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Abstract. We give elements towards the classication of quantum Airy structures based on the𝑊 (𝔤𝔩𝑟 )-
algebras at self-dual level based on twisted modules of the Heisenberg VOA of 𝔤𝔩𝑟 for twists by arbitrary
elements of the Weyl group𝔖𝑟 . In particular, we construct a large class of such quantum Airy structures.
We show that the system of linear ODEs forming the quantum Airy structure and determining uniquely
its partition function is equivalent to a topological recursion à la Chekhov–Eynard–Orantin on singular
spectral curves. In particular, our work extends the denition of the Bouchard–Eynard topological
recursion (valid for smooth curves) to a large class of singular curves, and indicates impossibilities to
extend naively the denition to other types of singularities. We also discuss relations to intersection
theory on moduli spaces of curves and give precise conjectures for application in open 𝑟 -spin intersection
theory.
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1 Introduction

Introduced by Kontsevich and Soibelman in [KS18], Airy structures consist of a system of linear
PDEs depending on a parameter ℏ and satisfying a compatibility condition, so that they admit a
simultaneous solution which is unique when properly normalised. This solution is called “partition
function” and is encoded in Taylor coecients 𝐹𝑔,𝑛 indexed by integers 𝑛 ≥ 1 and (half-)integers
𝑔 ≥ 0, which are determined by a topological recursion, i.e. a recursion on 2𝑔 − 2 + 𝑛. The interest in
Airy structures comes from the numerous applications of the topological recursion in enumerative
geometry, see e.g. [Eyn14a].

The purpose of Part I of this work is to construct new Airy structures from representations of
theW(𝔤𝔩𝑟 )-algebra. The latter is realised as a sub-VOA of the Heisenberg VOA FC𝑟 . Twisting the
free eld representation of FC𝑟 by an arbitrary element of the Weyl group 𝜎 ∈ 𝔖𝑟 gives rise to an
(untwisted) representation ofW(𝔤𝔩𝑟 ). Applying a “dilaton shift”, [BBCCN18] constructed all the Airy
structures that can arise when 𝜎 is an 𝑟 -cycle or an (𝑟 − 1)-cycle. Our work explores the possibility of
constructing Airy structures from arbitrary 𝜎 ∈ 𝔖𝑟 : we will obtain in Theorem 2.11 conditions on 𝜎
and the dilaton shifts that are sucient for the success of this construction. This gives rise to many
new Airy structures and thus partition functions, for which it would be desirable to nd enumerative
interpretations. This approach and the result are presented in Section 2 while Section 3 is devoted to
the proof of the main Theorem 2.11.

In Part II, we show that the topological recursion for all these Airy structures can be equivalently
formulated via residue (hence, period) computations on possibly singular spectral curves. Roughly
speaking, a spectral curve is a branched cover of complex curves 𝑥 : 𝐶 → 𝐶0 equipped with a
meromorphic function 𝑦 and a bidierential 𝜔0,2 on 𝐶2. The original formulation of the topological
recursion, with a spectral curve as input, was developed by Chekhov, Eynard and Orantin [EO07;
EO09] in the case of smooth curves with simple ramications. The output of this CEO recursion is
a family of multidierentials 𝜔𝑔,𝑛 on 𝐶𝑛 that have poles at ramication points of 𝑥 , are symmetric
under permutation of the 𝑛 copies of 𝐶 , and obtained recursively by residue computations on 𝐶 . As
observed already in [EO09] and revisited by [KS18; ABCO17], the corresponding Airy structure is
based on the Virasoro algebra and related to theW(𝔤𝔩2)-algebra; for each 𝑔, 𝑛, 𝐹𝑔,𝑛 or 𝜔𝑔,𝑛 contain
the same information packaged in a dierent way. The denition of the CEO topological recursion
was extended in [BHLMR14; BE13] to smooth curves with higher order ramication points, and its
correspondence withW(𝔤𝔩𝑟 )-Airy structures when 𝜎 is an 𝑟 -cycle was established in [BBCCN18]. An
important application of this correspondence is a conceptual proof of symmetry of the 𝜔𝑔,𝑛 based on
representation theory ofW-algebras. This led the discovery of a non-trivial criterion on the order of
𝑦 at ramication points for the symmetry to hold. From [BHLMR14], it is easy to propose a denition
of the CEO recursion also valid for singular spectral curves (see Equation (73)), i.e. if 𝐶 has several
irreducible components intersecting at ramication points of arbitrary order. It is however unclear
(and in fact not always true) that this denition leads to symmetric 𝜔𝑔,𝑛 .

In Proposition 5.18 and Theorem 5.23, we show that this denition naturally arises from theW(𝔤𝔩𝑟 )-
Airy structures with arbitrary permutation 𝜎 encoded the ramication prole over a branchpoint in
a normalisation of 𝐶 , and dilaton shifts specifying the order of 𝑦 at the ramication points. Smooth
spectral curves correspond to 𝜎 having a single cycle. Besides, the basic properties of Airy structures
guarantee that the corresponding 𝜔𝑔,𝑛 are symmetric. The results of Part I therefore give sucient
conditions on the ramication type and the order of 𝑦 at ramication points for the symmetry to hold,
see Denitions 5.19 to 5.22. The central result of Part II is then Theorem 5.23 giving the correspondence
between those Airy structures and our extension of the CEO topological recursion.

In terms of spectral curves, the CEO-like topological recursion provides the (unique when properly
normalised) solution to the so-called “abstract loop equations”. The latter express that certain polyno-
mial combinations of the (𝜔𝑔,𝑛)𝑔,𝑛 are holomorphic at the ramication points. This in fact provides
tools that have been used to establish applications of the topological recursion e.g. in matrix models
[BEO15], in Hurwitz theory [BKLPS20; DKPS19], and to the reconstruction of WKB expansions [BBE15;
IMS18; BEM17]. The setup of abstract loop equations was developed in [BEO15; BS17] for smooth
curves with simple ramications and extended in [Kra19, Section 7.6] to higher order ramications. In
Section 5.3, we dene a notion abstract loop equations for arbitrary spectral curves (Denition 5.12)
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and prove they admit at most one normalised solution (Proposition 5.15), which must then be given
by our extension of the CEO recursion (Equation (73)). The question of existence of a solution is
then reduced to proving this formula yields symmetric 𝜔𝑔,𝑛 . As we establish the equivalence of the
abstract loop equations with the dierential constraints built fromW(𝔤𝔩𝑟 )-algebra representations
(Proposition 5.18), it is sucient to check that the latter form an Airy structure to establish symmetry.

Our results give a denition of topological recursion for many spectral curves that could not be
treated before, for instance

𝑦 (𝑥 − 𝑦𝑟 ) = 0 𝑟 ≥ 1 ,

(1 − 𝑥𝑦3) = 0 ,

𝑥2 − 𝑦2 = 0

(1 − 𝑥𝑦3) (𝑥 − 𝑦 + 1) = 0 ,

(1 − 𝑥𝑦3) (𝑥 − 𝑦 + 1) (𝑥 − 𝑦 + 𝑡) = 0 𝑡 ∈ C \ {1} ,
(1 − 𝑥𝑦3) (𝑥 − 𝑦 + 1) (𝑦 − 𝑡) = 0 𝑡 ∈ C ,
(1 − 𝑥𝑦2) (𝑥 − 𝑦 + 1) (𝑥 − 𝑡𝑦) = 0 𝑡 ∈ C \ {1} .

(1)

In general, nodal points such that 𝑦 tends to distinct non-zero values on both sides are admissible. if
𝐶𝑖 : 𝑃𝑖 (𝑥, 𝑦) = 0 are admissible for 𝑖 ∈ {1, 2} do not intersect in C2 at zeroes of d𝑥 or singular points
of 𝐶𝑖 , then 𝐶 : 𝑃1 (𝑥, 𝑦)𝑃2 (𝑥, 𝑦) = 0 is admissible. The complete list of conditions dening admissible
spectral curves according to our work can be found in Section 5.4, and they only regulate the behavior
of 𝑥 and 𝑦 at the points where the cardinality of the bers of 𝑥 jump (zeroes of d𝑥 and singular points).
Examples of non-admissible curves are:

1 − 𝑥2𝑦5 = 0 ,

(𝑥 − 𝑦2) (1 − 𝑥𝑦2) = 0 ,
(𝑥 − 𝑦) (𝑥 − 𝑦𝑟 ) = 0 𝑟 ∈ Z ,
𝑥𝑝 − 𝑦𝑞 = 0 𝑝, 𝑞 coprime and 𝑝 > 1, 𝑞 > 0 ,

(𝑥 − 𝑦2)2 = 0 ,

(𝑥 − 𝑦2) (𝑥 − 𝑦3) = 0 .

(2)

In general, the following cases are not admissible for us: non-reduced curves, curves where d𝑦 and
d𝑥 have a common zero, reducible curves where there is a point at which at least two irreducible
components 𝐶1 and 𝐶2 meet and where d𝑥 has a zero and 𝑦 is regular on 𝐶1 and 𝑦 is not identically
zero on 𝐶2. It would be desirable to understand if the admissibility conditions can be weakened even
more with a suitable modication of the topological recursion residue formula.

We expect all the partition functions of the Airy structures present in this article to admit an
enumerative interpretation, i.e. that 𝜔𝑔,𝑛 or 𝐹𝑔,𝑛 can be computed via intersection theory on a certain
moduli space of curves. This was achieved by Eynard in [Eyn11; Eyn14b] in the case of simple
ramication points on smooth curves and 𝑦 holomorphic, in a form that has a structure similar to
the ELSV formula [ELSV01], and found applications in Gromov–Witten theory [EO15] and Hurwitz
theory [SSZ15; KLPS17]. The case of 𝑦 having a simple pole was later treated by Chekhov and Norbury
[Nor17; CN19]. Part III explores the generalisations of this link to other spectral curves that can directly
be reached by combining known results with the results of Parts I and II. This stresses the role of
Laplace-type integrals on the spectral curve. Although it is not essential in the theory, in the case of
global spectral curves the Laplace transform of 𝜔0,2 enjoy a factorisation property reminiscent to the
use of 𝑅-matrices in the theory of Frobenius manifolds. This was known by [Eyn14b, Appendix B] for
smooth spectral curves with simple ramications, and we show in Corollary 7.10 that it extends to
singular spectral curves in a slightly dierent form.

In Section 7.2.3, building on [BBCCN18] and Theorem 5.23 we generalise Eynard’s formula to all
smooth spectral curves with arbitrary ramication and 𝑦 of order 1 at the ramication points – this
involves Witten spin classes. This answers a question of Shadrin to the rst-named author. In Section 8,
we apply our general results to theW(𝔤𝔩3)-constraints of Alexandrov [Ale15] for the open intersection
theory developed in [PST15; Bur15; BT17; ST a]. The open intersection numbers can be packaged



HIGHER AIRY STRUCTURES AND TOPOLOGICAL RECURSION FOR SINGULAR SPECTRAL CURVES 5

in a generating series 𝜔open
𝑔,𝑛 . As Alexandrov’s𝑊 (𝔤𝔩3)-constraints have been identied with an Airy

structure in [BBCCN18] for 𝜎 = (12) (3), we deduce from the results of Part II that 𝜔open
𝑔,𝑛 satises our

extension of the CEO topological recursion applied to the curve 𝑦 (𝑦2 − 2𝑥) = 0 (corollary 8.8). Using
modiedW-constraints, Safnuk had derived in [Saf16] a residue formula associated to this curve, but
its structure is dierent and not easily generalisable. On the other hand, we can easily conjecture a
residue formula for the open 𝑟 -spin theory. This conjecture is equivalent to theW(𝔤𝔩𝑟 ) constraints
rst mentioned in [BBCCN18, Section 6.3]: we expose it in more detail, in particular specifying the
normalisations necessary for the comparison, and give some support in its favor by comparison with
[BCT18].

Remark 1.1. At the time of writing, there are several foundational conjectures in open intersection
theory. In Section 8.1 and Section 8.5, we formulate the ones that are directly relevant for us and
explain the logical dependence of our statements on these conjectures.

In fact, one of the initial motivation of our work was to generalise the structure of Safnuk’s residue
formula [Saf16] to higher 𝑟 , and seek along this line for a denition of topological recursion for curves
with many irreducible components. Our conclusion is that, although we do not know how to generalise
the structure of Safnuk’s recursion, there is a simpler and general denition of the recursion, which
retrieves open intersection theory when applied to the reducible curve 𝑦 (𝑦2 − 2𝑥) = 0.

TheW(𝔤𝔩𝑟 )-representations that we consider have an explicit though lengthy expression. We
extract from them a few concrete calculations:

• General formulas for 𝐹0,3, 𝐹1, 12 and 𝐹1,1, and partial computations for 𝐹0,4. Their symmetry
give necessary constraints for 𝜎 and the dilaton shifts. They are weaker than the sucient
conditions under which we have an Airy structure according to Theorem 2.11. However, we
are inclined to think that our result is generically optimal, i.e. that the sucient conditions in
Theorem 2.11 are also necessary conditions for generic value of the dilaton shift, that could be
implied by the symmetry of 𝐹0,𝑛 for higher 𝑛 ≥ 5.
• If𝜎 = (1 · · · 𝑟−1) (𝑟 ) or (1 · · · 𝑟 ), we derive in Section 2.4 from theW-constraints a homogeneity
property, the dilaton equation, and the string equation when it applies.

While this work was in the nal writing stage, we learned that results similar to our Theorem 2.11
but restricted to the case of cycles of equal lengths (perhaps with a xed point) are obtained in an
independent work of Bouchard and Mastel [BM20]. The question of dening a Chekhov-Eynard-
Orantin topological recursion on singular curves mentioned in their work is solved by Part II of our
work.

Notation
N is the set of nonnegative integers and N∗ = N \ {0}. For 𝑛 ∈ N, we denote [𝑛] = {1, . . . , 𝑛},

and in particular [0] = ∅. More generally, if 𝑎 ≤ 𝑏 are integers, we denote [𝑎, 𝑏], [𝑎, 𝑏), (𝑎, 𝑏], (𝑎, 𝑏)
the integer segments, where the bracket (resp. parenthesis) means we include (resp. exclude) the
corresponding endpoint. If 𝑎 > 𝑏 we set [𝑎, 𝑏] = ∅. Furthermore 𝑧 [𝑛] = {𝑧1, . . . , 𝑧𝑛}.

A partition of 𝑟 ∈ N, denoted 𝜆 ` 𝑟 , is 𝜆 = (𝜆1, . . . , 𝜆ℓ ) such that 𝜆1 + · · · + 𝜆ℓ = 𝑟 . We will sometimes
(but not always) require 𝜆 𝑗 ≥ 𝜆 𝑗+1, in which case we say that 𝜆 is a descending partition. Often it is
convenient to express equal blocks 𝜆 𝑗 = 𝜆 𝑗+1 = · · · = 𝜆 𝑗+𝑛 as 𝜆𝑛𝑗 . Moreover, to any descending partition
𝜆 one can associate a Young diagram Y𝜆 in a bijective way. For example all notations

𝜆 = (4, 3, 3, 1) ←→ 𝜆 = (4, 32, 1) ←→ Y𝜆 =

characterise the same descending partition 𝜆 ` 11. The size of 𝜆 is |𝜆 | = ∑
𝑖 𝜆𝑖 and its length is

ℓ (𝜆) = max{𝑖 | 𝜆𝑖 > 0}.
If 𝐴 is a nite set, we write L ` 𝐴 to say that L is a partition of 𝐴, that is an unordered tuple of

pairwise disjoint non-empty subsets of 𝐴 whose union is 𝐴. We denote ||L|| the number of sets in the
partition L.

All of our vector spaces or algebraic spaces are over C. We denote C〈𝑦〉 a 1-dimensional complex
vector space equipped a non-zero linear form 𝑦 .



6

Part I – Classification ofW(𝔤𝔩𝑟 )-Airy structures

2 Constructing Airy structures

In this Section, we recall the denition of Airy structures and their partition function and its
adaptation to the innite-dimensional setting for which it will be used. We present the main results of
Part I, i.e. we exhibit Airy structures that can be constructed fromW(𝔤𝔩𝑟 )-algebra modules, while the
proofs are carried on in Section 3.

2.1 Airy Structures

2.1.1 Finite dimension
We rst present the denition when 𝐸 is a nite-dimensional C-vector space. For convenience,

let us x a basis (𝑒𝑎)𝑎∈𝐴 of 𝐸 and (𝑥𝑎)𝑎∈𝐴 be the dual basis of 𝐸∗. We consider the graded algebra of
dierential operators Dℏ

𝐸
, also calledWeyl algebra. It is the quotient of the free algebra generated by

ℏ
1
2 , (𝑥𝑎)𝑎∈𝐴 and (ℏ𝜕𝑥𝑎 )𝑎∈𝐴, modulo the relations generated by

[ℏ𝜕𝑥𝑎 , 𝑥𝑏] = ℏ𝛿𝑎,𝑏 , [𝑥𝑎, 𝑥𝑏] = [ℏ𝜕𝑥𝑎 , ℏ𝜕𝑥𝑏 ] = 0 𝑎, 𝑏 ∈ 𝐼 , ℏ central.

and equipped with the grading

deg𝑥𝑎 = deg ℏ𝜕𝑥𝑎 = deg ℏ
1
2 = 1 ,

We will write 𝑃 = 𝑄 + O(𝑛) for two elements 𝑃,𝑄 ∈ Dℏ
𝐸
if they agree up to at least degree 𝑛 − 1.

Denition 2.1. A family (𝐻𝑖 )𝑖∈𝐼 of elements of Dℏ
𝐸
is an Airy structure on 𝐸 in normal form with

respect to the basis (𝑥𝑎)𝑎∈𝐴 if 𝐼 = 𝐴 and it satises:
• The degree 1 condition: for all 𝑖 ∈ 𝐼 , we have

𝐻𝑖 = ℏ𝜕𝑥𝑖 + O(2) . (3)

• The subalgebra condition: there exist 𝑓 𝑘𝑖,𝑗 ∈ Dℏ
𝐸
such that for all 𝑖, 𝑗 ∈ 𝐼

[𝐻𝑖 , 𝐻 𝑗 ] = ℏ
∑︁
𝑘∈𝐴

𝑓 𝑘𝑖,𝑗 𝐻𝑘 . (4)

A family (𝐻𝑖 )𝑖∈𝐼 of elements of Dℏ
𝐸
is an Airy structure if there exists two matrices N ∈ C𝐴×𝐼 and

M ∈ C𝐼×𝐴 such that

∀𝑎, 𝑏 ∈ 𝐴,
∑︁
𝑖∈𝐼
N𝑎,𝑖M𝑖,𝑏 = 𝛿𝑎,𝑏

∀𝑖, 𝑗 ∈ 𝐼 ,
∑︁
𝑎∈𝐴
M𝑖,𝑎N𝑎,𝑗 = 𝛿𝑖, 𝑗

(5)

and the family �̃�𝑎 =
∑

𝑖∈𝐼 N𝑎,𝑖 𝐻𝑖 indexed by 𝑎 ∈ 𝐴 is an Airy structure in normal form.

Being an Airy structure does not depend on a choice of basis, but being an Airy structure in normal
form does. Airy structures in Denition 2.1 would be called in [BBCCN18] “crosscapped higher
quantum Airy structure”. “Crosscapped” refers to the presence of half-integer powers of ℏ and we
comment it in Section 2.3.5. “Higher” means that compared to the denition in [KS18; ABCO17], it can
contain terms of degree higher than 2. “Quantum” is used to distinguish it in [KS18; ABCO17] from
the classical Airy structures where the Weyl algebra is replaced by the Poisson algebra of polynomial
functions on 𝑇 ∗𝐸. We simplied the terminology as the restriction to maximum degree 2 and the
classical Airy structures will not play any role in this article and handling half-integer powers of ℏ
does not lead to any complication in the theory.

The essential property of an Airy structure is that it species uniquely a formal function on 𝐸.
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Theorem 2.2. [KS18, Theorem 2.4.2], [BBCCN18, Proposition 2.20] If (𝐻𝑖 )𝑖∈𝐼 is an Airy structure on 𝐸,
then the system of linear dierential equations

∀𝑎 ∈ 𝐴, 𝐻𝑎 · 𝑍 = 0 (6)

admits a unique solution 𝑍 of the form 𝑍 = exp(𝐹 ) with

𝐹 =
∑︁
𝑔∈ 12N
𝑛∈N∗

2𝑔+2−𝑛>0

ℏ𝑔−1

𝑛!
𝐹𝑔,𝑛 𝐹𝑔,𝑛 ∈ Sym𝑛 (𝐸∗) (7)

𝑍 (resp. the 𝐹𝑔,𝑛) is called the partition function (resp. free energies). Equation (6) implies a recursive
formula for 𝐹𝑔,𝑛 on 2𝑔 − 2 + 𝑛 > 0. We will typically be interested in the coecients of decomposition
of the free energies on a given basis (𝑥𝑎)𝑎∈𝐴 of linear coordinates of 𝐸, for which we use the notation:

𝐹𝑔,𝑛 =
∑︁

𝑎1,...,𝑎𝑛 ∈𝐴
𝐹𝑔,𝑛 [𝑎1, . . . , 𝑎𝑛]𝑥𝑎1 · · · 𝑥𝑎𝑛 (8)

When the Airy structure has normal form with respect to this basis, the explicit recursion to obtain the
𝐹𝑔,𝑛 [𝑎1, . . . , 𝑎𝑛] from appears in [BBCCN18, Sections 2.2 and 2.3]. We reproduce it in Equation (32) at
the only place where it is used in the article. We will be led to work with Airy structures that are not
given in normal form (cf. Section 3.1), but for which there is an equivalent formulation of the recursion
in terms of spectral curves (Part II), that is often more ecient for calculations (cf. Section 6).

2.1.2 Innite dimension
In this article we need to handle Airy structures for certain innite-dimensional vector spaces. This

requires some amendments of the previous denitions which we now explain.
A ltered vector space is a vector space 𝐸 together with a collection of subspaces 0 ⊆ F1𝐸 ⊆ F2𝐸 ⊆

· · · ⊆ 𝐸, called the ltration. Throughout this paper we will assume that for any ltered vector space
𝐸, the F𝑝𝐸 are nite-dimensional, and that 𝐸 =

⋃
𝑝>0 F𝑝𝐸. Two ltrations F , F ′ on a vector space 𝐸

are equivalent if for any 𝑝 > 0 there exists 𝑝 ′ > 0 such that F𝑝𝐸 ⊆ F ′𝑝′𝐸 and for any 𝑞′ > 0 there exists
𝑞 > 0 such that F ′

𝑞′𝐸 ⊆ F𝑞𝐸. In particular, all ltrations on a given vector space satisfying our extra
assumptions are equivalent.

A ltered set is a set 𝐴 together with a collection of subsets ∅ ⊆ 𝑓1𝐴 ⊆ 𝑓2𝐴 ⊆ · · · ⊆ 𝐴. Again, we
assume all 𝑓𝑝𝐴 are nite and 𝐴 =

⋃
𝑝>0 𝑓𝑝𝐴. A ltered basis of a ltered vector space (𝐸, F ) is the data

of a ltered set (𝐴, 𝑓 ) and a family (𝑒𝑎)𝑎∈𝐴 of elements of 𝐸 such that (𝑒𝑎)𝑎∈𝑓𝑝𝐴 is a basis of F𝑝𝐸.
Let (𝐸, F ) be a ltered vector space, and for convenience choose a ltered basis (𝑒𝑎)𝑎∈𝐴 and the

corresponding linear coordinates (𝑥𝑎)𝑎∈𝐴. We consider the completed Weyl algebra with respect to
this ltration, D̂ℏ

𝐸
. It consists of elements of the form∑︁

𝑚,𝑛∈N
𝑗 ∈ 12N

∑︁
𝑎1,...,𝑎𝑛 ∈𝐴

∑︁
𝑎1,...,𝑎𝑛 ∈𝐴

ℏ𝑗

𝑛!𝑚!
𝐶 ( 𝑗) [𝑎1, . . . , 𝑎𝑚 ;𝑎1, . . . , 𝑎𝑛] 𝑥𝑎1 · · · 𝑥𝑎𝑚ℏ𝜕𝑥𝑎1 · · · ℏ𝜕𝑥𝑎𝑛 , (9)

where for any 𝑝 > 0, the coecients 𝐶 ( 𝑗) [𝑎1, . . . , 𝑎𝑚 ;𝑎1, . . . , 𝑎𝑛] vanish for all but nitely many
𝑎1, . . . , 𝑎𝑛 ∈ 𝑓𝑝𝐴 and 𝑗, 𝑎1, . . . , 𝑎𝑚 . One can check this does form a (graded) algebra.

If (𝐼 , 𝑓 ′) is a ltered set (which is unrelated to (𝐴, 𝑓 )), we say that a family (𝐷𝑖 )𝑖∈𝐼 of elements of
D̂ℏ

𝐸
is ltered if for any 𝑝 > 0, the coecients 𝐶 ( 𝑗)

𝑖
[𝑎1, . . . , 𝑎𝑚 ;𝑎1, . . . , 𝑎𝑛] in the decomposition (9) of

𝐷𝑏 vanish for all but nitely many 𝑎1, . . . , 𝑎𝑛 ∈ 𝑓𝑝𝐴 and 𝑖, 𝑗, 𝑎1, . . . , 𝑎𝑛 .

Denition 2.3. A ltered family (𝐻𝑖 )𝑖∈𝐼 of elements of D̂ℏ
𝐸
is an Airy structure on 𝐸 in normal form

with respect to (𝑥𝑎)𝑎∈𝐴 if (𝐼 , 𝑓 ′) = (𝐴, 𝑓 ), and
• the degree one condition holds ;
• the subalgebra condition holds for some ltered family (𝑓 𝑘𝑖,𝑗 )𝑖, 𝑗,𝑘∈𝐼 of elements of D̂ℏ

𝐸
.

A ltered family (𝐻𝑖 )𝑖∈𝐼 of elements of D̂ℏ
𝐸
is an Airy structure on 𝐸 if there exist N ∈ C𝐴×𝐼 and

M ∈ C𝐼×𝐴 such that:
• for each 𝑖 ∈ 𝐼 , N𝑎,𝑖 vanish for all but nitely many 𝑎 ∈ 𝐴 ;
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• for each 𝑎 ∈ 𝐴,M𝑖,𝑎 vanish for all but nitely many 𝑖 ∈ 𝐼 ;
• N andM are inverse to each other in the sense of (5) – where the sums are nite due to the
previous two points ;
• the family �̃�𝑎 =

∑
𝑖∈𝐼 N𝑎,𝑖𝐻𝑖 indexed by 𝑎 ∈ 𝐴 – which is a ltered family of elements of D̂ℏ

𝐸

by the rst point – is an Airy structure on 𝐸 in normal form with respect to (𝑥𝑎)𝑎∈𝐴.

The notion of Airy structure does not depend on the choice of ltered basis, and only depends
on the equivalence class of the ltration of 𝐸. We will sometimes omit to specify the ltration when
it is evident. The existence and uniqueness of the partition function (Theorem 2.2) extends to this
innite-dimensional setting and for each 𝑔, 𝑛, and 𝑝 , the summation of (8) with 𝑎1 restricted to 𝑓𝑝𝐴 is
nite, that is 𝐹𝑔,𝑛 ∈ �Sym𝑛 (𝐸∗).

2.2 TheW(𝔤𝔩𝑟 )-algebra and its twisted modules

The Airy structures constructed in this paper are obtained by considering twisted modules of
Heisenberg vertex operator algebras (VOAs), taking subalgebras of the associated algebras of modes,
and using a dilaton shift to break homogeneity. The idea of this construction dates back to [Mil16].
It was developed more systematically in [BBCCN18, Sections 3 and 4] and we refer to that paper for
details. Here we summarise the main points of the construction.

2.2.1 The Heisenberg VOA andW(𝔤𝔩𝑟 )-algebras
Denition 2.4. Let 𝔥 be a nite-dimensional vector space with non-degenerate inner product 〈·, ·〉.
The Heisenberg Lie algebra associated to 𝔥 is given by

�̂� =
(
𝔥[𝑡±1] ⊕ C𝐾

)
⊗ Cℏ , [𝜉𝑙 + 𝑎𝐾, 𝜂𝑚 + 𝑏𝐾] = ℏ 〈𝜉, 𝜂〉𝑙𝛿𝑙+𝑚,0𝐾 ,

where we write 𝜉𝑙 B 𝜉 ⊗ 𝑡𝑙 , and Cℏ B C[ℏ
1
2 ]. The associated Weyl algebra is dened as a quotient

of its universal enveloping algebra: H𝔥 B 𝔘(�̂�)/(𝐾 − 1). The Fock space F𝔥 is the representation
of H𝔥 generated by a vector |0〉 and relations 𝜉𝑙 |0〉 = 0 for 𝜉 ∈ 𝔥, 𝑙 ≥ 0. The Heisenberg VOA is
the vertex operator algebra with underlying vector space F𝔥 equipped with vacuum |0〉, state-eld
correspondence 𝑌 : F𝔥 → EndF𝔥È𝑥±1É given by

𝑌
(
|0〉, 𝑥

)
= idF𝔥 ,

𝑌
(
𝜉−1 |0〉, 𝑥

)
=

∑︁
𝑙 ∈Z

𝜉𝑙𝑥
−𝑙−1 ,

𝑌
(
𝜉1−𝑘1 · · · 𝜉

𝑛
−𝑘𝑛 |0〉, 𝑥

)
= : 1
(𝑘1 − 1)!

d𝑘1−1

d𝑥𝑘1−1
𝑌 (𝜉1−1 |0〉, 𝑥) · · ·

1
(𝑘𝑛 − 1)!

d𝑘𝑛−1

d𝑥𝑘𝑛−1
𝑌 (𝜉𝑛−1 |0〉, 𝑥) : ,

(10)

and conformal vector 𝜛 = 1
2
∑

𝑗 𝜒
𝑗

−1𝜒
𝑗

−1 |0〉 for an orthonormal basis (𝜒 𝑗 ) 𝑗 of 𝔥.

TheW-algebra associated to the general linear Lie algebra 𝔤𝔩𝑟 at the self-dual level is denoted
W(𝔤𝔩𝑟 ). It can be constructed as a sub-VOA of the Heisenberg VOA F𝔥 attached to its Cartan subalgebra
𝔥 � C𝑟 ⊂ 𝔤𝔩𝑟 . We identify 𝔥 with its dual using the Killing form and take 𝜒 𝑗 ∈ 𝔥 to correspond to the
roots under this identication. Note that they are orthonormal.

Theorem 2.5 ([FL88; AM17]). W(𝔤𝔩𝑟 ) is the sub-VOA of F𝔥 freely and strongly generated by the
elements

𝑤𝑖 = e𝑖
(
𝜒1−1, . . . , 𝜒

𝑟
−1

)
|0〉 , 𝑖 ∈ [𝑟 ] , (11)

where e𝑖 is the 𝑖th elementary symmetric polynomial in 𝑟 variables.

We introduce the modes𝑊𝑖,𝑘 and their (𝑖-form valued) generating series𝑊𝑖 (𝑥) with the formulas

𝑊𝑖 (𝑥) B
∑︁
𝑘∈Z

𝑊𝑖,𝑘 (d𝑥)𝑖

𝑥𝑖+𝑘
B 𝑌 (𝑤𝑖 , 𝑥) (d𝑥)𝑖 . (12)

Remark 2.6. Contrarily to [BBCCN18], we do not include a factor of 𝑟 𝑖−1 in the denition of 𝑤𝑖 . Our
convention that𝑊𝑖,𝑘 is the coecient of 𝑥−(𝑘+𝑖) . This coincides with the convention taken in [BBCCN18,
Section 3.3.4] but diers from the convention 𝑥−(𝑘+1) used in the rest of [BBCCN18]. We also nd
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convenient to consider the generating series of modes of conformal weight 𝑖 to be 𝑖-dierential forms.
The variable 𝑥 is often denoted 𝑧 in the VOA literature. However, in Part II, we will see that this
variable can be interpreted as the pullback under the normalisation morphism of a function usually
denoted 𝑥 for a spectral curve. For consistency, we therefore chose to use the letter 𝑥 , and use the
letter 𝑧 for local coordinates on (the normalisation of) the spectral curve.

2.2.2 The mode algebra and its subalgebras
Let A be the associative algebra of modes ofW(𝔤𝔩𝑟 ), see [FBZ04, Section 4.3]. Furthermore, let

𝐿(A) denote the set of possibly innite sums of ordered monomials inA whose degree and conformal
weight is bounded ; we equip it with the bracket ℏ−1 [·, ·], making it a Lie algebra.

Denition 2.7. We say that a subset 𝑆 ⊂ [𝑟 ] × Z of modes generates a Lie subalgebra of 𝐿(A) if
the left A-ideal generated by ⊕(𝑖,𝑘) ∈𝑆𝑊𝑖,𝑘 is a Lie subalgebra of 𝐿(A). An equivalent condition is the
existence of 𝑓 ( 𝑗,𝑙)(𝑖,𝑘),(𝑖′,𝑘′) ∈ 𝐿(A) such that

∀(𝑖, 𝑘), (𝑖 ′, 𝑘 ′) ∈ 𝑆, [𝑊𝑖,𝑘 ,𝑊𝑖′,𝑘′] = ℏ
∑︁
( 𝑗,𝑙) ∈𝐼𝜆

𝑓
( 𝑗,𝑙)
(𝑖,𝑘),(𝑖′,𝑘′) 𝑊𝑗,𝑙 .

More precisely, it is rst required that the right-hand side denes an element of 𝐿(A), and then that it
coincides with the left-hand side.

Given a partition 𝜆 ` 𝑟 , we set

𝜆(𝑖) B min
{
𝑚 ≥ 0

��� 𝑚∑︁
𝑗=1

𝜆 𝑗 ≥ 𝑖
}
,

and we dene the index set

𝐼𝜆 B {(𝑖, 𝑘) ∈ [𝑟 ] × Z | 𝜆(𝑖) + 𝑘 > 0} . (13)

Theorem 2.8. [BBCCN18, Theorem 3.16] For any descending partition 𝜆 ` 𝑟 , 𝐼𝜆 generates a Lie subalgebra
of 𝐿(A).

2.2.3 Twisted modules

Let 𝜎 ∈ 𝔖𝑟 be an arbitrary element of the Weyl group of 𝔤𝔩𝑟 . It is a permutation of the elements 𝜒𝑖
and can thus be decomposed into 𝑑 ≥ 1 cycles 𝜎 = 𝜎1 · · ·𝜎𝑑 with each cycle 𝜎𝜇 of length 𝑟𝜇 ≥ 1 such
that 𝑟1 + · · · + 𝑟𝑑 = 𝑟 . If 𝑑 = 1 then 𝜎 is a transitive element. After relabelling of the elements of the
basis of the Cartan, we can assume that 𝜎𝜇 acts as

𝜎𝜇 : 𝜒1+𝒓 [𝜇−1] −→ 𝜒2+𝒓 [𝜇−1] −→ · · · −→ 𝜒𝑟𝜇+𝒓 [𝜇−1] −→ 𝜒1+𝒓 [𝜇−1] ,

while keeping all other 𝜒𝑖 xed, where we introduced the notation 𝒓 [𝜇 ] B
∑𝜇

𝜈=1 𝑟𝜈. It is then easy to
check that

𝑣𝜇,𝑎 B

𝑟𝜇∑︁
𝑗=1

𝜗
−𝑎𝑗
𝑟𝜇 𝜒 𝑗+𝒓 [𝜇−1] , 𝜇 ∈ [𝑑], 𝑎 ∈ [𝑟𝜇], 𝜗𝑟𝜇 B 𝑒2i𝜋/𝑟𝜇

is an eigenvector of the action of 𝜎 on 𝔥, with eigenvalue 𝜗𝑎𝑟𝜇 . We dene the currents via the state
eld-correspondence

𝐽 𝜇,𝑎 (𝑥) := 𝜎𝑌
(
𝑣
𝜇,𝑎

(−1) |0〉 , 𝑥
)
d𝑥 B

∑︁
𝑘∈ 𝑎

𝑟𝜇
+Z
𝐽
𝜇

𝑟𝜇𝑘

d𝑥
𝑥𝑘+1

(14)

with fractional mode expansion on these eigenvectors introducing the dierential operators

𝐽
𝜇

𝑘
=


ℏ𝜕𝑥𝜇

𝑘
if 𝑘 > 0

ℏ
1
2𝑄𝜇 if 𝑘 = 0
−𝑘 𝑥𝜇−𝑘 if 𝑘 < 0

, (15)

with𝑄𝜇 ∈ C, acting on the space T B C
ℏ
1
2
[(𝑥𝜇𝑎 )𝜇∈[𝑑 ], 𝑎>0]. Note that the formal variables 𝑥 and 𝑥𝜇

𝑖
are

unrelated. The state-eld correspondence 𝜎𝑌 can be extended to the whole space F𝔥 by using formula
(10). This turns (T , 𝜎𝑌 ) into a twisted representation of F𝔥, whose restriction toW(𝔤𝔩𝑟 ) becomes an
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(untwisted) representation ofW(𝔤𝔩𝑟 ). For details see [Doy08; BBCCN18]. We dene the twist modes
𝜎𝑊𝑖,𝑘 by

𝜎𝑊𝑖 (𝑥) B 𝜎𝑌 (𝑤𝑖 , 𝑥) (d𝑥)𝑖 =
∑︁
𝑘∈Z

𝜎𝑊𝑖,𝑘

(d𝑥)𝑖

𝑥𝑘+𝑖
,

where 𝑤𝑖 are the strong generators ofW(𝔤𝔩𝑟 ) from (11). They are dierential operators acting on T .

Lemma 2.9. [BBCCN18, Proposition 4.5 and Lemma 4.15]. For an automorphism 𝜎 with 𝑑 cycles of
respective lengths 𝑟𝜇 the 𝜎-twisted modes read

𝜎𝑊𝑖,𝑘 =
∑︁

𝑀⊆[𝑑 ]

∑︁
𝑖𝜇 ∈[𝑟𝜇 ], 𝜇∈𝑀∑

𝜇 𝑖𝜇=𝑖

∑︁
k∈Z𝑀∑
𝜇 𝑘𝜇=𝑘

∏
𝜇∈𝑀

1

𝑟
𝑖𝜇−1
𝜇

𝑊
𝜇

𝑖𝜇 ,𝑘𝜇
, (16)

where the𝑊 𝜇

𝑖𝜇 ,𝑘𝜇
are dened as

𝑊
𝜇

𝑖𝜇 ,𝑘𝜇
=

1
𝑟𝜇

b𝑖𝜇/2c∑︁
𝑗𝜇=0

𝑖𝜇 ! ℏ𝑗𝜇

2𝑗𝜇 𝑗𝜇 !(𝑖𝜇 − 2 𝑗𝜇)!
∑︁

𝑝
𝜇

2𝑗𝜇+1,...,𝑝
𝜇

𝑖𝜇
∈Z∑

𝑙 𝑝
𝜇

𝑙
=𝑟𝜇𝑘𝜇

Ψ
( 𝑗𝜇 )
𝑟𝜇 (𝑝

𝜇

2𝑗𝜇+1, 𝑝
𝜇

2𝑗𝜇+2, . . . , 𝑝
𝜇

𝑖𝜇
) :

𝑖𝜇∏
𝑙=2𝑗𝜇+1

𝐽
𝜇

𝑝
𝜇

𝑙

: , (17)

with coecients Ψ ( 𝑗𝜇 )𝑟𝜇 (· · · ) ∈ Q admitting a representation in terms of sums over 𝑟 th roots of unity:

Ψ ( 𝑗)𝑟 (𝑎2𝑗+1, . . . , 𝑎𝑖 ) B
1
𝑖!

𝑟−1∑︁
𝑚1,...,𝑚𝑖=0
𝑚𝑙≠𝑚𝑙′

©«
𝑗∏

𝑙 ′=1

𝜗𝑚2𝑙′−1+𝑚2𝑙′

(𝜗𝑚2𝑙′ − 𝜗𝑚2𝑙′−1 )2
𝑖∏

𝑙=2𝑗+1
𝜗−𝑚𝑙𝑎𝑙 ª®¬ , (18)

where 𝜗 = 𝑒2i𝜋/𝑟 .

In terms of generating series, this lemma can be restated as

𝜎𝑊𝑖 (𝑥) =
∑︁

𝑀⊆[𝑑 ]

∑︁
𝑖𝜇 ∈[𝑟𝜇 ] 𝜇∈𝑀∑

𝜇 𝑖𝜇=𝑖

∏
𝜇∈𝑀

𝑊
𝜇

𝑖𝜇
(𝑥)

𝑟
𝑖𝜇−1
𝜇

,

𝑊
𝜇

𝑖
(𝑥) B 1

𝑟𝜇

b𝑖/2c∑︁
𝑗=0

𝑖! ℏ𝑗

2𝑗 𝑗 !(𝑖 − 2 𝑗)!

(
d𝑥
𝑥

)2𝑗 ( 𝑟𝜇−1∑︁
𝑎2𝑗+1,...,𝑎𝑖=0

Ψ ( 𝑗)𝑟𝜇 (𝑎2𝑗+1, . . . , 𝑎𝑖 ) :
𝑖∏

𝑙=2𝑗+1
𝐽 𝜇,𝑎𝑙 (𝑥) :

)
. (19)

If we also take a generating series in 𝑖 by dening

W𝜇 (𝑥,𝑢) B 𝑢𝑟𝜇

𝑟𝜇
+

𝑟𝜇∑︁
𝑖=1

𝑊
𝜇

𝑖
(𝑥)𝑢𝑟𝜇−𝑖 , W(𝑥,𝑢) B 𝑢𝑟 +

𝑟∑︁
𝑖=1

𝜎𝑊𝑖 (𝑥)𝑢𝑟−𝑖 ,

this can be written compactly as

W(𝑥,𝑢) =
𝑑∏
𝜇=1

𝑟𝜇W𝜇 (𝑥,𝑢) .

Introducing the ltered vector space

𝐸 =
⊕
𝑘>0

𝑑⊕
𝜇=1
C〈𝑥𝜇

𝑘
〉 , 𝐸𝑝 B

⊕
𝑘≤𝑝

𝑑⊕
𝜇=1
C〈𝑥𝜇

𝑘
〉 , (20)

we see from the condition of summations in (16)-(17) that each𝑊𝑖,𝑘 belongs to the completed Weyl
algebra D̂ℏ

𝐸
according to the denitions in Section 2.1.2. Even more, any family (𝑊𝑖,𝑘 ) (𝑖,𝑘) ∈𝐼 for which

min𝐼 𝑘 > −∞ is a ltered family of elements of D̂ℏ
𝐸
. Our goal is to construct Airy structures from these

operators. The degree one condition requires the operators to have the form ℏ𝜕 + O(2). Unfortunately,
𝜎𝑊𝑖,𝑘 does not have this form as it is homogenous of degree deg 𝜎𝑊𝑖,𝑘 = 𝑖 in view of (16). Thus in
order to construct an Airy structure we rst have to break up this homogeneity.
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𝑟, 𝑠 𝑠 = 1 𝑟 = 𝑟 ′𝑠 + 1 𝑟 = 𝑟 ′𝑠 + 𝑠 − 1 𝑠 = 𝑟 + 1

𝜆

𝑟 boxes︷           ︸︸           ︷
. . .

(𝑟 ′+1) columns︷        ︸︸        ︷
. . .

. . .

. . .
...

...
. . .

...

. . .

. . .

(𝑟 ′+1) columns︷        ︸︸        ︷
. . .

. . .

. . .
...

...
. . .

...
...

. . .

. . .

...

Table 1. The partitions 𝜆𝑟,𝑠 associated to dierent values 𝑠 .

2.3 Airy structures from twistedW(𝔤𝔩𝑟 ) modules

2.3.1 From a twist with a transitive element

First let 𝜎 be a transitive element, i.e. 𝑑 = 1. Then 𝜎𝑊𝑖,𝑘 = 𝑟 1−𝑖𝑊 1
𝑖,𝑘
, and to simplify the notation we

can omit the superscript 1. One can break up the homogeneity of the dierential operators 𝜎𝑊𝑖,𝑘 by
performing a dilaton shift

𝐽−𝑠 −→ 𝐽−𝑠 − 1 (21)
for a xed 𝑠 > 0 while keeping all other 𝐽𝑎 for 𝑎 ≠ −𝑠 unchanged. Formally one denes

𝜎𝐻𝑖,𝑘 B 𝑇 · 𝜎𝑊𝑖,𝑘 ·𝑇 −1 , 𝑇 B exp
(
− 𝐽

𝜇
𝑠

ℏ𝑠

)
.

It follows from the Baker–Campbell–Hausdor formula that conjugating with 𝑇 means shifting the 𝐽 s
as in (21). The action on the completed Weyl algebra D̂ℏ

𝐸
is then well-dened. Then, certain subsets of

the modes 𝜎𝐻𝑖,𝑘 yield Airy structures.

Theorem 2.10. [BBCCN18, Theorem 4.9] Let 𝜎 ∈ 𝔖𝑟 be transitive and 𝑠 ∈ [𝑟 + 1] with 𝑟 = ±1 mod 𝑠
and 𝐽0 = 0. Let us dene 𝜆 ` 𝑟 to be the descending partition

𝜆 =


(𝑟 ) if 𝑠 = 1
(1𝑟 ) if 𝑠 = 𝑟 + 1(
(𝑟 ′ + 1)𝑟 ′′, (𝑟 ′)𝑠−𝑟 ′′

)
if 𝑟 = 𝑟 ′𝑠 + 𝑟 ′′ with 𝑟 ′′ ∈ {1, 𝑠 − 1}

. (22)

Then, the family of operators

𝑟 𝑖−1 𝜎𝐻𝑖,𝑘 𝑖 ∈ [𝑟 ], 𝑘 ≥ 1 − 𝜆(𝑖) + 𝛿𝑖,1
forms an Airy structure in normal form on 𝐸 =

⊕
𝑘>0 C〈𝑥𝑘〉, seen as a ltered vector space when equipped

with the ltration 𝐸𝑝 =
⊕

𝑘≤𝑝 C〈𝑥𝑘〉.

The partition 𝜆 chosen in (22) to dene the mode set determines the subalgebra associated to this
Airy structure by using Theorem 2.8. The corresponding Young diagrams are depicted in table 1.

2.3.2 A generalisation to arbitrary twists
Let 𝜎 ∈ 𝔖𝑟 be a permutation with 𝑑 cycles of respective lengths 𝑟1, . . . , 𝑟𝑑 , so that 𝑟1 + · · · + 𝑟𝑑 = 𝑟 .

Then the dierential operators 𝜎𝑊𝑖,𝑘 act on the space

C
ℏ
1
2

[
(𝑥𝜇𝑎 )𝜇∈[𝑑 ], 𝑎>0

]
.

Again, wewill break up the homogeneity of 𝜎𝑊𝑖,𝑘 by performing a dilaton shift. There are𝑑 independent
families of variables (𝑥𝜇𝑎 )𝑎>0 labelled by 𝜇 ∈ [𝑑] in which we can perform the shift. Two types of shifts
will in fact lead to Airy structures:

• simultaneous shifts in each of the 𝑑 sets of variables.
• simultaneous shifts in all but one set of variables and the label 𝜇 of the unshifted set of variables
correspond to a xed point 𝑟𝜇 = 1.
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Let us thus choose 𝑠𝜇 ∈ N∗∪ {∞} and, for each 𝜇 such that 𝑠𝜇 ≠ ∞, 𝑡𝜇 ∈ C∗, for each 𝜇 ∈ [𝑑] and dene

𝜎𝐻𝑖,𝑘 B 𝑇 · 𝜎𝑊𝑖,𝑘 ·𝑇 −1 , 𝑇 B
∏

𝜇∈[𝑑 ] : 𝑠𝜇≠∞
exp

(
−𝑟𝜇𝑡𝜇

𝐽
𝜇
𝑠𝜇

ℏ𝑠𝜇

)
. (23)

We chose to include a normalisation factor 𝑟𝜇 to simplify later computations. Remember that conjugat-
ing with 𝑇 means nothing but shifting

∀𝜇 ∈ [𝑑], 𝑘 ∈ Z, 𝐽
𝜇

−𝑘 −→ 𝐽
𝜇

−𝑘 − 𝑟𝜇𝑡𝜇 𝛿𝑘,𝑠𝜇 .

and its action on the completed Weyl algebra D̂ℏ
𝐸
is well-dened. It turns out that, with the right

choice of parameters, certain subsets of these operators 𝜎𝐻𝑖,𝑘 indeed form an Airy structure.

Theorem 2.11. Let 𝑑 ≥ 2, 𝑟1, . . . , 𝑟𝑑 ≥ 1 and 𝑠1, . . . , 𝑠𝑑 ∈ N∗ ∪ {∞} be such that
𝑟1

𝑠1
≥ 𝑟2
𝑠2
≥ · · · ≥ 𝑟𝑑

𝑠𝑑
.

Let 𝑄1, . . . , 𝑄𝑑 ∈ C, 𝑡1, . . . , 𝑡𝑑−1 ∈ C∗, and if 𝑠𝑑 ≠ ∞ also 𝑡𝑑 ∈ C∗. Assume that
𝑑∑︁
𝜇=1

𝑄𝜇 = 0, 𝑡
𝑟𝜇
𝜇 ≠ 𝑡𝑟𝜈𝜈 whenever 𝜇 ≠ 𝜈 and (𝑟𝜇, 𝑠𝜇) = (𝑟𝜈, 𝑠𝜈).

Dene 𝑟 =
∑𝑑

𝜇=1 𝑟𝜇 and let𝜎 ∈ 𝔖𝑟 be a permutationmade of disjoint cycles of respective lengths (𝑟1, . . . , 𝑟𝑑 ).
Assume that

• 𝑟1 = −1 mod 𝑠1.
• 𝑠𝜇 = 1 for any 𝜇 ∉ {1, 𝑑};
• 𝑟𝑑 = 1 mod 𝑠𝑑 .

and dene 𝜆 ` 𝑟 to be the descending partition

𝜆 =

{(
(𝑟 ′1 + 1)

𝑠1 , 𝑟2, 𝑟3, . . . , 𝑟𝑑−1, 𝑟
′
𝑑
𝑠𝑑

)
if 𝑟𝑑 ≠ 1(

(𝑟 ′1 + 1)
𝑠1 , 𝑟2, 𝑟3, . . . , 𝑟𝑑−1

)
if 𝑟𝑑 = 1

, (24)

where we set 𝑟 ′𝜇 B
⌊ 𝑟𝜇
𝑠𝜇

⌋
. Then, the family

𝜎𝐻𝑖,𝑘 , 𝑖 ∈ [𝑟 ], 𝑘 ≥ 1 − 𝜆(𝑖) + 𝛿𝑖,1
is an Airy structure (not necessarily in normal form) on the ltered vector space 𝐸 given in (20).

We call the case 𝑠𝑑 = ∞ the exceptional case and the other case the standard case. The proof of the
Theorem will be presented in Section 3. The exceptional 𝑑 = 2 case was already obtained in [BBCCN18,
Theorem 4.16].

Remark 2.12. Note that the conditions imply that 𝑠1 ∈ [𝑟1 + 1] and if 𝑟𝑑 > 1, 𝑠𝑑 ∈ [𝑟𝑑 − 1].

The partition 𝜆 in (24) can be depicted as

...

...

...
... . . . ...

...

...

...
...

...

...

...
... . . . ...

...

...

...

...
... . . . ...

...

...

...
...

...

...
...

r 1+1

s1

ds

r d

λ1 = r 1 + 1

λ2 = r 1 + 1

λ s1 = r 1 + 1

λ s1+1 = r 2
λ s1+2 = r 3

λ s1+ d− 2 = r d− 1

λ s1+ d− 1 = r d
λ s1+ d = r d

λ s1+ sd+ d− 2 = r d

...

...

...
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In case 𝑟𝑑 = 1 the last block 𝑟 ′
𝑑
𝑠𝑑 is simply absent. Going through all cases one thus nds that every

descending partition 𝜆 ` 𝑟 is either of the form depicted in table 1 or of the form (2.3.2). This implies
that all the subalgebras mentioned in Theorem 2.8 support two Airy structures: one standard and one
exceptional.

2.3.3 Arbitrary dilaton shifts and changes of polarisation
In order to connect with the theory of the Chekhov–Eynard–Orantin topological recursion, we

ought to be able to conjugate the 𝜎𝑊𝑖,𝑘 with more general operators, inducing dilaton shifts in several of
the variables and also making a change in polarisation. This section is completely parallel to [BBCCN18,
Section 4.1.5].

First, let us consider a general dilaton shift

𝑇 B exp
©«
∑︁
𝜇∈[𝑑 ]
𝑘>0

(
ℏ−1𝐹0,1

[ 𝜇

−𝑘
]
+ ℏ− 1

2 𝐹 1
2 ,1

[ 𝜇

−𝑘
] ) 𝐽 𝜇

𝑘

𝑘

ª®®®¬ , 𝑠𝜇 B min
{
𝑘 > 0

�� 𝐹0,1
[ 𝜇

−𝑘
]
≠ 0

}
.

with arbitrary scalars 𝐹ℎ,1
[ 𝜇

−𝑘
]
for ℎ ∈ {0, 12 }. The seemingly complicated way to denote these scalars

will become natural in Part II, see e.g. Equation (79). Eectively, this shifts

𝐽
𝜇

−𝑘 → 𝐽
𝜇

−𝑘 + 𝐹0,1
[ 𝜇

−𝑘
]
+ ℏ 1

2 𝐹 1
2 ,1

[ 𝜇

−𝑘
]

and by construction of the completed Weyl algebra, its action on D̂ℏ
𝐸
is well-dened. It should be

interpreted as a deformation of the case where there is a single non-zero shift

𝐹0,1
[ 𝜇
−𝑠𝜇

]
= −𝑟𝜇𝑡𝜇 . (25)

The 𝐹 1
2 ,1

give an extra possible deformation as we have allowed half-integer powers of ℏ.
Another deformation we would like to consider is the change of polarisation, given by conjugation

with the operator

Φ̂ = exp
©«
1
2ℏ

∑︁
𝜇,𝜈∈[𝑑 ]
𝑘,𝑙>0

𝐹0,2
[ 𝜇 𝜈

−𝑘 −𝑙
] 𝐽 𝜇

𝑘
𝐽 𝜈
𝑙

𝑘𝑙

ª®®®¬ .
where 𝐹0,2

[ 𝜇 𝜈

−𝑘 −𝑙
]
are arbitrary scalars. Eectively, it shifts

𝐽
𝜇

−𝑘 → 𝐽
𝜇

−𝑘 +
∑︁
𝜈∈[𝑑 ]
𝑙>0

𝐹0,2
[ 𝜇 𝜈

−𝑘 −𝑙
] 𝐽 𝜈

𝑙

𝑙
. (26)

Once again, the action on D̂ℏ
𝐸
is well-dened. We want to consider the conjugated operators

𝜎𝐻𝑖,𝑘 B Φ̂𝑇 · 𝜎𝑊𝑖,𝑘 ·𝑇 −1Φ̂−1 . (27)

Theorem 2.13. Dening 𝑡𝜇 by (25) and with the same conditions for 𝑑 , (𝑟𝜇, 𝑠𝜇, 𝑡𝜇, 𝑄𝜇)𝑑𝜇=1 and the same
range for (𝑖, 𝑘) as in Theorem 2.11, the operators 𝜎𝐻𝑖,𝑘 in Equation (27) form an Airy structure on 𝐸.

This theorem is proved in Section 3 and the result will be reformulated in terms of spectral curves
in Section 5.

2.3.4 Necessary conditions
Theorem 2.11 gives sucient conditions for the operators

𝜎𝐻𝑖,𝑘 , 𝑖 ∈ [𝑟 ], 𝑘 ≥ 1 − 𝜆(𝑖) + 𝛿𝑖,1 (28)

with 𝜆 as in (24) to form an Airy structure. By checking the symmetry of 𝐹0,3, 𝐹0,4 and 𝐹 1
2 ,2
, we could

prove that most of these conditions are also necessary, and we believe that a more thorough analysis
would actually lead to the conclusion that they are all necessary for generic values of (𝑡𝜇, 𝑄𝜇)𝜇 .



14

Proposition 2.14. Let 𝑑 ≥ 2, 𝑟1, . . . , 𝑟𝑑 ≥ 1 and 𝑠1, . . . , 𝑠𝑑 ∈ N∗ ∪ {∞} be such that 𝑟1
𝑠1
≥ · · · ≥ 𝑟𝑑

𝑠𝑑
and

choose 𝜆 as in (24). Assume that for all𝑄1, . . . , 𝑄𝑑 ∈ C, 𝑡1, . . . , 𝑡𝑑−1 ∈ C∗, and in case 𝑠𝑑 ≠ ∞ also 𝑡𝑑 ∈ C∗
such that

𝑑∑︁
𝜇=1

𝑄𝜇 = 0, and 𝑡
𝑟𝜇
𝜇 ≠ 𝑡𝑟𝜈𝜈 whenever 𝜇 ≠ 𝜈 and (𝑟𝜇, 𝑠𝜇) = (𝑟𝜈, 𝑠𝜈) ,

the operators (28) form an Airy structure. Then necessarily

• 𝑟1 = −1 mod 𝑠1 ;
• 𝑠𝜇 ∈ {1, 2} for all 𝜇 ∉ {1, 𝑑} ;
• 𝑟𝑑 = 1 mod 𝑠𝑑 .

Moreover for 𝑑 > 2, if (𝑟𝜇, 𝑠𝜇) = (𝑟𝜈, 𝑠𝜈) for 𝜇 ≠ 𝜈 then necessarily 𝑠𝜇 = 𝑠𝜈 = 1.

The proof of this Proposition can be found in Section 6.3. We in fact use the reformulation of the
W-algebra dierential constraint in terms of topological recursion on spectral curves (Theorem 5.23 in
Part II), as the calculation of the𝜔𝑔,𝑛s – which are generating series for the 𝐹𝑔,𝑛s – appears simpler than
with the dierential constraints (6) themselves. In the course of the proof of Theorem 2.11 in Section 3,
we will see that coprimality of 𝑟𝜇 and 𝑠𝜇 and non-resonance condition for the 𝑡𝜇 (Remark 3.4), as well
as non-vanishing of all but maybe one dilaton shift (Remark 3.15) are obvious necessary conditions to
obtain Airy structures with our method. The assumption

∑𝑑
𝜇=1𝑄𝜇 = 0 is not always necessary and we

obtain ner information on this in Proposition 6.4, but we adopted it here to simplify the statement of
Proposition 2.14.

2.3.5 Half-integer or integer powers of ℏ?
There are several reasons to allow half-integer powers of ℏ in Airy structures instead of just integer

power. Our construction admits natural extra degrees of freedom when 𝜎 has at least two cycles,
namely the parameters𝑄 in Theorem 2.11. This is relevant for applications to open intersection theory,
where we have to allow indices 𝑔 to be both integer or half-integer – see Section 8.1 and Theorem 8.7.
As it does not lead to any complication, we write the whole article allowing 𝑔 ∈ 1

2N. In the terminology
of [BBCCN18], we are dealing with crosscapped Airy structures. If all monomials in 𝐻𝑖 only feature
integer powers of ℏ then 𝐹𝑔,𝑛 in (7) vanishes for half-integers 𝑔. It is therefore straightforward to
specialise our results to allow only integer 𝑔, as it is more common in topological recursions. Let us
however note that half-integer 𝑔 already made their appearance in certain other applications of the
topological recursion, such as non-hermitian matrix models [CE06], enumeration of non-orientable
discretised surfaces [CEM11], Chern–Simons theory with gauge groups SO(𝑁 ) or Sp(2𝑁 ) [BE17a],
etc.

2.4 String, dilaton and homogeneity eqations
Lemma 2.15. Consider one of the Airy structure of Theorem 2.10 or Theorem 2.11. For any 𝑔, 𝑛 ≥ 0 such
that 2𝑔 − 2 + (𝑛 + 1) > 0, any 𝜇, 𝜇1, . . . , 𝜇𝑛 ∈ [𝑑] and 𝑝1, . . . , 𝑝𝑛 > 0, we have

𝑑∑︁
𝜇=1

𝑡𝜇𝐹𝑔,𝑛+1
[ 𝜇 𝜇1 · · · 𝜇𝑛
𝑠𝜇 𝑝1 · · · 𝑝𝑛

]
=

𝑛∑︁
𝑚=1

𝑝𝑚

𝑟𝜇𝑚
𝐹𝑔,𝑛

[ 𝜇1 · · · 𝜇𝑛
𝑝1 · · · 𝑝𝑛

]
+ 𝛿𝑔,1𝛿𝑛,0

(
𝑟 2𝜇 − 1
24𝑟𝜇

+
𝑄2

𝜇

2𝑟𝜇

)
. (29)

Proof. We express the constraint 𝜎𝐻𝑖=2,𝑘=0 · 𝑍 = 0, as it is always part of the Airy structure. From
(16)-(17) and taking into account 𝐽 𝜇0 = ℏ

1
2𝑄𝜇 and the evaluations

Ψ (0)𝑟 (𝑞1, 𝑞2) =
1
2
(
𝑟 2𝛿𝑟 |𝑞1𝛿𝑟 |𝑞2 − 𝑟𝛿𝑟 |𝑞1+𝑞2

)
,

Ψ (1)𝑟 (∅) = −
𝑟 (𝑟 2 − 1)

24
,

(30)
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we obtain

𝜎𝑊𝑖=2,𝑘=0 =

𝑑∑︁
𝜇=1

1
𝑟𝜇
𝑊

𝜇

2,0 +
∑︁
𝜇≠𝜈

𝑘>0

𝑊
𝜇

1,−𝑘𝑊
𝜈
1,𝑘 +

∑︁
𝜇<𝜈

𝑊
𝜇

1,0𝑊
𝜈
1,0

=

𝑑∑︁
𝜇=1

(∑︁
𝑘>0

𝑟𝜇𝛿𝑟𝜇 |𝑘 − 1
𝑟𝜇

𝐽
𝜇

−𝑘 𝐽
𝜇

𝑘
+
(𝑟𝜇 − 1)𝑄2

𝜇ℏ

2𝑟𝜇
−
(𝑟 2𝜇 − 1)ℏ
24𝑟𝜇

)
+

∑︁
𝜇≠𝜈

(∑︁
𝑘>0

𝐽
𝜇

−𝑟𝜇𝑘 𝐽
𝜈
𝑟𝜈𝑘
+
ℏ𝑄𝜇𝑄𝜈

2

)
.

(31)

To get 𝜎𝐻𝑖=2,𝑘=0 we have to apply the dilaton shifts 𝐽 𝜇−𝑠𝜇 → 𝐽
𝜇
−𝑠𝜇 − 𝑟𝜇𝑡𝜇 , which simply results in adding

a term
∑𝑑

𝜇=1 𝑡𝜇 𝐽
𝜇
𝑠𝜇 to (31). Expressing the constraint

∀𝑘 > 0 , 𝜎𝐻𝑖=1,𝑘 · 𝑍 =

( 𝑑∑︁
𝜇=1

𝐽
𝜇

𝑟𝜇𝑘

)
· 𝑍 = 0 ,

and using the assumption
∑𝑑

𝜇=1𝑄𝜇 = 0, we see that 𝜎𝐻𝑖=2,𝑘=0 · 𝑍 = 0 implies that 𝑍 is annihilated by
the operator

𝑑∑︁
𝜇=1

{
𝑡𝜇 𝐽

𝜇
𝑠𝜇 −

∑︁
𝑘>0

1
𝑟𝜇
𝐽
𝜇

−𝑘 𝐽
𝜇

𝑘
− ℏ

(
𝑟 2𝜇 − 1
24𝑟𝜇

+
𝑄2

𝜇

2𝑟𝜇

)}
.

By the representation (15) of the 𝐽 s, this yields (29) for the coecients (7) of the partition function. �

The partition functions of these Airy structures for 𝜎 = (1 · · · 𝑟 ) or (1 · · · 𝑟 − 1) (𝑟 ) enjoy an extra
property of homogeneity, which turn (29) into an analog of the dilaton equation.

Corollary 2.16. Assume 𝑑 = 1 and (𝑟1, 𝑠1) = (𝑟, 𝑠) with 𝑟 = ±1 mod 𝑠 . Then, the coecients (7)
of the partition function of the Airy structure of Theorem 2.10 satisfy 𝐹𝑔,𝑛 [𝑝1, . . . , 𝑝𝑛] = 0 whenever∑𝑛

𝑚=1 𝑝𝑚 ≠ 𝑠 (2𝑔 − 2 + 𝑛), and the dilaton equation

𝐹𝑔,𝑛+1 [𝑠, 𝑝1, . . . , 𝑝𝑛] = 𝑠 (2𝑔 − 2 + 𝑛) 𝐹𝑔,𝑛 [𝑝1, . . . , 𝑝𝑛] +
𝑟 21 − 1
24

𝛿𝑔,1𝛿𝑛,0 .

Corollary 2.17. Assume 𝑑 = 2, 𝑟1 = −1 mod 𝑠1, (𝑟2, 𝑠2) = (1,∞) and 𝑡1 = 1
𝑟1
. Then, the coecients

of the partition function of the Airy structure described in Theorem 2.11 (also appearing in [BBCCN18,
Theorem 4.16]) satisfy 𝐹𝑔,𝑛

[ 1 · · · 1
𝑝1 · · · 𝑝𝑛

]
= 0 whenever

∑𝑛
𝑚=1 𝑝𝑚 ≠ 𝑠1 (2𝑔 − 2 + 𝑛), and the dilaton equation

𝐹𝑔,𝑛+1
[ 1 1 · · · 1
𝑠1 𝑝1 · · · 𝑝𝑛

]
= 𝑠1 (2𝑔 − 2 + 𝑛) 𝐹𝑔,𝑛

[ 1 · · · 1
𝑝1 · · · 𝑝𝑛

]
+

(
𝑟 21 − 1
24
+
(𝑟1 + 1)𝑄2

1
2

)
𝛿𝑔,1𝛿𝑛,0 .

Proof of Corollary 2.16. In this case we only need to consider 𝑔 ∈ N. The Airy structure is in normal
form up to an overall normalisation, and we can decompose for 𝑖 ∈ (𝑟 ] and 𝑘 ≥ 1 − 𝜆(𝑖)

𝑟 𝑖−1 𝜎𝐻𝑖,𝑘 = 𝐽Π (𝑖,𝑘) −
∑︁
ℓ, 𝑗 ∈N

2≤ℓ+2𝑗≤𝑟

ℏ𝑗

ℓ!

∑︁
q∈(Z∗)ℓ

𝐶 ( 𝑗) [Π(𝑖, 𝑘) |𝑞1, . . . , 𝑞ℓ ] : 𝐽𝑞1 · · · 𝐽𝑞ℓ : ,

where Π(𝑖, 𝑘) B 𝑟𝑘 + 𝑠 (𝑖 − 1). Setting 𝐹0,2 [𝑝1, 𝑝2] B |𝑝1 |𝛿𝑝1+𝑝2,0, [BBCCN18, Corollary 2.16] gives the
following formula for the coecients of the partition function:

𝐹𝑔,𝑛 [𝑝1, . . . , 𝑝𝑛] =
∑︁
ℓ, 𝑗 ∈N

2≤ℓ+2𝑗≤𝑟
q∈(Z∗)ℓ

𝐶 ( 𝑗) [𝑝1 |𝑞1, . . . , 𝑞ℓ ]
ℓ!

∑︁
𝝆`[ℓ ]

′′∑︁
𝝁`𝝆 (𝑛]
ℎ :𝝆→N

ℓ+𝑗+∑𝜌∈𝝆 (ℎ𝜌−1)=𝑔

∏
𝜌∈𝝆

𝐹ℎ𝜌 , |𝜌 |+ |𝜇𝜌 | [q𝜌 , p𝜇𝜌 ] . (32)

Here, 𝝆 ` [ℓ] means that 𝝆 is a set of non-empty subsets of [ℓ] which are pairwise disjoint and whose
union is ℓ , and for 𝜌 ∈ 𝝆 we denote q𝜌 B (𝑞𝑚)𝑚∈𝜌 . Then, 𝜇 `𝝆 (𝑛] is a family of (possibly empty)
pairwise disjoint subsets 𝜇𝜌 of (𝑛] indexed by 𝜌 ∈ 𝝆, whose union is (𝑛]. The double prime over the
summation means that the terms involving 𝐹0,1 [𝑞𝑚] or 𝐹0,2 [𝑞𝑚, 𝑞𝑚′] are excluded from the sum. We
note that the summation condition is equivalent to

2𝑔 − 2 + 𝑛 + (1 − ℓ − 2 𝑗) =
∑︁
𝜌∈𝝆
(2ℎ𝜌 − 2 + |𝜌 | + |𝜇𝜌 |) .
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Since ℓ + 2 𝑗 ≥ 2, this is indeed a recursion on 2𝑔 − 2 + 𝑛 ≥ 0 to compute 𝐹𝑔,𝑛 starting from the value of
𝐹0,2.
𝐹0,2 obviously satises the homogeneous property. Assume the 𝐹𝑔′,𝑛′ for 0 ≤ 2𝑔′− 2+𝑛′ < 2𝑔− 2+𝑛

satisfy homogeneity. So, the summands that may contribute to (32) are such that

𝑠
(
2𝑔 − 2 + 𝑛 + (1 − ℓ − 2 𝑗)

)
=

∑︁
𝜌∈𝝆

𝑠 (2ℎ𝜌 − 2 + |𝜌 | + |𝜇𝜌 |) =
ℓ∑︁

𝑙=1
𝑞𝑙 +

𝑛∑︁
𝑚=2

𝑝𝑚 . (33)

Writing 𝑝1 = Π(𝑖, 𝑘) and applying the dilaton shift 𝐽−𝑠 → 𝐽−𝑠 − 1 to (17) we know that 𝐶 ( 𝑗) [𝑝1 |q] is a
linear combination of terms inside which

ℓ∑︁
𝑙=1

𝑞𝑙 − 𝑠ℓ ′ = 𝑟𝑘 ,

where ℓ + ℓ ′ = 𝑖 − 2 𝑗 . Hence
ℓ∑︁

𝑙=1
𝑞𝑙 = 𝑝1 + 𝑠 (1 − 2 𝑗 − ℓ) . (34)

Together with (33), this proves homogeneity of 𝐹𝑔,𝑛 . By induction, homogeneity is established for all
𝑔, 𝑛.

We then apply Lemma 2.15. In our case, there is a single 𝜇, 𝑡𝜇 = 1
𝑟𝜇

and 𝑄𝜇 = 0. Using homogeneity
to simplify the right-hand side of (29), we obtain

𝐹𝑔,𝑛+1 [𝑠, 𝑝1, . . . , 𝑝𝑛] = 𝑠 (2𝑔 − 2 + 𝑛)𝐹𝑔,𝑛 [𝑝1, . . . , 𝑝𝑛] + 𝛿𝑔,0𝛿𝑛,1
𝑟 2 − 1
24

,

�

Proof of Corollary 2.17. The argument is similar and we only point the minor dierences that must
be taken into consideration. Although half-integer 𝑔 and 𝑗 are now allowed, this does not spoil the
sum constraints appearing in the recursive formula for 𝐹𝑔,𝑛 and which were used in the argument.
According to (16) and (23), we have for 𝑖 ∈ (𝑟1 + 1]

𝜎𝐻𝑖,𝑘 = 𝑟
−(𝑖−1)
1

(
𝑊 1

𝑖,𝑘
+

∑︁
𝑘′∈Z

𝑟1𝑊
1
𝑖−1,𝑘′ 𝐽

2
𝑘−1−𝑘′

)����
𝐽 1−𝑠1→𝐽 1−𝑠1−1

, (35)

where by convention𝑊 1
𝑟1+1,𝑘 = 0. The analysis of the previous proof applies to the term𝑊 1

𝑖,𝑘
. Due

to the equation 𝜎𝐻1,𝑘 · 𝑍 = (𝐽 1
𝑟1𝑘
+ 𝐽 2

𝑘
) = 0, we can obtain a recursion in normal form involving only

𝐹𝑔,𝑛
[ 1 · · · 1
∗ ··· ∗

]
by substituting

𝐽 2
𝑘2
−→


0 if 𝑘2 < 0
−ℏ 1

2𝑄1 if 𝑘2 = 0
−𝐽 1

𝑟1𝑘2
if 𝑘2 > 0

(36)

in (35). This converts𝑊 1
𝑖−1,𝑘′ 𝐽

2
𝑘−𝑘′ into −𝑊

1
𝑖−1,𝑘′ 𝐽

1
𝑟1 (𝑘−𝑘′) or 0, and makes it contribute to a coecient

𝐶 ( 𝑗) [𝑝1 |𝑞1, . . . , 𝑞ℓ ] where now 𝑞ℓ = 𝑟1 (𝑘 − 𝑘 ′) and( ℓ−1∑︁
𝑙=1

𝑞𝑙

)
− 𝑠1ℓ ′ = 𝑟1𝑘 ′ ,

with (ℓ − 1) + ℓ ′ = 𝑖 − 1 − 2 𝑗 . Hence
ℓ∑︁

𝑙=1
𝑞𝑙 = 𝑟1𝑘 − 𝑠1ℓ ′ = 𝑝1 + 𝑠1 (1 − 2 𝑗 − ℓ) ,

which is the same as (34) and is all what we need to repeat the previous proof and establish homogeneity.
We then specialise Lemma 2.15 to our case, that is 𝑡1 = 1

𝑟1
and 𝑡2 = 0, while𝑄2 = −𝑄1. Setting 𝜇𝑖 = 1

for all 𝑖 ∈ [𝑛] in (29) and using homogeneity to simplify the right-hand side, we deduce

𝐹𝑔,𝑛+1
[ 1 1 · · · 1
𝑠1 𝑝1 · · · 𝑝𝑛

]
= 𝑠1 (2𝑔 − 2 + 𝑛)𝐹𝑔,𝑛

[ 1 · · · 1
𝑝1 · · · 𝑝𝑛

]
+

(
𝑟 21 − 1
24
+
(𝑟1 + 1)𝑄2

1
2

)
𝛿𝑔,1𝛿𝑛,1 .

�
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For the two above cases, we also have a string equation when 𝑠1 = 𝑟1 + 1.
Lemma 2.18. Assume 𝑑 = 1 and (𝑟1, 𝑠1) = (𝑟, 𝑟 + 1). Then, the coecients of the partition function of
the Airy structure described in Theorem 2.10 satisfy

𝐹𝑔,1+𝑛
[
1, 𝑝1, . . . , 𝑝𝑛

]
=

𝑛∑︁
𝑚=1

𝑝𝑚𝐹𝑔,𝑛
[
𝑝1, . . . , 𝑝𝑚−1, 𝑝𝑚 − 𝑟, 𝑝𝑚+1, . . . , 𝑝𝑛

]
+ 𝛿𝑔,0𝛿𝑛,2𝛿𝑝1+𝑝2,𝑟 .

Lemma 2.19. Assume 𝑑 = 2, 𝑠1 = 𝑟1 + 1 and (𝑟2, 𝑠2) = (1,∞). Then, the coecients of the partition
function of the Airy structure described in Theorem 2.11 satisfy

𝐹𝑔,1+𝑛
[ 1 1 · · · 1
1 𝑝1 ... 𝑝𝑛

]
=

𝑛∑︁
𝑚=1

𝑝𝑚𝐹𝑔,𝑛
[ 1 · · · 1 1 1 · · · 1
𝑝1 · · · 𝑝𝑚−1 𝑝𝑚−𝑟 𝑝𝑚+1 · · · 𝑝𝑛

]
+ 𝛿𝑔,0𝛿𝑛,2𝛿𝑝1+𝑝2,𝑟 + 𝛿𝑔, 12 𝛿𝑛,1𝛿𝑝1,𝑟 𝑄1 .

Proof. The string equation corresponds to the operator 𝐻𝑖=2,𝑘=−1, which is only present in the Airy
structure for 𝑑 = 1 when 𝑠 = 𝑟 + 1, and for 𝑑 = 2 if 𝑠1 = 𝑟1 + 1. The proof of the above relations is then
similar to the one in Lemma 2.15. �

3 Proof of Theorems 2.11 and 2.13
This Section is mainly devoted to the proof of Theorems 2.11 and 2.13. These theorems state that

certain collections of operators (𝜎𝐻𝑖,𝑘 ) (𝑖,𝑘) ∈𝐼 dened in Equations (23) and (27) are Airy structures. In
fact we only prove the second theorem, and note that the rst is a special case. We rst prove this in
the standard case, proceeding as follows.

(I) The operators of an Airy structure must be of the form 𝐽
𝜇
𝑎 + O(2). It is thus necessary to rst

identify the degree zero and degree one term of 𝜎𝐻𝑖,𝑘 in order to check this condition.
(II) In general, one will nd that

𝜎𝐻𝑖,𝑘 = 𝑐𝑖,𝑘 +
∑︁
𝜇∈[𝑑 ]
𝑎∈Z

M (𝑖,𝑘),(𝜇,𝑎) 𝐽 𝜇𝑎 + O(2) . (37)

for some matrixM and constants 𝑐𝑖,𝑘 . This means that for generic 𝑖, 𝑘 we may expect terms
proportional to 𝐽 𝜇−𝑎 = 𝑎 𝑥

𝜇
𝑎 . We will thus construct an index set 𝐼 ⊂ [𝑟 ] × Z such that for all

(𝑖, 𝑘) ∈ 𝐼 we have 𝑐𝑖,𝑘 = 0 andM (𝑖,𝑘),(𝜇,𝑎) = 0 if 𝑎 ≤ 0.
(III) Nevertheless, even restricted to 𝐼 the degree one term (37) is in general a linear combination of

many 𝐽 𝜇𝑎 s for 𝑎 > 0. In order to bring the operators into the normal form of an Airy structure
𝐽
𝜇
𝑎 + O(2) where each (𝜇, 𝑎) appears in a unique operator, we will show that the matrixM
restricted to 𝐼 is invertible under certain constraints on the dilaton shifts. One can then obtain
the operators

𝜎�̃�
𝜇
𝑎 B

∑︁
(𝑖,𝑘) ∈𝐼

(
M−1

)
(𝜇,𝑎),(𝑖,𝑘)

𝜎𝐻𝑖,𝑘 = ℏ𝜕𝑥𝜇
𝑎
+ O(2) ,

which are of desired form.
(IV) The modes (�̃� 𝜇

𝑎 ) (𝜇∈[𝑑 ], 𝑎>0) satisfy the subalgebra condition if and only if the (𝜎𝑊𝑖,𝑘 ) (𝑖,𝑘) ∈𝐼
do. The latter is satised when 𝐼 is induced by a descending partition of 𝑟 as specied in
Theorem 2.8. This criterion thus allows for an easy check whether the mode set constructed in
(III) satises the subalgebra condition (4) of a higher quantum Airy structure.

Together the results of (III) and (IV) will directly imply Theorem 2.13 and hence Theorem 2.11 in
the standard case. The steps (I) to (III) will be carried out in Section 3.1 and step (IV) is performed in
Section 3.2. In Section 3.3 we treat in less details the exceptional case, as it resembles the standard case
in many ways.

First, let us recall some notation. Let 𝜎 ∈ 𝔖𝑟 be a permutation with 𝑑 cycles of respective length 𝑟𝜇
such that 𝑟 = 𝑟1 + · · · + 𝑟𝑑 . We can then dene the dilaton shifted modes

𝜎𝐻𝑖,𝑘 B 𝑇 · 𝜎𝑊𝑖,𝑘 ·𝑇 −1 , 𝑇 B exp
©«
∑︁
𝜇∈[𝑑 ]
𝑘>0

ℏ−1𝐹0,1
[ 𝜇

−𝑘
] 𝐽 𝜇

𝑘

𝑘

ª®®®¬ , 𝑠𝜇 B min
{
𝑘 > 0 | 𝐹0,1

[ 𝜇

−𝑘
]
≠ 0

}
,
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which in the following are the central objects of study. Here 𝜎𝑊𝑖,𝑘 are the 𝜎-twisted modes from
Lemma 2.9. Compared to Equation (27), we do not introduce the coecients 𝐹 1

2 ,1
and 𝐹0,2 here yet, as it

turns out these are not important for most of the proof. As in Equation (12), it will be useful to gather
these in a generating function.

𝜎𝐻𝑖 (𝑥) =
∑︁
𝑘∈Z

𝜎𝐻𝑖,𝑘

𝑥𝑘

(
d𝑥
𝑥

)𝑖
= 𝑇 · 𝜎𝑊𝑖 (𝑥) ·𝑇 −1 .

We will also recall from Equation (14)

𝐽 𝜇,𝑎 (𝑥) :=
∑︁

𝑘∈ 𝑎
𝑟𝜇
+Z
𝐽
𝜇

𝑟𝜇𝑘

d𝑥
𝑥𝑘+1

and dene 𝐽 𝜇,tot (𝑥) = ∑𝑟𝜇−1
𝑎=0 𝐽 𝜇,𝑎 (𝑥). To treat these currents more uniformly, we introduce𝐶 =

⊔𝑑
𝜇=1𝐶𝜇 ,

the union of 𝑑 copies of a formal neighbourhood 𝐶𝜇 of the origin in the complex plane. We use the
notation ( 𝜇𝑧 ) for the coordinate in the 𝐶𝜇 . We dene a function 𝑥 : 𝐶 → C by 𝑥 ( 𝜇𝑧 ) = 𝑧𝑟𝜇 . Cf. Part II
for more on this viewpoint. We then dene a unied current

𝐽 ( 𝜇𝑧 ) :=
𝐽 𝜇,tot (𝑥 (𝑧))

𝑟𝜇
=

∑︁
𝑘∈Z

𝐽
𝜇

𝑘

d𝑥
𝑟𝜇𝑥

𝑘/𝑟𝜇+1
=

∑︁
𝑘∈Z

𝐽
𝜇

𝑘

d𝑧
𝑧𝑘+1

.

The factor of 𝑟𝜇 in the denominator is a convention making (38) simpler. We sometimes omit 𝜇 from
the notation and simply denote 𝑧 ∈ 𝐶 . With these notations, we see that the dilaton shift induces

𝐽 (𝑧) → 𝐽 (𝑧) + 𝜔0,1 (𝑧) , 𝜔0,1 ( 𝜇𝑧 ) B
∑︁
𝑘>0

𝐹0,1
[ 𝜇

−𝑘
]
𝑧𝑘−1d𝑧 .

We also use the shorthand notation 𝑡𝜇 = − 1
𝑟𝜇
𝐹0,1

[ 𝜇
−𝑠𝜇

]
for the leading coecient.

3.1 The degree one condition

In this subsection and the next one we assume that all 𝑠𝜇 are nite. Let us begin by identifying the
degree one component of 𝜎𝐻𝑖 . Let 𝜋1 be the projection to degree one.

Lemma 3.1. For any 𝑖 ∈ [𝑟 ]

𝜋1
(
𝜎𝐻𝑖 (𝜉)

)
=

∑︁
𝑧∈�̃�−1 (𝜉)

∑︁
𝑍 ⊆�̃�−1 (𝜉)\{𝑧 }
|𝑍 |=𝑖−1

𝐽 (𝑧)
∏
𝑧′∈𝑍

𝜔0,1 (𝑧 ′) . (38)

So we have

𝜋1
(
𝜎𝐻𝑖,𝑘

)
=

∑︁
𝜇∈[𝑑 ]
𝑎∈Z

M (𝑖,𝑘),(𝜇,𝑎) 𝐽 𝜇𝑎 , (39)

with a matrixM (𝑖,𝑘),(𝜇,𝑎) having the property that, for each (𝜇, 𝑎), there exists 𝐾𝜇,𝑎 such that for any
𝑖 ∈ [𝑟 ] and 𝑘 ≥ 𝐾𝑎,𝜇 we haveM (𝑖,𝑘),(𝜇,𝑎) = 0.

Note that the right-hand side is a symmetric function in the elements of 𝑥−1 (𝜉), and therefore it
contains only integral powers of 𝜉 .

Proof. From Equation (19), we see that 𝜎𝑊𝑖 (𝜉) is a linear combination of currents

ℏ
∑

𝜇 𝑗𝜇
∏
𝜇∈𝑀

:
𝑖𝜇∏

𝑙=2𝑗𝜇+1
𝐽 𝜇,𝑎

𝜇

𝑙 (𝜉) : .
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After the dilaton shift, these will only contribute to the degree one component of 𝜎𝐻𝑖 (𝜉) if 𝑗𝜇 = 0 for
all 𝜇 ∈ 𝑀 . We have

𝜋1
(
𝜎𝑊𝑖 (𝜉)

)
= 𝜋1

©«
∑︁

𝑀⊆[𝑑 ]

∑︁
𝑖𝜇 ∈[𝑟𝜇 ] 𝜇∈𝑀∑

𝜇 𝑖𝜇=𝑖

∏
𝜇∈𝑀

1

𝑟
𝑖𝜇
𝜇

( ∑︁
𝑎
𝜇

1 ,...,𝑎
𝜇

𝑖𝜇
∈[0,𝑟𝜇 )

Ψ (0)𝑟𝜇 (𝑎
𝜇

1 , . . . , 𝑎
𝜇

𝑖𝜇
) :

∏
𝜇∈𝑀

𝑖𝜇∏
𝑙=1

𝐽 𝜇,𝑎
𝜇

𝑙 (𝜉) :
)ª®®®®¬
,

(40)
and therefore on the right-hand side we need to take the contribution of the shifts in all factors but one.
The denition (18) of the Ψ (0) is nothing but a sum over subsets of Galois conjugates of the function 𝑥 ,
so we obtain ∑︁

𝑎
𝜇

1 ,...,𝑎
𝜇

𝑖𝜇
∈[0,𝑟𝜇 )

Ψ (0)𝑟𝜇 (𝑎
𝜇

1 , . . . , 𝑎
𝜇

𝑖𝜇
) :

𝑖𝜇∏
𝑙=1

𝐽 𝜇,𝑎
𝜇

𝑙 (𝜉) : =
∑︁

𝑍 ⊆�̃�−1 (𝜉)∩�̃�𝜇

|𝑍 |=𝑖𝜇

:
∏
𝑧′∈𝑍

𝐽
( 𝜇

𝑧′
)
: .

The sum over 𝑀 ⊆ [𝑑] in (40) ‘globalises’ this sum of subsets from one component 𝐶𝜇 to all of 𝐶 .
As stated before, the degree one projection extracts the dilaton shifts of all but one (the choice of
𝑧) of these factors, which proves (38). We obtain the matrixM by expanding this equation in 𝜉 and
collecting the contributions of 𝐽 𝜇𝑎 . The vanishing property comes from the fact that 𝜔0,1 contains only
nonnegative positive powers of 𝑧. �

We will restrict the range of indices on both sides and show that the matrixM is invertible in order
to bring the dierential operators into the normal form of an Airy structure. But rst, we would like
to see that this matrix is invertible without restricting it to any subspace yet. Dene

𝜎𝐻 (𝜉,𝑢) :=
𝑟∑︁
𝑖=1

𝜎𝐻𝑖 (𝜉) 𝑢𝑟−𝑖 .

Then

𝜋1
(
𝜎𝐻 (𝜉,𝑢)

)
=

𝑟∑︁
𝑖=1

∑︁
𝑧∈�̃�−1 (𝜉)

∑︁
𝑍 ⊆�̃�−1 (𝜉)\{𝑧 }
|𝑍 |=𝑖−1

𝐽 (𝑧)
∏
𝑧′∈𝑍

𝜔0,1 (𝑧 ′) 𝑢𝑟−𝑖 =
∑︁

𝑧∈�̃�−1 (𝜉)
𝐽 (𝑧)

∏
𝑧′∈�̃�−1 (𝜉)\{𝑧 }

(
𝑢 + 𝜔0,1 (𝑧 ′)

)
.

(41)
We are looking for the inverse to this operation. Remember from (25) that for any 𝜇 ∈ [𝑑] we write
𝑡𝜇 ≔ − 1

𝑟𝜇
𝐹0,1

[ 𝜇
−𝑠𝜇

]
.

Lemma 3.2. Assume gcd(𝑟𝜇, 𝑠𝜇) = 1 for all 𝜇 ∈ [𝑑] and 𝑡𝑟𝜇𝜇 ≠ 𝑡
𝑟𝜈
𝜈 for any distinct 𝜇, 𝜈 such that 𝑟𝜇

𝑠𝜇
=

𝑟𝜈
𝑠𝜈
.

Then the currents can be recovered from 𝜋1
(
𝜎𝐻 (𝜉,𝑢)

)
as follows:

𝐽 (𝑧) = Res
𝑢=−𝜔0,1 (𝑧)

𝜋1
(
𝜎𝐻 (𝑥 (𝑧), 𝑢)

)
d𝑢∏

𝑧′∈�̃�−1 (�̃� (𝑧)) (𝑢 + 𝜔0,1 (𝑧 ′))
. (42)

Proof. If we plug Equation (41) back in Equation (42), we get

Res
𝑢=−𝜔0,1 (𝑧)

∑︁
𝜁 ∈�̃�−1 (�̃� (𝑧))

𝐽 (𝜁 )
∏

𝜁 ′∈�̃�−1 (�̃� (𝑧))\{𝜁 }

(
𝑢 + 𝜔0,1 (𝜁 ′)

) ∏
𝑧′∈�̃�−1 (�̃� (𝑧))

(
𝑢 + 𝜔0,1 (𝑧 ′)

)−1d𝑢
= Res

𝑢=−𝜔0,1 (𝑧)

∑︁
𝜁 ∈�̃�−1 (�̃� (𝑧))

𝐽 (𝜁 ) d𝑢
𝑢 + 𝜔0,1 (𝜁 )

Because we took 𝑧 in a small neighbourhood of zero (but of course not zero itself), the conditions of
the lemma ensure that all 𝜔0,1 (𝜁 ) for 𝜁 in the same bre have dierent values. Therefore, the only
contribution to the residue comes from 𝜁 = 𝑧. �

Remark 3.3. The other inverse relationship,

𝜋1
(
𝜎𝐻 (𝜉,𝑢)

)
=

∑︁
𝑧∈�̃�−1 (𝜉)

∏
𝑧′∈�̃�−1 (𝜉)\{𝑧 }

(
𝑢 + 𝜔0,1 (𝑧 ′)

)
Res

𝑢′=−𝜔0,1 (𝑧)

𝜋1
(
𝜎𝐻 (𝑥 (𝑧), 𝑢 ′)

)
d𝑢 ′∏

𝑧′∈�̃�−1 (�̃� (𝑧)) (𝑢 ′ + 𝜔0,1 (𝑧 ′))
,
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follows immediately from Lagrange interpolation since 𝜋1
(
𝜎𝐻 (𝑥 (𝑧), 𝑢)

)
is polynomial in 𝑢.

Remark 3.4. For Lemma 3.2 and Remark 3.3 to work, all we really need is that 𝜔0,1 takes distinct values
on all elements of the bre of 𝑥 near the ramication point 𝜉 = 0, i.e. the map (𝑥,𝜔0,1) : 𝐶 → 𝑇 ∗P1 is an
embedding on a punctured neighbourhood of the ramication point. The conditions gcd(𝑟𝜇, 𝑠𝜇) = 1 and
𝑡
𝑟𝜇
𝜇 ≠ 𝑡

𝑟𝜈
𝜈 for 𝜇 ≠ 𝜈 such that 𝑟𝜇

𝑠𝜇
=

𝑟𝜈
𝑠𝜈

ensure this. In the undeformed case, the setting of Theorem 2.11,
i.e. monomial 𝜔0,1, this is in fact necessary as well as sucient.

Suppose there were a 𝜇 such that gcd(𝑟𝜇, 𝑠𝜇) = 𝑑𝜇 > 1, let 𝑧 ∈ 𝐶𝜇 , and let 𝜗 be a primitive 𝑟𝜇th root
of unity. Then 𝑥 (𝑧) = 𝑥 (𝜗𝑟𝜇/𝑑𝜇𝑧) and 𝜔0,1 (𝑧) = 𝜔0,1 (𝜗𝑟𝜇/𝑑𝜇𝑧). So in Equation (41), the dependence on
𝐽
𝜇
∗ is given by∏

𝑧′∈�̃�−1 (𝜉)

(
𝑢 + 𝜔0,1 (𝑧 ′)

) 𝑟𝜇∑︁
𝑖=1

𝐽

(
𝜇

𝜗𝑖𝑧

)
𝑢 + 𝜔0,1 (𝜗𝑖𝑧)

=
∏

𝑧′∈�̃�−1 (𝜉)

(
𝑢 + 𝜔0,1 (𝑧 ′)

) 𝑟𝜇/𝑑𝜇∑︁
𝑖=1

∑𝑑𝜇

𝑗=1 𝐽
(

𝜇

𝜗𝑖+𝑗𝑟𝜇 /𝑑𝜇 𝑧

)
𝑢 + 𝜔0,1 (𝜗𝑖𝑧)

.

Performing the 𝑗-sum, we see that 𝜋1
(
𝜎𝐻 (𝜉,𝑢)

)
only depends on 𝐽 𝜇𝑎 for𝑑𝜇 | 𝑎. Therefore, it is impossible

to retrieve all 𝐽 𝜇𝑎 from 𝜋1 (𝜎𝐻 ).
In the case 𝜇 ≠ 𝜈 such that 𝑟𝜇

𝑠𝜇
=

𝑟𝜈
𝑠𝜈

and 𝑡𝑟𝜇𝜇 = 𝑡
𝑟𝜈
𝜈 , the situation is similar. First note that by redening

the local coordinate on 𝐶𝜇 , we may actually assume 𝑡𝜇 = 𝑡𝜈. Writing the local coordinates as 𝑧 ∈ 𝐶𝜇

and 𝑧 ′ ∈ 𝐶𝜈, we then have 𝜔0,1 (𝜗𝑖𝑧) = 𝜔0,1 (𝜗𝑖𝑧 ′) for all 𝑖 ∈ [𝑟𝜇]. By the same argument as above,
𝜋1 (𝐻 ) then depends on 𝐽 𝜇𝑎 and 𝐽 𝜈

𝑏
only in the combination 𝐽 𝜇𝑎 + 𝐽 𝜈𝑎 , so again we can never retrieve the

individual 𝐽 𝜇𝑎 and 𝐽 𝜈𝑎 .
For the deformed case, see Remark 3.11.

Since the 𝜔0,1 are power series with exponents bounded below (by 𝑠𝜇 on component 𝐶𝜇 ), we can
see that for any 𝑖 , the set of 𝑘 such that 𝜎𝐻𝑖,𝑘 gets a contribution from 𝐽

𝜇
𝑎 with 𝑎 ≤ 0 in Equation (38)

is bounded from above. Therefore, the following denition makes sense.

Denition 3.5. For 𝑖 ∈ [𝑟 ], we dene 𝑘min (𝑖) to be the smallest 𝐾 such that for all 𝑘 ≥ 𝐾 , 𝜋1 (𝜎𝐻𝑖,𝑘 )
given by Equation (38) lies in the linear span of 𝐽 𝜇𝑎 with 𝜇 ∈ [𝑑] and 𝑎 > 0 solely.

It turns out that 𝑘min (𝑖) can be approximated as follows.

Lemma 3.6. If 𝑟1
𝑠1
≥ · · · ≥ 𝑟𝑑

𝑠𝑑
and gcd(𝑟𝜇, 𝑠𝜇) = 1 for all 𝜇 ∈ [𝑑] we have 𝑘min (𝑖) ≤ 𝔡r,s (𝑖) where

𝔡r,s (𝑖) B



−
⌊
𝑠1 (𝑖−1)

𝑟1

⌋
+ 𝛿𝑖,1 , 1 ≤ 𝑖 ≤ 𝑟1

−
⌊
𝑠2 (𝑖−𝑟1−1)

𝑟2

⌋
− 𝑠1 + 𝛿𝑖,1+𝑟1 , 𝑟1 < 𝑖 ≤ 𝒓 [2]

...
...

−
⌊
𝑠𝑑 (𝑖−𝒓 [𝑑−1]−1)

𝑟𝑑

⌋
− 𝒔 [𝑑−1] + 𝛿𝑖,1+𝒓 [𝜇−1] , 𝒓 [𝑑−1] < 𝑖 ≤ 𝑟

, (43)

where for a subset𝑀 ⊆ [𝑑] we denoted r𝑀 :=
∑

𝜇∈𝑀 𝑟𝜇 and s𝑀 :=
∑

𝜇∈𝑀 𝑠𝜇 .

Proof. Recall that 𝑘 is the exponent in

𝜋1 (𝜎𝐻𝑖,𝑘 )
𝜉𝑘

(
d𝜉
𝜉

)𝑖
. (44)

As we also get 𝑖 factors of d𝜉
𝜉
on the right-hand side of Equation (38) (one from 𝐽 and 𝑖 − 1 from the

𝜔0,1, we will concentrate on the remaining powers of 𝜉 .
From Lemma 3.1, we see that in order to determine an upper bound 𝑘max ∈ Q for the exponents

𝑘 in (44) for which we get a non-vanishing contribution from 𝐽
𝜇
𝑎 with 𝑎 ≤ 0 it suces to inspect

𝑎 = 0 and to take only the leading order of all 𝜔0,1s into account. More specically, to make 𝑘 in (44)
as large as possible, we need to choose the 𝜔0,1s eciently: an 𝜔0,1 on branch 𝜈 has leading order
(𝑧 ′)𝑠𝜈 d𝑧′

𝑧′ = 𝜉
𝑠𝜈
𝑟𝜈

d𝜉
𝜉
. So, to minimise the power of 𝜉 , we need to take 𝑠𝜈

𝑟𝜈
minimal, i.e. 𝑟𝜈

𝑠𝜈
maximal, i.e. 𝜈

minimal. From this it follows that the maximal 𝑘 such that 𝐽 ∗𝑎 , 𝑎 ≤ 0 can contribute, is found by rst
taking all 𝑟1 factors 𝜔0,1 with arguments on component 𝜈 = 1, then the 𝑟2 on component 𝜈 = 2, up until
we get to 𝑖 − 1 factors.
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If 𝑖 ∈ [𝑟1], we get −𝑘max =
𝑠1
𝑟1
(𝑖 − 1) from this, while for 𝑖 ∈ (𝒓 [𝜇−1], 𝒓 [𝜇 ]], we similarly get

−𝑘max = (𝑖 − 𝒓 [𝜇−1] − 1)
𝑠𝜇

𝑟𝜇
+∑𝜇−1

𝜈=1
𝑠𝜈
𝑟𝜈
𝑟𝜈. Of course, it might still happen that the coecient of the power

𝜉−𝑘max vanishes due to cancelling contributions of dierent combinations of 𝜔0,1s. However, in any
case 𝑘max ∈ Q is an upper bound for 𝑘 ∈ Q for which 𝐽 ∗𝑎 with 𝑎 ≤ 0 can still contribute. Therefore

𝑘min (𝑖) ≤ min
{
𝐾 ∈ Z

��� 𝐾 > −
(
𝒔 [𝜇−1] + (𝑖 − 𝒓 [𝜇−1] − 1)

𝑠𝜇

𝑟𝜇

)}
𝑖 ∈ (𝒓 [𝜇−1], 𝒓 [𝜇 ]] .

Finally, let us argue that the right-hand side of the above equation is nothing but 𝔡r,s (𝑖) as dened in
(43). If 𝑖 ∈ (𝒓 [𝜇−1] + 1, 𝒓 [𝜇 ]], this is clearly true, as then (𝑖 − 𝒓 [𝜇−1])

𝑠𝜇

𝑟𝜇
∉ Z, and taking the integral part

implies strict inequality. If 𝑖 = 𝒓 [𝜇−1] + 1, we need to add 1 to obtain strict inequality, explaining the
Kronecker symbol in (43). �

Remark 3.7. For generic 𝜔0,1, i.e. generic values for dilaton shifts, we even have 𝑘min (𝑖) = 𝔡r,s (𝑖) for
all 𝑖 . Indeed, it should be clear from the proceeding discussion that the case 𝑘min (𝑖) < 𝔡r,s (𝑖) can
only occur if the leading order inspected in the proof of Lemma 3.6 vanishes. This can only happen
if 𝜉−𝑘max gets contributions from several combinations of 𝜔0,1s, which however is only possible if in
case 𝑖 ∈ (𝒓 [𝜇−1], 𝒓 [𝜇 ]] we have a 𝜈 ≠ 𝜇 with 𝑟𝜈

𝑠𝜈
=

𝑟𝜇

𝑠𝜇
. This can be compared in Part II to the results of

Lemma 5.4 and Proposition 5.13.

From now on we will always assume that 𝑟1
𝑠1
≥ . . . ≥ 𝑟𝑑

𝑠𝑑
if not stated otherwise. The modes selected

with the help of 𝔡r,s (𝑖) via
𝜎𝐻𝑖,𝑘 𝑖 ∈ [𝑟 ], 𝑘 ≥ 𝔡r,s (𝑖)

shall be shown to be an Airy structure for some certain (𝑟𝜇, 𝑠𝜇)𝑑𝜇=1. For future reference let us therefore
dene the following index set.

Denition 3.8. We dene the index set 𝐼r,s to be

𝐼r,s B
{
(𝑖, 𝑘) ∈ [𝑟 ] × Z | 𝑘 ≥ 𝔡r,s (𝑖)

}
(45)

with 𝔡r,s (𝑖) as in (43).

With the fact that 𝑘min (𝑖) ≤ 𝔡r,s (𝑖) and Equation (43) we have two dierent characterisations of 𝐼r,s.
The rst property tells us that for (𝑖, 𝑘) ∈ 𝐼r,s the degree one projection of 𝜎𝐻𝑖,𝑘 is a linear combination
of 𝐽 𝜇𝑎 with 𝑎 > 0 only while the characterisation in (43) will be important later in order to check whether
the modes satisfy the subalgebra condition. In the following we will need yet another characterisation
of 𝐼r,s.

Lemma 3.9. Assume gcd(𝑟𝜇, 𝑠𝜇) = 1 for all 𝜇 ∈ [𝑑]. Then, (𝑖, 𝑘) ∈ [𝑟 ] × Z belongs to 𝐼r,s if and only if
there exists 𝜇 ∈ [𝑑] such that

Π𝜇 (𝑖, 𝑘) − Δ𝜇 > 0 ,

where Π𝜇 (𝑖, 𝑘) = 𝑟𝜇𝑘 + 𝑠𝜇 (𝑖 − 1) and Δ𝜇 B 𝒓 [𝜇−1]𝑠𝜇 − 𝑟𝜇𝒔 [𝜇−1] .

Proof.

Π𝜇 (𝑖, 𝑘) = Π𝜇 (𝑖 ′ + 𝒓 [𝜇−1], 𝑘 ′ − 𝒔 [𝜇−1]) .

Now using that Π𝜇 (𝑖, 𝑘) = Π𝜇 ( 𝑗, 𝑙) with 𝑖, 𝑗 ∈ [𝑟 ] and 𝑘, 𝑙 ∈ Z if and only if there exists an𝑚 ∈ Z such
that 𝑖 = 𝑗 +𝑚𝑟𝜇 and 𝑘 = 𝑙 −𝑚𝑠𝜇 we see that (𝑖, 𝑘) has to be of the form

𝑖 = 𝑖 ′ +𝑚𝑟𝜇 + 𝒓 [𝜇−1] , 𝑘 = 𝑘 ′ −𝑚𝑠𝜇 − 𝒔 [𝜇−1]

for some𝑚 ∈ Z. Remember that we need to prove that 𝑘 ≥ 𝔡r,s (𝑖). First assume𝑚 ≥ 0 and choose
𝜆 ≥ 𝜇 such that 𝑖 ∈ (𝒓 [𝜆−1], 𝒓 [𝜆]]. Since 𝑐 > 0 we know that

𝑘 ′ ≥ −
⌊
𝑠𝜇 (𝑖 ′ − 1)

𝑟𝜇

⌋
+ 𝛿𝑖′,1 (46)
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and if 𝑖 − 𝒓 [𝜆−1] ≠ 1 we thus nd that

𝔡r,s (𝑖) = −
⌊
𝑠𝜆 (𝑖 − 𝒓 [𝜆−1] − 1)

𝑟𝜆

⌋
− 𝒔 [𝜆−1]

≤ −
⌊
𝑠𝜇 (𝑖 ′ +𝑚𝑟𝜇 − 𝒓 [𝜇,𝜆−1] − 1)

𝑟𝜇

⌋
− 𝒔 [𝜆−1]

≤ −
⌊
𝑠𝜇 (𝑖 ′ − 1)

𝑟𝜇

⌋
−𝑚𝑠𝜇 − 𝒔 [𝜇−1]

≤ 𝑘 ′ −𝑚𝑠𝜇 − 𝒔 [𝜇−1] − 𝛿𝑖′,1
≤ 𝑘 .

In the second and third line we used that 𝑟𝜈
𝑠𝜈
≥ 𝑟𝜈′

𝑠𝜈′
for 𝜈 ≤ 𝜈′ and in the fourth line we plugged in

the expression for 𝑖 and used (46). In the case 𝑖 − 𝒓 [𝜆−1] = 1 we have to be more careful due to the
additional contribution from the Kronecker delta in 𝔡r,s (𝑖). We nd

𝑘 ≥ −
⌊
𝑠𝜇 (𝑖 ′ − 1)

𝑟𝜇

⌋
+ 𝛿𝑖′,1 −𝑚𝑠𝜇 − 𝒔 [𝜇−1]

> −
𝑠𝜇 (𝑖 ′ − 1)

𝑟𝜇
−𝑚𝑠𝜇 − 𝒔 [𝜇−1]

= −𝒔 [𝜆−1] −
𝑠𝜇 (𝑖 ′ − 1)

𝑟𝜇
−𝑚𝑠𝜇 + 𝒔 [𝜇,𝜆−1]

≥ −𝒔 [𝜆−1] −
𝑠𝜇

𝑟𝜇
(𝑖 ′ +𝑚𝑟𝜇 − 𝒓 [𝜇,𝜆−1] − 1)

= −𝒔 [𝜆−1]
= 𝔡r,s (𝑖) − 1 .

In this calculation we used the arguments from the prior one and identied 𝑖 − 𝒓 [𝜆−1] = 1 in line three
and ve. This closes the case𝑚 ≥ 0. The case𝑚 < 0 is left to the reader.

Now let (𝑖, 𝑘) ∈ 𝐼r,s. We choose 𝜇 ∈ [𝑑] and (𝑖 ′, 𝑘 ′) ∈ [𝑟𝜇] × Z such that 𝑖 = 𝑖 ′ + 𝒓 [𝜇−1] and
𝑘 = 𝑘 ′ − 𝒔 [𝜇−1] . Then we immediately nd that Π𝜇 (𝑖, 𝑘) = Π𝜇 (𝑖 ′, 𝑘 ′) + Δ𝜇 which means it suces to
show that Π𝜇 (𝑖 ′, 𝑘 ′) > 0. But this follows from 𝑘 ≥ 𝔡r,s (𝑖) which written out is nothing but

𝑘 ≥ −
⌊
𝑠𝜇 (𝑖 ′ − 1)

𝑟𝜇

⌋
− 𝒔 [𝜇−1] + 𝛿𝑖′,1

using Lemma 3.6. Plugging 𝑘 = 𝑘 ′ − 𝒔 [𝜇−1] into the above expression one nds that 𝑘 ′ satises (46)
which is equivalent to our claim that Π𝜇 (𝑖 ′, 𝑘 ′) > 0. �

Remember that we dened the matrixM (𝑖,𝑘),(𝜇,𝑎) to be the collection of coecients

𝜋1
(
𝜎𝐻𝑖,𝑘

)
=

∑︁
𝜇∈[𝑑 ], 𝑎∈Z

M (𝑖,𝑘),(𝜇,𝑎) 𝐽 𝜇𝑎

of the projection to degree 1. It is given abstractly in Lemma 3.1. So far we found out thatM admits a
two-sided inverse and moreover we characterised those modes featuring only derivatives in degree
one. The next step is now to combine both results in order to bring the operators (𝜎𝐻𝑖,𝑘 ) (𝑖,𝑘) ∈𝐼r,s into
the normal form of an Airy structure.

Lemma 3.10. Assume gcd(𝑟𝜇, 𝑠𝜇) = 1 for all 𝜇 ∈ [𝑑] and 𝑡𝑟𝜇𝜇 ≠ 𝑡
𝑟𝜈
𝜈 for any distinct 𝜇, 𝜈 with 𝑟𝜇

𝑠𝜇
=

𝑟𝜈
𝑠𝜈
.

Then, there exists matrices N(𝜇,𝑎),(𝑖,𝑘) andM (𝑖,𝑘),(𝜇,𝑎) indexed by (𝜇, 𝑎) ∈ [𝑑] × N∗ and (𝑖, 𝑘) ∈ 𝐼r,s (see
(45)) obeying the vanishing properties in Denition 2.3, that are inverse to each other, and such that

𝜎�̃�𝜇,𝑎 =
∑︁
(𝑖,𝑘) ∈𝐼r,s

N(𝜇,𝑎),(𝑖,𝑘) 𝜎𝐻𝑖,𝑘 (𝜇, 𝑎) ∈ [𝑑] × N∗

satisfy the degree one condition.
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Proof. From Lemma 3.2 and Remark 3.3 we know that the matrixM encoding the coecients of the
degree one projection of the modes 𝜎𝐻𝑖,𝑘 admits a two-sided inverse, if we keep the full range of
indices (𝑖, 𝑘) ∈ [𝑟 ] × Z and (𝜇, 𝑎) ∈ [𝑑] × Z. However, we actually need such a relation between the
semi-innite column vectors

H− :=
(
𝜋1 (𝜎𝐻𝑖,𝑘 )

)
(𝑖,𝑘) ∈𝐼r,s and J− :=

(
𝐽
𝜇
𝑎

)
(𝜇,𝑎) ∈[𝑑 ]×N∗ .

For this, let us also introduce the semi-innite column vectors

H+ :=
(
𝜋1 (𝜎𝐻𝑖,𝑘 )

)
(𝑖,𝑘)∉𝐼r,s and J+ :=

(
𝐽
𝜇
𝑎

)
(𝜇,𝑎) ∈[𝑑 ]×(−N) ,

and the innite column vectors
H B

(
H−
H+

)
, J B

(
J−
J+

)
.

We can then write Equation (41) symbolically as H =M · J. The vanishing properties of the matrixM
guarantee that this product is well-dened (i.e. the evaluation of each entry involves only nite sums).
By denition of Ir,s, this splits as (

H−
H+

)
=

(
M−− 0
M−+ M++

) (
J−
J+

)
.

Writing N for the inverse ofM, the relationM · N = id implies thatM−− · N−− = id− (with obvious
notation). As these are semi-innite matrices, we cannot conclude yet that N− − ·M−− = id−. This
conclusion will nevertheless come from the analysis ofN . According to Lemma 3.2, seenN as a linear
operator we have

N : Υ(𝜉,𝑢) ↦→ Res
𝑢=−𝜔0,1 (𝑧)

Υ(𝑥 (𝑧), 𝑢) d𝑢∏
𝑧′∈�̃�−1 (�̃� (𝑧)) (𝑢 + 𝜔0,1 (𝑧 ′))

. (47)

By a straightforward calculation, we see that, if 𝑧 ∈ 𝐶𝜇 and 𝑧 ′ ∈ 𝐶𝜈, then, as 𝑧 → 0,

𝜔0,1 (𝑧 ′) − 𝜔0,1 (𝑧) ∈
{
O(𝑧𝑠𝜇−1d𝑧) 𝜈 ≥ 𝜇
O(𝑧

𝑟𝜇𝑠𝜈

𝑟𝜈
−1d𝑧) 𝜈 < 𝜇

.

Considering the term related to 𝜎𝐻𝑖,𝑘 , we see after some elementary addition of exponents that

N
(
𝑢𝑟−𝑖

1
𝜉𝑘

(d𝜉
𝜉

)𝑖 )
∈ O

(
𝑧−Π𝜇 (𝑖,𝑘)+Δ𝜇

(d𝑧
𝑧

))
.

For this to contribute only to J−, we need Π𝜇 (𝑖, 𝑘) −Δ𝜇 > 0, which by Lemma 3.9 is given for (𝑖, 𝑘) ∈ 𝐼r,s.
Thus N+− = 0 and by a similar reasoning as before, N−− · M−− = id−.

From (47), one can check the desired vanishing property for the entries of N−− and therefore,
applying the matrix N−− to the semi-innite column vector with entries

𝜋1
(
𝜎𝐻𝑖,𝑘

)
=

∑︁
𝜇∈[𝑑 ]
𝑎>0

M (𝑖,𝑘),(𝜇,𝑎) ℏ𝜕𝑥𝜇
𝑎

(𝑖, 𝑘) ∈ 𝐼r,s

is well-dened and gives the semi-innite column vector J−.
To completely prove the degree one property, we need to check that for any (𝑖, 𝑘) ∈ 𝐼r,s, the degree

zero component of 𝜎𝐻𝑖,𝑘 is vanishing. Following the proof of Lemma 3.1 one nds that the projection
to degree zero of 𝜎𝐻𝑖,𝑘 for arbitrary 𝑖 and 𝑘 is

𝜋0
(
𝜎𝐻𝑖 (𝜉)

)
=

∑︁
𝑍 ⊆�̃�−1 (𝜉)
|𝑍 |=𝑖

∏
𝑧∈𝑍

𝜔0,1 (𝑧) . (48)

Similarly to Lemma 3.6, we then see that in order to get a non-vanishing contribution to 𝜋0 (𝜎𝐻𝑖,𝑘 ), we
need

𝑘 ≤ −
(
𝒔 [𝜇−1] + (𝑖 − 𝒓 [𝜇−1])

𝑠𝜇

𝑟𝜇

)
,

where the dierence with that Lemma is the substitution of 𝑖 − 1 by 𝑖 . By the proof of that lemma,

𝔡r,s (𝑖) > −
(
𝒔 [𝜇−1] + (𝑖 − 𝒓 [𝜇−1] − 1)

𝑠𝜇

𝑟𝜇

)
> −

(
𝒔 [𝜇−1] + (𝑖 − 𝒓 [𝜇−1])

𝑠𝜇

𝑟𝜇

)
. (49)

Hence 𝜋0 (𝜎𝐻𝑖,𝑘 ) = 0 for (𝑖, 𝑘) ∈ 𝐼r,s, and this concludes the proof. �
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Remark 3.11. As in Remark 3.4, the actual requirement for Lemma 3.10 to work in some way is that
𝜔0,1 takes distinct values on all elements of a bre close to the ramication point. However, in case
several 𝜔0,1s agree up to leading order, the index set 𝐼r,s would need to be adjusted to account for this:
we would get 𝑘min (𝑖) < 𝔡r,s (𝑖) the order of vanishing of N

[
𝑢𝑟−𝑖𝜉−𝑘

( d𝜉
𝜉

)𝑖 ] would change. However, if
we adjust 𝐼r,s, our argument for the subalgebra condition Lemma 3.13 does not work anymore. On the
geometric side of topological recursion, Proposition 5.10 also needs this particular range of indices,
and would have to be adjusted substantially.

There may still be cases where this can be made to work, but goes beyond the scope of this work.
In any case, more conditions would be necessary, as the specic example of a spectral curve with two
components in the vein of Section 6,

𝑥 ( 𝜇𝑧 ) = 𝑧2

2 , 𝑦
( 1
𝑧

)
= 1

𝑧
, 𝑦

( 2
𝑧

)
= 1

𝑧
+ 1

with 𝜔0,1 = 𝑦d𝑥 yields a non-symmetric 𝜔1,2 and therefore cannot correspond to an Airy structure.

3.2 The subalgebra condition

Having proven the degree one condition for the modes
𝜎𝐻𝑖,𝑘 (𝑖, 𝑘) ∈ 𝐼r,s

with index set 𝐼r,s as dened in (45) we need to check whether these modes form a graded Lie subalgebra
as demanded for Airy structures. In order to do so we use Theorem 2.8 stating that if 𝐼 is induced by a
descending partition then (𝜎𝐻𝑖,𝑘 ) (𝑖,𝑘) ∈𝐼 generate a graded Lie subalgebra. By this we mean that there
exists 𝜆1 ≥ · · · ≥ 𝜆ℓ with

∑ℓ
𝑗=1 𝜆 𝑗 = 𝑟 such that 𝐼 = 𝐼𝜆 where

𝐼𝜆 B
{
(𝑖, 𝑘) ∈ [𝑟 ] × Z | ∀𝑖 ∈ [𝑟 ], 𝜆(𝑖) + 𝑘 > 0

}
,

and we set

𝜆(𝑖) B min
{
𝑚

���� 𝑚∑︁
𝑗=1

𝜆 𝑗 ≥ 𝑖
}
.

In our case at hand we want to check whether 𝐼r,s ∪ {(1, 0)} is induced by a descending partition. We
will later then exclude 𝜎𝐻1,0 from the associated mode set by setting this mode to zero. Explicitly, this
means that we want to classify the cases in which there exists a descending partition 𝜆 ` 𝑟 such that
𝜆(𝑖) = 1 − 𝔡r,s (𝑖) + 𝛿𝑖,1. Writing 𝑖 = 𝑖 ′ + 𝒓 [𝜈−1] for 𝑖 ′ ∈ [𝑟𝜈] again assuming 𝑟1

𝑠1
≥ · · · ≥ 𝑟𝑑

𝑠𝑑
we can write

out 𝔡r,s (𝑖) using Lemma 3.6 and obtain

𝜆(𝑖) = 1 +
⌊
𝑠𝜈 (𝑖 ′ − 1)

𝑟𝜈

⌋
+ 𝒔 [𝜈−1] − 𝛿𝑖′,1 𝛿𝜈>1 . (50)

The case 𝑑 = 1 was studied in [BBCCN18], resulting in the following correspondence.

Lemma 3.12. [BBCCN18, Proposition B.1] Let 𝑟 > 1 and 𝑠 ∈ [𝑟 + 1] be coprime. Then there exists a
descending partition 𝜆 = (𝜆1, . . . , 𝜆ℓ ) such that

𝜆(𝑖 ′) = 1 +
⌊
𝑠 (𝑖 ′ − 1)

𝑟

⌋
𝑖 ′ ∈ [𝑟 ] (51)

if and only if 𝑟 = ±1 mod 𝑠 . In this case 𝜆 is given by

𝜆1 = · · · = 𝜆𝑟 ′′ = 𝑟 ′ + 1, 𝜆𝑟 ′′+1 = · · · = 𝜆ℓ = 𝑟 ′, ℓ = 𝑠 − 𝛿𝑠,𝑟+1 , (52)

writing 𝑟 = 𝑟 ′𝑠 +𝑟 ′′ with 𝑟 ′′ ∈ {1, 𝑠 − 1}. In particular we have 𝜆 = (𝑟 ) for 𝑠 = 1 and 𝜆 = (1𝑟 ) for 𝑠 = 𝑟 + 1.

This lemma has the following generalisation to the case 𝑑 > 1.

Lemma 3.13. Let 𝑑 ≥ 2. Given 𝑟1
𝑠1
≥ · · · ≥ 𝑟𝑑

𝑠𝑑
with 𝑟𝜇 and 𝑠𝜇 coprime for all 𝜇, then there exists a

descending partition 𝜆 = (𝜆1, . . . , 𝜆ℓ ) of 𝑟 = 𝑟1 + · · · + 𝑟𝑑 such that (50) is satised if and only if the
following holds

(i) 𝑟1 = −1 mod 𝑠1 ;
(ii) 𝑠𝜇 = 1 for all 𝜇 ∈ (1, 𝑑) ;
(iii) 𝑟𝑑 = +1 mod 𝑠𝑑 .
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In this case 𝜆 is given by

𝜆 =

{(
(𝑟 ′1 + 1)

𝑠1 , 𝑟2, 𝑟3, . . . , 𝑟𝑑−1, 𝑟
′
𝑑
𝑠𝑑

)
𝑟𝑑 ≠ 1(

(𝑟 ′1 + 1)
𝑠1 , 𝑟2, 𝑟3, . . . , 𝑟𝑑−1

)
𝑟𝑑 = 1

, (53)

where 𝑟 ′𝜇 B b𝑟𝜇/𝑠𝜇c.

Proof. First, let us prove that (i), (ii) and (iii) are necessary such that

𝜇 (𝑖) B 1 +
⌊
𝑠𝜈 (𝑖 ′ − 1)

𝑟𝜈

⌋
+ 𝒔 [𝜈−1] − 𝛿𝑖′,1 𝛿𝜈>1 , (54)

where we write 𝑖 = 𝑖 ′ + 𝒓 [𝜈−1] as always, admits a descending partition 𝜆 such that 𝜇 (𝑖) = 𝜆(𝑖). We
begin by presenting a few general statements regarding the construction of 𝜆 following the lines of
[BBCCN18, Proposition B.1].
Assume 𝜇 : [𝑟 ] → N is weakly increasing with 𝜇 (1) = 1 and

𝜇 (𝑖 + 1) − 𝜇 (𝑖) ∈ {0, 1} .
Let 𝜅1 < · · · < 𝜅ℓ−1 be a complete list of jumps of 𝜇 in the sense that

𝜇 (𝜅 𝑗 + 1) − 𝜇 (𝜅 𝑗 ) = 1 .

Additionally, set 𝜅0 B 0 and 𝜅ℓ B 𝑟 . If we further dene

∀𝑗 ∈ [ℓ], 𝜆 𝑗 B 𝜅 𝑗 − 𝜅 𝑗−1 , (55)

then by construction

𝜇 (𝑖) = min
{
𝑚

���� 𝑚∑︁
𝑗=1

𝜆 𝑗 ≥ 𝑖
}
.

However, the partition 𝜆 B (𝜆1, . . . , 𝜆ℓ ) is in general not descending. What one should take away from
this construction is that 𝜆 𝑗 measures the length of the interval between the ( 𝑗 − 1)th and 𝑗 th jump of 𝜇.
Let us get back to our case at hand where 𝜇 is given by (54). The rst constraint on 𝑟1, . . . , 𝑟𝑑 and
𝑠1, . . . , 𝑠𝑑 comes from the requirement that 𝜇 (𝑖 + 1) − 𝜇 (𝑖) ∈ {0, 1}. At the value 𝑖 = 1 + 𝒓 [𝜈−1] with
𝜈 > 1 we nd for 𝑟𝜈 > 1 that

𝜇 (2 + 𝒓 [𝜈−1]) − 𝜇 (1 + 𝒓 [𝜈−1]) = 1 +
⌊
𝑠𝜈

𝑟𝜈

⌋
+ 𝒔 [𝜈−1] − 𝛿2,1 −

(
1 + 𝒔 [𝜈−1] − 𝛿1,1

)
= 1 +

⌊
𝑠𝜈

𝑟𝜈

⌋
,

(56)

implying that necessarily 𝑠𝜈 < 𝑟𝜈. For 𝑟𝜈 = 1 and 1 < 𝜈 < 𝑑 one nds that

𝜇 (2 + 𝒓 [𝜈−1]) − 𝜇 (1 + 𝒓 [𝜈−1]) = 𝑠𝜈 ,
implying 𝑠𝜈 = 1. Notice that we do not get any restrictions for 𝑠𝑑 in the case 𝑟𝑑 = 1 since 𝜇 actually
does not depend on 𝑠𝑑 .
Regarding 𝑠1, by writing 𝑠1 = 𝑠 ′1 𝑟1 + 𝑠 ′′1 with 𝑠 ′′1 ∈ [0, 𝑟1) we nd for 𝑖 < 𝑟1 that

𝜇 (𝑖 + 1) − 𝜇 (𝑖) = 𝑠 ′1 +
⌊
𝑠 ′′1 𝑖

𝑟1

⌋
−

⌊
𝑠 ′′1 (𝑖 − 1)

𝑟1

⌋
.

This implies that either 𝑠 ′1 = 0 in which case 𝑠 ′′1 ∈ [0, 𝑟1) may be arbitrary or 𝑠 ′1 = 1 and⌊
𝑠 ′′1 𝑖

𝑟1

⌋
≤

⌊
𝑠 ′′1 (𝑖 − 1)

𝑟1

⌋
,

which can only hold if 𝑠 ′′1 ∈ {0, 1} since otherwise for increasing 𝑖 the right-hand side jumps earlier
from zero to one than the left-hand side which violates the inequality. The two cases translate into the
constraint that 𝑠1 ≤ 𝑟1 + 1. If 𝑟1 = 1 this is also true since in this case

𝜇 (2) − 𝜇 (1) = 𝑠1 − 1
implies that 𝑠1 ∈ {1, 2}. To summarise, the demand that 𝜇 (𝑖 + 1) − 𝜇 (𝑖) ∈ {0, 1} gives us the constraints

(I) 𝑠1 ∈ [𝑟1 + 1] ;
(II) 𝑠𝜇 ∈ [𝑟𝜇 − 1 + 𝛿𝑟𝜇 ,1] for 𝜇 ∈ (1, 𝑑) ;
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(III) 𝑠𝑑 ∈ [𝑟𝑑 ] if 𝑟𝑑 ≠ 1.
In the case 𝑠1 = 𝑟1 + 1 one can argue that the above conditions already imply that (i) to (iii) hold. Indeed,
since we assume that 𝑟1

𝑠1
≥ 𝑟𝜇

𝑠𝜇
for all 𝜇 ∈ (𝑑] the case 𝑠1 = 𝑟1 + 1 forces

𝑟𝜇

𝑠𝜇
< 1 for all 𝜇 ≥ 2. Thus (II)

forces 𝑑 = 2 and due to (III) necessarily 𝑟𝑑 = 1. This case is clearly covered by (i) to (iii).
Now assume 𝑠1 ≤ 𝑟1. By assumption there exists a descending partition 𝜆 = (𝜆1, . . . , 𝜆ℓ ) with 𝜇 (𝑖) = 𝜆(𝑖).
In order to nd a description of 𝜆 in terms of (55), notice the similarity between (54) and (51) for xed
𝜈 and 𝑖 ′ ∈ [𝑟𝜈]. Except for the constant shift 𝒔 [𝜈] and the 𝛿𝑖′,1 the two maps coincide, which means
that except for the transition values 𝑖 = 𝒓 [𝜈−1] → 𝒓 [𝜈−1] + 1 they jump at the same value 𝑖 ′. At the
transition points we nd for all 𝜈 < 𝑑 that

𝜇 (1 + 𝒓 [𝜈]) − 𝜇 (𝒓 [𝜈]) =
⌈
𝑠𝜈

𝑟𝜈

⌉
− 1 = 0 ,

and if 𝑟𝜈+1 > 1 we have
𝜇 (2 + 𝒓 [𝜈]) − 𝜇 (1 + 𝒓 [𝜈]) = 1

as discussed in (56). This means that if we let 𝜆𝜇 = (𝜆𝜇1 , . . . , 𝜆
𝜇
𝑠𝜇 ) denote the partition satisfying

𝜆𝜇 (𝑖 ′) = 1 +
⌊
𝑠𝜇 (𝑖 ′ − 1)

𝑟𝜇

⌋
𝑖 ′ ∈ [𝑟𝜇]

and set 𝜆𝜇 B (1) if 𝑟𝜇 = 1 then the partition

𝜆 =

©«

𝜆11 , 𝜆12 , . . . , , 𝜆1𝑠1−1 , 𝜆1𝑠1 + 1 ,

𝜆21 − 1 , 𝜆22 , . . . , 𝜆2𝑠2−1 , 𝜆2𝑠2 + 1 ,

𝜆31 − 1 , 𝜆32 , . . . , 𝜆3
𝑠3−1 , 𝜆3𝑠3 + 1 ,

...

𝜆𝑑1 − 1 , 𝜆𝑑2 , . . . , 𝜆𝑑𝑠𝑑−1 , 𝜆𝑑𝑠𝑑

ª®®®®®®®¬
is the one satisfying 𝜇 (𝑖) = 𝜆(𝑖). Note that in case 𝑠𝜇 = 1 the 𝜇th line(

. . . , 𝜆
𝜇

1 − 1, 𝜆
𝜇

2 , . . . , 𝜆
𝜇

𝑠𝜇−1, 𝜆
𝜇
𝑠𝜇 + 1, . . .

)
must be replaced with (. . . , 𝑟𝜇, . . .). Since we assume 𝜆 to be a descending partition, 𝜆𝜇 has to be
descending as well for all 𝜇 ∈ [𝑑]. Consequently Lemma 3.12 tells us that 𝑟𝜇 = ±1 mod 𝑠𝜇 . Note that in
order to apply Lemma 3.12 here we use that the range for value of the 𝑠𝜈 is constrained by (I)-(II)-(III).
Now at the transition between two parts of the partition we see that the constraint 𝜆𝜇𝑠𝜇 + 1 ≥ 𝜆

𝜇+1
1 − 1

is always satised, because if we consider the explicit form of 𝜆𝜇
𝑗
given in (52) we nd that

𝜆
𝜇
𝑠𝜇 + 1 =

⌊
𝑟𝜇

𝑠𝜇

⌋
+ 1 ≥

⌊
𝑟𝜇+1

𝑠𝜇+1

⌋
+ 1 >

⌊
𝑟𝜇+1

𝑠𝜇+1

⌋
+ 1 − 1 = 𝜆𝜇+11 − 1

for 𝑠𝜇, 𝑠𝜇+1 ≠ 1. Here we used that by assumption 𝑟𝜇

𝑠𝜇
≥ 𝑟𝜈

𝑠𝜈
for all 𝜇 ≤ 𝜈. There are similar arguments

for the case where 𝑠𝜇 or 𝑠𝜇+1 is equal one.
One obtains further restrictions on the choice of 𝑠𝜇 considering the constraint that

∀𝜇 ∈ (𝑑], 𝜆
𝜇+1
1 − 1 ≥ 𝜆𝜇+12 , 𝜆

𝜇

𝑠𝜇−1 ≥ 𝜆
𝜇
𝑠𝜇 + 1 . (57)

Assume for example that 𝑠1 > 2 and 𝑟1 = +1 mod 𝑠1, i.e. 𝑟1 = 𝑟 ′1 𝑠1 + 1. Then (52) tells us that 𝜆11 = 𝑟
′
1 + 1

and 𝜆12 = . . . = 𝜆1𝑠1 = 𝑟 ′1. But this contradicts (57) for 𝜇 = 1 since 𝜆1𝑠1−1 < 𝜆1𝑠1 + 1. Consequently we
are left with 𝑟1 = −1 mod 𝑠1 which is nothing but (i). It is straightforward to see that condition (57)
checked for arbitrary 𝜈 induces (ii) and (iii).

Following the previous analysis of the necessary conditions it is straightforward to see that if
𝑟1, . . . , 𝑟𝑑 and 𝑠1, . . . , 𝑠𝑑 satisfy (i) to (iii) the partition (53) corresponding to the diagram (2.3.2) is
descending and indeed satises 𝜇 (𝑖) = 𝜆(𝑖). �

We now have everything at hand to prove the standard case of Theorem 2.13.
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Proof of Theorem 2.13, standard case. Recall that the situation of the theorem is as follows:
𝜎𝐻𝑖,𝑘 B Φ̂𝑇 · 𝜎𝑊𝑖,𝑘 ·𝑇 −1Φ̂−1 ,

𝑇 B exp ©«
∑︁
𝜇∈[𝑑 ]

∑︁
𝑘>0

(
ℏ−1𝐹0,1

[ 𝜇

−𝑘
]
+ ℏ− 1

2 𝐹 1
2 ,1

[ 𝜇

−𝑘
] ) 𝐽 𝜇

𝑘

𝑘

ª®¬ = 𝑇2𝑇1 ,

𝑇1 B exp ©«1ℏ
∑︁
𝜇∈[𝑑 ]

∑︁
𝑘≥𝑠𝜇

𝐹0,1
[ 𝜇

−𝑘
] 𝐽 𝜇

𝑘

𝑘

ª®¬ , 𝑇2 B exp ©« 1
ℏ

1
2

∑︁
𝜇∈[𝑑 ]

∑︁
𝑘>0

𝐹 1
2 ,1

[ 𝜇

−𝑘
] 𝐽 𝜇

𝑘

𝑘

ª®¬ ,
Φ̂ B exp

(
1
2ℏ

∑︁
𝜇,𝜈∈[𝑑 ]
𝑘,𝑙>0

𝐹0,2
[ 𝜇 𝜈

−𝑘 −𝑙
] 𝐽 𝜇

𝑘
𝐽 𝜈
𝑙

𝑘𝑙

)
.

Up to now, we have only considered the conjugation with 𝑇1, so let us nish the argument for that
case rst.

The selected modes
𝜎𝐻𝑖,𝑘 B 𝑇1 · 𝜎𝑊𝑖,𝑘 ·𝑇1

−1
𝑖 ∈ [𝑟 ], 𝑘 ≥ 𝑖 − 𝜆(𝑖) + 𝛿𝑖,1 (58)

with the partition

𝜆 =

{(
(𝑟 ′1 + 1)

𝑠1 , 𝑟2, 𝑟3, . . . , 𝑟𝑑−1, 𝑟
′
𝑑
𝑠𝑑

)
, 𝑟𝑑 ≠ 1(

(𝑟 ′1 + 1)
𝑠1 , 𝑟2, 𝑟3, . . . , 𝑟𝑑−1

)
, 𝑟𝑑 = 1

exactly correspond to the modes (𝜎𝐻𝑖,𝑘 ) (𝑖,𝑘) ∈𝐼r,s where 𝐼r,s is the index set dened in (45) by performing
the identication of index sets via Lemma 3.13. Thus, Lemma 3.10 tells us that after a change of basis
the modes (58) satisfy the degree one condition. Since by assumption

𝜎𝐻1,0 =
𝜎𝑊1,0 = 𝐽

1
0 + · · · + 𝐽𝑑0 = ℏ

1
2 (𝑄1 + · · · +𝑄𝑑 ) = 0 ,

the modes (58) satisfy the subalgebra condition if the modes (𝜎𝐻𝑖,𝑘 ) (𝑖,𝑘) ∈𝐼𝜆 do. Here 𝐼𝜆 is dened as in
(13). Now using that 𝜎𝐻𝑖,𝑘 is obtained from 𝜎𝑊𝑖,𝑘 via conjugation the claim immediately follows from
Theorem 2.8.

For the general case, conjugating also with 𝑇2 and Φ̂, note rst of all that conjugation preserves
commutation relations, so the subalgebra condition still holds. For the degree one condition, note that
conjugation by 𝑇2 gives the shifts

𝐽
𝜇

−𝑘 −→ 𝐽
𝜇

−𝑘 + ℏ
1
2 𝐹 1

2 ,1
[ 𝜇

−𝑘
]
,

which preserves degrees, and only acts on 𝐽 𝜇
𝑘
with 𝑘 < 0, which do not occur in 𝜋1

(
𝑇1 · 𝜎𝑊𝑖,𝑘 ·𝑇 −11 ) by

the previous parts of the computation. Likewise, conjugation by Φ̂ acts as in Equation (26), which again
preserves degrees and only aects 𝐽 𝜇

𝑘
with 𝑘 < 0, so it also preserves the degree one condition. �

3.3 The exceptional case

Contrary to the case considered before let us now allow 𝑠𝜇 = ∞ for 𝜇 ∈ [𝑑]. Let us write

𝐶+ B
⊔

𝜇∈[𝑑 ], 𝑠𝜇≠∞
𝐶𝜇 ,

and 𝐶− for the collection of all components 𝐶𝜇 on which 𝑠𝜇 = ∞.

Lemma 3.14. For any 𝑖 ∈ [𝑟 ]

𝜋1
(
𝜎𝐻𝑖 (𝜉)

)
=

∑︁
𝑧∈�̃�−1 (𝜉)

∑︁
𝑍 ⊆�̃�−1 (𝜉)\{𝑧 }∩�̃�+

|𝑍 |=𝑖−1

𝐽 (𝑧)
∏
𝑧′∈𝑍

𝜔0,1 (𝑧 ′) . (59)

Proof. The proof of this Lemma is verbatim to the one of Lemma 3.1 taking into account that𝜔0,1 ( 𝜇𝑧 ) = 0
for all 𝜇 ∈ [𝑑] with 𝑠𝜇 = ∞. �



28

Remark 3.15. Let us make two important observations. First notice that if we write 𝑟+ B
∑

𝜇∈[𝑑 ], 𝑠𝜇≠∞ 𝑟𝜇
then

𝜋1
(
𝜎𝐻𝑟++1 (𝜉)

)
=

∑︁
𝑧∈�̃�−1 (𝜉)∩�̃�−

𝐽 (𝑧)
∏
𝑧′∈�̃�+

𝜔0,1 (𝑧 ′)

and moreover that for all 𝑖 > 𝑟+ + 1 we have

𝜋1
(
𝜎𝐻𝑖 (𝜉)

)
= 0 .

Especially, from the last identity we deduce that, in order to end up with an Airy structure, it is
necessary to have at most one 𝜇 ∈ [𝑑] for which 𝑠𝜇 = ∞. Moreover, necessarily for this 𝜇 we need
𝑟𝜇 = 1. Otherwise, there is no hope to obtain an Airy structure.

Motivated by Remark 3.15 in the following we will assume that only (𝑟𝑑 , 𝑠𝑑 ) = (1,∞) while for all
other 𝜇 ∈ [𝑑 − 1] we have 𝑠𝜇 ≠ ∞, what we call the exceptional case in Theorem 2.11. Moreover, let us
assume that as before 𝑟1

𝑠1
≥ . . . ≥ 𝑟𝑑−1

𝑠𝑑−1
. Rather than working with expression (59) we will mainly use

that by (16) we have

𝜎𝐻𝑖,𝑘 = 𝜎𝐻 ′
𝑖,𝑘
+

∑︁
𝑎∈Z

𝜎𝐻 ′
𝑖−1,𝑘−𝑎 𝐽

𝑑
𝑎 𝑖 ∈ [𝑟 ], 𝑘 ∈ Z

where 𝜎𝐻 ′
𝑖,𝑘

is obtained from 𝜎𝐻𝑖,𝑘 by formally setting 𝐽𝑑∗ equal to zero. Of course, 𝜎𝐻 ′
𝑖,𝑘

may be
computed via (38) replacing 𝑑 with 𝑑 − 1, i.e. these are modes of the standard case. Therefore, as the
modes 𝜎𝐻𝑖,𝑘 are build up from modes considered in Equation (38) and an additional factor 𝐽𝑑∗ , we can
use the analysis of the standard case from the previous section in order to prove Theorem 2.11 in the
exceptional case as well.

Proof of Theorem 2.13, exceptional case. As in the standard case we know that conjugation with

𝑇2 B exp ©« 1
ℏ

1
2

∑︁
𝜇∈[𝑑 ]

∑︁
𝑘>0

𝐹 1
2 ,1

[ 𝜇

−𝑘
] 𝐽 𝜇

𝑘

𝑘

ª®¬ , Φ̂ B exp
(
1
2ℏ

∑︁
𝜇,𝜈∈[𝑑 ]
𝑘,𝑙>0

𝐹0,2
[ 𝜇 𝜈

−𝑘 −𝑙
] 𝐽 𝜇

𝑘
𝐽 𝜈
𝑙

𝑘𝑙

)
preserves the Airy structure conditions. It is hence sucient to prove that

𝜎𝐻𝑖,𝑘 B 𝑇1 · 𝜎𝑊𝑖,𝑘 ·𝑇1
−1

𝑖 ∈ [𝑟 ] , 𝑘 ≥ 1 − 𝜆(𝑖) + 𝛿𝑖,1 , 𝑇1 B exp

(
1
ℏ

∑︁
𝜇∈[𝑑 ]
𝑠𝜇≠∞

∑︁
𝑘≥𝑠𝜇

𝐹0,1
[ 𝜇

−𝑘
] 𝐽 𝜇

𝑘

𝑘

)
,

where we chose the partition
𝜆 =

(
(𝑟 ′1 + 1)

𝑠1 , 𝑟2, 𝑟3, . . . , 𝑟𝑑−1
)
,

form an Airy structure. Indeed, as we have

𝜎𝐻1,0 = ℏ
1
2 (𝑄1 + · · · +𝑄𝑑 ) = 0 ,

which vanishes by assumption, the selected modes already satisfy the subalgebra condition using
Theorem 2.8. It therefore remains to show that after a suitable change of basis the operators can be
brought into the normal form of an Airy structure. First, let us argue that

𝜋1
(
𝜎𝐻𝑖,𝑘

)
= 𝜋1

(
𝜎𝐻 ′

𝑖,𝑘

)
+

∑︁
𝑎∈Z

𝜋0
(
𝜎𝐻 ′

𝑖−1,𝑘−𝑎
)
𝐽𝑑𝑎 (60)

for 𝑘 ≥ 1 − 𝜆(𝑖) + 𝛿𝑖,1 is a linear combination of 𝐽 𝜈𝑎 s with 𝑎 > 0 only. Using Lemma 3.13 we see that
1 − 𝜆(𝑖) + 𝛿𝑖,1 = 𝔡r,s (𝑖) where

𝔡r,s (𝑖 ′ + 𝒓 [𝜇−1]) = −
⌊
𝑠𝜇 (𝑖 ′ − 1)

𝑟𝜇

⌋
− 𝒔 [𝜈−1] + 𝛿𝑖′,1 𝑖 ′ ∈ [𝑟𝜇], 𝜇 < 𝑑

and 𝔡r,s (𝑟 ) = −𝒔 [𝑑−1] + 1. Comparing this expression with (43) and remembering that 𝑘min (𝑖) ≤ 𝔡r,s (𝑖)
for all 𝑖 < 𝑟 indeed shows that the rst term 𝜋1

(
𝜎𝐻 ′

𝑖,𝑘

)
is a linear combination of 𝐽 𝜇𝑎 s with 𝑎 > 0 only.
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That the second term
∑

𝑎∈Z 𝜋0
(
𝜎𝐻 ′

𝑖−1,𝑘−𝑎
)
𝐽𝑑𝑎 is a linear combination of (𝐽𝑑𝑎 )𝑎>0 only follows from the

fact that 𝜋0
(
𝜎𝐻 ′

𝑖−1,𝑘−𝑎
)
= 0 unless 𝑘 − 𝑎 < 𝔡r,s (𝑖) as observed in (49). Hence,

𝜋1
(
𝜎𝐻𝑖,𝑘

)
= 𝜋1

(
𝜎𝐻 ′

𝑖,𝑘

)
+

∑︁
𝑎>𝑘−𝔡r,s (𝑖)

𝜋0
(
𝜎𝐻 ′

𝑖−1,𝑘−𝑎
)
𝐽𝑑𝑎 𝑖 ∈ [𝑟 ], 𝑘 ≥ 𝔡r,s (𝑖)

is indeed lies in the linear span of (𝐽 𝜇𝑎 ) (𝜇,𝑎) ∈[𝑑 ]×N∗ .
In order to bring the operators into the normal form of an Airy structure, let us make use of our

observation earlier made in Remark 3.15 that

𝜋1
(
𝜎𝐻𝑟,𝑘

)
=

∑︁
𝑎>𝑘−𝔡r,s (𝑟 )

𝜋0
(
𝜎𝐻 ′

𝑟−1,𝑘−𝑎
)
𝐽𝑑𝑎 .

This can be rephrased in the sense that 𝜋1
(
𝜎𝐻𝑟,𝑘

)
=

∑
𝑎>0A𝑘−𝔡r,s (𝑟 )+1,𝑎 𝐽

𝑑
𝑎 where A is an upper

triangular matrix whose diagonal entries

A𝑎,𝑎 = 𝜋0
(
𝜎𝐻 ′

𝑟−1,𝔡r,s (𝑟 )−1
)
= (−1)𝑟+𝑑

𝑑−1∏
𝜇=1

(
𝐹0,1

[ 𝜇
−𝑠𝜇

] )𝑟𝜇 ≠ 0

may be read o from (48) by taking only the leading order contributions of the 𝜔0,1s into account.
Thus, one can nd a two-sided inverse fo A, and applying it to the semi-innite vector (𝜎𝐻𝑖,𝑘 ) (𝑖,𝑘) ∈𝐼r,s
we get (𝜎�̃�𝑖,𝑘 ) (𝑖,𝑘) ∈𝐼r,s for which

𝜋1
(
𝜎�̃�𝑟,𝑘

)
= 𝐽𝑑

𝑘−𝔡r,s (𝑟 )+1 .

By taking again suitable linear combinations, we can use the above modes in order to eliminate all 𝐽𝑑𝑎
from 𝜋1

(
𝜎�̃�𝑖,𝑘

)
for 𝑖 < 𝑟 , i.e. get operators (𝐻 𝑖,𝑘 ) (𝑖,𝑘) ∈𝐼r,s with (60) transform into

∀𝑖 ∈ [𝑟 ) , 𝑘 ≥ 𝔡r,s (𝑖) , 𝜋1
(
𝜎𝐻 𝑖,𝑘

)
= 𝜋1

(
𝜎𝐻 ′

𝑖,𝑘

)
This expression is exactly the degree one projection of the operators considered in Lemma 3.1 where
we shifted in all cycles. From Lemma 3.10 we know that they can be brought in normal form, provided
we can argue at last that the degree zero projection of these modes is vanishing. This is indeed the
case: since 𝜋0

(
𝜎𝐻𝑖,𝑘

)
= 𝜋0

(
𝜎𝐻 ′

𝑖,𝑘

)
and we know by (49) that the degree zero of 𝐻 ′

𝑖,𝑘
vanishes as long as

𝑘 ≥ 𝔡r,s (𝑖), we see the same holds for 𝜎𝐻𝑖,𝑘 .
�
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Part II – Spectral curve descriptions

In this second part, we translate the dierential constraints coming from theW-algebra representations
of Section 2 into constraints on the order of poles of certain combinations of multidierentials𝜔𝑔,𝑛 on a
spectral curve built from the coecients 𝐹𝑔,𝑛 . The latter constraints are called “abstract loop equations”.
In a second step, we show that the unique solution to the abstract loop equations is provided by an
adaptation of Bouchard–Eynard topological recursion to the setting of singular spectral curves. In fact,
this provides us with the right denition of the topological recursion à la Chekhov–Eynard–Orantin
in this setting, together with the proof that it is well-dened.

4 From Airy structures to local spectral curves
4.1 Fields for a single cycle

We will start by reconsidering Section 2.2.3 in the case of 𝜎 consisting of a single cycle, of length 𝑟 .
In this case, we can omit all 𝜇-indices, and consider

𝐽𝑘 =


ℏ𝜕𝑥𝑘 if 𝑘 > 0
ℏ

1
2𝑄 if 𝑘 = 0
−𝑘𝑥−𝑘 if 𝑘 < 0

,

the standard representation of the Heisenberg algebra of 𝔤𝔩𝑟 . It is useful to write 𝑥 = 𝑧𝑟 . We split the
current as follows:

𝐽 (𝑧) =
∑︁
𝑘∈Z

𝐽𝑘 d𝑧
𝑧𝑘+1

= 𝐽+ (𝑧) + 𝐽− (𝑧) + ℏ
1
2
𝑄d𝑧
𝑧

,

𝐽+ (𝑧) =
∑︁
𝑘>0

𝐽−𝑘 𝑧
𝑘−1 d𝑧 ,

𝐽− (𝑧) =
∑︁
𝑘>0

𝐽𝑘 d𝑧
𝑧𝑘+1

,

Choose a primitive 𝑟 th root of unity 𝜗 and let 𝔣(𝑧) = {𝑧, 𝜗𝑧, . . . , 𝜗𝑟−1𝑧}. Set

𝜔std
0,2 (𝑧1, 𝑧2) =

d𝑧1d𝑧2
(𝑧1 − 𝑧2)2

.

We can rewrite (19) as

𝑊𝑖 (𝑥) =
1
𝑟

∑︁
𝑍 : [𝑖 ]↩→𝔣 (𝑧)

∑︁
0≤ 𝑗≤b𝑖/2c

𝐴0t𝐴+t𝐴−=[2𝑗+1,𝑖 ]

ℏ𝑗

2𝑗 𝑗 !(𝑖 − 2 𝑗)!

𝑗∏
𝑙=1

𝜔std
0,2 (𝑍2𝑙−1, 𝑍2𝑙 )

∏
𝑙 ∈𝐴0

𝑄d𝑧
𝑧

∏
𝑙 ∈𝐴+

𝐽+ (𝑍𝑙 )
∏
𝑙 ∈𝐴−

𝐽− (𝑍𝑙 ) ,

(61)
As in Section 2.3.3, let us apply a general dilaton shift and change of polarisation to these operators.

We take

𝑇 = exp
(∑︁
𝑘>0

(
ℏ−1 𝐹0,1 [−𝑘] + ℏ−

1
2 𝐹 1

2 ,1
[−𝑘]

) 𝐽𝑘
𝑘

)
,

Φ̂ = exp
(
1
2ℏ

∑︁
𝑘1,𝑘2>0

𝐹0,2 [−𝑘1,−𝑘2]
𝐽𝑘1 𝐽𝑘2

𝑘1𝑘2

)
,

in which we can always assume that 𝐹0,2 [−𝑘1,−𝑘2] = 𝐹0,2 [−𝑘2,−𝑘1], and introduce

𝐻𝑖 (𝑥) B Φ̂𝑇 ·𝑊𝑖 (𝑥) ·𝑇 −1Φ̂−1 .
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The eect of the dilaton shift 𝑇 in (61) is to replace 𝐽+ (𝑧) with 𝐽+ (𝑧) + ℏ
1
2
(
𝜔 1

2 ,1
(𝑧) − 𝑄 d𝑧

𝑧

)
+ 𝜔0,1 (𝑧),

where

𝜔0,1 (𝑧) B
∑︁
𝑘>0

𝐹0,1 [−𝑘] 𝑧𝑘−1d𝑧 ,

𝜔 1
2 ,1
(𝑧) B 𝑄

d𝑧
𝑧
+

∑︁
𝑘>0

𝐹 1
2 ,1
[−𝑘] 𝑧𝑘−1d𝑧 .

Using the Baker–Campbell–Hausdor formula, it is easy to see that the net eect of the change of
polarisation Φ̂ is to replace 𝜔std

0,2 with

𝜔0,2 (𝑧1, 𝑧2) B
d𝑧1d𝑧2
(𝑧1 − 𝑧2)2

+
∑︁

𝑘1,𝑘2>0
𝐹0,2 [−𝑘1,−𝑘2] 𝑧𝑘1−11 𝑧

𝑘2−1
2 d𝑧1d𝑧2 ,

and to replace 𝐽− (𝑧) with1

J− (𝑧) B
∑︁
𝑘>0

𝐽𝑘 d𝜉−𝑘 (𝑧) , (62)

where for 𝑘 > 0

d𝜉−𝑘 (𝑧) B
d𝑧
𝑧𝑘+1
+

∑︁
𝑙>0

𝐹0,2 [−𝑘,−𝑙]
𝑘

d𝜉𝑙 (𝑧) = Res
𝑧′=0

( ∫ 𝑧′

0
𝜔0,2 (·, 𝑧)

)
d𝑧 ′

(𝑧 ′)𝑘+1
.

For uniformity we also dene for 𝑘 ≥ 0

d𝜉𝑘 (𝑧) B 𝑧𝑘−1d𝑧 .

So, we can rewrite

𝜔0,1 (𝑧) =
∑︁
𝑘>0

𝐹0,1 [−𝑘] d𝜉𝑘 (𝑧) ,

𝜔 1
2 ,1
(𝑧) = 𝑄 d𝜉0 (𝑧) +

∑︁
𝑘>0

𝐹 1
2 ,1
[−𝑘] d𝜉𝑘 (𝑧) ,

𝜔0,2 (𝑧1, 𝑧2) =
d𝑧1 d𝑧2
(𝑧1 − 𝑧2)2

+
∑︁

𝑘1,𝑘2>0
𝐹0,2 [−𝑘1,−𝑘2] d𝜉𝑘1 (𝑧1)d𝜉𝑘2 (𝑧2) .

so that we have
J+ (𝑧) B 𝐽+ (𝑧) =

∑︁
𝑘>0

𝑘𝑥𝑘 d𝜉𝑘 (𝑧) .

We then obtain

𝑟𝐻𝑖 (𝑥) =
∑︁

𝑍 : [𝑖 ]↩→𝔣 (𝑧)
0≤ 𝑗≤b𝑖/2c

𝐴0t𝐴 1
2
t𝐴+t𝐴−=[2𝑗+1,𝑖 ]

ℏ
𝑗+ 1

2 |𝐴 1
2
|

2𝑗 𝑗 !(𝑖 − 2 𝑗)!

𝑗∏
𝑙=1

𝜔0,2 (𝑍2𝑙−1, 𝑍2𝑙 )
∏
𝑙 ∈𝐴0

𝜔0,1 (𝑍𝑙 )
∏
𝑙 ∈𝐴 1

2

𝜔 1
2 ,1
(𝑍𝑙 )

∏
𝑧′∈𝐴+

J+ (𝑧 ′)
∏
𝑧′∈𝐴−

J− (𝑧 ′) .

(63)

We prefer to convert this expression into a sum over subsets 𝑍 ⊆ 𝔣(𝑧) of cardinality 𝑖 . Then, we have
to sum over partitions 𝐵1 t . . . t 𝐵 𝑗 t𝐴0 t𝐴 1

2
t𝐴+ t𝐴− = 𝑍 where |𝐵𝑙 | = 2 for any 𝑙 ∈ [ 𝑗], and it can

arise in exactly 2𝑗 (𝑖 − 2 𝑗)! terms in (63) corresponding to the choice of an order within each pair 𝐵 𝑗 ,
and the choice of a labelling by [2 𝑗 + 1, 𝑖] for the elements in𝐴0 t𝐴 1

2
t𝐴+ t𝐴−. So only the factor 1/ 𝑗 !

remains. It can also be erased by forgetting the ordering of 𝐵1, . . . , 𝐵 𝑗 . More precisely, introducing the

1More precisely, the conjugation by Φ̂ leaves 𝐽− (𝑧) invariant and add extra terms with positive 𝐽 s in 𝐽+ (𝑧) . We collect all
terms with negative (resp. positive) 𝐽 s in J+ (resp J−), thus leading to (62).
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set P(𝔣(𝑧)) whose elements are sets of disjoint pairs in 𝔣(𝑧), and writing tP B ⊔
𝑃 ∈P 𝑃 if P ∈ P(𝔣(𝑧)),

we obtain

𝑟𝐻𝑖 (𝑥) =
∑︁

𝑍 ⊆𝔣 (𝑧)
|𝑍 |=𝑖

∑︁
(tP)t𝐴0t𝐴 1

2
t𝐴+t𝐴−=𝑍

P∈P(𝔣 (𝑧))

ℏ
|P |+ 1

2 |𝐴 1
2
| ∏
{𝑧′,𝑧′′ }∈P

𝜔0,2 (𝑧 ′, 𝑧 ′′)
∏
𝑧′∈𝐴0

𝜔0,1 (𝑧 ′)
∏

𝑧′∈𝐴 1
2

𝜔 1
2 ,1
(𝑧 ′)

∏
𝑧′∈𝐴+

J+ (𝑧 ′)
∏
𝑧′∈𝐴−

J− (𝑧 ′) .

4.2 Fields for an arbitrary twist

We now return to the general situation of Section 2.2.3. Let 𝜎 be a permutation of [𝑟 ] with cycles of
lengths 𝑟𝜇 labelled by 𝜇 ∈ [𝑑]. For each 𝜇 ∈ [𝑑], we have generators 𝐽 𝜇

𝑘
of the Heisenberg algebra of

𝔤𝔩𝑟𝜇 :

𝐽
𝜇

𝑘
=


ℏ𝜕𝑥𝜇

𝑘
if 𝑘 > 0

ℏ
1
2𝑄𝜇 if 𝑘 = 0
−𝑘𝑥𝜇−𝑘 if 𝑘 < 0

,

whose currents we split as 𝐽 𝜇+ (𝑧) and 𝐽
𝜇
− (𝑧) in the same way as in Section 4.1. We obtain modes𝑊 𝜇

𝑖𝜇 ,𝑘𝜇

indexed by 𝑖𝜇 ∈ [𝑟𝜇] and 𝑘𝜇 ∈ Z for a representation of the𝑊 (𝔤𝔩𝑟 ) algebra given by (17). To match
Section 4.1, we introduce for each 𝜇 ∈ [𝑑] formal variables 𝑧 such that 𝑥 = 𝑧𝑟𝜇 . These 𝑧 thus depend
on 𝜇, but they will appear in generating series with superscript 𝜇 so that one can infer directly from
the formula which power 𝑟𝜇 one should use to relate it to the global variable 𝑥 .

At this stage we are naturally led to introduce a curve which is the union of copies of a formal disk
for each 𝜇 ∈ [𝑑]:

𝐶 =

𝑑⊔
𝜇=1

𝐶𝜇, 𝐶𝜇 B SpecCÈ𝑧É .

When necessary to avoid confusion, points in 𝐶 will be denoted
(
𝜇
𝑧

)
to indicate in which copy of the

formal disk we consider them. One can consider 𝑥 as a branched cover 𝐶 −→ 𝑉 B SpecCÈ𝑋É given
by 𝑧 ↦→ 𝑧𝑟𝜇 on the 𝜇th copy of the 𝑧-formal disk. The smooth (but reducible) curve 𝐶 is in fact the
normalisation 𝜋 : 𝐶 → 𝐶 of the singular curve

𝐶 = SpecCÈ𝑥, 𝑧É/
( 𝑑∏
𝜇=1
(𝑥 − 𝑧𝑟𝜇 )

)
.

The branched cover 𝑥 : 𝐶 → 𝑉 factors through 𝑥 : 𝐶 → 𝑉 . This is the local picture we will globalise
later in Section 5 by considering more general branched covers

𝐶
𝜋−→𝐶

𝑥−→𝑉 , 𝑥 = 𝑥 ◦ 𝜋 ,
where 𝑉 ,𝐶 are regular curves and 𝐶 is a possibly singular curve whose normalisation is 𝐶 . For the
moment we stick to the local setting.

Let us again consider a general dilaton shift and change of polarisation

𝑇 = exp

( ∑︁
𝜇∈[𝑑 ]
𝑘>0

(
ℏ−1 𝐹0,1

[ 𝜇

−𝑘
]
+ ℏ− 1

2 𝐹 1
2 ,1

[ 𝜇

−𝑘
] ) 𝐽 𝜇

𝑘

𝑘

)
,

Φ̂ = exp

(
1
2ℏ

∑︁
𝜇,𝜈∈[𝑑 ]
𝑘,𝑙>0

𝐹0,2
[ 𝜇 𝜈

−𝑘 −𝑙
] 𝐽 𝜇

𝑘
𝐽 𝜈
𝑙

𝑘𝑙

)
,

and the conjugated operator

𝐻𝑖 (𝑥) = Φ̂𝑇 ·𝑊𝑖 (𝑥) ·𝑇 −1 Φ̂−1 =
∑︁
𝑘∈Z

𝐻𝑖,𝑘 (d𝑥)𝑖

𝑥𝑘+𝑖
.
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To express 𝐻𝑖 (𝑥), we introduce the basis of meromorphic 1-forms d𝜉𝜇
𝑘
on 𝐶 , indexed by 𝜇 ∈ [𝑑] and

𝑘 ∈ Z. It is dened by

𝑘 ≥ 0 : d𝜉𝜇
𝑘

(
𝜈
𝑧

)
= 𝛿𝜇,𝜈 𝑧

𝑘−1 d𝑧 ,

𝑘 > 0 : d𝜉𝜇−𝑘
(
𝜈
𝑧

)
= 𝛿𝜇,𝜈

d𝑧
𝑧𝑘+1
+

∑︁
𝑙>0

𝐹0,2
[ 𝜇 𝜈

−𝑘 −𝑙
]

𝑘
𝑧𝑙−1 d𝑧 .

We also introduce the meromorphic forms 𝜔0,1, 𝜔 1
2 ,1

and bidierential 𝜔0,2 on 𝐶:

𝜔0,1 =
∑︁
𝜇∈[𝑑 ]
𝑘>0

𝐹0,1
[ 𝜇

−𝑘
]
d𝜉𝜇

𝑘
,

𝜔 1
2 ,1

=
∑︁
𝜇∈[𝑑 ]

𝑄𝜇d𝜉
𝜇

0 +
∑︁
𝑘>0

𝐹 1
2 ,1

[ 𝜇

−𝑘
]
d𝜉𝜇

𝑘
,

𝜔0,2 = 𝜔
std
0,2 +

∑︁
𝜇1,𝜇2∈[𝑑 ]
𝑘1,𝑘2>0

𝐹0,2
[ 𝜇1 𝜇2
−𝑘1 −𝑘2

]
d𝜉𝜇1

𝑘1
d𝜉𝜇2

𝑘2
,

where

𝜔std
0,2

( 𝜈1 𝜈2
𝑧1 𝑧2

)
=
𝛿𝜈1,𝜈2 d𝑧1d𝑧2
(𝑧1 − 𝑧2)2

.

For 𝑘 ∈ Z, we introduce the 1-form on 𝐶

d𝜉∗
𝑘

(
𝜇
𝑧

)
= d𝜉𝜇

𝑘

(
𝜇
𝑧

)
.

We recall that the index 𝜇 ∈ [𝑑] of the component to which a point 𝑧 ′ ∈ 𝐶 belongs is implicit in the
data of 𝑧 ′.

Similarly to Section 4.1, the eect of the dilaton shift is to replace 𝐽 𝜇+ (𝑧) with

𝐽
𝜇
+ (𝑧) + ℏ

1
2

(
𝜔 1

2 ,1
(
𝜇
𝑧

)
−𝑄𝜇

d𝑧
𝑧

)
+ 𝜔0,1

(
𝜇
𝑧

)
,

while the eect of the change of polarisation is to replace 𝜔std
0,2 (𝑧1, 𝑧2) with 𝜔0,2

( 𝜇1 𝜇2
𝑧1 𝑧2

)
and 𝐽 𝜇− (𝑧) with

J−
(
𝜇
𝑧

)
B

∑︁
𝑘>0

𝐽
𝜇

𝑘
d𝜉∗−𝑘

(
𝜇
𝑧

)
.

For uniformity we also set

J+
(
𝜇
𝑧

)
B 𝐽

𝜇
+ (𝑧) =

∑︁
𝑘>0

𝑘𝑥
𝜇

𝑘
d𝜉∗

𝑘

(
𝜇
𝑧

)
.

We can repeat the argument of Section 4.1 with several 𝜇s, dening the ber over 𝑥 in 𝐶

𝔣(𝑧) B
𝑑⊔

𝜇=1
𝔣𝜇 (𝑧) ,

and getting

𝐻𝑖 (𝑥) =
∑︁

𝑍 ⊆𝔣 (𝑧)
|𝑍 |=𝑖

∑︁
(tP)t𝐴0t𝐴 1

2
t𝐴+t𝐴−=𝑍

P∈P(𝔣 (𝑧))

ℏ
|P |+ 1

2 |𝐴 1
2
| ∏
{𝑧′,𝑧′′ }∈P

𝜔0,2 (𝑧 ′, 𝑧 ′′)
∏
𝑧′∈𝐴0

𝜔0,1 (𝑧 ′)
∏

𝑧′∈𝐴 1
2

𝜔 1
2 ,1
(𝑧 ′)

∏
𝑧′∈𝐴+

J+ (𝑧 ′)
∏
𝑧′∈𝐴−

J− (𝑧 ′) .
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4.3 Action of the fields on the partition function

Given a formal function

𝐹 =
∑︁

𝑔≥0, 𝑛≥1
2𝑔−2+𝑛>0

∑︁
𝜇1,...,𝜇𝑛 ∈[𝑑 ]
𝑘1,...,𝑘𝑛>0

ℏ𝑔−1

𝑛!
𝐹𝑔,𝑛

[ 𝜇1 · · · 𝜇𝑛
𝑘1 · · · 𝑘𝑛

] 𝑛∏
𝑖=1

𝑥
𝜇𝑖

𝑘𝑖
, (64)

let us compute 𝐺𝑖 (𝑥) = 𝑒−𝐹𝐻𝑖 (𝑥)𝑒𝐹 · 1. The partition function 𝑒𝐹 is annihilated by the dierential
operators above a certain index in theW if and only if the 𝐺𝑖 satisfy certain bounds on their pole
orders as 𝑥 → 0. Because 𝐹 is a function (i.e. it does not contain a dierential part), it commutes with
𝜔0,2, 𝜔0,1, 𝜔 1

2 ,1
, and J+. The only non-trivial computation is

𝑒−𝐹J− (𝑧 ′)𝑒𝐹 = J− (𝑧 ′) + [J− (𝑧 ′), 𝐹 ] ,

where each term J− (𝑧 ′) obtained like this has to act on a later [J− (𝑧 ′′), 𝐹 ], as it annihilates 1. The J−
commute among each other, so we get a partition of 𝐴− into sets of operators acting on a single copy
of 𝐹 . We obtain

𝐺𝑖 (𝑥) =
∑︁

𝑍 ⊆𝔣 (𝑧)
|𝑍 |=𝑖

∑︁
(tP)t𝐴0t𝐴 1

2
t𝐴+t𝐴−=𝑍

P∈P(𝔣 (𝑧))

ℏ
|P |+ 1

2 |𝐴 1
2
| ∏
{𝑧′,𝑧′′ }∈P

𝜔0,2 (𝑧 ′, 𝑧 ′′)
∏
𝑧′∈𝐴0

𝜔0,1 (𝑧 ′)
∏

𝑧′∈𝐴 1
2

𝜔 1
2 ,1
(𝑧 ′)

∏
𝑧′∈𝐴+

( ∑︁
�̃�𝑧′ ≥1

�̃�𝑧′𝑥
𝜇𝑧′

�̃�𝑧′
d𝜉∗

�̃�𝑧′
(𝑧 ′)

)
·

∑︁
L`𝐴−

𝑔𝐿,𝑚𝐿≥0, 𝐿∈L
2𝑔𝐿−2+𝑚𝐿+|𝐿 |>0

∏
𝐿∈L

∑︁
𝜈𝐿 : [𝑚𝐿 ]→[𝑑 ]
ℓ𝐿 : [𝑚𝐿 ]→N∗
𝑘𝐿 : 𝐿→N∗

(
ℏ𝑔𝐿−1+|𝐿 |

𝑚𝐿!
𝐹𝑔𝐿, |𝐿 |+𝑚𝐿

[ 𝝁 |𝐿 𝜈𝐿,1 · · · 𝜈𝐿,𝑚𝐿

𝑘𝐿 ℓ𝐿,1 · · · ℓ𝐿,𝑚𝐿

] ∏
𝑙 ∈[𝑚𝐿 ]

𝑥
𝜈𝐿,𝑙
ℓ𝐿,𝑙

∏
𝑧′∈𝐿

d𝜉∗−𝑘𝑧′ (𝑧
′)
)
,

(65)

where 𝜇 : 𝐴+ t𝐴− → [𝑑] associates to 𝑧 ′ the index 𝜇𝑧′ ∈ [𝑑] such that 𝑧 ′ ∈ 𝔣𝜇𝑧′ (𝑧), and we identied
𝝁 |𝐿 and k𝐿 with the tuples (𝜇𝑧′)𝑧′∈𝐿 and (𝑘𝑧′)𝑧′∈𝐿 .

We decompose 𝐺𝑖 in homogeneous terms with respect to the exponent of ℏ and the number of 𝑥𝜇
𝑘
:

𝐺𝑖 (𝑥) =
∑︁
𝑔,𝑛≥0

ℏ𝑔

𝑛!
𝐺𝑖;𝑔,𝑛 (𝑥) .

In order to completely rephrase this in terms of spectral curves, we need to get rid of the 𝑥𝜇
𝑘
and replace

them with d𝜉s. For every 𝑛, prepare a tuple 𝑤 [𝑛] = (𝑤 𝑗 )𝑛𝑗=1 of points on 𝐶 and dene

E (𝑖)𝑔,𝑛 (𝑥 ;𝑤 [𝑛]) B
𝑛∏
𝑗=1

adJ− (𝑤𝑗 ) 𝐺𝑖;𝑔,𝑛 (𝑥) .

To compute it, we introduce the multidierential forms for 𝑔 ≥ 0 and 𝑛 ≥ 1 such that 2𝑔 − 2 + 𝑛 > 0

𝜔𝑔,𝑛 (𝑧1, . . . , 𝑧𝑛) B
∑︁

𝜇1,...,𝜇𝑛 ∈[𝑑 ]
𝑘1,...,𝑘𝑛>0

𝐹𝑔,𝑛
[ 𝜇1 · · · 𝜇𝑛
𝑘1 · · · 𝑘𝑛

] 𝑛∏
𝑗=1

d𝜉𝜇𝑖−𝑘𝑖 (𝑧𝑖 ) . (66)

Besides, under this action, we get

adJ− (𝑤)
(∑︁
𝑘>0

𝑘 𝑥𝜈
𝑘
d𝜉𝜇

𝑘
(𝑧)

)
=

∑︁
𝑘>0

𝑘 d𝜉𝜈−𝑘 (𝑤) d𝜉
𝜇

𝑘

(
𝑧) ,

which is the series expansion of 𝜔0,2
(
𝜈 𝜇
𝑤 𝑧

)
with |𝑧 | < |𝑤 |.
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We then notice that the sums over �̃�𝑧′ , 𝑘𝐿 , 𝜈𝐿 and ℓ𝐿 in (65) recombine into

E (𝑖)𝑔,𝑛 (𝑥,𝑤 [𝑛])

=
∑︁

𝑍 ⊆𝔣 (𝑧)
|𝑍 |=𝑖

∑︁
(tP)t𝐴0t𝐴 1

2
t𝐴+t𝐴−=𝑍

P∈P(𝔣 (𝑧))

∑︁
𝜄 : 𝐴+↩→[𝑛]

∑︁
L`𝐴−

𝑀`L [𝑛]\𝜄 (𝐴+)

∑︁
𝑔𝐿≥0, 𝐿∈L

2𝑔𝐿−2+|𝐿 |+ |𝑀𝐿 |>0
1
2 |𝐴 1

2
|+ |P |+ |𝐴− |+

∑
𝐿 (𝑔𝐿−1)=𝑔∏

{𝑧′,𝑧′′ }∈P
𝜔0,2 (𝑧 ′, 𝑧 ′′)

∏
𝑧′∈𝐴0

𝜔0,1 (𝑧 ′)
∏

𝑧′∈𝐴 1
2

𝜔 1
2 ,1
(𝑧 ′)

∏
𝑧′∈𝐴+

𝜔0,2 (𝑤𝜄 (𝑧′) , 𝑧
′)

∏
𝐿∈L

𝜔𝑔, |𝐿 |+ |𝑀𝐿 | (𝐿,𝑤𝑀𝐿
) .

We now observe that the factors 𝜔0,1, 𝜔 1
2 ,1
, 𝜔0,2 can be treated uniformly by summing over partitions

L ` 𝑍 and allowing (𝑔𝐿, |𝐿 | + 𝑚𝐿) = (0, 1), ( 12 , 1), (0, 2), which were exactly the terms for which
2𝑔𝐿 − 2 + |𝐿 | +𝑚𝐿 ≤ 0. We get

E (𝑖)𝑔,𝑛 (𝑥 ;𝑤 [𝑛]) =
∑︁

𝑍 ⊆𝔣 (𝑧)
|𝑍 |=𝑖

∑︁
L`𝑍

𝑁 `L [𝑛]

∑︁
𝑔𝐿≥0, 𝐿∈L

𝑔=𝑖+∑𝐿 (𝑔𝐿−1)

∏
𝐿∈L

𝜔𝑔𝐿, |𝐿 |+ |𝑁𝐿 | (𝐿,𝑤𝑁𝐿
) .

4.4 From PDEs to abstract loop eqations

Theorem 2.13 gives sucient conditions on the values of (𝑟𝜇)𝑑𝜇=1, of positive integers (𝑠𝜇)𝑑𝜇=1, of
scalars (𝑡𝜇)𝑑𝜇=1 and (𝑄𝜇)𝑑𝜇=1 to get a unique 𝐹 of the form (64) such that for any 𝑖 ∈ [𝑟 ] and 𝑘 ≥ 𝔡r,s (𝑖)

𝑒−𝐹𝐻𝑖,𝑘𝑒
𝐹 · 1 = 0 .

The translation of these dierential constraints in terms of the correlators 𝝎 = (𝜔𝑔,𝑛)𝑔,𝑛 dened in (66)
is called “abstract loop equations”. It says that for any 𝑛 ≥ 0, we have

E (𝑖)𝑔,𝑛 (𝑥 ;𝑤 [𝑛]) ∈ 𝑜
(
𝑥−𝔡r,s (𝑖)

)
·
(
d𝑥
𝑥

)𝑖
, 𝑥 → 0 .

In other words, E (𝑖)𝑔,𝑛 (𝑥,𝑤 [𝑛]) is meromorphic and has a pole of order strictly less than 𝔡r,s (𝑖) + 𝑖 at the
point 𝑥 = 0 in 𝑉 . If we let Ẽ (𝑖)𝑔,𝑛 (𝑧,𝑤 [𝑛]) be its pullback to a meromorphic 𝑖-dierential on 𝐶 , this is
tantamount to requiring that, for any 𝜇 ∈ [𝑑]

Ẽ (𝑖)𝑔,𝑛

(
𝜇
𝑧 ; 𝑤 [𝑛]

)
∈ 𝑜

(
𝑧−𝑟𝜇𝔡r,s (𝑖)

)
·
(
d𝑧
𝑧

)𝑖
, 𝑧 → 0 .

5 Topological recursion on global spectral curves

We are going to formalise what we have found in the context of global, possibly singular spectral
curves. This will lead us to dene the appropriate notion of abstract loop equations in Section 5.2, and
to show in Section 5.4 that its unique solution is given by an appropriate topological recursion à la
Chekhov–Eynard–Orantin, that is by computing residues on the normalisation of the singular curve.

5.1 Spectral curves

Denition 5.1. A spectral curve is a triple C = (𝐶, 𝑥, 𝑦), where 𝐶 is a reduced analytic curve over C
and 𝑥, 𝑦 are meromorphic functions on 𝐶 , such that all bers of 𝑥 are nite.

Note that𝐶 is not necessarily connected, compact, or irreducible. Wewill workwith its normalisation
𝜋 : 𝐶 → 𝐶 , which is a smooth curve. We have meromorphic functions 𝑥 = 𝑥 ◦𝜋 and �̃� = 𝑦 ◦𝜋 dened
on 𝐶 . Let 𝔟 ⊂ C be the set of points 𝑏 that have a neighbourhood 𝑈𝑏 such that the cardinality of the
bre of 𝑥 is constant on 𝑈𝑏 \ {𝑏} and strictly smaller at 𝑏 itself. It is the collection of branchpoints
of 𝑥 and images of locally reducible points away from∞. We also denote 𝔞 = 𝑥−1 (𝔟) and �̃� = 𝑥−1 (𝔟).
We assume that 𝔟 is nite. As a result, �̃� and 𝔞 are also nite. Note that, since we assumed that all
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bers of 𝑥 are nite, the same is true of 𝑥 and there cannot be an irreducible component of 𝐶 where 𝑥
is constant.

If 𝛼 ∈ 𝔞, we let 𝑈𝛼 ⊂ 𝐶 be a small neighborhood of 𝛼 that is invariant under local Galois transfor-
mations and

�̃�𝛼 B 𝜋−1 (𝑈𝛼 ), �̃� ′𝛼 = �̃�𝛼 \ 𝜋−1 (𝛼), 𝑉𝛼 = 𝑥 (𝑈𝛼 ), 𝑉 ′𝛼 = 𝑉𝛼 \ {𝑥 (𝛼)} .

Without loss of generality we can assume that 𝑉𝛼 ⊂ C. If 𝑧 ∈ �̃�𝛼 , we dene

𝔣𝛼 (𝑧) = 𝑥−1 (𝑥 (𝑧)) ∩ �̃�𝛼 , 𝔣′𝛼 (𝑧) = 𝔣𝛼 (𝑧) \ {𝑧}, �̃�𝛼 = 𝜋−1 (𝛼) .

Note that �̃�𝛼 is in bijection with the set of branches in 𝐶 above 𝛼 , and we denote 𝑑𝛼 B |�̃�𝛼 |. For each
𝜇 ∈ �̃�𝛼 , we introduce a small neighborhood𝐶𝜇 of 𝜇 in𝐶 , such that 𝜋 (𝐶𝜇) = 𝑈𝛼 , as well as𝐶 ′𝜇 = 𝐶𝜇 \ {𝜇}.
We have of course

�̃�𝛼 =
⊔
𝜇∈�̃�𝛼

𝐶𝜇 .

By taking a smaller neighborhood, we can always assume that the (𝐶𝜇)𝜇∈�̃� are pairwise disjoint. As
anticipated in Section 4.2, if we want to insist that a point 𝑧 ∈ �̃�𝛼 belongs to 𝐶𝜇 , we will denote it

(
𝜇
𝑧

)
.

The bers can be decomposed

𝔣𝛼 (𝑧) =
⊔
𝜇∈�̃�𝛼

𝔣𝜇 (𝑧), 𝔣𝜇 (𝑧) B 𝔣𝛼 (𝑧) ∩𝐶𝜇 .

We denote 𝑟𝜇 = |𝔣𝜇 (𝑧) | which is independent of 𝑧 ∈ 𝐶 ′𝜇 and 𝑟𝛼 = |𝔣𝛼 (𝑧) | which is independent of 𝑧 ∈ �̃� ′𝛼 .
In particular

𝑟𝛼 =
∑︁
𝜇∈�̃�𝛼

𝑟𝜇 .

If 𝛾 is a small loop in 𝑉𝛼 around 𝑥 (𝛼), it induces a Galois transformation in the cover 𝑥 |�̃�𝛼
, that is

for each 𝑧 ∈ �̃� ′𝛼 a permutation 𝜎𝛼 of 𝔣𝛼 (𝑧), which on �̃�𝜇 (𝑧) restricts to a cyclic transformation of order
𝑟𝜇 . This integer represents the order of ramication at 𝜇 ∈ �̃�𝛼 of 𝑥 |�̃�𝜇

.

Remark 5.2. If |�̃�𝛼 | = 1, 𝐶 is irreducible locally at 𝛼 , hence smooth at 𝛼 . We can then use the same
symbol to denote the point 𝛼 ∈ 𝐶 and the unique point above it in 𝐶 . If |�̃�𝛼 | > 1, 𝐶 is reducible locally
at 𝛼 , hence singular at 𝛼 . If |�̃�𝛼 | = 2, 𝛼 is a node. For 𝜇 ∈ �̃�, we have 𝑟𝜇 = 1 if and only if 𝜇 is not a
ramication point of 𝑥 . We say that the spectral curve is smooth if all ramication points in 𝐶 are
smooth.

For each 𝛼 ∈ 𝔞 and 𝜇 ∈ �̃�𝛼 , there exists a local coordinate 𝜁 on 𝐶𝜇 such that

𝑥 ( 𝜇𝑧 ) = 𝑥 (𝛼) + 𝜁 (𝑧)𝑟𝜇 .

As in Section 4.2, when working with local coordinates it should be clear from the context which 𝐶𝜇

is involved. Specifying such coordinates requires the choice of a 𝑟𝜇th root of unity for 𝑥 − 𝑥 (𝛼). We
assume such a choice is xed. We also choose a primitive 𝑟𝜇th root of unity, denoted 𝜗𝜇 . If 𝑧 ∈ 𝐶 ′𝜇 , the
set of coordinates of the points in 𝔣𝛼 (𝑧) is{

𝜗
𝑗
𝜈𝜁

𝑟𝜇/𝑟𝜈 | 𝜈 ∈ �̃�𝛼 , 𝑗 ∈ [𝑟𝜈]
}
.

Let us write locally at 𝜇 ∈ 𝔞 the Laurent series expansion of the function �̃�

�̃�
(
𝜇
𝑧

)
∼

∑︁
𝑘∈Z

1
𝑟𝜇
𝐹0,1

[ 𝜇

−𝑘
]
𝜁𝑘−𝑟𝜇 ,

and dene
𝑠𝜇 B min

{
𝑘 ∈ Z

�� 𝐹0,1
[ 𝜇

−𝑘
]
≠ 0

}
∈ Z ∪ {+∞} .

In particular, 𝑠𝜇 = +∞ if 𝑦 vanishes identically in the connected component of 𝜇 in 𝐶 . If 𝑠𝜇 is nite, we
introduce

𝑡𝜇 B −
1
𝑟𝜇
𝐹0,1

[ 𝜇
−𝑠𝜇

]
.
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We equip �̃�𝛼 with a total order 4 satisfying

𝜇 4 𝜈 =⇒
𝑟𝜇

𝑠𝜇
≥ 𝑟𝜈
𝑠𝜈

and denote ≺ the corresponding strict order. (Such orders exist.) Note that the inequality still makes
sense for 𝜇s such that 𝑠𝜇 = +∞. Then, in agreement with Section 3, for 𝜆, 𝜇 ∈ �̃�𝛼 we let

[𝜇] B
{
𝜈 ∈ �̃�𝛼 | 𝜈 4 𝜇

}
,

[𝜇) B
{
𝜈 ∈ �̃�𝛼 | 𝜈 ≺ 𝜇

}
,

[𝜆, 𝜇] :=
{
𝜈 ∈ 𝔞𝛼 | 𝜆 4 𝜈 4 𝜇

}
,

and likewise for the open segments [𝜆, 𝜇), (𝜆, 𝜇], etc. For instance [𝜇) = [min �̃�𝛼 , 𝜇). If𝑀 ⊆ �̃�𝛼 , we let

r𝑀 B
∑︁
𝜇∈𝑀

𝑟𝜇 , s𝑀 B
∑︁
𝜇∈𝑀

𝑠𝜇 .

For 𝜇 ∈ �̃�𝛼 we dene
Δ𝜇 B r[𝜇 ]𝑠𝜇 − s[𝜇 ]𝑟𝜇 .

Denition 5.3. For 𝛼 ∈ 𝔞, we dene a function of 𝑧 ∈ �̃�𝛼 by

𝑌𝛼 (𝑧) B
∏

𝑧′∈𝔣′𝛼 (𝑧)
(�̃� (𝑧 ′) − �̃� (𝑧)) .

In the next paragraph we will need to study the order of vanishing of these functions at �̃�. This is
given by the following lemma.

Lemma 5.4. If one of the following conditions is satised
(i) there exist distinct 𝜇, 𝜈 ∈ �̃�𝛼 such that 𝑠𝜇 = 𝑠𝜈 = +∞; or
(ii) there exists at least one 𝜇 ∈ �̃�𝛼 such that 𝑠𝜇 = +∞ and 𝑟𝜇 > 1,

then 𝑌𝛼 (𝑧) vanishes identically on 𝐶𝜇 for the 𝜇 involved in these conditions. Otherwise, for any 𝜇 ∈ �̃�𝛼 ,
we have 𝑌𝛼 (𝑧) ∈ O(𝜁 𝔳𝜇 ) when 𝑧 ∈ 𝐶𝜇 approaches 𝜇, where

𝔳𝜇 = (𝑠𝜇 − 𝑟𝜇) (𝑟𝛼 − 1) − Δ𝜇 . (67)
If furthermore either

(iii) there exist distinct 𝜇, 𝜈 ∈ �̃�𝛼 such that 𝑠𝜇, 𝑠𝜈 are nite,
𝑟𝜇

𝑠𝜇
=

𝑟𝜈
𝑠𝜈

and 𝑡𝑟𝜈𝜇 = 𝑡
𝑟𝜈
𝜈 ; or

(iv) there exists 𝜇 ∈ �̃�𝛼 such that 𝑠𝜇 is nite and gcd(𝑟𝜇, 𝑠𝜇) > 1,
then 𝑌𝛼 (𝑧) ∈ O(𝜁 𝔳𝜇+1). If none of the above conditions are satised, then there exists a non-zero scalar
𝔱𝛼,𝜇 such that 𝑌𝛼 (𝑧) − 𝔱𝛼,𝜇𝜁 𝔳𝜇 ∈ O(𝜁 𝔳𝜇+1).

Proof. If 𝑠𝜇 = +∞, �̃� is identically zero for 𝑧 ∈ 𝐶𝜇 . Conditions (i) and (ii) both imply there is a 𝑧 ′ ∈ 𝔣′𝛼 (𝑧)
such that �̃� (𝑧 ′) ≡ 0 as well, so one of the factors in 𝑌𝛼 (𝑧) vanishes identically.

We now assume that (i) and (ii) are not satised. Let us add for the moment the assumption that all
𝑠𝜇 are nite. We compute∏

𝑧′∈𝔣𝜇 (𝑧)
(�̃� (𝑧 ′) − �̃� (𝑧)) =

( 𝑟𝜇−1∏
𝑗=1
(𝜗𝑠𝜇 𝑗𝜇 − 1)

)
(−𝑡𝜇)𝑟𝜇−1 𝜁 (𝑠𝜇−𝑟𝜇 ) (𝑟𝜇−1) + O(𝜁 (𝑠𝜇−𝑟𝜇 ) (𝑟𝜇−1)+1) , (68)

and observe that the scalar prefactor in the rst term is non-zero if and only if 𝑟𝜇 and 𝑠𝜇 are coprime –
in that case it is equal to 𝑟𝜇𝑡

𝑟𝜇−1
𝜇 . For 𝜈 ∈ �̃�𝛼 distinct from 𝜇, we have∏

𝑧′∈𝔣𝜈 (𝑧)
(�̃� (𝑧 ′) − �̃� (𝑧)) =

𝑟𝜈−1∏
𝑗=0
(−𝑡𝜈𝜗 𝑗

𝜈𝜁
𝑟𝜇 (𝑠𝜈−𝑟𝜈)/𝑟𝜈 + 𝑡𝜇𝜁 𝑠𝜇−𝑟𝜇 + · · · )

= 𝑡𝜇,𝜈𝜁
min(𝑟𝜇𝑠𝜈,𝑟𝜈𝑠𝜇 )−𝑟𝜇𝑟𝜈 + O(𝜁min(𝑟𝜇𝑠𝜈,𝑟𝜈𝑠𝜇 )−𝑟𝜇𝑟𝜈+1) ,

(69)

where · · · are higher order terms, and

𝑡𝜇,𝜈 =


−𝑡𝑟𝜈𝜈 if 𝑟𝜇𝑠𝜈 < 𝑟𝜈𝑠𝜇
𝑡
𝑟𝜈
𝜇 if 𝑟𝜇𝑠𝜈 > 𝑟𝜈𝑠𝜇
𝑡
𝑟𝜈
𝜇 − 𝑡𝑟𝜈𝜈 if 𝑟𝜇𝑠𝜇 = 𝑟𝜈𝑠𝜇

.
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We have 𝑡𝜇,𝜈 = 0 if and only if (𝜇, 𝜈) obey the condition (iii). Multiplying (68) with the product of (69)
over all 𝜈 ≠ 𝜇, we deduce that 𝑌𝛼 (𝑧) = 𝔱𝛼,𝜇𝜁

𝔳𝜇 + O(𝜁 𝔳𝜇+1) and 𝔱𝛼,𝜇 = 0 if and only if the conditions (iii)
and (iv) are satised, with the exponent

𝔳𝜇 = (𝑠𝜇 − 𝑟𝜇) (𝑟𝜇 − 1) +
∑︁
𝜈≠𝜇

(
min(𝑟𝜇𝑠𝜈, 𝑟𝜈𝑠𝜇) − 𝑟𝜇𝑟𝜈

)
= 𝑟𝜇 − 𝑠𝜇 +

∑︁
𝜈∈�̃�𝛼

(
min(𝑟𝜇𝑠𝜈, 𝑟𝜈𝑠𝜇) − 𝑟𝜇𝑟𝜈

)
= −𝑟𝜇 (𝑟𝛼 − 1) − 𝑠𝜇 +

∑︁
𝜈≺𝜇

𝑟𝜇𝑠𝜈 +
∑︁
𝜈<𝜇

𝑟𝜈𝑠𝜇

= (𝑠𝜇 − 𝑟𝜇) (𝑟𝛼 − 1) − Δ𝜇 ,

(70)

as claimed. This concludes the proof in absence of an innite 𝑠 .
Now let us assume there exists a unique 𝜇− ∈ �̃�𝛼 such that 𝑠𝜇− = +∞. As we assume that (i) and (ii)

are not satised, we must have 𝑟𝜇− = 1. If 𝜇 ≠ 𝜇− and we take 𝑧 ∈ 𝐶𝜇 , we only need to pay attention to
the factor (69) for 𝜈 = 𝜇−, and in fact Equation (69) remains valid, hence 𝑌𝛼 (𝑧) = 𝔱𝛼,𝜇𝜁

𝔳𝜇 + O(𝜁 𝔳𝜇+1)
with the same expression for 𝔳𝜇 and the same discussion for the (non-)vanishing of 𝔱𝛼,𝜇 . Notice that by
denition of the order we must have 𝜇− = max(�̃�𝛼 ) so 𝜇− does not appear in Δ𝜇 . If 𝑧 ∈ 𝐶𝜇− , the factor
(68) is absent in 𝑌𝛼 (𝑧) and the other factors 𝜈 ≠ 𝜇− are as in (69). But, as 𝜇− only appears in 𝔳𝜇 via the
rst term of the rst line of (70), which can be consistently set to 0 since 𝑟𝜇− = 1, the formula for 𝔳𝜇
remains valid. �

Remark 5.5. Notice that if (𝑖𝑣) does not hold, i.e. any nite 𝑠𝜇 is coprime to 𝑟𝜇 , the condition
𝑟𝜇

𝑠𝜇
=

𝑟𝜈
𝑠𝜈

is
equivalent to (𝑟𝜇, 𝑠𝜇) = (𝑟𝜈, 𝑠𝜈). In that case, condition (𝑖𝑖𝑖) can be replaced with a more symmetric one
(𝑖𝑖𝑖)’ there exist distinct 𝜇, 𝜈 ∈ �̃�𝛼 such that 𝑠𝜇, 𝑠𝜈 are nite, (𝑟𝜇, 𝑠𝜇) = (𝑟𝜈, 𝑠𝜈) and 𝑡

𝑟𝜇
𝜇 = 𝑡

𝑟𝜈
𝜈 .

5.2 Correlators, master loop eqations and topological recursion

Let C = (𝐶, 𝑥, 𝑦) be a spectral curve with normalisation 𝜋 : 𝐶 → 𝐶 .

Denition 5.6. A fundamental bidierential of the second kind on C is an element

𝐵 ∈ 𝐻 0 (𝐶 ×𝐶;𝐾�2
�̃�
(2Δ)

)𝔖2 ,

with biresidue 1 on the diagonal Δ ⊂ 𝐶 ×𝐶 , where 𝐾�̃� is the sheaf of dierentials on 𝐶 .
A crosscap dierential on C is the data of a (possibly empty) divisor 𝐷 on 𝐶 \ �̃� and

𝑞 ∈ 𝐻 0 (𝐶;𝐾�̃� (𝐷 + �̃�)) ,
such that

∀𝛼 ∈ 𝔞,
∑︁
𝜇∈�̃�𝛼

Res
𝑧=𝜇

𝑞(𝑧) = 0 .

Denition 5.7. A family of correlators is a family of multidierentials 𝝎 = (𝜔𝑔,𝑛)𝑔∈ 12N,𝑛≥1 on 𝐶 such
that 𝜔0,1 = �̃� d𝑥 , 𝜔0,2 is a fundamental bidierential of the second kind on C, 𝜔 1

2 ,1
is a crosscap

dierential, and for 2𝑔 − 2 + 𝑛 > 0

𝜔𝑔,𝑛 ∈ 𝐻 0 (𝐶𝑛 ; (𝐾�̃� (∗�̃�))
�𝑛 )𝔖𝑛 .

It satises the projection property if for 2𝑔 − 2 + 𝑛 > 0,

𝜔𝑔,𝑛 (𝑧1, 𝑧 [2,𝑛]) =
∑︁
𝜇∈�̃�

Res
𝑧=𝜇

( ∫ 𝑧

𝜇

𝜔0,2 (·, 𝑧1)
)
𝜔𝑔,𝑛 (𝑧, 𝑧 [2,𝑛]) . (71)

Note that (71) is automatically satised for (𝑔, 𝑛) = (0, 2). Dierentials satisfying the projection
property cannot have residues, and if they are holomorphic, they must vanish. We can always assume
by taking smaller neighborhoods that the divisor 𝐷 of the crosscap dierential is supported outside
t𝛼 ∈𝔞�̃�𝛼 .
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Denition 5.8. Let 𝝎 be a family of correlators, and 𝑚 ≥ 1, 𝑔 ∈ 1
2N and 𝑛 ≥ 0. The genus 𝑔,

𝑚-disconnected, 𝑛-connected correlator is dened by

W𝑔,𝑚,𝑛 (𝑧 [𝑚] ;𝑤 [𝑛]) B
∑︁
L`[𝑚]

t𝐿∈L𝑁𝐿=[𝑛]
𝑚+∑𝐿 (𝑔𝐿−1)=𝑔

∏
𝐿∈L

𝜔𝑔𝐿, |𝐿 |+ |𝑁𝐿 | (𝑧𝐿, 𝑤𝑁𝐿
) .

We deneW ′
𝑔,𝑚,𝑛 by the same formula, but omitting any summand containing some 𝜔0,1.

If 𝑖 ∈ [𝑟𝛼 ], we let 𝜘𝑖 : �̃� (𝑖)𝛼 −→ 𝑉𝛼 be the smooth curve obtained by taking the bered product of 𝑖
copies of 𝑥 : �̃� ′𝛼 → C, deleting the big diagonal Δ(𝑖), and quotienting by the (free) action of𝔖𝑖 . Points
in �̃� (𝑖)𝛼 are exactly subsets of cardinality 𝑖 of 𝔣𝛼 (𝑧) for some 𝑧 ∈ �̃� ′𝛼 . We have natural holomorphic
maps

(�̃� ′𝛼 )𝑖 \ Δ(𝑖)
q𝑖−→ �̃�

(𝑖)
𝛼

x𝑖−→𝑉 ′𝛼 ,

where q𝑖 forgets the order of elements of an 𝑖-tuple and x𝑖 ({𝑧1, . . . , 𝑧𝑛}) = 𝑥 (𝑧1) = · · · = 𝑥 (𝑧𝑖 ). Let
I𝑖 : �̃� 𝑖

𝛼 \ Δ(𝑖) → 𝐶𝑖 be the natural inclusion. We introduce

E (𝑖)𝛼 ;𝑔,𝑛 B
(x𝑖q𝑖 )∗
𝑖!

I∗𝑖 (W𝑔,𝑖,𝑛) ∈ 𝐻 0 (𝑉 ′𝛼 ×𝐶𝑛 ;𝐾 ⊗𝑖
𝑉 ′𝛼
� 𝐾�̃� (∗�̃�)

�𝑛 )𝔖𝑛

Ẽ (𝑖)𝛼 ;𝑔,𝑛 B 𝑥∗E (𝑖)𝛼 ;𝑔,𝑛 ,

where all operations do not concern the last 𝑛 variables. More concretely,

E (𝑖)𝛼 ;𝑔,𝑛 (𝑥0; 𝑧 [𝑛]) =
∑︁

𝑍 ⊆�̃�−1 (𝑥0)∩�̃�𝛼

|𝑍 |=𝑖

W𝑔,𝑖,𝑛 (𝑍 ; 𝑧 [𝑛]) ,

Ẽ (𝑖)𝛼 ;𝑔,𝑛 (𝑧0; 𝑧 [𝑛]) =
∑︁

𝑍 ⊆𝔣𝛼 (𝑧0)
|𝑍 |=𝑖

W𝑔,𝑖,𝑛 (𝑍 ; 𝑧 [𝑛]) .
(72)

The symmetry factor 𝑖! disappeared sinceW𝑔,𝑖,𝑛 is symmetric in its 𝑖 rst variables. Note that reading
(72) in the local coordinate 𝜁0 of 𝑧0 ∈ �̃� ′𝜇 each term may be multivalued – i.e. fractional powers of
𝜁 (𝑧0) could appear – however the sum is single-valued as it is the pullback along 𝑥 of a 1-form on 𝑉 ′𝛼 .

Denition 5.9. We say that a family of correlators satises themaster loop equations if for any 𝑔 ∈ 1
2N

and 𝑛 ≥ 0 such that 2𝑔 − 2 + (𝑛 + 1) > 0, for any 𝛼 ∈ 𝔞 and 𝑖 ∈ [𝑟𝛼 ], any 𝜇 ∈ �̃�𝛼 , when 𝑧0 ∈ 𝐶 ′𝜇
approaches 𝜇, we have

𝑟𝛼∑︁
𝑖=1
Ẽ (𝑖)𝛼 ;𝑔,𝑛 (𝑧0; 𝑧 [𝑛])

(
− 𝜔0,1 (𝑧0)

)𝑟𝛼−𝑖 = O (
𝜁 −1+𝔳𝜇+(𝑟𝜇−1) (𝑟𝛼−1) (d𝜁 )𝑟𝛼

)
.

The relevance of this notion comes from the fact that the master loop equation can be solved by the
topological recursion.

Proposition 5.10. Assume that none of the conditions (i), (ii), (iii), and (iv) appearing in Lemma 5.4 are
satised. Then, if 𝝎 is a family of correlators satisfying the master loop equation (Denition 5.9) and the
projection property (Denition 5.7), we must have for any 𝑔 ∈ 1

2N and 𝑛 ≥ 0 such that 2𝑔− 2+ (𝑛 + 1) > 0,

𝜔𝑔,𝑛+1 (𝑧0, 𝑧 [𝑛]) =
∑︁
𝛼 ∈𝔞

∑︁
𝜇∈�̃�𝛼

Res
𝑧=𝜇

( ∑︁
𝑍 ⊆𝔣′𝛼 (𝑧)

𝐾
( |𝑍 |+1)
𝜇 (𝑧0; 𝑧, 𝑍 )W ′

𝑔, |𝑍 |,𝑛 (𝑧, 𝑍 ; 𝑧 [𝑛]),
)
, (73)

where for𝑚 ≥ 2 we have introduced the𝑚th recursion kernel for |𝑍 | =𝑚 − 1

𝐾
(𝑚)
𝜇 (𝑧0; 𝑧, 𝑍 ) B −

∫ 𝑧

𝜇
𝜔0,2 (·, 𝑧0)∏

𝑧′∈𝑍
(
(�̃� (𝑧 ′) − �̃� (𝑧))d𝑥 (𝑧)

) . (74)

Proof. The proof is similar to [Kra19, Theorem 7.6.5], the only dierence being the order of the
pole in the master loop equation. For completeness, we include the argument here. By denition,
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W ′
𝑔,1,𝑛 = 𝜔𝑔,𝑛+1. By the projection property and Denition 5.3

𝜔𝑔,𝑛+1 (𝑧0, 𝑧 [𝑛])

=
∑︁
𝛼 ∈𝔞

∑︁
𝜇∈�̃�𝛼

Res
𝑧=𝜇

( ∫ 𝑧

𝜇

𝜔0,2 (·, 𝑧0)
)
W ′

𝑔,1,𝑛 (𝑧; 𝑧 [𝑛])

= −
∑︁
𝛼 ∈𝔞

∑︁
𝜇∈�̃�𝛼

Res
𝑧=𝜇

𝐾
(𝑟𝛼 )
𝜇 (𝑧0; 𝔣𝛼 (𝑧))W ′

𝑔,1,𝑛 (𝑧0; 𝑧 [𝑛]) · 𝑌𝛼 (𝑧) ·
(
d𝑥 (𝑧)

) (𝑟𝛼−1) , (75)

where we noticed that

𝐾
(𝑟𝛼 )
𝜇 (𝑧0; 𝔣𝛼 (𝑧)) = −

∫ 𝑧

𝜇
𝜔0,2 (·, 𝑧0)

𝑌𝛼 (𝑧)
(
d𝑥 (𝑧)

) (𝑟𝛼−1)
always considering 𝑧 ∈ 𝔣𝛼 (𝑧) as the rst element of the set. Let 𝛼 ∈ 𝔞, and use the combinatorial
identity [Kra19, Lemma 7.6.4], which states that∑︁

{𝑧 }⊆𝑍 ⊆𝔣𝛼 (𝑧)
W ′

𝑔, |𝑍 |,𝑛 (𝑍 ; 𝑧 [𝑛])
∏

𝑧′∈𝔣𝛼 (𝑧)\𝑍

(
(�̃� (𝑧 ′) − �̃� (𝑧))d𝑥 (𝑧)

)
=

𝑟𝛼∑︁
𝑖=1
Ẽ (𝑖)𝛼 ;𝑔,𝑛 (𝑧; 𝑧 [𝑛])

(
− 𝜔0,1 (𝑧)

)𝑟𝛼−𝑖 .
Isolating the term 𝑍 = {𝑧} and substituting in (75), we obtain

𝜔𝑔,𝑛+1 (𝑧0, 𝑧 [𝑛]) =
∑︁
𝛼 ∈𝔞

∑︁
𝜇∈�̃�𝛼

Res
𝑧=𝜇

𝐾
(𝑟𝛼 )
𝜇 (𝑧0; 𝔣𝛼 (𝑧))

(
−

𝑟𝛼∑︁
𝑖=1
Ẽ (𝑖)𝛼 ;𝑔,𝑛 (𝑧; 𝑧 [𝑛])

(
− 𝜔0,1 (𝑧)

)𝑟𝛼−𝑖
+

∑︁
{𝑧 }⊂𝑍 ⊆𝔣𝛼 (𝑧)

W ′
𝑔, |𝑍 |,𝑛 (𝑍 ; 𝑧 [𝑛])

∏
𝑧′∈𝔣𝛼 (𝑧)\𝑍

(
(�̃� (𝑧 ′) − �̃� (𝑧))d𝑥 (𝑧)

) )
=

∑︁
𝛼 ∈𝔞

∑︁
𝜇∈�̃�𝛼

Res
𝑧=𝜇

( ∑︁
{𝑧 }⊂𝑍 ⊆𝔣𝛼 (𝑧)

𝐾
( |𝑍 |)
𝜇 (𝑧0;𝑍 )W ′

𝑔, |𝑍 |,𝑛 (𝑍 ; 𝑧 [𝑛])
)
.

(76)

By Lemma 5.4 and the assumption, we know that for 𝑧 ∈ 𝐶 ′𝜇 approaching 𝜇

𝑌𝛼 (𝑧) (d𝑥 (𝑧))𝑟𝛼−1 ∼ 𝔱𝛼,𝜇𝜁
𝔳𝜇+(𝑟𝜇−1) (𝑟𝛼−1) (d𝜁 )𝑟𝛼−1

for some non-zero scalar 𝔱𝛼,𝜇 . Since the numerator of the recursion kernel vanishes at order 1 at 𝑧 = 𝜇,
the master loop equation implies that the rst term inside the bracket of (76) is O(d𝜁 ) hence does not
contribute to the residue. Besides, the contribution of the second sum can be simplied by observing
that

𝐾
( |𝑍 |)
𝜇 (𝑧0;𝑍 ) = 𝐾 (𝑟𝛼 )𝜇 (𝑧0; 𝔣𝛼 (𝑧))

∏
𝑧′∈𝔣𝛼 (𝑧)\𝑍

(
(�̃� (𝑧 ′) − �̃� (𝑧))d𝑥 (𝑧)

)
.

�

Remark 5.11. From the proof, we see that if one of the conditions (i) and (ii) appearing in Lemma 5.4 is
satised, the recursion kernel is ill-dened as the denominator vanishes identically in the neighborhood
of some 𝜇. Besides, if one of the conditions (iii) or (iv) is satised, the same thing could occur or at least
the order of vanishing of the denominator is nite but higher than the one specied by Denition 5.9.
In the latter case, one can still ask for the analogue of Proposition 5.10 simply by modifying the master
loop equation to require that the rst sum in (76) is O(d𝜁 ).

We note that the right-hand side of (73) involves only 𝜔𝑔′,𝑛′ with 2𝑔′ − 2 +𝑛′ < 2𝑔 − 2 + (𝑛 + 1). For
a xed 𝝎un = (𝜔0,1, 𝜔 1

2 ,1
, 𝜔0,2), there exists at most one way to complete it into a system of correlators

satisfying the master loop equation and the projection property: the 𝜔𝑔,𝑛 are then determined by (73)
inductively on 2𝑔 − 2 + 𝑛 > 0. However, such a system of correlators may actually fail to exist at all.
Indeed, (73) gives a non-symmetric role to 𝑧0 compared to 𝑧1, . . . , 𝑧𝑛 , therefore the 𝜔𝑔,𝑛+1 (𝑧0, . . . , 𝑧𝑛)
that (73) compute may fail to be symmetric, and so would not respect Denition 5.7.
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5.3 Abstract loop eqations

We now address the aforementioned problem of existence of the solution to the master loop
equations, thanks to the results obtained in Section 4. We rst introduce a seemingly dierent notion
of “abstract loop equations” valid in the setting of Section 5.1. It will turn out that they give the right
generalisation of “abstract loop equations” proposed in [BS17] for smooth spectral curves. We will show
that, under admissibility conditions on the spectral curves that pertain to our constructions of Airy
structures in Section 2, the abstract loop equations have a solution satisfying the projection properties,
and imply the master loop equation. Therefore, this solution must be given by the topological recursion
formula (73), and this proves a posteriori that this denition is well-posed, i.e. it produces inductively
only multidierentials that are symmetric under permutations of all their variables. A direct proof of
symmetry by residue computations on 𝐶 seems rather elusive.

Let C be a spectral curve as in Section 5.1. We introduce integers 𝔡𝛼 (𝑖) for each 𝛼 ∈ 𝔞 and 𝑖 ∈ [𝑟𝛼 ]
matching Lemma 3.6. If 𝑖 ∈ [𝑟𝛼 ], we rst decompose it into 𝑖 = r[𝜆) + 𝑖 ′ for the unique 𝜆 ∈ �̃�𝛼 such
that r[𝜆) < 𝑖 ≤ r[𝜆] . Then, 𝑖 ′ ∈ [𝑟𝜆] and we have

𝔡𝛼 (𝑖) B −
⌊𝑠𝜆 (𝑖 ′ − 1)

𝑟𝜆

⌋
− s[𝜆) + 𝛿𝑖′,1 . (77)

Denition 5.12. We say that a family of correlators satises the abstract loop equations if for any
𝑔 ∈ 1

2N and 𝑛 ≥ 0 such that 2𝑔 − 2 + (𝑛 + 1) > 0, for any 𝛼 ∈ 𝔞 and 𝑖 ∈ [𝑟𝛼 ] when 𝑥0 → 𝑥 (𝛼) we have

E (𝑖)𝛼 ;𝑔,𝑛 (𝑥0; 𝑧 [𝑛]) = O
(
𝑥
−(𝔡𝛼 (𝑖)−1−𝛿𝑖,1)
0

(d𝑥0
𝑥0

)𝑖 )
.

This condition is equivalent to the property that, for any 𝜇 ∈ �̃�𝛼 we have when 𝑧0 ∈ 𝐶 ′𝜇 approaches 𝜇.

Ẽ (𝑖)𝛼 ;𝑔,𝑛
(
𝑧0; 𝑧 [𝑛]) = O

(
𝜁
−𝑟𝜇 (𝔡𝛼 (𝑖)−1−𝛿𝑖,1)
0

(d𝜁0
𝜁0

)𝑖 )
.

Proposition 5.13. Assume that none of the conditions (i), (ii), (iii), (iv) appearing in Lemma 5.4 are
satised. Then, the abstract loop equations imply the master loop equations.

Proof. We treat the case where 𝑠𝜇 is nite for all 𝜇 ∈ 𝔞. The case where there could exist 𝜇𝛼,− ∈ �̃�𝛼
(which is then unique) such that 𝑠𝜇𝛼,− = +∞ is left as exercise to the reader.

For each 𝛼 ∈ 𝔞 and 𝑖 ∈ [𝑟𝛼 ], the abstract loop equations imply that for any 𝜇 ∈ �̃�𝛼 we have when
𝑧0 ∈ �̃� ′𝜇 approaches 𝜇

Ẽ (𝑖)𝛼 ;𝑔,𝑛 (𝑧0; 𝑧 [𝑛])
(
− 𝜔0,1 (𝑧)

)𝑟𝛼−𝑖 = 𝑂 (
𝜁 −𝑟𝜇 (𝔡𝛼 (𝑖)−1−𝛿𝑖,1)−𝑖+(𝑠𝜇−1) (𝑟𝛼−𝑖) (d𝜁 )𝑟𝛼

)
.

Comparing with Denition 5.9, the result will be proved after we justify that

𝔭𝜇 (𝑖) B −𝑟𝜇 (𝔡𝛼 (𝑖) − 1 − 𝛿𝑖,1) − 𝑖 + (𝑠𝜇 − 1) (𝑟𝛼 − 𝑖) −
(
− 1 + 𝔳𝜇 + (𝑟𝜇 − 1) (𝑟𝛼 − 1)

)
is always nonnegative. We recall the denition of 𝔳𝜇 in (67)

𝔳𝜇 = (𝑠𝜇 − 𝑟𝜇) (𝑟𝛼 − 1) − r[𝜇)𝑠𝜇 + s[𝜇)𝑟𝜇 .
We decompose 𝑖 = r[𝜆) + 𝑖 ′ with the unique 𝜆 ∈ �̃�𝛼 such that r[𝜆) < 𝑖 ≤ r[𝜆] and 𝑖 ′ ∈ [r𝜆], and we
denote 𝜆𝛼 B min �̃�𝛼 . Inserting the denition of 𝔡𝛼 (𝑖) from (77), we obtain

𝔭𝜇 (𝑖) = 𝑠𝜇 (1 − 𝑖 + r[𝜇) ) + 𝑟𝜇
(
1 +

⌊𝑠𝜆 (𝑖 ′ − 1)
𝑟𝜆

⌋
+ s[𝜆) − s[𝜇) − 𝛿𝜆�𝜆𝛼𝛿𝑖′,1

)
.

We are going to use often the inequality

b𝑥c > 𝑥 − 1 . (78)

Checking nonnegativity of 𝔭𝜇 (𝑖) is done by a case discussion.
• If 𝜇 = 𝜆, this becomes

𝔭𝜇 (𝑖) = 𝑠𝜇 (1 − 𝑖 ′) + 𝑟𝜇
(
1 +

⌊𝑠𝜇 (𝑖 ′ − 1)
𝑟𝜇

⌋
− 𝛿𝜇�𝜆𝛼𝛿𝑖′,1

)
.

For 𝑖 ′ = 1 and 𝜇 � 𝜆𝛼 , we get 𝔭𝜇 (𝑖) = 0. For 𝑖 ′ = 1 and 𝜇 = 𝜆𝛼 , we get 𝔭𝜇 (𝑖) = 𝑟𝜆𝛼 ≥ 0. For
𝑖 ′ ≥ 2, using (78) yields directly 𝔭𝜇 (𝑖) ≥ 0.
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• If 𝜇 ≺ 𝜆, we have

𝔭𝜇 (𝑖) = 𝑠𝜇 (1 − r[𝜇,𝜆) − 𝑖 ′) + 𝑟𝜇
(
1 +

⌊𝑠𝜆 (𝑖 ′ − 1)
𝑟𝜆

⌋
+ s[𝜇,𝜆) − 𝛿𝑖′,1

)
.

For 𝑖 ′ = 1, this simplies into

𝔭𝜇 (𝑖) = −𝑠𝜇r[𝜇,𝜆) + 𝑟𝜇s[𝜇,𝜆) .

By denition of the order, for all 𝜈 ∈ [𝜇, 𝜆) we have 𝑟𝜇

𝑠𝜇
≥ 𝑟𝜈

𝑠𝜈
, therefore 𝔭𝜇 (𝑖) ≥ 0. For 𝑖 ′ ≥ 2,

we can use 𝑠𝜆
𝑟𝜆
≥ 𝑠𝜇

𝑟𝜇
and (78) and obtain 𝔭𝜇 (𝑖) ≥ 0 as well.

• If 𝜇 � 𝜆, we rather have

𝔭𝜇 (𝑖) = 𝑠𝜇 (1 + r[𝜆,𝜇) − 𝑖 ′) + 𝑟𝜇
(
1 +

⌊𝑠𝜆 (𝑖 ′ − 1)
𝑟𝜆

⌋
− s[𝜆,𝜇) − 𝛿𝜆�𝜆𝛼𝛿𝑖′,1

)
.

For 𝑖 ′ = 1 and 𝜆 = 𝜆𝛼 this simplies to

𝔭𝜇 (𝑖) = 𝑠𝜇r[𝜇) − 𝑟𝜇s[𝜇) + 𝑟𝜇
and thanks to the inequality 𝑟𝜈

𝑠𝜈
≥ 𝑟𝜇

𝑠𝜇
for all 𝜈 ∈ [𝜇) we deduce 𝔭𝜇 (𝑖) ≥ 𝑟𝜇 > 0. For 𝑖 ′ = 1 and

𝜆 � 𝜆𝛼 , we have
𝔭𝜇 (𝑖) = 𝑠𝜇r[𝜆,𝜇) − 𝑟𝜇s[𝜆,𝜇) .

Due to the inequality 𝑟𝜈
𝑠𝜈
≥ 𝑟𝜇

𝑠𝜇
for all 𝜈 ∈ [𝜆, 𝜇) we have again 𝔭𝜇 (𝑖) ≥ 0. For 𝑖 ′ ≥ 2, we use the

inequality (78) to write

𝔭𝜇 (𝑖) > 𝑠𝜇 (1 + r[𝜆,𝜇) − 𝑖 ′) + 𝑟𝜇
(
𝑠𝜆 (𝑖 ′ − 1)

𝑟𝜆
− s[𝜆,𝜇)

)
> 𝑟𝜇 (𝑖 ′ − 1)

(
𝑠𝜆

𝑟𝜆
−
𝑠𝜇

𝑟𝜇

)
+ r[𝜆,𝜇)𝑠𝜇 − s[𝜆,𝜇)𝑟𝜇

and due to the ordering we nd again 𝔭𝜇 (𝑖) ≥ 0.
�

Remark 5.14. In the proof we see that for any 𝛼 ∈ 𝔞, there exists 𝜇 ∈ �̃�𝛼 and 𝑖 ∈ [𝑟𝛼 ] such that𝔭𝜇 (𝑖) = 0.
Therefore, we do use all the vanishing provided by the abstract loop equations to derive the master
loop equations.

Combining with Proposition 5.10, we obtain the following result.

Proposition 5.15. Assume that none of the conditions (𝑖), (𝑖𝑖), (𝑖𝑖𝑖), (𝑖𝑣) appearing in Lemma 5.4 are
satised. For a xed (𝜔0,1, 𝜔0,2, 𝜔1, 12

), the topological recursion (73) gives the unique – if it exists, i.e. if
the result is symmetric in all variables – solution to the abstract loop equations.

The notion of abstract loop equation was rst introduced [BEO15; BS17] for smooth curves with
simple ramications and was shown there to be a mechanism implying directly the topological
recursion. This was extended to higher order ramications on smooth curves having �̃� holomorphic
near 𝔞 in [BE17b; BBCCN18; Kra19], and to the more general case where 𝑦d𝑥 is holomorphic near 𝔞
in [BBCCN18]. The novelty of Propositions 5.10 and 5.13 here is the treatment of possibly singular
curves.

5.4 Topological recursion for admissible spectral curves

In this paragraph, we express the abstract loop equations in a more algebraic way, that will make
the bridge to Airy structures. The converse route was anticipated in Section 4.

Let C be a spectral curve. We can attach to it a local spectral curve matching the denitions in
Section 4.2. Namely, we let

𝐶 loc =
⊔
𝜇∈�̃�

𝐶 loc
𝜇 , 𝐶 loc

𝜇 B SpecCÈ𝜁É .
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For each 𝜇 ∈ �̃�, dene 𝐶 loc′
𝜇 B SpecC((𝜁 )) and let

L𝜇 B 𝐻 0 (𝐶 loc′
𝜇 ;𝐾

�̃� loc′
𝜇

)
� C((𝜁 )) .d𝜁

be a copy of the space of formal Laurent series, and

L = 𝐻 0 (𝐶 loc′ ;𝐾�̃� loc′
)
�

⊕
𝜇∈�̃�
L𝜇 .

We denote by
Loc𝜇 : 𝐻 0 (�̃� ;𝐾�̃� (∗�̃�)

)
→ L𝜇

the linear map associating to a meromorphic dierential its all-order Laurent series expansion near 𝜇
using the local coordinate 𝜁 in �̃�𝜇 , and

Loc =
⊕
𝜇∈�̃�

Loc𝜇 .

We dene elements d𝜉𝜇
𝑘
∈ L, indexed by 𝜇 ∈ �̃� and 𝑘 ≥ 0

d𝜉𝜇
𝑘

( 𝜈
𝜁

)
= 𝛿𝜇,𝜈 𝜁

𝑘−1 d𝜁 .

We introduce the standard bidierential of the second kind on �̃� , that is

𝜔std
0,2

( 𝜇1 𝜇2
𝑧1 𝑧2

)
B
𝛿𝜇1,𝜇2 d𝜁 (𝑧1)d𝜁 (𝑧2)
(𝜁 (𝑧1) − 𝜁 (𝑧2))2

.

Let now 𝝎 be a family of correlators on C. We can encode the correlators 𝜔𝑔,𝑛 with 2𝑔 − 2 + 𝑛 ≥ 0
by the following Laurent series expansion

Loc(𝜔0,1) =
∑︁
𝜇∈�̃�
𝑘>0

𝐹0,1
[ 𝜇

−𝑘
]
d𝜉𝜇

𝑘
,

Loc(𝜔 1
2 ,1
) =

∑︁
𝜇∈�̃�

(
𝑄𝜇 d𝜉

𝜇

0 +
∑︁
𝑘>0

𝐹 1
2 ,1

[ 𝜇

−𝑘
]
d𝜉𝜇

𝑘

)
,

Loc⊗2 (𝜔0,2 − 𝜔std
0,2 ) =

∑︁
𝜇1,𝜇2∈�̃�
𝑘1,𝑘2>0

𝐹0,2
[ 𝜇1 𝜇2
−𝑘1 −𝑘2

]
d𝜉𝜇1

𝑘1
d𝜉𝜇2

𝑘2
.

(79)

Using the fundamental bidierential of the second kind, we introduce another family of dierentials
d𝜉𝜇−𝑘 , now globally dened on 𝐶 and indexed by 𝜇 ∈ �̃� and 𝑘 > 0

d𝜉𝜇−𝑘 (𝑧) = Res
𝑧′=𝜇

( ∫ 𝑧′

𝜇

𝜔0,2 (·, 𝑧)
)

d𝜁 (𝑧 ′)
(𝜁 (𝑧 ′))𝑘+1

. (80)

Notice that it is such that, for any 𝜇, 𝜈 ∈ �̃�

Loc𝜈 (d𝜉𝜇−𝑘 ) =
𝛿𝜇,𝜈d𝜁
𝜁𝑘+1

+
∑︁
𝑙>0

𝐹0,2
[ 𝜇 𝜈

−𝑘 −𝑙
]

𝑘
d𝜉𝜈

𝑙
.

Assuming that 𝝎 satises the projection property, by symmetry we can apply this property to each
variable to obtain the existence of a nite decomposition for 2𝑔 − 2 + 𝑛 > 0

𝜔𝑔,𝑛 (𝑧1, . . . , 𝑧𝑛) =
∑︁

𝜇1,...,𝜇𝑛 ∈�̃�
𝑘1,...,𝑘𝑛>0

𝐹𝑔,𝑛
[ 𝜇1 · · · 𝜇𝑛
𝑘1 · · · 𝑘𝑛

] 𝑛∏
𝑖=1

d𝜉𝜇𝑖−𝑘𝑖 (𝑧𝑖 ) , (81)

where 𝐹𝑔,𝑛
[ 𝝁
k

]
are scalars.

Denition 5.16. The partition function 𝑍 associated to a 𝝎 satisfying the projection property is
dened as

𝑍 B 𝑒𝐹 , 𝐹 =
∑︁

𝑔∈ 12N, 𝑛≥1
2𝑔−2+𝑛>0

∑︁
𝜇1,...,𝜇𝑛 ∈�̃�
𝑘1,...,𝑘𝑛>0

ℏ𝑔−1

𝑛!
𝐹𝑔,𝑛

[ 𝜇1 · · · 𝜇𝑛
𝑘1 · · · 𝑘𝑛

] 𝑛∏
𝑖=1

𝑥
𝜇𝑖

𝑘𝑖
.
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We now would like to translate the abstract loop equations on 𝝎 into constraints for its partition
function. For this purpose, we introduce for each 𝛼 ∈ 𝔞 a copy𝑊𝛼 ;𝑖,𝑘 of the dierential operators in
Equation (16) indexed by 𝑖 ∈ [𝑟𝛼 ] and 𝑘 ∈ Z forming a representation of the𝑊 (𝔤𝔩𝑟𝛼 )-VOA using as
twists permutations 𝜎𝛼 which is a product of disjoint cycles of respective orders (𝑟𝜇)𝜇∈�̃�𝛼 . They are
described in terms of the Heisenberg generators indexed by 𝜇 ∈ �̃� and 𝑘 ∈ Z

𝐽
𝜇

𝑘
=


ℏ𝜕𝑥𝜇

𝑘
if 𝑘 > 0

ℏ
1
2𝑄𝜇 if 𝑘 = 0
−𝑘𝑥𝜇−𝑘 if 𝑘 < 0

.

where we use
𝑄𝜇 = Res

𝑧=𝜇
𝜔 1

2 ,1
(𝑧)

coming from the crosscap dierential. Then, we construct the dilaton shift and the change of polarisa-
tion

𝑇 = exp
©«
∑︁
𝜇∈�̃�
𝑘>0

(
ℏ−1 𝐹0,1

[ 𝜇

−𝑘
]
+ ℏ− 1

2 𝐹 1
2 ,1

[ 𝜇

−𝑘
] ) 𝐽 𝜇

𝑘

𝑘

ª®®®¬ ,
Φ̂ = exp

©«
1
2ℏ

∑︁
𝜇,𝜈∈�̃�
𝑘,𝑙>0

𝐹0,2
[ 𝜇 𝜈

−𝑘 −𝑙
] 𝐽 𝜇

𝑘
𝐽 𝜈
𝑙

𝑘𝑙

ª®®®¬ .
Denition 5.17. To a spectral curve C equipped with a crosscap dierential 𝜔 1

2 ,1
and a fundamental

bidierential of the second kind 𝜔0,2, we associate the system of dierential operators indexed by
𝛼 ∈ 𝔞, 𝑖 ∈ [𝑟𝛼 ] and 𝑘 ∈ Z

𝐻𝛼 ;𝑖,𝑘 B Φ̂𝑇 · 𝜎𝛼𝑊𝑖,𝑘 ·𝑇 −1 Φ̂−1 ,
where𝑊 𝜎

𝑖,𝑘
is as in Equation (16), and 𝜎𝛼 is the monodromy permutation at 𝛼 . We also introduce the set

I B
{
(𝛼, 𝑖, 𝑘)

��� 𝛼 ∈ 𝔞, 𝑖 ∈ [𝑟𝛼 ], 𝑘 ≥ 𝔡𝛼 (𝑖) − 𝛿𝑖,1
}
.

Proposition 5.18. Assume that none of the conditions (i), (ii), (iii), (iv) appearing in Lemma 5.4 are
satised, and let 𝝎 be a system of correlators satisfying the projection property. Then, the abstract loop
equations for 𝝎 are equivalent to the following system of dierential equations for its partition function:

∀(𝛼, 𝑖, 𝑘) ∈ I, 𝑒−𝐹𝐻𝛼 ;𝑖,𝑘𝑒
𝐹 · 1 = 0 . (82)

Proof. If |𝔞 | = 1 this is the computation done in Section 4.4. Given the formalism that we introduced,
it is straightforward to adapt it to handle several 𝛼s, where the 𝐻𝛼 ;𝑖,𝑘 now form a representation of the
direct sum over 𝛼 ∈ 𝔞 of theW(𝔤𝔩𝑟𝛼 )-VOAs. �

It is now easy to combine the construction of Airy structures in Theorem 2.11 with Propositions 5.10
and 5.13 to obtain our second main result. We recall that we had dened

𝑡𝜇 = − 1
𝑟𝜇
𝐹0,1

[ 𝜇
−𝑠𝜇

]
.

Denition 5.19. We say 𝛼 ∈ 𝔞 is regularly admissible if
• 𝐶 is irreducible locally at 𝛼 , that is |�̃�𝛼 | = 1.
• �̃� is holomorphic near 𝛼 and d�̃� (𝛼) ≠ 0.

In that case, in all the previous denitions and constructions in the neighborhood �̃�𝛼 we replace
�̃� (𝑧) with �̃� (𝑧) − �̃� (𝛼). In particular, we take 𝑠𝛼 = 𝑟𝛼 + 1, and the value of �̃� (𝛼) plays absolutely no
role in all the results we have mentioned.

Denition 5.20. We say 𝛼 ∈ 𝔞 is irregularly admissible if
• for any 𝜇 ∈ �̃�𝛼 such that 𝑟𝜇 > 1, �̃� has a pole at 𝜇 but �̃�d𝑥 is regular at 𝜇. In particular, this
imposes 𝑠𝜇 ∈ [1, 𝑟𝜇).
• for any distinct 𝜇, 𝜈 ∈ �̃�𝛼 such that (𝑟𝜇, 𝑠𝜇) = (𝑟𝜈, 𝑠𝜈), we have 𝑡

𝑟𝜇
𝜇 ≠ 𝑡

𝑟𝜈
𝜈 .
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• if |�̃�𝛼 | > 1, there exist distinct 𝜇+, 𝜇− ∈ �̃�𝛼 such that 𝑟𝜇± = ∓1 mod 𝑠𝜇± and
𝑟𝜇+
𝑠𝜇+
≥ 𝑟𝜇−

𝑠𝜇−
, and for

any 𝜇 ∈ �̃�𝛼 \ {𝜇−, 𝜇+}, we have 𝑠𝜇 = 1 and 𝑟𝜇+
𝑠𝜇+
≥ 𝑟𝜇 ≥

𝑟𝜇−
𝑠𝜇−

.
• if |�̃�𝛼 | = 1 then 𝑟𝜇 = ±1 mod 𝑠𝜇 for 𝜇 ∈ �̃�𝛼 .

These conditions always imply that for any 𝜇, we have gcd(𝑟𝜇, 𝑠𝜇) = 1; in other words the plane
curve (𝐶, 𝑥, �̃�) is locally irreducible at 𝜇. Here, the second condition avoids the pathology of (iv) in
Lemma 5.4 and the next results. The third condition is then equivalent to avoiding the pathology (iii)
in Lemma 5.4, because 𝑟𝜇

𝑠𝜇
=

𝑟𝜈
𝑠𝜈

and (𝑟𝜇, 𝑠𝜇) coprime, (𝑟𝜈, 𝑠𝜈) coprime imply that (𝑟𝜇, 𝑠𝜇) = (𝑟𝜈, 𝑠𝜈). The
fourth and fth conditions match those in Theorem 2.11 if 𝑑 > 1, and the case 𝑑 = 1 corresponds to
Theorem 2.10.

Denition 5.21. We say 𝛼 ∈ 𝔞 is exceptionally admissible if
• there exists a unique 𝜇− ∈ �̃�𝛼 such that 𝑠𝜇− = +∞, and it has 𝑟𝜇− = 1.
• the three rst properties in Denition 5.20 that do not involve 𝜇− are satised.
• there exists 𝜇+ ∈ �̃�𝛼 \ {𝜇−} such that 𝑟𝜇+ = −1 mod 𝑠𝜇+ .
• for any 𝜇 ∈ �̃�𝛼 \ {𝜇−, 𝜇+}, we have 𝑠𝜇 = 1 and 𝑟𝜇+

𝑠𝜇+
≥ 𝑟𝜇 .

Allowing innite 𝑠 , the rst condition guarantees that we avoid the pathologies (i) and (ii) in
Lemma 5.4, which make the denominator of the recursion kernel be identically zero in some open set.
The last two conditions match those in Theorem 2.11.

Denition 5.22. A spectral curve C = (𝐶, 𝑥, 𝑦) is admissible if all 𝛼 ∈ 𝔞 are either regularly, irregularly
or exceptionally admissible. The tuple (𝑟𝜇, 𝑠𝜇)𝜇∈�̃�𝛼 is called the type of the ramication point 𝛼 ∈ 𝔞.

Theorem 5.23. Let C be an admissible spectral curve equipped with a fundamental bidierential of
the second kind 𝜔0,2 and with a crosscap dierential 𝜔 1

2 ,1
. Then there exists a unique way to complete

(𝜔0,1, 𝜔 1
2 ,1
, 𝜔0,2) into a system of correlators 𝝎 satisfying the projection property and the abstract loop

equations (or the master loop equations). Moreover, 𝜔𝑔,𝑛 is computed by the topological recursion (73)
by induction on 2𝑔 − 2 + 𝑛 > 0, and the result of this formula is symmetric in all its variables. The 𝐹𝑔,𝑛
determined by its decomposition are the coecients of expansion of the partition function of the Airy
structure introduced in Denition 5.17.

For smooth curves with simple ramications – i.e. 𝐶 = 𝐶 , |�̃�𝛼 | = 1 and 𝑟𝛼 = 2 for all 𝛼 ∈ 𝔞 – the
symmetry is proved in [EO07, Theorem 4.6]. For admissible smooth curves, Theorem 5.23 is proved in
[BBCCN18, Theorem 5.32]. For singular curves, the admissibility condition we have adopted is not far
from being optimal for this formulation of the abstract loop equation/formulas like (73). It may not be
impossible to dene a topological recursion for more general spectral curves, but either the formula
(73) will have to be dierent or the exponents in the master loop equations/abstract loop equations
should be increased, in a consistent way so that there still exist a unique symmetric solution.

5.5 Decoupling of exceptional components

If we erase some or all of the components of an exceptionally admissible local spectral curve C
indexed by the 𝜇− ∈ 𝔞 such that 𝑠𝜇− = ∞, we still obtain an admissible local spectral curve C′. We
prove below a decoupling result if 𝜔0,2 has no cross-terms with these components and 𝜔 1

2 ,1
vanishes on

these components. This decoupling means that the computing 𝜔𝑔,𝑛 on C and restricting to C′ gives the
same result as restricting (𝜔0,1, 𝜔0,2, 𝜔 1

2 ,1
) to C′ and then computing 𝜔𝑔,𝑛 by the topological recursion

on C′.

Proposition 5.24. Let (𝐶, 𝑥, 𝑦) be an exceptionally admissible spectral curve, equipped with a funda-
mental bidierential of the second kind 𝜔0,2 and with a crosscap dierential 𝜔 1

2 ,1
.

Let 𝔞′ be a non-empty subset of exceptionally admissible ramication points, and denote �̃�′ the set of
𝜇− ∈ �̃� such that 𝜇− ∈ �̃�𝛼 for some 𝛼 ∈ 𝔞′ and 𝑠𝜇− = ∞. Assume that for any 𝜇− ∈ �̃�′ and 𝜈 ∈ �̃� \ �̃�′ we
have

(Loc𝜇− ⊗ Loc𝜈) (𝜔0,2) = 0 , Loc𝜇− (𝜔 1
2 ,1
) = 0 .
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Then, if we denote 𝝎 the outcome of topological recursion and

Loc′ =
⊔

𝜇∈�̃�\�̃�′
Loc𝜇 ,

the Loc′-projection of the system of correlators 𝝎 obtained from (𝐶, 𝑥, 𝑦, 𝜔0,2, 𝜔1, 12
) by the topological

recursion (73), satises the topological recursion on the local spectral curve

(𝐶 loc) ′ =
⊔

𝜇∈�̃�\�̃�′
𝐶𝜇

equipped with the restriction of 𝑥, 𝑦, 𝜔0,2, 𝜔 1
2 ,1

onto (𝐶 loc) ′.
Proof. We detail the proof in the case of a single ramication point with 𝑠𝜇− = ∞. The general case
follows because topological recursion is local. It suces to work from the start with the normalised
local spectral curve attached to (𝐶, 𝑥, 𝑦). We write𝐶 loc

− for the connected component of𝐶 loc associated
to 𝜇− and 𝐶 loc

+ for all other components.
First let us prove all 𝜔𝑔,𝑛 with exactly one argument in𝐶 loc

− are zero. We will prove this by induction
on the Euler characteristic. The base cases hold, as 𝜔0,1 and 𝜔 1

2 ,1
vanish on 𝐶 loc

− and 𝜔0,2 does not have
cross-terms. For the induction step, let us recall the topological recursion formula (73).

𝜔𝑔,𝑛+1 (𝑧0, 𝑧 [𝑛]) =
∑︁
𝛼 ∈𝔞

∑︁
𝜇∈�̃�𝛼

Res
𝑧=𝜇

( ∑︁
{𝑧 }⊂𝑍 ⊆𝔣𝛼 (𝑧)

𝐾
( |𝑍 |)
𝜇 (𝑧0;𝑍 )W ′

𝑔, |𝑍 |,𝑛 (𝑍 ; 𝑧 [𝑛])
)
,

𝐾
(𝑚)
𝜇 (𝑧0; 𝑧 [𝑚]) B −

∫ 𝑧

𝜇
𝜔0,2 (·, 𝑧0)∏𝑚

𝑙=2
(
(�̃� (𝑧𝑙 ) − �̃� (𝑧1))d𝑥 (𝑧1)

) .
In this case, 𝔞 = {0}, and �̃�0 = {0 ∈ 𝐶 loc

+ , 0 ∈ 𝐶 loc
− }.

Let us analyse this formula with 𝑧0 ∈ 𝐶 loc
− and all 𝑧𝑖 ∈ 𝐶 loc

+ for 𝑖 ∈ [𝑛]. First, because the 𝜔0,2 does
not contain cross-terms, we must have 𝑧 ∈ 𝐶−, so also 𝜇 = 0 ∈ 𝐶 loc

− . Because 𝑥 |�̃� loc
−

is injective, 𝔣0 (𝑧)
contains no other point in 𝐶 loc

− . Hence for all terms in the sum, 𝑍 ∩𝐶 loc
− = {𝑧}, and by the induction

hypothesis, allW ′(𝑍 ; 𝑧 [𝑛]) are zero (they contain a factor 𝜔𝑔′,𝑛′ with 2𝑔′ − 2 + 𝑛′ < 2𝑔 − 2 + 𝑛 and one
argument in 𝐶 loc

− ).
Now, we will prove the proposition using a similar induction. The base cases, 𝜔0,1 and 𝜔0,2 (and the

trivial 𝜔 1
2 ,1
) do indeed not mix several components.

For the induction step, we again look at the topological recursion formula. Let us look at the terms
contributing in the case 𝑧0 and all 𝑧 [𝑛] are in 𝐶 loc

+ . As before, 𝑧 ∈ 𝐶 loc
+ . Furthermore, 𝔣0 (𝑧) contains

exactly one element, say 𝜁 , in 𝐶 loc
− , so any 𝑍 contains at most one such element. Any term in the sum

not containing 𝜁 also contributes to the topological recursion on 𝐶 loc
+ , and all terms including 𝜁 must

vanish by the rst part of this proof, as they have a factor 𝜔𝑔′,𝑛′ with exactly one argument – namely 𝜁
– in 𝐶 loc

− . �

6 Calculations for low 2𝑔 − 2 + 𝑛.
In this section, we calculate some of the rst correlators in the unique way of Theorem 5.23, but for

not necessarily admissible spectral curves. In this generality, there is no guarantee for the correlators to
be symmetric, and we will nd that indeed they are not for certain choices of parameters. As correlators
coming fromAiry structures are symmetric by construction, these calculations give necessary condition
for our collections of dierential operators to form Airy structures. These conditions are summarised
in Section 2.3.4.

6.1 The standard case

Let us consider the spectral curve with a unique ramication point 𝛼 at which 𝑑 irreducible
components labelled by �̃�𝛼 = �̃� intersect, and dened for 𝜇 ∈ �̃� and 𝑧 on the 𝜇th component of the
normalisation by the formulas

𝑥
(
𝜇
𝑧

)
= 𝑧𝑟𝜇 , 𝑦

(
𝜇
𝑧

)
= −𝑡𝜇 𝑧𝑠𝜇−𝑟𝜇 .
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We equip it with the bidierential and the crosscap dierential

𝜔0,2
( 𝜇1 𝜇2
𝑧1 𝑧2

)
= 𝛿𝜇1,𝜇2

d𝑧1d𝑧2
(𝑧1 − 𝑧2)2

, 𝜔 1
2 ,1

(
𝜇
𝑧

)
=
𝑄𝜇d𝑧
𝑧

.

We assume that gcd(𝑟𝜇, 𝑠𝜇) = 1, and that for 𝑟𝜇

𝑠𝜇
=

𝑟𝜈
𝑠𝜈

and 𝜇 ≠ 𝜈 we must have 𝑡𝑟𝜇𝜇 ≠ 𝑡
𝑟𝜈
𝜈 . The correlators

for 𝜒 = 2 − 2𝑔 − 𝑛 = −1 are

𝜔0,3 (𝑧1, 𝑧2, 𝑧3) =
∑︁
𝜇∈�̃�

Res
𝑧=𝜇

∑︁
𝑧′∈𝔣′ (𝑧)

𝐾𝜇 (𝑧1, 𝑧, 𝑧 ′)
(
𝜔0,2 (𝑧, 𝑧2)𝜔0,2 (𝑧 ′, 𝑧3) + 𝜔0,2 (𝑧, 𝑧3)𝜔0,2 (𝑧 ′, 𝑧2)

)
,

𝜔 1
2 ,2
(𝑧1, 𝑧2) =

∑︁
𝜇∈�̃�

Res
𝑧=𝜇

∑︁
𝑧′∈𝔣′ (𝑧)

𝐾𝜇 (𝑧1, 𝑧, 𝑧 ′)
(
𝜔0,2 (𝑧, 𝑧2)𝜔 1

2 ,1
(𝑧 ′) + 𝜔0,2 (𝑧 ′, 𝑧2)𝜔 1

2 ,1
(𝑧)

)
,

𝜔1,1 (𝑧1) =
∑︁
𝜇∈�̃�

Res
𝑧=𝜇

∑︁
𝑧′∈𝔣′ (𝑧)

𝐾𝜇 (𝑧1, 𝑧, 𝑧 ′)
(
𝜔0,2 (𝑧, 𝑧 ′) + 𝜔 1

2 ,1
(𝑧)𝜔 1

2 ,1
(𝑧 ′)

)
,

(83)

where

𝐾𝜇 (𝑧1, 𝑧, 𝑧 ′) =

∫ 𝑧

𝜇
𝜔0,2 (·, 𝑧1)

(𝑦 (𝑧) − 𝑦 (𝑧 ′))d𝑥 (𝑧) .

In this section, we compute these correlators, and show that the symmetry of 𝜔0,3 and 𝜔 1
2 ,2

poses
constraints on the parameters (𝑟𝜇, 𝑠𝜇, 𝑡𝜇, 𝑄𝜇)𝜇∈�̃� . We also obtain similar constraints from partial cal-
culation of 𝜔0,4. In light of Propositions 5.18 and 5.23, these are necessary constraints to obtain Airy
structures from the construction presented in Section 2, thus proving Proposition 2.14.

6.1.1 Genus zero
In this Section, we calculate 𝜔0,3 and obtain constraints on the parameters of the Airy structures

that are necessary for the symmetry of the correlators 𝜔0,3 and 𝜔0,4. In theory, the same approach
could get constraints from 𝜔0,𝑛 , which we believe get progressively closer to the sucient conditions
from Theorem 2.11. However, the computations also get quite involved, and we have not calculated
these in full generality.

Proposition 6.1. Assume 𝑟𝜇 and 𝑠𝜇 are coprime for all 𝜇 ∈ �̃�. Then 𝜔0,3 is symmetric if and only if the
following holds

(i) 𝑟𝜇 = ±1 mod 𝑠𝜇 for all 𝜇 ∈ �̃�.
(ii) For all 𝜇1 ≠ 𝜇2 with 𝑠𝜇𝑖 > 2 such that either

𝑟𝜇1 = 1 mod 𝑠𝜇1 and 𝑟𝜇2 = 1 mod 𝑠𝜇2
or

𝑟𝜇1 = −1 mod 𝑠𝜇1 and 𝑟𝜇2 = −1 mod 𝑠𝜇2
one has

⌊ 𝑟𝜇1
𝑠𝜇1

⌋
≠

⌊ 𝑟𝜇2
𝑠𝜇2

⌋
.

When these conditions are satised, then 𝜔0,3 is given by

𝜔0,3
( 𝜇1 𝜇2 𝜇3
𝑧1 𝑧2 𝑧3

)
=

∑︁
𝜇

𝑐𝜇𝛿𝜇1,𝜇2,𝜇3,𝜇

𝑡𝜇𝑟𝜇

∑︁
𝑘1,𝑘2,𝑘3>0

𝑘1𝑘2𝑘3 d𝑧1d𝑧2d𝑧3
𝑧
𝑘1+1
1 𝑧

𝑘2+1
2 𝑧

𝑘3+1
3

𝛿𝑘1+𝑘2+𝑘3,𝑠𝜇 , (84)

where

𝑐𝜇 B

{
−𝑟 ′𝜇 𝑟𝜇 = 𝑟 ′𝜇𝑠𝜇 + 1
𝑟 ′𝜇 + 1 𝑟𝜇 = 𝑟 ′𝜇𝑠𝜇 + 𝑠𝜇 − 1

. (85)

Proposition 6.2. Let 𝜇, 𝜈, and 𝜆 be distinct such that 𝑟𝜇

𝑠𝜇
=

𝑟𝜈
𝑠𝜈

=
𝑟𝜆
𝑠𝜆
. Then

𝜔0,4
(
𝜇 𝜇 𝜈 𝜆
𝑧1 𝑧2 𝑧3 𝑧4

)
= 0

if and only if 𝑠𝜇 = 1. Therefore, 𝜔0,4 can only be symmetric if there are not three such irreducible
components with 𝑠𝜇 ≥ 2.
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Before we prove these two results, we rst give some more general considerations for calculating
the genus zero correlators.

Recalling Equations (73) and (74), we see that the recursion kernel can be split in factors coming
from dierent irreducible components of the spectral curve. First, note that in 𝐾 (𝑧1; 𝑧, 𝑍 ), we always
need 𝑧1 and 𝑧 to lie in the same irreducible component, and then we have∫ 𝑧

𝜇

𝜔0,2 (·, 𝑧1) =
𝑧d𝑧1

𝑧1 (𝑧1 − 𝑧)
.

Because 𝜔0,2 in our current situation does not mix irreducible components, this shows immediately
that to get symmetric correlators, we need

𝜔0,3
(
𝜇 𝜈 𝜆
𝑧1 𝑧2 𝑧3

)
= 0

unless 𝜇 = 𝜈 = 𝜆: if one (say 𝜇) is dierent from the other two, we can use the recursion with respect
to its variable, and get 𝑧 ∈ 𝐶𝜇 , so both terms in (83) would involve an 𝜔0,2 between two dierent
irreducible components.

This vanishing can then be used to calculate𝜔0,4 with arguments in exactly three dierent irreducible
components. All terms involving 𝐾 (2) would also involve a vanishing 𝜔0,3, while the same argument
as for 𝜔0,3 above shows that the contribution of 𝐾 (3) to such 𝜔0,4 should vanish – it also involves only
𝜔0,2. In fact, this same argument could be applied to 𝜔0,4

( 𝜇 𝜈 𝜈 𝜈
𝑧1 𝑧2 𝑧3 𝑧4

)
(we only need one irreducible

component to be dierent from all others), but this turns out not to give a new constraint, so we omit
it here.

Remark 6.3. This argument can be used inductively to show that all 𝜔0,𝑛 with exactly one argument
on a given irreducible component must vanish. This is analogous to the proof of Proposition 5.24, but
also uses that all arguments of the recursion kernel must couple to a dierent correlator, as we restrict
to genus zero. However, in general the recursive computation of these correlators does require 𝐾 (𝑚)
of order𝑚 up to the degree of 𝑥 , and therefore becomes quite complicated.

For the remainder of this Section, we restrict to recursion kernels coupled to𝜔0,2’s, which is sucient
for our calculations. We also assume 𝑧1 ∈ 𝐶𝜇 . From the shape of the recursion kernel, we obtain several
possible contributions (combining factors from the kernel and the correlators):

(1) There will always be one term

𝑧d𝑧1
𝑧1 (𝑧1 − 𝑧)

d𝑧d𝑧𝑚
(𝑧 − 𝑧𝑚)2

with 𝑧𝑚 ∈ 𝐶𝜇 .
(2) For any other 𝑧𝑚 ∈ 𝐶𝜇 , we get a contribution

𝜗
𝑎𝑚
𝜇

𝑟𝜇𝑡𝜇 (𝜗
𝑎𝑚𝑠𝜇
𝜇 − 1)𝑧𝑠𝜇−1

d𝑧𝑚
(𝜗𝑎𝑚𝜇 𝑧 − 𝑧𝑚)2

,

where 𝜗𝜇 is a primitive 𝑟𝜇th root of unity and we need to sum over all subsets {𝑎𝑚} ⊂ [𝑟𝜇 − 1]
of size determined by the number of 𝑧𝑚 ∈ 𝐶𝜇 .

(3) For any 𝜈 ≠ 𝜇 and 𝑧𝑚 ∈ 𝐶𝜈, we get a contribution

𝜗
𝑏𝑚
𝜈 𝑧𝑟𝜇/𝑟𝜈−1

𝑟𝜈 (𝑡𝜈𝜗𝑏𝑚𝑠𝜈
𝜈 𝑧𝑟𝜇𝑠𝜈/𝑟𝜈−1 − 𝑡𝜇𝑧𝑠𝜇−1)

d𝑧𝑚
(𝜗𝑏𝑚𝜈 𝑧𝑟𝜇/𝑟𝜈 − 𝑧𝑚)2

and we need to sum over all subsets {𝑏𝑚} ⊂ [𝑟𝜈] of size determined by the number of 𝑧𝑚 ∈ 𝐶𝜈.

We need to take the series expansion of each of these near 𝑧 = 0. For (1), this is

𝑧d𝑧1
𝑧1 (𝑧1 − 𝑧)

d𝑧d𝑧𝑚
(𝑧 − 𝑧𝑚)2

= d𝑧d𝑧1d𝑧𝑚
∑︁
ℓ,𝑘≥1

𝑘𝑧−ℓ−11 𝑧−𝑘−1𝑚 𝑧ℓ+𝑘−1 .
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The summations for cases (2) and (3) get quite complicated for general sizes of the subset, but for size
one, they are computable. For case (2), we get

𝑟𝜇−1∑︁
𝑎=1

𝜗𝑎𝜇

𝑟𝜇𝑡𝜇 (𝜗
𝑎𝑠𝜇
𝜇 − 1)𝑧𝑠𝜇−1

d𝑧𝑚
(𝜗𝑎𝜇𝑧 − 𝑧𝑚)2

=
d𝑧𝑚
𝑟 2𝜇𝑡𝜇

𝑟𝜇−1∑︁
𝑎=1

𝑟𝜇−1∑︁
ℓ=0

ℓ𝜗
𝑎𝑠𝜇 ℓ
𝜇

∑︁
𝑘≥1

𝑘𝜗𝑎𝑘𝜇 𝑧
−𝑘−1
𝑚 𝑧𝑘−𝑠𝜇

=
d𝑧𝑚
𝑟 2𝜇𝑡𝜇

∑︁
𝑘≥1

𝑟𝜇−1∑︁
ℓ=0

ℓ
(
𝑟𝜇𝛿𝑟𝜇 |𝑠𝜇 ℓ+𝑘 − 1

)
𝑘𝑧−𝑘−1𝑚 𝑧𝑘−𝑠𝜇

=
d𝑧𝑚
𝑟𝜇𝑡𝜇

∑︁
𝑘≥1

(
ℓ𝜇 (𝑘) −

𝑟𝜇 − 1
2

)
𝑘𝑧−𝑘−1𝑚 𝑧𝑘−𝑠𝜇 ,

where ℓ𝜇 (𝑘) is the unique ℓ ∈ [0, 𝑟𝜇) such that 𝑟𝜇 | 𝑠𝜇ℓ + 𝑘 .
For case (3), there are three dierent subcases, depending on the sign of 𝑟𝜇

𝑠𝜇
− 𝑟𝜈

𝑠𝜈
:

(3a) If 𝑟𝜇

𝑠𝜇
=

𝑟𝜈
𝑠𝜈
, we get

𝑟𝜈∑︁
𝑏=1

𝜗
𝑏𝑚
𝜈 𝑧𝑟𝜇/𝑟𝜈−1

𝑟𝜈 (𝑡𝜈𝜗𝑏𝑚𝑠𝜈
𝜈 𝑧𝑟𝜇𝑠𝜈/𝑟𝜈−1 − 𝑡𝜇𝑧𝑠𝜇−1)

d𝑧𝑚
(𝜗𝑏𝑚𝜈 𝑧𝑟𝜇/𝑟𝜈 − 𝑧𝑚)2

= d𝑧𝑚
∑︁
𝑘≥1

𝑡
𝑟𝜇−ℓ𝜇 (𝑘)−1
𝜇 𝑡

ℓ𝜇 (𝑘)
𝜈

𝑡
𝑟𝜇
𝜈 − 𝑡

𝑟𝜇
𝜇

𝑘 𝑧−𝑘−1𝑚 𝑧𝑘−𝑠𝜇 .

(3b) If 𝑟𝜇

𝑠𝜇
>

𝑟𝜈
𝑠𝜈
, we get

𝑟𝜈∑︁
𝑏=1

𝜗
𝑏𝑚
𝜈 𝑧𝑟𝜇/𝑟𝜈−1

𝑟𝜈 (𝑡𝜈𝜗𝑏𝑚𝑠𝜈
𝜈 𝑧𝑟𝜇𝑠𝜈/𝑟𝜈−1 − 𝑡𝜇𝑧𝑠𝜇−1)

d𝑧𝑚
(𝜗𝑏𝑚𝜈 𝑧𝑟𝜇/𝑟𝜈 − 𝑧𝑚)2

= −d𝑧𝑚
𝑡𝜇

∑︁
𝑘,ℓ≥1

𝑟𝜈 |𝑠𝜈 (ℓ−1)+𝑘

( 𝑡𝜈
𝑡𝜇

) ℓ−1
𝑘 𝑧−𝑘−1𝑚 𝑧

(𝑠𝜈 (ℓ−1)+𝑘)
𝑟𝜇

𝑟𝜈
−ℓ𝑠𝜇 .

(3c) If 𝑟𝜇

𝑠𝜇
<

𝑟𝜈
𝑠𝜈
, we get

𝑟𝜈∑︁
𝑏=1

𝜗
𝑏𝑚
𝜈 𝑧𝑟𝜇/𝑟𝜈−1

𝑟𝜈 (𝑡𝜈𝜗𝑏𝑚𝑠𝜈
𝜈 𝑧𝑟𝜇𝑠𝜈/𝑟𝜈−1 − 𝑡𝜇𝑧𝑠𝜇−1)

d𝑧𝑚
(𝜗𝑏𝑚𝜈 𝑧𝑟𝜇/𝑟𝜈 − 𝑧𝑚)2

=
d𝑧𝑚
𝑡𝜈

∑︁
𝑘,ℓ≥1

𝑟𝜈 |𝑠𝜈ℓ−𝑘

( 𝑡𝜇
𝑡𝜈

) ℓ−1
𝑘 𝑧−𝑘−1𝑚 𝑧

(𝑘−ℓ𝑠𝜈)
𝑟𝜇

𝑟𝜈
+(ℓ−1)𝑠𝜇 .

Proof of Proposition 6.1. Above the proposition, we already argued that 𝜔0,3 vanishes unless all argu-
ments are on the same branch. Let us rst calculate the value of 𝜔0,3 with all arguments on the same
branch 𝜇. For this, we get the contribution from case (1) and the one-argument version of case (2), and
then take the residue:

𝜔0,3
( 𝜇 𝜇 𝜇
𝑧1 𝑧2 𝑧3

)
d𝑧1d𝑧2d𝑧3

= Res
𝑧=0

(
d𝑧

∑︁
ℓ2,𝑘2≥1

𝑘2𝑧
−ℓ2−1
1 𝑧

−𝑘2−1
2 𝑧ℓ2+𝑘2−1

1
𝑟𝜇𝑡𝜇

∑︁
𝑘3≥1

(
ℓ𝜇 (𝑘3) −

𝑟𝜇 − 1
2

)
𝑘3𝑧
−𝑘3−1
3 𝑧𝑘3−𝑠𝜇

+ d𝑧
∑︁

ℓ3,𝑘3≥1
𝑘3𝑧
−ℓ3−1
1 𝑧

−𝑘3−1
3 𝑧ℓ3+𝑘3−1

1
𝑟𝜇𝑡𝜇

∑︁
𝑘2≥1

(
ℓ𝜇 (𝑘2) −

𝑟𝜇 − 1
2

)
𝑘2𝑧
−𝑘2−1
2 𝑧𝑘2−𝑠𝜇

)
=

1
𝑟𝜇𝑡𝜇

Res
𝑧=0

d𝑧
∑︁

ℓ,𝑘2,𝑘3≥1
𝑘2𝑘3

(
ℓ𝜇 (𝑘2) + ℓ𝜇 (𝑘3) − 𝑟𝜇 + 1

)
𝑧−ℓ−11 𝑧

−𝑘2−1
2 𝑧

−𝑘3−1
3 𝑧ℓ+𝑘2+𝑘3−𝑠𝜇−1

=
1
𝑟𝜇𝑡𝜇

∑︁
𝑘1,𝑘2,𝑘3≥1

𝑘2𝑘3
(
ℓ𝜇 (𝑘2) + ℓ𝜇 (𝑘3) − 𝑟𝜇 + 1

)
𝑧
−𝑘1−1
1 𝑧

−𝑘2−1
2 𝑧

−𝑘3−1
3 𝛿𝑘1+𝑘2+𝑘3,𝑠𝜇 .

For 𝑟𝜇 = 1 this expression vanishes and hence is symmetric. In case 𝑟𝜇 > 1 we know from [BBCCN18,
Proposition B.2] that for 𝑠𝜇 ∈ [𝑟𝜇 + 1], this is symmetric if and only if ±1 mod 𝑠𝜇 . If however, 𝑟𝜇 > 1
and 𝑠𝜇 > 𝑟𝜇 + 1 it is easy to see that the correlators can never be symmetric. Let us assume 𝜔0,3 is
symmetric. Then for all 𝑘1, 𝑘2, 𝑘3 > 0 satisfying 𝑘1 + 𝑘2 + 𝑘3 = 𝑠𝜇 we must have

𝑘2𝑘3
(
ℓ𝜇 (𝑘2) + ℓ𝜇 (𝑘3) − 𝑟𝜇 + 1

)
= 𝑘1𝑘3

(
ℓ𝜇 (𝑘1) + ℓ𝜇 (𝑘3) − 𝑟𝜇 + 1

)
.

Plugging 𝑘1 = 1, 𝑘2 = 𝑟𝜇 , and 𝑘3 = 𝑠𝜇 − 𝑟𝜇 − 1 into the above equation the right-hand side vanishes and
we obtain

𝑟𝜇
(
ℓ𝜇 (𝑠𝜇 − 𝑟𝜇 − 1) − 𝑟𝜇 + 1

)
= 0 .
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From this we deduce that ℓ𝜇 (𝑠𝜇 − 𝑟𝜇 − 1) = 𝑟𝜇 − 1. This means that there must exist an𝑚 such that
𝑚𝑟𝜇 = 𝑠𝜇 −𝑟𝜇 −1+𝑠𝜇 (𝑟𝜇 −1). This in turn implies that 𝑟𝜇 = 1which contradicts our starting assumption.
We therefore conclude that the symmetry condition for 𝜔0,3

( 𝜇 𝜇 𝜇
𝑧1 𝑧2 𝑧3

)
is exactly captured by (i).

To show Equation (84), recall that ℓ𝜇 (𝑘) is the unique ℓ ∈ [0, 𝑟𝜇) such that 𝑟𝜇 | 𝑠𝜇ℓ + 𝑘 . In other
words, there is an𝑚 such that𝑚(𝑟 ′𝜇𝑠𝜇 + 𝜀𝜇) = 𝑠𝜇ℓ𝜇 (𝑘) + 𝑘 . Viewing this formula modulo 𝑠𝜇 shows that
for 𝑘 < 𝑠𝜇

𝑚 =

{
𝑘 if 𝜀𝜇 = 1
𝑠𝜇 − 𝑘 if 𝜀𝜇 = 𝑠𝜇 − 1

.

From this, it follows easily that (ℓ𝜇 (𝑘2) + ℓ𝜇 (𝑘3) − 𝑟𝜇 + 1) = 𝑐𝜇 as 𝑘2, 𝑘3 < 𝑠𝜇 .
Now let 𝜈 ∈ �̃� with 𝜈 ≠ 𝜇. On the one hand 𝜔0,3

( 𝜈 𝜇 𝜇
𝑧1 𝑧2 𝑧3

)
always vanishes, while on the other hand

𝜔0,3
( 𝜇 𝜇 𝜈
𝑧1 𝑧2 𝑧3

)
may be non-zero. Let us calculate the latter. For this, we get a contribution from case (1),

and the one-argument version of case (3), and take the residue.
If 𝑟𝜇

𝑠𝜇
=

𝑟𝜈
𝑠𝜈
, this gives

𝜔0,3
( 𝜇 𝜇 𝜈
𝑧1 𝑧2 𝑧3

)
d𝑧1d𝑧2d𝑧3

= Res
𝑧=0

d𝑧
∑︁

𝑘1,𝑘2,𝑘3≥1
𝑘2𝑘3𝑧

−𝑘1−1
1 𝑧

−𝑘2−1
2 𝑧𝑘1+𝑘2−1

𝑡
𝑟𝜇−ℓ𝜇 (𝑘)−1
𝜇 𝑡

ℓ𝜇 (𝑘)
𝜈

𝑡
𝑟𝜇
𝜈 − 𝑡

𝑟𝜇
𝜇

𝑧−𝑘3−1𝑚 𝑧𝑘3−𝑠𝜇

=
∑︁

𝑘1,𝑘2,𝑘3≥1

𝑡
𝑟𝜇−ℓ𝜇 (𝑘)−1
𝜇 𝑡

ℓ𝜇 (𝑘)
𝜈

𝑡
𝑟𝜇
𝜈 − 𝑡

𝑟𝜇
𝜇

𝑘2𝑘3 𝛿𝑘1+𝑘2+𝑘3,𝑠𝜇 𝑧
−𝑘1−1
1 𝑧

−𝑘2−1
2 𝑧

−𝑘3−1
3 .

This vanishes if and only if 𝑠𝜇 = 𝑠𝜈 ≤ 2, which agrees with (ii) in this case.
Now, assume 𝑟𝜇

𝑠𝜇
>

𝑟𝜈
𝑠𝜈
. Then

𝜔0,3
( 𝜇 𝜇 𝜈
𝑧1 𝑧2 𝑧3

)
d𝑧1d𝑧2d𝑧3

= − 1
𝑡𝜇

Res
𝑧=0

d𝑧
∑︁

𝑘1,𝑘2,𝑘3,ℓ≥1
𝑟𝜈 |𝑠𝜈 (ℓ−1)+𝑘3

𝑘2𝑘3 𝑧
−𝑘1−1
1 𝑧

−𝑘2−1
2 𝑧𝑘1+𝑘2−1

( 𝑡𝜈
𝑡𝜇

) ℓ−1
𝑧
−𝑘3−1
3 𝑧

(𝑠𝜈 (ℓ−1)+𝑘3)
𝑟𝜇

𝑟𝜈
−ℓ𝑠𝜇

= − 1
𝑡𝜇

∑︁
𝑘1,𝑘2,𝑘3,ℓ≥1
𝑟𝜈 |𝑠𝜈 (ℓ−1)+𝑘3

( 𝑡𝜈
𝑡𝜇

) ℓ−1
𝑘2𝑘3 𝑧

−𝑘1−1
1 𝑧

−𝑘2−1
2 𝑧

−𝑘3−1
3 𝛿

𝑘1+𝑘2+(𝑠𝜈 (ℓ−1)+𝑘3)
𝑟𝜇

𝑟𝜈
−ℓ𝑠𝜇 , 0

= − 1
𝑡𝜇

∑︁
𝑘1,𝑘2,𝑘3≥1

∑︁
ℓ′≥0

( 𝑡𝜈
𝑡𝜇

) ℓ𝜈 (𝑘3)+𝑟𝜈ℓ′
𝑘2𝑘3 𝑧

−𝑘1−1
1 𝑧

−𝑘2−1
2 𝑧

−𝑘3−1
3

· 𝛿
𝑘1+𝑘2+(𝑠𝜈 (ℓ𝜈 (𝑘3)+𝑟𝜈ℓ′)+𝑘3)

𝑟𝜇

𝑟𝜈
−(ℓ𝜈 (𝑘3)+𝑟𝜈ℓ′+1)𝑠𝜇 ,0 .

This vanishes if and only if

𝑘1 + 𝑘2 +
(
𝑘3 + 𝑠𝜈ℓ𝜈 (𝑘3)

) 𝑟𝜇
𝑟𝜈
+ ℓ ′(𝑟𝜇𝑠𝜈 − 𝑟𝜈𝑠𝜇) ≠

(
ℓ𝜈 (𝑘3) + 1

)
𝑠𝜇

for all 𝑘𝑖 > 0 and ℓ ′ ≥ 0. Then plugging in

ℓ𝜈 (𝑘3) =

𝑘3𝑟
′
𝜈 −

⌊
𝑘3𝑟
′
𝜈

𝑟𝜈

⌋
𝑟𝜈 if 𝑟𝜈 = 𝑟 ′𝜈𝑠𝜈 + 1

−𝑘3 (𝑟 ′𝜈 + 1) +
⌈
𝑘3 (𝑟 ′𝜈+1)

𝑟𝜈

⌉
𝑟𝜈 if 𝑟𝜈 = 𝑟 ′𝜈𝑠𝜈 + 𝑠𝜈 − 1

, (86)

we see that the statement is equivalent to

𝑠𝜇 − 2 <


𝑘 (𝑟𝜇 − 𝑟 ′𝜈𝑠𝜇) +

(
ℓ ′ −

⌊
𝑘𝑟 ′𝜈
𝑟𝜈

⌋ )
(𝑟𝜇𝑠𝜈 − 𝑟𝜈𝑠𝜇) if 𝑟𝜈 = 𝑟 ′𝜈𝑠𝜈 + 1

𝑘 ((𝑟 ′𝜈11)𝑠𝜇 − 𝑟𝜇) +
(
ℓ ′ +

⌈
𝑘 (𝑟 ′𝜈11)

𝑟𝜈

⌉)
(𝑟𝜇𝑠𝜈 − 𝑟𝜈𝑠𝜇) if 𝑟𝜈 = 𝑟 ′𝜈𝑠𝜈 + 𝑠𝜈 − 1

for all 𝑘 > 0 and ℓ ′ ≥ 0. Using now that by assumption 0 < 𝑟𝜇𝑠𝜈 − 𝑟𝜈𝑠𝜇 the latter holds if and only if

𝑠𝜇 − 2 <


𝑘 (𝑟𝜇 − 𝑟 ′𝜈𝑠𝜇) −

⌊
𝑘𝑟 ′𝜈
𝑟𝜈

⌋
(𝑟𝜇𝑠𝜈 − 𝑟𝜈𝑠𝜇) if 𝑟𝜈 = 𝑟 ′𝜈𝑠𝜈 + 1

𝑘 ((𝑟 ′𝜈 + 1)𝑠𝜇 − 𝑟𝜇) +
⌈
𝑘 (𝑟 ′𝜈+1)

𝑟𝜈

⌉
(𝑟𝜇𝑠𝜈 − 𝑟𝜈𝑠𝜇) if 𝑟𝜈 = 𝑟 ′𝜈𝑠𝜈 + 𝑠𝜈 − 1

(87)

for all 𝑘 > 0. The above constraint is both necessary and sucient for 𝜔0,3
( 𝜇 𝜇 𝜈
𝑧1 𝑧2 𝑧3

)
to vanish.



51

Let us prove that (87) is automatically satised for all 𝑘 ≥ 𝑠𝜈 if 𝑟𝜈 = ±1 mod 𝑠𝜈. First, assume that
𝑟𝜈 = 1 mod 𝑠𝜈. In this case we have

𝑘 (𝑟𝜇 − 𝑟 ′𝜈𝑠𝜇) −
⌊
𝑘𝑟 ′𝜈
𝑟𝜈

⌋
(𝑟𝜇𝑠𝜈 − 𝑟𝜈𝑠𝜇)

=
𝑠𝜇

𝑠𝜈
𝑘 +

(
𝑘

𝑠𝜈
−

⌊
𝑘𝑟 ′𝜈
𝑟𝜈

⌋ )
(𝑟𝜇𝑠𝜈 − 𝑟𝜈𝑠𝜇)

≥
𝑠𝜇

𝑠𝜈
𝑘

≥ 𝑠𝜇

(88)

for all 𝑘 ≥ 𝑠𝜈 where we used that ⌊
𝑘𝑟 ′𝜈
𝑟𝜈

⌋
≤ 𝑘

𝑠𝜈
.

The case 𝑟𝜈 = −1 mod 𝑠𝜈 can be covered using similar arguments. Thus, it suces to inspect (87) for
𝑘 < 𝑠𝜈 in which case the constraint reduces to

𝑠𝜇 − 2 <


𝑘

(
𝑟𝜇 − 𝑠𝜇𝑟 ′𝜈

)
if 𝑟𝜈 = 𝑟 ′𝜈𝑠𝜈 + 1

𝑠𝜇 + 𝑘
(
𝑟𝜇 − 𝑠𝜇 (𝑟 ′𝜈 + 1)

)
if 𝑟𝜈 = 𝑟 ′𝜈𝑠𝜈 + 𝑠𝜈 − 1

for all 𝑘 ∈ [𝑠𝜈) . (89)

In order to derive the second line we substituted 𝑠𝜈 − 𝑘 → 𝑘 . In the following going through all cases,
we will prove that, under the assumption of (i), property (89) is satised if and only if (ii) holds.

• 𝑟𝜈 = 𝑟 ′𝜈𝑠𝜈 + 1: Clearly, (89) is equivalent to

𝑠𝜇 (𝑟 ′𝜈 + 1) ≤ 𝑟𝜇 + 1 .

Checking this expression for the two possible choices of 𝑟𝜇 we nd the following.
– 𝑟𝜇 = 𝑟 ′𝜇𝑠𝜇 + 𝑠𝜇 − 1: Due to the assumption 𝑟𝜇

𝑠𝜇
>

𝑟𝜈
𝑠𝜈

we always have

𝑟 ′𝜇 > 𝑟 ′𝜈 +
1
𝑠𝜇
− 1
𝑠𝜈

> 𝑟 ′𝜈 − 1

and thus
𝑠𝜇 (𝑟 ′𝜈 + 1) ≤ 𝑠𝜇 (𝑟 ′𝜇 + 1) = 𝑟𝜇 + 1 .

This shows that indeed (89) is satised, i.e. 𝜔0,3
[
𝜇 𝜇 𝜈
𝑧1 𝑧2 𝑧3

]
= 0 in this particular case.

– 𝑟𝜇 = 𝑟 ′𝜇𝑠𝜇 + 1: We can assume that 𝑠𝜇 > 2 since 𝑠𝜇 ∈ {1, 2} is covered in the case considered
before. Then (89) is equivalent to the constraint

𝑟 ′𝜈 ≤ 𝑟 ′𝜇 − 1 ,

which is always satised unless

𝑟 ′𝜈 = 𝑟
′
𝜇 ,

which is nothing but property (ii). Note that due to 𝑟𝜇

𝑠𝜇
>

𝑟𝜈
𝑠𝜈

we always have 𝑟 ′𝜇 ≥ 𝑟 ′𝜈.
• 𝑟𝜈 = 𝑟 ′𝜈𝑠𝜈 + 𝑠𝜈 − 1: Again we may assume that 𝑠𝜈 > 2 since 𝑠𝜈 ∈ {1, 2} is a special case of the
one considered before. Notice that for 𝑠𝜈 > 2 the constraint (89) is equivalent to

𝑟𝜇

𝑠𝜇
≥ 𝑟 ′𝜈 + 1 . (90)

– 𝑟𝜇 = 𝑟 ′𝜇𝑠𝜇 + 𝑠𝜇 − 1: In this case,

𝑟𝜇

𝑠𝜇
= 𝑟 ′𝜇 + 1 −

1
𝑠𝜇
.

Clearly, this is at least 𝑟 ′𝜈 + 1 if and only if 𝑟 ′𝜇 > 𝑟 ′𝜈, which is exactly (ii) in this case.
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– 𝑟𝜇 = 𝑟 ′𝜇𝑠𝜇 + 1: Because
𝑟𝜇

𝑠𝜇
>

𝑟𝜈
𝑠𝜈
, we get 𝑟 ′𝜇 > 𝑟 ′𝜈. Thus

𝑟𝜇

𝑠𝜇
= 𝑟 ′𝜇 +

1
𝑠𝜇
≥ 𝑟 ′𝜈 + 1 ,

implying that (89) and (ii) are both automatically satised.
To sum up, we found that, under the assumption that (i) holds, 𝜔0,3

[
𝜇 𝜇 𝜈
𝑧1 𝑧2 𝑧3

]
= 0 if and only if (ii) is

satised. This closes the case 𝑟𝜇

𝑠𝜇
>

𝑟𝜈
𝑠𝜈
.

For 𝑟𝜇

𝑠𝜇
<

𝑟𝜈
𝑠𝜈
, the situation is similar. We calculate

𝜔0,3
( 𝜇 𝜇 𝜈
𝑧1 𝑧2 𝑧3

)
d𝑧1d𝑧2d𝑧3

=
1
𝑡𝜈

Res
𝑧=0

d𝑧
∑︁

𝑘1,𝑘2,𝑘3≥1
𝑘2𝑘3𝑧

−𝑘1−1
1 𝑧

−𝑘2−1
2 𝑧𝑘1+𝑘2−1

∑︁
ℓ≥1

𝑟𝜈 |𝑠𝜈ℓ−𝑘3

( 𝑡𝜇
𝑡𝜈

) ℓ−1
𝑧
−𝑘3−1
3 𝑧

(𝑘3−ℓ𝑠𝜈)
𝑟𝜇

𝑟𝜈
+(ℓ−1)𝑠𝜇

=
1
𝑡𝜈

∑︁
𝑘1,𝑘2,𝑘3,ℓ′≥1

( 𝑡𝜇
𝑡𝜈

)𝑟𝜈ℓ′−ℓ𝜈 (𝑘3)−1
𝑘2𝑘3𝑧

−𝑘1−1
1 𝑧

−𝑘2−1
2 𝑧

−𝑘3−1
3

· 𝛿
𝑘1+𝑘2+(𝑘3−(𝑟𝜈ℓ′−ℓ𝜈 (𝑘3)𝑠𝜈)

𝑟𝜇

𝑟𝜈
+(𝑟𝜈𝑙 ′−ℓ𝜈 (𝑘3)−1)𝑠𝜇 ,0 .

(91)

Hence, this vanishes if and only if

𝑠𝜇 − 2 <
(
𝑘 + 𝑠𝜈ℓ𝜈 (𝑘)

) 𝑟𝜇
𝑟𝜈
+ ℓ ′(𝑟𝜈𝑠𝜇 − 𝑟𝜇𝑠𝜈) − ℓ𝜈 (𝑘)𝑠𝜇

for all 𝑘 > 0 and ℓ ′ > 0. Plugging in the explicit expression for ℓ𝜈 (𝑘) this constraint translates into

𝑠𝜇 − 2 <


𝑘 (𝑟𝜇 − 𝑠𝜇𝑟 ′𝜈) +

(
1 +

⌊
𝑘𝑟 ′𝜈
𝑟𝜈

⌋ )
(𝑟𝜈𝑠𝜇 − 𝑟𝜇𝑠𝜈) if 𝑟𝜈 = 𝑟 ′𝜈𝑠𝜈 + 1

𝑘 (−𝑟𝜇 + 𝑠𝜇 (𝑟 ′𝜈 + 1)) +
(
1 −

⌈
𝑘 (𝑟 ′𝜈+1)

𝑟𝜈

⌉)
(𝑟𝜈𝑠𝜇 − 𝑟𝜇𝑠𝜈) if 𝑟𝜈 = 𝑟 ′𝜈𝑠𝜈 + 𝑠𝜈 − 1

(92)

for all 𝑘 > 0 using that 𝑟𝜈𝑠𝜇 − 𝑟𝜇𝑠𝜈 > 0.
Let us consider the case 𝑟𝜈 = 𝑟 ′𝜈𝑠𝜈 + 1. First, we assume 𝑘 > 𝑟𝜈, and write 𝑘 ′ = 𝑘 − 𝑟𝜈. Then

𝑘 (𝑟𝜇 − 𝑠𝜇𝑟 ′𝜈) +
(
1 +

⌊
𝑘𝑟 ′𝜈
𝑟𝜈

⌋)
(𝑟𝜈𝑠𝜇 − 𝑟𝜇𝑠𝜈) = 𝑘 ′(𝑟𝜇 − 𝑠𝜇𝑟 ′𝜈) +

(
1 +

⌊
𝑘 ′𝑟 ′𝜈
𝑟𝜈

⌋)
(𝑟𝜈𝑠𝜇 − 𝑟𝜇𝑠𝜈) + 𝑟𝜇 ,

so if the inequality holds for 𝑘 ′, it also holds for 𝑘 . It follows that we only need to consider 𝑘 ≤ 𝑟𝜈.
The case 𝑘 = 𝑟𝜈 should be treated separately. In this case,

𝑘 (𝑟𝜇 − 𝑠𝜇𝑟 ′𝜈) +
(
1 +

⌊
𝑘𝑟 ′𝜈
𝑟𝜈

⌋)
(𝑟𝜈𝑠𝜇 − 𝑟𝜇𝑠𝜈) = 𝑟𝜈𝑠𝜇 − 𝑟𝜇𝑠𝜈 + 𝑟𝜇 .

This is greater than 𝑠𝜇 − 2 if and only if 𝑟 ′𝜈𝑠𝜈𝑠𝜇 + 1 ≥ 𝑟𝜇 (𝑠𝜈 − 1). If 𝑟𝜇 = 𝑟 ′𝜇𝑠𝜇𝑠𝜇 − 1, this always holds, as
then 𝑟 ′𝜇 + 1 < 𝑟 ′𝜈, while if 𝑟𝜇 = 𝑟 ′𝜇𝑠𝜇 + 1, this is implied by (ii).
Now assume 𝑠𝜈 ≤ 𝑘 < 𝑟𝜈. Then

𝑘 (𝑟𝜇 − 𝑠𝜇𝑟 ′𝜈) +
(
1 +

⌊
𝑘𝑟 ′𝜈
𝑟𝜈

⌋)
(𝑟𝜈𝑠𝜇 − 𝑟𝜇𝑠𝜈)

> 𝑘 (𝑟𝜇 − 𝑠𝜇𝑟 ′𝜈) +
⌈
𝑘𝑟 ′𝜈
𝑟𝜈

⌉
𝑠𝜈

(
𝑟𝜈𝑠𝜇

𝑠𝜈
− 𝑟𝜇

)
≥ 𝑘 (𝑟𝜇 − 𝑠𝜇𝑟 ′𝜈) +

(
𝑘 −

⌊
𝑘

𝑟𝜈

⌋) (
𝑟𝜈𝑠𝜇

𝑠𝜈
− 𝑟𝜇

)
=
𝑠𝜇

𝑠𝜈
𝑘 −

⌊
𝑘

𝑟𝜈

⌋ (
𝑟𝜈𝑠𝜇

𝑠𝜈
− 𝑟𝜇

)
≥ 𝑠𝜇 ,

and so (92) is automatically satised if (i) holds. The case 𝑟𝜈 = 𝑟 ′𝜈𝑠𝜈 + 𝑠𝜈 − 1 can be treated with similar
arguments and is therefore omitted.
Thus, under the assumption that (i) holds we deduce that 𝜔0,3

( 𝜇 𝜇 𝜈
𝑧1 𝑧2 𝑧3

)
vanishes if and only if (92)

holds for all 𝑘 ∈ [𝑠𝜈). It is straightforward to see that this is in turn equivalent to the statement that

∀𝑘 ∈ [𝑠𝜈), 𝑠𝜇 − 2 <


𝑠𝜇 + 𝑘

(
−𝑟𝜇 + 𝑠𝜇𝑟 ′𝜈

)
if 𝑟𝜈 = 𝑟 ′𝜈𝑠𝜈 + 1

𝑘
(
−𝑟𝜇 + 𝑠𝜇 (𝑟 ′𝜈 + 1)

)
if 𝑟𝜈 = 𝑟 ′𝜈𝑠𝜈 + 𝑠𝜈 − 1

. (93)
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Let us stress the similarity between the constraint (89) and the above one. It is therefore not surprising
that one can prove that (93) is equivalent to property (ii) under the assumption that (i) holds. Since one
can use similar arguments as in the case of (89) we omit the further analysis of this constraint. �

Proof of Proposition 6.2. In order to calculate this via the topological recursion formula, we need to
take the residue of the product of three contributions: once (1), with𝑚 = 2, and twice (3a), once for
(𝜈, 𝑧3) and once for (𝜆, 𝑧4). The rst factor has a rst order zero in 𝑧, while the other two each have an
order 𝑠𝜇 − 1 pole in 𝑧, with non-zero coecients at each lower order. As all of these coecients also
incorporate powers of 𝑧 [4] , it is easily seen that the terms contributing to the residue may not cancel,
as long as 2(𝑠𝜇 − 1) − 1 ≥ 1. This proves the formula.

As 𝜔0,4 (𝜈, 𝜇, 𝜇, 𝜆) is always zero, due to the structure of the recursion kernel, the last statement
follows as well. �

6.1.2 The Bouchard–Eynard formula for (0, 3) does not hold in general

Let us compare 𝜔0,3 with

�̌�0,3
( 𝜇1 𝜇2 𝜇3
𝑧1 𝑧2 𝑧3

)
=

∑︁
𝜇

Res
𝑧=𝜇

𝜔0,2 (𝑧, 𝑧1)𝜔0,2 (𝑧, 𝑧2)𝜔0,2 (𝑧, 𝑧3)
d𝑥 (𝑧)d𝑦 (𝑧)

= −
∑︁
𝜇

𝛿𝜇1,𝜇2,𝜇3,𝜇

∑︁
𝑘1,𝑘2,𝑘3>0

𝑘1𝑘2𝑘3 d𝑧1d𝑧2d𝑧3
𝑧
𝑘1+1
1 𝑧

𝑘2+1
2 𝑧

𝑘3+1
3

𝛿𝑘1+𝑘2+𝑘3,𝑠𝜇
𝑡𝜇𝑟𝜇 (𝑠𝜇 − 𝑟𝜇)

.

According to [BE13, Proposition 11], �̌�0,3 = 𝜔0,3 for regularly admissible spectral curves. More generally,
if the spectral curve is admissible, comparing with Proposition 6.1, we see that 𝜔0,3 = �̌�0,3 if and only
if 𝑐𝜇 = 1

𝑠𝜇−𝑟𝜇 or 𝑠𝜇 ≤ 2 for each 𝜇 ∈ �̃�. The condition 𝑐𝜇 = 1
𝑠𝜇−𝑟𝜇 implies that 𝑠𝜇 = 𝑟𝜇 + 1, which by

property (ii) of Proposition 6.1 can only hold for one 𝜇. Comparing with Theorem 2.11, we see that
e.g. (𝑟1, 𝑠1, 𝑟2, 𝑠2) = (5, 3, 3, 2) gives an Airy structure for which 𝜔0,3 ≠ �̌�0,3. We conclude that [BE13,
Proposition 11] does not always hold in our general setup.

6.1.3 (𝑔, 𝑛) = ( 12 , 2)

Proposition 6.4. Assume gcd(𝑟𝜇, 𝑠𝜇) = 1 for all 𝜇 ∈ �̃� and that (i) and (ii) from Proposition 6.1 hold.
Then 𝜔 1

2 ,2
is symmetric if and only if

(iii) If 𝑠𝜇 > 2 and 𝑟𝜇 = 1 mod 𝑠𝜇 for 𝜇 ∈ �̃� then∑︁
𝜈≠𝜇

𝑟𝜇

𝑠𝜇
>

𝑟𝜈
𝑠𝜈

𝑄𝜈 = 0 and ∀ℓ ∈ [𝑠𝜇 − 3],
∑︁
𝜈≠𝜇

𝑠𝜈=1,
⌊
𝑟𝜇

𝑠𝜇

⌋
=𝑟𝜈

𝑄𝜈

(
𝑡𝜈

𝑡𝜇

)𝑟𝜈ℓ
= 0 .

(iv) If 𝑠𝜇 > 2 and 𝑟𝜇 = −1 mod 𝑠𝜇 for 𝜇 ∈ �̃� then

𝑄𝜇 +
∑︁
𝜈≠𝜇

𝑟𝜇

𝑠𝜇
>

𝑟𝜈
𝑠𝜈

𝑄𝜈 = 0 and ∀ℓ ∈ [𝑠𝜇 − 3],
∑︁
𝜈≠𝜇

𝑠𝜈=1,
⌈
𝑟𝜇

𝑠𝜇

⌉
=𝑟𝜈

𝑄𝜈

(
𝑡𝜇

𝑡𝜈

)𝑟𝜈ℓ
= 0 .

(v) For all 𝜇 ≠ 𝜈 with
⌊ 𝑟𝜇
𝑠𝜇

⌋
=

⌊
𝑟𝜈
𝑠𝜈

⌋
,

𝑟𝜇 = −1 mod 𝑠𝜇 and 𝑟𝜈 = 1 mod 𝑠𝜈 ,

and 𝑠𝜇, 𝑠𝜈 > 1 we have

𝑄𝜇 = −𝑄𝜈 .
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If these conditions are satised, we have if 𝑟𝜇 = 𝑟 ′𝜇𝑠𝜇 + 1

𝜔 1
2 ,2

( 𝜇 𝜇
𝑧1 𝑧2

)
=

∑︁
𝑘1,𝑘2>0

𝑘1𝑘2 d𝑧1d𝑧2
𝑧
𝑘1+1
1 𝑧

𝑘2+1
2

(
−
𝑄𝜇𝑟

′
𝜇

𝑡𝜇𝑟𝜇
𝛿𝑘1+𝑘2,𝑠𝜇 −

∑︁
𝜈≠𝜇

𝑟𝜇

𝑠𝜇
=
𝑟𝜈
𝑠𝜈

𝑡
𝑟 ′𝜈
𝜈 𝑡

𝑟 ′𝜇
𝜇

𝑡
𝑟𝜇
𝜇 − 𝑡

𝑟𝜇
𝜈

𝑄𝜈 𝛿𝑘1+𝑘2,2 𝛿𝑠𝜇 ,2

−
∑︁
𝜈≠𝜇

𝑠𝜈=1,
⌊
𝑟𝜇

𝑠𝜇

⌋
=𝑟𝜈

𝑄𝜈

𝑡𝜇

(
𝑡𝜈

𝑡𝜇

)𝑟𝜈 (𝑠𝜇−2)
𝛿𝑘1+𝑘2,2 𝛿𝑠𝜇>2 +

∑︁
𝜈≠𝜇: 𝑠𝜈=2,

𝑟𝜇

𝑠𝜇
<

𝑟𝜈
𝑠𝜈

,

⌊
𝑟𝜇

𝑠𝜇

⌋
=

⌊
𝑟𝜈
𝑠𝜈

⌋
𝑄𝜈

𝑡𝜇

(
𝑡𝜇

𝑡𝜈

)𝑟𝜈
𝛿𝑘1+𝑘2,2 𝛿𝑠𝜇>2

)
,

(94)

and if 𝑟𝜇 = 𝑟 ′𝜇𝑠𝜇 + 𝑠𝜇 − 1 and 𝑠𝜇 > 2, we have

𝜔 1
2 ,2

( 𝜇 𝜇
𝑧1 𝑧2

)
=

∑︁
𝑘1,𝑘2>0

𝑘1𝑘2 d𝑧1d𝑧2
𝑧
𝑘1+1
1 𝑧

𝑘2+1
2

(
𝑄𝜇 (𝑟 ′𝜇 + 1)

𝑡𝜇𝑟𝜇
𝛿𝑘1+𝑘2,𝑠𝜇 +

∑︁
𝜈≠𝜇

𝑠𝜈=1,
⌈
𝑟𝜇

𝑠𝜇

⌉
=𝑟𝜈

𝑄𝜈

𝑡𝜇

(
𝑡𝜇

𝑡𝜈

)𝑟𝜈 (𝑠𝜇−2)
𝛿𝑘1+𝑘2,2 𝛿𝑠𝜇>2

−
∑︁

𝜈≠𝜇: 𝑠𝜈=2,
𝑟𝜇

𝑠𝜇
>

𝑟𝜈
𝑠𝜈

,

⌊
𝑟𝜇

𝑠𝜇

⌋
=

⌊
𝑟𝜈
𝑠𝜈

⌋
𝑄𝜈

𝑡𝜇

(
𝑡𝜈

𝑡𝜇

)𝑟𝜈
𝛿𝑘1+𝑘2,2 𝛿𝑠𝜇>2

)
.

(95)

Moreover, for 𝜇 ≠ 𝜈 we have

𝜔 1
2 ,2

( 𝜇 𝜈
𝑧1 𝑧2

)
=



− d𝑧1d𝑧2
𝑧21𝑧

2
2

𝑄𝜇

𝑡𝜇

(
𝑡𝜈
𝑡𝜇

)𝑟 ′𝜇
if (𝑟𝜇, 𝑠𝜇), (𝑟𝜈, 𝑠𝜈) satisfy (v) and 𝑟𝜇

𝑠𝜇
>

𝑟𝜈
𝑠𝜈

− d𝑧1d𝑧2
𝑧21𝑧

2
2

𝑄𝜈𝑡
𝑟 ′𝜇
𝜇 𝑡

𝑟 ′𝜈
𝜈

𝑡
𝑟𝜇
𝜇 −𝑡

𝑟𝜇
𝜈

if 𝑟𝜇 = 𝑟𝜈 and 𝑠𝜇 = 𝑠𝜈 = 2

0 otherwise

. (96)

Before proving Proposition 6.4, we need the following technical fact.

Lemma 6.5. Let 𝑟1, 𝑟2, 𝑠1, 𝑠2 > 0 with 𝑟𝜇 and 𝑠𝜇 coprime and 𝑟1
𝑠1

>
𝑟2
𝑠2
. Further assume the integers satisfy

all constraints from Proposition 6.1. Then

Δ B 𝑟1𝑠2 − 𝑟2𝑠1
takes the following values.

• Δ = 1 if 𝑠1 = 1, 𝑟1 =
⌊
𝑟2
𝑠2

⌋
+1, and 𝑟2 = −1 mod 𝑠2 or we have 𝑠2 = 1, 𝑟2 =

⌊
𝑟1
𝑠1

⌋
, and 𝑟1 = 1 mod 𝑠1.

• Δ = max{𝑠1, 𝑠2} − 2 if 𝑠1 = 2,
⌊
𝑟1
𝑠1

⌋
=

⌊
𝑟2
𝑠2

⌋
, and 𝑟2 = 1 mod 𝑠2 or we have 𝑠2 = 2,

⌊
𝑟1
𝑠1

⌋
=

⌊
𝑟2
𝑠2

⌋
,

and 𝑟1 = −1 mod 𝑠1.
• Otherwise Δ ≥ max{𝑠1, 𝑠2} − 1.

Proof. Let us write 𝑟𝜇 B 𝑟 ′𝜇𝑠𝜇 + 𝑟 ′′𝜇 with 𝑟 ′′𝜇 ∈ [0, 𝑠𝜇). Then due to (i) we know that 𝑟 ′′𝜇 ∈ {1, 𝑠𝜇 − 1}. We
can thus rewrite

Δ = 𝑠1𝑠2 (𝑟 ′1 − 𝑟 ′2) + 𝑟 ′′1 𝑠2 − 𝑟 ′′2 𝑠1 . (97)
By simply plugging in the indicated values for 𝑟𝜇 , 𝑠𝜇 it is easy to see that they indeed produce
Δ ∈ {1,max{𝑠1, 𝑠2} − 2}. For instance setting 𝑠1 = 1, 𝑟1 = 𝑟 ′2 + 1, and 𝑟 ′′2 = 𝑠2 − 1 we directly obtain
Δ = 1 as was claimed.
It is therefore only left to prove that in all other cases Δ ≥ max{𝑠1, 𝑠2} − 1. To do so let us rst assume
𝑟 ′1 = 𝑟

′
2 in which case (97) reduces to

Δ = 𝑟 ′′1 𝑠2 − 𝑟 ′′2 𝑠1 =


𝑠1 − 𝑠2 if 𝑟 ′′1 = 𝑠1 − 1, 𝑟 ′′2 = 𝑠2 − 1
𝑠1𝑠2 − 𝑠1 − 𝑠2 if 𝑟 ′′1 = 𝑠1 − 1, 𝑟 ′′2 = 1
𝑠1 + 𝑠2 − 𝑠1𝑠2 if 𝑟 ′′1 = 1, 𝑟 ′′2 = 𝑠2 − 1
𝑠2 − 𝑠1 if 𝑟 ′′1 = 1, 𝑟 ′′2 = 1

.
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Let us go through the cases separately. First assume 𝑟 ′′1 = 𝑠1 − 1 and 𝑟 ′′2 = 𝑠2 − 1. In this case (ii)
forbids 𝑠1, 𝑠2 > 2. Notice now that since we assume that 𝑟1

𝑠1
>

𝑟2
𝑠2

necessarily Δ > 0 and therefore
the only allowed cases are 𝑠2 = 1 with 𝑠1 > 1 or 𝑠2 = 2 with 𝑠1 > 2. While 𝑠2 = 1 and 𝑠1 > 1 gives
Δ = 𝑠2−1 = max{𝑠1, 𝑠2}−1 the second case was considered before yielding Δ = 𝑠2−2 = max{𝑠1, 𝑠2}−2.
For our further analysis of the case 𝑟 ′1 = 𝑟 ′2 we may assume that 𝑠1, 𝑠2 > 2. Then if 𝑟 ′′1 = 𝑠1 − 1 and
𝑟 ′′2 = 1 one has

Δ = 𝑠1 (𝑠2 − 1) − 𝑠2 ≥ 3(𝑠2 − 1) − 𝑠2 = 2𝑠2 − 3 ≥ 𝑠2 ,

and similarly also Δ ≥ 𝑠1. Now assume 𝑟 ′′1 = 1 and 𝑟 ′′2 = 𝑠2 − 1. Then due to 𝑠1, 𝑠2 > 2 one has

Δ = 𝑠2 − 𝑠1 (𝑠2 − 1) < 𝑠2 − 2(𝑠2 − 1) = 2 − 𝑠2 < 0 ,

which contradicts the assumption that 𝑟1
𝑠1

>
𝑟2
𝑠2
. Finally notice that the case 𝑟 ′′1 = 1 and 𝑟 ′′2 = 1 for

𝑠1, 𝑠2 > 2 is forbidden by (ii).
Now assume that 𝑟 ′1 ≠ 𝑟

′
2. Due to

𝑟1
𝑠1

>
𝑟2
𝑠2
we thus know that 𝑟 ′1 > 𝑟

′
2 which using (97) implies that

Δ ≥ 𝑠1𝑠2 + 𝑟 ′′1 𝑠2 − 𝑟 ′′2 𝑠1
= 𝑠1 (𝑠2 − 𝑟 ′′2 ) + 𝑟 ′′1 𝑠2
≥ 𝑠1 + 𝑟 ′′1 𝑠2 ,

which is always larger than max{𝑠1, 𝑠2} − 1 unless 𝑟 ′′1 = 0. However, if 𝑟 ′′1 = 0 then necessarily 𝑠1 = 1.
Then either 𝑟 ′1 = 𝑟

′
2 + 1 implying that

Δ = 𝑠2 − 𝑟 ′′2 =

{
1 if 𝑟 ′′2 = 𝑠2 − 1
𝑠2 − 1 if 𝑟 ′′2 = 1

,

or we have 𝑟 ′1 > 𝑟
′
2 + 1 yielding

Δ ≥ 2𝑠2 − 𝑟 ′′2 ≥ 𝑠2 > max{𝑠1, 𝑠2} − 1 .

Note that the cases above in which Δ = 1 are exactly those considered in the beginning of the proof. �

Proof of Proposition 6.4. Let us start by computing 𝜔 1
2 ,2

( 𝜇 𝜇
𝑧1 𝑧2

)
. Inspecting Equation (83) it should be

clear that one may proceed as in the computation of 𝜔0,𝑛 . While the second term in in the bracket in
(83) gives a contribution

𝜔 1
2 ,2

( 𝜇 𝜇
𝑧1 𝑧2

)
= . . . + Res

𝑧=0

𝑟𝜇−1∑︁
𝑎=1

𝑧d𝑧1
𝑧1 (𝑧1 − 𝑧)

𝜗𝑎𝜇

𝑟𝜇𝑡𝜇 (𝜗
𝑎𝑠𝜇
𝜇 − 1)𝑧𝑠𝜇−1

d𝑧2
(𝜗𝑎𝜇𝑧 − 𝑧2)2

𝑄𝜇d𝑧
𝑧

= . . . +
∑︁

𝑘1,𝑘2>0

d𝑧1d𝑧2
𝑧
𝑘1+1
1 𝑧

𝑘2+1
2

𝑘2𝑄𝜇 𝛿𝑘1+𝑘2,𝑠𝜇
2ℓ𝜇 (𝑘2) − 𝑟𝜇 + 1

2𝑟𝜇𝑡𝜇
, (98)

the rst one gets a contribution of type (1) and additionally a factor

1
𝑟𝜈 (𝑡𝜈𝜗𝑏𝑠𝜈𝜈 𝑧𝑟𝜇𝑠𝜈/𝑟𝜈−1 − 𝑡𝜇𝑧𝑠𝜇−1)

𝑄𝜈d𝑧
𝑧

,
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where one sums over 𝑏 ∈ [𝑟𝜈] if 𝜈 ≠ 𝜇 and over 𝑏 ∈ [𝑟𝜇 − 1] if 𝜈 = 𝜇. This gives

𝜔 1
2 ,2

( 𝜇 𝜇
𝑧1 𝑧2

)
= Res

𝑧=0

∑︁
𝜈∈�̃�

𝑟𝜇−𝛿𝜇,𝜈∑︁
𝑏=1

𝑧d𝑧1
𝑧1 (𝑧1 − 𝑧)

d𝑧d𝑧2
(𝑧 − 𝑧2)2

𝑄𝜈

𝑟𝜈 (𝑡𝜈𝜗𝑏𝑠𝜈𝜈 𝑧𝑟𝜇𝑠𝜈/𝑟𝜈−1 − 𝑡𝜇𝑧𝑠𝜇−1)
d𝑧
𝑧
+ . . .

=
∑︁

𝑘1,𝑘2>0

d𝑧1d𝑧2
𝑧
𝑘1+1
1 𝑧

𝑘2+1
2

{
𝑘2𝑄𝜇𝛿𝑘1+𝑘2,𝑠𝜇

ℓ𝜇 (𝑘2) − 𝑟𝜇 + 1
𝑟𝜇𝑡𝜇

− 𝑘2
∑︁
𝜈≠𝜇

𝑟𝜇

𝑠𝜇
=
𝑟𝜈
𝑠𝜈

𝛿𝑘1+𝑘2,𝑠𝜇

𝑡
𝑟𝜇
𝜇 − 𝑡

𝑟𝜇
𝜈

𝑄𝜈𝑡
ℓ𝜇 (𝑘2)
𝜈 𝑡

𝑟𝜇−1−ℓ𝜇 (𝑘2)
𝜇

− 𝑘2
∑︁
𝜈≠𝜇

𝑟𝜇

𝑠𝜇
>

𝑟𝜈
𝑠𝜈

∑︁
ℓ′≥0

𝑡
𝑟𝜈ℓ
′

𝜈

𝑡
𝑟𝜈ℓ
′+1

𝜇

𝑄𝜈𝛿𝑘1+𝑘2+ℓ′ (𝑟𝜇𝑠𝜈−𝑟𝜈𝑠𝜇 ),𝑠𝜇

+ 𝑘2
∑︁
𝜈≠𝜇

𝑟𝜇

𝑠𝜇
<

𝑟𝜈
𝑠𝜈

∑︁
ℓ′>0

𝑡
𝑟𝜈ℓ
′−1

𝜇

𝑡
𝑟𝜈ℓ
′

𝜈

𝑄𝜈𝛿𝑘1+𝑘2−ℓ′ (𝑟𝜇𝑠𝜈−𝑟𝜈𝑠𝜇 ),𝑠𝜇

}
,

(99)

where in the second line we also included the contribution from (98). Let us further on use the notation

𝜔 1
2 ,2

( 𝜇1 𝜇2
𝑧1 𝑧2

)
=

∑︁
𝑘1,𝑘2>0

d𝑧1d𝑧2
𝑧
𝑘1+1
1 𝑧

𝑘2+1
2

𝐹 1
2 ,2

[ 𝜇1 𝜇2
𝑘1 𝑘2

]
.

Inspecting (99) we notice that for 𝑠𝜇 ≤ 2 the components 𝐹 1
2 ,2

[ 𝜇 𝜇

𝑘1 𝑘2

]
are always symmetric under the

exchange of arguments. To be more precise, for 𝑠𝜇 = 1 the components all vanish and for 𝑠𝜇 = 2 they
get a contribution form the rst and second line of (99) solely. Hence, using that ℓ𝜇 (1) = 𝑟 ′𝜇 for 𝑠𝜇 = 2
we see that in this case 𝐹 1

2 ,2
[ 𝜇 𝜇

𝑘1 𝑘2

]
is indeed given by (94).

Now let us assume that 𝑠𝜇 > 2. Then due to property (ii) of Proposition 6.1 the contribution 𝑟𝜇

𝑠𝜇
=

𝑟𝜈
𝑠𝜈

in
(99) has to vanish and one ends up with

𝐹 1
2 ,2

[ 𝜇 𝜇

𝑘1 𝑘2

]
= −𝛿𝑘1+𝑘2,𝑠𝜇 𝑘2

(
𝑄𝜇 (𝑟𝜇 − 1 − ℓ𝜇 (𝑘2))

𝑟𝜇𝑡𝜇
+

∑︁
𝜈≠𝜇

𝑟𝜇

𝑠𝜇
>

𝑟𝜈
𝑠𝜈

𝑄𝜈

𝑡𝜇

)

+ 𝑘2
𝑡𝜇

∑︁
ℓ′>0

(
−

∑︁
𝜈≠𝜇

𝑟𝜇

𝑠𝜇
>

𝑟𝜈
𝑠𝜈

(
𝑡𝜈

𝑡𝜇

)𝑟𝜈ℓ′
𝑄𝜈𝛿𝑘1+𝑘2+ℓ′ (𝑟𝜇𝑠𝜈−𝑟𝜈𝑠𝜇 ),𝑠𝜇 +

∑︁
𝜈≠𝜇

𝑟𝜇

𝑠𝜇
<

𝑟𝜈
𝑠𝜈

(
𝑡𝜇

𝑡𝜈

)𝑟𝜈ℓ′
𝑄𝜈𝛿𝑘1+𝑘2−ℓ′ (𝑟𝜇𝑠𝜈−𝑟𝜈𝑠𝜇 ),𝑠𝜇

)
.

(100)

Since 𝑟𝜇𝑠𝜈 − 𝑟𝜈𝑠𝜇 ≠ 0 for 𝑟𝜇

𝑠𝜇
≠

𝑟𝜈
𝑠𝜈

we can analyse the symmetry constraints coming from the rst and
second line of (100) individually.
First, assume 𝑟𝜇 = 𝑟 ′𝜇𝑠𝜇 + 1. Then if 𝑘1 + 𝑘2 = 𝑠𝜇 we may use that

𝑟𝜇 − 1 − ℓ𝜇 (𝑘2) = 𝑟𝜇 − 1 − 𝑟 ′𝜇𝑘2 = 𝑟 ′𝜇𝑘1
to nd that

𝐹 1
2 ,2

[ 𝜇 𝜇

𝑘1 𝑘2

]
= −𝑘1𝑘2

𝑄𝜇𝑟
′
𝜇

𝑟𝜇𝑡𝜇
− 𝑘2

∑︁
𝜈≠𝜇

𝑟𝜇

𝑠𝜇
>

𝑟𝜈
𝑠𝜈

𝑄𝜈

𝑡𝜇
. (101)

This expression is symmetric under the exchange of 𝑘1 and 𝑘2 if and only if∑︁
𝜈≠𝜇

𝑟𝜇

𝑠𝜇
>

𝑟𝜈
𝑠𝜈

𝑄𝜈 = 0 . (102)
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Let us proceed by analysing the symmetry constraints coming from coecients with 𝑘1 + 𝑘2 < 𝑠𝜇 , i.e.
we consider the second line of (100). Clearly the case 𝑠𝜇 = 3 is symmetric. Therefore now assume that
𝑠𝜇 > 3. In this case we can only expect a non-vanishing 𝐹 1

2 ,2
[ 𝜇 𝜇

𝑘1 𝑘2

]
if |𝑟𝜇𝑠𝜈 − 𝑟𝜈𝑠𝜇 | ∈ [𝑠𝜇 − 3] for some

𝜈 ≠ 𝜇. Due to Lemma 6.5 we know that for all 𝜈 either |𝑟𝜇𝑠𝜈 − 𝑟𝜈𝑠𝜇 | = 1 or |𝑟𝜇𝑠𝜈 − 𝑟𝜈𝑠𝜇 | ≥ 𝑠𝜇 − 2 which
limits the cases in which 𝐹 1

2 ,2
[ 𝜇 𝜇

𝑘1 𝑘2

]
≠ 0 for 𝑘1 + 𝑘2 < 𝑠𝜇 extremely. To be more precise, Lemma 6.5

tells us that |𝑟𝜇𝑠𝜈 − 𝑟𝜈𝑠𝜇 | = 1 if and only if 𝑠𝜈 = 1 and 𝑟𝜈 =
⌊ 𝑟𝜇
𝑠𝜇

⌋
. Therefore for 2 < 𝑘1 +𝑘2 < 𝑠𝜇 we have

𝐹 1
2 ,2

[ 𝜇 𝜇

𝑘1 𝑘2

]
= −𝑘2

𝑡𝜇

∑︁
ℓ′>0

∑︁
𝜈≠𝜇

𝑠𝜈=1, 𝑟𝜈=
⌊
𝑟𝜇

𝑠𝜇

⌋
(
𝑡𝜈

𝑡𝜇

)𝑟𝜈ℓ′
𝑄𝜈 𝛿𝑘1+𝑘2+ℓ′,𝑠𝜇

= −𝑘2
𝑡𝜇

∑︁
𝜈≠𝜇

𝑠𝜈=1, 𝑟𝜈=
⌊
𝑟𝜇

𝑠𝜇

⌋
(
𝑡𝜈

𝑡𝜇

)𝑟𝜈 (𝑠𝜇−𝑘1−𝑘2)
𝑄𝜈 , (103)

which is symmetric if and only if for all ℓ ∈ [𝑠𝜇 − 3] we have∑︁
𝜈≠𝜇

𝑠𝜈=1, 𝑟𝜈=
⌊
𝑟𝜇

𝑠𝜇

⌋
(
𝑡𝜈

𝑡𝜇

)𝑟𝜈ℓ
𝑄𝜈 = 0 .

Together with (102) this explains symmetry condition (iii). Regarding the formula for 𝐹 1
2 ,2

[ 𝜇 𝜇

𝑘1 𝑘2

]
stated

in (94) notice that for 𝑠𝜇 = 2 we have

𝐹 1
2 ,2

[ 𝜇 𝜇

𝑘1 𝑘2

]
= −

𝑄𝜇𝑟
′
𝜇

𝑟𝜇𝑡𝜇
𝛿𝑘1+𝑘2,2 −

∑︁
𝜈≠𝜇

𝑟𝜇

𝑠𝜇
=
𝑟𝜈
𝑠𝜈

𝑡
𝑟 ′𝜇
𝜈 𝑡

𝑟 ′𝜇
𝜇

𝑡
𝑟𝜇
𝜇 − 𝑡

𝑟𝜇
𝜈

𝑄𝜈 𝛿𝑘1+𝑘2,2

while for 𝑠𝜇 > 2 one has

𝐹 1
2 ,2

[ 𝜇 𝜇

𝑘1 𝑘2

]
= −

𝑄𝜇𝑟
′
𝜇

𝑟𝜇𝑡𝜇
𝛿𝑘1+𝑘2,𝑠𝜇−

∑︁
𝜈≠𝜇

𝑠𝜈=1,
⌊
𝑟𝜇

𝑠𝜇

⌋
=𝑟𝜈

𝑄𝜈

𝑡𝜇

(
𝑡𝜈

𝑡𝜇

)𝑟𝜈 (𝑠𝜇−2)
𝛿𝑘1+𝑘2,2+

∑︁
𝜈≠𝜇: 𝑠𝜈=2,

𝑟𝜇

𝑠𝜇
<

𝑟𝜈
𝑠𝜈

,

⌊
𝑟𝜇

𝑠𝜇

⌋
=

⌊
𝑟𝜈
𝑠𝜈

⌋
𝑄𝜈

𝑡𝜇

(
𝑡𝜇

𝑡𝜈

)𝑟𝜈
𝛿𝑘1+𝑘2,2 .

In order to obtain the rst two terms in the above expression one applies the symmetry constraint (iii)
on (101) and (103). The third term is due to contributions 𝜈 ≠ 𝜇 in (100) for which |𝑟𝜇𝑠𝜈 − 𝑟𝜈𝑠𝜇 | = 𝑠𝜇 − 2.
Lemma 6.5 tells us that this is the case for exactly those 𝜈 ≠ 𝜇 with 𝑠𝜈 = 2, 𝑟𝜇

𝑠𝜇
<

𝑟𝜈
𝑠𝜈
, and

⌊ 𝑟𝜇
𝑠𝜇

⌋
=

⌊
𝑟𝜈
𝑠𝜈

⌋
.

This now explains the origin of all terms occurring in (94) which closes the analysis of the case
𝑟𝜇 = 𝑟 ′𝜇𝑠𝜇 + 1.

Now assume that 𝑟𝜇 = 𝑟 ′𝜇𝑠𝜇 + 𝑠𝜇 − 1 and 𝑠𝜇 > 2. First let us inspect 𝐹 1
2 ,2

[ 𝜇 𝜇

𝑘1 𝑘2

]
given by (100) for

𝑘1 + 𝑘2 = 𝑠𝜇 . In this case we may use that

𝑟𝜇 − 1 − ℓ𝜇 (𝑘2) = 𝑟𝜇 − 𝑘1 (𝑟 ′𝜇 + 1)

in order to nd that

𝐹 1
2 ,2

[ 𝜇 𝜇

𝑘1 𝑘2

]
= 𝑘1𝑘2

𝑄𝜇 (𝑟 ′𝜇 + 1)
𝑟𝜇𝑡𝜇

− 𝑘2
(
𝑄𝜇

𝑡𝜇
+

∑︁
𝜈≠𝜇

𝑟𝜇

𝑠𝜇
>

𝑟𝜈
𝑠𝜈

𝑄𝜈

𝑡𝜇

)

for 𝑘1 + 𝑘2 = 𝑠𝜇 . This is symmetric if and only if

𝑄𝜇 +
∑︁
𝜈≠𝜇

𝑟𝜇

𝑠𝜇
>

𝑟𝜈
𝑠𝜈

𝑄𝜈 = 0 . (104)
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Now let us turn to the case 𝑘1 + 𝑘2 < 𝑠𝜇 . Again, we may only expect a contribution from 𝜈 ≠ 𝜇 in the
second line of (100) possibly leading to a non-symmetric term if |𝑟𝜇𝑠𝜈 − 𝑟𝜈𝑠𝜇 | = 1. Now Lemma 6.5
says that |𝑟𝜇𝑠𝜈 − 𝑟𝜈𝑠𝜇 | = 1 if and only if 𝑠𝜈 = 1 and 𝑟𝜈 =

⌈ 𝑟𝜇
𝑠𝜇

⌉
. Thus, for 2 < 𝑘1 + 𝑘2 < 𝑠𝜇 we nd that

𝐹 1
2 ,2

[ 𝜇 𝜇

𝑘1 𝑘2

]
=
𝑘2

𝑡𝜇

∑︁
𝜈≠𝜇

𝑠𝜈=1, 𝑟𝜈=
⌈
𝑟𝜇

𝑠𝜇

⌉
(
𝑡𝜇

𝑡𝜈

)𝑟𝜈 (𝑠𝜇−𝑘1−𝑘2)
𝑄𝜈 ,

which is symmetric if and only if ∑︁
𝜈≠𝜇

𝑠𝜈=1, 𝑟𝜈=
⌈
𝑟𝜇

𝑠𝜇

⌉
(
𝑡𝜇

𝑡𝜈

)𝑟𝜈ℓ
𝑄𝜈 = 0

for all ℓ ∈ [𝑠𝜇−3]. This condition together with (104) are of course nothing but (iv). Since the derivation
of formula (95) is in line with the one of (94) we omit a further discussion.

Now let us consider 𝐹 1
2 ,2

[ 𝜇 𝜈

𝑘1 𝑘2

]
for 𝜈 ≠ 𝜇. First, assume 𝑟𝜇

𝑠𝜇
=

𝑟𝜈
𝑠𝜈
. Note that in this case property (ii)

of Proposition 6.1 forces 𝑠𝜇 = 𝑠𝜈 ≤ 2. Using the same approach as in the derivation of (99) one nds
that

𝐹 1
2 ,2

[ 𝜇 𝜈

𝑘1 𝑘2

]
= −𝑘2

𝑄𝜇𝑡
ℓ𝜇 (𝑘1)
𝜇 𝑡

ℓ𝜇 (𝑘2)
𝜈

𝑡
𝑟𝜇
𝜇 − 𝑡𝑟𝜈𝜈

𝛿𝑘1+𝑘2,𝑠𝜇 . (105)

For 𝑠𝜇 = 𝑠𝜈 = 1 this expression is always vanishing and hence symmetric. Conversely, for 𝑠𝜇 = 𝑠𝜈 = 2
we have 𝐹 1

2 ,2
[ 𝜇 𝜈

𝑘1 𝑘2

]
= 𝐹 1

2 ,2
[ 𝜈 𝜇

𝑘2 𝑘1

]
if and only if 𝑄𝜇 = −𝑄𝜈, which is captured in condition (v).

Now let us consider the case 𝑟𝜇

𝑠𝜇
≠

𝑟𝜈
𝑠𝜈
. Without loss of generality we may assume that 𝑟𝜇

𝑠𝜇
>

𝑟𝜈
𝑠𝜈
. In this

case we have

𝐹 1
2 ,2

[ 𝜇 𝜈

𝑘1 𝑘2

]
= −𝑘2

𝑄𝜇

𝑡𝜇

∑︁
ℓ′≥0

(
𝑡𝜈

𝑡𝜇

)𝑟𝜈ℓ′+ℓ𝜈 (𝑘2)
𝛿
𝑘1+(𝑘2+𝑠𝜈ℓ𝜈 (𝑘2))

𝑟𝜇

𝑟𝜈
−𝑠𝜇 ℓ𝜈 (𝑘2)+ℓ′ (𝑟𝜇𝑠𝜈−𝑟𝜈𝑠𝜇 ),𝑠𝜇 . (106)

Let us rst simplify this expression before turning to 𝐹 1
2 ,2

[ 𝜈 𝜇

𝑘2 𝑘1

]
. Comparing (106) with (91) we can

deduce that property (ii) of Proposition 6.1 ensures that 𝐹 1
2 ,2

[ 𝜇 𝜈

𝑘1 𝑘2

]
= 0 unless 𝑘1 = 1. And moreover

also 𝐹 1
2 ,2

[ 𝜇 𝜈

1 𝑘2

]
= 0 unless

1 + (𝑘2 + 𝑠𝜈ℓ𝜈 (𝑘2))
𝑟𝜇

𝑟𝜈
− 𝑠𝜇ℓ𝜈 (𝑘2) = 𝑠𝜇 . (107)

In equation (88) we have seen that the above relation cannot be satised for 𝑘2 ≥ 𝑠𝜈. On the other hand
for 1 ≤ 𝑘2 < 𝑠𝜈 plugging in the explicit expression (86) for ℓ𝜈 (𝑘2) we nd that (107) is equivalent to

𝑠𝜇 − 1 =
{
𝑘2 (𝑟𝜇 − 𝑠𝜇𝑟 ′𝜈) if 𝑟𝜈 = 𝑟 ′𝜈𝑠𝜈 + 1
𝑠𝜇 + (𝑠𝜈 − 𝑘2) (𝑟𝜇 − 𝑠𝜇𝑟 ′𝜈) if 𝑟𝜈 = 𝑟 ′𝜈𝑠𝜈 + 𝑠𝜈 − 1

. (108)

Let us rst analyse the case 𝑟𝜈 = 𝑟 ′𝜈𝑠𝜈 + 1. Since 𝑟𝜇 − 𝑠𝜇𝑟 ′𝜈 > 0 and because of (89) condition (108) can
only be satised for 𝑘2 = 1. Otherwise this would contradict property (ii) of Proposition 6.1. However,
plugging 𝑘2 = 1 into (108) gives

𝑟𝜇 = 𝑟 ′𝜈𝑠𝜇 + 𝑠𝜇 − 1 ,
i.e. 𝑟𝜇 = −1 mod 𝑠𝜇 and

⌊ 𝑟𝜇
𝑠𝜇

⌋
=

⌊
𝑟𝜈
𝑠𝜈

⌋
.

The case where 𝑟𝜈 = 𝑟 ′𝜈𝑠𝜈 + 𝑠𝜈 − 1 can be treated similarly. We can assume that 𝑠𝜈 > 2 since 𝑠𝜈 ≤ 2 is a
special case of the one considered before. Now since 𝑟𝜇 − 𝑠𝜇𝑟 ′𝜈 ≥ 0 (compare with (90)) we always have

𝑠𝜇 + (𝑠𝜈 − 𝑘2) (𝑟𝜇 − 𝑠𝜇𝑟 ′𝜈) ≥ 𝑠𝜇 ,

implying that (108) cannot be satised for any 𝑘2 > 0. Thus, 𝐹 1
2 ,2

[ 𝜇 𝜈

𝑘1 𝑘2

]
= 0 for all 𝑘𝑖 > 0 if 𝑠𝜈 > 2 and

𝑟𝜈 = 𝑟
′
𝜈𝑠𝜈 + 𝑠𝜈 − 1. To sum up, assuming that (i) and (ii) from Proposition 6.1 hold we have

𝐹 1
2 ,2

[ 𝜇 𝜈

𝑘1 𝑘2

]
=

−
𝑄𝜇

𝑡𝜇

(
𝑡𝜈
𝑡𝜇

) ℓ𝜈 (1)
if 𝑘1 = 𝑘2 = 1, 𝑠𝜈 > 1,

⌊ 𝑟𝜇
𝑠𝜇

⌋
=

⌊
𝑟𝜈
𝑠𝜈

⌋
, 𝑟𝜇 = −1 mod 𝑠𝜇, 𝑟𝜈 = 1 mod 𝑠𝜈

0 otherwise.
(109)
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One can obtain a similar expression for 𝐹 1
2 ,2

[ 𝜈 𝜇

𝑘2 𝑘1

]
. First, one nds that

𝐹 1
2 ,2

[ 𝜈 𝜇

𝑘2 𝑘1

]
= 𝑘1

∑︁
ℓ≥0

𝑡 ℓ𝜈

𝑡 ℓ+1𝜇

𝑄𝜈𝛿𝑟𝜇 |𝑘1−(ℓ+1)𝑠𝜇𝛿𝑘2+(𝑘1−(ℓ+1)𝑠𝜇 ) 𝑟𝜈𝑟𝜇 +ℓ𝑠𝜈,0
.

Then comparing the above expression with (91) one can simplify the expression for 𝐹 1
2 ,2

[ 𝜈 𝜇

𝑘2 𝑘1

]
as we

did with 𝐹 1
2 ,2

[ 𝜇 𝜈

𝑘1 𝑘2

]
before. One nds that

𝐹 1
2 ,2

[ 𝜈 𝜇

𝑘2 𝑘1

]
=


𝑄𝜈

𝑡𝜈

(
𝑡𝜈
𝑡𝜇

)𝑟𝜇−ℓ𝜇 (1)
𝑘1 = 𝑘2 = 1, 𝑠𝜈 > 1,

⌊ 𝑟𝜇
𝑠𝜇

⌋
=

⌊
𝑟𝜈
𝑠𝜈

⌋
, 𝑟𝜇 = −1 mod 𝑠𝜇, 𝑟𝜈 = 1 mod 𝑠𝜈

0 otherwise
.

(110)
Now comparing (109) with (110) it is clear that 𝐹 1

2 ,2
[ 𝜇 𝜈

𝑘1 𝑘2

]
= 𝐹 1

2 ,2
[ 𝜈 𝜇

𝑘2 𝑘1

]
if and only if

𝑄𝜇

𝑡𝜇

(
𝑡𝜈

𝑡𝜇

) ℓ𝜈 (1)
= −𝑄𝜈

𝑡𝜈

(
𝑡𝜈

𝑡𝜇

)𝑟𝜇−ℓ𝜇 (1)
(111)

in case 𝑟𝜇 = 𝑟 ′𝜇𝑠𝜇 + 𝑠𝜇 − 1, 𝑟𝜈 = 𝑟 ′𝜈𝑠𝜈 + 1, 𝑠𝜈 > 1, and 𝑟 ′𝜇 = 𝑟 ′𝜈. Notice now that due to ℓ𝜈 (1) = 𝑟 ′𝜈 and
ℓ𝜇 (1) = 𝑟𝜇 −𝑟 ′𝜇 − 1 equation (111) is equivalent to𝑄𝜇 = −𝑄𝜈, which is nothing but condition (v). Finally,
notice that the equations (105) and (109) directly imply the formula for 𝜔 1

2 ,2
( 𝜇 𝜈
𝑧1 𝑧2

)
stated in (96). This

nishes the proof. �

6.1.4 (𝑔, 𝑛) = (1, 1)

We study separately the two types of terms in (83)

𝜔1,1
( 𝜇1
𝑧1

)
= 𝜔 I

1,1
( 𝜇1
𝑧1

)
+ 𝜔 II

1,1
( 𝜇1
𝑧1

)
,

where 𝜔 I
1,1 is the contribution from 𝜔0,2 and 𝜔 II

1,1 the one from 𝜔 1
2 ,1
· 𝜔 1

2 ,1
.

Lemma 6.6. Let 𝜇 ∈ [𝑑]. Then

𝜔 I
1,1

(
𝜇
𝑧

)
=
𝑟 2𝜇 − 1
24𝑟𝜇𝑡𝜇

d𝑧
𝑧𝑠𝜇+1

.

Proof. We have

𝜔 I
1,1

( 𝜇
𝑧1

)
= Res

𝑧=𝜇

𝑟𝜇−1∑︁
𝑎=1

𝐾𝜇

( 𝜇 𝜇 𝜇

𝑧1 𝑧 𝜗𝑎
𝜇𝑧

) 𝜗𝑎𝜇

(1 − 𝜗𝑎𝜇 )2
(d𝑧)2
𝑧2

(112)

where the presence of 𝜔0,2 (𝑧, 𝑧 ′) forces the three variables in the recursion kernel to belong to the
same component 𝐶𝜇 of 𝐶 . To handle the sum, we use the following identity for 𝑎 not divisible by 𝑟𝜇

𝜗𝑎𝜇

(1 − 𝜗𝑎𝜇 )2
=

𝑟𝜇−1∑︁
𝑚=0

𝑚(𝑟𝜇 −𝑚)
2𝑟𝜇

𝜗𝑎𝑚𝜇 . (113)

The contribution of each term of the right-hand side of (113) to (112) can be computed similarly to
item (3a). After computation of the residue we nd

𝜔 I
1,1

( 𝜇
𝑧1

)
= −

𝑟𝜇−1∑︁
𝑚=0

𝑚(𝑟𝜇 −𝑚) (𝑟𝜇 − 1 − 2ℓ𝜇 (𝑚))
4𝑟 2𝜇𝑡𝜇

d𝑧1
𝑧
𝑠𝜇+1
1

, (114)

and it is enough to sum over𝑚 ∈ [𝑟𝜇 − 1]. Recall that ℓ𝜇 (𝑚) is dened as the unique integer in [0, 𝑟𝜇)
such that ℓ𝜇 (𝑚) = −𝑚𝑐𝜇 mod 𝑟𝜇 , where 𝑐𝜇 is given by Equation (85)

In the case 𝑟𝜇 = 𝑟 ′𝜇𝑠𝜇 + 1, we can decompose𝑚 =𝑚′𝑠𝜇 +𝑚′′ with𝑚′′ ∈ [𝑠𝜇]. It puts𝑚 ∈ [𝑟𝜇 − 1] in
bijection with (𝑚′,𝑚′′) ∈ [0, 𝑟 ′𝜇) × [𝑠𝜇], and we get

ℓ𝜇 (𝑚) = 𝑟 ′𝜇𝑚 − 𝑟𝜇𝑚′ = 𝑟 ′𝜇𝑚′′ −𝑚′ .
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Then, we have
𝑟𝜇−1∑︁
𝑚=1

𝑚(𝑟𝜇 − 1) (𝑟𝜇 − 1 − 2ℓ𝜇 (𝑚)) =
𝑟𝜇−1∑︁
𝑚′=0

𝑠𝜇∑︁
𝑚′′=1
(𝑚′𝑠𝜇 +𝑚′′) (𝑟𝜇 −𝑚′𝑠𝜇 −𝑚′′) (𝑟𝜇 − 1 − 2𝑟 ′𝜇𝑚′′ + 2𝑚′)

= −
𝑟𝜇 (𝑟 2𝜇 − 1)

6
,

whence

𝜔 I
1,1

( 𝜇
𝑧1

)
=
𝑟 2𝜇 − 1
24𝑟𝜇𝑡𝜇

d𝑧1
𝑧
𝑠𝜇+1
1

.

In the case 𝑟𝜇 = 𝑟 ′𝜇𝑠𝜇 + 𝑠𝜇 − 1, we decompose𝑚 =𝑚′𝑠𝜇 +𝑚′′ with𝑚′′ ∈ [0, 𝑠𝜇). It puts𝑚 ∈ [𝑟𝜇] in
bijection with (𝑚′,𝑚′′) ∈ [0, 𝑟 ′𝜇] × [0, 𝑠𝜇) and gives

ℓ𝜇 (𝑚) = −(𝑟 ′𝜇 + 1)𝑚 + (𝑚′ + 1)𝑟𝜇 = 𝑟𝜇 −𝑚′ − (𝑟 ′𝜇 + 1)𝑚′′ .

Then, we have
𝑟𝜇∑︁
𝑚=0

𝑚(𝑟𝜇 − 1) (𝑟𝜇 − 1 − 2ℓ𝜇) =
𝑟 ′𝜇∑︁

𝑚′=0

𝑠𝜇−1∑︁
𝑚′′=1
(𝑚′𝑠𝜇 +𝑚′′) (𝑟𝜇 −𝑚′𝑠𝜇 −𝑚′′) (2𝑚′ + 2(𝑟 ′𝜇 + 1)𝑚′′ − 𝑟𝜇 − 1)

= −
𝑟𝜇 (𝑟 2𝜇 − 1)

6
.

So, we obtain the same formula for 𝜔 I
1,1 in both cases. �

Remark 6.7. This computation can also be done directly from the Airy structure, as

𝜔 I
1,1

(
𝜇
𝑧

)
=

∑︁
𝑘>0

𝐹1,1 [𝑘] |𝑄=0
d𝑧
𝑧𝑘+1

and 𝐹1,1 [𝑘] is the constant term of order ℏ in the unique operator of the Airy structure of the form
ℏ𝜕𝑥𝑘 + O(2). In fact, as (112) coincides with the topological recursion on the sole component 𝐶𝜇 of the
spectral curve, the value of 𝐹1,1 [𝑘] |𝑄=0 must coincide at 𝑡𝜇 = 1

𝑟𝜇
with the one computed in [BBCCN18,

Lemma B.3]. This is indeed the case, but we note the calculation by this other method involves the sum

Ψ (1) (∅) = −1
2

𝑟𝜇−1∑︁
𝑚=0

𝑚(𝑟𝜇 −𝑚)
2𝑟𝜇

= −
𝑟𝜇 (𝑟 2𝜇 − 1)

24
,

which is much simpler than (114) although it leads to the same result.

To obtain 𝜔 II
1,1 we may split the contribution of the various 𝜈 as we did in the derivation of Equa-

tion (99). The details are omitted and we only give the outcome:

𝜔 II
1,1

( 𝜇
𝑧1

)
= d𝑧1𝑄𝜇

{
− 𝑧−(𝑠𝜇+1)1 𝑄𝜇

𝑟𝜇 − 1
2𝑟𝜇𝑡𝜇

−
∑︁
𝜈≠𝜇

𝑟𝜇

𝑠𝜇
=
𝑟𝜈
𝑠𝜈

𝑡
𝑟𝜇−1
𝜇

𝑡
𝑟𝜇
𝜇 − 𝑡

𝑟𝜇
𝜈

𝑄𝜈

𝑧
𝑠𝜇+1
1

−
∑︁
𝜈≠𝜇

𝑟𝜇

𝑠𝜇
>

𝑟𝜈
𝑠𝜈

∑︁
𝑘1>0
ℓ′≥0

𝑡
𝑟𝜈ℓ
′

𝜈

𝑡
𝑟𝜈ℓ
′+1

𝜇

𝑄𝜈

𝑧
𝑘1+1
1

𝛿𝑘1+ℓ′ (𝑠𝜈𝑟𝜇−𝑠𝜇𝑟𝜈),𝑠𝜇

+
∑︁
𝜈≠𝜇

𝑟𝜇

𝑠𝜇
<

𝑟𝜈
𝑠𝜈

∑︁
𝑘1>0
ℓ′>0

𝑡
𝑟𝜈ℓ
′−1

𝜇

𝑡
𝑟𝜈ℓ
′

𝜈

𝑄𝜈

𝑧
𝑘1+1
1

𝛿𝑘1+ℓ′ (𝑠𝜇𝑟𝜈−𝑠𝜈𝑟𝜇 ),𝑠𝜇

}
.
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6.2 The exceptional case

We proceed considering a spectral curve with only one branchpoint. Let us only slightly change
the setting and add a component – the exceptional component – indexed by 𝜇− ∈ �̃� on which

𝑥
(
𝜇−
𝑧

)
= 𝑧, 𝑦

(
𝜇−
𝑧

)
= 0 ,

i.e. 𝑟𝜇− = 1 and 𝑠𝜇− = ∞. On all other components 𝜇 ∈ �̃� \ {𝜇−} we still take

𝑥
(
𝜇
𝑧

)
= 𝑧𝑟𝜇 , 𝑦

(
𝜇
𝑧

)
= −𝑡𝜇 𝑧𝑠𝜇−𝑟𝜇 ,

and we equip the curve with the standard bidierential and the crosscap dierential

𝜔 1
2 ,1

(
𝜇
𝑧

)
=
𝑄𝜇d𝑧
𝑧

.

As before we only require that gcd(𝑟𝜇, 𝑠𝜇) = 1, and that for 𝑟𝜇

𝑠𝜇
=

𝑟𝜈
𝑠𝜈

and 𝜇 ≠ 𝜈 we must have 𝑡𝑟𝜇𝜇 ≠ 𝑡
𝑟𝜈
𝜈 .

In the following we will compute correlators 𝜔0,3 and 𝜔 1
2 ,2

and characterise the cases in which they are
symmetric. These correlators are still given by formula (83) and we will learn that in the exceptional
case they mostly behave as in the standard case which was discussed in the preceding sections.

Lemma 6.8. The correlators 𝜔0,3 and 𝜔 1
2 ,2

are symmetric if and only if the conditions (i), (ii) of Proposi-
tion 6.1 and (iii), (iv), and (v) of Proposition 6.4 are satised. In this case the correlators are still given by
the formulas stated in Proposition 6.1 and Proposition 6.4, where any Kronecker delta involving 𝑠𝜇− = ∞
evaluates to 0. Moreover, the statement of Proposition 6.2 also stays valid in the exceptional case.

Remark 6.9. One should remark that all expressions occurring in (i) to (v) make sense even with
𝑠𝜇− = ∞ for a single 𝜇− ∈ �̃� if we understand 𝑟𝜇− = 1 mod 𝑠𝜇− .

Proof of Lemma 6.8. We begin with the computation of 𝜔0,3. First of all we notice that in case 𝜇1, 𝜇2, 𝜇3
satisfy 𝜇𝑖 ≠ 𝜇− the correlator 𝜔0,3

( 𝜇1 𝜇2 𝜇3
𝑧1 𝑧2 𝑧3

)
is computed as in the standard case which was considered

in Proposition 6.1 since the bidierential does not mix the components. So rst we can deduce that
restriction of 𝜔0,3 to the non-exceptional components is symmetric if and only if (𝑟𝜇, 𝑠𝜇)𝜇≠𝜇− satisfy (i)
and (ii) and second we know that in this case 𝜔0,3 is given by (84).

The following two cases are discussed quickly: if 𝜇1, 𝜇2, 𝜇3 ∈ �̃� are all pairwise distinct the nature of
the recursion kernel forces 𝜔0,3

( 𝜇1 𝜇2 𝜇3
𝑧1 𝑧2 𝑧3

)
to vanish. If 𝜇1 = 𝜇2 = 𝜇3 = 𝜇− it vanishes as well since the

bidierential is not mixing the components and 𝔣′(𝑧) ∩𝐶𝜇− = ∅ if 𝑧 ∈ 𝐶𝜇− .
So the only remaining case which needs to be covered is the one where the arguments of 𝜔0,3 lie on
exactly two distinct components of which one is 𝐶𝜇− . So let 𝜇 ≠ 𝜇−. On the one hand we know that
𝜔0,3

( 𝜇− 𝜇 𝜇
𝑧3 𝑧2 𝑧1

)
= 0 while on the other hand (83) tells us that

𝜔0,3
( 𝜇 𝜇 𝜇−
𝑧1 𝑧2 𝑧3

)
d𝑧1d𝑧2d𝑧3

=
𝑟𝜇

d𝑧1
Res
𝑧=𝜇

𝐾𝜇

(
𝜇 𝜇 𝜇−
𝑧1 𝑧 𝑧𝑟𝜇

) ∑︁
𝑘2,𝑘3≥1

𝑘2𝑘3 𝑧
𝑘2+𝑟𝜇𝑘3−2𝑧−𝑘2−12 𝑧

−𝑘3−1
3 (d𝑧)2

= − 1
𝑡𝜇

∑︁
𝑘1,𝑘2,𝑘3≥1

𝑘2𝑘3 𝑧
−𝑘1−1
1 𝑧

−𝑘2−1
2 𝑧

−𝑘3−1
3 𝛿𝑘1+𝑘2+𝑟𝜇𝑘3,𝑠𝜇 , (115)

where we used that

𝐾𝜇

(
𝜇 𝜇 𝜇−
𝑧1 𝑧 𝑧𝑟𝜇

)
= − d𝑧1

𝑟𝜇𝑡𝜇d𝑧

∑︁
𝑘1≥1

𝑧𝑘1+1−𝑠𝜇𝑧−𝑘1−11 .

In order to have symmetric correlators we therefore need (115) to vanish. Clearly, this is the case if and
only if 2 + 𝑟𝜇 > 𝑠𝜇 . For 𝑟𝜇 > 1 this is always the case as (i) forces that 𝑠𝜇 ≤ 𝑟𝜇 + 1. For 𝑟𝜇 = 1 however
the correlator vanishes if and only if 𝑠𝜇 ≤ 2. It turns out this symmetry condition is already included
in (ii). Assume 𝑟𝜇 = 1 and 𝑠𝜇 > 2. Then

⌊ 𝑟𝜇
𝑠𝜇

⌋
= 0 =

⌊ 𝑟𝜇−
𝑠𝜇−

⌋
and both 𝑟𝜇 = 1 mod 𝑠𝜇 and 𝑟𝜇− = 1 mod 𝑠𝜇−

which means this case is forbidden by (ii).
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As with the correlator we considered before,

𝜔0,3
( 𝜇− 𝜇− 𝜇
𝑧1 𝑧2 𝑧3

)
d𝑧1d𝑧2d𝑧3

=
1

𝑟𝜇d𝑧1
Res
𝑧=𝜇−

𝑟𝜇∑︁
𝑏=1

𝐾𝜇−

(
𝜇− 𝜇− 𝜇

𝑧1 𝑧 𝜗𝑏
𝜇𝑧

1/𝑟𝜇

) ∑︁
𝑘2,𝑘3≥1

𝜗𝑏𝑘3𝜇 𝑘2𝑘3 𝑧
𝑘2+𝑘3/𝑟𝜇−2𝑧−𝑘2−12 𝑧

−𝑘3−1
3 (d𝑧)2

=
1
𝑡𝜇

∑︁
𝑘1,𝑘2,𝑘3≥1
𝑟𝜇 |𝑘3−𝑠𝜇

𝑘2𝑘3 𝑧
−𝑘1−1
1 𝑧

−𝑘2−1
2 𝑧

−𝑘3−1
3 𝛿𝑘1+𝑘2+(𝑘3−𝑠𝜇 )/𝑟𝜇 ,0

also has to vanish in order to have a symmetric 𝜔0,3. This is the case if and only if (𝑘 − 𝑠𝜇)/𝑟𝜇 + 2 > 0
for all 𝑘 > 0 satisfying 𝑟𝜇 | 𝑘 − 𝑠𝜇 . First let us assume 𝑟𝜇 > 1. Then (i) forces 𝑠𝜇 ≤ 𝑟𝜇 + 1 which implies
that (𝑘 − 𝑠𝜇)/𝑟𝜇 + 2 ≥ (𝑘 − 1)/𝑟𝜇 + 1 > 0 and thus as required 𝜔0,3

( 𝜇− 𝜇− 𝜇
𝑧1 𝑧2 𝑧3

)
= 0. Now let us assume

𝑟𝜇 = 1. In this case

𝜔0,3
( 𝜇− 𝜇− 𝜇
𝑧1 𝑧2 𝑧3

)
d𝑧1d𝑧2d𝑧3

=
1
𝑡𝜇

∑︁
𝑘1,𝑘2,𝑘3≥1

𝑘2𝑘3 𝑧
−𝑘1−1
1 𝑧

−𝑘2−1
2 𝑧

−𝑘3−1
3 𝛿𝑘1+𝑘2+𝑘3,𝑠𝜇 ,

which vanishes if and only if 𝑠𝜇 ≤ 2. We conclude that as for the correlator considered before the
condition for 𝜔0,3

( 𝜇− 𝜇− 𝜇
𝑧1 𝑧2 𝑧3

)
to be symmetric is expressed by (ii). This concludes the analysis of 𝜔0,3.

Now let us turn to𝜔 1
2 ,2
. In the following set𝜔 ′1

2 ,2
B 𝜔 1

2 ,2
|𝑄𝜇−=0 , i.e. with𝜔

′
1
2 ,2

we denote the restriction
of 𝜔 1

2 ,2
to the non-exceptional components. Then for distinct 𝜇, 𝜈 ∈ �̃� \ {𝜇−} we have

𝜔 1
2 ,2

( 𝜇 𝜈
𝑧1 𝑧2

)
= 𝜔 ′1

2 ,2

( 𝜇 𝜈
𝑧1 𝑧2

)
as the bidierential is not mixing the components. Thus, from the analysis done in Proposition 6.4 we
deduce that the condition ensuring the symmetry of this correlator is (v) and in the symmetric case it
may be evaluated using formula (96). However, if the arguments lie on the same component 𝜇 ≠ 𝜇−
we obtain an additional contribution

𝜔 1
2 ,2

( 𝜇 𝜇
𝑧1 𝑧2

)
= 𝜔 ′1

2 ,2

( 𝜇 𝜇
𝑧1 𝑧2

)
+ 𝑟𝜇𝑄𝜇− Res

𝑧=𝜇
𝐾𝜇

(
𝜇 𝜇 𝜇−
𝑧1 𝑧 𝑧𝑟𝜇

) ∑︁
𝑘2≥1

𝑘2 𝑧
𝑘2−2𝑧−𝑘2−12 (d𝑧)2d𝑧2

= 𝜔 ′1
2 ,2

( 𝜇 𝜇
𝑧1 𝑧2

)
−

∑︁
𝑘1,𝑘2≥1

d𝑧1d𝑧2
𝑧
𝑘1+1
1 𝑧

𝑘2+1
2

𝑘2
𝑄𝜇−

𝑡𝜇
𝛿𝑘1+𝑘2,𝑠𝜇

coming from the rst term in the bracket in (83). This is symmetric for 𝑠𝜇 ≤ 2 while for 𝑠𝜇 > 3 we may
use that 𝜔 ′1

2 ,2

( 𝜇 𝜇
𝑧1 𝑧2

)
is computed via (100) in order to get

𝜔 1
2 ,2

( 𝜇 𝜇
𝑧1 𝑧2

)
=

∑︁
𝑘1,𝑘2≥1

d𝑧1d𝑧2
𝑧
𝑘1+1
1 𝑧

𝑘2+1
2

{
− 𝛿𝑘1+𝑘2,𝑠𝜇 𝑘2

(
𝑄𝜇 (𝑟𝜇 − 1 − ℓ𝜇 (𝑘2))

𝑟𝜇𝑡𝜇
+

∑︁
𝜈∈�̃�\{𝜇 }
𝑟𝜇

𝑠𝜇
>

𝑟𝜈
𝑠𝜈

𝑄𝜈

𝑡𝜇

)

+ 𝑘2
𝑡𝜇

∑︁
ℓ′>0

(
−

∑︁
𝜈∈�̃�\{𝜇,𝜇− }

𝑟𝜇

𝑠𝜇
>

𝑟𝜈
𝑠𝜈

(
𝑡𝜈

𝑡𝜇

)𝑟𝜈ℓ′
𝑄𝜈𝛿𝑘1+𝑘2+ℓ′ (𝑟𝜇𝑠𝜈−𝑟𝜈𝑠𝜇 ),𝑠𝜇

+
∑︁

𝜈∈�̃�\{𝜇,𝜇− }
𝑟𝜇

𝑠𝜇
<

𝑟𝜈
𝑠𝜈

(
𝑡𝜇

𝑡𝜈

)𝑟𝜈ℓ′
𝑄𝜈𝛿𝑘1+𝑘2−ℓ′ (𝑟𝜇𝑠𝜈−𝑟𝜈𝑠𝜇 ),𝑠𝜇

)}
.

Comparing (100) with the above equation and following the characterisation of the symmetry of (100)
it should be clear that the condition for the symmetry of 𝜔 1

2 ,2
( 𝜇 𝜇
𝑧1 𝑧2

)
above is encoded in (iii) and (iv).

Now let us turn to the computation of correlators with arguments lying on the exceptional compo-
nent. It is a straightforward calculation to nd that

𝜔 1
2 ,2

( 𝜇− 𝜇−
𝑧1 𝑧2

)
=
d𝑧1d𝑧2
𝑧21𝑧

2
2

∑︁
𝜈≠𝜇−

(𝑟𝜈,𝑠𝜈)=(1,2)

𝑄𝜇

𝑡𝜇
, (116)
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which is always symmetric. Notice at this point that this is in accordance with (iii) and (iv) as the
two conditions do not imply any constraints for 𝜇−. Now let us briey argue that formula (94) exactly
produces the result for 𝜔 1

2 ,2
( 𝜇− 𝜇−
𝑧1 𝑧2

)
we obtained above. Since 𝑟 ′𝜇− =

⌊ 𝑟𝜇−
𝑠𝜇−

⌋
= 0 the rst term in (94)

vanishes. The two terms after are empty sums, hence vanishing. Thus the last term in (94) is the only
one potentially leading to a non-zero contribution and indeed one nds that the sum condition in
this sum coincides with the one in (116). We therefore deduce that formula (94) even applies for the
exceptional case.

It is also straightforward to compute

𝜔 1
2 ,2

( 𝜇 𝜇−
𝑧1 𝑧2

)
= −𝛿𝑟𝜇+1,𝑠𝜇

𝑄𝜇

𝑡𝜇

d𝑧1d𝑧2
𝑧21𝑧

2
2
, 𝜔 1

2 ,2
( 𝜇 𝜇−
𝑧1 𝑧2

)
= 𝛿𝑟𝜇+1,𝑠𝜇

𝑄𝜇−

𝑡𝜇

d𝑧1d𝑧2
𝑧21𝑧

2
2

(117)

for 𝜇 ≠ 𝜇−. We therefore deduce the symmetry condition that for all 𝜇 ≠ 𝜇− with 𝑠𝜇 = 𝑟𝜇 + 1 necessarily
𝑄𝜇 = −𝑄𝜇− . This condition is however covered in (v). Notice moreover that formula (96) applied to the
case at hand indeed produces (117).

At last, let us show that the statement of Proposition 6.2 is true in the exceptional case as well.
For this notice that if we choose 𝜇, 𝜈, 𝜆 ∈ �̃� pairwise distinct with 𝑟𝜇

𝑠𝜇
=

𝑟𝜈
𝑠𝜈

=
𝑟𝜆
𝑠𝜆

then already 𝑠𝜇 < ∞.
Thus, 𝜔0,4

(
𝜇 𝜇 𝜈 𝜆
𝑧1 𝑧2 𝑧3 𝑧4

)
gets the same contributions as in the standard case which means that the further

discussion of the symmetry of this correlator must be in line with the proof of Proposition 6.2. �

6.3 Necessary conditions for symmetry

We now prove Proposition 2.14. In Section 5.4 we used that Theorem 2.11 gives us conditions
for the values of (𝑟𝜇, 𝑠𝜇, 𝑡𝜇, 𝑄𝜇)𝜇∈�̃� sucient for the existence of a family of correlators satisfying the
master loop equation and the projection property on that curve. This was done by associating a set
of dierential constraints (82) to the curve and showing that these imply the master loop equation.
Note that in order to prove the latter implication we only assumed that none of the conditions (i)–(iv)
appearing in Lemma 5.4 hold. So all further conditions on the input data solely come from Theorem 2.11
which are sucient for the set of operators in Proposition 5.18 to be an Airy structure.

In Section 6.1 and Section 6.2, however, we used formula (73) to compute the correlators 𝜔0,3, 𝜔 1
2 ,2
,

and partly also 𝜔0,4 in the case of one ramication point and arbitrary (𝑟𝜇, 𝑠𝜇, 𝑡𝜇, 𝑄𝜇)𝜇∈�̃� only assuming
that gcd(𝑟𝜇, 𝑠𝜇) = 1 and

𝑡
𝑟𝜇
𝜇 ≠ 𝑡𝑟𝜈𝜈 whenever (𝑟𝜇, 𝑠𝜇) = (𝑟𝜈, 𝑠𝜈) and 𝜇 ≠ 𝜈 . (118)

Here we chose the notation and the bidierential of the second kind exactly so that the dierential oper-
ators associated to this spectral curve introduced in Denition 5.17 are those considered in Section 2.3.2.
As for certain values of (𝑟𝜇, 𝑠𝜇, 𝑡𝜇, 𝑄𝜇)𝜇∈�̃� we ended up with non-symmetric multidierentials 𝜔𝑔,𝑛 , we
can deduce that in this case the associated set of dierential operators cannot be an Airy structure.
Hence, condition (i)–(v) found in Proposition 6.1 and Proposition 6.4 are necessary conditions for (28)
to be an Airy structure.

In order to be even closer to the notation of Section 2.3.2, let us choose a lexicographic ordering
𝜇 : [𝑑] → �̃� satisfying 𝜇 𝑗 ≺ 𝜇 𝑗+1. Proposition 2.14 addresses the question which constraints the
symmetry conditions (i)–(v) found in Proposition 6.1 and Proposition 6.4 put on the values of (𝑟𝜇, 𝑠𝜇)𝜇∈�̃�
in case we want the set of dierential operators (28) to be an Airy structure for all 𝑡𝜇1 , . . . , 𝑡𝜇𝑑−1 ∈ C∗
and, if 𝑠𝜇𝑑 ≠ ∞, also 𝑡𝜇𝑑 ∈ C∗ satisfying (118) and all 𝑄𝜇1 , . . . , 𝑄𝜇𝑑 ∈ C for which

𝑑∑︁
𝑗=1

𝑄𝜇 𝑗 = 0 . (119)

Proof of Proposition 2.14. Due to (i) of Proposition 6.1 we know that necessarily 𝑟𝜈 = ±1 mod 𝑠𝜈 for all
𝜈 ∈ �̃�. If 𝑠𝜇1 > 2 then (ii) tells us that we must have 𝑟𝜇1

𝑠𝜇1
>

𝑟𝜇2
𝑠𝜇2

. Therefore,∑︁
𝜈≠𝜇1

𝑟𝜇1
𝑠𝜇1

>
𝑟𝜈
𝑠𝜈

𝑄𝜈 =

𝑑∑︁
𝑗=2

𝑄𝜇 𝑗
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and hence condition (iii) of Proposition 6.4 forbids that 𝑟𝜇1 = 1 mod 𝑠𝜇1 and 𝑠𝜇1 > 2 as we can always
choose the 𝑄s such that

∑
𝑗 ∈(𝑑 ] 𝑄𝜇 𝑗 ≠ 0. Thus, we are left with 𝑟𝜇1 = −1 mod 𝑠𝜇1 .

Now let us see which values the symmetry conditions allow (𝑟𝜇 𝑗 , 𝑠𝜇 𝑗 ) to take in case 𝑗 ∉ {1, 𝑑}. First,
let us assume 𝑟𝜇1

𝑠𝜇1
=

𝑟𝜇𝑗

𝑠𝜇𝑗
. Then by (ii) necessarily 𝑠𝜇 𝑗 ∈ {1, 2}. If however

𝑟𝜇1
𝑠𝜇1

>
𝑟𝜇𝑗

𝑠𝜇𝑗
then condition (iii)

and (iv) also force 𝑠𝜇 𝑗 ∈ {1, 2} using that we can choose the 𝑄s arbitrary except that they must satisfy
(119).

As one can use similar arguments in order to show that also 𝑟𝜇𝑑 = 1 mod 𝑠𝜇𝑑 we omit the further
discussion of this case.
Now let us analyse the implications coming from condition (v) in case of generic 𝑄s. If 𝑑 = 2 condition
(v) is always satised since the requirement that 𝑄𝜇 = −𝑄𝜈 for 𝜇 ≠ 𝜈 is nothing but property (119).
Therefore, let us assume that 𝑑 > 2. In this case (v) exactly forbids that 𝑟𝜇 = 𝑟𝜈 and 𝑠𝜇 = 𝑠𝜈 = 2 for
𝜇 ≠ 𝜈. Hence, taking into account the other constraints we have already derived for (𝑟𝜇, 𝑠𝜇)𝜇∈�̃� we
deduce that for 𝑑 > 2 necessarily 𝑠𝜇 = 𝑠𝜈 = 1 whenever (𝑟𝜇, 𝑠𝜇) = (𝑟𝜈, 𝑠𝜈) for some 𝜇 ≠ 𝜈.

Note that due to Lemma 6.8 the above discussion covers both the standard and the exceptional
case. �

Part III – Applications to intersection theory

We expect that the coecients 𝐹𝑔,𝑛 of the partition function for all basic Airy structures (those
of Section 2.3.1 and Section 2.3.2) and the 𝜔𝑔,𝑛 of the corresponding topological recursion can be
represented as integrals of distinguished cohomology classes onM𝑔,𝑛 or its cousins. As soon as such a
representation is known for one spectral curve admitting a single ramication point and whose type
belong to a certain set, it is relatively easy to extend it to any spectral curve having ramication points
whose type belong to this set. The reason is that the corresponding Airy structure is built from the
basic Airy structures by direct sums, change of polarisations and further dilaton shifts, cf. Section 2.3.3.
In terms of partition functions, this is sometimes called “Givental decomposition”.

We develop this idea for two types for which the link toM𝑔,𝑛 is already known:
• the type (𝑟, 𝑠) = (𝑟, 𝑟 + 1) is related to Witten 𝑟 -spin theory. The 𝑟 = 2 subcase is Eynard’s
formula [Eyn11; Eyn14b], and by generalising it to any 𝑟 we answer a question of Shadrin to
the rst-named author.
• the type (𝑟1, 𝑠1, 𝑟2, 𝑠2) = (𝑟, 𝑟 + 1, 1,∞) is related to open 𝑟 -spin intersection theory as discussed
in Section 8.

The type (𝑟, 𝑠) for other 𝑠 is discussed in Section 7.6 assuming the existence of a special class onM𝑔,𝑛

which has only been constructed for (𝑟, 𝑠) = (2, 1) so far [Nor17; CN19]. It turns out that Laplace-type
integrals play an important role in such representations, and we rst study them in the preliminary
Section 7.1. The method is general: if in the future an enumerative interpretation is found for a larger
set of types, it is rather automatic to follow the strategy at work in these two examples and extend our
representations to any spectral curve having ramications whose types belong to this larger set.

7 Representation of correlators via intersection theory

7.1 The Laplace isomorphisms

Let 𝑟 ≥ 1. If𝑚 ≥ 1 − 𝑟 is an integer, we introduce the 𝑟 -fold factorial, either by induction

𝑚!(𝑟 ) =

{
1 if 1 − 𝑟 ≤ 𝑚 ≤ 0
𝑚 · (𝑚 − 𝑟 )!(𝑟 ) if𝑚 > 0

, (120)

or equivalently in terms of the Gamma function

𝑚!(𝑟 ) =
𝑟

𝑚
𝑟
+1Γ

(
𝑚
𝑟
+ 1

)
𝑟 〈

𝑚
𝑟
〉Γ

(〈
𝑚
𝑟

〉) ,
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where we have dened
〈
𝑑𝑟+𝑎
𝑟

〉
= 𝑎

𝑟
if 𝑑 ∈ Z and 𝑎 ∈ [𝑟 ].

Denition 7.1. We introduce two isomorphisms.

𝔏+ : CÈ𝜁Éd𝜁 −→ 𝑢
1
𝑟 CÈ𝑢 1

𝑟 É
𝑘𝜁𝑘−1d𝜁 −→ 𝑘!(𝑟 ) 𝑢 𝑘

𝑟

,

𝔏− : C[𝜁 −1] 𝜁 −2d𝜁 −→ 𝜖
1
𝑟 C[𝜖 1

𝑟 ]
𝑘!(𝑟 ) 𝜁 −(𝑘+1)d𝜁 ↦−→ 𝜖

𝑘
𝑟

.

Abusing notation slightly we also write 𝔏± for the maps extended to the domain C((𝜁 ))d𝜁 by dening
them to be zero on any monomial not in the original domain of denition.

The rst map can be realised by integrating over paths from 0 to∞ in the 𝑥-plane.

Lemma 7.2. We have

𝔏+ =
𝑟−1∑︁
𝑗=0
i𝑗

∫
𝑒
2i𝜋 𝑗
𝑟 R+

𝑒−
𝜁𝑟

𝑢𝑟 ·

where the constants are

i𝑗 B
𝑟∑︁

𝑎=1

𝑒−
2i𝜋 𝑗𝑎

𝑟

𝑟
𝑎
𝑟 Γ

(
𝑎
𝑟

) . (121)

Proof. Let 𝛽 𝑗 be from 0 to ∞ in the angular direction 𝑒
2i𝜋 𝑗

𝑟 . Consider integration along a formal
combination of paths 𝛽 =

∑𝑟−1
𝑗=0 i𝑗𝛽 𝑗 for some i𝑗 ∈ C. For 𝑘 = 𝑑𝑟 + 𝑎 with 𝑑 ≥ 0 and 𝑎 ∈ [𝑟 ], we

compute ∫
𝛽

𝑒−
𝜁𝑟

𝑢𝑟 𝑘𝜁𝑘−1d𝜁 =

𝑟−1∑︁
𝑗=0
i𝑗 𝑒

2i𝜋 𝑗𝑎

𝑟 (𝑢𝑟 ) 𝑘𝑟 𝑘
𝑟

∫
R+

𝑒−�̃� 𝑥
𝑘
𝑟
−1 d𝑥

= 𝑟 î𝑎 𝑢
𝑘
𝑟 𝑟

𝑘
𝑟 Γ

(
𝑘
𝑟
+ 1

)
= î𝑎 𝑢

𝑘
𝑟 𝑟

𝑎
𝑟 Γ

(
𝑎
𝑟

)
𝑘!(𝑟 )

with the change of variable 𝑥 = 𝜁 𝑟/𝑢𝑟 and the discrete Fourier transform for 𝑎 ∈ Z

î𝑎 =
1
𝑟

𝑟−1∑︁
𝑗=0

𝑒
2i𝜋 𝑗𝑎

𝑟 i𝑗 .

We get ∫
𝜌

𝑒−𝜁
𝑟 /𝑢𝑟 𝑘𝜁𝑘−1d𝜁 = 𝔏+ [𝜁𝑘−1d𝜁 ]

provided we choose

î𝑎 =
1

𝑟
𝑎
𝑟 Γ

(
𝑎
𝑟

) .
This entails the result by inverse discrete Fourier transform. �

The second map can be realised by contour integration. To this end, let 𝛾 be the Hankel contour
giving the Gamma function representation (Figure 1)

1
Γ(𝛼) =

∫
𝛾

𝑒𝑥𝑥−𝛼d𝑥 𝛼 ∈ C ,

that is, 𝛾 goes from −∞ − i0 to −i0, then round the origin to +i0 and ends in −∞ + i0. Under the
branched covering 𝜁 ↦→ 𝑥 (𝜁 ) = 𝜁 𝑟 , this contour has 𝑟 dierent lifts (𝛾 𝑗 )𝑟𝑗=1, which we label so that
𝛾 𝑗 comes from the asymptotic direction 𝑒− i𝜋

𝑟
(2𝑗+1) (+∞ + i0), approaches the origin and then ends in

the asymptotic direction 𝑒− i𝜋
𝑟
(2𝑗−1) (+∞ − i0). These contours belong to the lattice of rank (𝑟 − 1) of

Lefschetz thimbles
𝑉 B 𝐻1 (C, S−𝑀 ;Z) ,

where S−
𝑀

= {𝑧 ∈ C | Re𝑥 < −𝑀} for some large 𝑀 > 0. The homology class
∑𝑟

𝑗=1 𝛾 𝑗 is trivial and
omitting one 𝛾 𝑗 we get a basis of 𝑉 .
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η3

η1

η2

Figure 1. Left panel: contours in the 𝜁 -plane for 𝑟 = 6. The striped regions
correspond to Re𝑥 > 𝑀 . Right panel: Hankel contour in the 𝑥 plane.

Lemma 7.3. We have

𝔏− =
𝑟∑︁
𝑗=1

i𝑗

2i𝜋𝑟

∫
𝛾 𝑗

𝑒
𝜖𝜁𝑟

𝑟 ·

with the constants already appearing in (121).

Proof. Let 𝜖 > 0, 𝑗 ∈ [𝑟 ] and consider the integral

𝐴 𝑗 (𝛼) B
1
2i𝜋

∫
𝛾 𝑗

𝑒
𝜖𝜁𝑟

𝑟 𝜁𝛼d𝜁 (122)

for complex 𝛼 ∈ C. Here, 𝜁 ↦→ 𝜁𝛼 is dened in the usual way as the analytic function on C \ R− such
that for 𝜁 ∈ R∗−, we have

lim
𝜖→0+
(𝜁 ± i𝜖)𝛼 = 𝑒±i𝜋𝛼 |𝜁 |𝛼 .

Let us rst consider Re𝛼 > 0. In this case, as the integrand is regular we can squeeze the Hankel
contour to the half-axes of angles 𝑒−

i𝜋 (2𝑘+1)
𝑟 for 𝑘 ∈ [𝑟 ]. After a change of variable 𝑥 = −𝜖𝜁 𝑟

𝑟
, we nd

𝐴 𝑗 (𝛼) =
(
𝜖

𝑟

)−𝛼+1
𝑟 (
− 𝑒−

i𝜋 (2𝑗+1) (𝛼+1)
𝑟 + 𝑒−

i𝜋 (2𝑗−1) (𝛼+1)
𝑟

)
· 1
𝑟

∫
R+

𝑒−�̃�𝑥
𝛼+1
𝑟
−1 d𝑥

=

(
𝜖

𝑟

)−𝛼+1
𝑟

𝑒−
2i𝜋 𝑗 (𝛼+1)

𝑟 · 2i
𝑟

sin
(
𝜋 (𝛼 + 1)

𝑟

)
Γ

(
𝛼 + 1
𝑟

)
.

(123)

We note that by denition in (122), 𝐴 𝑗 (𝛼) is an entire function of 𝛼 ∈ C. This is also true for the right-
hand side of (123): the Gamma function has simple poles when 𝛼+1

𝑟
∈ −2N which are compensated by

a zero in the prefactor. Then, by analytic continuation the identity (123) remains true for all 𝛼 ∈ C.
We apply it to 𝛼 = −(𝑘 + 1) where 𝑘 is a positive integer that we decompose as 𝑘 = 𝑟𝑑 + 𝑎 with

𝑎 ∈ [𝑟 ] and 𝑑 ≥ 0. Then

𝐴 𝑗 (−(𝑘 + 1)) =
(
𝜖

𝑟

) 𝑘
𝑟

𝑒
2i𝜋 𝑗𝑘

𝑟
2i
𝑟

sin
(
− 𝜋 𝑗𝑘

𝑟

)
Γ

(
− 𝑘
𝑟

)
= 𝜖

𝑘
𝑟
2i𝜋
𝑟
𝑒

2i𝜋 𝑗𝑎

𝑟
1

𝑟
𝑘
𝑟 Γ

(
𝑘
𝑟
+ 1

)
= 𝜖

𝑘
𝑟 𝑒

2i𝜋 𝑗𝑎

𝑟
2i𝜋

𝑟
𝑎
𝑟 Γ

(
𝑎
𝑟

)
𝑘!(𝑟 )

.

Coming back to the denition (121) of i𝑗 , we get
𝑟∑︁
𝑗=1

i𝑗

2i𝜋𝑟

∫
𝛾 𝑗

𝑒
𝜖𝑥
𝑟
𝑘!(𝑟 )d𝜁
𝜁𝑘+1

= 𝔏−
[
𝑘!(𝑟 ) d𝜁
𝜁𝑘+1

]
.
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�

7.2 Laplace transform on curves

7.2.1 Total Laplace transform

Let𝐶 be a curve with normalisation 𝜋 : 𝐶 → 𝐶 , equipped with a meromorphic 1-form d𝑥 . We shall
rely on the notations introduced in Section 5.4. Recall that we write d𝑥 = 𝜋∗d𝑥 , that 𝔞 is the set of
zeroes of d𝑥 (including singular points) and �̃� = 𝜋−1 (𝔞). Denote the order of a zero of d𝑥 at 𝜇 ∈ �̃� by
𝑟𝜇 − 1 (this could be zero if 𝜋 (𝑎) is singular). Around each 𝜇 ∈ �̃�, we have a local coordinate such that∫ ·

𝜇

d𝑥 = 𝜁 𝑟𝜇 .

We dene the vector spaces

𝑉 =
⊕
𝜇∈�̃�

𝑉𝜇 , 𝑉𝜇 B

𝑟𝜇⊕
𝑙=1
C.𝑒𝜇,𝑙 ,

and equip 𝑉 with the pairing 𝜂 (𝑒𝜇,𝑙 ⊗ 𝑒𝜈,𝑚) = 𝛿𝜇,𝜈𝛿𝑙+𝑚,𝑟𝜇 . The fact that 𝑒𝜇,𝑟𝜇 are null vectors for 𝜂 is a
convention: it simplies the formulas in Section 7.2.3 but has no eect elsewhere. When needed, we
shall decompose integers 𝑘 ∈ Z as

𝑘 = 𝑘𝑟𝜇 + 𝑘, 𝑘 ∈ [𝑟𝜇]

and the index 𝜇 ∈ �̃� that one should use will be clear from the context. In order to get rid of fractional
powers of the Laplace variable, we introduce the isomorphism

𝐸∗𝜇 : 𝜖
1
𝑟𝜇 C[𝜖

1
𝑟𝜇 ] −→ 𝑉 ∗𝜇 [𝜖]

𝜖
𝑘
𝑟 ↦−→ 𝑒∗

𝜇,𝑘
𝜖𝑘

.

where 𝑒∗
𝜇,𝑙

is the dual basis with respect to the pairing 𝜂. Importing Denition 7.1, for each 𝜇 ∈ �̃�, we
consider the local Laplace map

𝔏−𝜇 = 𝐸𝜇 ◦ 𝔏− ◦ Loc𝜇 : 𝐻 0 (𝐶,𝐾�̃� (∗�̃�)) → 𝑉 ∗𝜇 [𝜖]

and the total map

𝔏−tot =

(⊕
𝜇∈�̃�

𝔏−𝜇

)
: 𝐻 0 (𝐶,𝐾�̃� (∗�̃�)) → 𝑉 ∗ [𝜖] .

We dene in a similar way

𝐸𝜇 : 𝑢
1
𝑟𝜇 C[[𝜖

1
𝑟𝜇 ]] −→ 𝑉𝜇 [[𝑢]] ,

𝔏+𝜇 : 𝐻 0 (𝐶,𝐾�̃� (∗�̃�)) −→ 𝑉𝜇 [[𝑢]] ,
𝔏+tot : 𝐻 0 (𝐶,𝐾�̃� (∗�̃�)) −→ 𝑉 [[𝑢]] .

where the role of 𝑒∗
𝜇,𝑘

is now played by 𝑒𝜇,𝑘 .

Remark 7.4. From Lemmata 7.2 and 7.3, we see that the natural variables Laplace dual to 𝑥 = 𝜁 𝑟 are not
𝑢 and 𝜖−1, but 𝑟𝑢 and 𝑟𝜖−1. Moreover, by a dierent choice of constants (replacing multiple factorials
by values of the Γ function at rational numbers) the transforms could have been given by a single
integral. We give the Laplace transform in this way to conform to conventions in the literature using
𝑟 -fold factorials for the case of a smooth spectral curve, and its relation to the Witten 𝑟 -spin class.
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7.2.2 Two generating series

Assume that we are given a holomorphic 1-form 𝜔0,1 in a neighboorhood of �̃� in 𝐶 .

Denition 7.5. We introduce T(𝑢) ∈ 𝑉 [[𝑢]] given by the formula

T(𝑢) B
∑︁
𝜇∈�̃�

T𝜇,𝑘𝑒𝜇,𝑘 𝑢
𝑘

B

( ∑︁
𝜇∈�̃�
𝑠𝜇≠∞

𝑒𝜇,𝑠𝜇𝑢
𝑠𝜇

)
+ 𝔏+tot [𝜔0,1] (𝑢)

=
∑︁
𝜇∈�̃�
𝑠𝜇≠∞

(
𝑒𝜇,𝑠𝜇𝑢

𝑠𝜇 +
∑︁
𝑘>0
(𝑘 − 𝑟𝜇)!(𝑟𝜇 )𝐹0,1

[ 𝜇

−𝑘
]
𝑒
𝜇,𝑘
𝑢𝑘

)
.

Assume that we are given a fundamental bidierential of the second kind 𝜔0,2 on the smooth curve
𝐶 .

Denition 7.6. We introduce B(𝑢, 𝑣) ∈ 𝑉 ⊗2 [[𝑢, 𝑣]], given by the formula

B(𝑢, 𝑣) B (𝔏+tot)⊗2
(
𝜔0,2 − 𝜔std

0,2 )

=
∑︁
𝜇,𝜈∈𝔞
𝑘,𝑙>0

(𝑘 − 𝑟𝜇)!(𝑟𝜇 ) (𝑙 − 𝑟𝜈)!(𝑟𝜈) 𝐹0,2
[ 𝜇 𝜈

−𝑘 −𝑙
]
𝑒
𝜇,𝑘
⊗ 𝑒

𝜈,𝑙
𝑢𝑘𝑣𝑙 , (124)

where the second line follows from the decomposition (79).

These denitions in particular apply to admissible spectral curves equipped with a fundamental
bidierential of the second kind, but make sense in this greater generality. Their relevance will become
clear in Section 7.5.

7.2.3 Factorisation property for B

We prove in this section a factorisation property for Bwhen𝐶 is compact. Such a property appeared
in the case where 𝐶 is smooth and d𝑥 has simple zeroes in [Eyn14b, Appendix B].

In light of Remark 7.4, and for this section only, we use the ‘right’ Laplace variables 𝑟𝑢 and 𝑟𝑣
(where 𝑟 depends on the branch point), and to this end we give the following denition.

Denition 7.7. Let B𝜇,𝜈 (𝑢, 𝑣) be the projection of B(𝑢, 𝑣) into (𝑉𝜇 ⊗ 𝑉𝜈) [[𝑢, 𝑣]] and dene

B̄(𝑢, 𝑣) B
∑︁
𝜇,𝜈∈�̃�

B𝜇,𝜈 (𝑢/𝑟𝜇, 𝑣/𝑟𝜈) .

Proposition 7.8. Assume 𝐶 is compact and d𝑥 is meromorphic. Then

B̄(𝑢, 𝑣) = 1
𝑢 + 𝑣

(
𝑢𝐵(𝑢, 0) + 𝑣𝐵(0, 𝑣) − 𝑢 𝑣 B̄(𝑢, 0) ★ B̄(0, 𝑣)

)
, (125)

where 𝐴★ 𝐵 = (id ⊗ 𝜂 ⊗ id) (𝐴 ⊗ 𝐵). Besides, we have the compatibility relation

B̄(𝑢, 0) − B̄(0,−𝑢) + 𝑢B̄(𝑢, 0) ★ B̄(0,−𝑢) = 0 . (126)

Proof. We have introduced in (80) the family of meromorphic 1-forms

d𝜉𝜇−𝑘 (𝑧) = Res
𝑧′=𝜇

( ∫ 𝑧′

𝜇

𝜔0,2 (𝑧, ·)
)
d𝜁 (𝑧 ′)
𝜁 (𝑧 ′)𝑘+1

∈ 𝐻 0
(
𝐶,𝐾�̃�

(
(𝑘 + 1)𝜇

) )
(127)

indexed by 𝜇 ∈ �̃� and 𝑘 > 0. We have for 𝜈 ∈ �̃�

Loc𝜈 (d𝜉𝜇−𝑘 ) =
𝛿𝜇,𝜈d𝜁
𝜁𝑘+1

+
∑︁
𝑙>0

𝐹0,2
[ 𝜇 𝜈

−𝑘 −𝑙
]

𝑘
𝜁 𝑙−1d𝜁 . (128)

The idea of the proof is to derive a recursion for these forms using the action of d
( ·
d�̃�

)
– this is

Equation (130) below. We will rst prove it for the polar part near the ramication points, and use that
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𝐶 is smooth and compact and d𝑥 meromorphic on𝐶 to get an equality of globally dened meromorphic
forms. This implies a recursion for the regular part of the expansion (128), i.e. the coecients 𝐹0,2, and
this will imply the desired relation for B(𝑢1, 𝑢2).

Since d𝑥 = 𝑟𝜈𝜁
𝑟𝜈−1d𝜁 near the ramication point 𝜈, we have

Loc𝜈

[
− d

(d𝜉𝜇−𝑘
d𝑥

)]
=
𝑘 + 𝑟𝜈
𝑟𝜈

𝛿𝜇,𝜈d𝜁
𝜁𝑘+𝑟𝜈+1

+
𝑟𝜈−1∑︁
𝑙=1

𝐹0,2
[ 𝜇 𝜈

−𝑘 −𝑙
]

𝑘

𝑟𝜈 − 𝑙
𝑟𝜈

d𝜁
𝜁 𝑟𝜈−𝑙+1

+ O(d𝜁 ) .

As d𝑥 is meromorphic, the 1-form

d
(d𝜉𝜇−𝑘
d𝑥

)
+
𝑘 + 𝑟𝜇
𝑟𝜇

d𝜉𝜇−(𝑘+𝑟𝜇 ) +
∑︁
𝜈∈�̃�

𝑟𝜈−1∑︁
𝑙=1

𝐹0,2
[ 𝜇 𝜈

−𝑘 −𝑙
]

𝑘

𝑟𝜈 − 𝑙
𝑟𝜈

d𝜉𝜈
𝑙−𝑟𝜈 (129)

is holomorphic on𝐶 . Since𝐶 is compact and smooth, 𝐻1 (𝐶,C) is a nite-dimensional symplectic space
equipped with the intersection pairing, and

K B
{
𝛾 ∈ 𝐻1 (𝐶,C)

���� ∫
𝛾

𝜔0,2 (·, 𝑧) = 0
}

is a Lagrangian subspace. From the denition (127), we see that integrating any d𝜉𝜇−𝑘 for 𝑘 > 0 and
𝜇 ∈ �̃� along a cycle in K gives zero. The same is true for the rst term in (129) since it is an exact form.
As the period map induces a non-degenerate pairing 𝐻 0 (𝐶,𝐾�̃� ) ⊗ K → C and (129) is sent to 0, we
deduce the identity between meromorphic forms

d
(d𝜉𝜇−𝑘
d𝑥

)
+
𝑘 + 𝑟𝜇
𝑟𝜇

d𝜉𝜇−(𝑘+𝑟𝜇 ) +
∑︁
𝜈∈�̃�

𝑟𝜈−1∑︁
𝑙=1

𝐹0,2
[ 𝜇 𝜈

−𝑘 −𝑙
]

𝑘

𝑟𝜈 − 𝑙
𝑟𝜈

d𝜉𝜈
𝑙−𝑟𝜈 = 0 . (130)

We now would like to apply the local Laplace transform 𝔏+𝜈 [·] (𝑣) to this relation. Recall that 𝔏+ by
denition kills the polar part. So, by direct computation on the basis elements with Denition 7.1, we
have

∀𝜑 ∈ 𝐻 0 (𝐶,𝐾�̃�
(
∗ �̃�)

)
𝔏+𝜌

[
d
(
𝜑

d𝑥

)]
(𝑣) = 1

𝑟𝜌

[
𝑣−1𝔏+𝜌 [𝜑] (𝑣)

]
+ ,

where [· · · ]+ keeps only the nonnegative powers of 𝑣. The expansion (128) implies for anymeromorphic
form

𝔏+𝜈 [d𝜉
𝜇

−𝑘 ] (𝑣) =
∑︁
𝑙>0

𝐹0,2
[ 𝜇 𝜈

−𝑘 −𝑙
]

𝑘
(𝑙 − 𝑟𝜈)!(𝑟𝜈) 𝑒𝜈,𝑙 𝑣

𝑙 .

By comparison with (124), B𝜇,𝜌 (𝑢, 𝑣) can be obtained by the generating series

B𝜇,𝜌 (𝑢, 𝑣) =
∑︁
𝑘>0

𝑘!(𝑟𝜇 )𝑒
𝜇,𝑘
𝑢𝑘 ⊗ 𝔏+𝜌 [d𝜉

𝜇

−𝑘 ] (𝑣) .

Applying 𝔏+𝜌 [·] (𝑣) to (130), multiplying by 𝑘!(𝑟𝜇 )𝑒
𝜇,𝑘
𝑢𝑘 , and summing over 𝑘 > 0 then yields

(𝑟𝜌𝑣)−1 (B𝜇,𝜌 (𝑢, 𝑣) − B𝜇,𝜌 (𝑢, 0)
)
+ (𝑟𝜇𝑢)−1

(
B𝜇,𝜌 (𝑢, 𝑣) − B𝜇,𝜌 (0, 𝑣)

)
+
∑︁
𝜈∈�̃�

𝑟𝜈−1∑︁
𝑙=1
(id ⊗ 𝑒∗

𝜈,𝑙
)
[
B𝜇,𝜈 (𝑢, 0)

]
(𝑒∗

𝜈,𝑟𝜈−𝑙 ⊗ id
) [
B𝜈,𝜌 (0, 𝑣)

]
= 0 .

Noticing that 𝜂 (𝑒𝜈,𝑙 ⊗ 𝑒𝜈,𝑟𝜈−𝑚) = 𝛿𝑙,𝑚 for 𝑙,𝑚 ∈ [𝑟𝜈 − 1] and 𝜂 (𝑒𝜇,𝑟𝜇 ,−) = 0, this can be rewritten

(𝑟𝜇𝑢 +𝑟𝜌𝑣)B𝜇,𝜌 (𝑢, 𝑣) −𝑟𝜇𝑢B𝜇,𝜌 (𝑢, 0) −𝑟𝜌𝑣B𝜇,𝜌 (0, 𝑣) +𝑟𝜇𝑟𝜌𝑢𝑣
∑︁
𝜈∈�̃�
(id⊗𝜂 ⊗ id)

[
B𝜇,𝜈 (𝑢, 0) ⊗B𝜈,𝜌 (0, 𝑣)

]
= 0 .

Replacing 𝑢 and 𝑣 by 𝑢/𝑟𝜇 and 𝑣/𝑟𝜌 , respectively, and summing over 𝜇, 𝜌 ∈ �̃�, this implies the desired
formula (125). Since the left-hand side is a formal power series in 𝑢, 𝑣, it can be specialised at 𝑣 = −𝑢.
This is possible on the right-hand side if and only if (126) is satised. �
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For each 𝜇 ∈ �̃�, we have an orthogonal direct sum 𝑉𝜇 �
s𝑉𝜇 ⊕ 0𝑉𝜇 with

s𝑉𝜇 =

𝑟𝜇−1⊕
𝑙=1
C.𝑒𝜇,𝑙 ,

0𝑉𝜇 = C.𝑒𝜇,𝑟𝜇 ,

and we decompose 𝑉 � 0𝑉 ⊕ s𝑉 with
s𝑉 B

⊕
𝜇∈�̃�

s𝑉𝜇 ,
0𝑉 B

⊕
𝜇∈�̃�

0𝑉𝜇 .

Denition 7.9. We introduce two generating series

R̄(𝑢) B 𝜂⊥ − 𝑢 B̄(𝑢, 0) ∈ (𝑉 s)⊗2È𝑢É ,
R̄⊥ (𝑢) B 𝜂⊥ − 𝑢 B̄(0, 𝑢) ∈ (𝑉 s)⊗2È𝑢É ,

where 𝜂⊥ ∈ (s𝑉 )⊗2 ⊂ 𝑉 ⊗2, is induced by the pairing 𝜂, i.e.

𝜂⊥ =
∑︁
𝜇∈�̃�

( 𝑟𝜇−1∑︁
𝑙=1

𝑒𝜇,𝑙 ⊗ 𝑒𝜇,𝑟𝜇−𝑙
)
, (131)

We write 00B, 0sB, s0B, and ssB for the projections of B̄ on the adequate subspaces in both arguments,
and likewise for 𝑅.

Corollary 7.10. Assume 𝐶 is compact and d𝑥 is meromorphic. Then, we have

ssB̄(𝑢, 𝑣) = 1
𝑢 + 𝑣

(
𝜂⊥ − ssR(𝑢) ★ ssR⊥ (𝑣)

)
,

s0B̄(𝑢, 𝑣) = −1
𝑢 + 𝑣

(
s0R(𝑢) + ssR(𝑢) ★ s0R⊥ (𝑣)

)
,

0sB̄(𝑢, 𝑣) = −1
𝑢 + 𝑣

(
0sR⊥ (𝑣) + 0sR(𝑢) ★ ssR⊥ (𝑣)

)
,

00B̄(𝑢, 𝑣) = −1
𝑢 + 𝑣

(
00R(𝑢) + 00R⊥ (𝑣) + 0sR(𝑢) ★ s0R⊥ (𝑣)

)
,

and the following compatibility relations hold
ssR(𝑢) ★ ssR⊥ (−𝑢) = 𝜂⊥ ,
ss𝑅(𝑢) ★ s0𝑅⊥ (−𝑢) = −s0𝑅(𝑢) ,
0s𝑅(𝑢) ★ ss𝑅⊥ (−𝑢) = −0s𝑅⊥ (−𝑢) ,
0s𝑅(𝑢) ★s0 𝑅⊥ (−𝑢) = −00𝑅(𝑢) − 00𝑅⊥ (−𝑢) .

The structure of the rst line is familiar from Givental formalism and from [Eyn14b, Appendix B],
but the other three are new.

7.3 Review of Witten 𝑟 -spin classes

For 𝑟 ≥ 2, we denote 𝑤𝑟spin
𝑔,𝑛 (𝑘1, . . . , 𝑘𝑛) the Witten 𝑟 -spin class, rst imagined by [Wit93] and

constructed in [PV01; Chi06], cf. also [PPZ15]. For all integers 𝑔, 𝑛 ≥ 0 such that 2𝑔 − 2 + 𝑛 > 0 and
𝑘1, . . . , 𝑘𝑛 ∈ Z, this is a Chow class

𝑤
𝑟spin
𝑔,𝑛 (𝑘1, . . . , 𝑘𝑛) ∈ 𝐶𝐻 ∗ (M𝑔,𝑛) .

It is dened via the moduli space of 𝑟 -spin structuresM𝑟spin
𝑔;𝑘1,...,𝑘𝑛 parametrizing pointed curves

(𝐶, 𝑝1, . . . , 𝑝𝑛) with a line bundle 𝐿 → 𝐶 together with an isomorphism to 𝐾 log
𝐶

(
−∑𝑛

𝑖=1 𝑘𝑖𝑝𝑖
)
. Denoting

C the universal curve and L the universal line bundle, and considering the projection

L → C 𝜋−→M𝑟spin
𝑔;𝑘1,...,𝑘𝑛

𝑝
−→M𝑔,𝑛 ,

the naive denition is
𝑤
𝑟spin
𝑔,𝑛 (𝑘1, . . . , 𝑘𝑛) = 𝑟−𝑔 𝑝∗𝑐top

(
(𝑅1𝜋∗L)∨

)
.
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This works in genus 0, but if 𝑔 > 0, then 𝑅1𝜋∗L is not a vector bundle as 𝑅0𝜋∗L is non-zero, so
the general construction is more involved. For positive 𝑘𝑖 , Witten’s class vanishes if one of the 𝑘𝑖 is
divisible by 𝑟 . It is concentrated in codimension2

𝐷 =
(𝑟 − 2) (𝑔 − 1) − 𝑛 +∑𝑛

𝑖=1 𝑘𝑖

𝑟
. (132)

In particular, the class vanishes unless the right-hand side of (132) is an integer, and its integration on
M𝑔,𝑛 vanishes unless 𝐷 = dimM𝑔,𝑛 = 3𝑔 − 3 + 𝑛.

We are primarily interested in indices ranging over [𝑟 ], or [𝑟 − 1] since the class vanishes for index
equal to 𝑟 , but the following property, conjectured by Jarvis–Kimura–Vaintrob [JKV01, Descent axiom
1.9], explains the appearance of the 𝑟 -fold factorial in all our formulas, see also [Chi08, Lemma 4.2.8].

Lemma 7.11. [PV01, Proposition 5.1] Let 𝑔, 𝑛, 𝑘1, . . . , 𝑘𝑛 ≥ 0 be integers such that 2𝑔 − 2 + 𝑛 > 0, and
decompose 𝑘𝑖 = 𝑑𝑖𝑟 + 𝑎𝑖 with 𝑎𝑖 ∈ [𝑟 ] and 𝑑𝑖 ≥ 0. We have

𝑤
𝑟spin
𝑔,𝑛 (𝑘1, . . . , 𝑘𝑛) = 𝑤

𝑟spin
𝑔,𝑛 (𝑎1, . . . , 𝑎𝑛)

𝑛∏
𝑖=1

𝑟−𝑑𝑖 (𝑘 − 𝑟 )!(𝑟 )𝜓𝑑𝑖
𝑖
.

This formula is consistent with the case 𝑘 ∈ [𝑟 ] due to the initial condition in the denition (120) of
the 𝑟 -fold factorial.

Remark 7.12. Witten’s class can be interpreted as a cohomological eld theory in the following way:
its vector space 𝑉 = 𝑉 𝑟spin has a basis (𝑒𝑖 )𝑟−1𝑖=1 and we dene for 𝑎1, . . . , 𝑎𝑛 ∈ [𝑟 − 1]

𝑊
𝑟spin
𝑔,𝑛 (𝑒𝑎1 ⊗ · · · ⊗ 𝑒𝑎𝑛 ) ≔ 𝑤

𝑟spin
𝑔,𝑛 (𝑎1, . . . , 𝑎𝑛) ∈ 𝐶𝐻 ∗ (M𝑔,𝑛) .

𝑉 𝑟spin is equipped with product and multiplication(
𝑒𝑎

�� 𝑒𝑏 ) = 𝛿𝑎+𝑏,𝑟 , (
𝑒𝑎1 • 𝑒𝑎2

�� 𝑒𝑎3 ) =𝑊0,3 (𝑒𝑎1 ⊗ 𝑒𝑎2 ⊗ 𝑒𝑎3 ) = 𝛿𝑎1+𝑎2+𝑎3,𝑟+1 .

We dene the partition function of the 𝑟 -spin theory by

𝑍 𝑟spin [(𝑥𝑘 )𝑘>0]
= exp

©«
∑︁
𝑔,𝑛∈N

2𝑔−2+𝑛>0

ℏ𝑔−1

𝑛!

∑︁
𝑘1,...,𝑘𝑛>0

( ∫
M𝑔,𝑛

𝑤
𝑟spin
𝑔,𝑛 (𝑘1, . . . , 𝑘𝑛)

) 𝑛∏
𝑖=1

𝑟 b
𝑘𝑖
𝑟
c𝑘𝑖𝑥𝑘𝑖

ª®®®¬
= exp

©«
∑︁
𝑔,𝑛∈N

2𝑔−2+𝑛>0

ℏ𝑔−1

𝑛!

∑︁
𝑎1,...,𝑎𝑛 ∈[𝑟−1]
𝑑1,...,𝑑𝑛≥0

( ∫
M𝑔,𝑛

𝑤
𝑟spin
𝑔,𝑛 (𝑎1, . . . , 𝑎𝑛)

𝑛∏
𝑖=1

𝜓
𝑑𝑖
𝑖

) 𝑛∏
𝑖=1
(𝑑𝑖𝑟 + 𝑎𝑖 )!(𝑟 ) 𝑥𝑑𝑖𝑟+𝑎𝑖

ª®®®¬ ,
where we took into account the dimension constraint (132) to get the second line. Due to the afore-
mentioned vanishing, it is independent of the times with indices divisible by 𝑟 . 𝑍 𝑟spin was identied in
[FSZ10] with the tau function for the 𝑟 -KdV hierarchy. It is also known that 𝑍 𝑟spin satises𝑊 (𝔤𝔩𝑟 )-
constraints – see [BBCCN18] for the history of this result. From there, Milanov proved in [Mil16] that
𝑍 𝑟spin is the partition function of the Airy structure of Theorem 2.10 with (𝑟, 𝑠) = (𝑟, 𝑟 + 1), as well as
the topological recursion à la Bouchard–Eynard [BE13] for the associated correlators:

𝜔
𝑟spin
𝑔,𝑛 (𝜁1, . . . , 𝜁𝑛) =

∑︁
𝑎1,...,𝑎𝑛 ∈[𝑟−1]
𝑑1,...,𝑑𝑛≥0

( ∫
M𝑔,𝑛

𝑤𝑔,𝑛 (𝑎1, . . . , 𝑎𝑛)
𝑛∏
𝑖=1

𝜓
𝑑𝑖
𝑖

) 𝑛∏
𝑖=1

(𝑑𝑖𝑟 + 𝑎𝑖 )!(𝑟 ) d𝜁𝑖
𝜁
𝑑𝑟𝑖+𝑎𝑖+1
𝑖

. (133)

This result was apparently also obtained by Bouchard and Eynard in an unpublished draft, and appeared
in [DNOPS19] in a form closer to the one we state here.

2The notion of codimension for Chow classes refers to homology. Therefore, when the Chow class can be realised by a
cohomology class, this codimension is twice the cohomological degree.
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Theorem 7.13. The correlators 𝝎𝑟spin are computed by the topological recursion for the spectral curve
(without crosscap)

𝑥 (𝜁 ) = 𝜁 𝑟 , 𝑦 (𝜁 ) = −𝜁
𝑟
, 𝜔0,2 (𝜁1, 𝜁2) =

d𝜁1d𝜁2
(𝜁1 − 𝜁2)2

. (134)

Proof. We start from [DNOPS19, Theorem 7.3] which shows that the topological recursion for the
spectral curve

𝑥 (𝑧) = 𝑧𝑟 , 𝑦 (𝑧) = 𝑧, 𝜔0,2 (𝑧1, 𝑧2) =
d𝑧1d𝑧2
(𝑧1 − 𝑧2)2

(135)

yields ∑︁
𝑎1,...,𝑎𝑛 ∈[𝑟−1]
𝑑1,...,𝑑𝑛≥0

(−𝑟 )2−2𝑔−𝑛
( ∫
M𝑔,𝑛

𝑤
𝑟spin
𝑔,𝑛 (𝑎1, . . . , 𝑎𝑛)

𝑛∏
𝑖=1

𝜓
𝑑𝑖
𝑖

) 𝑛∏
𝑖=1

(𝑑𝑖𝑟 + 𝑎𝑖 )!(𝑟 ) d𝑧𝑖
𝑧
𝑑𝑟𝑖+𝑎𝑖+1
𝑖

. (136)

The spectral curve (134) can be obtained from (135) by multiplying 𝑦 by − 1
𝑟
. This multiplies (136) by

(−𝑟 )2𝑔−2+𝑛 . So the factors of 𝑟 cancel and we indeed obtain the correlators 𝜔𝑟spin
𝑔,𝑛 (𝜁1, . . . , 𝜁𝑛). �

7.4 Deformations on Witten 𝑟 -spin classes

We now recall well-known actions on family of classes, originating from the work of Givental. As
our focus is not on cohomological eld theories, some of the actions we allow may not preserve this
property and do not belong stricto sensu to the Givental group. See e.g. [Sha09; Tel12; PPZ15] for
more background.

7.4.1 Translations

Given a formal series T(𝑢) ∈ 𝑢𝑉 𝑟spinÈ𝑢É, we can dene a new family of Chow classes[
T̂ ·𝑊 𝑟spin]

𝑔,𝑛
: (𝑉 𝑟spin)⊗𝑛 → 𝐶𝐻 ∗ (M𝑔,𝑛) .

We rst decompose
T(𝑢) =

∑︁
𝑑≥1

𝑎∈[𝑟−1]

T𝑟𝑑+𝑎 𝑒𝑎𝑢𝑑

and assume that T𝑟+1 ≠ 1. Then we introduce

T̃(𝑢) B T(𝑢) − T𝑟+1𝑒1𝑢
1 − T𝑟+1

=
∑︁
𝑑≥1

𝑎∈[𝑟−1]
(𝑑,𝑎)≠(1,1)

T𝑟𝑑+𝑎
1 − T𝑟+1

𝑒𝑎 𝑢
𝑑 ,

and set [
T̂ ·𝑊 𝑟spin

𝑔,𝑛

]
(−) =

∑︁
𝑚≥0

1
𝑚!
(𝜋𝑚)∗𝑊 𝑟spin

𝑔,𝑛+𝑚
(
− ⊗T̃(𝜓𝑛+1) ⊗ · · · ⊗ T̃(𝜓𝑛+𝑚)

)
,

where 𝜋𝑚 : M𝑔,𝑛+𝑚 →M𝑔,𝑛 is the forgetful morphism. This denition is well-posed, i.e. the sum has
nitely many non-zero terms. Indeed, if we evaluate on

⊗𝑛

𝑖=1 𝑒𝑎𝑖 , the codimension (after pushforward)
of the summand proportional to

∏𝑚
𝑗=1 T𝑑 𝑗𝑟+𝑏 𝑗

with 𝑑 𝑗𝑟 + 𝑏 𝑗 ≥ 𝑟 + 2 is

1
𝑟

(
(𝑔 − 1) (𝑟 − 2) − (𝑛 +𝑚) +

𝑛∑︁
𝑖=1

𝑎𝑖 +
𝑚∑︁
𝑗=1
(𝑑 𝑗𝑟 + 𝑏 𝑗 )

)
−𝑚 ≥ 1

𝑟

(
(𝑔 − 1) (𝑟 − 2) − 𝑛 +

𝑛∑︁
𝑖=1

𝑎𝑖

)
+ 𝑚
𝑟
,

which for xed 𝑔, 𝑛, 𝑎1, . . . , 𝑎𝑛 becomes larger than dimM𝑔,𝑛 = 3𝑔 − 3 + 𝑛 for𝑚 large enough, forcing
this summand to vanish. The coecient T𝑟+1 plays a special role, which reects the dilaton equation

(𝑝1)∗
(
𝑤
𝑟spin
𝑔,𝑛+1 (𝑎1, . . . , 𝑎𝑛, 1) ·𝜓𝑛+1

)
= (2𝑔 − 2 + 𝑛)𝑤𝑟spin

𝑔,𝑛 (𝑎1, . . . , 𝑎𝑛) .

The change from T to T̃ reects this.
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7.4.2 Sums over stable graphs

Let now 𝑉 be a nite-dimensional vector space and consider a family of classes

Ω𝑔,𝑛 : 𝑉 ⊗𝑛 → 𝐶𝐻 ∗ (M𝑔,𝑛), 𝑔, 𝑛 ∈ N, 2𝑔 − 2 + 𝑛 > 0 .

Given a formal power series B(𝑢1, 𝑢2) ∈ 𝑉 ⊗2È𝑢1, 𝑢2É, we can dene a new such family
[
B̂ · Ω𝑔,𝑛

]
𝑔,𝑛

by
sums over stable graphs.

Let G𝑔,𝑛 be the set of stable graphs of type (𝑔, 𝑛). For a vertex v in a stable graph, we denote ℎ(v)
the genus and 𝑘 (v) the valency.[

B̂ · Ω
]
𝑔,𝑛

=
∑︁

Γ∈G𝑔,𝑛

1
|Aut Γ |𝜂Γ (𝜄Γ)∗

[ ∏
v∈Vert(Γ)

Ωℎ (v),𝑘 (v)
∏

{e,e′ }∈Edge(Γ)
B(𝜓e,𝜓e′)

]
,

where 𝜄Γ :
∏

𝑣∈Vert(Γ)Mℎ (𝑣),𝑘 (𝑣) →M𝑔,𝑛 is the natural inclusion of the boundary stratum associated
to Γ. To read this formula, half-edges label the punctures on the curves whose moduli spaces sit at the
vertices. So, we have𝜓 -classes𝜓e,𝜓e′ associated to an edge {e, e′}, and for each half-edge there is a
copy of 𝑉 ∗ coming from the vertex it starts from, and a copy of 𝑉 coming from the contribution of the
edge it belongs to. The symbol 𝜂Γ indicates that we pair them in the natural way. This denition is
well-posed because the dimension of the moduli spaces at the vertices is smaller than the one ofM𝑔,𝑛 ,
so that only nitely many powers of𝜓 -classes can contribute in the sum.

Remark 7.14. This diers slightly from the so-called 𝑅-action in Givental formalism, by the fact that
we do not decorate leaves of the stable graph, and we do not assume that B has a factorisation property
in terms of an 𝑅-matrix in the style of (125).

7.5 Intersection theory for regularly admissible spectral curves

Let S = (𝐶, 𝑥, 𝑦, 𝜔0,2) be a regularly admissible spectral curve equipped with a fundamental bidif-
ferential of the second kind. In particular, 𝐶 must be smooth and we can write 𝐶 and 𝔞 instead of 𝐶
and �̃�, respectively. In this context, as in Denition 7.9 we rather take

𝑉 =
⊕
𝛼 ∈𝔞

𝑉 𝑟𝛼 spin .

This amounts to set 𝑒𝛼,𝑟𝛼 = 0 in all subsequent formulas.
Following Denition 7.5 we have a generating series

T(𝑢) B
(∑︁
𝛼 ∈𝔞

𝑒𝛼,1𝑢

)
+ 𝔏+tot (𝜔0,1)

=
∑︁
𝛼 ∈𝔞

(
𝑒𝛼,1𝑢 +

∑︁
𝑘>0
(𝑘 − 𝑟𝛼 )!(𝑟𝛼 ) 𝐹0,1

[
𝛼
−𝑘

]
𝑒
𝛼,𝑘
𝑢𝑘

)
C

∑︁
𝛼 ∈𝔞

∑︁
𝑘>0

T𝛼,𝑘 𝑒𝛼,𝑘 𝑢
𝑘 .

(137)

Equivalently, the denition of T means that we have the expansion

Loc𝛼 (𝑦 − 𝑦 (𝛼)) = −
𝜁

𝑟𝛼
+

∑︁
𝑘>0

𝑘!(𝑟𝛼 )T𝛼,𝑘+𝑟𝛼
𝑟𝛼

𝜁𝑘d𝜁

when 𝑧 → 𝛼 in the local coordinate such that 𝑥 = 𝑥 (𝛼) +𝜁 𝑟𝛼 . Due to the regularly admissible condition,
we indeed have T(𝑢) ∈ O(𝑢) and

T𝛼,𝑟𝛼+1 = 1 + 𝐹0,1
[ 𝛼
−(𝑟𝛼+1)

]
≠ 1 ,

so we can use it to act on Witten 𝑟𝛼 -spin class. Recall that we have a second generating series B(𝑢, 𝑣)
from Denition 7.6.
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Denition 7.15. We let these generating series act on the direct sum of Witten classes to dene

ΩS𝑔,𝑛 B

[
B̂T̂ ·

(⊕
𝛼 ∈𝔞

𝑊 𝑟𝛼 spin
)]

𝑔,𝑛

: 𝑉 ⊗𝑛 → 𝐶𝐻 ∗ (M𝑔,𝑛) .

Theorem 7.16. IfS = (𝐶, 𝑥, 𝑦, 𝜔0,2) is a regularly admissible spectral curve equipped with a fundamental
bidierential of the second kind 𝜔0,2 and zero crosscap form, then for 2𝑔 − 2 + 𝑛 > 0

(𝔏−tot)⊗𝑛 (𝜔𝑔,𝑛) =
∫
M𝑔,𝑛

ΩS𝑔,𝑛∏𝑛
𝑖=1 (1 − 𝜖𝑖𝜓𝑖 )

,

where 𝜖𝑖 is the variable in the 𝑖th Laplace transform.

Proof. The spectral curve

𝑥0
(
𝛼
𝑧

)
= 𝑧𝑟𝛼 , 𝑦0

(
𝛼
𝑧

)
= −𝑧

𝑟
, 𝜔0,2

( 𝛼1 𝛼2
𝑧1 𝑧2

)
=
𝛿𝛼1,𝛼2d𝑧1d𝑧2
(𝑧1 − 𝑧2)2

has T = 0 and B = 0, hence ΩS =
⊕

𝛼 ∈𝔞𝑊
𝑟𝛼 spin
𝑔,𝑛 . It is obtained by taking independent copies of (134)

indexed by 𝛼 ∈ 𝔞. So, its correlators equal to (133), that is

𝜔0
𝑔,𝑛

( 𝛼1 · · · 𝛼𝑛
𝑧1 · · · 𝑧𝑛

)
=

∑︁
𝑑1,...,𝑑𝑛≥0
𝑙𝑖 ∈[𝑟𝛼𝑖 ]

( ∫
M𝑔,𝑛

𝑊 0
𝑔,𝑛

(
⊗𝑛𝑖=1 𝑒𝛼𝑖 ,𝑙𝑖

) 𝑛∏
𝑖=1

𝜓
𝑑𝑖
𝑖

) 𝑛∏
𝑖=1

(𝑑𝑖𝑟𝛼𝑖 + 𝑙𝑖 )!(𝑟𝛼𝑖 ) d𝑧𝑖
𝑧
𝑑𝑖𝑟𝛼𝑖 +𝑙𝑖+1
𝑖

, (138)

where𝑊 0
𝑔,𝑛 =

⊕
𝛼 ∈𝔞𝑊

𝑟𝛼 spin. Applying
⊗𝑛

𝑖=1𝔏
−
𝛼𝑖

to Equation (138) cancels the factorials and replaces
𝑧−(𝑑𝑖𝑟𝛼𝑖 +𝑙𝑖+1)d𝑧 with 𝑒∗

𝛼𝑖 ,𝑙𝑖
𝜖𝑑𝑖 . The sum over 𝑑𝑖 can then be performed and this entails the claim in this

special case.
Applying Theorem 5.23 to the special case, let 𝑍0 be the partition function of the Airy structure

corresponding this special case. Its coecients are

𝐹 0𝑔,𝑛
[ 𝛼1 · · · 𝛼𝑛
𝑘1 · · · 𝑘𝑛

]
B

( ∫
M𝑔,𝑛

𝑊𝑔,𝑛

(
⊗𝑛𝑖=1 𝑒𝛼𝑖 ,𝑘𝑖

) 𝑛∏
𝑖=1

𝜓
𝑘𝑖
𝑖

) 𝑛∏
𝑖=1

𝑘𝑖 !(𝑟𝛼𝑖 ) . (139)

It corresponds to 𝐹 00,1
[ 𝛼
−(𝑟𝛼+1)

]
= −1.

Applying now Theorem 5.23 to a general regularly admissible spectral curve, the partition function
of the corresponding Airy structure is

𝑍 = exp
©«
1
2ℏ

∑︁
𝛼,𝛽∈𝔞
𝑘,𝑙>0

𝐹0,2
[
𝛼 𝛽

−𝑘 −𝑙
] 𝐽𝛼

𝑘
𝐽
𝛽

𝑙

𝑘 𝑙

ª®®®¬ · 𝑍1, 𝑍1 = exp
©«
1
ℏ

∑︁
𝛼 ∈𝔞
𝑘>0

(
𝐹0,1

[
𝛼
−𝑘

]
+ 𝛿𝑘,𝑟𝛼+1

) 𝐽𝛼
𝑘

𝑘

ª®®¬ · 𝑍0 .

The operation taking 𝑍0 to 𝑍1 is the shift of times:

𝑥𝛼,𝑘 → 𝑥𝛼,𝑘 +
𝐹0,1

[
𝛼
−𝑘

]
+ 𝛿𝑘,𝑟𝛼+1
𝑘

= 𝑥𝛼,𝑘 +
T𝛼,𝑘
𝑘!(𝑟𝛼 )

,

taking into account (137). In terms of the coecients 𝐹 1𝑔,𝑛 of 𝑍1, we get

𝐹 1𝑔,𝑛
[ 𝛼1 · · · 𝛼𝑛
𝑘1 · · · 𝑘𝑛

]
=

∑︁
𝑚≥0

1
𝑚!

∑︁
𝛽1,...,𝛽𝑛 ∈𝔞
𝑙1,...,𝑙𝑚>0

𝐹 0𝑔,𝑛+𝑚
[
𝛼1 · · · 𝛼𝑛 𝛽1 · · · 𝛽𝑚
𝑘1 · · · 𝑘𝑛 𝑙1 · · · 𝑙𝑚

] 𝑚∏
𝑖=1

T𝛽𝑖 ,𝑙𝑖
𝑙𝑖 !(𝑟𝛽𝑖 )

=

( ∫
M𝑔,𝑛

[
T̂ ·𝑊 0]

𝑔,𝑛

(
⊗𝑛𝑖=1 𝑒𝛼𝑖 ,𝑘𝑖

) 𝑛∏
𝑖=1

𝜓
𝑘𝑖
𝑖

) 𝑛∏
𝑖=1

𝑘𝑖 !(𝑟𝛼𝑖 )

by using (139) and comparing with Section 7.4.1. Note the cancellation of the factorials that was the
motivation for our denition of T in (137). Applying 𝔏−tot to the corresponding correlators kills the
remaining factorials, we would prove the desired formula in the case B = 0.

For general B we should still take 𝑍1 to 𝑍 , and this amounts at the level of coecients to summing
over stable graphs. Comparing with Section 7.4.2, one can check in a similar way that the factorials
completely disappear, so that the sum over 𝑑𝑖 become the geometric series in the Laplace variable
𝜖𝑖 . �
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7.6 Intersection theory for smooth admissible spectral curves

7.6.1 The conjectural (𝑟, 𝑠) classes
The basic case of irregularly admissible smooth spectral curves with one ramication point is

𝑥 = 𝑧𝑟 , 𝑦 = −𝑧
𝑠−𝑟

𝑟
, 𝜔0,2 (𝑧1, 𝑧2) =

d𝑧1d𝑧2
(𝑧1 − 𝑧2)2

,

with 𝑟 ≥ 2, 𝑠 ∈ [𝑟 − 1] and 𝑟 = ±1 mod 𝑠 . It correspond to the Airy structures of Theorem 2.10, already
obtained in [BBCCN18]. The coecients of its partition function have the following basic properties
from corollary 2.16 and Proposition 6.1:
(𝑖) Homogeneity: 𝐹𝑔,𝑛 [𝑝1, . . . , 𝑝𝑛] = 0 unless we have

∑𝑛
𝑚=1 𝑝𝑚 = 𝑠 (2𝑔 − 2 + 𝑛).

(𝑖𝑖) Dilaton equation: 𝐹𝑔,𝑛+1 [𝑠, 𝑝1, . . . , 𝑝𝑛] = 𝑠 (2𝑔 − 2 + 𝑛)𝐹𝑔,𝑛 [𝑝1, . . . , 𝑝𝑛] for 2𝑔 − 2 + 𝑛 > 0.
(𝑖𝑖𝑖) Special values:

𝐹1,1 [𝑝] =
𝑟 2 − 1
24

𝛿𝑝,𝑠 ,

𝐹0,3 [𝑝1, 𝑝2, 𝑝3] = 𝑐 𝑝1𝑝2𝑝3𝛿𝑝1+𝑝2+𝑝3,𝑠 ,

where 𝑐 is as in Equation (85).
(𝑖𝑣) If 𝑠 = 1, then 𝐹0,𝑛 = 0 for any 𝑛 ≥ 3. Indeed, as 𝑐 = 0 in this case, we have 𝐹0,3 = 0 and as it is

the only initial data needed for topological recursion (32) in genus 0, all the genus 0 sector
vanishes.

Remark 7.17. There is no string equation, as the operator 𝐻𝑖=2,𝑘=−1 is not part of the Airy structure.

Mimicking Theorem 7.13 and taking into account these properties, we are led to propose the
following conjecture – in a slightly more precise form than [BBCCN18, Section 6.2].

Conjecture 7.18. For each 𝑟 ≥ 2 and 𝑠 ∈ [𝑟 − 1] such that 𝑟 = ±1 mod 𝑠 , there exists cohomology
classes𝑤 (𝑟,𝑠)𝑔,𝑛 (𝑎1, . . . , 𝑎𝑛) ∈ 𝐶𝐻 ∗ (M𝑔,𝑛) indexed by 𝑎𝑖 ∈ [𝑟 ] and 𝑔, 𝑛 ∈ N such that 2𝑔 − 2 +𝑛 > 0, so that
(𝑜) for any 𝑑𝑖 ≥ 0

𝐹𝑔,𝑛 [𝑑1𝑟 + 𝑎1, . . . , 𝑑𝑛𝑟 + 𝑎𝑛] =
𝑛∏
𝑖=1
(𝑑𝑖𝑟 + 𝑎𝑖 )!(𝑟 )

∫
M𝑔,𝑛

𝑤
(𝑟,𝑠)
𝑔,𝑛 (𝑎1, . . . , 𝑎𝑛)

𝑛∏
𝑖=1

𝜓
𝑑𝑖
𝑖
. (140)

(𝑖) 𝑤 (𝑟,𝑠)𝑔,𝑛 (a) has pure Chow codimension

2
(∑𝑛

𝑖=1 𝑎𝑖 − 𝑠 (2𝑔 − 2 + 𝑛)
𝑟

+ (3𝑔 − 3 + 𝑛)
)
.

(𝑖𝑖) denoting 𝜋 : M𝑔,𝑛+1 →M𝑔,𝑛 the forgetful morphism, we have the dilaton equation

𝜓𝑛+1𝜋
∗ (𝑤 (𝑟,𝑠)𝑔,𝑛 (a)

)
= 𝑤

(𝑟,𝑠)
𝑔,𝑛+1 (𝑠, a) . (141)

(𝑖𝑖𝑖) we have the special values

𝑤
(𝑟,𝑠)
0,3 (𝑎1, 𝑎2, 𝑎3) = 𝑐𝛿𝑎1+𝑎2+𝑎3,𝑠1 ∈ 𝐻

0 (M0,3) ,

𝑤
(𝑟,𝑠)
1,1 (𝑎) = 𝛿𝑎,𝑠

𝑟 2 − 1
𝑠

𝜓1 ∈ 𝐻 2 (M1,1) .

(𝑖𝑣) 𝑤 (𝑟,𝑠=1)0,𝑛 = 0 for all 𝑛.

The conjecture is proved in the case (𝑟, 𝑠) = (2, 1) by Norbury [Nor17] where 𝑤 (𝑟,𝑠)𝑔,𝑛 in fact exists
in cohomology. In that case there is a single index 𝑎 = 1, and 𝑤 (2,1)𝑔,𝑛 = Θ𝑔,𝑛 has pure cohomological
degree 2(2𝑔 − 2 + 𝑛) and is constructed by pushforward from the moduli space of 𝑟 -spin curves.

Assuming Conjecture 7.18 holds, we will deform (140) to generalise Theorem 7.16 for any smooth
admissible spectral curve. Before this, we need to discuss action of translation and sums over stable
graphs on the (𝑟, 𝑠) class.
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7.6.2 Deformation of the (𝑟, 𝑠) classes
We introduce

𝑊
(𝑟,𝑠)
𝑔,𝑛 : (𝑉

𝑟spin)⊗𝑛 −→ 𝐻 ∗ (M𝑔,𝑛)⊗𝑛

𝑖=1 𝑒𝑎𝑖 ↦−→ 𝑤
(𝑟,𝑠)
𝑔,𝑛 (𝑎1, . . . , 𝑎𝑛)

.

If we have a formal series T(𝑢) ∈ 𝑉 𝑟spin [[𝑢]], we will see that under certain conditions we can dene
analogously to Section 7.4.1 a new family of cohomology classes[

T̂𝑊 (𝑟,𝑠) ]
𝑔,𝑛

: (𝑉 𝑟spin)⊗𝑛 → 𝐻 ∗ (M𝑔,𝑛) .
Assuming T𝑠 ≠ 1, this is done in terms of the modied generating series

T̃(𝑢) B T(𝑢) − T𝑠𝑒𝑠
1 − T𝑠

=
∑︁
𝑑≥0

𝑎∈[𝑟−1]
𝑟𝑑+𝑎>𝑠

T𝑟𝑑+𝑎𝑒𝑎𝑢𝑑

1 − T𝑠
,

via the formula [
T̂𝑊 (𝑟,𝑠) ]

𝑔,𝑛
(−) =

∑︁
𝑚≥0

1
𝑚!
(𝜋𝑚)∗𝑊 (𝑟,𝑠)

𝑔,𝑛+𝑚
(
− ⊗T̃(𝜓𝑛+1) ⊗ · · · ⊗ T̃(𝜓𝑛+𝑚)

)
, (142)

where 𝜋𝑚 : M𝑔,𝑛+𝑚 →M𝑔,𝑛 is the forgetful morphism. As in (7.4.1), the handling of T𝑠 is tailored to
be compatible with the dilaton equation (141).

Lemma 7.19. Assume that T𝑠 ≠ 1 and T𝑎 = 0 for 𝑎 < 𝑠 . Then Equation (142) is well-dened, i.e. for any
evaluation on an element of (𝑉 𝑟spin)⊗𝑛 the sum on the right-hand side is nite.

Proof. The argument is similar to Section 7.4.1. If we evaluate on
⊗𝑛

𝑖=1 𝑒𝑎𝑖 , due to (𝑖) the complex
codimension of the summand proportional to

∏𝑚
𝑗=1 T𝑑 𝑗𝑟+𝑏 𝑗

with 𝑑 𝑗𝑟 + 𝑏 𝑗 ≥ 𝑠 + 1 is

1
𝑟

(
𝑠 (2𝑔 − 2 + 𝑛 +𝑚) −

𝑛∑︁
𝑖=1

𝑎𝑖 −
𝑚∑︁
𝑗=1
(𝑑 𝑗𝑟 + 𝑏 𝑗 )

)
≤ 1
𝑟

(
𝑠 (2𝑔 − 2 + 𝑛) −

𝑛∑︁
𝑖=1

𝑎𝑖 −𝑚
)
,

which for xed 𝑎1, . . . , 𝑎𝑛 is negative for𝑚 is large enough, forcing this summand to vanish. �

On the other hand, the action of any B ∈ 𝑉 𝑟spin [[𝑢, 𝑣]] via sums over stable graphs is well-dened
since it always involves nite sums.

7.6.3 Intersection theory for admissible smooth spectral curves

Let S = (𝐶, 𝑥, 𝑦, 𝜔0,2) be an admissible smooth spectral curve equipped with a fundamental bi-
dierential of the second kind. Recall from Section 7.2 the denition of the vector space 𝑉 and the
generating series T and B that can be associated to S.

Denition 7.20. We let them act on the direct sum of (𝑟𝛼 , 𝑠𝛼 )-classes to dene

ΩS𝑔,𝑛 =

[
B̂T̂

(⊕
𝛼 ∈𝔞

𝑊 (𝑟𝛼 ,𝑠𝛼 )
)]

𝑔,𝑛

: 𝑉 ⊗𝑛 → 𝐶𝐻 ∗ (M𝑔,𝑛) .

Here we suppose the (𝑟, 𝑠) class is a Chow class to put them on the same footing as the Witten
𝑟 -spin classes, and denote𝑊 (𝑟,𝑟+1) B𝑊 𝑟spin for uniformity. The admissibility condition for irregular
ramication points matches the condition of Lemma 7.19 so the denition is well-posed.

Theorem 7.21. Assume Conjecture 7.18 holds, and letS = (𝐶, 𝑥, 𝑦, 𝜔0,2) be an admissible smooth spectral
curve equipped with a fundamental bidierential of the second kind 𝜔0,2 and zero crosscap form. Then,
for 2𝑔 − 2 + 𝑛 > 0

(𝔏−tot)⊗𝑛 (𝜔𝑔,𝑛) =
∫
M𝑔,𝑛

ΩS𝑔,𝑛∏𝑛
𝑖=1 (1 − 𝜖𝑖𝜓𝑖 )

,

where 𝜖𝑖 is the variable of the 𝑖th Laplace transform.

Proof. The proof, which relies on the correspondence of Theorem 5.23 – already proved in [BBCCN18]
– is similar to that of Theorem 7.16, so we omit the details: the regular ramication points are treated
by Theorem 7.16 itself, and the irregular ramication points using Section 7.6.2. �
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8 Open intersection numbers
In this section, we shall propose precise conjectures about open 𝑟 -spin intersection numbers using

the partition function of the Airy structure with twist 𝜎 of cycle type (𝑟 − 1, 1) with no dilaton shift
attached to the xed point, as obtained in Theorem 2.11. Before this, we review the relation between
this partition function for 𝑟 = 2 and the open intersection theory, and Safnuk [Saf16]’s topological
recursion for it. The latter has peculiar features related to the reducibility of the spectral curve, our
general approach shines a new light on this. These relations depend on some foundational conjectures
in open intersection theory scattered in the literature and that we make explicit.

8.1 Review of open intersection theory

The enumerative geometry of open Riemann surfaces was developed by Pandharipande–Solomon–
Tessler in genus 0 in [PST15], and its extension to all genera was announced by Solomon and Tessler.
The upshot is that for 𝑔, 𝑛, 𝑏,𝑚 ≥ 0 such that

− 𝜒 B 2𝑔 − 2 + 2𝑛 +𝑚 > 0 , 𝑔 B 2𝑔 + 𝑏 − 1 , (143)
there is a moduli space M𝑔,𝑛;𝑏,𝑚 parametrizing Riemann surfaces of genus 𝑔 with 𝑏 (unlabelled)
boundary components, 𝑛 labelled interior marked points and𝑚 labelled boundary marked points,
equipped with spin structure and a “grading”. It is a real orbifold of dimension

𝐷 B 6𝑔 − 6 + 3𝑏 + 2𝑛 +𝑚 ,
and admits several connected components indexed by the distribution of the boundary marked points
on the boundary components. Note that 𝑔 and 𝜒 are respectively the genus and the Euler characteristic
of the surface doubled along its boundary. This moduli space admits a compacticationM𝑔,𝑛;𝑏,𝑚 on
which one can seek to dene and calculate intersection numbers. Denoting L𝑖 the cotangent line
bundle at the 𝑖th interior marked point, and according to the statement of [ABT17, Theorem 1.1] –
whose proof by Solomon and Tessler has not yet appeared – it is possible to dene〈

𝜏◦
𝑑1
· · · 𝜏◦

𝑑𝑛
(𝜏𝜕0 )𝑚

〉
𝑔,𝑛;𝑏,𝑚 = 21−𝑔−

𝑏+𝑚
2

∫
M𝑔,𝑛;𝑏,𝑚

𝑒

( 𝑛⊕
𝑖=1
L⊕𝑑𝑖
𝑖
, s

)
∈ Q , (144)

whenever 𝑑1, . . . , 𝑑𝑛 ≥ 0 are such that

𝐷 =

𝑛∑︁
𝑖=1

2𝑑𝑖 .

Here, 𝑒 is the Euler class relative to some boundary condition s, and [PST15; ST a] give suitable
boundary conditions so that the number is unambiguously dened.

Remark 8.1. For 𝑏 = 𝑘 = 0, the moduli spaceM𝑔,𝑛;0,0 coincides with the moduli space of spin structures,
which is a (2𝑔 : 1)-cover including a global Z2-orbifold symmetry of the Deligne–Mumford moduli
space of pointed Riemann surfacesM𝑔,𝑛 . Therefore, we recover the usual𝜓 -class intersections〈

𝜏◦
𝑑1
· · · 𝜏◦

𝑑𝑛

〉
𝑔,𝑛;0,0 =

∫
M𝑔,𝑛

𝑛∏
𝑖=1

𝜓
𝑑𝑖
𝑖
, 𝜓𝑖 = 𝑐1 (L𝑖 )

We thank Ran Tessler for his clarication on this point.

It is expected that one can also dene geometrically boundary descendants, that we would like to
denote 〈

𝜏◦
𝑑1
· · · 𝜏◦

𝑑𝑛
𝜏𝜕
𝑘1
· · · 𝜏𝜕

𝑘𝑚

〉
𝑔,𝑛;𝑏,𝑚 ∈ Q ,

where now 𝑑1, . . . , 𝑑𝑛, 𝑘1, . . . , 𝑘𝑚 ≥ 0 satisfy the dimension constraint

𝐷 =

𝑛∑︁
𝑖=1

2𝑑𝑖 +
𝑚∑︁
𝑗=1

2𝑘 𝑗 . (145)

or equivalently

3(2𝑔 − 2 + 𝑛 +𝑚 + 𝑏) =
𝑛∑︁
𝑖=1
(2𝑑𝑖 + 1) +

𝑚∑︁
𝑗=1
(2𝑘 𝑗 + 2) . (146)
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One could then consider the generating series

𝑍 open [𝑄 ; 𝑡◦; 𝑡𝜕] = exp
©«

∑︁
𝑔,𝑏,𝑚,𝑛≥0

𝜒<0

ℏ𝑔−1+
𝑏
2 𝑄𝑏

𝑚!𝑛!
〈
𝜏◦
𝑑1
· · · 𝜏◦

𝑑𝑛
𝜏𝜕
𝑘1
· · · 𝜏𝜕

𝑘𝑚

〉
𝑔,𝑛;𝑏,𝑚

𝑛∏
𝑖=1
(2𝑑𝑖 + 1)!! 𝑡◦𝑑𝑖

𝑚∏
𝑗=1
(2𝑘 𝑗 + 2)!! 𝑡𝜕𝑘 𝑗

ª®®®¬ ,
where 𝑏 is the number determined from 𝑔, 𝑛,𝑚,𝑑𝑖 , 𝑘𝑖 via (145).

A combinatorial model for the intersection numbers (144) – i.e. without boundary descendants –
has been proposed in [ABT17], rening [Tes15] where only their sum over all possible 𝑏s was obtained.
As a consequence, their generating series has a matrix integral description. It turns out this matrix
integral allows naturally for the insertion of extra parameters, thus dening a generating series of the
form

𝑍ABT [
𝑄 ; 𝑡◦; 𝑡𝜕

]
= exp

©«
∑︁

𝑔,𝑏,𝑚,𝑛≥0
𝜒<0

ℏ𝑔−1+
𝑏
2𝑄𝑏

𝑚!𝑛!
〈
𝜏◦
𝑑1
· · · 𝜏◦

𝑑𝑛
𝜏𝜕
𝑘1
· · · 𝜏𝜕

𝑘𝑚

〉ABT
𝑔,𝑛;𝑏,𝑚

𝑛∏
𝑖=1
(2𝑑𝑖 + 1)!! 𝑡◦𝑑𝑖

𝑚∏
𝑗=1
(2𝑘 𝑗 + 2)!! 𝑡𝜕𝑘 𝑗

ª®®®¬ .
We will not need its precise denition, which can be found in [ABT17, Equation 3.14 and Lemma 3.2].

The Kontsevich-Penner matrix model is another important character of the story. It is dened by

ZKP,𝑁 (Λ) =
∫
H𝑁

d𝐻
𝑐Λ,𝑁 ,ℏ

exp
{
ℏ−

1
2Tr

(
𝐻 3

6
− 𝐻

2Λ

2

)} (
det

(
Λ)

det(Λ − 𝐻 )

)𝑄
,

where H𝑁 is the space of hermitian matrices of size 𝑁 and 𝑐Λ,𝑁 ,ℏ is some normalizing constant. It
determines a unique generating series of the form

𝑍KP [𝑄 ; 𝑡◦; 𝑡𝜕] = exp
©«

∑︁
𝑔,𝑏,𝑚,𝑛≥0

𝜒<0

ℏ𝑔−1+
𝑏
2 𝑄𝑏

𝑚!𝑛!
〈
𝜏◦
𝑑1
· · · 𝜏◦

𝑑𝑛
𝜏𝜕
𝑘1
· · · 𝜏𝜕

𝑘𝑚

〉KP
𝑔,𝑛;𝑏,𝑚

𝑛∏
𝑖=1
(2𝑑𝑖 + 1)!! 𝑡◦𝑑𝑖

𝑚∏
𝑗=1
(2𝑘 𝑗 + 2)!! 𝑡𝜕𝑘 𝑗

ª®®®¬
such that for any 𝑁 ≥ 1

ZKP
𝑁 (Λ) = 𝑍KP

[
𝑄 ;

(
𝑡◦
𝑑
=
ℏ

1
2 TrΛ−(2𝑑+1)

2𝑑 + 1

)
𝑑≥0

;
(
𝑡𝜕
𝑘
=
ℏ

1
2 TrΛ−(2𝑘+2)

2𝑘 + 2

)
𝑘≥0

]
.

Remark 8.2. In contrast with the aforementioned works, we have included in our denition of the
generating series a variable ℏ which is redundant because of the dimension constraint (145), and we
have not written separately the contribution of the closed Riemann surfaces (𝑏 = 0). Our denition
can be obtained from [ABT17] by the following substitutions:

𝑁 → 𝑄, 𝐻 → ℏ−
1
6𝐻, Λ→ ℏ−

1
6Λ, 𝑡𝑑 → ℏ

𝑑−1
3 (2𝑑 + 1)!! 𝑡◦

𝑑
, 𝑠𝑘 → ℏ

𝑘
3 −

1
6 (2𝑘 + 2)!! 𝑡𝜕

𝑘
,

under which 𝜏𝑜,𝑒𝑥𝑡
𝑁
→ 𝑍ABT and 𝜏𝑁 → 𝑍KP. Our denition can be obtained from [Ale15] by substituting

there
𝑁 → 𝑄, 𝑇2𝑑+1 → ℏ

𝑑−1
3 𝑡◦2𝑑+1, 𝑇2𝑘+2 → ℏ

𝑘
3 −

1
6 𝑡𝜕

𝑘
.

Finally, note that the denition of the Kontsevich-Penner matrix model of [ABT17] can be obtained
from the one in [Ale15] by the substitution Φ→ Λ − 𝐻 .

It is expected that these three collection of numbers coincide.

Conjecture 8.3. There exists a geometric denition of the open intersection numbers with boundary
descendants, and it is such that 𝑍open = 𝑍ABT, that is〈

𝜏◦
𝑑1
· · · 𝜏◦

𝑑𝑛
𝜏𝜕
𝑘1
· · · 𝜏𝜕

𝑘𝑚
〉ABT
𝑔,𝑛;𝑏,𝑚 =

〈
𝜏◦
𝑑1
· · · 𝜏◦

𝑑𝑛
𝜏𝜕
𝑘1
· · · 𝜏𝜕

𝑘𝑚

〉
𝑔,𝑛;𝑏,𝑚 .

Conjecture 8.4. There exists a geometric denition of the open intersection numbers with boundary
descendants, and it is such that 𝑍open = 𝑍KP, that is〈

𝜏◦
𝑑1
· · · 𝜏◦

𝑑𝑛
𝜏𝜕
𝑘1
· · · 𝜏𝜕

𝑘𝑚
〉KP
𝑔,𝑛;𝑏,𝑚 =

〈
𝜏◦
𝑑1
· · · 𝜏◦

𝑑𝑛
𝜏𝜕
𝑘1
· · · 𝜏𝜕

𝑘𝑚

〉
𝑔,𝑛;𝑏,𝑚 .

Conjecture 8.5. We have 𝑍KP = 𝑍ABT.
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Obviously, any two of the conjectures imply the third one. They are supported by partial results:
• The specialisation of Conjecture 8.3 to 𝑡𝜕

𝑘
= 0 for 𝑘 > 0 is proved in [ABT17] conditionally

to [ABT17, Theorem 1.1] whose proof was announced by Solomon and Tessler but has not
appeared yet. The same specialisation in Conjecture 8.4 was anticipated in [Saf16] and proved
there for 𝑔 = 0, 12 , 1.
• The specialisation of Conjecture 8.5 to 𝑄 = 1 is proved in [Ale15] via integrability techniques
and for 𝑄 = ±1 in [ABT17, Section 4.2] by matrix integral techniques.
• The string and dilaton equations satised by 𝑍ABT and 𝑍KP are the same [ABT17, Section 4.3].

Alexandrov has proposed various collections of dierential operators relevant to the study of the
Kontsevich–Penner model – and therefore to open intersection theory in light of Conjecture 8.4. To
summarise what is relevant for our exposition:

(a) in [Ale15], Alexandrov uses a representation of the 𝔤𝔩1-Heisenberg algebra to construct opera-
tors (�̂�𝑜

𝑘
)𝑘≥0 and (𝑀𝑜

𝑘
)𝑘≥−2 – see Equations (7.4) and (7.14) therein – annihilating the 𝑄 = 1

specialization of 𝑍KP.
(b) in [Saf16], Safnuk introduced a modication of these operators, denoted (�̂�𝑘 )𝑘≥−1 and (𝑀𝑘 )𝑘≥−2

– see Equations (2.9) and (2.10) therein – which still annihilate the 𝑄 = 1 specialization of 𝑍KP.
(c) in [Ale17], Alexandrov uses a twisted representation of the Heisenberg algebra of 𝔤𝔩3 to

construct a free eld representation of𝑊 (𝔰𝔩3) and operators (L̂𝑄

𝑘
)𝑘≥−1 and (M̂𝑄

𝑘
)𝑘≥−2 – see

Equation (72) therein – annihilating 𝑍KP.
All those operators are related by taking (possibly innite) linear combinations, but it turns out

choosing one or the other set of operators aects the structure of the recursion one deduces for 〈· · · 〉KP.
For sake of comparison and completeness, we review in Section 8.2 the denition of the operators in
(𝑎) and (𝑏) and the topological recursion with strange features that Safnuk derived from the operators
in (𝑏). In Section 8.3, we explain that the operators in (𝑐) directly compare to Airy structures for
𝜎 = (12) (3) and thus provide a CEO-like topological recursion, whose structure is more transparent
and more general than [Saf16].

8.2 Review of Safnuk’s recursion

Consider the following representation of the Heisenberg VOA for 𝔤𝔩1

𝐽 (𝑧) =
∑︁
𝑘∈Z

𝐽𝑘

𝑧𝑘+1
, 𝐽𝑘 B


𝜕𝑡𝑘 if 𝑘 > 0
0 if 𝑘 = 0
−𝑘𝑡−𝑘 if 𝑘 < 0

,

and introduce the normal ordered products

𝐿(𝑧) = 1
2
: 𝐽 (𝑧)2 : =

∑︁
𝑘∈Z

𝐿𝑘

𝑧𝑘+2
,

𝑀 (𝑧) = 1
3
: 𝐽 (𝑧)3 : =

∑︁
𝑘∈Z

𝑀𝑘

𝑧𝑘+3
.

These operators form a representation of the𝑊 (𝔰𝔩3)-algebra. The collection of operators mentioned
in (𝑎) are:

�̂�𝑜
𝑘
B 𝐿2𝑘 + (𝑘 + 2) 𝐽2𝑘 − 𝐽2𝑘+3 + 𝛿𝑘,0

( 1
8
+ 3
2

)
,

𝑀𝑜
𝑘
B 𝑀2𝑘 + 2(𝑘 + 3)𝐿2𝑘 − 2𝐿2𝑘+3 − 2(𝑘 + 3) 𝐽2𝑘+3 + 𝐽2𝑘+6 +

( 95
12
+ 6𝑘 + 4

3
𝑘2

)
𝐽2𝑘 +

23
4
𝛿𝑘,0 .

Then Alexandrov proved in [Ale15] that (�̂�𝑜
𝑘
)𝑘≥0 and (𝑀𝑜

𝑘
)𝑘≥−2 annihilate the specialization of 𝑍KP{

�̂�𝑜
𝑘
𝜏1 = 0 𝑘 ≥ 0 ,

�̂�𝑜
𝑘
𝜏1 = 0 𝑘 ≥ −2 .

The collection of modied operators mentioned in (𝑏) read:

�̂�𝑘 B �̂�𝑜
𝑘
, 𝑀𝑘 B −𝑀𝑜

𝑘
+ 2(𝑘 + 2)�̂�𝑜

𝑘
.
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Let us sketch the strategy of Safnuk in [Saf16] – for a better comparison, we set ℏ = 1 till the end of
this paragraph. We rst rewrite these operators. To this end, we change the currents to include as
zero-mode 𝑄 = 1 and a dilaton shift (Safnuk does this later in the computation):

𝐽 (𝑧) B
∑︁
𝑘∈Z

𝐽𝑘

𝑧𝑘+1
, 𝐽𝑘 B 𝐽𝑘 − 𝛿𝑘,−3 + 𝛿𝑘,0 .

Let us also dene, following Safnuk, the dierential operators

D1 B d𝑧
(
− d
d𝑧
+ 1
𝑧

)
; D2 B

(d𝑧)2
2

( d2

d𝑧2
− 3
𝑧

d
d𝑧
+ 3
𝑧2

)
the one-form 𝜂 = −𝑧2d𝑧, and the projection operators

P (𝑖) : CÈ𝑧±1Éd𝑧 → CÈ𝑧−2É𝑧−𝑖d𝑧 𝑖 ∈ {2, 3} .

Then, taking only the parts of the generating series that annihilate 𝑍KP |𝑄=1, we get

J (𝑧) B 𝐽 (𝑧)d𝑧 ,

L(𝑧) B
∑︁
𝑘≥−1

d𝑧
𝑧2𝑘+4

�̂�𝑘 = P (2)
(
1
2𝜂

(
:J 2 : + D1J +

(d𝑧)2
4𝑧2

))
,

M(𝑧) B
∑︁
𝑘≥−2

d𝑧
𝑧2𝑘+7

�̂�𝑘 = P (3)
(
1
3𝜂2

(
:J 3 : − D2J +

3(d𝑧)2
4𝑧2

J
))
.

The last term in the last two lines can be absorbed by dening

J 2 (𝑧) = :J 2 (𝑧) : + (d𝑧)
2

4𝑧2
, J 3 (𝑧) = J (𝑧) · J 2 (𝑧) .

The square of J (𝑧) itself will not be dened due to innite sums, and somehow the denition (8.2)
implements the right operator product expansion from the𝑊 (𝔰𝔩3)-algebra, cf. Equation (19). We then
get the following operators annihilating 𝑍KP |𝑄=1:

L = P (2)
(
1
2𝜂

(
J 2 + D1J

))
, M = P (3)

(
1
3𝜂2

(
J 3 − D2J

))
.

Now, if we write 𝑍KP |𝑄=1 = 𝑒
𝐹 , and commute this through these operators, this gives the equations

0 = P (2)
(
1
2𝜂
𝑒−𝐹

(
J 2 + D1J

)
𝑒𝐹

)
= P (2)

(
1
2𝜂

(
𝑈 2 + D1𝑈

)
· 1

)
,

0 = P (3)
(
1
3𝜂2

𝑒−𝐹
(
J 3 − D2J

)
𝑒𝐹

)
= P (3)

(
1
3𝜂2

(
𝑈 3 − D2𝑈

)
· 1

)
,

where
𝑈 (𝑧) B 𝑒−𝐹J (𝑧)𝑒𝐹 = J (𝑧) + [J (𝑧), 𝐹 ]

is the operator appearing in [Saf16]. In order to recover a spectral curve topological recursion from
this, one should dene

𝛿𝑧 B J− (𝑧) =
∑︁
𝑘≥1

d𝑧
𝑧𝑘+1

𝜕𝑡𝑘 , 𝜔𝑔,𝑛 (𝑧1, . . . , 𝑧𝑛) B 𝛿𝑧1 · · · 𝛿𝑧𝑛𝐹𝑔,𝑛 .

If we also introduce the unstable terms

𝜔0,1 (𝑧) B 𝜂 (𝑧) , 𝜔0,2 = [𝛿1,J2] =
d𝑧1d𝑧2
(𝑧1 − 𝑧2)2

, 𝜔 1
2 ,1
B

d𝑧
𝑧
,

coming respectively from the dilaton shift, the positive part of J (𝑧) and the zero mode 𝐽0 = 1, we see
that

𝑈 (𝑧) = 𝛿𝑧 + 𝜔0,1 (𝑧) + 𝜔 1
2 ,1
(𝑧) + 𝛿−1𝜔0,2 +

∑︁
2𝑔−2+𝑛>0

𝛿𝐹𝑔,𝑛 .

Reinterpreting the projection operators as residues with the recursion kernel results in
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Theorem 8.6 ([Saf16, Theorem 5.3]). The 𝜔𝑔,𝑛 obey a modied topological recursion on the spectral
curve with crosscap form

C, 𝑥 (𝑧) = 𝑧2

2
, 𝑦 (𝑧) = −𝑧 , 𝜔0,2 (𝑧1, 𝑧2) =

d𝑧1d𝑧2
(𝑧1 − 𝑧2)2

, 𝜔 1
2 ,1

=
d𝑧
𝑧

given by

𝜔𝑔,𝑛+1 (𝑧0, 𝑧 [𝑛]) = Res
𝑤=0

(
𝐾 (2) (𝑧0, 𝑤)

(
W ′

𝑔,2,𝑛 (𝑤,𝑤; 𝑧 [𝑛]) + D1𝜔𝑔− 1
2 ,𝑛+1
(𝑤, 𝑧 [𝑛])

)
+ 𝐾 (3) (𝑧0, 𝑤)

(
W ′

𝑔,3,𝑛 (𝑤,𝑤,𝑤; 𝑧 [𝑛]) + D2𝜔𝑔−1,𝑛+1 (𝑤, 𝑧 [𝑛])
))
,

whereW ′ is as in Denition 5.8 and

𝐾 ( 𝑗) (𝑧,𝑤) =
(
(−1) 𝑗

∫ −𝑤

𝜁=0
𝜔0,2 (𝑧, 𝜁 ) −

∫ 𝑤

𝜁=0
𝜔0,2 (𝑧, 𝜁 )

) 1
2 𝑗 (−𝑤2d𝑤) 𝑗−1 .

This form of the topological recursion has some odd features. For one, it is a recursion of order 3,
even though the degree of 𝑥 is only 2. This is also noted by Safnuk, who computes the quantum curve
in [Saf16, Theorem 7.1], and obtains the semi-classical limit 𝑦 (𝑦2 − 2𝑥) = 0. Moreover, the formula
does not include summation over bers of 𝑥 – rather, the variable 𝑤 is inserted several times. Finally,
the operators D𝑗 introduce uncommon derivatives. Safnuk posits that these quirks come from the
reducibility of the curve, but in the next section, we will see this relation is not straightforward.

8.3 Relation to topological recursion

In a previous work, it was shown that the operators in (c), i.e. in [Ale17], coincide, up to a change
of variables, with the reduction to𝑊 (𝔰𝔩3) of an𝑊 (𝔤𝔩3)-Airy structure, leading to the following result.

Theorem 8.7 ([BBCCN18, Proposition 6.3]). 𝑍KP is the partition function of the Airy structure of
Theorem 2.11 with parameters (𝑟1, 𝑠1, 𝑟2, 𝑠2) = (2, 3, 1,∞), 𝑡1 = 1

2 , and 𝑄1 = −𝑄2 = 𝑄 , and change of
variables

𝑡◦
𝑑
= 𝑥12𝑑+1, 𝑡𝜕

𝑘
= 1

2𝑥
1
2𝑘+2 − 𝑥

2
𝑘+1, (𝑑, 𝑘 ≥ 0) .

Thanks to Propositions 5.18 and 5.23, we can now convert this into a CEO-like topological recursion
on the reducible spectral curve consisting of the union of two components intersecting at 𝑧 = 0

𝐶 = 𝐶1 ∪𝐶2 , 𝐶1 :
{
𝑥 (𝑧) = 𝑧2
𝑦 (𝑧) = −𝑧

2
, 𝐶2 :

{
𝑥 (𝑧) = 𝑧
𝑦 (𝑧) = 0 . (147)

According to (81), the suitable denition for the correlators is

𝜔KP
ℎ,𝑛+𝑚

( 1 · · · 1 2 · · · 2
𝑧1 · · · 𝑧𝑛 𝑧𝑛+1 · · · 𝑧𝑛+𝑚

)
=

∑︁
𝑔,𝑏∈N
𝑔+𝑏2 =ℎ

∑︁
𝑁◦t𝑁𝜕=[𝑛]

∑︁
𝑑1,...,𝑑𝑛≥0
𝑘1,...,𝑘𝑚≥0

(−1)𝑚 2−|𝑁𝜕 | 𝑄𝑏

〈 ∏
𝑖∈𝑁◦

𝜏◦
𝑑𝑖

∏
𝑖∈𝑁𝜕

𝜏𝜕
𝑑𝑖

𝑚∏
𝑗=1

𝜏𝜕
𝑘 𝑗

〉KP
𝑔,𝑛;𝑏,𝑚

·
∏
𝑎∈𝑁◦

(2𝑑𝑎 + 1)!! d𝑧𝑎
𝑧
2𝑑𝑎+2
𝑎

∏
𝑎∈𝑁𝜕

(2𝑑𝑎 + 2)!! d𝑧𝑎
𝑧
2𝑑𝑎+3
𝑎

𝑚∏
𝑗=1

(2𝑘 𝑗 + 2)!! d𝑧𝑛+𝑗
𝑧
𝑘 𝑗+1
𝑛+𝑗

,

where the number of boundaries 𝑏 is determined in terms of 𝑔, 𝑛, 𝑑, 𝑘,𝑚 via (145).

Corollary 8.8. For 𝑔 ∈ 1
2N and 𝑛 ≥ 1 such that 2𝑔 − 2 + 𝑛 > 0, 𝜔KP

𝑔,𝑛 is computed by the topological
recursion on the spectral curve (147) equipped with bidierential and crosscap form

𝜔0,2
( 𝜇1 𝜇2
𝑧1 𝑧2

)
= 𝛿𝜇1,𝜇2

d𝑧1d𝑧2
(𝑧1 − 𝑧2)2

, 𝜔 1
2 ,1

(
𝜇
𝑧

)
= (−1)𝜇+1𝑄 d𝑧

𝑧
.

for 𝜇, 𝜇1, 𝜇2 ∈ {1, 2}.
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Several sanity checks of this corollary can be proposed. At𝑄 = 0, the variables 𝑡𝜕 become irrelevant
and 𝑍KP specialises to the Witten-Kontsevich partition function [Wit91; Kon92]

𝑍KP [𝑄 = 0, 𝑡◦, 𝑡•] =
∑︁

𝑔≥0, 𝑛≥1
2𝑔−2+𝑛>0

ℏ𝑔−1

𝑛!

( ∫
M𝑔,𝑛

𝑛∏
𝑖=1

𝜓
𝑑𝑖
𝑖

) 𝑛∏
𝑖=1
(2𝑑𝑖 + 1)!! 𝑡◦𝑑𝑖 . (148)

This can also be checked on the topological recursion side. Indeed, Theorem 7.13 for 𝑟 = 2 states that
the topological recursion for the spectral curve

𝑥 (𝜁 ) = 𝜁 2 , 𝑦 (𝜁 ) = −𝜁
2
, 𝜔0,2 (𝜁1, 𝜁2) =

d𝜁1d𝜁2
(𝜁1 − 𝜁2)2

(149)

produces the (𝑔, 𝑛)-correlator for 2𝑔 − 2 + 𝑛 > 0:

𝜔𝑔,𝑛 (𝜁1, . . . , 𝜁𝑛) =
∑︁

𝑑1,...,𝑑𝑛≥0

( ∫
M𝑔,𝑛

𝑛∏
𝑖=1

𝜓
𝑑𝑖
𝑖

) 𝑛∏
𝑖=1

(2𝑑𝑖 + 1)!!d𝜁𝑖
𝜁
2𝑑𝑖+2
𝑖

.

Note that this case was proved before with a slightly dierent normalisation by Eynard–Orantin
[EO07], see also [Eyn16].

At𝑄 = 0we are in position to apply Proposition 5.24, showing that the second component decouples,
i.e. 𝜔KP

𝑔,𝑛

( 1 · · · 1
𝑧1 · · · 𝑧𝑛

) ��
𝑄=0 coincides with the correlators of (149). So, the correlators of the spectral curve

(147) at 𝑄 = 0 agree with the correlators associated to (148), as predicted by the corollary.

8.4 Review of open 𝑟 -spin theory

It is expected that there exists an open analog of Witten 𝑟 -spin theory, related to a spaceM𝑟spin
𝑔,𝑛;𝑏,𝑚 ,

which specialises to the open theory of Section 8.1 for 𝑟 = 2. It would give for each (𝑔, 𝑛, 𝑏,𝑚) such
that −𝜒 > 0 a collection of numbers〈

𝜏◦
𝑑1
(𝑎1) · · · 𝜏◦𝑑𝑛 (𝑎𝑛)𝜏

𝜕
𝑘1
· · · 𝜏𝜕

𝑘𝑚

〉𝑟spin
𝑔,𝑛;𝑏,𝑚 ∈ Q

indexed by 𝑑𝑖 , 𝑘𝑖 ≥ 0 and 𝑎𝑖 ∈ [𝑟 ], which we can collect in a generating series:

𝑍 open 𝑟spin [𝑄 ; 𝑡◦; 𝑡𝜕]
= exp

©«
∑︁

𝑔,𝑏,𝑛,𝑚≥0
−𝜒>0

∑︁ ℏ𝑔−1+
𝑏
2𝑄𝑏

𝑚!𝑛!

∑︁
𝑑1,...,𝑑𝑛≥0
𝑎1,...,𝑎𝑛 ∈[𝑟 ]
𝑘1,...,𝑘𝑚≥0

〈
𝜏◦
𝑑1
(𝑎1) · · · 𝜏◦𝑑𝑛 (𝑎𝑛)𝜏

𝜕
𝑘1
· · · 𝜏𝜕

𝑘𝑚

〉𝑟spin
𝑔,𝑛;𝑏,𝑚

𝑛∏
𝑖=1

𝑡◦
𝑎𝑖 ,𝑑𝑖

𝑚∏
𝑗=1

𝑡𝜕
𝑘 𝑗

ª®®®®®®¬
.

(150)

These numbers should vanish unless

(𝑟 + 1) (2𝑔 − 2 + 𝑏 + 𝑛 +𝑚) =
𝑛∑︁
𝑖=1
(𝑟𝑑𝑖 + 𝑎𝑖 ) +

𝑚∑︁
𝑗=1
(𝑟𝑘 𝑗 + 𝑟 ) . (151)

Besides, for𝑚 ≥ 1, each insertion of 𝜏◦
𝑑
(𝑟 ) amounts to an insertion of (−1/𝑟 )𝜏𝜕

𝑑
.

There are several possible choices of conventions (in particular, for orientations) that could aect
these numbers by a prefactor depending only on the topology. We x them by the normalisation of
the consistency relations with the intersection numbers that are already dened. For 𝑟 = 2 and𝑚 ≥ 1,
we want to retrieve the open intersection numbers of Section 8.1〈 𝑛∏

𝑖=1
𝜏◦
𝑑𝑖
(1)

𝑚∏
𝑗=1

𝜏𝜕
𝑘 𝑗

〉2spin
𝑔,𝑛;𝑏,𝑚

=

〈 𝑛∏
𝑖=1

𝜏◦
𝑑𝑖

𝑚′∏
𝑙=1

𝜏𝜕ℓ𝑙

𝑚∏
𝑗=1

𝜏𝜕
𝑘 𝑗

〉
𝑔,𝑛,𝑏,𝑚+𝑚′

. (152)

Notice that the dimension constraint (146) forces 𝑏 +𝑚 to be even, so this is indeed an identity in
Q. In absence of boundaries 𝑏 =𝑚 = 0, we want to retrieve the Witten 𝑟 -spin class intersections of
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Section 7.3 〈
𝜏◦
𝑑1
(𝑎1) · · · 𝜏◦𝑑𝑛 (𝑎𝑛)

〉𝑟spin
𝑔,𝑛;0,0 =

∫
M𝑔,𝑛

𝑤
𝑟spin
𝑔,𝑛 (𝑎1, . . . , 𝑎𝑛)

𝑛∏
𝑖=1

𝜓
𝑑𝑖
𝑖
.

For disks without boundary descendants – that is (𝑔,𝑏) = (0, 1) and 𝑘 𝑗 = 0 – the open 𝑟 -spin
intersection numbers have been dened in [BCT20] in the form〈

𝜏◦
𝑑1
(𝑎1) · · · 𝜏◦𝑑𝑛 (𝑎𝑛) (𝜏

𝜕
0 )𝑚

〉
0,𝑛;1,𝑚 =

∫
PM𝑟 spin

0,𝑛;1,𝑚

𝑒

(
W ⊕

𝑛⊕
𝑖=1
L⊕𝑑𝑖
𝑖
, s

)
, (153)

where PM is a partial compactication of the moduli space of 𝑟 -spin disks andW is a bundle which is
the open analogue of 𝑅1𝜋∗L. We stress that 𝑎𝑖 in [BCT18; BCT20] corresponds to our 𝑎𝑖 − 1. These
numbers are computed explicitly for 𝑑𝑖 = 0 in [BCT18, Theorem 1.2], and in particular〈

𝜏◦0 (𝑎)𝜏𝜕0
〉
0,1;1,1 = 𝛿𝑎,1 .

The dimension constraint (151) is the natural generalisation of [BCT18, Section 6.2.1] allowing boundary
descendants, and coincides with (146) for 𝑟 = 2.

Bertola and Yang have constructed in [BY15] a particular solution of the extended 𝑟 -KdV hierarchy,
generalising the 𝑟 = 2 construction of [Bur15]. Up to a change of normalisation, this solution is
mentioned in [BCT18] under the name Φ and depends on a redundant parameter 𝜀 and times (𝑇𝑘 )𝑘>0.
We shall use the latter normalisation, and for uniformity denote it 𝑍 𝑟BY [𝜀; (𝑇𝑘 )𝑘>0]. It gives, for each
(𝑔, 𝑛,𝑚) such that 𝜒 > 0 (see (143)), a collection of numbers〈

𝜏◦
𝑑1
(𝑎1) · · · 𝜏◦𝑑𝑛 (𝑎𝑛)𝜏

𝜕
𝑘1
· · · 𝜏𝜕

𝑘𝑚

〉𝑟BY
𝑔;𝑛;𝑚

by writing down the following expansion:

𝑍 𝑟BY
[
𝜀 = (−ℏ/𝑟 ) 12 ;

(
𝑇𝑑𝑟+𝑎 = (−𝑟 )𝑑+

1
2−

3(𝑑𝑟+𝑎)
2(𝑟+1) (𝑡◦

𝑎,𝑑
− 𝑟𝛿𝑎,𝑟 𝑡𝜕𝑑 )

)𝑑≥0
𝑎∈[𝑟 ]

]

= exp

©«
∑︁

𝑔,𝑛,𝑚≥0
−𝜒>0

∑︁ ℏ
𝑔−1
2

𝑚!𝑛!

∑︁
𝑑1,...,𝑑𝑛≥0
𝑎1,...,𝑎𝑛 ∈[𝑟 ]
𝑘1,...,𝑘𝑚≥0

〈
𝜏◦
𝑑1
(𝑎1) · · · 𝜏◦𝑑𝑛 (𝑎𝑛)𝜏

𝜕
𝑘1
· · · 𝜏𝜕

𝑘𝑚

〉𝑟BY
𝑔;𝑛;𝑚

𝑛∏
𝑖=1

𝑡◦
𝑎𝑖 ,𝑑𝑖

𝑚∏
𝑗=1

𝑡𝜕
𝑘 𝑗

ª®®®®®®¬
.

In absence of an extra variable in 𝑍 𝑟BY playing the role that 𝑄 has in (150), one cannot dene numbers
depending individually on (𝑔,𝑏), but only on the doubled genus 𝑔 = 2𝑔 + 𝑏 − 1.

Conjecture 8.9. There exists a geometric denition of the 𝑟 spin open intersection numbers and it satises〈
𝜏◦
𝑑1
(𝑎1) · · · 𝜏◦𝑑𝑛 (𝑎𝑛)𝜏

𝜕
𝑘1
· · · 𝜏𝜕

𝑘𝑚

〉𝑟BY
𝑔;𝑛;𝑚 =

∑︁
𝑔,𝑏∈N

2𝑔+𝑏−1=𝑔

〈
𝜏◦
𝑑1
(𝑎1) · · · 𝜏◦𝑑𝑛 (𝑎𝑛)𝜏

𝜕
𝑘1
· · · 𝜏𝜕

𝑘𝑚

〉𝑟spin
𝑔,𝑛;𝑏,𝑚 . (154)

This conjecture is formulated in the restricted case 𝑡•
𝑘
= 0 for 𝑘 > 0 in [BCT18], perhaps because no

geometric construction of boundary descendants in the open 𝑟 -spin theory is available yet. Under this
restriction, it is supported by the following results:

• the 𝑟 = 2 case was proved in [Bur15] and in agreement with (152) we have 𝑍ABT [
𝑄 =

1; (𝑡◦
𝑑
)𝑑≥0; (𝑡𝜕𝑘 )𝑘≥0

]
= 𝑍 open 2spin [𝑄 = 1, (𝑡◦1,𝑑 = 𝑡◦

𝑑
, 𝑡◦2,𝑑 = 0)𝑑≥0; (𝑡𝜕𝑘 )𝑘≥0

]
.

• the conjecture is proved in [BCT18] for 𝑔 = 0 for general 𝑟 . In that case there is a single term
(𝑔,𝑏) = (0, 1) in the right-hand side of (154).

8.5 Conjectural relation to topological recursion
We now propose a direct generalisation of Section 8.3. We consider the Airy structure of Theo-

rem 2.11 with

𝑑 = 2 , (𝑟1, 𝑠1; 𝑟2, 𝑠2) = (𝑟, 𝑟 + 1; 1,∞) , 𝑄1 = −𝑄2 = 𝑄 , 𝑡1 =
1
𝑟
,
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which is also given in [BBCCN18, Theorem 4.16]. We denote 𝑍 𝑟★ its partition function and we
decompose its coecients as

𝐹 𝑟★
ℎ,𝑛+𝑚

[ 1 · · · 1 2 · · · 2
𝑑1𝑟+𝑎1 · · · 𝑑𝑛𝑟+𝑎𝑛 𝑘1 · · · 𝑘𝑚

]
=

∑︁
𝑔,𝑏∈N
𝑔+𝑏2 =ℎ

(−1)𝑚𝑟−
∑𝑛

𝑖=1 𝛿𝑎𝑖 ,𝑟𝑄𝑏

𝑛∏
𝑖=1
(𝑑𝑖𝑟 + 𝑎𝑖 )!(𝑟 )

𝑚∏
𝑗=1
(𝑘 𝑗𝑟 + 𝑟 )!(𝑟 )

〈
𝜏◦
𝑑1
(𝑎1) · · · 𝜏◦𝑑𝑛 (𝑎𝑛)𝜏

𝜕
𝑘1
· · · 𝜏𝜕

𝑘𝑚

〉𝑟★
𝑔,𝑛;𝑏,𝑚 .

(155)

According to Section 5.4, the corresponding correlators should be dened as

𝜔𝑟★
ℎ,𝑛+𝑚

( 1 · · · 1 2 · · · 2
𝑧1 · · · 𝑧𝑛 𝑧𝑛+1 · · · 𝑧𝑛+𝑚

)
B

∑︁
𝑔,𝑏∈N
𝑔+𝑏2 =ℎ

∑︁
𝑁◦t𝑁𝜕=[𝑛]

∑︁
𝑎 :𝑁◦→[𝑟−1]
𝑑1,...,𝑑𝑛≥0
𝑘1,...,𝑘𝑚≥0

(−1)𝑚 𝑟−|𝑁𝜕 | 𝑄𝑏

〈 ∏
𝑖∈𝑁◦

𝜏◦
𝑑𝑖
(𝑎𝑖 )

∏
𝑖∈𝑁𝜕

𝜏𝜕
𝑑𝑖

𝑚∏
𝑗=1

𝜏𝜕
𝑘 𝑗

〉𝑟★
𝑔,𝑛;𝑏,𝑚

·
∏
𝑖∈𝑁◦

(𝑑𝑖𝑟 + 𝑎𝑖 )!(𝑟 ) d𝑧𝑖
𝑧
𝑑𝑖𝑟+𝑎𝑖+1
𝑖

∏
𝑖∈𝑁𝜕

(𝑑𝑖𝑟 + 𝑟 )!(𝑟 ) d𝑧𝑖
𝑧
𝑑𝑖𝑟+𝑟+1
𝑖

𝑚∏
𝑗=1

(𝑘 𝑗𝑟 + 𝑟 )!(𝑟 ) d𝑧𝑛+𝑗
𝑧
𝑘 𝑗+1
𝑛+𝑗

,

(156)

and by Theorem 5.23 they satisfy the topological recursion on the reducible spectral curve with two
components intersecting at 𝑧 = 0:

𝐶 = 𝐶1 ∪𝐶2 , 𝐶1 :
{
𝑥 (𝑧) = 𝑧𝑟
𝑦 (𝑧) = −𝑧

𝑟

, 𝐶2 :
{
𝑥 (𝑧) = 𝑧
𝑦 (𝑧) = 0 , (157)

equipped with

𝜔0,2
( 𝜇1 𝜇2
𝑧1 𝑧2

)
= 𝛿𝜇1,𝜇2

d𝑧1d𝑧2
(𝑧1 − 𝑧2)2

, 𝜔 1
2 ,1

(
𝜇
𝑧

)
= (−1)𝜇+1𝑄 d𝑧

𝑧
.

For comparison, let us examine the basic properties of 〈· · · 〉𝑟★. Firstly, due to the constraint
(𝐽 1
𝑘𝑟
+ 𝐽 2

𝑘
)𝑍 𝑟★ = 0 for 𝑘 > 0 and the denition (155), each insertion of 𝜏◦

𝑑
(𝑟 ) amounts to the insertion of

(−1/𝑟 )𝜏𝜕
𝑑
while incrementing the number𝑚 by 1. Secondly, the constraint 𝐻𝑖=2,𝑘=0𝑍

𝑟★ = 0 gives, by
computations similar to those of Section 2.4, the string equation〈

𝜏◦0 (1)
𝑛∏
𝑖=1

𝜏𝑑𝑖 (𝑎𝑖 )◦
𝑚∏
𝑗=1

𝜏𝜕
𝑘 𝑗

〉𝑟★
𝑔,1+𝑛;𝑏,𝑚

=

𝑛∑︁
𝑙=1
(𝑑𝑙𝑟 + 𝑎𝑙 )

〈
𝜏◦
𝑑𝑙−1 (𝑎𝑙 )

∏
𝑖≠𝑙

𝜏◦
𝑑𝑖
(𝑎𝑖 )

𝑚∏
𝑗=1

𝜏𝜕
𝑘 𝑗

〉𝑟★
𝑔,𝑛;𝑏,𝑚

+
𝑚∑︁
𝑙=1
(𝑘𝑙𝑟 + 𝑟 )

〈
𝜏𝜕
𝑘𝑙−1

𝑛∏
𝑖=1

𝜏◦
𝑑𝑖
(𝑎𝑖 )

∏
𝑗≠𝑙

𝜏𝜕
𝑘 𝑗

〉𝑟★
𝑔,𝑛:𝑏,𝑚

+ 𝛿𝑔,𝑏,𝑚,0𝛿𝑛,3𝛿𝑑1,𝑑2,0𝛿𝑎1+𝑎2,𝑟 + 𝛿𝑔,0𝛿𝑛,𝑏,𝑚,1 ,

(158)

with obvious vanishing conventions for insertion of negative indices. This last term gives the special
value 〈

𝜏◦0 (1)𝜏𝜕0
〉𝑟★
0,1;1,1 = 1 . (159)

Note this is compatible with the computation of (117) with the specialisation 𝑡1 = 1/𝑟 . Indeed, the
latter yields

𝜔 1
2 ,2

( 1 2
𝑧1 𝑧2

)
= −𝑟𝑄 d𝑧1

𝑧21

d𝑧2
𝑧22

= −𝑄 d𝑧1
𝑧21

𝑟 !(𝑟 )d𝑧2
𝑧22

,

and thus after taking (156) into account, (159) describes the only non-vanishing intersection number
for (𝑔, 𝑛;𝑏,𝑚) = (0, 1; 1, 1). Thirdly, we have from corollary 2.17 the dilaton equation〈

𝜏◦1 (1)
𝑛∏
𝑖=1

𝜏◦
𝑑𝑖
(𝑎𝑖 )

𝑚∏
𝑗=1

𝜏𝜕
𝑘 𝑗

〉𝑟★
𝑔,1+𝑛;𝑏,𝑚

= (𝑟 + 1) (2𝑔 − 2 + 𝑛)
〈 𝑛∏

𝑖=1
𝜏◦
𝑑𝑖
(𝑎𝑖 )

𝑚∏
𝑗=1

𝜏𝜕
𝑘 𝑗

〉𝑟★
𝑔,1+𝑛;𝑏,𝑚

+ 𝑟
2 − 1
24

𝛿𝑔,1𝛿𝑛,𝑏,𝑚,0 +
𝑟 + 1
2
𝛿𝑔,𝑛,𝑚,0𝛿𝑏,2 ,

(160)
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and the homogeneity property which says that
〈∏𝑛

𝑖=1 𝜏
◦
𝑑𝑖
(𝑎𝑖 )

∏𝑚
𝑗=1 𝜏

𝜕
𝑘 𝑗

〉𝑟★
𝑔,𝑛;𝑏,𝑚 vanishes unless the

dimension constraint (151) holds.
We predict that the partition function 𝑍 𝑟★ describes the full open 𝑟 -spin intersection theory in any

genera and with arbitrary descendants.

Conjecture 8.10. There is a geometric denition of the open 𝑟 -spin intersection numbers, and it satises〈
𝜏◦
𝑑1
(𝑎1) · · · 𝜏◦𝑑𝑛 (𝑎𝑛)𝜏

𝜕
𝑘1
· · · 𝜏𝜕

𝑘𝑚

〉𝑟spin
𝑔,𝑛;𝑏,𝑚 =

〈
𝜏◦
𝑑1
(𝑎1) · · · 𝜏◦𝑑𝑛 (𝑎𝑛)𝜏

𝜕
𝑘1
· · · 𝜏𝜕

𝑘𝑚

〉𝑟★
𝑔,𝑛;𝑏,𝑚 .

A weaker prediction involving only quantities whose denition is available at the time of writing,
is that the Bertola-Yang 𝑍 𝑟BY partition function satises𝑊 (𝔤𝔩𝑟 )-constraints with zero mode values
𝑄1 = −𝑄2 = 1. Including the expected normalisations, this would translate into the following.

Conjecture 8.11. We have for 𝑏,𝑚 > 0

〈𝜏◦
𝑑1
(𝑎1) · · · 𝜏◦𝑑𝑛 (𝑎𝑛)𝜏

𝜕
𝑘1
· · · 𝜏𝜕

𝑘𝑚

〉𝑟BY
𝑔;𝑛;𝑚 =

∑︁
𝑔,𝑏∈N
𝑔+𝑏2 =𝑔

〈
𝜏◦
𝑑1
(𝑎1) · · · 𝜏◦𝑑𝑛 (𝑎𝑛)𝜏

𝜕
𝑘1
· · · 𝜏𝜕

𝑘𝑚

〉𝑟★
𝑔,𝑛;𝑏,𝑚 .

In support of the conjectures, we see that the basic properties listed for 〈· · · 〉𝑟★ match the ones
listed for 〈· · · 〉 in the range of parameters in which the comparison is possible. The dilaton equation
of [BCT18, Proposition 5.3] matches the restriction of (160) to (𝑔,𝑏) = (0, 1) and 𝑘 𝑗 = 0. The string
equation of [BCT18, Proposition 5.2] matches the same restriction of (158), and observe that in absence
of boundary descendants the second sum in the right-hand side of (158) is absent. Their extension to
𝑔 > 0 expected in [BCT18, Section 6.2] also matches our proposal.

TRR relations involving in a linear way the open 𝑟 -spin intersection numbers mentioned in (153)
and the closed 𝑟 -spin intersection numbers are given in [BCT18, Theorem 4.1]. The information of
(153) should be encoded for us in 𝐹 𝑟★1

2 ,𝑛
, as it is easy to see that the𝑊 -constraints indeed imply some

quadratic relation with a similar structure involving 𝐹 𝑟★0,𝑛 in a non-linear way and 𝐹 𝑟★1
2 ,𝑛

in a linear way.
As 𝐹 𝑟★0,𝑛 contains only information from the closed sector and satises𝑊 -constraints on its own, the
structure somehow resembles the TRR relation, but establishing an exact match is left to future work.
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