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Abstract

InitDAE is a prototype written in Python that computes consistent
initial values of differential-algebraic equations (DAE), determines their
index and a related condition number that permits the diagnosis of sin-
gularities. The algorithm for the consistent initialization uses a projector
based constrained optimization approach and the inherent differentiations
are provided by automatic differentiation (AD), using AlgoPy. Conse-
quently, a detailed description of the local structural properties of the
DAE becomes possible using the SVD. InitDAE has been conceived for
academic purposes and is well-suited for examples of moderate size. In
this article we give an overview of the algorithm, show actual features and
discuss future possibilities, in particular the integration with Taylor series
methods.
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1 Introduction

Conventional integration methods cannot cope with general, higher-index DAEs.
Hence, the diagnosis of the properties and, particularly, the structure of DAEs
is crucial to guarantee the reliability of numerical results. While for some classes
of DAEs the structure is well understood ( e.g. DAEs in Hessenberg form and
DAEs resulting in circuit simulation), a detailed analysis of the obtained DAEs
becomes necessary if new types of elements are included or different classes of
equations are coupled. In this article we give an overview of the implementation
of InitDAE, a software package developed for this purposes, cf. [1].
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Our starting point will be a projector based decoupling of components into
the differentiated and the undifferentiated part. To this end, we consider

f(x′, x, t) = 0, where fx′ is singular, (1)

and assume that
ker fx′(x′, x, t)

does not depend on (x′, x) and that a continuously differentiable projector Q(t)
onto ker fx′ exists. On the basis of the complementary projector P (t) := I−Q(t)
we can then reformulate the DAE as

f(x′, x, t) = f(Px′, x, t) = f((Px)′ − P ′x, x, t) = 0, (2)

as already introduced in [2]. In this sense, we will use the notation:

• Px for the differentiated component,

• Qx for the undifferentiated component,

since, for the decoupling x′ = (Px)′ + (Qx)′, we can see that (Px)′ = ϕ1(x, t)
is implicitly given, cf. [3], [4].

Recall further that the singularity of fx′ means that (1) contains derivative-
free equations, called constraints, and that the differentiation of (1) may lead
to further derivative-free equations, called hidden constraints.

According to [4], for an initial guess α ∈ Rn, consistent initial values x0 can
be computed solving the following constraint optimization problem

min ‖P (x0 − α)‖2 (3)

subject to all explicit and hidden constraints. (4)

In this paper, on the one hand, we present how this approach is being im-
plemented. To this end, in Section 2, we start describing how the solvability
of (3) - (4) is related to the index of the DAE. Since, on the other hand, we
also want to present some new aspects not yet considered in [4], in Section 3
we introduce a more general initialization algorithm that involves additional
user-given requirements. In Section 4 we summarize the main aspects within
the theoretical framework of InitDAE before we focus on the implementation
using automatic differentiation in Section 5.

InitDAE opens new possibilities for the integration with Taylor series meth-
ods and for monitoring singularities, which are described briefly in the Sections
6 and 7, respectively. We finally illustrate the obtained results for some well-
known examples from literature in Section 8.

In the Appendix we give an overview of some properties of computations
with automatic differentiation in order to be comprehensible to readers without
expertise in this field and to motivate our notation.

2 Reinterpretation of the differentiation index

With the decoupling x = Px + Qx we can use the following definition of the
differentiation index, which was introduced in [3], [4].
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Definition 1 The differentiation index is the smallest integer µ such that

f(x′, x, t) = 0,

d

dt
f(x′, x, t) = 0,

...
dµ−1

dtµ−1
f(x′, x, t) = 0,

uniquely determines Qx as a function of (Px, t).

Due to (2) there exists a function ϕ1 such that locally

(Px)′ = ϕ1(x, t)

holds. If, according to Definition 1, there exists another function ϕ2 such that

Qx = ϕ2(Px, t),

then one further differentiation provides

(Qx)′ = ϕ3((Px)′, Px, t) = ϕ̃3(x, t).

Consequently, if µ is the differentiation index according to Definition 1, then
the conventional differentiation index (see e.g. [5]) results to be µ as well.

In order to allow for the differentiations, we consider

Fj(x
(j+1), x(j), . . . , x′, x, t) :=

dj

dtj
f(x′, x, t),

and define for zi ∈ Rn, i = 0, . . . , k,

g[k+1](z0, z1, . . . , zk+1, t) :=


f(z1, z0, t)

F1(z2, z1, z0, t)
...

Fk(zk+1, . . . , z0, t)

 . (5)

With this notation, we can formulate the constraint optimization problem
(3)-(4) more precisely

min ‖P (z0 − α)‖2 (6)

subject to g[k+1](z0, z1, . . . , zk+1, t) = 0, k ≥ µ− 1 (7)

for µ ≥ 1. We will assert in Section 3 that the amount of consistent values
(z0, z1, . . . , zm) for (x(t0), x(1)(t0), . . . , x(m)(t0)), with m ≤ k depends on k and
on the index µ, and it consequently has to be determined.

To compute the index µ in this context, for zi ∈ Rn, j = 0, . . . , k, we denote
by

G
[k]
(z0)

(z0, z1, . . . , zk, t) ∈ Rnk×n
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the Jacobian matrix of g[k](z0, z1, . . . , zk, t) with respect to z0, by

G
[k]
(z1,...,zk)

(z0, z1, . . . , zk, t) ∈ Rnk×nk

the Jacobian matrix of g[k](z0, z1, . . . , zk, t) with respect to (z1, . . . , zk) and con-
sider the matrices

B[k] :=

 P 0

G
[k]
(z0)

G
[k]
(z1,...,zk)

 ∈ Rn(k+1)×n(k+1), k = 1, . . . .

According to [4], we check if the matrices B[k] are 1-full with respect to the first
n columns for k = 1, 2, . . ., i.e., whether

ker B[k] ⊆
{(

s0
s1

)
: s0 ∈ Rn, s0 = 0, s1 ∈ Rnk

}
. (8)

InitDAE concludes that the index is µ if µ is the smallest integer for which B[µ]
is one-full.

3 Initialization without/with additional require-
ments

In [4] we further analyzed how the solvability of the optimization problem (6) -
(7) depends on the 1-fullness of the matrix B[µ] under the assumption that

G[µ] :=
(
G

[µ]
(z0)

G
[k]
(z1,...,zµ)

)
has full row rank. According to [6], this minimal solution could also be computed
setting

Π(z0 − α) = 0

for a suitable orthogonal projector Π with rank Π = d, where d is the degree of
freedom. In fact, if we denote by W1 and W2 orthogonal projectors fulfilling

ker W1 = im G
[µ]
(z1,...,zµ)

,

ker W2 = im W1G
[µ]
(z0)

Q,

then Π is the orthogonal projector with

im Π = ker

(
Q

W2W1G
[µ]
(z0)

)
.

The computation of consistent initial values solving the optimization prob-
lem (6) - (7) precisely assigns Πx = Πα, cf. [6].

If the user wants to prescribe initial values to selected components or special
relations between initial values, this can be done by defining additional restric-
tions. In that case, we have to check whether these additional equations are
admissible. Let us denote by

u(z0) = 0
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these user-given restrictions for the initial values. If these equations are inde-
pendent of g[µ] or, more precisely, if

G[µ]
u :=

(
G

[µ]
(z0)

G
[µ]
(z1,...,zµ)

U(z0) 0

)

has full row rank for the Jacobian U(z0) of u with respect to z0, then our ini-
tialization procedure can easily be adapted, leading to

min ‖P (z0 − α)‖2 (9)

subject to g[k+1](z0, z1, . . . , zk+1, t) = 0, u(z0) = 0 (10)

for k ≥ µ − 1. Since u is supposed to hold only at the initial point t0, no
derivatives of u are involved. The corresponding projector-based description

would be
Πu(x− α) = 0

with rank Πu = d − rank (U(z0)). Further, this projector Πu is the orthogonal
projector fulfilling

im Πu = ker

 Q

W2W1

(
G

[µ]
(z0)

U(z0)

) ,

where the orthogonal projectors W1 and W2 are now defined by

ker W1 = im

(
G

[µ]
(z1,...,zµ)

0

)
,

ker W2 = im W1

(
G

[µ]
(z0)

U(z0)

)
Q,

In both cases, if the approach is performed with k > µ, we will not only obtain
consistent initial values z0 = x(t0), but also consistent values for the derivatives

z1, . . . , zk−µ.

4 The setting of InitDAE

In order to implement the approach described above, some framework conditions
have to be taken into account.

4.1 Main mathematical aspects

We have chosen some specific numerical approaches to cope with the different
tasks:

• Differentiation:
Set up of the derivative array (5) and the related Jacobian matrices. We
use automatic differentiation (AlgoPy, cf. [7]).
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• Linear Algebra:
Determination of rank and condition number, bases for nullspaces and
projectors. We use the singular value decomposition and the resulting
criteria for 1-fullness presented in [3] and [4].

• Optimization:
Constrained optimization problem to compute initial values and Taylor
coefficients. We use sequential least squares programming (SLSQP), which
was also analyzed in [4].

4.2 Formulations of the DAE

DAEs can be formulated in different forms. In InitDAE, three different formu-
lations of the DAE are implemented via the options

• linear: f is given as f(x′, x, t) = A(t)x′+B(t)x−q(t) with given matrices
A, B and a vector q.

• standard: f is given for f(x′, x, t),

• proper: fp(d1, x0, t) and d(x, t) are given for fp(d
′(x, t), x, t).

5 How InitDAE Works

In the following, we focus on the realization with automatic differentiation,
which was not addressed in [4]. Hence, we describe how we set up and solve the
optimization problem (6)–(7) or, if additional requirements are used, (9)–(10).

5.1 Setting up the optimization problem with automatic
differentiation

Since InitDAE uses automatic differentiation, we reformulate the original prob-
lem using truncated Taylor series with D = K + 1 coefficients

x[0:K] = [c0, c1, c2, . . . , cK ] =
[
z0, z1,

z2
2
, . . . ,

zK
K!

]
,

for the unknown function x(t) at a time-point t0 that is given1. For k < K =
D − 1 we use the relationship

x(t[0:k+1]) = [c0, c1, c2, . . . , ck+1]

x′(t[0:k]) = [c1, 2c2, . . . , (k + 1)ck+1]

and reformulate our constraints.

• In the standard (and linear) case we consider the function f

f [0:k] = f([c1, 2c2, . . . , (k + 1)ck+1] , [c0, c1, c2, . . . , ck] , t[0:k])

=:
[
f [0], f [1], . . . , f [k]

]
.

1The notation is illustrated in the Appendix.
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• In the proper case, in a first step, we consider

d[0:k] = d([c0, c1, c2, . . . , ck] , t[0:k]) =
[
d[0], . . . , d[k]

]
and, correspondingly,

d′([c0, c1, c2, . . . , ck+1] , t[0:k]) =
[
d[1], 2d[1], . . . , (k + 1)! d[k+1]

]
and set

f [0:k] = fp

([
d[1], 2d[1], . . . , (k + 1)! d[k+1]

]
, [c0, c1, c2, . . . , ck]

)
, t[0,k])

=:
[
f [0], f [1], . . . , f [k]

]
.

With this notation, we obtain for a fixed t[0,k] the constraints

constraints(c0, c1, c2, . . . , ck+1) :=



f [0](c0, c1)
f [1](c0, c1, c2)

f [2](c0, c1, c2, c3)
...

f [k](c0, c1, . . . , ck+1)
u(c0)


and the objective function ‖P (c0 − α)‖2.

To solve the optimization problem we use the method SLSQP of the module
scipy.optimize.minimize from the SciPy library. This code needs the objective
function, the constraints and their Jacobian matrices.

• The Jacobian matrix of the objective function, which is a gradient in this
case, reads

1

‖P (c0 − α)‖2
(P (c0 − α))T .

• The Jacobian matrix of the constraints will be provided considering the
Taylor coefficients of the following matrix functions

– in the cases linear and standard

A(x′, x, t) =
∂f

∂x′
and B(x′, x, t) =

∂f

∂x

– in the case proper

A(x′, x, t) =
∂fp
∂d1
· ∂d
∂x

and B(x′, x, t) =
∂fp
∂x0

+
∂fp
∂d1
· d
dt

∂d

∂x

for fp(d1, x0, t) .

The Jacobian of the objective function can be derived straightforward. In
contrast, to provide the Jacobian of the constraints we assemble information on
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the computation with AD. Let us therefore consider

A[0:k] := A([c1, 2c2, . . . , kck+1] , [c0, c1, c2, . . . , ck] , t[0:k])

=
(
A[0], . . . , A[k]

)
∈ Rm×m×(k+1),

B[0:k] := B([c1, 2c2, . . . , kck+1] , [c0, c1, c2, . . . , ck] , t[0:k])

=
(
B[0], . . . , B[k]

)
∈ Rm×m×(k+1),

and, in case that additional requirements u are given at t0,

U(x, t) =
∂u

∂x

and
U [0] := U(c0, t0)

Using this notation, the Jacobian matrix of the constraints is given by

B[0] A[0]

B[1] B[0] +A[1] 2A[0]

B[2] B[1] +A[2] B[0] + 2A[1] 3A[0]

B[3] B[2] +A[3] B[1] + 2A[2] B[0] + 3A[1] 4A[0]

...
. . .

. . .

B[k] · · · · · · · · · · · · (k + 1)A[0]

U [0] 0 · · · · · · 0 0


.

For clarity, we illustrate this for the linear case, no additional requirements
u and k = 2. In this case, the original derivative array reads

 f(x′, x, t)
d
dtf(x′, x, t)
d2

dt2 f(x′, x, t)

 =

 B A 0
B′ B +A′ A
B′′ 2B′ +A′′ B + 2A′ A



x
x′

x′′

x′′′

−
 q
q′

q′′

 = 0.

In terms of Taylor coefficients, this corresponds to

 f [0]

f [1]

2f [2]

 =

 B[0] A[0] 0
B[1] B[0] +A[1] A[0]

2B[2] 2B[1] + 2A[2] B[0] + 2A[1] A[0]



c0
c1
2c2
6c3

−
 q[0]

q[1]

2q[2]

 = 0.

Rearranging the matrix multiplication and scaling the latter equation, we
obtainf [0]f [1]

f [2]

 =

 B[0] A[0] 0
B[1] B[0] +A[1] 2A[0]

B[2] B[1] +A[2] B[0] + 2A[1] 3A[0]



c0
c1
c2
c3

−
q[0]q[1]

q[2]

 = 0.

This clear block Hessenberg structure allows a straightforward implementa-
tion of the Jacobian matrix.
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5.2 Realization with AlgoPy

For linear DAEs, the Taylor coefficients of the matrices A(t) and B(t) directly
provide the entries for the Jacobian matrix. For nonlinear DAEs, the computa-
tion of the Taylor coefficients of the Jacobian matrices requires a tracing of the
computational graph of f , which, in AlgoPy, can be realized using the module
CGraph. As AlgoPy realizes the so-called forward and reverse mode, we can
compute Taylor coefficients of A and B, too. Using the obtained graph, we
assemble the Jacobian matrices depending on the representation of the DAE.
The Taylor coefficients of f representing the derivative array are a byproduct
of these computations.

6 Integration with Taylor Series Method

In the past, AD was applied to DAEs by Chang and Corliss [8], using the
differentiation index by Campbell and Hollenbeck [9] and using the structural
index by Nedialkov and Pryce [10],[11], and by Barrio [12]. The tractability
index concept was applied to the index determination by Lamour and Monett
Diaz [13], [14] and used for the integration of DAEs of index up to 2 in [15].

The above described computation of Taylor coefficients opens new possi-
bilities for the integration with Taylor series methods that are based on the
differentiation index from Definition 1 and can be formulated straightforward.
For j ≥ 0, we denote by (c`)j the `-th Taylor coefficients of x at the time-point
tj and αj the initial guess for (c0)j . With this notation, our algorithm can be
formulated at tj+1, for hj = tj+1 − tj as follows:

• Obtain a Taylor approximation for the initial guess

αj+1 =

K−µ∑
`=0

(c`)jh
`
j (≈ x(tj + hj))

• Set starting points for the iteration

(ci)j =

K−µ∑
`=0

d`,ih
`
j

(
≈ 1

i!
x(i)(tj + hj)

)
using the conventional matrix product and i-th power

(d0,i, . . . , dK−µ,i) = ((c0)j , . . . , (cK−µ)j) ·


0

1
. . .

. . .
. . .

(K − µ) 0


i

for i = 0, . . . ,K − µ.

• Compute for tj+1 instead of t0 and without u in the constraints (since
these requirements are considered at t0 only)

min ‖P ((c0)j+1 − αj+1)‖2
subject to constraints((c0)j+1, (c1)j+1, . . . , (ck)j+1, (ck+1)j+1) = 0.
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• Set
xj+1 = (c0)j+1.

Note that this is a completely different approach compared to [15], where
the Taylor-Method was applied to the inherent ODE for DAEs of index up to 2.
Here, instead, we do not have a restriction for the index, at least theoretically.
The approach also differs considerably from the method using dummy deriva-
tives, cf. [11] and the references therein, because the optimization approach in
fact corresponds to a projection onto the solution manifold.

7 Diagnosis

In [3], we presented results concerning the diagnosis of singularities. These
investigation were a crucial motivation for developing InitDAE. With the above
Taylor integration method, we can finally monitor the singularities during the
integration, analogously as in [16]. We emphasize that in [16] the tractability
index matrix sequence from [17] was analyzed. Now, we compute a condition
number and further indicators described in [3] at each time point. All required
matrices can be provided as a byproduct during the integration.

As pointed out in [3], the condition number should not be interpreted in
dependence of a particular scaling. It gives a hint to a singularity if its graphical
representation suggests a pole, cf. Example 8.3.

8 Examples

In this section, we discuss some features of InitDAE considering three well-
known examples from the DAE literature.

8.1 Pendulum

Testing the classical index-3-Pendulum with Modelica 1.12.0, we became aware
of an unexpected effect. If we simulate

model DAEPendulum "DAE Pendulum"

parameter Real g = 1;

parameter Real m = 1;

parameter Real l = 1;

Real x(start = 0.5);

Real y(start = 0.5);

Real vx(start = 0);
Real vy(start = 0);
Real lambda(start = 0);

equation

der(x) = vx;

der(y) = vy;

m * der(vx) = 2 * lambda * x;

m * der(vy) = 2 * lambda * y - m * g;

x ˆ 2 + y ˆ 2 = l ˆ 2;

annotation(experiment(StartTime = 0.0, StopTime = 12.0,
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Figure 1: Results delivered by Modelica defining first vx and then vy (left) and
vice versa (right).

Tolerance = 1e-006));

end DAEPendulum;

then we obtained the solution represented on Figure 1 (left). Consequently, the
structural analysis leads to a preservation of the initial value for x(0). y(0) is
computed according to the explicit constraints. In contrast, if, in the model, we
define the variables in the order

(...)

Real x(start = 0.5);

Real y(start = 0.5);

Real vy(start = 0);
Real vx(start = 0);
Real lambda(start = 0);

(...)

and leave the equations unchanged, then the initial value for y(0) is preserved
and x(0) is computed accordingly, cf. Figure 1 (right). This effect seems to
result from the graph theoretical background of the method, see [18].

Our method results from a projector based analysis and, for the position
coordinates of the pendulum it computes the nearest point on the circle, i.e.,
for the initial guess (0.5, 0.5) we obtain ( 1√

2
, 1√

2
), as can be seen in Figure 2

(left). The integration with initial guess (0.5, 0.5, 0, 0, 0) over an interval [0, 12]
provides the components plotted in Figure 2 (left). The condition number com-
puted during the integration and the one obtained along a previously computed
solution are identical (see Figure 2 (right)). We do not observe here a singular-
ity, but the condition number has its maximal value when the pendulum has its
maximal horizontal speed, i.e., x1 = 0.
For the pendulum example, we computed the projector Π as

Π =


0.5 −0.5
−0.5 0.5

0.5 −0.5
−0.5 0.5

0


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Figure 2: Solution components without additional conditions (left) and condi-
tion number (right) obtained with InitDAE

Figure 3: Solution of the pendulum with additional condition x1 = 0.5 (left) or
x2 = 0.5 (right) obtained with InitDAE

for an initial guess α with α1 = α2 and α3 = α4 = 0. This means, on the other
hand, that also the consistent initial value fulfills x1 = x2, as shown above. If we
use additional conditions for the state variables x1 or x2, then, in the resulting
projector Πu the first block vanishes and, if we use additional conditions for the
velocity variables x3 or x4, the second block vanishes.
If we want to fix the initial position of the pendulum at x1 = 0.5, we use the
additional function u = x1 − 0.5. The integration result is plotted in Figure 3
(left). If we fix x2 = 0.5 instead, we obtain the trajectory plotted in Figure 3
(right) analogously. These results are identical with those from Modelica (Figure
1), but they are the result of a conscious decision of the user and not delivered
by chance, depending of the order of lines in the code. However, Modelica also
offers options for a prioritization of the initial values.
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Figure 4: Solution and condition number of car axis example

8.2 Car Axis

Let us focus on the Car Axis problem described in [19]. The structure of the
index-3 equations corresponds to

p′ = q

Kq′ = f(ω · t, p, λ), p, q ∈ R4, λ ∈ R2, 0 ≤ t ≤ 3,

0 = φ(ω · t, p),

for ω = 10. All the remaining parameters and notations used in the following
correspond to [19]. In order to avoid a disadvantageous scaling of the Taylor
coefficients, we change the independent variable t to τ = 10 t, obtaining the
DAE

p′ = q/10

Kq′ = f(τ, p, λ)/10, p, q ∈ R4, 0 ≤ τ ≤ 0.3,

0 = φ(τ, p).

For the initialization, we started with the inconsistent values

L = 1e0 xra = -L0/L*10

L0 = 0.5e0 xla = xra

xr = L yra = 0e0

xl = 0 yla = 0e0

yr = L0 lam1 = 0e0

yl = yr lam2 = 0e0

Observe that the condition number is high, but does not suggest the existence
of a singularity.
Note further that, before the solution was plotted in Figure 4, the independent
variable was rescaled to its original value t = τ

10 .

8.3 Robotic Arm

Finally, we touch the index 5 Robotic Arm problem introduced in the known
form by Campbell in [20], but better available, e.g., in Campbell, Griepentrog
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Figure 5: Solution and condition number of the robotic arm problem.

[21].
The integration over the interval [0,1.5] discovers a singularity at the end of
the interval. Therefore, we plot the result and the condition number over the
interval [0,1.43] in Figure 5. A detailed discussion will be published soon in [22].

9 Conclusion

InitDAE (see [1]) is the implementation of a bunch of algorithms developed
by the authors in the last couple of years to initialize DAEs, to characterize
their structure, to monitor singularities and to integrate them with Taylor se-
ries methods. It has been conceived for academic purposes and delivers precise
information thanks to algorithmic differentiation. For examples of moderate size
(we tested DAEs of dimension up to 600, cf. [23]), the run time for the consis-
tent initialization was acceptable. In contrast the integration is recommendable
for small examples only, due to the computational costs. Nevertheless, in our
opinion, it is a valuable tool for diagnosis purposes.

A Taylor coefficients and Automatic Differenti-
ation

For the details on automatic (or algorithmic) differentiation we refer to [24].
Here, we merely clarify our notation and the aspects we utilize.

A.1 Some Basics

Automatic differentiation works with truncated Taylor series, considering D
coefficients. If the Taylor variable is initialized with t0 for K = D−1, we obtain

t[0:K] := [t0, 1, 0, , . . . , 0]
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and the Taylor expansion of x(t[0:K]) corresponds to

x[0:K] :=

[
x(t0), x′(t0),

x′′(t0)

2!
, . . . ,

xK(t0)

K!

]
=: [c0, c1, . . . , cK ] .

For a matrix function we proceed analogously (cf. [15]), i.e., for B(x, t) ∈ Rm×n
we will use the notation

B[0:K] := B(x[0:K], t[0:K]).

Example 1 • For D = 5, K = D − 1 = 4, t0 = 1:

t[0:4] := [1, 1, 0, 0, 0] ,

exp(t[0:4]) = [2.7183, 2.7183, 1.3591, 0.4530, 0.1133] ,

• For D = 3, K = 2, t[0:2] := [π, 1, 0] and a matrix-valued function

B(t) =

(
cos(t) − sin(t)
sin(t) cos(t)

)
we obtain

B(t[0:2]) =

(
cos(t[0:2]) − sin(t[0:2])
sin(t[0:2]) cos(t[0:2])

)
=

[[
−1 0
0 −1

]
,

[
0 1
−1 0

]
,

[
0.5 0
0 0.5

]]
=:

[
B[0], B[1], B[2]

]
:= B[0:2] ∈ R2×2×3.

A.2 Product rule in AD

We consider the product
h(t) = u(t) · v(t)

of two analytic functions u and v. Higher-order derivatives of h are determined
by Leibniz’s rule

h(k)(t) =

k∑
i=0

(
k

i

)
u(i)(t)v(k−i)(t).

As a consequence, the result of the product of two Taylor objects

h(t[0:K]) = u(t[0:K]) · v(t[0:K])

can be computed with

[h[k]] =

k∑
i=0

u[i]v[k−i], k = 0, . . . ,K. (11)

Example 2 • For D = 5, K = D − 1 = 4, t0 = 1:

t[0:4] exp(t[0:4]) = [2.7183, 5.4366, 4.0774, 1.8122, 0.5663] .
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• For D = 3, K = D − 1 = 2, t0 = π and B from Example 1 we compute
the product

q(t[0:2]) = B(t[0:2]) ·
(

sin
(
2 t[0:2]

)
cos
(
2 t[0:2]

))
and obtain, using the product rule (11) with the Taylor coefficients

sin(2t[0:2]) = [0, 2, 0], cos(2t[0:2]) = [1, 0,−2],

q[0] =

[
−1 0
0 −1

] [
0
1

]
=

[
0
−1

]
q[1] =

[
−1 0
0 −1

] [
2
0

]
+

[
0 1
−1 0

] [
0
1

]
=

[
−1
0

]
q[2] =

[
−1 0
0 −1

] [
0
−2

]
+

[
0 1
−1 0

] [
2
0

]
+

[
0.5 0
0 0.5

] [
0
1

]
=

[
0

0.5

]

Note that these are the first three Taylor coefficients of the function

(
sin(t)
cos(t)

)
at t0 = π.

A.3 Solving a System of Equations in AD

With this notation, we can illustrate how linear systems of equations in AD,
i.e.,

B(t[0:K]) · x(t[0:K]) = q(t[0:K]),

can be solved.

Example 3 For

B(t) =

(
cos(t) − sin(t)
sin(t) cos(t)

)
, q(t) =

(
sin(t)
cos(t)

)
and t[0:2] := [π, 1, 0] we obtain[

B[0], B[1], B[2]
]
·
[
x[0], x[1], x[2]

]
=
[
q[0], q[1], q[2]

]
i.e., using the rule of multiplication in AD we obtain the linear system

B[0]x[0] = q[0],

B[1]x[0] +B[0]x[1] = q[1],

B[2]x[0] +B[1]x[1] +B[0]x[2] = q[2].

If we insert the values [
−1 0
0 −1

]
x[0] =

[
0
−1

]
,[

0 1
−1 0

]
x[0] +

[
−1 0
0 −1

]
x[1] =

[
−1
0

]
,[

0.5 0
0 0.5

]
x[0] +

[
0 1
−1 0

]
x[1] +

[
−1 0
0 −1

]
x[2] =

[
0

0.5

]
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we can solve the system step by step, taking advantage of the block triangular
form, and obtain the solution[

x[0], x[1], x[2]
]

=

[[
0
1

]
,

[
2
0

]
,

[
0
−2

]]
,

which corresponds to the Taylor coefficients from

x(t) =

(
sin(2 t)
cos(2 t)

)
,

as considered in Example 2.
Analogously, nonlinear systems of equations and optimization problems can be
solved by linearization, cf. Section 5.
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[1] D. Estévez Schwarz, R. Lamour, InitDAEs documentation.
URL https://www.mathematik.hu-berlin.de/˜lamour/software/

python/InitDAE/html/

[2] E. Griepentrog, R. März, Differential-algebraic equations and their numer-
ical treatment., Vol. 88 of Teubner-Texte zur Mathematik, B.G. Teubner
Verlagsgesellschaft, Leipzig, 1986.
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