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We re-consider operator mixing in the so-called SU(2) sector of N = 4 super Yang-Mills theory with
gauge group SU(N). Where possible, single-trace operators of moderate length are completed by higher-trace
admixtures so as to yield large N tree level eigenstates.

We are particularly interested in parity pairs with three excitations. Since parity is respected in the mixing,
the odd single-trace operators at low length cannot receive too many admixtures. We reproduce the tree-level
norms of a set of large N eigenstates up to order 1/N4 by integrability methods. This involves evaluating two-
point functions on the sphere, the torus, and the double-torus. A perfect match is found as long as descendents
are absent from the mixing.

Using twist to make the descendents appear in the integrability picture immediately leads to the question
how to modify the entangled states occurring in the hexagon tessellations. We take a closer look at the double-
trace admixtures to the parity even three-excitation operator at length seven, which are both products of a
primary state and a descendent. Their two-point functions are sensitive to the twist introduced into the Bethe
equations. For transverse scalar excitations we succeed in recovering the corresponding field theory results.
For longitudinal magnons our methods fail, pointing at a potential weakness of the formalism.



1 Introduction

The AdS/CFT correspondence [1] entered a quantitative phase with the BMN construction [2] which directly
linked a class of string theory states to a dual set of composite operators in N = 4 super Yang-Mills theory.
All elementary fields of this superconformal field theory carry an adjoint representation of a non-Abelian gauge
group. The operators in question are products of very many scalar fields of the same type with a few other
fields termed impurities in between, made gauge invariant and cyclic by a single trace over the gauge group.
The one-loop anomalous dimensions of these long operators can be matched with string theory predictions in
the same expansion parameter, although this would be small in gauge theory and large for the strings [3].

In the simplest case, the impurities are all scalars of the same second type. The spectrum of planar one-
loop anomalous dimensions in such an SU(2) sector is equivalent to the energy eigenvalues of the Heisenberg
spin chain [4, 5]. This observation has opened up an entire research agenda by the name of integrability in
which one tries to include higher-loop corrections and to extend the integrable system to all types of composite
operators.

While the inclusion of higher genus corrections had been discussed in the literature on the BMN operators
from the very beginning [3], it remained an open question for a long time how to address non-planar corrections
in the integrability framework [6]. The answer came in an unexpected fashion: an efficient scheme for the
computation of structure constants was designed in [7] and extended to higher-point functions in [8, 9]. Feyn-
man diagrams for higher-point functions of single-trace operators can be drawn on closed Riemann surfaces
with punctures corresponding to the operator insertions. At tree level in configuration space, propagators
connecting the operators naturally triangulate the surfaces. Each tile of such a triangulation is given by the
hexagon operator of [7].

In a systematic large N expansion, single-trace operators will acquire admixtures of higher-trace operators.
In [10] it was pointed that coincidence limits of higher-point functions can be used to describe correlation
functions of operators with more than one colour trace. This is one step towards non-planar integrability, and
the one that we elaborate on in the present article up to 1/N4 corrections. Eventually, it would be desirable
to design a formalism capable of calculating the mixing coefficients at non-planar order. This second step will
not be addressed here.

We will seek eigenoperators of the conformal group at one loop in the SU(2) sector, albeit without sending
the number of elementary fields to infinity. The one-loop problem uniquely fixes the tree level eigenstates
as long as the operators are not protected from quantum corrections, i.e. when they have non-vanishing
anomalous dimension. We will then study how to combine these operators in a large N expansion. Ideally, we
would like to construct finite N eigenstates; more realistically, we consider the first three terms of a large N
expansion in a range of cases.

Building two-point functions of these exact (or N expanded) eigenoperators one has to compute a number
of overlaps between their constituents. Here we compare hexagon tessellations to tree level field theory with
very good success; problems arise where descendents come in, thus operators that are obtained from others by
SU(2) raising.

The article is organised as follows: in Section 2 we review the construction of field theory eigenoperators
using the one-loop dilatation operator [11] and discuss principle features of the spectrum, in particular the
appearance of parity pairs. In Section 3 we review the integrability formalism for the one-loop spectrum and
give a precise map form Bethe wave functions to normalised field theory operators. The set of examples we
will explicitly discuss comprises an exceptional operator and two descendents whose integrability description
requires the notion of twist, so the modification of the Bethe equations of the Heisenberg chain by a small
parameter, see [13] and references therein. In Section 4 we introduce the hexagon operator for three-point
functions and comment on the effect of twist in this context. Finally, in Section 5 we introduce tessellations
for higher-point functions and use them to re-calculate all two-point functions related to our set of examples.
Section 6 is dedicated to two-point functions of double-trace operators one of whose parts is a descendent.

2 The spectrum in the SU(2) sector from the field theory

The N = 4 model has the six complex scalar fields φ[I,J], I ∈ {1, 2, 3, 4} obeying the reality constraint(
φIJ
)∗

= φIJ =
1

2
εIJKLφ

KL (1)

So three of them, say, Φi = φ1,i+1, i ∈ {1, 2, 3} are independent with the reality constraint determining their
complex conjugates. To simplify the notation the scalar fields are often called Z, X, Y .
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The scalar fields transform in the adjoint representation of a non-Abelian gauge group: Φi = Φia T a where
T is a generator of the local symmetry. For definiteness we assume this colour group to be of SU(N) type in
this article. We will study large N perturbation theory at tree level w.r.t. to the gauge coupling gYM . Gauge
invariant composite operators arise as products of the elementary fields under an SU(N) trace. Limiting the
scope to Φ1, Φ2 or Φ1, Φ3 we obtain what is called an SU(2) sector, because the second type of field is obtained
from the first by the step operator ∂32 or ∂42 , respectively.

The N = 4 model is conjectured to be conformally invariant. Good operators are then the eigenstates of
the conformal group, which ought to be orthonormal:

〈OiŌj〉 = 0 : i 6= j , 〈OiŌi〉 =
1

(x2ij)
L+g2 γ1,i+...

, g2 =
g2YMN

8π2
(2)

The exponent in the last formula is the quantum corrected dimension of the operator, of which we have
indicated the trivial part given by the length L, so the number of elementary fields, and the one-loop anomalous
dimension γ1.

Tree level two-point functions do not provide enough information to fix the eigenstates even at tree level,
whereas one-loop renormalisation does. In terms of N = 1 supersymmetric Feynman rules this arises from
the contraction of the effective vertex

g2YM

∫
d4xTr([Z̄, Ȳ ][Z, Y ]) (3)

onto the two operators in the two-point functions.
The concept of the dilatation operator1 was introduced in [11]: Wick contraction of the barred fields in

the vertex on one of the operators in the two-point function removes a Z and a Y , and puts another such
pair back, though not in all terms in the same position. This operation defines a linear map, say, D on the

spaces of operators with identical length L and number n of Y fields. The one-loop anomalous dimensions γ
(1)
i

are given by the eigenvalues of D because the actual Feynman integral is universal and can be factored out.
Note that the N dependence of the eigenvalues can be quite involved whereby it is usually preferable to work
perturbatively in 1/N .

The contraction on the second operator amounts to selecting matrix elements. These do, of course, contain
the same information so that one can construct the orthogonal states also from the complete set of tree and
one-loop two-point functions, cf. [14]. Technically, this is harder because a system of quadratic equations on
the coefficients in the eigenstates has to be solved.

Now, SU(N) generators satisfy Tr(T a) = 0 and the cutting and sewing rules

Tr(T cAT cB) = Tr(A) Tr(B)− 1

N
Tr(AB) , Tr(T cA) Tr(T cB) = Tr(AB)− 1

N
Tr(A) Tr(B) , (4)

where A, B are any products of generators. In particular, contracting the effective vertex onto a single-trace
operator can cut it up into a double-trace operator, while the vertex can do both, sew a double-trace operator
to a single trace, or to further split it into three traces and so forth. Upon computing with these rules, one
finds that contractions of operators with different numbers of traces are suppressed by powers of 1/N .

We will try to complete any given leading N single-trace eigenstate Osi to a series of the form

Osi +

(
aji
N2

+ . . .

)
Osj +

(
bki
N

+
b̂ki
N3

+ . . .

)
Odk +

(
cli
N2

+ . . .

)
Otl + . . . (5)

with eigenvalues γs1,i + γ̂s1,i/N
2 + . . . . All operators in this formula should be leading N eigenstates; with the

subscripts s, d, t we denote the number of traces2. One expects the entire expansion to go in powers of 1/N2

with an offset of 1/N per additional trace in the admixtures. Last, to avoid trivial rescalings we impose aii = 0
(no sum).

The dilatation operator is a map of the type

Osi → Nγs1,iOsi + dki Odk
Odk → ejkO

s
j +Nγd1,kOdk + f lkOtl (6)

. . .

1For a point of view closer to the original BMN literature see also [12].
2A study of non-planar corrections to anomalous dimensions of operators related to giant gravitons has been initiated in [15].
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when all operators are leading N eigenstates. Hence in a hypothetical system with one single- and one double-
trace operator we have to solve the eigenvalue equation

D

(
Os +

b

N
Od + . . .

)
= Nγs1 Os + dOd +

b

N

(
Os +Nγd1 Od

)
+ . . . = (N γs1 + . . .)

(
Os +

b

N
Od + . . .

)
(7)

which is trivial at the leading order while we learn from the O(N0) coefficient of Od that

b =
d

γs1 − γd1
. (8)

Consequently, if there is degeneracy γs1 = γd1 in the system while d 6= 0, we will not succeed in constructing
the desired completion (5) of the single-trace eigenstate3 [3, 16, 11]. In fact, the whole program seems doomed
— wouldn’t a similar problem arise, if anywhere in the expansion the one-loop anomalous dimension of any
two multiple-trace operators were degenerate? Despite the fact that our simple experiment with only one
operator of each type quickly becomes inconsistent going to higher orders, it does indicate that only the one-
loop anomalous dimension of any candidate admixture and that of the single-trace operator to be completed
have to be distinct. This condition is not impossible to satisfy because the anomalous dimensions of the higher
states are roots of fairly complicated characteristic polynomials and are therefore not too likely to reproduce
previously encountered values. In fact, scanning the spectrum of single-trace operators up to length ten and
four excitations to the order indicated in (5) we observed a breakdown of the ansatz only for cases with
γs1 ∈ {4, 5, 6}.

Because there are as many eigenvectors in the single-trace sector of given L, n as there are states, we can
always re-write the admixtures as products of leading N single-trace eigenstates. Incidentally, to leading N
the one-loop anomalous dimension of such a product is the sum of that of its factors.

The one-loop mixing problem has the following features:

• States of different one-loop anomalous dimension will be orthogonal at tree level.

• We can act on any state with length L and n excitations with the step operator ∂42 by global differ-
entiation to produce a descendent of the same length but with one more excitation. If non-vanishing,
the descendent will be an eigenvector and has the same anomalous dimension as the original operator.
States that are not descendents are called primary.

• All the admixtures to renormalised single-trace operators (i.e. with γs1 6= 0) also have non-vanishing
anomalous dimensions. Since the one-loop anomalous dimensions of all operators are non-negative,
at least one factor in each multi-trace operator is renormalised. This property should be rooted in
supersymmetry because non-renormalised operators are members of shorter supermultiplets that could
not consistently be added in.

• At higher length and excitation number the leading N single-trace spectrum contains degenerate pairs.
As a basis of such a 2×2 cell we can choose the even and odd part under parity, i.e. reversal of the trace
as in Tr(ZZY ZY Y ) → Tr(ZZY Y ZY ). Parity is a strict rule [11, 17]: the admixtures all have the same
parity as the single-trace state we complete.

• When the two states of definite parity in a leading N degenerate pair can be completed by admixtures
as advocated in (5) the degeneracy will be lifted by the higher N corrections4 [11].

All states with L = 2, 3 are non-renormalised or protected, i.e. have γs1 = 0. At every (L, n) there will be one
protected single-trace state; at the multi-trace level there are in general several protected operators according
to how L is partitioned into shorter parts and how the excitations are distributed over these. Especially at
short length most states are parity even. Therefore the mixing in the odd sector is significantly simpler.

In fact, all states with n = 0, 1 Y fields are protected. Also, all states with n = 2 are parity even. We
are therefore particularly interested in the next simplest case n = 3. Scanning states of length up to and
including L = 9 we are able to point out all properties that are new in the integrability picture w.r.t. to the
previously studied operators with two Y fields [10].

3In this situation further problems arise, e.g. the expansion in terms of the coupling constant does not commute over that in
terms of the genus counting parameter [11]. Our point of view is to expand in the coupling first.

4See also [18] for similar results in other instances of the AdS/CFT correspondence.
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As an illustration, let us comment on the states of length 5: in the protected sector we have the single-trace
operators

1√
5

Tr(Z5), Tr(Z4Y ),
1√
2

Tr(ZZ{Z, Y }Y ),
1√
2

Tr(Z{Z, Y }Y Y ), Tr(ZY 4),
1

5
Tr(Y 5) . (9)

All of these can be generated by derivatives on the first operator in the list. Hence they are vacuum descendents.
Then there are two states of one-loop anomalous dimension γs1 = 4:

1√
2
Tr(ZZ[Z, Y ]Y ),

1√
2

Tr(Z[Z, Y ]Y Y ) , (10)

which we will refer to as (5,2) and (5,3), respectively. The (5,3) operator is a descendent of the (5,2) case.
Double-trace states must be built from factors of length 2 and 3. They are all protected at leading order in
N since their constituents are. We can conclude that both renormalised states, (5,2) and (5,3), respectively,
receive no admixtures. As a consequence, their one-loop anomalous dimension will receive no corrections in
1/N . Notice that all length 5 states are parity even.

Beyond (5,2) and (5,3) we will encounter the following operators in our study:

1. The first parity odd operator, which comes at (6, 3):

(6, 3)e =
i√
2

Tr(ZZY [Z, Y ]Y ) (11)

For want of other parity odd states at this length this is a true eigenstate of the mixing problem also
at finite N , its anomalous dimension γs1 = 6 does not receive corrections in 1/N . We have given the
operator the label e for exceptional for reasons that will become apparent in the next section.

2. At length 7, a first degenerate pair of primaries with γs1 = 5 appears with three Y fields:

(7, 3)− =
i√
2

(0,−1, 1, 0, 0) , (12)

(7, 3)+ =

√
2√
15

(
−1,

3

2
,

3

2
,−1,−1

)
(13)

The coefficient vectors in these formulae refer to the basis

Tr(Z4Y 3), Tr(ZZZY ZY Y ), Tr(ZZZY Y ZY ), Tr(ZZY ZZY Y ), Tr(ZZY ZY ZY ) . (14)

A remark on the norms is in order: we take out a number coefficient so that the leading N part of the
two-point functions will be NL. This will be useful in comparing to integrability.

The parity odd case above experiences no mixing, while the parity even one could have the double-trace
admixtures (5, 3)(2, 0), (5, 2)(2, 1), (4, 2)(3, 1). The third of these is a descendent. It does in fact not
enter the mixing. The other two come in the special combination

O⊥ =
1√
3

(√
2 (5, 3)(2, 0)− (5, 2)(2, 1)

)
. (15)

We remark that O⊥ is a primary state: it is exactly tree orthogonal to the descendent ∂42 (5, 2)(2, 0).
Thus the mixing takes place exclusively between the primaries at (7, 3). For now another property is
more important: (7, 3)+ and O⊥ map into each other under the dilatation operation D:

D

N

(
(7, 3)+

O⊥

)
=

(
5 − 2

√
5

N

− 4
√
5

N 4

)(
(7, 3)+

O⊥

)
(16)

Notice that this matrix is not symmetric, whereby its left- and right-eigenvectors are distinct. Worse,
the members of either set are not tree orthogonal in contradiction to the definition (2). An approriate
change of basis is discussed in Appendix A.

Here we content ourselves with constructing an eigenoperator (73)++ bO⊥ determining the left-eigenvectors
(1, b) of the matrix in the last equation:

γ1 =
1

2

(
9±

√
1 +

160

N2

)
, b =

N

8
√

5

(
1∓

√
1 +

160

N2

)
(17)
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The upper sign in front of the root corresponds to the mixing problem in (5) with

γs1 = 5, γ̂s1 = 40, b1 = −2
√

5, b̂1 = 80
√

5 (18)

while the other sign yields an eigenoperator in which the double-trace part is dominant. Notice that
the factor

√
5 arises from the unit normalisation of the operators. To convey the central point of this

discussion we juxtapose the anomalous dimensions of the (N corrected) single-trace operators:

(7, 3)− : γ1 = 5 , (7, 3)+ : γ1 = 5 +
40

N2
+ . . . (19)

Hence the N dependence lifts the degeneracy of the eigenvalues, and the parity eigenstates are the good
operators at finite N or in a large N expansion. These results were originally derived in [19, 11] and
recently recovered in [20].

3. At length 8, there are three primaries with three Y ’s:

γs1 = 6 : (8, 3)e =
i

2

(
Tr(Z4Y [Z, Y ], Y )− Tr(ZZ[Z, Y ]ZZY Y )

)
,

γs1 = 4 : (8, 3)+ =
1

2

(
Tr(Z5Y 3)− Tr(Z4Y {Z, Y }Y ) + Tr(ZZY ZZY ZY )

)
(20)

γs1 = 4 : (8, 3)− =
i

2

(
Tr(Z4Y [Z, Y ], Y ) + Tr(ZZ[Z, Y ]ZZY Y )

)
.

The leading N degeneracy of γs1 = 6, 4 with that of (6, 3)e(2, 0) and (5, 3)(3, 1), (5, 2)(2, 1), respectively,
prevents us from discussing the first two cases in this list. On the other hand, (8, 3)− is an exact
eigenoperator of D; it could mix with (6, 3)e(2, 0) but does not. In Appendix A we further comment on
this example, too.

4. At L = 9, n = 3 the primary single-trace operators come in three degenerate pairs. The three parity
even states have a host of admixtures including all four possible triple-trace operators carrying leading
N anomalous dimension. Interestingly, there is re-mixing also amongst the parity even primaries at the
level of the a2/N

2 coefficients whereas single-trace descendent states do not come in.

The parity odd single-trace states (9, 3)−i are

γs1,1 = 8.25342 , (9, 3)−1 = i (0.0532393,−0.17321, 0.683494) ,

γs1,2 = 5.51997 , (9, 3)−2 = i (0.616784,−0.320709,−0.129317) , (21)

γs1,3 = 3.22661 , (9, 3)−3 = i (0.341676, 0.605924, 0.126938) ,

where the coefficient vectors refer to the three parity odd combinations

Tr(Z5Y [Z, Y ]Y ), Tr(Z4Y [Z2, Y ]Y ), Tr(Z3Y Z[Z, Y ]ZY ) . (22)

Curiously the one-loop anomalous dimensions of the descendent states 6.82843, 4, 1.17157, 0 lie in be-
tween.

The (9, 3)−i operators can and do mix with (6, 3)e(3, 0), (7, 3)−(2, 0) whereas there are no parity-odd
triple-trace operators at length 9. Like their even cousins they display re-mixing among themselves at
O(N−2). Up to 1/N3 we obtain

(9, 3)−1 +
0.303442

N2
(9, 3)−2 −

0.0353558

N2
(9, 3)−3

+

(
0.738458

N
− 1.72311

N3

)
(6, 3)e(3, 0) +

(
0.461192

N
− 1.32898

N3

)
(7, 3)−(2, 0) + . . . ,

(9, 3)−2 +
49.9031

N2
(9, 3)−1 +

5.98334

N2
(9, 3)−3 (23)

−
(

14.3515

N
− 1041.83

N3

)
(6, 3)e(3, 0)−

(
4.00861

N
+

189.762

N3

)
(7, 3)−(2, 0) + . . . ,

(9, 3)−3 −
2.33609

N2
(9, 3)−1 +

1.47962

N2
(9, 3)−2

+

(
0.700161

N
− 1.85918

N3

)
(6, 3)e(3, 0) +

(
1.31087

N
+

4.92937

N3

)
(7, 3)−(2, 0) + . . . ,
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with the anomalous dimensions

γs1,1 = 8.25342 +
8.18190

N2
+ . . . ,

γs1,2 = 5.51997− 39.8239

N2
+ . . . , (24)

γs1,3 = 3.22661 +
1.64201

N2
+ . . . .

For comparison, the parity even partners5 acquire the one-loop anomalous dimensions

γs1,1 = 8.25342 +
53.8338

N2
+ . . . ,

γs1,2 = 5.51997 +
72.4183

N2
+ . . . , (25)

γs1,3 = 3.22661 +
50.2636

N2
+ . . . .

In the main part of the article we will look at two-point functions of these operators up to 1/N4 by integrability
methods, that is via hexagon tessellations [7, 8, 9]. It was advocated in [10] that each m-trace operator can
be realised as a coincidence limit of m vertices of a triangulation of a Riemann surface whose genus matches
the order in N , i.e. a sphere at leading order, a torus for 1/N2 corrections etc. One purpose of the present
work is to check this conjecture on a wider and more complicated range of examples. Given the list of cases
above we will have to analyse

• single-trace/single-trace: two-point functions on the sphere, the torus, and the double torus

• single-trace/double-trace: three-point functions in a point identification limit on the sphere and on the
torus

• double-trace/double-trace: four-point functions in a double coincidence limit on the sphere; the relevant
torus part can be read out of previous work [10].

The focus is not so much on the actual coefficients of the first few terms in the large N expansion of the
two-point functions; like the mixing coefficients for the (9, 3)−i operators these are some rather uninspiring
numbers, cf. Appendix A. Instead we embark on checking the hexagon amplitudes against the field theory
results for every colour factor, so whether the integrability construction can reproduce field theory term by
term.

3 The spectrum problem from integrability

The leading N part of D arises by nearest neighbour interactions, so when the vertex (3) is contracted onto
two adjacent fields within the same colour trace. In this case the action is proportional to I− P (i.e. identity
minus permutation), which is the Heisenberg XXX Hamiltonian acting on a chain of down spins Z and up
spins Y [4, 5]. The leading N eigenstates of our map D in the single-trace sector are therefore the energy
eigenstates of the Heisenberg spin chain. The famous Bethe ansatz can be used to construct these: the up
spins or Y fields are viewed as excitations moving along the sites of a chain of length L. Every such magnon
is given a momentum p with which it moves along the chain. The step operator

ei p =
u+ i

2

u− i
2

, u =
1

2
cot
(p

2

)
(26)

takes it from one site of the chain to the next. It is customary to use the rapidity (or Bethe root) u instead of
the momentum p in order to obtain algebraic equations. Pulling a magnon over another one induces a phase

Sjk =
uj − uk + i

uj − uk − i
(27)

which goes by the name of scattering matrix. The Bethe-Yang equations

ei pj L
∏
k 6=j

Sjk = 1 , j ∈ {1 . . . n} (28)

5To the same accuracy, all six single-trace primaries are given in Appendix A. We do not display the admixtures.
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express that transporting a magnon once around the chain should not have any effect because the original
configuration is recovered. Translation invariance around the chain implies the usual momentum conservation
constraint

∑
j pj = 0 or in terms of the Bethe rapidities

n∏
j=1

uj + i
2

uj − i
2

= 1 . (29)

Finally, the energy is given by

γs1 =

n∑
j=1

1

u2j + 1
4

. (30)

An all Z state — so one without any magnon — has energy 0. For one magnon the situation is not much
different: the zero momentum constraint implies p1 = 0 and so u1 is infinite such that again γs1 = 0. For
n > bL/2c excitations we should discover the same spectrum as for L− n excitations because we might then
regard Y as a vacuum site and Z as an excitation. These arguments rule out states of non-vanishing energy
for L = 2, 3.

Normally, states with non-vanishing energy are given by a set of distinct, finite rapidities. The first non-
trivial case we encounter is (4,2) with Bethe rapidities ±1/

√
12 and energy 6. According to the above all other

length 4 states are protected.
Let us have a look at the length 5 problem: in the field theory the two states with anomalous dimension

4 are (5,2) and (5,3) as defined in the last section. For the (5,2) state we have the regular non-degenerate
solution u1 = 1/2 = −u2 with energy 4. For the (5,3) case there is no regular solution. Yet, one can put,
say, u3 = ∞ whereby it scales out of the equations reducing them to the (5,2) case. One thus has the three
rapidities ±1/2, ∞ similar to what we said about the one-magnon case at any length. Indeed, the one-magnon
case at length L is always a descendent of the spin chain vacuum Tr(ZL). In both descendent cases, (L, 1)
and (5,3) we found an infinite Bethe root.

Descendents states can be systematically obtained introducing twist into the Bethe equations, see [13] and
the references given there. In the present work we do so by an extra factor ei ε in every Bethe equation:

ei εei pj L
∏
k 6=j

Sjk = 1 (31)

The coupled equations are then solved order by order in a series expansion in ε. The two states we need for
the set of correlators chosen in the last section are L = 2, n = 1 with a single rapidity

u1 = −2

ε
+

1

24
ε+

1

5760
ε3 + . . . (32)

and L = 5, n = 3:

u1 = −1

2
− 1

10
ε− 11

80
ε2 − 761

6000
ε3 − 12829

96000
ε4 − 453889

3000000
ε5 + . . . ,

u2 =
1

2
− 1

10
ε+

11

80
ε2 − 761

6000
ε3 +

12829

96000
ε4 − 453889

3000000
ε5 + . . . , (33)

u3 = −1

ε
+

29

60
ε+

4657

18000
ε3 + . . . .

In the ε → 0 limit we do indeed obtain the set of rapidities of the primary (e.g. (20) and (52), respectively)
and an infinite rapidity.

Beyond missing the descendents, the Bethe equations (28) do not have regular solutions corresponding to
certain exceptional operators [5] like (6, 3)e, (8, 3)e etc. Introducing twist we can construct such solutions, too.
For instance, for the (6, 3)e operator we have

u1 = − i
2

+
1

3
ε− 19

432
ε3 +

811

34560
ε5 − i

243
ε6 − 262357

17418240
ε7 +

11 i

1944
ε8 + . . . ,

u2 =
i

2
+

1

3
ε− 19

432
ε3 +

811

34560
ε5 +

i

243
ε6 − 262357

17418240
ε7 − 11 i

1944
ε8 + . . . , (34)

u3 = − 1

24
ε+

97

3456
ε3 − 2843

138240
ε5 +

4889627

278691840
ε7 + . . .

Looking at the leading terms ±i/2, 0 we see that the first two are simple poles/zeroes of the momentum factor
which is raised to the sixth power in the Bethe equations, whereas the u1 − u2 + i = O(ε6) so that S12 can
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offset this singularity. The energy of the solution is 6+O(ε2) as expected for (6, 3)e. There are similar solutions
at any even length.

For n = 2 the zero momentum constraint always implies u2 = −u1. Degenerate pairs arise for sets of
roots that do not go into themselves under {ui} → {−ui}, which can occur only if n ≥ 3. The (undeformed)
Bethe equations, the momentum constraint, and the energy are invariant under the simultaneous sign flip of
all rapidities so that asymmetric root sets do come in pairs. Yet, the two sets of rapidities do yield two distinct
states.

Let 0 < mj ≤ L denote the position of the magnon j with rapidity uj along the chain. The Bethe wave
function is

ψ(L, n) =

L∑
m1,...,mn =1

n∏
j=1

ei pj mj

∏
j<k

Tjk |m1 . . .mj〉 , Tjk =

{
mj < mk : 1
mj = mk : 0
mj > mk : Sjk

(35)

where the ket state has Y magnons at the sites mj and otherwise Z’s. In this definition the chain is a priori
open with a designated beginning and end. The magnons do not yet have definite rapidities. The Bethe
equations assure that we can close the chain and so make it cyclic. To that end the rapidities must solve (28).

A normalised, cyclic state is given by [21]

O =
ψ(L, n)√

G L
∏
j < k Sjk

∏
j(u

2
j + 1

4 )
. (36)

Obviously, any permutation of the rapidities of a Bethe solution is also a solution. The normalised state does
not depend on the ordering of the rapidities as long as the same one is chosen in the wave function as well as
the phase factor (the product of S matrices) in the denominator. The last missing piece of information is the
definition of the Gaudin norm:

G = Det φjk , φjk =
∂ log

(
ei pj L

∏
l 6= j Sjl

)
∂ uk

(37)

All of this perfectly works for the states involving twist, to leading order in ε. By way of example, in our
simplest case the state is

(2, 1) =
Tr(Y Z) + Tr(ZY )√

ε2

2 ∗ 2 ∗ 1 ∗ 4
ε2

= Tr(ZY ) (38)

as expected for the unit norm descendent in field theory. For the length 5 descendent we find

(5, 3) =
5(1 + i)(Tr(ZZY Y Y )− Tr(ZY ZY Y ))√

(80 ε2) ∗ 5 ∗ i ∗ 1
4 ε2

=
1√
2

Tr(Z[Z, Y ]Y Y ) (39)

and finally

(6, 3)e =
486 i
ε5 (Tr(ZZY ZY Y )− Tr(ZZY Y ZY ))√

11664
ε6 ∗ 6 ∗ 243

ε6 ∗
ε2

36

=
i√
2

Tr(ZZY [Z, Y ]Y ) . (40)

For the degenerate pairs, the situation is particularly interesting: let us consider the (7,3) states normalised
as in (36). With j = 1, 2 we find

(7, 3)j =
1√
15

(
−1,

3

2
,

3

2
,−1,−1

)
− (−1)j

i

2
(0,−1, 1, 0, 0) (41)

in the basis (14) so that comparing to (12), (13)

(7, 3)± =
1√
2

(
(7, 3)1 ± (7, 3)2

)
. (42)

Similarly, (8, 3)± =
(
(8, 3)1 ± (8, 3)2

)
/
√

2. In fact, a relation

O± ∝ 1√
2

(O1 ±O2) (43)
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seems to hold in general, where O± have purely real/imaginary coefficients and are othonormal at leading N .
Last, let us comment on the degeneracy of the spectrum in the SU(2) sector. The two-magnon situation

is particularly prone to falling victim to this problem: as the zero momentum constraint implies u2 = −u1
the scattering matrix S12 becomes equal to e−i p. The one remaining Bethe equation is

ei p (L−1) = 1 ⇒ p = 2π
m

L− 1
, m ∈ {0 . . . b(L− 1)/2c} . (44)

As a consequence, there are degenerate momenta between the L and the L′ problem with two magnons
whenever L − 1, L′ − 1 are not co-prime. For instance, the renormalised (42) state has L − 1 = 3, m = 1
and there is a length 7 two magnon state with L′ − 1 = 6, m = 2 with the same energy γs1 = 6. At length 8
the operators (4, 2)(4, 0) and (4, 2)(2, 0)(2, 0) have degenerate leading N first anomalous dimension, at length
9 even (4, 2)(5, 0), (4, 2)(3, 0)(2, 0), (7, 2)(2, 0), and all of these operators are parity even so that they can mix.
These are not even the only degeneracies in the SU(2) sector spectrum — e.g. (6, 3)e has γs1 = 6 exactly
as the primary (4,2) state. This made us worry about the success of our program of completing single-trace
eigenstates by higher-trace admixtures. Fortunately, the spectrum of higher states is much more irregular
than the two-magnon example, and — as we could convince ourselves in Section 2 — the degeneracy of the
multi-trace operators amongst themselves is apparently not an obstacle.

4 Hexagons and twist

In the spectrum problem, the full set of excitations is treated as follows:

φaa
′
→ φaφ̄a

′
, ψαa

′
→ ψαφ̄a

′
, ψ̄aα̇ → φaψ̄α̇, Dαα̇ → ψαψ̄α̇ (45)

where a = 1, 2, a′ = 3, 4 and α, α̇ are two-component spinor indices. The left excitations {φa, ψα} and the
right excitations {φ̄a′ , ψ̄α̇} transform under separate PSU(2, 2)L,R groups that share a central extension. The
left and the right excitation from any two-index scalar, fermion, or derivative put on the chain are given the
same rapidity. The excitations now scatter separately on both chains with a 10 component S matrix derived
in [22] times a phase factor [23]. Every such tensor product of S matrices is divided by a single copy of (27).

One recovers the simpler prescription we had given for the SU(2) sector when only scalars of the same type
are considered: on the left as well as on the right chain solely the component A of the complete matrix [22] is
solicited, and this is exactly equal to (27) at tree level. Normalising by one more A element we recover what
we had before because the phase factor goes to unity at tree level.

The idea of the hexagon approach [7] for three-point functions owes much to the earlier paper [24], in
which a string theory three-point interaction was regarded as 〈in|O|out〉. The authors were trying to impose
form factor axioms as is done in two-dimensional physics [25]. In [7] the three-vertex is sliced through the
middle resulting into two hexagonal patches. Three of these edges are string pieces, or in the dual field theory
picture one half of a single-trace state (i.e. of a spin chain as we learned in the last section). These are called
physical edges. Between them lie virtual edges that can in the field theory be understood as the bunches of
configuration space propagators stretching between the three operators at tree level. In [7], axioms for these
hexagonal patches were not only formulated but also solved.

1 2

3

1 2

3

12

3

Figure 1: splitting a three-point function into two hexagons

The resulting prescription for the computation of a structure constant is as follows:

• Find the Bethe solutions desribing the three selected primary operators.

• Cut each Bethe state into two halves corresponding to its portions on the two hexagons.

• Move all excitations to the same edge of the hexagon by crossing transformations.

• Split each two-index field or derivative from an operator into a left and a right magnon.
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• Scatter only on the left or only on the right chain with the 10 component PSU(2, 2) invariant S matrix
[22] supplemented by an adapted phase factor [7].

• Use a certain contraction rule to put back together magnons with the same rapidity.

The various hexagon scattering amplitudes needed for our purposes are appended in an ancillary file. We
will not delve into their derivation; the techniques are well-explained in [7]. Further comments relevant in the
present context can also be found in [8, 10].

Nonetheless, we need to explain two features of the construction, the first of which is the twisted translation
of the vacuum Z(0) to the rotated field

Ẑ(a) = Z + a (Y − Ȳ ) + a2Z̄ (46)

at some position a along a real line. Likewise, for the longitudinal magnons Y, Ȳ one has

Ŷ = Y + a Z̄ , ˆ̄Y = Ȳ − a Z̄ . (47)

In constructing structure constants from elements of the Bethe ansatz it is assumed that the three operators
are located at a = 0, 1, ∞. To be able to compare we must project the propagators of free field theory
according to (46) and (47). For the transverse X nothing happens because it is not involved in the twisted
translation:

〈X(a1)X̄(a2)〉 =
1

(a1 − a2)2
(48)

Here we have omitted the colour indices and the normalisation factor −1/(2π)2 that decorates every massless
configuration space propagator. There is no off-diagonal propagator tying X to any of the other scalars so
that X amplitudes will only exist if there are equal numbers of X and X̄ fields. In fact, due to the contraction
prescription and the crossing rules this is also valid on a single hexagon. Norm-like hexagon amplitudes involve
an SU(2) sector operator built from X’s at one point, the same operator at a second point though realised
with X̄ scalars, and a unit operator at the third end of the three-point function, cf. [7].

On the hexagon the conjugate particle to Y is Y itself, again owing to the crossing rules in combination
with the contraction prescription. Strangely enough, one can apparently insert the same operator at two ends
of the three-point function and unity at the third to compute norms with the longitudinal Y magnons [10].

The effective scalar propagators relevant to this exercise are (fields at a1, a2):

〈ZZ〉 = 1 , 〈ZY 〉 =
1

a2 − a1
, 〈Y Z〉 =

1

a1 − a2
, 〈Y Y 〉 = 0 . (49)

In computing norms with these rules there are apparently no problems with primary single-trace states; the
projected field theory results and the hexagon amplitudes agree. Yet, the last rule in (49) has an effect that
will be problematic for our purposes: we saw in Section 2 that the mixing of the operator (7, 3)+ involves
the descendent (5,3). Forming two-point functions using two identical operators realised from Ẑ, Ŷ fields we
calculate

〈(5, 2)(5, 2)〉 = N(N2 − 1)(N2 − 4) , 〈(5, 3)(5, 3)〉 = 0 . (50)

The way the operators are defined in Section 2 the two norms must be equal in field theory; a zero result
would be non-unitary. In the hexagon picture, the twisted translation is the reason for this quirky accident
because in the second case a 〈Y Y 〉 contraction cannot be avoided. The issue will not only affect the (5,3)
state but indeed any SU(2) sector operator beyond half filling. These are always descendents, but as the
example shows they will occur in higher-trace admixtures to single-trace primaries. In this situation we should
unfortunately expect a breakdown of the integrability picture we are trying to develop, or at the very least
we have to accept that all Y correlators cease to be norm-like despite of the interpretation of Y as its own
conjugate. The problem is a new type of finite size effect.

Second, the notion of an entangled state allows us to split Bethe states [26, 7]. This is best explained on
the simplest non-trivial example: let us assume there are two magnons and bringing these from one hexagon
to the other we would cross a bunch of l propagators. The splitting is accomplished by:

ψ({u1, u2}) → (51)

ψ1({u1, u2})ψ2({})− ei p2 lψ1({u1})ψ2({u2})− ei p1 lS12ψ1({u2})ψ2({u1}) + ei (p1+p2)ψ1({})ψ2({u1, u2})

Higher cases work analogously. Like in the normalisation condition (36) it crucial to adhere to the ordering in
which the magnons are originally put on the first few sites of the Bethe state we want to split. An S matrix
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must be inserted for every magnon overtaking another one upon jumping to the second portion of the state.
Last, the process may be iterated splitting the second portion again to arrive at a triple partition etc.

When calculating a structure constant with more than one renormalised operator the questions arises
whether the result depends on the relative starting points of the partitions. For instance, for two non-trivial
operators in a three-point function we could start both on the same hexagon or on different ones, also we
can flip back and front of the figure. It is the Bethe equations and the momentum constraint that guarantee
consistency: if we started the partitioning in (51) on the other hexagon, the magnons would transverse the
other edge of width L− l. Keeping track of ψ1(α)ψ2(ᾱ) we find the conditions

ei p1 l S12 = ei p2 (L−l) , ei p2 l = ei p1 (L−l) S12 (52)

which reduce to the Bethe equation for the particle with p1 upon putting p2 = −p1.
Seeking regular solutions of the Bethe equations at given L, n one has as many equations as unknown

rapidities. Due to the high order of the equations (written as polynomials) there will be several solutions, but
the solution set is always discrete. The momentum constraint selects the cyclic cases, so those that are able
to describe single-trace operators. In deriving the Bethe solutions for our (2, 1), (5, 3), (6, 3)e solutions with
twist we have used the momentum constraint in that vein: it is violated at ε 6= 0 but its leading order singles
out the desired solution. Indeed, multiplying all Bethe equations we find

ei n ε ei L
∑n

j=1 pj = 1 ⇒ ei
∑n

j=1 pj = e−i
n
L ε . (53)

The hexagon itself is an off-shell object like the Bethe wave function prior to imposing cyclicity. On the other
hand, we might guess that the twist of the Bethe equations should appear in building the entangled state as

ei p l → ei n ε ei p l . (54)

Let us modify the argument about the partition independence of the two-magnon entangled state. We define
that any magnon crossing the edge of width l picks up nA units of twists and any magnon crossing the edge
of width L − l should acquire nB units of twist. Equating the coefficients of ψ1({u1, u2})ψ2({}) in the two
situations we find can fix nA, looking at ψ2({})ψ1({u1, u2}) we determine nB . The result is

nA =
l

L
, nB = 1− l

L
. (55)

The coefficients of ψ1({u1})ψ2({u2}), ψ1({u2})ψ2({u1}) are then automatically partition independent. Also in
a range of cases with more edges (so multiple partitions) and more magnons we could confirm that ni = li/L
(where

∑
li = L) assures partition independence. This solution realises

∑
ni = 1 as expected from the Bethe

equations. On the other hand, ni is given different values at the opposite ends of an edge connecting operators
of unequal length. Last, the outcome n = l/L is perhaps not a surprise — not catering e.g. for some jump in
the twist at a certain point of the chain we have implicitly assumed an even distribution of the twist.

Unfortunately, this elegant manner of regularising the hexagon amplitudes does not reproduce the results
of tree level field theory, cf. Section 6 on the descendent correlators relevant to the (7, 3)+ mixing problem. In
trying to design a viable scheme one can develop some fantasy: should the n’s around a chain really sum up
to 1? Should n depend on the edge width? On the same edge, do we have the same n at either side? Should
we put in a twist factor also for a magnon from an operator with a straight, so untwisted solution? Should
the twist factors be more general functions?

For the time being we dropped the last idea because experiments with twist factors like ei p ε do not seem
to yield a suitable series expansion. For transverse magnons X, X̄ the following principles proved helpful:

• Whenever a magnon comes from a solution with twist eiε in the Bethe equation we associate extra factors
ei nj ε to the edges crossed. So for untwisted Bethe solutions these extra factors are trivially 1. Below we
will occasionally scale ε → c0 ε in both, the Bethe equations/solutions and the extra factors.

• We will be pragmatic and put in such factors everywhere, not necessarily assuming that they are equal
at both ends of the same edge. The condition that all n’s of any one operator must add up to the twist in
its Bethe equation is then usually empty, because the last edge is not crossed in forming the partitions.

• We impose consistency conditions: the independence of scaling the twist of any operator by c0, and
(where that becomes relevant) the existence of the two-point limit in calculating two-point functions of
double-trace operators.
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• We allow {nj} to be specific to the partitioning chosen on a given diagram. For fixed partitioning we
rather look for solutions independent of the edge width.

For the transverse magnons this program is quite successful: the n’s are usually 0 and sometimes 1; we
emphasise that the non-trivial case does occasionally appear. The coefficients at the ends of the same edge
should apparently be equal. Therefore, the condition

∑
ni = 1 around a chain does yield a helpful and

consistent constraint from time to time. Unfortunately, as the aforementioned problems with the interpretation
of all Y correlators might have suggested, nothing works to plan for longitudinal magnons, cf. Appendix C.

Let us illustrate the procedure and its problems on the example of the leading N norm of the (5, 3)
operator: we use the original hexagon construction for a three-point functions on the sphere with two three-
magnon operators and an identity. Let the non-trivial operators both be (5,3), once realised with X magnons
and once with X̄ excitations. The fact that the two Bethe solutions are equal makes the computation run into
the particle creation poles 1/(u − v) with u a rapidity of the first operator and v one of the second. These
poles have to cancel between the various partitions. In practice, factoring them out of the complete amplitude
is quite hard already for two sets of three off-shell rapidities. Introducing twist factors on the edges further
complicates the issue. On the other hand, we can use the twist ε as a regulator if we rescale ε → c0 ε for
the second operator. The particle creation poles will then appear as 1/(1 − c0). Organising the entangled
states such that the magnons from both operators are shifted over the common width 5 edge we calculate the
hexagon amplitude

A =
20 i c0 ε

2(1− c0 − n1 + c0 n2)(1− c0 + n1 − c0 n2)(4− 4 c0 + 5n1 − 5 c0 n2)

(1− c0)3(a1 − a2)6
+O(ε3) . (56)

For every operator, this is to be divided by the root of the same phase factor and Gaudin determinant that
we have encountered in the normalisation of the Bethe state given in (36). The factor

√∏
i u

2
i + 1/4 is not

needed in the hexagon picture. To leading order in ε we compute i for the phase and for the Gaudin norm
80 ε2 or 80 c20 ε

2 at the first and second point, respectively. We should thus normalise by 80 i c0 ε
2.

Therefore, we demand
∂A/c0
∂ c0

= 0 . (57)

to guarantee a well-defined coincidence limit c0 → 1. This imposes n1 = n2 for the coefficients at opposite
ends of the edge. With that

A =
20 i c0 ε

2(1− n1)(1 + n1)(4 + 5n1)

(a1 − a2)6
, (58)

whereby the desired result is obtained putting nA,1 = 0. This looks as if the regulator is not needed at all. It
is instructive to repeat the exercise building the two entangled states starting on the same hexagon. To this
end, let us move the magnons of the second operator over the corresponding width 0 edge. Now, condition
(57) reads n2 = 1 − n1. With that (58) is reproduced. Next, let us move the magnons of both states over
the respective width zero edges. Instead of formula (56) we find the same with nj → 1− nj . The consistency
reads again n1 = n2 and to reproduce the desired outcome we must set n1 = n2 = 1.

In conclusion, even if the twist is invisible organising the partitions as we first did, there is one unit of twist
bringing each magnon once around the chain. This is lumped on the edges of width 0, so away from the edge
connecting the two operators with equal rapidities.

Repeating the exercise for two equal operators with Y magnons we obtain

A =
20 i c0 ε

2(1− c0 + n1 − c0 n2)(4− 4 c0 + 5n1 − 5 c0 n2)(c0 n1 − n2 + n1n2 − c0 n1n2)

(1− c0)3(a1 − a2)6
. (59)

The independence of c0 requires n1 = n2 as before, with which

A =
20 i c0 ε

2(1− n1)(1 + n1)(4 + 5n1)n1
(a1 − a2)6

. (60)

As for the transverse magnons, the other patterns of partitioning yield the same upon successively mapping
nj → 1− nj . Our observations about the location of the twist carry over.

Interestingly, the amplitude with longitudinal magnons is the one for transverse magnons times another
factor n1. Clearly, n1 = 0 consistently reproduces the unwanted field theory result. Unfortunately, there is
no real value for n1 yielding 80 i c0 ε

2.
Finally, we recall that the hexagon amplitudes do not contain colour factors [10].
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5 Hexagon tessellations for higher-point functions

In [8, 9, 10] it was argued that the hexagon operator can be used to compute higher-point functions of the
N = 4 theory from integrability, too. For our purposes it will be good enough to stick to the restricted
kinematics on the real line introduced above. In [8, 10] an orbital factor

vi;jk =
1

ai − aj
− 1

ai − ak
(61)

per scalar magnon on edge i was included into every hexagon. These labels refer to the physical edges, and in
the turning sense of the hexagon j(k) are to the left(right) of i. Since vi;jk is antisymmetric under j ↔ k it
flips sign switching from the first hexagon in Figure 1 to the second which has the opposite orientation. This
explains the minus sign in (51) for transferring a magnon from the first portion of the entangled state to the
second. Including the position vectors into the hexagons we have to write a plus sign instead.

The claim is then that any triangulation of a punctured Riemann surface can be used to compute the
contribution of a given tree level graph, if the latter can be drawn along the edges of the tiles.

1 3

2

4

lE,b

lE,a

lA lB

lClD
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3

3 9

4 4
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5
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7
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8

8
9

2

Figure 2: a four-point diagram and the associated colour graph for edge widths {2, 1, 2, 1, 2, 1}

Consider the four-point graph in the left panel of Figure 2 with two single-trace operators of length 6 at
the punctures 1 and 3 and two operators of length 3 at the two other points 2,4. In the right panel we have
opened up the graph on the plane to make it simpler to draw the seven propagators composing a planar graph
on the sphere. We can translate the sample ribbon graph on the right panel into the colour factor

Tr(T 1T 2T 3T 4T 5T 6) Tr(T 2T 1T 7T 4T 8T 9) Tr(T 6T 5T 7) Tr(T 3T 9T 8) (62)

where T i is a short for T ai . Note that the indices from lines connecting two operators (above 1,2) occur
anticyclically within the second trace when they are cyclically positioned on the first. We can stratify the
contributions to free field theory correlators by such colour factors. Their coefficients in the tree QFT results
with effective propagators are faithfully reproduced by hexagon amplitudes with the right set of edge widths
[8, 10]. The latter should neither depend on the tiling nor the way the entangled states are organised.

We will try to reproduce double-trace/double-trace contributions from the diagram in Figure 2, Panel
1. As a first example, consider two (63)e(30) operators. As above, the single-trace parts of length 6 are
placed at points 1,2 and the length 3 parts at points 3,4 with the intention to take a coincidence limit
a3 → a1, a4 → a2. As usual, for normal-ordered operators there should be no self-contractions. Therefore
we are looking for tree graphs of the form of an empty square with lE,b = 0 = lE,f . There are the four
possibilities {lA, lB , lC , lD} = {6, 0, 3, 0}, {5, 1, 2, 1}, {4, 2, 1, 2}, {3, 3, 0, 3}. The ribbon graph for the third
of these is illustrated on the right panel of Figure 2.

To handle the particle creation poles we scale the twist of the second operator by c0 as explained above.
The (6, 3)e operators behaves like any other primary state: potential twist factors in the entangled state do not
even appear in the O(ε0) term of the normalised hexagon amplitudes. For both, transverse and longitudinal
magnons we obtain the results 1, 1/2, 1/6, 0, respectively. For comparison, omitting the space-time factor,
free field theory yields N9 − 10N7, 9N7, 3N7, 0, respectively, at the relevant orders in N . These results
are also valid for both, transverse and longitudinal magnons. As observed in [10], the connected part of the
hexagon amplitudes needs to be scaled up by a factor

√
L1L2L3L4 = 18 to obtain a match. Note that the

product of the sphere colour factors in the disconnected part is N9 − 9N7 + . . . The discrepancy is accounted
for by the torus part of the (6, 3)e two-point functions times the sphere part of the (3, 0) two point-function
and vice versa, cf. Appendix B.

Within the hexagon framework we can draw another class of planar tree graphs on the sphere: placing the
two length 6 operators at points 1 and 3 of the diagram, and the two length 2 operators at points 2 and 4,
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we can put lA = 0 = lC , lB = 3 = lD. The coincidence limit is now a2 → a1, a4 → a3. Below, we will
refer to this topology as belt around the belly. Now, the three propagators connecting the length 6 operators
can be distributed around the equator of the sphere as {lE,b, lE,f} = {3, 0}, {2, 1}, {1, 2}, {0, 3}. Here, the
{3, 0} and {0, 3} cases should both be equal to the {3, 3, 0, 3} case in the last paragraph. We need to take into
account only one of the three realisations of this graph. Yet, generically the {2, 1} and {1, 2} cases would both
be needed, cf. [8]. This is in fact a feature of the tree field theory computation, too. In the case at hand these
graphs all vanish, though.6

The complete two-point functions of the (9, 3)−i +. . . operators contain a cross term 〈(6, 3)e(3, 0)∗(7, 3)−(2, 0)〉.
We compute separately for the two (7, 3)j Bethe states and then form a difference. In field theory as well as
in the hexagon picture the amplitudes neither depend on the twist regulator nor on which type of excitation
is chosen. The possible tree diagrams are {6, 0, 2, 1}, {5, 1, 1, 2}, {4, 2, 0, 3}. In the first case, the colour factor
identically vanishes. Field theory yields −2

√
3, 0 for the first Bethe state in the two other cases, +2

√
3, 0 for

the second.
Upon multiplication by

√
2367 the hexagon amplitudes yield the same, on the condition that we reverse the

sign of the amplitude for the first (7,3) Bethe state. We have no explanation for this rule. The belt diagrams
non-trivially add up to zero in a surprisingly non-trivial manner:

(lE,b, lE,f ) hexagon tiling
(4,0), (0,4) 1

2
√
21

(3,1) − 1
4
√
21
− i

√
5

12
√
7

(2,2) 0

(1,3) − 1
4
√
21

+ i
√
5

12
√
7

The four colour factors can be distinguished by the ribbon structure but are identically equal upon evaluation.
Again, a sign needs to be amended on the integrability side for 〈(6, 3)e(3, 0) ∗ (7, 3)+(2, 0)〉 to be absent and
〈(6, 3)e(3, 0) ∗ (7, 3)−(2, 0)〉 to exist.

Last, at the leading order in N , the two-point functions of (7, 3)j in free field theory as well as integrability
(times 14 in the connected part) for the {7, 0, 2, 0}, {6, 1, 1, 1}, {5, 2, 0, 2} tree graphs have the matrix form

N9

(
1 0
0 1

)
, 8N7

(
1 0
0 1

)
,

20

3
N7

(
1 1
1 1

)
. (63)

Again, in the integrability picture an extra minus sign on one of the states is required to match field the-
ory. Considering the belt cases we see a cancellation of imaginary parts within the pairs {4, 1}, {1, 4} and
{3, 2}, {2, 3} and the sum {5, 0}+ {4, 1}+ {3, 2}+ {2, 3}+ {1, 4} is as stated. Since there is no twist regulator
at our command to control the particle creation poles we have calculated numerically to high precision shifting
the second set of rapidities by a small increment. The error comes at the expected order so that it is easy to
truncate appropriately and match by the exact results stated above.

Our (7, 3)+ mixing example includes double-trace/double-trace two-point functions of the (5,3)(2,0) and
(5,2)(2,1) operators involving descendents. The situation here is more complicated in two ways: with transverse
magnons we occasionally need the twist regulator with non-trivial n’s as shown in Section 6. The regularised
Y correlators in the integrability picture could (almost) fit the X combinatorics but hardly the results for
longitudinal magnons themselves, which deviate from the X correlators. This is so even for 〈(5, 2)(2, 1) ∗
(5, 2)(2, 1)〉, which is not beyond half filling in any obvious way. Tables are given in Appendix C.
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Figure 3: diagrams for single-trace/double-trace correlators

6The twist regulator could bring them back by the nE,b, nE,f coefficients. We learn by comparison with field theory and the
empty square case that these n coefficients must vanish.
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Next, we also wish to check the agreement between field theory and integrability for the single-trace/double-
trace parts of correlators at leading order and on the torus. Here the first panel of Figure 3 may be employed,
with a length 2 or 3 operator at point 3 and an identity insertion at point 4. For the primary operators we
have prevalently calculated with longitudinal magnons; checks indicate that transverse magnons yield identical
results, both in field theory and integrability. The space time dependence of the correlators is the expected
factor 1/(a1 − a2)6 whereby no problem with the coincidence limit can occur. We emphasise the following
two points: first, when the two operators carrying excitations are linked by only one edge of the maximum
width (or equivalents by cyclicity) the colour factor is of order NL−1 with L the greatest length. Yet, as
these diagrams are connected (albeit extremal) the same combinatorics applies as in the connected part of the
double-trace/double-trace analysis above: the sphere part of the integrability computation needs to be scaled
up by

√
L1L2L3 like the true torus cases7. Second, for the parity pairs we have to introduce an extra sign on

(9, 3)1, (7, 3)1 again.
However, introducing the third non-trivial puncture into the game, two more types of colour factors can

arise: first, the part of the double trace operator with the shorter length can lie inside one of the ribbons
between the two longer operators, see Panel 2 of Figure 3. Second, in the (9, 3)− problem we have mixing with
(6, 3)e(3, 0). Obviously, we need to able to connect the length 9 and the length 3 operator with three single
lines, which cannot be realised on the first two tilings. Here we have used the diagram in Panel 3.

The parity even 〈(7, 3)+ ∗ O⊥〉 correlator also requires the sign flip on the (7, 3)1 . . . hexagon amplitudes.
Then everything works out with transverse as well as longitudinal magnons without any twist-like modification
of the entangled states. We obtain

〈(7, 3)+ ∗ (5, 3)(2, 0)〉 = 2

√
10√
3

(N6 − 5N4 + . . .) = −
√

2 〈(7, 3)+ ∗ (5, 2)(2, 1)〉 . (64)

Finally, we need single-trace/single-trace two-point functions on the sphere, the torus, and the double
torus. In principle, tessellating the latter works in the obvious way and could be handled as described above.
Yet, the workload quickly grows out of hand because there are relatively many distinct sets of edge widths.
Consequently, we used a Mathematica script to generate all Wick contractions, to classify these by the colour
factors as in the right panel of Figure 2 or equation (62), and to automatically embed the corresponding graph
on the surface of the smallest possible genus. We have chiefly studied amplitudes for longitudinal magnons.

Where twist is not around to help with the particle creation poles we have regularised by a small shift
of one set of rapidities as was already done to obtain (63). For the double torus computations we have used
minimally 100 digits of precision and a shift of order 10−25 to arrive at 20 digits of precision in the output; we
kept the precision fairly low to save on computer time.
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Figure 4: a tessellation of the double torus with a colour ribbon graph for the 〈(5, 2) ∗ (5, 2)〉 correlator
marked on it. The length five operators are at points 1 and 2. Four identity operators were added to achieve
a triangulation. Actual propagators are depicted as solid lines, auxiliary edges of width zero as dotted lines.

The simplest example in which a genus 2 diagram contributes is the norm of the (5,2) operator. Due to
its low length the operator does not receive admixtures so that all diagrams can be embedded on the double
torus. Integrability supplemented by colour factors exactly reproduces the norm stated in (50).

7The hexagon amplitude for the graph in Panel 2 of Figure 3 with edge widths {2, 1, 2, 1, 2, 1} overcounts the field theory result
by a factor of 3 in this normalisation due to its threefold cyclic symmetry. The effect was first noticed in [10].
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6 Twisting 〈XXX X̄X̄X̄〉
6.1 〈(5,3)(2,0) ∗ (5,3)(2,0)〉
Like in the (6, 3)e(3, 0) two-point function we put the single-trace operators carrying excitations at points 1
and 2 and their complements (2,0) in the double trace products at points 2 and 4. The coincidence limit
3 → 1, 4 → 2 is even trivial for the empty square diagram with lE,b = 0 = lE,f in Figure 2, Panel 1. To
regularise the particle creation poles we rescale once again the regulator at the second point, i.e. we employ
c0 ε there. In the ε → 0 limit there are infinite rapidities so that the situation resembles the norm example at
the end of Section 4. The c0 independence condition (57) forces

nA,1 = nA,2 (65)

which is common to all four cases in the table below, even prior to the two-point limit. Omitting the obvious
space time factor 1/(a1 − a2)6:

lAlBlC lD QFT hexagon tiling
5020 1 1

4 (1− nA,1)(1 + nA,1)(4 + 5nA,1)

4111 4 10 ∗ 1
20 (1 + nA,1)(2− 5nA,1)(4 + 5nA,1)

3202 1 10 ∗ 1
20 (2 + 5nA,1)(1− 8nA,1 − 5n2A,1)

In the field theory results we have indicated the leading N coefficient only. Clearly, for a match we must
put nA,1 = 0. For a test we have calculated the 〈(5, 3)(2, 0) ∗ (5, 3)(2, 0)〉 hexagon amplitudes also sending
the magnons of the operator at point 2 over the edge B. Then c0 independence implies nA,1 = 1 − nB,2
as in the norm example in Section 4. Turning the entangled state at point 1 nothing changes as long as the
edge A is crossed. On the other hand, if the magnons go over the edges Ef , D, EB we find the same with
nA,1 → 1−nE,f −nD,1−nE,b and to match QFT one has to assign nE,f +nD,1 +nE,b = 1. Hence we cannot
resolve exactly where the twist has to go.

For the belt around the belly version we put the two non-BPS operators at points 1 and 3 and the vacua at
2 and 4. On the equator lines of the diagram we have in principle four different indices — one nE,b and one
nE,f at each point. For brevity we have put all of these equal. The c0 independence constraint is then empty.
We organise the partitions such that the magnons are clockwise brought over the backwards equator edge
first. The excitations thus never cross the two edges B, D of non-vanishing length, so that their n coefficients
cannot appear. We actually find results without the nA, nC either:

{lE,b, lE,f}lAlBlC lD QFT hexagon tiling
{3,0}0202 1 10 ∗ 1

10 (1 + 9nE,b + 10n2E,b)

{2,1}0202 2 10 ∗ 1
10 (1− 3nE,b + 10n2E,b)

Once again, we must drop the regulator. Note that the second line in the table shows the necessity of doubling
the {2, 1} graph. Upon tracking the colour factors the field theory result actually contains both, a {2, 1} and
a {1, 2} part while {3, 0} can only be realised in one way.

In the light of our previous experience an interesting experiment to make is to move the magnons of the
left operator over the edges D, Eb, A and those of the right operator over C, Ef , B. From (57) we find the
two constraints

nA,1 + nD,1 = 1− nE,b − nE,f , nB,3 + nC,3 = 1− nE,b − nE,f . (66)

If we now assume nE,f = nE,b we fall upon the results in the table whereby nE,b = 0. Nonetheless, we have
learned nA,1 + nD,1 = 1 and nB,3 + nC,3 = 1 and so the twist exists, obeys the familiar sum rule from the
Bethe equations. Once again, we cannot precisely localise it. Here it is distributed around the square frame,
i.e. not on the lines connecting operators with identical rapidities.

6.2 〈(5,3)(2,0) ∗ (5,2)(2,1)〉
We will now put the (5,3) operator at point 1, its partner (2,0) at the opposite point 3, and the (5,2) primary
at point 2 its partner, the vacuum descendent (2,1) at point 4 of the empty square in Figure 2, panel 1. We
will associate n coefficients to the states at points 1 and 4; the (5,2) operator at point 2 is undeformed, so it
seems logical to not associate it with ε at all.8 At point 1 we organise the partition as before, while at point

8In a more general ansatz one might artificially introduce twist into the (5,2) Bethe equations and drag such coefficients along.
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4 we move the magnons clockwise over the edge C. Coefficients to be expected in the result are now thus
nA,1, nD,1 and nE,f at point 1 as well as nC,4.

Again, we will distinguish the twist at point 4 from that at point 1 by a scale c0 as one must be able
to move both parameters independently. The amplitudes at O(ε2) are polynomials of c0 and the n′s over a
denominator 2− c0. Clearly we should impose (57) which yields

nD,1 = 2 (1− nC,4) (67)

as a simple solution common to all three cases in the table below. Remarkably, had we assumed equal
coefficients at both ends of the D egde, so nD,1 = nD,4, the twisted Bethe equation (31) would have made
us expect nD,1 = 1 − nC,4. Reconciling this with the c0 independence of the formula singles out nC,4 = 1,
which will indeed be our result, see below.

Employing (67) we obtain

lAlBlC lD QFT hexagon tiling

5020 0
√
2
4 (1 + nA,1)(4 + 5nA,1)(−1 + nC,4)

4111
√

2 10 ∗
√
2

40 (4 + 5nA,1)(−5− 5nA,1 + 6nC,4 + 10nA,1nC,4)

3202
√

2 10 ∗
√
2

20 (2 + 5nA,1)(−2 + 3nC,4 + 5nA,1nC,4)

for the leading N parts. Demanding equality of field theory and normalised hexagon amplitudes simultaneously
in all three cases is possible and uniquely determines

nA,1 = 0 , nC,4 = 1 . (68)

It is also possible to keep the rapidities of the (5,2) operator undetermined during the ε expansion. The particle
creation pole factors out upon which we can substitute the Bethe solution u2 = 1

2 = −u1. The ε expansion
does not bring out nA,1 in this case whereas c0 independence still creates the same constraint. We directly
land on the three results in the table evaluated at nA,1 = 0. With hindsight, this and the Bethe argument
uniquely pin down the three amplitudes. In conclusion, this example requires introducing a single factor ei c0 ε,
namely when the magnon of (2,1) transverses the edge C independently of the edge width. We could carry
away a second message: there should be no unit of twist on lines connecting deformed operators.

Reorganising the partitions we can generate the transformations nD,1 → 1 − nE,b − nA,1 − nE,f and/or
nC,4 → 1−nD,4 on the set of parameters. As expected by now, the content of the equations does not change.
In particular, the second move allows us to drop all n coefficients although the twist is inherently present. The
example illustrates very well how the descendent amplitudes may collapse or come out wrong for some choice
of partitions when no n’s are used.

In the belt embedding we put the (5,3) operator at point 1, (2,0) at point 2, (5,2) at point 3 and finally
(2,1) at point 4. The magnons at point 1 go over lE,b, lA, lE,f as before and we also move that of (2,1) over
edge C. Again, for simplicity we assume nE,b = nE,f . The c0 independence constraint valid in both cases is

nE,b = −1

2
− nA,1

2
+ nC,4 , (69)

with which:

{lE,b, lE,f}lAlBlC lD QFT hexagon tiling

{3,0}0202
√

2 10 ∗
√
2

20 (1 + 5nA,1 + nC,4 + 5nA,1nC,4 − 10n2C,4)

{2,1}0202 −2
√

2 10 ∗
√
2

20 (−5− 5nA,1 + 13nC,4 + 5nA,1nC,4 − 10n2C,4)

Taking into account the doubling of the second diagram the two equations have the simultaneous solutions

nA,1 = 1, nC,4 = 1 ∨ nA,1 =
2

5
, nC,4 =

1

2
. (70)

and so nE,b = 0 or nE,b = − 1
5 . In the second solution, the value of nA,1 suggests to try the homogeneous

distribution of twist n = l/L initially discussed. However, once again that fails to yield the right results.
Aesthetically, the first solution seems more appealing — also, it is more in line with what we have seen

so far: the two sum rules we expect are 1 − nC,4 − nD,4 = 0, = 1 − nA,1 − nE,f − nD,1 − nE,b. Assuming
nE,b = 0 = nE,f (equal rapidities at ε → 0) and nD,j = 0 (the edge connects two operators carrying twist)
we could have conjectured nA,1 = 1 = nC,4. We can hide the twist choosing the partitions such that the
edges A, C are avoided and putting all n’s to 0.
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6.3 〈(5,2)(2,1) ∗ (5,2)(2,1)〉
For the empty square we put the two (5,2) operators at points 1,2 and the two vacuum descendents at 3,4.
To the latter we assign twist ε, c0 ε to regularise their particle creation pole in the amplitude. We move both
magnons over the C edge. The (5,2) Bethe solution is undeformed so that we cannot rescale any epsilon
here; we will substitute u = ∓ 1

2 for the first operator, expand in ε, factor the amplitude, and finally put
the rapidities of the second (5,2) operator on shell. As expected, the amplitudes have a pole 1/(1 − c0) and
regulator independence implies nC,3 = nC,4. We find the table

lAlBlC lD QFT hexagon tiling
5020 1 (1− nC,4)

4111 5 10 ∗ 1
10 (5− 6nC,4)

3202 2 10 ∗ 1
10 (2− 3nC,4)

For a leading N match it follows nC,4 = 0, so the twist is hidden on the edges B, D.
The belt around the belly version has the two (5,2) operators at points 1 and 3 and the vacuum descendents

at 2 and 4. The results are n independent:

{lE,b, lE,f}lAlBlC lD QFT hexagon tiling
{3,0}0202 2 10 ∗ 1

5

{2,1}0202 0 0

Fortunately, this comes out right!

7 Conclusions

In this article we have studied the operator mixing in the so-called SU(2) sector in N = 4 super Yang-
Mills theory. Specifically, we have focused on multi-trace admixtures to single-trace operators in a number of
examples with the aim of constructing a large N expansion of the form Os + 1/N Od + 1/N2Ot + . . ., where
the subscripts refer to single-, double-, and triple-trace operators.

As is well-known [3, 16, 11], the degeneracy of the spectrum poses a problem: if a single-trace and a
double-trace leading N eigenstate have the same anomalous dimension, we naively find the sum and difference
of the two operators as eigenstates, without an offset of 1/N in the relative coefficients. Hence the large N
expansion is not of the desired form. Degenerate perturbation theory can improve on this. It has also been
suggested to look at the β deformed theory [27] instead in which the degeneracy is lifted. The idea would be
to define the states of the undeformed theory by the limit β → 0 [20]. It would be interesting to address the
operator mixing also in such cases; clearly hexagon tilings will still correctly reproduce the various overlaps.

Degeneracies are particularly frequent in the two-excitation spectrum. For operators with more excitations
the eigenvalue problems have characteristic polynomials of higher degree whose roots rarely coincide with with
those of lower cases. This is so in particular for so-called primary states, i.e. those that cannot be derived
from others by SU(2) raising. Adding in higher-trace admixtures we found that their leading N anomalous
dimensions should also differ from that of the single-trace state in question. Importantly, degeneracies within
the relevant set of multi-trace operators are apparently irrelevant. Scanning the space of single-trace operators
from length 2 to 10 with up to four excitations we found that the systematic N expansion can be constructed
in most cases, at least to the order indicated above.

An interesting feature of the higher-excitation spectrum is the existence of parity pairs, i.e. pairs of single-
trace operators with degenerate leading N anomalous dimension. In the exact planar limit we are free to
choose any basis for such a 2 × 2 cell. One can always assume this basis to consist of the odd and even
part under parity, here defined as the reversal of all colour traces. Parity is in fact strictly respected in the
operator mixing, and the even and odd operators acquire distinct 1/N2 corrections to the common leading N
anomalous dimensions.

To spare some work we studied three-excitation cases up to length 9 in which no triple-trace operators occur,
and in which the mixing does not involve too many distinct operators. In order to compute two-point functions
of the N completed single-trace operators we obviously need to evaluate those of all their constituents, which we
were able to reproduce by hexagon tilings of the sphere, the torus, and the double-torus. In a coincidence limit,
three-point functions on the sphere and the torus can be used to compute single-trace/double-trace mixing
to the required order, and four-point functions on the sphere should reproduce the double-trace/double-trace
contributions.

19



In a similar vein, the single-trace/double-trace (and vice versa) transitions caused by the one-loop dilatation
operator can be captured by an overlap formula [20] in the spin chain picture. For simplicity, we have rather
imported the one-loop mixing matrices from field theory and then derived their eigenvectors by traditional
means. A third ingredient is a similarity transformation by the (root of) the matrix of tree level two-point
functions. This is given by the very pieces that we did reproduce from integrability supplemented by colour
factors [10]. It would be worthwhile looking for a more systematic approach to the entire diagonalisation
process.

Admittedly, the current technology constitutes at most a proof of principle because the integrability cal-
culations are more cumbersome than tree level field theory. Nonetheless, for primary operators — including
an exceptional case, which the Bethe ansatz misses unless twist is introduced — the tessellation method
works perfectly. Interestingly, we need to introduce an extra sign on one of the Bethe states describing each
degenerate pair.

In our picture, multi-trace operators are products of single-trace eigenstates. As our (7, 3)+ example shows,
higher-trace admixtures to primary states can have multi-trace admixtures in which one or more of the factors
are descendents. The Bethe ansatz projects out descendent states, but like the aforementioned exceptional
operator they may be brought back introducing twist into the Bethe equations.

The original hexagon construction [7] as well as its application to higher-point functions [8, 9] cuts up the
Riemann surface on which a graph can be drawn. In this process also the single trace operator viz Bethe state
at a punture is cut into various pieces. As a consequence, we have to address the question as to how this
can be made compatible with twist. For the single-trace/single trace and single-trace/double-trace two-point
function we studied there is no need to alter the cutting rules to reproduce field theory from integrability.

The situation changes w.r.t. the double-trace/double-trace two-point functions in our (7, 3)+ example:
for transverse magnons in the terminology of [7] an integrability/field theory match can be achieved using a
number of empirical rules:

• We introduce a factor ei ε into each Bethe equation for a descendent state. Bringing a magnon once
around the entangled state at the corresponding puncture we should include a factor ei nj ε when the
edge j is crossed.

• Homogeneously distributing the twist putting nj = lj/L (with lj the width of the edge and L the length
of the operator) generically fails. Instead, the twist is inhomogeneously distributed depending on the
tessellation and the position of the operators on it. Note that we did not have to include twist into our
map from Bethe states to field theory operators which implies that the twist is lumped at one site of the
chain.

• In the examples studied, we cannot uniquely assign nj coefficients. Yet, around an entangled state they
should add up to 1 as expected from the Bethe equations. If an edge connects two operators with twist,
or two operators with Bethe rapidities degenerate at zero twist, the corresponding n coefficient ought to
vanish.

• Partition invariance — the independence of the outcome of the way the Bethe states are cut — is
guaranteed in that different choices only lead to reparametrisations but do not alter the results.

Imposing these rules of thumb the method does have predictive power. Yet, a more comprehensive study is
clearly needed: for once we have not considered double or even higher descendents. Second, for higher-point
functions with descendents at many punctures it is not clear that the rules above can be consistently imposed.

Furthermore, realising the SU(2) sector with longitudinal magnons [7] we have not found a way to rec-
oncile integrability with field theory results for our double-trace/double-trace two-point functions involving
descendents at both ends. The tree field theory results deviate form those for transverse magnons in these
cases, which is an effect of the twisted translation built into the hexagon approach. Curiously, the hexagon
amplitudes listed in Appendix C fall upon the expressions for transverse magnons. If not resolved, the issue
causes a new type of finite size problem for integrability: a systematic large N expansion cannot be dealt
with when single-trace operators mix with descendents of shorter operators as factors of some multi-trace
admixture.

The symmetry underlying the twisted translation is at odds with the existence of twist in this sector. It is
therefore of vital interest to study for what other excitations of the complete N = 4 super spin chain similar
difficulties arise. We might hope that a nested Bethe ansatz for the Dynkin diagram employed in [5, 22] opens
a way of removing the difficulties. In a putative hexagon approach to the β deformed theory this point will
be of central importance.
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Appendix A: two-point functions up to 1/N4

Exceptional operator at length 6

The (6, 3)e operator of equations (11), (40) has the two-point function

〈(6, 3)e ∗ (6, 3)e〉 = N6
(
1− 5N−2 + 4N−4

)
. (71)

Degenerate pair at (7,3)

The Bethe states (7, 3)j in (41) have overlaps

〈(7, 3)1 ∗ (7, 3)1〉 = 〈(7, 3)2 ∗ (7, 3)2〉 = N7
(
1− 8N−2 + 19N−4 +O(N−6)

)
, (72)

〈(7, 3)1 ∗ (7, 3)2〉 = N7
(
0 + 6N−2 − 30N−4 +O(N−6)

)
. (73)

From here it follows

〈(7, 3)− ∗ (7, 3)−〉 = N7
(
1− 14N−2 + 49N−4 +O(N−6)

)
, (74)

〈(7, 3)+ ∗ (7, 3)+〉 = N7
(
1− 2N−2 − 11N−4 +O(N−6)

)
.

While we are done with the parity odd two-point function, we still need to discuss the effect of the admixtures
to the parity even one. From (64) we find

〈(7, 3)+ ∗ O⊥〉 = −2
√

5 (N6 − 5N4 + . . .) (75)

and adding the various results for transverse magnons (we drop the longitudinal case for now due to the
difficulties displayed in Appendix C):

〈O⊥ ∗ O⊥〉 = N7 +N5 − 26N3 + . . . (76)

From here we could straightforwardly compute the two-point functions of the two eigenstates (17) in Section
2. However, the mostly single-trace and the mostly double-trace state are not orthogonal. As has been pointed
out in the literature [28], this can be mended by a similarity transform

M → S−
1
2 M S

1
2 , Sij = 〈OiOj〉tree . (77)

The root of the tree matrix S has fairly complicated N dependence. We resort to expanding up to NNLO in
N−2: √

S

N7
=

(
1− 7

2N2 − 3
8N4 −

√
5
N + 9

√
5

4N3

−
√
5
N + 9

√
5

4N3 1− 2
N2 − 15

4N2

)
+ . . . (78)

The similarity transform maps M as stated in (16) to

M →

(
5− 5

N2 − 5
2N2 − 3

√
5

N + 3
√
5

4N3

− 3
√
5

N + 3
√
5

4N3 4 + 5
N2 + 5

2N4

)
+ . . . . (79)

The root of the tree matrix is uniquely determined if we choose it real and symmetric. Since it is not orthogonal
the transformation can change the scalar product of the eigenvectors; they become orthogonal.

The structure of the N dependence is not blurred by the transformation, although the one-loop matrix
now has an infinite N expansion. The closest to what we have done in Section (2) is to look for an eigenvector
of this new mixing matrix of the form {1, b}, i.e. we complete the single-trace state with admixtures without
rescaling it. Our old mixing coefficients in (17) are obviously related by the transformation (78) up to an N
dependent rescaling putting the first component of the eigenvector to 1. With this definition

b1 → −3
√

5 , b̂1 →
423
√

5

4
(80)

and finally:

〈(7, 3)+c ∗ (7, 3)+c 〉 = N7(1 + 45N−2 − 6345

2
N−4 + . . .) (81)
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Degenerate pair at (8,3)

The one-loop mixing matrix for the parity odd L = 8, n = 3 operators is

M =

 4 0 0
0 6 6

N−2
N

6
N 6

 (82)

in the basis {(8, 3)−, (8, 3)e, (6, 3)e(2, 0)}. This does have a left-eigenvector (1, 0, 0) as stated in Section 2.
The similarity transformation by the root of the tree level matrix results to:

M →

 4 + 1
2N2 + 209

32N4
5

4N2 + 4
N4

−1
N + 21

8N3

5
4N2 + 4

N4 6− 25
32N4

6
N + 11

8N3

−1
N + 21

8N3
6
N + 11

8N3 6− 1
2N2 − 23

4N4

+ . . . (83)

Inspecting the latter matrix one might worry whether it is still possible to complete the (8, 3)− operator to a
large N eigenstate. In fact, there is no problem:

(8, 3)−c = (8, 3)− − 17

8N2
(8, 3)e +

(
1

2N
+

83

16N3

)
(6, 3)e(2, 0) + . . . . (84)

It is clear that the state must survive because it can also be derived it by acting on the vector of coefficients
(1, 0, 0) in the other basis by multiplying with

√
S and rescaling the first component. The two-point function

becomes

〈(8, 3)−c ∗ (8, 3)−c 〉 = N8

(
1 +

1

4N2
+

621

64N4
+ . . .

)
. (85)

Degenerate pairs at (9,3)

Let us order the complete basis as

{O1,2,3, O1,2,4, O1,2,5, O1,2,6, O1,2,7, O1,2,8, O1,3,5, O1,3,6, O1,3,7, O1,4,7} . (86)

We have the paired states

(9, 3)j1 = (0.019698,−0.061589∓ 0.037646 i,−0.032810± 0.12248 i, 0.14940,−0.032810∓ 0.12248 i,

−0.061589± 0.037646 i, 0.33666,−0.28492− 0.48330 i,−0.28492± 0.48330 i, 0.25288) ,

(9, 3)j2 = (−0.13995, 0.24631± 0.43613 i,−0.29736∓ 0.22678 i, 0.38201,−0.29736± 0.22678 i, (87)

0.24631∓ 0.43613 i,−0.18337, 0.0070425∓ 0.091441 i, 0.0070425± 0.091441 i, 0.029342) ,

(9, 3)j3 = (0.38917,−0.23868∓ 0.24160 i,−0.17869∓ 0.42845 i, 0.056392,−0.17869± 0.42845 i,

−0.23868± 0.24160 i,−0.15640, 0.20049∓ 0.08976 i, 0.20049± 0.08976 i, 0.14458) .

The parity odd states (21) have the two-point functions

〈(9, 3)−1 ∗ (9, 3)−1 〉 = N9
(
1− 7.1317N−2 + 14.706N−4 +O(N−6)

)
,

〈(9, 3)−2 ∗ (9, 3)−2 〉 = N9
(
1 + 0.3985N−2 − 87.730N−4 +O(N−6)

)
,

〈(9, 3)−3 ∗ (9, 3)−3 〉 = N9
(
1− 33.267N−2 + 414.02N−4 +O(N−6)

)
, (88)

〈(9, 3)−1 ∗ (9, 3)−2 〉 = N9
(
0 + 5.9542N−2 − 29.236N−4 +O(N−6)

)
,

〈(9, 3)−1 ∗ (9, 3)−3 〉 = N9
(
0− 0.7722N−2 − 0.4182N−4 +O(N−6)

)
,

〈(9, 3)−2 ∗ (9, 3)−3 〉 = N9
(
0− 1.4489N−2 + 50.853N−4 +O(N−6)

)
.

Further,

〈(9, 3)−1 ∗ (7, 3)−(2, 0)〉 = 0.9411N8 − 13.515N6 +O(N4) ,

〈(9, 3)−2 ∗ (7, 3)−(2, 0)〉 = −5.1929N8 + 79.646N6 +O(N4) , (89)

〈(9, 3)−3 ∗ (7, 3)−(2, 0)〉 = −2.4795N8 + 51.496N6 +O(N4)
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and

〈(9, 3)−1 ∗ (6, 3)e(3, 0)〉 = 2.9140N8 − 12.874N6 +O(N4) ,

〈(9, 3)−2 ∗ (6, 3)e(3, 0)〉 = 5.7868N8 − 60.161N6 +O(N4) , (90)

〈(9, 3)−3 ∗ (6, 3)e(3, 0)〉 = −0.1467N8 − 11.267N6 +O(N4) .

In combination with formulae (95), (100), (101) of Appendix B these yield the tree matrix Sij whose root
defines the similarity transform to orthogonal states. The two-point functions for the (9, 3)−j,c states are

〈(9, 3)−1,c ∗ (9, 3)−1,c〉 = N9
(
1 + 5.6881N−2 + 7.5170N−4 +O(N−6)

)
,

〈(9, 3)−2,c ∗ (9, 3)−2,c〉 = N9
(
1 + 174.91N−2 − 10337N−4 +O(N−6)

)
, (91)

〈(9, 3)−3,c ∗ (9, 3)−3,c〉 = N9
(
1 + 0.3980N−2 + 13.221N−4 +O(N−6)

)
.

Appendix B: disconnected double-trace two-point functions

In the disconnected part of the two-point functions of (6, 3)e(3, 0) we encounter the norm

〈(6, 3)e ∗ (6, 3)e〉 = 1 ∗ (N6 − 6N4 + . . .) + 1 ∗ (N4 + . . .) = N6 − 5N4 + . . . (92)

where we have separated by sphere and torus diagrams. The torus part involves graphs that can be marked
on Figure 3, Panel 1 with two length 6 and two identity operators as in [10]. The relevant sets of edge widths
are

{0, 1, 1, 4}, {0, 2, 2, 2}, {1, 1, 1, 3}, {1, 1, 2, 2}, {1, 2, 1, 2} . (93)

In field theory as well as in integrability, the amplitudes for the first and third of these vanish. The hexagon
computation has to be scaled up by a factor

√
L1 L2 = 6 upon which the second and the fifth case have to

receive extra factors 1/3, 1/2, respectively, due to their three- and twofold cyclic symmetry, cf. [10].
Trivially,

〈(3, 0) ∗ (3, 0)〉 = 1 ∗ (N2 − 1)(N2 − 2)

N
+ 1 ∗ 2 (1−N2)

N
= N3 − 5N + . . . (94)

so that the product yields N9−10N7+. . . as stated in the paragraphs after (62) for the {6, 0, 3, 0} double-trace
graph. From the other formulae in Section 5 it follows

〈(6, 3)e(3, 0) ∗ (6, 3)e(3, 0)〉 = N9 + 2N7 + . . . (95)

As before, we will compute the {7, 0, 2, 0} sphere and torus parts of the (7, 3)−(2, 0) two-point functions
from the overlaps of the two Bethe states (7, 3)j . The sphere part is obviously diagonal and comes with the
colour factor (N7 − 7N5 + . . .)(N2 − 1) = N9 − 8N7 + . . .. In the torus part of 〈(7, 3)j ∗ (7, 3)k〉 we find the
colour ribbon graphs

{0, 1, 1, 5}, {0, 2, 2, 3}, {1, 1, 1, 4}, {1, 1, 2, 3}, {1, 1, 3, 2}, {1, 2, 1, 3}, {1, 2, 2, 2} (96)

which evaluate to:
N5 {−1, 1, 1, 1, 1, 1, 1} (97)

Now, w.r.t. this basis:

〈(7, 3)1 ∗ (7, 3)1〉 = {2, 0, 2, −1−
√

15 i, −1 +
√

15 i, 2, −1} → −N5 + . . .

〈(7, 3)2 ∗ (7, 3)2〉 = {2, 0, 2, −1 +
√

15 i, −1−
√

15 i, 2, −1} → −N5 + . . . (98)

〈(7, 3)1 ∗ (7, 3)2〉 = 〈(7, 3)2 ∗ (7, 3)1〉 = {0, 2, 0, 3, 3, 0, −2} → 6N5 + . . .

Again, the integrability results for the torus need to be scaled up by
√
L1L2 = 7 to find a match, though

there are no extra factors due to cyclic invariance here. For the first Bethe state we must insert an extra sign.
In conclusion, the diagonal leading N disconnected part of equation (63) receives a correction

−3N7

(
3 −2
−2 3

)
. (99)

Collecting terms:
〈(7, 3)−(2, 0) ∗ (7, 3)−(2, 0)〉 = N9 − 7N7 + . . . (100)
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For completeness, we recall:

〈(6, 3)e(3, 0) ∗ (7, 3)−(2, 0)〉 = −2
√

6N7 + . . . (101)

Third, for the (7, 3)+, O⊥ mixing example we need the norm of the (5,3) state to torus order. We will use
the torus diagram Figure 3, Panel 1 with identity insertions at points 3,4 with transverse magnons. There are
only three contributing tree diagrams,

{0, 0, 0, 5}, {0, 1, 1, 3}, {1, 1, 1, 2} , (102)

where we include the sphere contribution as an additional test although it is already covered by (58).
This offers an opportunity to apply the rules for twist developed above. We should not put twist on the

edges connecting the two length five operators by what was said before. On the other hand, hiding the twist
on the edges of width zero the n coefficients tend to drop. Hence, starting both partitions in the centre of
the figure so that edge A is crossed first it should be possible to compute without any regulator. And indeed,
putting a1 = 0, a2 = 1 and normalising as in the derivation of (58) we obtain

− (a3 − a4)

a3 (1− a4)
{1, 1/5, 1/5} . (103)

The complete space time factor would likely be −a34/(a512 a13 a24). It comes as a surprise because of the wrong
sign, but also because the positions of the identity operators do not drop, and because it has a preferred asso-
ciation between points 1,3 and 2,4, respectively, which might arise from the turning sense of the partitioning9.
As the computation impeccably yields the correct amplitudes (as usual, the true torus part needs an extra
factor

√
L1L2 = 5) we clearly need to eliminate the space time factor and the additional sign. The point

deserves future attention.
The three colour factors associated with (102) are N5 − 5N3, −N3, N3 up to the relevant order, so that

the true torus part does not even come in. Together with the 〈(2, 0) ∗ (2, 0)〉 part N2 − 1 the first entry in the
and the table after (65) should thus pick up a colour factor N7 − 6N5 + . . .

Appendix C: the correlators of Section 6 with longitudinal magnons

We repeat the computations identically, though with Y magnons. For ease of comparison we stick to the par-
titions yielding the tables in Section 6. As we know by now, different choices would only result in reparametri-
sations,

〈(5,3)(3,0) ∗ (5,3)(3,0)〉 with longitudinal magnons

For the empty square the c0 independence condition (57) yields

nA,1 = nA,2. (104)

as before. With that

lAlBlC lD QFT hexagon tiling
5020 0 1

4 (1− nA,1)(1 + nA,1)(4 + 5nA,1)(nA,1 + nD,1)

4111 -2 10 ∗ 1
20 (1 + nA,1)(2− 5nA,1)(4 + 5nA,1)(nA,1 + nD,1)

3202 -2 10 ∗ 1
20 (2 + 5nA,1)(1− 8nA,1 − 5n2A,1)(nA,1 + nD,1)

A ratio of the second and third entry shows that there is no universal, real solution for nA,1, nD,1. The most
likely interpretation will then be to put nA,1 = 0 and to have non-universal nD,1 = {0, 1/2, 2}. The twist
trick unfortunately loses all predictive power.

With identical n coefficients at both ends of the equator lines, the belt diagram does not have any constraint
from c0 independence. Yet, we do see the nA,1, nC,3 parameters now. The existence of the point identification
limit imposes a new constraint:

nA,1 = 0 ∨ nC,3 = 0 (105)

These yield exchangeable results, so let us assume nC,3 = 0. We find

9A non-trivial space time factor arises also from the torus diagram in Figure 3, Panel 3. However, in that instance the
dependence on the fictious operators’ positions drops in the two-point limit.
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{lE,b, lE,f}lAlBlC lD QFT hexagon tiling
{3,0}0202 -2 10 ∗ 1

10 (1 + 9nE,b + 10n2E,b)(1− nA,1)

{2,1}0202 4 10 ∗ 1
10 (1− 3nE,b + 10n2E,b)(1− nA,1)

There is no universal solution here either. One would presumably put nE,b = 0 and tune nA,1.

〈(5,3)(2,0) ∗ (5,2)(2,1)〉 with longitudinal magnons

The empty square has the c0 independence constraint nD,1 = 2 (1− nC,4) as before. We compute:

lAlBlC lD QFT hexagon tiling

5020 −
√

2
√
2
4 (1 + nA,1)(4 + 5nA,1)(−1 + nC,4)(2 + nA,1 − 2nC,4)

4111 −5
√

2 10 ∗
√
2

40 (4 + 5nA,1)(−5− 5nA,1 + 6nC,4 + 10nA,1nC,4)(2 + nA,1 − 2nC,4)

3202 −2
√

2 10 ∗
√
2

20 (2 + 5nA,1)(−2 + 3nC,4 + 5nA,1nC,4)(2 + nA,1 − 2nC,4)

In the belt case we fall upon the known c0 independence constraint nE,b = − 1
2 −

nA,1

2 + nC,4. The point
identification limit 2 → 1, 4 → 3 requires nA,1 nC,4 (11 + 5nA,1 − 10nC,4) = 0 for the {3, 0}0202 graph and
nA,1 nC,4 (3 + 5nA,1 − 10nC,4) for {2, 1}0202. So for both graphs we have three possibilities:

{lE,b, lE,f}lAlBlC lD QFT hexagon tiling

{3,0}0202 −2
√

2 10 ∗
√
2

20 (1 + 5nA,1 + nC,4 + 5nA,1nC,4 − 10n2C,4)(1− 2nC,4)|nA,1 =0

10 ∗
√
2

20 (1 + 5nA,1 + nC,4 + 5nA,1nC,4 − 10n2C,4)(1− nA,1)|nC,4 =0

10 ∗
√
2

10 (6 + 5nA,1)(1− nA,1)

{2,1}0202 0 10 ∗
√
2

20 (−5− 5nA,1 + 13nC,4 + 5nA,1nC,4 − 10n2C,4)(1− 2nC,4)|nA,1 =0

10 ∗
√
2

20 (−5− 5nA,1 + 13nC,4 + 5nA,1nC,4 − 10n2C,4)(1− nA,1)|nC,4 =0

10 ∗
√
2

50 (−2 + 5nA,1)(1− nA,1)

With the exception of the {2, 1} case in the second table none of this can be satisfied with likely values for
nA,1 or nC,4.

〈(5,2)(2,1) ∗ (5,2)(2,1)〉 with longitudinal magnons

We have identified nC,3 = nC,4 whereby no constraint arises from (57).

lAlBlC lD QFT hexagon tiling
5020 -1 − (1− nC,4)(1− 2nB,3 − 2nC,4)

4111 -7 10 ∗ −110 (5− 6nC,4)(1− 2nB,3 − 2nC,4)

3202 -4 10 ∗ −110 (2− 3nC,4)(1− 2nB,3 − 2nC,4)

Forming ratios we find nC,4 = 2. From the absolute normalisation it then follows that nB,3 = −1. For once
there is a fairly appealing solution!

The belt around the belly comes with the constraint nA,2 nC,4 = 0 if we let the magnons of the two vacuum
descendents cross the edges A, C, respectively, on their path through the entangled state. Assuming nC,4 = 0
the amplitudes are:

{lE,b, lE,f}lAlBlC lD QFT hexagon tiling
{3,0}0202 -4 10 ∗ 1

5 (1− 2nA,2)

{2,1}0202 +4 0

The {3, 0} case is trivial to satisfy — and the coefficient 3/2 perhaps still credible — but the second row is a
blatant contradiction.
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Appendix D: a pretty hexagon amplitude for longitudinal magnons

All Y hexagon amplitudes with magnons on only two of the physical edges directly evaluate to products of A
and (A−B)/2 elements of the PSU(2|2) scattering matrix [22]. Putting one of the excitations onto the third
egde radically changes the picture: the scattering involves all 10 elements of the S matrix and yields a large
sum of terms. The most complicated amplitude of the type we encounter in the present context is

A3|1|2 = 〈h|Y1Y2Y3|Y4|Y5Y6〉 = −〈h|Y 4γ
1 Y 4γ

2 Y 4γ
3 Ȳ 2γ

4 Y5 Y6〉 (106)

At tree level, it turns out to have a concise decomposition over the particle creation poles:

A3|1|2 = i
S21S31

u14

h32h65
h25h26h35h36

+ i
S32

u24

h31h65
h15h16h35h36

+ i
1

u34

h21h65
h15h16h25h26

+ (107)

i
1

u54

h21h31h32
h16h26h36

− iS65

u64

h21h31h32
h15h25h35

+
h21h31h32h65

h15h16h25h26h35h36

where uij is a rapidity difference and the tree level SU(2) S matrix is defined in (27). Finally, the tree level
dressing factor is [7]

hij =
ui − uj

ui − uj − i
. (108)

Note that formula (107) singles out the poles in u4 and the finite part behind; it is somewhat reminiscent of
[29] in the amplitude literature.

For a proof one might start refining the triangulation by inserting an identity operator in the middle of
the hexagon. We obtain a partition into 64 terms with splitting factors consisting of S matrices only because
the new edges are of width zero. Every new hexagon ampltude has excitations at only two physical edges and
thereby factors into products of h factors as in (107). The argument is not sufficient to explain the still simpler
final form of the amplitude, though.

For longitudinal cases that do not have one preferred magnon (here the one that is alone on its edge) we have
so far not been able to spot a similar pattern. Such techniques would be particularly useful in manipulating
non-vanishing amplitudes for transverse magnons, which are typically bulky sums.
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