each branch, linking the ground to
terminal; cf. Fig. 2. With this new interpretation we can deduce statements about the
coupling which reason certain behavior during simulation processes.

On the other hand, with the alternative version of the total current model (45), that
complies the one in [2], we obtain

iEM = f̂EM(u) :=�L>G>
G C̃MnCa . (50)

vs

qC

gR

�L

gR

e1 e2 e3 e4

g
E
M

q
E
M

iE
M

i E
M

q E
M

g E
M

EM device

Fig. 2 Electric circuit incorporating an EM device whose constitutive element equations are inter-
preted as a composition of capacitors, resistors and controlled sources along each branch.
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4.1.1 Systems

On the basis of the above preliminaries, we now provide a few categories of sys-
tem formulations for the coupled problem that arise either due to implementation
purposes, performance reasons or analysis results.

devEM version

As the devEM solver’s interface takes control of the current coupling (48) it used
to be convenient not to incorporate (48) into KCL, cf. [13, 19]. Hence, the coupled
system that is solved arises from (7)-(9), (47), and (48) and is of the form

fMNA(
d
dt dMNA(x),x, t) = cMNA(y) , (51)

fEM( d
dt dEM(x), d

dt u,x,u)�y = 0 , (52)
d
dt u+bEM(u) = cEM( d

dt dEM(x),x) , (53)

with y = iEM . The functions involved, with w = (wC,wL,wEM), read

fMNA(w,x, t) :=

0

@
AC

d
dt wC +ARgR(A>

R e)+ALiL +AV iV +AIis(t)
d
dt wL �A>

L e
vs(t)�A>

V e

1

A ,

dMNA(x) :=
✓

qC(A>
C e)

fL(iL)

◆
, cMNA(y) :=

0

@
�A>

EMy
0
0

1

A .

Incorporated version

In order to be consistent with the MNA approach (4)-(5), we incorporate the current
coupling equation into KCL of (7)-(9). Here, we make use of the previous obser-
vation (49) and group the resistance, capacitance and controlled current source like
constitutive equations by introducing

AC :=
⇥
AC AEM

⇤
, AR :=

⇥
AR AEM

⇤
, qC :=

✓
qC

qEM

◆
, gR :=

✓
gR

gEM

◆
.

Together with the EM system (47) we obtain

fMNA2(
d
dt dMNA2(x),x, t) = cMNA2(

d
dt u,u) , (54)

d
dt u+bEM(u) = cEM( d

dt dEM(x),x) , (55)
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for

fMNA2(w,x, t) :=

0

@
AC

d
dt wC +ARgR(A>

R
e)+ALiL +AV iV +AIis(t)

d
dt wL �A>

L e
vs(t)�A>

V e

1

A ,

dMNA2(x) :=
✓

qC (A>
C

e)
fL(iL)

◆
, cMNA2(

d
dt u,u) :=

0

@
�A>

EMiEM( d
dt u,u)

0
0

1

A .

Alternative version

Using (50) instead of (49) as the current coupling equation, we obtain:

fMNA(
d
dt dMNA(x),x, t) = cMNA3(u) , (56)

d
dt u+bEM(u) = cEM( d

dt dEM(x),x) , (57)

with

cMNA3(u) :=
�
L>G>

G C̃MnCa
�
.

Remark 2. The systems (54)-(55) and (56)-(56) are analytically equivalent due to
the discrete MA equation (39).

5 Waveform Relaxation Method

While the coupled systems in Sec. 4.1.1 can be solved numerically by various time
integration methods, e. g. Runge-Kutta or the backward differentiation formula, it is
also possible to solve only the subsystems. The latter can be realized for example in
a Gauss-Seidel method style, cf. [12].

5.1 Gauss-Seidel Method

When talking about the Gauss-Seidel method in this article, we mean the following
procedure: Solve the subsystems, successively replace the solutions with newer ones
and then start over the iteration. As we want to take advantage of the numerical
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treatment of ODEs, the EM equations (47) of the coupled systems will always be
considered as one subsystem.

Let d
dt x(0) and x(0) be functions on I for the initial guess, e. g. obtained by extrap-

olation of the initial value x0.

Applying the Gauss-Seidel iteration scheme on the systems (51)-(53), (54)-(55) and
(56)-(57), respectively, we obtain the evaluation procedures

• for the devEM version:

d
dt u(k) +bEM(u(k)) = cEM( d

dt dEM(x(k�1)),x(k�1)) , (58)
fMNA(

d
dt dMNA(x(k)),x(k), t) = cMNA(y(k)) , (59)

fEM( d
dt dEM(x(k)), d

dt u(k),x(k),u(k))�y(k) = 0 . (60)

• for the incorporated version:

d
dt u(k) +bEM(u(k)) = cEM( d

dt dEM(x(k�1)),x(k�1)) , (61)
fMNA2(

d
dt dMNA2(x(k)),x(k), t) = cMNA2(

d
dt u(k),u(k)) . (62)

• for the alternative version:

d
dt u(k) +bEM(u(k)) = cEM( d

dt dEM(x(k�1)),x(k�1)) , (63)
fMNA(

d
dt dMNA(x(k)),x(k), t) = cMNA3(u(k)) . (64)

Here k 2 N is the iteration parameter and all these equations have to comply to
the initial values, i. e. u(k)(t0) = u0, x(k)(t0) = x(k)0 as well as the auxiliary vector-
function y(k)(t0) = y(k)0 , whereby the DAE variables may vary in each iteration and
hence are decorated by (k).

5.2 Convergence Analysis

In this section we focus on the Gauss-Seidel method’s convergence for the alterna-
tive version of the coupled electric circuit EM device system (63)-(64).

Note that the decoupling of the subsystems is an invariant of the iteration param-
eter. Decoupling (64) by making use of Theorem 5 yields for sc(E ) = sc(u(k)) :=
AEMcMNA3(u(k)) and dropping the argument t for simplicity:
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d
dt y(k) = f0(y(k),z(k)1 ,z(k)2 ,z(k)3 ,sc(u(k)),si) , y(k)(t0) = y(k)0 ,

z(k)1 = M1(y(k),z(k)3 ) d
dt z(k)3 + f1(y(k),z(k)2 ,z(k)3 ,sc(u(k)),si) ,

z(k)2 = f2(y(k),z(k)3 ,sc(u(k)),si,sv) ,

z(k)3 = M3

✓
si

sv

◆
.

Under the prerequisite of Ass. 6, we obtain from Lemma 2

d
dt y(k) = f̂0(y(k),z(k)1 ,z(k)2 ,sc(u(k)),si,sv) , y(k)(t0) = y(k)0 , (65)

z(k)1 = M̂1(y(k),si,sv)
d
dt

✓
si

sv

◆
+ f̂1(y(k),z(k)2 ,sc(u(k)),si,sv) , (66)

z(k)2 = f̂2(y(k),sc(u(k)),si,sv) . (67)

Then, for (63) we obtain

d
dt u(k) =�bEM(u(k))+ cEM(T̂0

d
dt y(k�1) + T̂1

d
dt z(k�1)

1 + T̂2
d
dt z(k�1)

2 ,

T̂0y(k�1) + T̂1z(k�1)
1 + T̂2z(k�1)

2 ) . (68)

After inserting the right hand sides of
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z(k�1)
1 =M̂1(y(k�1),si,sv)

d
dt

✓
si

sv

◆
+ f̂1(y(k�1),z(k�1)

2 ,sc(u(k�1)),si,sv) ,

z(k�1)
2 = f̂2(y(k�1),sc(u(k�1)),si,sv) ,

d
dt y(k�1) = f̂0(y(k�1),z(k�1)

1 ,z(k�1)
2 ,sc(u(k�1)),si,sv) ,

d
dt z(k�1)

1 =M̂1(y(k�1),si,sv)
d2

dt2

✓
si

sv

◆
+
h

∂
∂y(k�1) M̂1(y(k�1),si,sv)

d
dt y(k�1)

+ ∂
∂ si

M̂1(y(k�1),si,sv)
d
dt si +

∂
∂ sv

M̂1(y(k�1),si,sv)
d
dt sv

i
d
dt

✓
si

sv

◆

+ ∂
∂y(k�1) f̂1(y(k�1),z(k�1)

2 si,sv)
d
dt y(k�1)

+ ∂
∂z(k�1)

2
f̂1(y(k�1),z(k�1)

2 si,sv)
d
dt z(k�1)

2

+ ∂
∂ si

f̂1(y(k�1),si,sv)
d
dt si +

∂
∂ sv

f̂1(y(k�1),si,sv)
d
dt sv ,

d
dt z(k�1)

2 = ∂
∂y(k�1) f̂2(y(k�1),sc(u(k�1)),si,sv)

d
dt y(k�1)

+ ∂
∂ s(k�1)

c
f̂2(y(k�1),sc(u(k�1)),si,sv)

∂
∂u(k�1) sc(u(k�1)) d

dt u(k�1)

+ ∂
∂ si

f̂2(y(k�1),sc(u(k�1)),si,sv)
d
dt si

+ ∂
∂ sv

f̂2(y(k�1),sc(u(k�1)),si,sv)
d
dt sv ,

into (68), we obtain an expression in terms of u(k),y(k�1), d
dt u(k�1), d

dt y(k�1) and t
allowing us to define a function q1 such that the EM subsystem reads

d
dt u(k) = q1(u(k),y(k�1), d

dt u(k�1), d
dt y(k�1), t) .

Further, from (65) we obtain

d
dt y(k) = f̂0(y(k),M(y(k), f̂2(y(k),sc(u(k)),si,sv)

d
dt

✓
si

sv

◆
+ f̂1(y(k),si,sv),

f̂2(y(k),sc(u(k)),si,sv)) =: q2(u(k),y(k�1), d
dt u(k�1), d

dt y(k�1), t) .

The overall inherent ODE system of the alternative coupled system with applied
Gauss-Seidel method (63)-(64) reads

d
dt u(k) = q1(u(k),y(k�1), d

dt u(k�1), d
dt y(k�1), t) , (69)

d
dt y(k) = q2(u(k),y(k�1), d

dt u(k�1), d
dt y(k�1), t) . (70)

According to [17] we introduce the convergence matrix for (69)-(70) as

M̄ :=

0

B@

∂q1

∂ d
dt u(k�1)

∂q1

∂ d
dt y(k�1)

∂q2

∂ d
dt u(k�1)

∂q2

∂ d
dt y(k�1)

1

CA=

 ∂q1

∂ d
dt u(k�1)

∂q1

∂ d
dt y(k�1)

0 0

!
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and observe that the spectral radius r(M̄) = r
✓

∂q1

∂ d
dt u(k�1)

◆
. From [17] we know that

the Gauss-Seidel method converges if the latter expression is less than 1.

5.3 Benchmark

In this section we provide some numerical results according to the waveform relax-
ation method introduced in Sec. 5.

As a coupled electric circuit and EM device coupled system, we chose the bandpass
filter in Fig. 1. The bandpass filter was solved using the original formulation (51)-
(53) and the incorporated split formulation (54)-(55). Formulations of the alternative
type (56)-(57) are not accessible to us. For both systems we applied the Gauss-
Seidel method and compared the resulting monolithic to each iteration’s solution.
As an error measure we picked the maximal error over each component which itself
is defined by the maximal offset for the whole time-interval I . For the original sys-
tem formulation we obtained convergence to machine precision after approximately
5000 iterations as shown in Fig. 3. In contrast, using Gauss-Seidel method in the
incorporated split system (61)-(62) we achieved convergence after 4 iteration steps,
see Fig. 4.

6 Conclusion and Outlook

So far, the coupled electric circuit and EM device problem was simulated by making
use of system formulation (51)-(53), as the solver PyCEM, used in [19], interfaces
the industrial EM solver devEM. Tests have shown that incorporating the EM de-
vice’s branch current into KCL of the circuit equations, as done in (61)-(62), leads
to a convergence acceleration by several orders of magnitudes. To explain this be-
havior, we made the coupled systems the subject of a waveform relaxation analysis
whose techniques we adopted from [17]. As we are in an early stage of the anal-
ysis, we switched to the less sophisticated coupled system (56)-(57), which itself
can be considered equivalent to (54)-(55). Concerning the theory, we then were able
to provide convergence analysis for the Gauss-Seidel method applied to the alter-
native formulation (63)-(64). As a matter of fact, the alternative system (63)-(64)
and the split system (61)-(62) are no more equivalent to each other when apply-
ing iteration schemes. But in return, the structural properties, revealed by the split
formulation (54)-(55), might be useful to make statements about the convergence
behavior. Moreover, they motivate adopting the tool’s interfaces in order to cover
more than just system formulations (51)-(53).
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A goal for future work is to analyze the split system formulation itself in terms of
decoupling and convergence. Further, the range of waveform relaxation schemes
should be expanded and applied to multiple EM devices.
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15. Merkel, M., Niyonzima, I., Schöps, S.: Paraexp using leapfrog as integrator for high-frequency
electromagnetic simulations. Radio Science (2017)

16. Nolting, W.: Grundkurs Theoretische Physik 3. Springer Berlin Heidelberg (2011).
DOI 10.1007/978-3-642-13449-4. URL http://dx.doi.org/10.1007/
978-3-642-13449-4

17. Pade, J., Tischendorf, C.: A convergence criterion for the gauss-seidel waveform relaxation
applied to index-2 circuit daes. HU-Berlin Preprint 2016-21 (2016)

18. Rodriguez, A.A., Valli, A.: Eddy Current Approximation of Maxwell Equations. Springer
Milan (2010). DOI 10.1007/978-88-470-1506-7. URL https://doi.org/10.1007/
978-88-470-1506-7

19. Schoenmaker, W., Meuris, P., Strohm, C., Tischendorf, C.: Holistic coupled field and circuit
simulation. In: Proceedings of the 2016 Conference on Design, Automation & Test in Europe,
pp. 307–312. EDA Consortium (2016)

20. Schöps, S.: Multiscale modeling and multirate time-integration of field/circuit coupled prob-
lems. Ph.D. thesis, Universität Wuppertal, Fakultät für Mathematik und Naturwissenschaften
Mathematik und Informatik Dissertationen (2011)

21. Stratton, J.A.: Electromagnetic Theory. Wiley-Blackwell (2007). DOI 10.1002/
9781119134640. URL https://doi.org/10.1002/9781119134640

22. Streubel, T., Strohm, C., Trunschke, P., Tischendorf, C.: Generic construction and efficient
evaluation of flow network daes and their derivatives in the context of gas networks. In:
Operations Research Proceedings 2017, pp. 627–632. Springer (2018)

23. Strohm, C., Tischendorf, C.: Interface model integrating full-wave maxwell simulation models
into modified nodal equations for circuit simulation. IFAC-PapersOnLine 48(1), 940–941
(2015)

24. Thoma, P.: Zur numerischen losung der maxwellschen gleichungen im zeitbereich. Dissera-
tion D17 TH Darmstadt (1997)

25. Weiland, T.: A discretization method for the solution of maxwell’s equations for six-
component fields. AE - International Journal of Electronics and Communications 31, 166–120
(1977)


