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Abstract

The solution vector of a differential-algebraic equation contains differ-
ent types of components, depending on their properties. In this paper,
we particularly present an orthogonal decoupling that, for higher-index
DAEs, describes in which context these orthogonal components appear in
the derivative array. In this sense, we characterize different types of so-
called “higher-index” components with regard to the explicit and hidden
constraints. As a consequence, for linear DAEs we obtain a straightfor-
ward possibility to determine a projected explicit ODE and compare it
with the so-called inherent regular ODE related to the projector-based
decoupling associated with the tractability matrix sequence. By several
examples we illustrate the differences of these two projector-based ap-
proaches and discuss their relationship.
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1 Introduction

Higher-index differential-algebraic equations (DAEs) present explicit and hidden
constraints that restrict the choice of consistent initial values. In fact, the
dynamics can be characterized by lower-dimensional ODEs that might be not
unique.
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Example 1. Let us consider a well-understood higher-index example from [17],
[20], [18]:

1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

x′ +


−α −1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

x =


q1

q2,1

q2,2

q2,3

q2,4

 .

The explicit constraint reads
x5 = q2,4

and the hidden constraints result to be

x4 = q2,3 − q′2,4,
x3 = q2,2 − (q2,3 − q′2,4)′,

x2 = q2,1 − (q2,2 − (q2,3 − q′2,4)′)′.

Therefore, the degree of freedom d results to be one. To characterize the one-
dimensional dynamics, there are different possibilities. On the one hand, the
explicit scalar ODE

x′1 − αx1 = q1 + q2,1 − q′2,2 + q′′2,3 − q′′′2,4, (1)

that depends on derivatives of the right-hand side q, could be considered. On the
other hand, for

ue := x1 + x3 − αx4 + α2x5

the explicit scalar ODE

u′e − αue = q1 + q2,1 − αq2,2 + α2q2,3 − α3q2,4, (2)

that does not depend on derivatives of q, could be considered. For the initial-
ization, this means that if we consider (1), then an initial value is prescribed
for x1(t0). In contrast, if (2) is considered, then an initial value is prescribed
for ue(t0). In both cases, x2(t0), . . . , x5(t0) are determined by the explicit and
hidden constraints and cannot be prescribed.

While a general projector based characterization of ODEs associated to a
DAE that do not involve derivatives (like (2)) can be found in [17] and the
related work, such a general projector based description has not been developed
so far for ODEs associated to a DAE with orthogonality properties like (1).
Such ODEs will depend, in general, on derivatives of parts of the original DAE,
i.e., parts of the so-called derivative array.

In this setting, our goal is to provide the framework of a projector based
analysis of DAEs for approaches that are based on the consideration of the
derivative array, whereas the associated ODE may depend on derivatives of the
right-hand side, like (1).

In a first step, a new approach to compute consistent initial values for higher-
index DAEs using the derivative array and a projector based approach was
recently developed in [7], [9]. Starting from these results, in this paper we
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address an orthogonal decoupling of the solution vector and a corresponding
decoupling of the equations of the DAE. In order to facilitate the readability,
we start defining the basic concepts briefly again.

We consider DAEs of the form

f(x′, x, t) = 0, where fx′ is singular, (3)

assume that
ker fx′(x′, x, t)

does not depend on (x′, x) and that a continuously differentiable projector Q =
Q(t) onto ker fx′ exists. On the basis of the complementary projector P (t) :=
I −Q(t) we can then reformulate the DAE as

f(x′, x, t) = f(Px′, x, t) = f((Px)′ − P ′x, x, t) = 0, (4)

as already introduced in [15]. In this sense, we will use the notation:

• Px for the differentiated component,

• Qx for the undifferentiated component,

since, for the decoupling x′ = (Px)′ + (Qx)′, we can see that (Px)′ = ϕ1(x, t)
is implicitly given, cf. [7], [9]. In [7] we presented an orthogonal decoupling of
Qx with regard to the explicit and hidden constraints.

In this article, we complete this approach by decoupling Px analogously,
thus obtaining an orthogonal decoupling of the complete vector x = Px + Qx.
The paper is organized as follows.

In Section 2 we summarize some definitions and the notations introduced
in [7], [9]. Based on that, the orthogonal projectors used for the decoupling of
x are defined in Section 3. In particular, the projector Π is defined, which is
analyzed in more detail in Section 4.

Section 5 presents an extensive discussion of linear DAEs. For linear DAEs,
Π turns out to deliver a description of an associated explicit ODE. We show
and illustrate with examples the differences between the introduced orthogonal
decoupling and the projector based decoupling associated with the tractability
matrix sequence.

The computation of the projectors for the MNA is briefly presented in Sec-
tion 6 in order to show that the new orthogonal decoupling is a direct general-
ization of a result presented already in [3].

In the Appendix, we provide some required results from linear algebra and
analyze two illustrative classes of linear DAEs with constant coefficients.

2 Reinterpretation of the Differentiation Index

With the decoupling x = Px + Qx in mind, we use the following definition of
the differentiation index, which was introduced in [7], [9].
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Definition 1. The differentiation index is the smallest integer µ such that

f(x′, x, t) = 0,

d

dt
f(x′, x, t) = 0,

...
dµ−1

dtµ−1
f(x′, x, t) = 0,

uniquely determines Qx as a function of (Px, t).

Due to (4) there exists a function ϕ1 such that, locally,

(Px)′ = ϕ1(x, t)

holds. If, according to Definition 1, there exists another function ϕ2 such that

Qx = ϕ2(Px, t),

then one further differentiation provides

(Qx)′ = ϕ3((Px)′, Px, t) = ϕ̃3(x, t).

Consequently, if µ is the differentiation index according to Definition 1, then
the conventional differentiation index (see e.g. [2]) results to be µ as well.

In order to allow for the differentiations, we consider

Fj(x
(j+1), x(j), . . . , x′, x, t) :=

dj

dtj
f(x′, x, t),

and define for zi ∈ Rn, i = 0, . . . , k,

g[k](z0, z1, . . . , zk, t) :=


f(z1, z0, t)

F1(z2, z1, z0, t)
...

Fk−1(zk, . . . , z0, t)

 , (5)

which corresponds to the derivative array. To compute the index µ in this
context, for zi ∈ Rn, i = 0, . . . , k, we denote by

G
[k]
(z0)(z0, z1, . . . , zk, t) ∈ Rnk×n

the Jacobian matrix of g[k](z0, z1, . . . , zk, t) with respect to z0, by

G
[k]
(z1,...,zk)(z0, z1, . . . , zk, t) ∈ Rnk×nk

the Jacobian matrix of g[k](z0, z1, . . . , zk, t) with respect to (z1, . . . , zk), and
consider the matrices

B[k] :=

 P 0

G
[k]
(z0) G

[k]
(z1,...,zk)

 ∈ Rn(k+1)×n(k+1), k = 1, . . . .
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According to [9], we check if the matrices B[k] are 1-full with respect to the first
n columns for k = 1, 2, . . ., i.e., whether

kerB[k] ⊆
{(

s0

s1

)
: s0 ∈ Rn, s0 = 0, s1 ∈ Rnk

}
. (6)

We conclude that the index is µ if µ is the smallest integer for which B[µ]

is 1-full and emphasize that gµ consists of f, F1, . . . , Fµ−1, such that no µ-th
differentiation is needed.

3 Defining Projectors with the Derivative Array

In order to characterize the different components we have a closer look onto the
matrix

G[k] =
(
G

[k]
(z0) G

[k]
(z1,...,zk)

)
=:
(
G

[k]
L G

[k]
R

)
, (7)

where L and R stand for left- and right-hand side, respectively.

• To decouple the undifferentiated component Q for k = 1, . . ., we consider

a basis1 B
[k]
R along im G

[k]
R and define the projector Tk as the orthogonal

projector onto

ker

(
P

B
[k]
R G

[k]
L

)
=: im Tk.

Consequently, Tkx corresponds to the part of the undifferentiated compo-
nent Qx that, after k − 1 differentiations, cannot yet be represented as a
function of (Px, t). Note that, by definition, Tk 6= 0 for k < µ and Tµ = 0,
cf. [7].

• To characterize the different parts of the differentiated component Px, we
further decouple G[k] in each step k and consider(

Q 0 0

G
[k]
L P G

[k]
L Q G

[k]
R

)
.

With this decoupling from [7] in mind, we consider a basis2 B
[k]
LQ−R along

im
(
G

[k]
L Q G

[k]
R

)
and finally define the orthogonal projector Vk onto

ker

(
Q

B
[k]
LQ−RG

[k]
L

)
=: im Vk.

Then Vkx represents the part of the differentiated components Px that
is not determined by the constraints resulting after k − 1 differentiations.

1Instead of a basis, any matrix W
[k]
R with kerW

[k]
R = im G

[k]
R could be used in this context,

especially a projector. According to our implementation in InitDAE, we consider a basis here.
2Again, instead of a basis, any matrix W

[k]
LQ−R with kerW

[k]
LQ−R = im G

[k]
LQ−R could be

used in this context, analogously as for B
[k]
R .

5



By definition, the degree of freedom d is rank Vµ. In accordance with our
previous work we define

Π := Vµ.

Note that, by construction, we have QVk = 0 for all k and, hence, Zk =
(P − Vk) results to be a projector:

Zk · Zk = (P − Vk)(P − Vk) = P − 2 · PVk + Vk = P − Vk = Zk.

Consequently, Zkx describes the differentiated components that are deter-
mined by constraints resulting after k−1 differentiation and, in particular,
(P − Π)x = Zµx the differentiated components that are determined by
constraints after µ− 1 differentiations.

According to Theorem 1 in [7], it holds

Tk = Q0Tk = TkQ0 = Tk−1Tk = TkTk−1, (8)

and it can be proved analogously that

Vk = P0Vk = VkP0 = Vk−1Vk = VkVk−1. (9)

Therefore, for Zk = (P − Vk), Uk := (Q − Tk), x = Px + Qx we can consider
the decoupling

Px = PZ1x+ V1Z2x+ V2Z3x+ . . .+ Vµ−2Zµ−1x+ Πx, (10)

Qx = Q0U1x+ T1U2x+ T2U3x+ . . .+ Tµ−2Uµ−1x+ Tµ−1x. (11)

Example 2. Let us consider the DAE resulting from the exothermic reactor
model (cf. [21]), also described in [2]:

C ′ = K1(C0 − C)−R,
T ′ = K1(T0 − T ) +K2R−K3(T − TC),

0 = R−K3e−
K4
T C,

0 = C − u,

where K1, K2, K3, K4 are constants, C0 and T0 are the feed reactant concen-
tration and feed temperature (assumed to be known functions). The variables C
and T are the corresponding quantities in the product, u(t) is an input function
prescribing C, R is the reaction rate per unit volume, and TC is the temperature
of the cooling medium. The corresponding projectors can be found in Table 1.
The index is three and since Π = 0, the degree of freedom is zero and no initial
values can be prescribed in this case.

4 Properties of Π

To simplify the notation, we introduce matrices N and W fulfilling

N := B
[µ]
R G

[µ]
L , kerW = im NQ, (12)
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x = (C, T,R, TC)

A Q =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

, P =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


G[1] T1 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

, V1 =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


G[2] T2 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

, V2 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


G[3] T3 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

, V3 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 =: Π

Table 1: Projectors associated with the derivative array analysis for the exother-
mic reactor model (Example 2).

where W can be an arbitrary matrix (e.g. an orthogonal basis or projector).
Consequently, the orthogonal projector Π fulfills

ker

(
Q
WN

)
= kerQ ∩ kerWN = im Π.

According to the index definition, it further holds

ker

(
P
N

)
= ker

(
Π
N

)
= {0} .

Consequently, Lemma 2 from the Appendix A.1 implies that there exists a
function ϕ4 such that

(I −Π)x = ϕ4(Πx, t). (13)

In [8], [9] we have shown that, under suitable assumptions, the constraint
optimization problem

min ‖P (z0 − α)‖2 (14)

subject to g[µ](z0, z1, . . . , zµ, t0) = 0, (15)

turns out to compute consistent initial values fulfilling

Π(z0 − α) = 0.

In this sense, the consistent initialization computed by (14)-(15) corresponds to

z0 = Πα+ ϕ4(Πα, t0).

In the following, we pursue this idea for linear DAEs in order to obtain an
associated regular ODE explicitly.
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5 Linear DAEs

In this section we consider linear DAEs with constant or time-dependent coef-
ficient matrices of the form

A(t)x′ +B(t)x = q(t), (16)

which are regular on an open finite interval I according to the definition in-
troduced in [7]. Recall that this regularity assumption also excludes so-called
harmless critical points like the one described in Example 2.71 from [17], since
we assume that all the projectors considered have constant rank. With the no-
tation from (12), the explicit and hidden constraints can then be described in
terms of

N(t)x = s(t) := B
[µ]
R (t)


q(t)
q′(t)

...
q(µ−1)(t)

 . (17)

Recall further that for linear DAEs

W (t)N(t)x = W (t)N(t)P (t)x = W (t)s(t)

represents the constraints that restrict Px. For simplicity, we will drop the
argument t in the following.

For our purposes, we basically consider the orthogonal splittings

P = PΠ + P (I −Π) = Π + (P −Π), I = Π + (I −Π)

and assume that all pseudo-inverses used below can be defined pointwise. For
a detailed discussion on the existence of time-dependent pseudo-inverses in an
analogous context we refer to [17], [19].

Note that there are some relations between Π and the projector Πµ−1 from
[17]. In fact, by definition, for index-2 DAEs I −Π results to be the orthogonal
projector along im Π1 = ker(I −Π1), i.e., ker(I −Π) = ker(I −Π1).

In the higher-index case the relationship between Π and Πµ−1 seems to be
more complex. For a better appraisal, we start comparing the definitions of
explicit ODEs related to a DAE that result from the different concepts.

5.1 On explicit ODEs associated with a DAE

In the literature, there are several explicit ODEs that are associated with a
DAEs, in particular:

• The completion ODE, or underlying ODE, is an explicit ODE for the
complete vector x that is associated with the differential index concept.
It can be extracted from the derivative array (cf., e.g., [2], [16] and the
references therein) and depends on the derivatives of q up to the order µ:

x′ = ϕc(x, q, q
′, . . . , q(µ)),

for a suitable function ϕc.
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• The inherent explicit regular ODE (IERODE) is closely related to the
tractability index concept. It is formulated for ui := Πµ−1x ∈ Rn, where
Πµ−1 is a suitably defined projector fulfilling rank Πµ−1 = d. It lives in
Rn, n ≥ d and is unique in the scope of fine decoupling (see [17], [20] and
the references therein). The projector Πµ−1 is precisely chosen such that
the IERODE does not depend on derivatives of q, i.e.,

(Πµ−1x)′ = ϕi(Πµ−1x, q), or, u′i = ϕi(ui, q),

for ui ∈ Rn and a suitable function ϕi.

• An essential underlying ODEs (EUODEs) has minimal size d (cf. [1], [20]
and the references therein). There may be several EUODEs living in a
transformed space with dimension d. EUODEs are also free of deriva-
tives of q and can be considered a condensed IERODE, cf. [20]. We will
represent EUODEs in terms of

u′e = ϕe(ue, q)

for ue ∈ Rd and a suitable function ϕe.

In this section, we consider a closely related definition of explicit ODEs:

• A projected explicit ODE (PEODE) of a DAE is an explicit ODE for-
mulated for up := Πpx ∈ Rn for a projector Πp. A PEODE lives in Rn,
n ≥ rank Πp ≥ d and may depend on derivatives of q up to the order µ:

(Πpx)′ = ϕp(Πpx, q, q
′, . . . , q(µ)),

or
u′p = ϕp(up, q, q

′, . . . , q(µ)),

for up ∈ Rn and a suitable function ϕp.

• Essential projected ODEs (EPEODEs) are corresponding condensed PE-
ODEs with minimal size rank Πp. They can also depend on derivatives of
q in general. We will represent EPEODEs in terms of

u′ep = ϕep(uep, q, q
′, . . . , q(µ))

for uep ∈ Rrank Πp and a suitable function ϕep.

Note that in this sense, completion ODEs are PEODEs for Πp = I and there-
fore also EPEODEs. Moreover, IERODEs are PEODEs for Πp = Πµ−1, while
EUODEs are the corresponding EPEODEs of dimension d.

The following Lemma generalizes Lemma 2.27 from [17] for PEODEs:

Lemma 1. Let Πp be a projector with Πp ∈ C1(I,Rn) and u ∈ C1(I,Rn) be a
solution of an ODE of the form

u′ −Π′pu+ ΠpC(t)u = Πpc(t) (18)

for suitable C(t), c(t). Then the subspace im Πp is an invariant subspace for the
ODE (18), i.e., the following assertion is valid for the solutions u ∈ C1(I,Rn) :

u(t∗) ∈ im Πp(t∗), with a certain t∗ ∈ I ⇔ u(t) ∈ im Πp(t) for all t ∈ I.
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Proof. This proof follows the steps of Lemma 2.27 in [17], which traces back to
[15]. Let ū ∈ C1(I,Rn) denote the unique solution of

ū′ −Π′p(t)ū+ Πp(t)C(t)ū = Πp(t)c(t), (19)

ū(t∗) = Πp(t∗)α (20)

for an arbitrary α ∈ Rn. If we multiply (19) and (20) by (I − Πp(t)) and
(I −Πp(t∗)), respectively, then we obtain

(I −Πp(t))ū
′ − (I −Πp(t))Π

′
p(t)ū = 0,

(I −Πp(t∗))ū(t∗) = 0.

For the function v̄ := (I −Πp)ū ∈ C1(I,Rn) with

v̄′ = (I −Πp)
′ū+ (I −Πp)Π

′
pū
′

then

0 = v̄′ − (I −Πp)
′ū− (I −Πp)Π

′
p︸ ︷︷ ︸

−(I−Πp)′Πp

ū = v̄′ − (I −Πp)
′(I −Πp)ū

and, therefore, v̄′− (I−Πp)
′v̄ = 0 and v̄(t∗) = 0 hold. Consequently, v̄ vanishes

identically, implying ū = Πpu(t).

In the following, for a given DAE we will consider a particular type of pro-
jected explicit ODE, choosing Πp = Π.

These particular PEODEs are specially relevant for the analysis of the Taylor
series method discussed in [10]. Since automatic differentiation is used there, the
higher order derivatives can perfectly be handled for sufficiently smooth DAEs.
This is a fundamental difference to other integration schemes, which require a
special treatment of these derivatives in general.

5.2 A closer look at the constraints

With the results from Appendix A.1, the constraints can be split into different
parts with regard to P (t) and Π(t).

• On the one hand, we consider the constraints for Px

WNx = Ws, (21)

which lead to

(P −Π)x = (WN)+(WN)x = (WN)+Ws. (22)

• On the other hand, we reformulate (17), obtaining

N(I −Π)x = s−NΠx.

According to Corollary 2 from the Appendix A.1, the multiplication by
(N(I −Π))+ provides the representation

(I −Π)x = (N(I −Π))
+

(s−NΠx). (23)

Note that this particularly yields

Qx = Q (N(I −Π))
+

(s−NΠx).

10



By definition, Πx is missing. On that account, we deduce a projected explicit
ODE for Πx in the following.

5.3 Obtaining a projected explicit ODE for u = Πx

Now we show how to obtain a projected explicit ODE (PEODE) for Πx in four
steps.

(i) Reformulation of the derivative with the projector P

If, for r = rank A and the SVD A = Udiag (σ1, . . . , σr, 0, . . . , 0)V T , we
define the nonsingular matrix Â by

Â = V diag (
1

σ1
, . . . ,

1

σr
, 1, . . . , 1)UT ,

then the property ÂA = P is given. Moreover, the multiplication of (16)
by Â(t) leads to the DAE

(Px)′ +B(i)x = q(i) (24)

for
B(i) := ÂB + P ′, q(i) := Âq.

(ii) Reformulation of the derivative with the projector Π

If we use equation (22) and the splitting

(Px)′ = (Πx)′ + ((P −Π)x)′,

then equation (24) leads to

(Πx)′ +B(i)x = q(ii) (25)

for
q(ii) = q(i) − ((WN)+Ws)′.

(iii) Formulation of an ODE in terms of Πx
With equation (23), in equation (25) we consider the splitting

B(i)x = B(i)(Πx+ (N(I −Π))
+

(s−NΠx)︸ ︷︷ ︸
=(I−Π)x

).

Consequently, for

B(iii) := B(i)(I − (N(I −Π))
+
N)Π,

q(iii) := q(ii) −B(i) (N(I −Π))
+
s,

we obtain the ODE

(Πx)′ +B(iii)(Πx) = q(iii). (26)
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(iv) Formulation of an invariant ODE for u = Πx
If we finally multiply (26) by Π and use (Πx)′ = (ΠΠx)′ = Π′(Πx) +
Π(Πx)′, the projected explicit ODE (PEODE)

(Πx)′ −Π′(Πx) + ΠC(t)(Πx) = Πc(t) (27)

results for

C(t) = B(iii) = (ÂB + P ′)(I − (N(I −Π))+N)Π (28)

c(t) = q(iii) = Âq − ((WN)+Ws)′ − (ÂB + P ′)(N(I −Π))+s(29)

in the invariant subspace im Π, cf. Lemma 1.

Summarizing, we have proved the following result:

Theorem 1. Let the DAE (16) be regular with index µ such that the constraints
can be described by (17) and the used pseudo-inverses exist. Then a solution
x = Πx+ (I −Π)x of the DAE can be determined

• considering an initial value problem for the ODE (27) in the invariant
subspace im Π in order to obtain Πx, and

• computing (I −Π)x afterwards according to (23).

Remark 1. In general we allow for (21) that

WNx = Ws = φ(q, . . . , q(µ−1))

and, therefore,

c(t) = ĉ(t, q, q′, . . . , q(µ)),

such that ϕp and ϕep may depend on derivatives of q up to order µ. However,
for the classes of DAEs inspected rigorously in [6], [7] we obtained Vµ = Vµ−1,
consequently Zµ = Zµ−1, and therefore

WNx = Ws = φ(q, . . . , q(µ−2))

and

c(t) = ĉ(t, q, q′, . . . , q(µ−1)).

This holds particularly for properly stated linear DAEs of index µ ≤ 2 and linear
DAEs with constant coefficient matrices with an arbitrary index. Consequently,
for these classes of DAEs, ϕp and ϕep depend on derivatives of q up to order
µ− 1.

5.4 Illustrative Examples

Example 3. We start illustrating our approach with a small index-2 example,
which is slightly more general than the one discussed in [7].

1 1 0
1 2 0
0 0 0


︸ ︷︷ ︸

A

x1

x2

x3

′ +
1 0 a

1 1 1
1 2 0


︸ ︷︷ ︸

B

x1

x2

x3

 =

q1

q2

q3

 (30)
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x = (x1, x2, x3)

A Q =

0 0 0
0 0 0
0 0 1

, P =

1 0 0
0 1 0
0 0 0


G[1] T1 =

0 0 0
0 0 0
0 0 1

, V1 = 1
5

 4 −2 0
−2 1 0
0 0 0


G[2] T2 =

0 0 0
0 0 0
0 0 0

 , V2 = 1
5

 4 −2 0
−2 1 0
0 0 0

 =: Π

Table 2: Projectors associated with the derivative array analysis for Example 3.

for functions q1(t), q2(t), q3(t) and a parameter a. According to the analysis
shown in Table 2, the differentiation index is 2 and the constraints can be de-
scribed by (

1 2 0
1 1 1

)
︸ ︷︷ ︸

=:N

x1

x2

x3

 =

(
q3

q2 − q′3

)
︸ ︷︷ ︸

=:s

.

Consequently,

NQ =

(
0 0 0
0 0 1

)
, W =

(
1 0

)
, WN = WNP =

(
1 2 0

)
,

(WN)+WN =
1

5

1
2
0

(1 2 0
)

=
1

5

1 2 0
2 4 0
0 0 0

 = (P −Π),

N(I −Π) =

(
1 2 0
3
5

6
5 1

)
, (N(I −Π))+ =


1
5 0
2
5 0

− 3
5 1

 ,

(N(I −Π))+N(I −Π) =


1
5

2
5 0

2
5

4
5 0

0 0 1

 = (I −Π),

(I − (N(I −Π))+N) =
1

5

 4 −2 0
−2 1 0
−2 1 0

 .

With

Â =

 2 −1 0
−1 1 0
0 0 1

 , ÂB =

1 −1 2 a− 1
0 1 1− a
1 2 0


the PEODE described by equation (27) reads1

5

 4 −2 0
−2 1 0
0 0 0

x

′ + (2− a)
1

5

 4 −2 0
−2 1 0
0 0 0

x =

r1

r2

r3


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for r1

r2

r3

 =

2q1 − 2aq2 − 2
5 (1− 3a) q3

−q1 + aq2 + 1
5 (1− 3a) q3

0

+

 (2a− 6
5 )

−( 3
5 − a)

0

 q′3.

Hence, an EPEODE can be formulated for uep := 2x1 − x2:

u′ep + (2− a)uep = −5r2. (31)

Once this ODE is solved, the solution of the original DAE can be computed using

(I −Π)x =
1

5

 x1 + 2x2

2x1 + 4x2

5x3

 =
1

5

 q3

2q3

q2 − q′3 − 3q3 − (2x1 − x2)

 = ϕ4(Πx, t).

For this example, the matrices defined in [17], page 23 ff., which are part of
the tractability matrix sequence, read:

G2 =

 2 a 4 a− 1 a
a+ 1 2 a+ 2 1

1 2 0

 , G−1
2 =

 2 −2 a 2 a2 − 2 a+ 1
−1 a a− a2

0 1 −a− 1

 ,

Π1 =

 2− 2 a 2− 4 a 0
a− 1 2 a− 1 0

0 0 0

 .

Consequently, for u = Π1x the IERODE reads:

u′i+

 2 a2 − 6 a+ 4 4 a2 − 10 a+ 4 0
−a2 + 3 a− 2 −2 a2 + 5 a− 2 0

0 0 0

ui =

 2 −2 a 2 a2 − 2 a+ 4
5

−1 a −a2 + a− 2
5

0 0 0

q1

q2

q3


Since it holds for ue = (a− 1)x1 + (2a− 1)x2 that

Π1x = ui =

(
−2ue
ue

)
,

it suffices to consider the EUODE

u′e + (−a2 + 3 a− 2)(−2ue) + (−2 a2 + 5 a− 2)ue = −q1 +aq2 + (−a2 +a− 2

5
)q3,

i.e.,

u′e + (2− a)ue = −q1 + aq2 + (−a2 + a− 2

5
)q3.

Note that in contrast to (31), this ODE does not depend on derivatives of the
right-hand side.

Example 4. Let us consider again Example 1. Since T3 6= 0 and T4 = 0, the
index is 4 and we obtain Π = V4, cf. Table 3. Consequently, the associated
EPEODE we obtain coincides with the one discussed in [20], [18]:

x′1 − αx1 = q1 + q2,1 − (q2,2 − (q2,4 − q′2,4)′)′.
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x = (x1, x2, x3, x4, x5)

A Q =


0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

, P =


1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



G[1] T1 =


0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

, V1 =


1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0



G[2] T2 =


0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

, V2 =


1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0



G[3] T3 =


0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

, V3 =


1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



G[4] T4 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , V4 =


1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 =: Π

Table 3: Projectors associated with the derivative array analysis for Example 4.

In contrast, according to [20], [18], with

G4 =


1 −1 α −α2 α3

0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
0 0 0 0 1

 , Π3 :=


1 0 1 −α α2

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


the EUODE (without derivatives of q) results to be

u′e − αue = q1 + q2,1 − αq2,2 + α2q2,3 − α3q2,4

for
ue = x1 + x3 − αx4 + α2x5.

Remark 2. Observe that, as expected, in Examples 3 and 4 the spectra of
the EUODE and the EPEODE coincide. This has to be given due to stability
reasons.

The discussion of a more general class of linear DAEs with constant coeffi-
cients that includes Example 4 can be found in the Appendix A.2, see Example
5.

6 Modified Nodal Analysis (MNA)

For the equations resulting in circuit simulation with the conventional MNA,
Lemma 4 permits an easy interpretation of the representation of Π described
already in [3] and the projector PQ1 given in [13].
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Using the same notation as in [13], [3], the conventional MNA for circuits
without controlled sources leads to equations of the form

ACC(ATCe, t)ACe
′ +ARr(A

T
Re, t) +ALjL +AV jV +AI i(t) = 0,

L(jL, t)j
′
L −ATLe = 0,

ATV − v(t) = 0,

for incidence matrices AC , AR, AV , AL, AI , suitable given functions C,L, r, v, i,
and the unknown functions (e, jL, jV ). If we suppose that C(ATCe, t), L(jL, t)

and G(u, t) := ∂r(u,t)
∂u are positive definite, in [3] it was shown that the projector

Π is constant and depends only on the topological properties of the network.
For the description, we merely require projectors with

im QC = kerATC , im QCRV = ker(ACARAV )T , im Q̄V−C = im ATVQC .

Analogously to [4] we define

Q :=

QC 0 0
0 0 0
0 0 I

 , T = T1 :=

QCRV 0 0
0 0 0
0 0 Q̄V−C

 ,

but assume now that these projectors are orthogonal. Due to the symmetry of
the equations we can further define

H̄1 :=

ACATC 0 0
0 I 0
0 0 0

+ (I −Q)

H1(ATCe, jL, t) :=

ACC(ATCe, t)A
T
C 0 0

0 L(jL, t) 0
0 0 0

+ (I −Q)

WN :=

 0 QTCRVAL 0
0 0 0

Q̄TV−CA
T
V 0 0

 ,

H̄2 := (WN)(WN)T + (I − T )

=

QTCRVALATLQCRV + PCRV 0 0
0 I 0
0 0 Q̄TV−CA

T
VAV Q̄V−C + P̄V−C

 ,

H2(ATCe, jL, t) := (WN)H−1
1 (ATCe, jL, t)(WN)T + (I − T ).

By construction, these matrices are nonsingular and H̄2 is symmetric such that
the projector Π described already in [3] results to be the orthogonal projector
Π, since

(WN)+(WN) = (WN)T H̄2
−1

(WN)

=

AV Q̄V−C (. . .)
−1
Q̄V−CA

T
V 0 0

0 ATLQCRV (. . .)
−1
QTCRVAL 0

0 0 0

 ,

and therefore the orthogonal projector

Π = P − (WN)T H̄2
−1

(WN)
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results to be constant. In contrast, in [13] it was shown that

Π1(ATCe, jL, t) = P −
(
H1(ATCe, jL, t)

)−1
(WN)T

(
H2(ATCe, jL, t)

)−1
(WN).

This projector is neither orthogonal nor constant. However, by construction it
holds that ker Π = ker Π1, cf. Lemma 4.

7 Summary

In the present paper, we developed a new decoupling of DAEs that was obtained
with orthogonal projectors and the derivative array.

The discussed projectors characterize the dependence of the different com-
ponents on derivatives of the right-hand side. Moreover, they turned out to be
constant for several examples from applications. Consequently, the components
can be described easily and the verification of beneficial structural properties in
the equations becomes simple. In fact, often higher-index components appear
only linearly.

The presented decoupling of linear DAEs provides a projected explicit ODE
(PEODE) that is described in terms of a specific orthogonal projector. The
consideration of this particular PEODE permits a better understanding of pro-
jected integration methods, in particular the Taylor series method described in
[10]. Further research will be conducted in this field [11].

The approach was applied to several examples, in particular to the equations
from the exothermic reactor model discussed in [21], the MNA equations and
DAEs in Kronecker canonical form. An application to the well-known index-
5 DAE of the robotic arm can be found in the article [12] in this volume.
Altogether, we illustrated that the introduced decoupling presents a valuable
tool to analyze the structure of DAEs from various fields of applications. The
algorithms for the computation were implemented in Python and are available
online, cf. [5].

A Appendix

A.1 Linear Algebra Toolbox

In this part of the appendix, we summarize some results concerning the rela-
tionship of (orthogonal) projectors and constraints.

Lemma 2. [7] Consider a pair of projectors P,Q ∈ Rn×n, P = I −Q.

1. For a matrix N ∈ Rm×n and a vector b ∈ im N , the linear system of
equations

Nz = b

uniquely determines Qz as a linear function of Pz and b iff

ker

(
P
N

)
= {0}. (32)
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2. For GL ∈ RmG×n, GR ∈ RmG×p, a projector WR along im GR, and for
b ∈ im (GL GR), the linear system of equations

(
GL GR

)(z1

z2

)
= b, z1 ∈ Rn, z2 ∈ Rp

uniquely determines Qz1 as a linear function of Pz1 and b iff, for N :=
WRGL,

ker

(
P
N

)
= {0}. (33)

A proof can be found in [7] (Lemma 1).

Theorem 2. [8] Suppose that an arbitrary matrix N ∈ Rm×n and complemen-
tary projectors Q, P := I −Q ∈ Rn×n fulfilling

ker

(
P
N

)
= {0}

are given, and that W is an arbitrary matrix with the property kerW = im NQ
such that WN = WNP . Then all projectors Π onto

ker

(
Q
WN

)
= kerQ ∩ kerWN

fulfill

ker

(
Π
N

)
= {0} .

A proof that is based on the SVD can be found in [8], cf. Theorem 3.

Lemma 3. Consider an arbitrary matrix N ∈ Rm×n and a pair of complemen-
tary orthogonal projectors Q, P := I −Q ∈ Rn×n. Then it holds(

P
NQ

)+

=
(
P (NQ)+

)
.

Proof. For r := rank (NQ), the singular value decomposition NQ = UΣV T

leads to

NQ = NQ ·Q = UΣV T ·Q = UΣ

(
Ir 0
0 0

)
V TQ = UΣ

(
Ir 0
0 0

)
V T .

Hence,(
Ir 0
0 0

)
V T =

(
Ir 0
0 0

)
V TQ and V

(
Ir 0
0 0

)
= QV

(
Ir 0
0 0

)
and

(NQ)+ = V Σ+UT = Q · V Σ+UT = Q(NQ)+,

such that

P · (NQ)+ = 0,
(
(NQ)+

)T · P = 0. (34)
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With the properties (34), the four Moore-Penrose conditions for

A :=

(
P
NQ

)
can be verified easily:

1.

AA+A =

(
P

NQ(NQ)+NQ

)
= A.

2.
A+AA+ =

(
P (NQ)+NQ(NQ)+

)
= A+.

3.

AA+ =

(
P 0
0 (NQ)(NQ)+

)
= (AA+)T .

4.
A+A = P + (NQ)+(NQ) = PT + ((NQ)+(NQ))T = (A+A)T .

Corollary 1. If, additionally to the assumptions of Lemma 3, the property

ker

(
P
N

)
= {0}

is given, then
(NQ)+NQ = Q

holds.

Proof. From

{0} = ker

(
P
N

)
= ker

(
P
NQ

)
it follows that, in the proof of Lemma 3, we have

I = A+A = P + (NQ)+(NQ)

such that (NQ)+(NQ) = Q must hold.

Corollary 2. If the assumptions of Corollary 1 are given and we consider an
arbitrary matrix Wwith the property kerW = im NQ, then, for the orthogonal
projector Π fulfilling

ker

(
Q
WN

)
= kerQ ∩ kerWN = im Π,

we have

I −Π = (N(I −Π))+N(I −Π) = (I −Π)(N(I −Π))+N(I −Π) (35)

and

I −Π = Q+ (WN)+(WN), (36)

where the latter representation implies

P −Π = (WN)+(WN).
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Proof. Since

ker

(
P
N

)
= ker

(
Π
N

)
= ker

(
Π

N(I −Π)

)
= {0} ,

property (35) follows directly from Corollary 1. Moreover, by the definition of
Π, Lemma 1 implies

I −Π =

(
Q
WN

)+(
Q
WN

)
= Q+ (WN)+(WN).

Let us now focus on some relationships used in Section 6.

Lemma 4. 1. If A is an arbitrary matrix, Q is the orthogonal projector onto
kerA, then, for any positive definite matrix C, the matrix

H1 := ATCA+Q

is nonsingular and positive definite.

2. We assume further that N is a matrix fulfilling

ker

(
P
N

)
= {0} ,

W is a matrix with kerW = im NQ, and

P −Π = (WN)+(WN).

Let further Q̃ be an orthogonal projector onto ker(WN)T . Then the matrix

H2 = (WN)H−1
1 (WN)T + Q̃

is nonsingular and positive definite.

3. Under these assumptions, the matrix

Ψ := H−1
1 (WN)TH−1

2 (WN)

is a projector fulfilling Ψ = Ψ · P and

Ψ · (P −Π) = Ψ, (P −Π) ·Ψ = (P −Π),

i.e., ker Ψ = ker(P −Π) and therefore Ψ+Ψ = (P −Π).

4. Finally, the above equations lead to

Q+ Ψ+Ψ = I −Π

and
(WN)Ψ = WN.
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Proof. 1. A slightly weaker form of this lemma was proved in [13] for a specific
application. For completeness, we give a general proof here. Let z be an
element of kerH. Then we have

(ATCA+Q)z = 0.

If we multiply this equation by Q, it results that Qz = 0. Hence,

ATCAz = 0

holds. From the positive definiteness of C it follows that Az = 0, and
therefore Pz = 0. Finally, the positive definiteness of H1 follows from

H1 =
(
AT Q

) (
C 0
0 I

)
︸ ︷︷ ︸

positive definite

(
A
Q

)
and ker

(
A
Q

)
= kerA∩kerQ = {0} .

2. The second assertion results directly for A = (WN)T , C = H−1
1 .

3. We focus now on the properties of Ψ:

(a) Let us first show that Ψ is a projector using P̃ := I − Q̃

Ψ ·Ψ = H−1
1 (WN)TH−1

2 (WN) ·H−1
1 (WN)T︸ ︷︷ ︸

P̃H2=H2P̃

H−1
2 (WN)

= H−1
1 (WN)TH−1

2 (WN) = Ψ.

(b) We finally show

Ψ · (P −Π) = H−1
1 (WN)TH−1

2 (WN) · (WN)+(WN)

= H−1
1 (WN)TH−1

2 (WN) = Ψ,

(P −Π) ·Ψ = (WN)+ (WN) ·H−1
1 (WN)T︸ ︷︷ ︸

=P̃H2

H−1
2 (WN)

= (WN)+(WN) = (P −Π).

4. The last assertions follow directly form the above representation.

With the notation of Lemma 4 and

ΠΨ := P −Ψ

we obtain the relations

ΠΨΠ = Π, Π ΠΨ = ΠΨ.

Note that in Section 6 we have shown that, for the considered index-2 DAEs,
the projector Π1 of the tractability index results to be a projector ΠΨ with these
properties.
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A.2 Examples for Linear DAEs

To facilitate the understanding of our approach, we show the differences between

• the introduced orthogonal decoupling, leading to an PEODE that involves
derivatives of the right-hand side, and

• a decoupling leading to an IERODE that precisely does not involve any
derivatives of the right-hand side

for the Kronecker Canonical Form and a slightly more general class of DAEs,
which particularly includes Example 1, 4.

A.2.1 Kronecker canonical form (KCF)

A linear differential-algebraic equation with constant coefficients and regular
matrix pair can be transformed by a premultiplication of a nonsingular matrix
and a linear coordinate change into a DAE in Kronecker canonical form (KCF),
i.e., a DAE of the form(

In1
0

0 N

)
x′ +

(
W 0
0 In2

)
x = q(t) (37)

for x(t) ∈ Rn, an arbitrary W ∈ Rn1×n1 , a nilpotent matrix N ∈ Rn2×n2 with
nilpotency-index µ, i.e., N µ−1 6= 0, N µ = 0, n = n1 +n2, and identity matrices
In1 ∈ Rn1×n1 and In2 ∈ Rn2×n2 , cf. [14]. Rewriting the equations as

x′1 +Wx1 = q1(t), (38)

Nx′2 + x2 = q2(t), (39)

for x1(t) ∈ Rn1 , x2(t) ∈ Rn2 , equation (38) corresponds to the inherent ODE
and, by a recursive approach, the so-called pure DAE corresponding to equation
(39) leads to the constraints

x2 = q2(t)−Nx′2 = q2(t)−N (q′2(t)−Nx′2) = · · · =
µ−1∑
j=0

(−1)jN jq
(j)
2 (t).

A.2.2 Π for DAEs in KCF

We consider QN := I −N+N , PN = I −QN and obtain the projectors

Q =

(
0

QN

)
, P =

(
I

PN

)
.

The Jacobian matrix (7) of the derivative array reads

G[k] =



W I
I N
W I

I N
. . .

. . .

W I
I N


=
(
G

[k]
L G

[k]
R

)
.
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For index µ DAEs, i.e., N µ = 0, a basis B
[µ]
R with kerB

[µ]
R = im G

[µ]
R is given by

B
[µ]
R =

(
0 I 0 −N 0 N 2 0 −N 3 · · · (−1)µ−1N µ−1

)
.

Therefore, according to (12), N := B
[µ]
R G

[µ]
L =

(
0 I

)
and

Π =

(
I

0

)
, B(I − (N(I −Π))+N)Π = BΠ =

(
W

0

)
,

as expected. The corresponding projectors for the tractability index concept
can be found in Section 1.2.6 from [17]. In this particular case, Π and Πµ−1

coincide and the PEODE for Πx is the IERODE as well.

A.2.3 ODEs for slightly more general DAEs

Consider the DAE(
In1

0
0 N

)
x′ +

(
W1 W2

0 In2

)
x = q(t). (40)

Analogously as above, we obtain

x2 =

µ−1∑
j=0

(−1)jN jq
(j)
2 (t).

Obtaining the PEODE for Πx corresponds to substituting this into the first
block of equations, i.e.,

x′1 +W1x1 = −W2

µ−1∑
j=0

(−1)jN jq
(j)
2 (t) + q.

In fact, it holds

G[k] =



W1 W2 I
I N
W1 W2 I

I N
. . .

. . .

W1 W2 I
I N


=
(
G

[k]
L G

[k]
R

)
.

Therefore, for the index µ DAEs, a basis B
[µ]
R with kerB

[µ]
R = im G

[µ]
R is given

again by

B
[µ]
R =

(
0 I 0 −N 0 N 2 0 −N 3 · · · (−1)µ−1N µ−1

)
.

Consequently, N , Π and BΠ are the same as above for DAEs in KCF, as ex-
pected. However, the projectors related to the tractability index concept, are
different, since the PEODE for Πx is not an IERODE.
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For illustrative reasons, we show how the IERODE can be obtained for this
particular class of DAEs without the tractability index sequence. We start
noticing that we can substitute

x2 = −Nx′2 + q2

into the first block of equations, which leads to(
In1

−W2N
0 N

)
x′ +

(
W1 0
0 In2

)
x =

(
q1 −W2q2

q2

)
.

This corresponds to a multiplication from the left-hand side by(
In1

−W2

0 In2

)
.

If we now define x1p as follows

x =

(
I W2N
0 I

)(
I −W2N
0 I

)
x︸ ︷︷ ︸

=:xp1

=

(
I W2N
0 I

)
xp1,

then we obtain (
In1

−W2N
0 N

)
x′ =

(
In1

0
0 N

)
(xp1)′

and thus(
In1

0
0 N

)
(xp1)′ +

(
W1 W1W2N
0 In2

)
x1p =

(
q1 −W2q2

q2

)
.

This procedure can be repeated if we multiply from the left-hand side by(
In1

−W1W2N
0 In2

)
to obtain(
In1

−W1W2N 2

0 N

)
(x1p)

′ +

(
W1 0
0 In2

)
x1p =

(
q1 −W2q2 −W1W2N q2

q2

)
.

If we repeat this analogously until the nilpotency index is reached, then we
obtain(
In1

0
0 N

)
(xp(µ−1))

′ +

(
W1 0
0 In2

)
xp(µ−1) =

(
q1 −

∑µ−1
j=0 (W1)jW2N jq2

q2

)

for

xp(µ−1) =

µ−1∏
j=1

(
In1

Wj−1
1 W2N j

0 In2

)
x =

(
In1

∑µ−1
j=1 W

j−1
1 W2N j

0 In2

)
x.
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Example 5. For the Examples 1 and 4 this means

W1 = (−α), W2 =
(
−1 0 0 0

)
, N =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 ,

(
q1

q2

)
=


q1

q2,1

q2,2

q2,3

q2,4

 ,

and therefore it holds(
1

µ−1∑
j=1

Wj−1
1 W2N j

)
x =

(
1 0 1 −α α2

)
x = x1 + x3 − αx4 + α2x5,

−
µ−1∑
j=0

(W1)jW2N jq2 =
(
1 −α α2 −α3

)
q2 = q2,1 − αq2,2 + α2q2,3 − α3q2,4.

Consequently, we obtain the IERODE and EUODE that are not a PEODE or
EPEODE for Πx, respectively.
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