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Abstract
The only recently developed new algorithm for computing consistent

initial values and Taylor coefficients for DAEs using projector based con-
strained optimization opens new possibilities to apply Taylor series integra-
tion methods. In this paper, we show how corresponding projected explicit
and implicit Taylor series methods can be adapted for DAEs of arbitrary
index. Owing to our formulation as a projected optimization problem con-
strained by the derivative array, no explicit description of the inherent dy-
namics is necessary and various Taylor integration schemes can be defined
straightforward. In particular, we address higher-order Padé methods that
stand out due to their stability and order properties. We further discuss sev-
eral aspects of our prototype implemented in Python using Automatic Dif-
ferentiation. The methods have been successfully tested for examples aris-
ing from multibody systems simulation and a higher-index DAE benchmark
arising from servo-constraint problems.

Keywords: Taylor series methods, DAE, differential-algebraic equation, con-
sistent initial value, index, derivative array, projector based analysis, nonlinear
constrained optimization, automatic differentiation
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1 Introduction
Higher index DAEs do not only represent integration problems, but differentia-
tion problems, too. Therefore, it seems straightforward to solve an associated
ODE with classical integration schemes and the differentiation problems using
Automatic Differentiation (AD). However, depending on the structure, both dif-
ferentiations and integrations may be intertwined in a complex manner such that
this simple idea results to be difficult to realize in general.
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In this context, different approaches have been considered for DAEs in order
to combine AD with ODE integrations schemes. By construction, the approaches
are based on corresponding index definitions and lead, therefore, to quite different
algorithms.

• In [20], [21] and the related work the structural index was used to find a
corresponding ODE.

• In [9] we used the tractabiliy matrix sequence to solve the inherent ODE for
DAEs of index up to two. The realization for higher-index DAEs seemed to
be rather complicated.

• In [13] we briefly described how an approach based on the differentiation
index defined in [10], [12] leads to an explicit Taylor series methods for
DAEs. An analysis of the corresponding projected explicit ODE can be
found in [14]. In this sense, these methods can be considered as projected
Taylor series methods.

In this paper, we analyze more general classes of the latter mentioned pro-
jected Taylor series methods. In particular, we discuss how projected implicit
Taylor series methods can be defined for DAEs, generalizing the approach from
[13]. Here we focus on the methods from [16], [3].

The main idea in this context is that the computation of Taylor coefficients
of a solution of an implicit ODE can be considered the solution of a nonlinear
system of equations. In this sense, we will see that a generalization for DAEs can
be obtained solving a nonlinear optimization problem [12]. The obtained solution
corresponds to a projected method. The advantages of this approach are obvious:

• We assume weak structural properties of the DAEs such that ODEs and
semi-explicit DAEs are simple special cases. Theoretically, we can consider
DAEs of any index.

• An explicit description of the inherent dynamics is not required for the al-
gorithmic realization.

• We can use higher-order integration schemes, also for stiff ODEs/DAEs.

The described methods were implemented in a prototype and first numerical tests
for DAEs up to index 4 and integration schemes up to order 8 were successful.

The paper is organized as follows. In Section 2 we introduce the notation for
Taylor Series and DAEs that we use and summarize the result of [12], which is
crucial for our approach.
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Explicit and fully implicit Taylor series methods of ODEs are revised in Sec-
tion 3 such that a generalization for DAEs of the approach from [13] results
straightforward.

A general description of projected Taylor series methods is given in Section 4.
Within that framework, we present how two-halfstep (TH) schemes and higher
order Padé (HOP) schemes can be applied to DAEs in Section 5.

The properties of the resulting minimization problems are discussed in Sec-
tion 6 and some practical consideration for the implementation are addressed in
Section 7.

A prototype implementation of the proposed projected methods for DAEs is
tested for several well-known examples and benchmarks from literature in Sec-
tion 8. An outlook summarizing directions for further investigations concludes
the paper.

For completeness, in the Appendix, on the one hand we summarize the stabil-
ity functions and stability regions for the considered Taylor series methods, since
they were essential for the development of HOP methods. On the other hand, we
provide the used DAE formulation of the tested examples resulting from servo-
constraint problems for multi-body systems.

2 Taylor Series and DAEs
Since we want to analyze one-step methods, we will consider the computation
of an approximation of the solution of the ODE/DAE at a time-point t j+1 if an
approximation of the solution at a time-point t j is given. Consequently, in order
to describe our method in terms of Taylor expansion coefficients, for K ∈ N we
suppose that a suitable approximation

[(c0) j,(c1) j,(c2) j, . . . ,(cK) j]≈ [x(t j),x′(t j),
1
2

x′(t j), . . . ,
1

K!
x(K)(t j)]

is given and that we look at adequate methods to compute

[(c0) j+1,(c1) j+1, . . . ,(cK) j+1]≈ [x(t j+1),x′(t j+1),
1
2

x′(t j+1), . . . ,
1

K!
x(K)(t j+1)].

If we suppose that the ODE/DAE is described by

f (x′,x, t) = 0, (1)

then, first of all, we require that

f ((c1) j,(c0) j, t j) = 0 and f ((c1) j+1,(c0) j+1, t j+1) = 0
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is fulfilled. If, more generally, we consider the derivative array
f (x′,x, t)

d
dt f (x′,x, t)
d2

dt2 f (x′,x, t)
...

dk

dtk f (x′,x, t)


for k ∈ N, then we suppose that for the corresponding function

r(c0,c1, . . . ,ck+1, t) :=


r0(c0,c1, t)

r1(c0,c1,c2, t)
...

rk(c0,c1, . . . ,ck+1, t)

 :=

 f (c1,c0, t)
...
...


it holds

r((c0) j,(c1) j,(c2) j, . . . ,(ck+1) j, t j) = 0

and
r((c0) j+1,(c1) j+1,(c2) j+1, . . . ,(ck+1) j+1, t j+1) = 0.

In practice, the function r can be provided by automatic differentiation (AD).

Let us focus on the relation between k, K, the DAE-index µ and consistent
initial values:

• If, instead of (1), we have a nonlinear equation f (x, t) and consider a deriva-
tive array r with up to the k-th derivative, then, at t0, we can compute k+1
consistent coefficients

(c0)0,(c1)0,(c2)0, . . . ,(ck)0

if k ≤ K. The coefficients ck+1, . . . ,cK will not be consistent in general,
since no equations are considered for them.

• For regular ODEs (1), if we consider a derivative array r with up to the k-th
derivative and c0 is given, then we can compute k+1 consistent coefficients

(c1)0,(c2)0,(c3)0, . . . ,(ck+1)0,

at t0, if k + 1 ≤ K. The coefficients ck+2, . . . ,cK will not be consistent in
general, since no equations for them are given.
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• For DAEs (1), if we consider a derivative array r with up to the k-th deriva-
tive and fix the free initial conditions of c0, then we may compute k+2−µ

consistent coefficients

(c0)0,(c1)0,(c2)0, . . . ,(ck+1−µ)0

if k+1≤ K, cf. [13]. The coefficients ck+2−µ , . . . ,cK will not be consistent
in general. In this case, the challenge is the appropriate fixation of the free
initial conditions.

In this paper, we assume that

ker fc1(c1,c0, t)

does not depend on (c1,c0, t) and consider the constant orthogonal projector Q
onto ker fc1 as well as the complementary orthogonal projector P := I−Q. There-
fore, the Taylor coefficients of Px(t) at t j correspond to

[P(c0) j,P(c1) j,P(c2) j, . . . ,P(cK) j].

Recall further that according to [12] the optimization problem

min
∥∥P
(
(c0)(0)− x0

)∥∥
2

subject to r((c0)0,(c1)0,(c2)0, . . . ,(ck+1)0, t0) = 0,

provides consistent initial values. In terms of [11], this minimization problem is
equivalent to the system of equations

Π
(
(c0)(0)− x0

)
= 0, (2)

r((c0)0,(c1)0,(c2)0, . . . ,(ck+1)0, t0) = 0, (3)

where Π describes an appropriate orthogonal projector and the rank of Π coincides
with the degree of freedom of the DAE.

Example 1. Consider the index-4 DAE
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

x′+


1 1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

x =


0
0
0
0
et

 , x =


Ce−t− et

2
−et

et

−et

et

 (4)
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x1 x2 x3 x4 x5

x∗(0) 1.00000000e+00 -1.00000000e+00 1.00000000e+00 -1.00000000e+00 1.00000000e+00
x′∗(0) -4.09190611e-15 -1.00000000e+00 1.00000000e+00 -1.00000000e+00 1.00000000e+00

1
2 x′′∗(0) 5.00000000e-01 -4.76883765e-02 5.00000000e-01 -5.00000000e-01 5.00000000e-01
1
3! x′′′∗ (0) -1.50770541e-01 8.66099724e-03 1.58961255e-02 -1.66666667e-01 1.66666667e-01
1
4! x(iv)∗ (0) 3.55273860e-02 -1.31582911e-03 -2.16524931e-03 -3.97403138e-03 4.16666667e-02
1
5! x(v)∗ (0) -6.84231137e-03 0.00000000e+00 2.63165822e-04 4.33049862e-04 7.94806275e-04

Table 1: Numerical solution of the initialization problem for system (4) from
Example 1 for t0 = 0 and α = [1,0,0,0,0] using Taylor coefficients with k = 4,
K = 5. The framed values are not consistent.

with the general solution

x =


Ce−t− et

2
−et

et

−et

et

 .

The corresponding projectors read

P =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

 , Π =


1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 .

According to the notation introduced in [14], the associated essential projected
ODE reads

x′1 + x1 = et . (5)

For the initial value x1(0) = 1, the solution is x1(t) = cosh(t). In Table 1 we
present the results of the computation of consistent initial values with InitDAE
[8].

In [14], it is shown how this orthogonal projector Π can be used to decouple
linear DAEs such that a projected explicit ODE for the component Πx is obtained.
Therefore, the numerical solution delivered by the methods defined in the follow-
ing corresponds to

• the numerical solution obtained by Taylor series methods applied to the
projected explicit ODE for Πx, and

• corresponding values for the components (I−Π)x that result from the val-
ues for Πx and the derivative array .
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Due to the formulation as an optimization problem, the inherent dynamics of the
DAE that can be expressed in terms of Πx is not considered explicitly, but im-
plicitly. Therefore, the stability and order properties of the integration methods
defined below can be transferred straightforward from ODEs to DAEs.

3 Projected Explicit and Fully Implicit Taylor Se-
ries Methods for DAEs

Since our focus is on the formulation of methods for DAEs, we start rewriting
the methods for ODEs in such a way, that the generalization for DAEs results
straightforward.

3.1 Explicit Taylor Series Method for ODEs
In terms of the above notation, the explicit Taylor series method corresponds to
the steps:

• Initialization: Solve the system of equations

(c0)(0)− x0 = 0, (6)
r((c0)0,(c1)0,(c2)0, . . . ,(ck+1)0, t0) = 0. (7)

• For time-points t j+1, j ≥ 0, h j = t j+1− t j: Solve the systems of equations

(c0)( j+1)−
ke

∑
`=0

(c`) jh`j︸ ︷︷ ︸
≈x(t j+h j)

= 0, (8)

r((c0) j+1,(c1) j+1,(c2) j+1, . . . ,(ck+1) j+1, t j+1) = 0, (9)

successively for ke ≤ k+1, where ke determines the order.

This method is called explicit, since equation (8) is an explicit equation for (c0) j+1
that does not involve any value (c`) j+1 for `≥ 1.

3.2 Explicit Taylor Series Method for DAEs
According to [13], a generalization for DAEs reads:

• Initialization: Solve the optimization problem

min
∥∥P
(
(c0)(0)− x0

)∥∥
2 (10)

subject to r((c0)0,(c1)0,(c2)0, . . . ,(ck+1)0, t0) = 0. (11)

7



• For time-points t j+1, j ≥ 0, h j = t j+1− t j: Solve the optimization problems

min

∥∥∥∥∥P

(
(c0)( j+1)−

ke

∑
`=0

(c`) jh`j

)∥∥∥∥∥
2

,

subject to r((c0) j+1,(c1) j+1,(c2) j+1, . . . ,(ck+1) j+1, t j+1) = 0,

successively for ke ≤ k+1−µ , where ke determines the order.

In contrast to explicit ODEs, with this approach we always have to solve non-
linear systems of equations. Therefore, it seems reasonable to consider also im-
plicit Taylor approximations in the integration scheme.

3.3 Fully Implicit Taylor Series Methods for ODEs
According to [16], among others, the implicit counterpart of the explicit Taylor
series method for ODEs consists, at last, in the following steps.

• Initialization: See Section 3.1, equations (6)-(7).

• For time-points t j+1, j ≥ 0, h j = t j+1− t j: Solve the systems of equations
ki

∑
`=0

(c`) j+1(−h j)
`

︸ ︷︷ ︸
≈x(t j+1−h j)

−(c0)( j) = 0, (12)

r((c0) j+1,(c1) j+1,(c2) j+1, . . . ,(ck) j+1, t j+1) = 0, (13)

successively for ki ≤ k+1, where ki determines the order.

3.4 Fully Implicit Taylor Series Methods for DAEs
For DAEs, the generalization results now straightforward:

• Initialization: See Section 3.2, equations (10)-(11).

• For time-points t j+1, j ≥ 0, h j = t j+1− t j: Solve the optimization problems

min

∥∥∥∥∥P

(
ki

∑
`=0

(c`) j+1(−h j)
`− (c0)( j)

)∥∥∥∥∥
2

(14)

subject to r((c0) j+1,(c1) j+1,(c2) j+1, . . . ,(ck) j+1, t j+1) = 0, (15)

successively for ki ≤ k+1−µ , where ki determines the order.

Obviously, if, instead of (12) and (14), more general conditions are defined,
then the computational costs will be comparable as long as the dimension of the
system remains equal. Therefore, it seems natural to search for more general
schemes with better convergence and stability properties.
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4 General Definition of Explicit/Implicit Methods
Note that P = I holds for ODEs and that in all formulations from above the con-
straints of the optimization problems are identical. Therefore, in order to char-
acterize different methods, for the time-points t j, t j+1, we merely consider the
corresponding objective function in terms of

p
(
(c0) j+1, . . . ,(cki) j+1

)
:= P

(
ki

∑
`i=0

ω
i
`i
(c`i)( j+1)

(
−h j

)`i−
ke

∑
`e=0

ω
e
`e
(c`e)( j)

(
h j
)`e

)

for suitable weights ωe
`e
,ω i

`i
and ke,ki ≥ 0. Consequently, it suffices to assert

min
∥∥p
(
(c0) j+1,(c1) j+1,(c2) j+1, . . . ,(cki) j+1

)∥∥
2 (16)

subject to r((c0) j+1,(c1) j+1,(c2) j+1, . . . ,(ck) j+1, t j+1) = 0. (17)

for the corresponding function p.
With this notation, the explicit and the fully implicit Taylor series methods

from Section 3 can be characterized as follows:

• Explicit: ke ≥ 1, ωe
`e
= 1 for 0≤ `e ≤ ke, ki = 0, ω i

0 = 1.

• Fully Implicit: ki ≥ 1, ω i
`e
= 1 for 0≤ `i ≤ ki, ke = 0, ωe

0 = 1.

In general terms, any method with ki ≥ 1 can be considered as implicit method.

5 Two-halfstep and HOP schemes
In this section, we describe two types of known Taylor schemes for ODEs. The
first ones are very simple and illustrative, the second ones slightly more sophisti-
cated and optimal.

5.1 Two-halfstep Explicit/Implicit (TH) Schemes
One straightforward combination of the explicit and implicit integration schemes
is to approximate x(t j +σh j) = x(t j+1− (1−σ)h j) for 0≤ σ ≤ 1 as follows

x(t j +σh j) ≈
ke

∑
`e=0

(c`e)( j)
(
σh j

)`e , (18)

x(t j+1− (1−σ)h j) ≈
ki

∑
`i=0

(c`i)( j+1)
(
−(1−σ)h j

)`i , (19)
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and equalize the expressions from both right-hand sides. The properties of the
methods (18)-(19) are described in [16]. The choice σ = 1

2 , which can be inter-
preted as a generalization of the trapezoidal rule, turns out to be convenient. For
ke = ki, σ = 1

2 , it coincides with the one tested in [1], [5].

Remark 1. Note that another closely related implicit/explicit scheme is described
in the literature, too. This means that the first step is implicit and the second
one explicit, in contrast to the approach from above. According to the extensive
analysis from [22], σ = 1

2 is convenient also in that case. However, these meth-
ods are less suitable for our DAE-scheme since the Taylor coefficients would be
considered at t j +σh j, whereas the constraints have to be fulfilled at t j+1.

In the notation from Section 4, choosing σ = 1
2 in (18)-(19) means to consider

p :=P

(
ki

∑
`i=0

(c`i)( j+1)

(
−

h j

2

)`i

−
ke

∑
`e=0

(c`e)( j)

(
h j

2

)`e
)

(20)

for 0≤ ke,ki ≤ k+1−µ , i.e.,

ω
e
`e
=

(
1
2

)`e

, `e = 0, . . . ,ke, ω
i
`i
=

(
1
2

)`i

, `i = 0, . . . ,ki.

For shortness, we denote these two-halfstep methods by (ke,ki)-TH.

Recall that, in general, the stability function R(z) (cf. Appendix A) of a (ke,ki)-
TH method is not a Padé approximation of the exponential function such that the
maximally achievable order is not given in general. Therefore, further higher-
order schemes for stiff ODEs have been developed, namely the HOP-methods
described in [3].

5.2 Higher Order Padé (HOP) Methods
According to [3], HOP may be interpreted as Hermite-Obrechkoff-Padé or sim-
ple Higher-Order Padé. These schemes may be viewed as implicit Taylor series
methods based on Hermite quadratures.

In our notation, a (ke,ki)-HOP scheme means choosing

ω
e
`e

:=
ke!(ke + ki− `e)!
(ke + ki)!(ke− `e)!

, `e = 0, . . . ,ke,

ω
i
`i

:=
ki!(ke + ki− `i)!
(ke + ki)!(ki− `i)!

, `i = 0, . . . ,ki.
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These coefficients correspond to the (ke,ki)-Padé approximation of the exponen-
tial function such that R(z) is optimal, see Appendix A.

(ke,ki)-HOP methods have the following properties, cf. [3]:

• the order of consistency is ke + ki,

• the order of the local error is ke + ki +1,

• they are A-stable for ki−2≤ ke ≤ ki,

• they are L-stable for ki−2≤ ke ≤ ki−1.

Note that also in this case the trapezoidal rule corresponds to ke = ki = 1 and the
implicit Euler method to ke = 0, ki = 1. In this sense, the methods with ke = ki
could be viewed as a generalization of the trapezoidal rule and those with ke =
ki−1 as a generalization of the implicit Euler method, cf. [3].

In Section 8 we numerically verify the outstanding properties of these meth-
ods.

6 Properties of the Minimization Problems
In [12] we analyzed the properties of the minimization problem obtained when
computing consistent initial values. That analysis can directly be applied to the
explicit Taylor series method, cf. [13]. To appreciate the properties for implicit
methods (i.e. ki > 0), we define, for k ≥max{ke,ki}, the matrices

T e :=
(
Pωe

0 Pωe
1h j Pω i

2h2
j . . . Pω i

khk
j
)

T i :=
(
Pω i

0 Pω i
1(−h j) Pω i

2h2
j . . . Pω i

k(−h j)
k) ,

assuming ωli = 0 for li > ki and ωle = 0 for le > ke and the vectors

X j =
(
(c0) j, . . . ,(ck) j

)
, X j+1 =

(
(c0) j+1, . . . ,(ck) j+1

)
.

With this notation, we obtain

p := P

(
ki

∑
`i=0

ω
i
`i
(c`i)( j+1)

(
−h j

)`i−
ke

∑
`e=0

ω
e
`e
(c`e)( j)

(
h j
)`e

)
= T iX j+1−T eX j.
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Therefore, analogous to [12], for α := T eX j, X := X j+1, we consider the objective
function

f (X) :=
1
2

∥∥T iX−α
∥∥2

=
1
2

∥∥P(T iX−α)
∥∥2

=
1
2
(T iX−α)T P(T iX−α)

=
1
2
(
XT (T i)T PT iX−2α

T PX +α
T Pα

)
.

Observe that the matrix

P̃i := (T i)T PT i = (T i)T T i

=


P(ω i

0)
2 Pω i

0ω i
1(−h j)

2 . . . Pω i
0ω i

k(−h j)
k

Pω i
0ω i

1(−h j)
2

...
Pω i

0ω i
k(−h j)

k Pω i
1ω i

k(−h j)
k+1 . . . P(ω i

k)
2(−h j)

2k



=


P(ω i

0)
2 . . . Pω i

0ω i
ki
(−h j)

ki 0
...

...
Pω i

0ω i
ki
(−h j)

ki . . . P(ω i
ki
)2(−h j)

2ki

0 . . . 0

 ∈ Rn·(k+1)×n·(k+1)

is, by construction, positive semi-definite. However, it is not an orthogonal pro-
jector in general. Therefore, Theorem 1 and Corollary 1 of [12] cannot be applied
directly. Hence, the solvability of the optimization problem results to be more dif-
ficult to be guaranteed than for explicit Taylor methods. More precisely, we want
to emphasize that, for

P̃ :=
(

P 0
0 0

)
∈ Rn·(k+1)×n·(k+1),

the nullspaces

ker
(

P̃i GT

G 0

)
and ker

(
P̃ GT

G 0

)
may be different. However, since P̃i depends on h j, it is reasonable to assume that
a suitable stepsize h j can be found such that the optimization problem becomes
solvable in the sense discussed in [12]. Nevertheless, the DAE index and the
condition number to monitor singularities should not be computed using P̃i.
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7 Some Practical Considerations

7.1 Dimension of the Nonlinear Systems Solved in Each Step
For a given K ∈N, the Lagrange approach for solving (16) - (17) leads to a nonlin-
ear system of equations of the dimension 2n ·(K+1), cf. [12]. Thereby, consistent
coefficients

(c0) j+1,(c1) j+1,(c2) j+1, . . . ,(cK−µ) j+1

are obtained. In contrast, the coefficients cK−µ+1, . . . ,cK will not be consistent in
general and the Lagrange-parameters are not even of interest.

However, increasing K by one means solving a nonlinear system containing
2n additional variables and equations.

7.2 Setting ke and ki in a Simple Implementation
Dealing with automatic differentiation (AD), the number K ∈ N has to be pre-
scribed a priori in order to consider (K+1) Taylor coefficients. Since 0≤ ke,ki ≤
k+ 1− µ and k+ 1 ≤ K must be given in general, for the (ke,ki) TH and HOP
methods, we set

ki := K−µ and ke := ki,

by default. We further tested ki :=K−µ , ke := ki−1 for HOP methods. Therefore
we determine the index µ using InitDAE [13]. So far, we considered schemes with
constant order and step-size only.

7.3 Jacobian Matrices
To solve the optimization problem (16)-(17) numerically, we provide the corre-
sponding Jacobians.

• The Jacobian of the constraints (17) is described in [13], since it is also used
for the computation of consistent initial values.

• To describe the Jacobian of the objective function (16), which is a gradient,
we define

q
(
(c0) j+1, . . . ,(cki) j+1

)
:=
∥∥p
(
(c0) j+1, . . . ,(cki) j+1

)∥∥
2

and realize that

∂q
∂ (c`i) j+1

=
1

q
(
(c0) j+1, . . . ,(cki) j+1

) (p
(
(c0) j+1, . . . ,(cki) j+1

))T ·ω i
`i
·
(
−h j

)`i ,

for q 6= 0.
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8 Numerical Tests

8.1 Order Validation
To visualize the order of the methods, we integrate Example 1 in the interval [0,1]
with different step-sizes. The results can be found in Figure 1. On the left-hand
side, we show the results for the index-4 DAE. On the right-hand side, we report
the results obtained for the corresponding ODE described in equation (5).

Summarizing, we observe that:

• For ki,ke ≤ 1, the methods coincide with the explicit and implicit Euler
methods or the trapezoidal rule. Therefore, the graphs coincide up to effects
resulting from rounding errors.

• The similarity of the overall behavior for the DAE and the ODE is awesome.

• As expected, the HOP methods are considerably more accurate due to the
higher order.

• For small h and large ke,ki, scaling and rounding errors impede more accu-
rate results in dependence of the tolerance ftol from the module minimize
from SciPy.

8.2 Examples from the Literature
We further report numerical results obtained by the methods (3,3)-HOP and (4,4)-
HOP for the following examples from the literature:

• Mass-on-car from [23], see Appendix, Section B.1,

• Extended mass-on-car from [19], see Appendix, Section B.2,

• Pendulum index 3, which can be found in almost all introductions to DAEs,
for m = 1.0, l = 1.0, and g = 1.0,

• Car axis index 3 formulation with all parameters as given in [17]. In order
to avoid a disadvantageous scaling of the Taylor coefficients, we changed
the independent variable t to τ = 10 t as described in [13].

For all examples we used ftol for the tolerance of the module minimize from
SciPy. To estimate the error, we considered the difference between the results
obtained by (3,3)-HOP and (4,4)-HOP.
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Figure 1: Stepsize-error diagram for the error |x1(1)− cosh(1)| for the DAE (left)
and the essential ODE (right) corresponding to Example 1 for different methods
and ftol for the module minimize from SciPy. For ke, ki=2 we included graphs of
Chp for p = 2,3,4 to appreciate the order of the methods. The first value obtained
for the DAE-formulation with the (2,2)-HOP-method for K = 6 and large h seems
to be very accurate by chance.
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No. Example Dimension Index rank Π Linear or not
1. Mass-on-car 5 3 2 l
2. Extended mass-on-car 7 4 3 l
3. Pendulum 5 3 2 nl
4. Car axis 10 3 4 nl

Table 2: Overview of the examples

Time (s) Time (s)
No. Interval K ki = ke h (3,3)-HOP (4,4)-HOP
1. 0-10 6 / 7 3 / 4 0.025 55.3 80.7
2. 0-20 7 / 8 3 / 4 0.1 154.4 131.7
3. 0-20 6 / 7 3 / 4 0.1 43.7 50.9
4. 0-30 6 / 7 3 / 4 0.025 411.2 201.8

Table 3: Overview of the computations carried out for Figure 2. The CPU Time
based on a computation with a 2.3 GHz processor.

All tests confirmed the applicability of the method and the results satisfy the
expected accuracy. The solution graphs look identical with those given in the
literature. The graphs of the estimated errors confirm the order expectations.

Since it is obvious that our implementation is not competitive with respect to
runtime, we have not made a systematic comparison with other solvers here.

9 Summary and Future Work
In this article, we presented a projection approach that permits the extension of
explicit/implicit Taylor integrations from ODEs to DAEs. As a result, we obtained
higher-order methods that can directly be applied also to higher-index DAEs. The
methods are easy to implement and convenient since, thanks to the formulation
as an optimization problem, the inherent dynamics of the DAE are considered
indirectly. We analysed in detail explicit, fully implicit, two-halfstep (TH) and
higher-order-Padé (HOP) methods. Particularly HOP methods present excellent
stability and order properties.

The results obtained by a prototype in Python that is based on InitDAE [8]
outperform our expectations, in particular for higher-index DAEs. Until now, our
focus was on the extension from ODEs to DAEs in order to use higher-order and
A-stable methods in InitDAE for our diagnosis purposes during the integration
[13]. With this promising first results, we think that more investigations on these
projected methods are worthwhile.
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Figure 2: Numerical solutions of the examples from Section 8.2 obtained by (4,4)-
HOP (left) and estimation of the error (right) considering the difference between
the solution from (3,3)-HOP and (4,4)-HOP.
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In fact, at present, our implementation is not competitive by far. One reason
is that setting up the nonlinear equations (16)-(17) and the corresponding Jaco-
bians with AlgoPy, cf. [24], is still very costly. If equations (16)-(17) and the
corresponding Jacobians are supplied in a more efficient way, competitive solvers
might be achieved. In particular, this seems likely if we take advantage of struc-
tural properties, e.g., solving subsystems step-by-step, cf. [6], [7]. Another reason
is that the package minimize from SciPy performs more iterations than we ex-
pected (often more than 30), although a good initial guess is given in general.
This behaviour has to be inspected in more detail. For linear systems, a direct im-
plementation considering the projector Π from equation (2) (or, more precisely, a
corresponding basis) should deliver an efficient algorithm. This could be of inter-
est, e.g. for the applications from [19], [23]. Last but not least, competitive solvers
require adaptive order and stepsize strategies - a broad field for future work.

Although these algorithms open new possibilities to integrate higher-index
DAEs, we want to emphasize that, in practice, a high index is often due to mod-
elling assumptions that should be considered very carefully. The dependencies on
higher derivatives should always be well-founded.

A Stability Functions and Stability Regions of Tay-
lor Series Methods

A.1 Stability Functions
The general definition (16)-(17) allows for a straightforward description of the
stability function. Applied to ODEs (and therefore P = I), the stability function
R : C→ C results if we consider the test-ODE

y′ = λy, y(0) = y0, λ ∈ C, (21)

and describe the numerical method for constant h = h j in terms of

y j+1 = R(hλ )y j.

For ODEs, the methods described in Section 4 imply

ki

∑
`i=0

ω
i
`i
(c`i)( j+1)

(
−h j

)`i =
ke

∑
`e=0

ω
e
`e
(c`e)( j)

(
h j
)`e

and, for the test-equation (21), we obtain from

(c`i) j+1 = λ
`i(ci0) j+1 =

λ `i

`i!
y j+1 and (c`e) j = λ

`e(c0e) j =
λ `e

`e!
y j
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Figure 3: Colored representation of the stability regions S for explicit (top) and
fully implicit (bottom) Taylor series methods up to order 6.

the relationship(
ki

∑
`i=0

ω
i
`i

λ `i

`i!
(
−h j

)`i

)
y j+1 =

(
ke

∑
`e=0

ω
e
`e

λ `e

`e!
(
h j
)`e

)
y j,

i.e., for z ∈ C

R(z) =

ke
∑

`e=0

1
`e!ω

e
`e

z`

ki
∑

`i=0
(−1)`i 1

`i!
ω i
`i

z`
.

A.2 Stability Regions
The corresponding stability regions can thus be characterized by

S := { z ∈ C : |R(z)| ≤ 1}=

{
z ∈ C :

∣∣∣∣∣ ke

∑
`e=0

1
`e!

ω
e
`e

z`
∣∣∣∣∣≤
∣∣∣∣∣ ki

∑
`i=0

(−1)`i
1
`i!

ω
i
`i

z`
∣∣∣∣∣
}
.

For the methods discussed in this article we obtain

• Explicit Taylor:

RE
ke,0(z) =

ke

∑
`e=0

z`e

`e!
.

The corresponding stability regions are illustrated in Figure 3 (top), cf. also
[2], [15].
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• Fully Implicit Taylor:

RFI
0,ki

(z) =
1

∑
ki
`i=0(−1)`i

z`i
`i!

.

The corresponding stability regions are illustrated in Figure 3 (bottom).

• For the two-halfstep explicit/implicit schemes (20) we obtain:

RT H
ke,ki

(z) =

ke
∑

`e=0

1
`e!

( z
2

)`e

ki
∑

`i=0

1
`i!

(
− z

2

)`i

.

The corresponding stability regions for ke,ki = 0, . . . ,6 are represented in
Figure 4. Note that symmetry is due to

RT H
ke,ki

(−z) =
1

RT H
ki,ke

(z)
. (22)

The schemes with ke ≤ ki seem to be A-stable or A(α)-stable for moder-
ate α . Indeed, according to [1], [5], the schemes provide good results for
Hamiltonian systems if ke = ki. Furthermore, A-stable schemes with ke < ki
are L-stable, since

lim
z→−∞

∣∣RT H
ke,ki

(z)
∣∣= 0 for ke < ki.

• For HOP-methods, from

ω
e
`e

:=
ke!(ke + ki− `e)!
(ke + ki)!(ke− `e)!

, `e = 0, . . . ,ke

ω
i
`i

:=
ki!(ke + ki− `i)!
(ke + ki)!(ki− `i)!

, `i = 0, . . . ,ki

we obtain

RHOP
ke,ki

(z) =
ke!
ki!

ke
∑

`e=0

1
`e!

(ke+ki−`e)!
(ke−`e)!

z`

ki
∑

`i=0
(−1)`i 1

`i!
(ke+ki−`i)!
(ki−`i)!

z`
. (23)
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Figure 4: Colored representation of the stability regions S of two-halfstep schemes
considering Rke,ki for all combinations of ke,ki = 0, . . . ,6, where ke corresponds to
the rows and ki to the columns. The symmetry results form (22). We can realize
that, for ki = ke = 5,6, they are not A-stable. This contradicts the statement in
[16].
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Figure 5: Colored representation of the stability regions S of HOP-methods con-
sidering Rke,ki for all combinations of ke,ki = 0, . . . ,6, where ke corresponds to
the rows and ki to the columns. The symmetry results form (24). For ke = ki, we
observe S = C−.
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Moreover, analogously as before, we have

RHOP
ke,ki

(−z) =
1

RHOP
ki,ke

(z)
. (24)

Therefore, in Figure 5 we obtain again symmetric stability regions that are
in accordance with the stability properties reported in Section 5.2.

Since we obtained (22) and (24) for TH and HOP methods with k = ke = ki ,
it holds for these methods that

1 = Rk,k(it)Rk,k(−it) = Rk,k(it)Rk,k(it) =
∣∣Rk,k(it)

∣∣ for all t ∈ R.

According to Lemma 6.20 from [4] and to the representations of the stability
regions from Figure 4, RT H

k,k seems to have poles in C− in general.

B Linear Examples from Section 8.2
The following two examples, wich result from servo-constraint problems for multi-
body systems, are linear DAEs of the form

Ax′+Bx = q.

B.1 Example: Mass-on-Car
The DAE resulting from the spring-mass system mounted on a car from [23] cor-
responds to

A =


1 0 0 0 0
0 1 0 0 0
0 0 m1 +m2 m2 cos(α) 0
0 0 m2 cos(α) m2 0
0 0 0 0 0

 ,

B =


0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1
0 k 0 d 0
1 cos(α) 0 0 0

 , q =


0
0
0
0
yd

 ,

for x = (x1,s,vx1 ,vs,F). We used the parameters m1 = 1.0, m2 = 2.0, k = 5.0,
d = 1.0, α = 5

180π . yd is a predefined trajectory for the position of the mass m2
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and reads

yd(t) =



y0 +

(
126

(
t

tmax

)5
−420

(
t

tmax

)6
+540

(
t

tmax

)7

−315
(

t
tmax

)8
+70

(
t

tmax

)9
)
· (y f − y0)

for 0≤ t ≤ tmax

y f for t ≥ tmax

for y0 = 0.5, y f = 2.5, tmax = 6.0.
For 0 < α < π

2 , the DAE-index is 3 and the projector Π from equation (2)
reads

Π =
1

1+ cos2(α)


cos(α)2 −cos(α) 0 0 0
−cos(α) 1 0 0 0

0 0 cos(α)2 −cos(α) 0
0 0 −cos(α) 1 0
0 0 0 0 0

 ,

i.e., it depends on α only and is independent of the other parameters.

B.2 Example: Extended Mass-on-Car System
The DAE resulting from the extension of the mass-on car systems described in
[19] corresponds to

A =



1
1

1
m1 +m2 +m3 m2 +m3 m3 cosα

m2 +m3 m2 +m3 m3 cosα

m3 cosα m3 cosα m3
0


,

B =



1
1

1
−1

k1 d1
k2 d2

1 1 cosα


, q =



0
0
0
0
0
0

zd(t)


,
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for x = (x1,s1,s2,vx1 ,vs1,vs2,F) and with

zd(t) =



z0 +

(
−3432

(
t

tmax

)15
+25740

(
t

tmax

)14
−83160

(
t

tmax

)13

+150150
(

t
tmax

)12
−163800

(
t

tmax

)11
+108108

(
t

tmax

)10

−40040
(

t
tmax

)9
+6435

(
t

tmax

)8
)
(z f − z0)

for 0≤ t ≤ tmax,

z f for t ≥ tmax,

for z0 = 1.0, z f = 4.0, tmax = 15.0, according to [18]. We used the parameters
m1 = 1.0, m2 = 1.0, m3 = 2.0, k1 = 5.0, k2 = 5.0, d1 = 1.0, d2 = 1.0, α = π

4 . In
this case, the index (and therefore also the rank and shape of Π) depends on the
parameters α , d1 and d2.
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[10] D. Estévez Schwarz and R. Lamour. A new projector based decoupling of
linear DAEs for monitoring singularities. Numer. Algorithms, 73(2):535–
565, 2016.
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