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Abstract

The purpose of this paper is to provide an overview on the state of the
art concerning functional-analytic properties associated with differential-
algebraic equations (DAEs). We summarize the relevant literature and
develop a basic theory of linear and nonlinear differential-algebraic oper-
ators. In particular, we consider Fredholm properties, normal solvability,
generalized inverses, least squares solutions, splittings of regular linear
differential-algebraic operators, bounded outer inverses, local solvability of
equations with regular nonlinear differential-algebraic operators, Newton-
Kantorovich iterations and regularizations of the ill-posed problems aris-
ing from higher-index operators.
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1 Introduction

Functional analysis is a child of the twentieth century. It provides us with a
new language that allows us to formulate apparently different topics in a unique
way [75, p. ix]. The topic of differential-algebraic equations (DAEs) is another,
much younger child of the same century. To a large extend, DAEs are merely
recognized as special ordinary differential equations (ODEs), which dominates
the hitherto existing analysis of DAEs. In contrast, the functional-analysis of
DAEs remains still in its initial stage so far; even though there had been various
quite early approaches in that score such as
• applying operator settings and aspects of functional-analytic discretization
theory, e.g.,[51, 52, 18],
• treating higher-index DAEs consistently as ill-posed operator equations, e.g.,[40,
41, 35, 33],
• the work concerning abstract differential equations which are not solved for
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the derivative in the context of optimization problems, e.g.,[48],
• diverse attempts in system and control theory to incorporate various types
of solutions by appropriate function spaces, e.g.,[65, 70],
• particular results on degenerate differential equations in function spaces, e.g.,
[24], and on DAEs within the context of partial differential-algebraic equations
(PDAEs) and abstract DAEs (cf.[50, Chapter 12]).

Nonetheless, as yet, an adequate sophisticated functional-analytic character-
ization of DAEs has not been accomplished.
The purpose of the present paper is to provide an overview on basic functional-
analytic properties of linear and nonlinear differential-algebraic operators and
equations, and, furthermore, to summarize the relevant literature to the best of
the authors knowledge.

We investigate operators associated with linear and nonlinear DAEs in stan-
dard form

E(t)x′(t) + F (t)x(t) = q(t), (1)

f(x′(t), x(t), t) = 0, (2)

and linear and nonlinear DAEs showing a properly involded derivative

A(t)(Dx)′(t) +B(t)x(t) = q(t), (3)

f((Dx)′(t), x(t), t) = 0. (4)

Such a DAE comprisesm unknown functions and k equations. When considering
regular DAEs we suppose k = m.

We represent the DAEs as operator equations – we call the relevant operators
differential-algebraic operators – and apply functional analytic tools for their
characterization and further treatment.
In essence, here we focus on compact intervals I = [ta, te], which allows us to
apply Banach spaces equipped with maximum-norms. Modifications for open
intervals would require Fréchet spaces and more technicalities.

At the beginning of the twentieth century, J.S.Hadamard formalized the
classical concept of well-posedness for abstract equations

Kx = p, (5)

where K is a mapping from some topological space X into a topological space
Z. Equation (5) is said to be well-posed, e.g. [31, p. 3], if

(a) for each p ∈ Z, there is a solution x ∈ X of (5);

(b) this solution x is unique in X;

(c) the dependence of x upon p is continuous.

An equation (5) which is not well-posed in this sense is said to be ill-posed. A
method for solving approximately an ill-posed problem is called a regularization
method.

Obviously, to answer the question whether a given equation is well-posed, one
has to consider not only the operator K but also the spaces X and Z including
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their topologies.
Here we prefer topological spaces whose topology is defined by a norm. This
allows to measure global physical quantities, responsibilities, sensitivities.
In a well-posed problem, the operator K must be bijective and the inverse K−1

must be continuous. Often the so-called well-posedness principle, see [76, p.
180], is helpful: If K is a bounded linear operator mapping a Banach X into a
Banach space Z, then the equation (5) is well-posed, exactly if K is bijective.

In our context, the operator K is composed from an operator K acting in
normed spaces X and Y such that the equation Kx = q represents a DAE and
the equation (5), with Z = Y ×Rδ, contains the DAE and an additional finite-
dimensional part representing boundary and initial conditions.
Having a linear operator K, for eventually obtaining a well-posed problem (5) we
are specifically interested in a finite-dimensional nullspace kerK, in boundedness
or closedness of K and last but not least a closed range imK. The closed range
property plays its role in the theory of Fredholm operators; it is the crucial
ingredient of normal solvability. The related operator equations can be ill-posed
indeed, but they become well-posed in slightly modified settings.
If K is a bounded linear operator acting in Banach spaces X and Z, and if imK
fails to be closed in Z, then equation (5) is no longer well-posed, since items (2)
and (3) do not hold. Those kind of problems are said to be essentially ill-posed
in the sense of A.N.Tikhonov.

We emphasize that, in standard settings, equations given by regular higher-
index differential-algebraic operators are essentially ill-posed in this sense, and
their solutions basically show an ambivalent character; they behave smoothly
with regard to appropriately stated initial values, but, as a function of perturba-
tions on the right-hand side, they are no longer continuous. Merely index-1 and
index-0 operators yield well-posed problems in standard settings, and index-
2 operators in a reasonable and transparent enhanced setting. Index-0 and
index-1 problems can be solved numerically nearly as safe as explicit ODEs.
In contrast, concerning the direct treatment of general equations with higher
index differential-algebraic operators as they are given, there remains a big gap
between the practical needs and the theory available at this stage. Great future
efforts are necessary to close this gap, also on the part of developing appropriate
functional-analytic tools.

The material of this paper is organized in 4 sections who are almost inde-
pendent of each other.
Serving as easy introduction into the topic, Section 2 deals with operators asso-
ciated with regular matrix pencils and provides the constitutive characteristics
of regular differential-algebraic operators in different settings.
Section 3 characterizes normally solvable differential-algebraic operators associ-
ated with linear DAEs (1) comprising m unknowns and k equations. Bounded
inner inverse and least-squares-solutions are then constructed. Also nonlinear
operators are considered. No special knowledge about DAEs is required in this
section.
In Section 4 we consider basic properties of regular linear and Fréchet differ-
entiable nonlinear differential-algebraic operators in their natural Banach space
settings, in particular an operator splitting, Fredholm properties, solvability,
bounded outer inverses of higher index operators, local solvability, Newton-
Kantorovich iterations. This section relies on the projector based analysis ([50]).
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It is recommended to take a look to the respective summary in the appendix.
Both Sections 3 and 4 are contain an extra subsection with notes and references
to relate the existing literature to the material.
Section 5 collects known regularization methods from the viewpoint of functional-
analysis.
The notation agreements, the functional-analytic background, and a short sum-
mary of the projector based DAE analysis can be found in the Appendices.

2 Constitutive characteristics of regular differential-
algebraic operators – exemplified by means of
regular matrix pencils

We consider the linear operator T̊ : X → Y ,

T̊ x := Ex′ + Fx, x ∈ dom T̊ ⊆ X, (6)

associated with the constant coefficient DAE

Ex′(t) + Fx(t) = q(t), t ∈ I, (7)

and formed by the ordered pair {E,F} of real m × m matrices E,F . I ⊆ R
is an interval. Diverse appropriate function spaces X and Y will be specified
below, in particular we apply C(I,Rm) and L2(I,Rm).

2.1 Finite-dimensional nullspaces

The solutions of the homogeneous equation

Ex′(t) + Fx(t) = 0, t ∈ I. (8)

constitute the nullspace ker T̊ of the operator T̊ .
If E is nonsingular, the homogeneous equation (8) represents a regular implicit
ODE, whose fundamental solution system forms an m-dimensional subspace in
C∞(I,Rm); and then the associated operator T̊ has an m-dimensional nullspace
— supposed the setting ensures the inclusion C∞(I,Rm) ⊆ dom T̊ . However,
what happens if E is singular? Is there a class of equations, such that equation
(8) has a finite-dimensional solution space? The answer is closely related to
regularity of the matrix pair {E,F}.

Definition 2.1 Given the ordered pair {E,F} of matrices E,F ∈ L(Rm), the
matrix pencil λE+F is said to be regular if the polynomial ρ(λ) := det(λE+F )
does not vanish identically. Otherwise the matrix pencil is said to be singular.
Both the ordered pair {E,F} and the DAE (7) are said to be regular if the
accompanying matrix pencil is regular, and otherwise nonregular.

The operator T̊ given by (6) is called regular differential-algebraic operator
if the pair {E,F} is regular.

If E is a nonsingular matrix, then the pair {E,F} is always regular and the
polynomial p(λ) has degree m. If the first matrix E of a regular pair is singular,
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then the polynomial degree is lower. To be more precise we quote some well-
known facts due to Weierstraß and Kronecker, cf. [72, 45, 27].
For any regular pair {E,F}, E,F ∈ L(Rm), there exist nonsingular matrices
L,K ∈ L(Rm) and integers 0 ≤ l ≤ m, 0 ≤ µ ≤ l, such that

LEK =

[
I

N

]
}m− l
}l , LFK =

[
W

I

]
}m− l
}l . (9)

Thereby, N is absent if l = 0, and otherwise N is nilpotent of order µ, i.e.,
Nµ = 0, Nµ−1 6= 0. For l = 0 we set µ = 0. The integers l and µ as well as
the eigenstructure of the blocks N and W are uniquely determined by the pair
{E,F}. If l = m then the upper blocks are absent.
The real matrix N has the eigenvalue zero only and can be transformed into
its Jordan form by means of a real similarity transformation. Therefore, the
transformation matrices L and K can be chosen in such a way that N is in
Jordan form.
Now it is evident that the relation

degree det(λE + F ) = m− l ≤ rankE (10)

is given for each regular pencil.
The special pair given by (9) is said to be Weierstraß–Kronecker form of the
original pair {E,F}.

Definition 2.2 The Kronecker index of a regular matrix pair {E,F}, E,F ∈
L(Rm), E singular, is defined to be the nilpotency order µ in the Weierstraß–
Kronecker form (9). One writes ind {E,F} = µ.
If E is nonsingular, one states ind {E,F} = µ := 0.
The Kronecker index of a regular DAE (7) is given by ind {E,F} = µ.

The Weierstraß–Kronecker form of a regular pair {E,F} provides a broad insight
into the structure of the associated DAE (7). Scaling of (7) by L, transforming

x = K

[
y
z

]
, and letting Lq =:

[
p
r

]
leads to the equivalent decoupled system

y′(t) +Wy(t) = p(t), t ∈ I, (11)

Nz′(t) + z(t) = r(t), t ∈ I. (12)

The first equation (11) represents an explicit ODE. The second one appears for
l > 0, and it has the only solution

z(t) =

µ−1∑
j=0

(−1)jN jr(j)(t), (13)

provided that r is smooth enough. The latter one becomes clear after recursive
use of (12). In case of the homogeneous DAE (8), the functions p(·) and r(·)
vanish identically, and so does the solution component z(·). The solutions of
the explicit ODE (11), with p(·) = 0, form an (m− l)-dimensional subspace in
C∞(I,Rm).

We summarize what we already know about our operator T̊ .
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Proposition 2.3 If the differential-algebraic operator T̊ (6) is given by a reg-
ular matrix pair {E,F} and if the setting ensures the inclusion C∞(I,Rm) ⊆
dom T̊ , then it holds that

dim ker T̊ = m− l, ker T̊ ⊆ C∞(I,Rm). (14)

By means of an appropriate initial condition at a point ta ∈ I,

Cx(ta) = d ∈ Rm−l, (15)

with C ∈ L(Rm,Rm−l), rankC = m− l, kerC = ker ([I 0]K−1), we obtain the
composed operator T̊ : X → Y × Rm−l,

T̊ x := (T̊ x, Cx(ta)), x ∈ dom T̊ , (16)

which is then injective. We emphasize that, in contrast to regular ODEs, for
describing an appropriate initial condition (15), the special structure of the DAE
has to be attentively considered. The operator equation T̊ x = (q, d) reflects the
initial value problem (IVP) (7),(15).

As distinguished from the situation in Proposition 2.3, if the pair {E,F} is
nonregular, then ker T̊ has no longer finite dimension, e.g. [50, Theorem 1.6].
We substantiate this fact by the following simple instance.

Example 2.4 (ker T̊ fails to be finite-dimensional) The matrix pair {E,F}
associated with the operator

T̊ x :=

[
1 0
0 0

]
︸ ︷︷ ︸

E

x′ +

[
0 −1
0 0

]
︸ ︷︷ ︸

F

x, x ∈ dom T̊ ,

is obviously singular. The nullspace ker T̊ = {x ∈ dom T̊ : x′1 = x2} depends on
the choice of X; however, with C∞(I,R2) ⊆ dom T̊ ⊆ X, the inclusion

{
[
z
z′

]
: z ∈ C∞(I,R)} ⊆ ker T̊

attests that ker T̊ has no longer finite dimension. �

2.2 Ill-posed behavior in higher-index cases

In the more interesting case if µ ≥ 1, the solution expression (13) elucidates
the dependence of the solution x on derivatives of the right hand side q when
indicated. The higher the index µ, the more differentiations are involved. Solely
in the index-1 case do we have N = 0, hence z(·) = r(·), and no derivatives are
involved.
Since numerical differentiations in these circumstances may cause considerable
trouble, it is very important to know the index µ as well as details of the
structure responsible for the higher index when modeling and simulating in
practice with DAEs. Not surprisingly, the typical solution behavior of so-called
ill-posed problems can be observed in higher index DAEs: small perturbations
of the right-hand side may cause enormous and somewhat discontinuous changes
in the solution. We demonstrate this by the next example (cf.[50, Section 1.1]).

7



Example 2.5 (Ill-posed behavior) The IVP for the regular DAE
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0


︸ ︷︷ ︸

E

x′(t) +


−α −1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


︸ ︷︷ ︸

F

x(t) = q(t), t ∈ I = [0, 1],

completed by the initial condition

Cx(0) =
[
1 0 0 0 0

]
x(0) = d, (17)

is uniquely solvable for each sufficiently smooth function q and each arbitrary
d ∈ R. The homogeneous IVP, with q = 0 and d = 0, has the identically zero
solution only. The particular solution corresponding to the initial value d ∈ R
and the excitation

qk(t) =


0
0
0
0

γk(t)

 , γk(t) = ε
1

k
sin kt, k ∈ N, ε 6= 0 small, (18)

reads as follows:

xk,1(t) = eαtd+ ε

∫ t

a

k2eα(t−s) cos ks ds, xk,2(t) = εk2 cos kt,

xk,3(t) = −εk sin kt, xk,4(t) = −ε cos kt, xk,5(t) = ε
1

k
sin kt.

No doubt, the solution depends smoothly on d, but what about the dependence
on the excitation qk? Put d = 0. While the excitation qk uniformly tends to
zero for k →∞, the first three solution components grow unbounded, instead of
also tending to zero. This is the typical ill-posed behavior. The solution value
at t = 0, that is,

xk,1(0) = 0, xk,2(0) = εn2, xk,3(0) = 0, xk,4(0) = −ε, xk,5(0) = 0,

moves away from the origin with increasing k. For the perturbed system, the
origin is no longer a consistent value at t = 0, as it is the case for the unperturbed
system. Figures 1 and 2 show the excitation γk and the response xk,2 for ε = 0.1,
k = 1 and k = 100.

Here the matrix pencil {E,F} is regular with Kronecker index µ = 4 and
l = 4(cf.(9)).The associated operator T̊ has the nullspace

ker T̊ = im


w(·)

0
0
0
0

 , w(t) := eαt, t ∈ I,

supposed the setting satisfies C∞(I,R5) ⊆ dom T̊ . The corresponding composed
operator T̊ is injective. This is in full accordance with Proposition 2.3. �
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Figure 1: γk and xk,2 for k = 1

Figure 2: γk and xk,2 for k = 100

This little constant coefficient example is alarming, but it is relatively harmless.
In more general DAEs, time-dependent subspaces and nonlinear relations may
considerably amplify the bad behavior. For this reason one should be careful
in view of numerical simulations. It may well happen that an integration code
seemingly works, however it generates wrong results.

2.3 Standard settings: looking for boundedness, closed-
ness, and normal solvability

We inspect diverse standard settings of the operators T̊ and T̊ given by (6) and
(16), respectively. We ask if the operators and suitable extensions are bounded,
closed and eventually continuously invertible. The interval I is supposed to be
compact such that maximum norms can be applied, I := [ta, te]. We consider
for X the Banach spaces C1, C and the Hilbert space L2.

2.3.1 Space of continuously differentiable functions X = C1(I,Rm)

Most authors favor C1-solutions when dealing with DAEs. This corresponds to
the setting dom T̊ = X = C1(I,Rm), Y = C(I,Rm). Applying usual norms, the
operator T̊ becomes bounded.

The special case given by the simple index-1 matrix pair in Weierstraß–
Kronecker form

T̊ x = Ex′ + Fx =

[
I 0
0 0

] [
x′1
x′2

]
+

[
W 0
0 I

] [
x1

x2

]
=

[
x′1 +Wx1

x2

]
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foreshadows the drawback of this setting: the derivative-free equation x2 = q2

which represents a part of the equation T̊ x = q has no solution unless one
additionally supposes that q2 is continuously differentiable. There is no natural
reason for this demand. Formally, this setting yields

im T̊ = {q ∈ C(I,Rm) : q2 ∈ C1(I,Rl)}

which is a proper nonclosed subset in Y = C(I,Rm) such that T̊ fails to be
normally solvable. This motivates us to turn to spaces X being richer in content.
It seems to be more reasonable to accept instead a solution component x2 being
merely continuous.

2.3.2 Space of continuous functions X = C(I,Rm)

Now we apply the function spaces X = Y = C(I,Rm), with the maximum norm,
and consider the operator

T̊ x = Ex′ + Fx, x ∈ dom T̊ := C1(I,Rm). (19)

The definition domain dom T̊ = C1(I,Rm) is dense in X, i.e. T̊ is densely
defined. However, except for the dull case E = 0, the operator T̊ is unbounded
in this setting. To simplify matters, we verify this fact supposing the interval
I = [0, 1]. Since E is not the zero matrix, there is a c ∈ Rm such that Ec 6= 0
and |c| = 1. The functions defined by xk(t) := tkc, t ∈ [0, 1], belong to the
definition domain of T and ‖xk‖∞ = 1 for all k ∈ N. Derive

‖T̊ xk‖∞ = ‖Ex′k + Fxk‖∞ ≥ ‖Ex′k‖∞ − ‖Fxk‖∞ = k|Ec| − |Fc|.

If k increases, then ‖T̊ xk‖∞ grows unboundedly, which shows that, in the given
setting, the operator T̊ is no longer bounded. However, we may obtain a closure
of the operator T̊ , that is, a closed extension T of T̊ .

First of all, the operator T̊ is closable. Namely, if xk ∈ dom T̊ for k ∈
N and ‖xk‖∞ → 0, ‖T̊ xk − y∗‖∞ → 0, then it follows that ‖Exk‖∞ → 0,
‖(Exk)′ − y∗‖∞ = ‖Ex′k‖∞ = ‖T̊ xk − y∗ − Fxk‖∞ → 0, and hence y∗ = 0.

Now we look for the closure of T̊ in the given setting. Preliminary, we
factorize E = AD̃, with A ∈ L(Rn,Rm), D̃ ∈ L(Rm,Rn), n ≤ m, in such a way
that

imE = imA

is valid. We write

T̊ x = Ex′ + Fx = AD̃x′ + Fx = A(D̃x)′ + Fx, x ∈ dom T̊ = C1(I,Rm).

In particular, one can simply choose A = E, D̃ = I, n = m and A = EE+, D̃ =
E,n = m. It should be emphasized that the operator T̊ itself is independent of
the description by a special factorization.
Consider an arbitrary sequence of members xk ∈ dom T̊ , with ‖xk − x∗‖∞ → 0
and ‖T̊ xk − y∗‖∞ → 0, and limits x∗ ∈ X, y∗ ∈ Y . It holds that

A(D̃xk)′ = T̊ xk − Fxk → y∗ − Fx∗ ∈ imA,
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By means of a generalized inverse A− of A (see Appendix 6.1.2) we express

(A−AD̃xk)′ = A−A(D̃xk)′ = A−(T̊ xk − Fxk)→ A−(y∗ − Fx∗).

We also have A−AD̃xk → A−AD̃x∗. Then, A−AD̃x∗ is continuously differen-
tiable and the relation (A−AD̃x∗)

′ = A−(y∗−Fx∗) is given. Now it follows that
A(A−AD̃x∗)

′ = AA−(y∗−Fx∗) = y∗−Fx∗, thus A(A−AD̃x∗)
′+Fx∗ = y∗. It

comes out that the operator T defined by

T := A(Dx)′ + Fx, x ∈ domT = {w ∈ C(I,Rm) : Dw ∈ C1(I,Rn)}, (20)

with D := A−AD̃, is the closure of the operator T̊ given by (19).
Yet another look at the resulting factorization E = AD shows: We have

D := A−AD̃, E = AD̃ and imE = imA. It follows that rankAD = rankA,
thus rankD ≥ rankA. Since, on the other hand the inclusion imD ⊆ imA−A
is valid we conclude the relations

imD = imA−A, rankD = rankA = rankE,

and further the decomposition

kerA⊕ imD = Rn. (21)

In turn, (21) implies kerD = kerAD = kerE.
Thereby it does not matter at all how the matrix D̃ and the generalized inverse
A− have been chosen. In particular, all resulting function spaces

C1
D(I,Rm) := {w ∈ C(I,Rm) : Dw ∈ C1(I,Rn)} (22)

coincide with
{w ∈ C(I,Rm) : Ew ∈ C1(I,Rm)},

see Lemma 6.9, and for every x ∈ domT it holds that

Tx = A(Dx)′+Fx = A(DE+Ex)′+Fx = ADE+(Ex)′+Fx = EE+(Ex)′+Fx.

In other words, to obtain the closure T of the operator T̊ we are recommended
to reformulate the operator by means of a factorization E = AD with so-called
well-matched factors A ∈ L(Rn,Rm) and D ∈ L(Rm,Rn), n ≤ m, satisfying the
decomposition (21). We underline the fact that the special factorization does
not at all matter for the operator T itself. It is merely a representation tool.
However, it should be noticed that, for instance, when numerically integrating a
DAE, a so-called full-rank factorization (with n = rankE) appears to be quite
preferable, see [50].

The function space domT = C1
D(I,Rm) equipped with the respective graph-

norm is a Banach space. For all possible factorizations satisfying the condition
(21), the norms

‖x‖C1
D

:= ‖x‖∞ + ‖(Dx)′‖∞, x ∈ C1
D(I,Rm),

are equivalent to each other and also to the graph-norm, see Lemma 6.9.
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Proposition 2.6 Let a pair {E,F} of matrices E,F ∈ L(Rm) be given and
E 6= 0. Then the following assertions are valid for the differential-algebraic
operator T̊ ∈ L(X) defined by (19) with X = C(I,Rm):

(1) The operator T̊ is unbounded but closable. The closure T of T̊ can be ex-
pressed by (20), where E = AD is any factorization satisfying the decom-
position (21).

(2) kerT is closed in X.

(3) The closure T maps the Banach space C1
D(I,Rm) continuously into the Ba-

nach space X.

(4) If {E,F} is a regular pair with Kronecker index µ = 1, then the closure T
is a Fredholm operator. It holds that imT = X and ind fred(T ) = α(T ) =
m− l, whereby l is the structural size described in (9).

(5) If {E,F} is a regular pair with Kronecker index µ > 1, then T is densely
solvable and the nullspace of T has finite dimension. The range imT is a
nonclosed proper subset in X such that T is neither fredholm nor normally
solvable..

(6) If {E,F} is a regular pair with Kronecker index µ = 0, that is, E is non-
singular, then T̊ is already closed, T = T̊ , imT = X, dim kerT = m, and
T is a Fredholm operator with ind fred(T ) = m.

Proof: The statements (1) and (3) are already verified and (2) retrieves a
general property of closed operators. Assertion (6) reflects well-known facts
of the ODE theory. It remains to consider items (4) and (5). Applying the
Weierstraß-Kronecker form (9) we factorize E = AD, A := E, D := E−E and
express

E = L−1

[
I 0
0 N

]
K−1, E− := K

[
I 0
0 N+

]
L, E−E = K

[
I 0
0 N+N

]
K−1,

and introduce K−1x =:

[
y
z

]
such that

domT = {x ∈ C(I,Rm) : K

[
I 0
0 N+N

]
K−1x ∈ C1(I,Rm)}

= {x ∈ C(I,Rm) :

[
I 0
0 N+N

]
K−1x ∈ C1(I,Rm)}

= {x ∈ C(I,Rm) : y ∈ C1(I,Rm−l), N+Nz ∈ C1(I,Rl)}.

The equation Tx = q can be traced back to the decoupled system (cf.(11),(12))

y′(t) +Wy(t) = p(t), N(N+Nz)′(t) + z(t) = r(t). (23)

If the index µ equals 1 then N is the zero matrix of size l, thus

domT = {x ∈ C(I,Rm) : y ∈ C1(I,Rm−l)}.

In this case, for each arbitrary continuous right hand sides p and r, there exist
a continuously differentiable solution y of the first equation and a continuous

12



solution z of the second one, which is now trivial. Altogether, for each contin-
uous q there exists an element x ∈ domT such that Tx = q. This confirmes
assertion (4).
If µ ≥ 2, then N is a nontrivial nilpotent matrix. The first equation in (23) has
again a continuously differentiable solution y for each continuous p. However,
the demand N+Nz ∈ C1 implies necessarily Nz ∈ C1, thus Nµ−1z ∈ C1. Mul-
tiplying the second equation by Nµ−1 yields Nµ−1z = Nµ−1r. In other words,
for solvability of the second equation it is necessary that Nµ−1r is continuously
differentiable. In consequence, the range imT contains only those continuous
functions showing certain smoother components. In any case, at least one com-
ponent has to be continuously differentiable. Such sets are not closed in the
continuous function space. Regarding the inclusion C∞(I,Rm) ⊆ imT we are
done with assertion (5). �

Example 2.7 (Continuation 1 of Example 2.5) A natural factorization is
here

E =


1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0




1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 =: AD,

and the closure T of the operator T̊ reads

Tx = A(Dx)′ + Fx =


x′1 − αx1 − x2

x′3 + x2

x′4 + x3

x′5 + x4

x5

 , x ∈ domT = C1
D(I,R),

C1
D(I,R) = {x ∈ C(I,R5) : x1, x3, x4, x5 ∈ C1(I,R)}.

The pair {E,F} is regular with Kronecker index µ = 4 so that Proposition
2.6(5) applies. In more detail it results that

imT = {q ∈ C(I,R5) : q5, q4 − q′5, q3 − (q4 − q′5)′ ∈ C1(I,R)}.

The range imT is a proper nonclosed subset in C(I,R5) which indicates essen-
tially ill-posedness. The closure of the associated composed operator T̊ is given
by (cf.(17))

T x = (Tx, x1(0)), x ∈ domT.

The operator T is injective, however, the inverse T −1 fails to be continuous.
For instance, the sequence (qk, 0) ∈ imT × R defined by (18) tends to zero for
k → ∞, that means ‖qk‖∞ → 0, whereas the sequence of the corresponding
responses xk = T −1(qk, 0) growths unboundedly,

‖xk‖∞ > ‖xk,2‖∞ = εk2.

�

13



2.3.3 Space of integrable functions X = L2(I,Rm)

We set X = Y = L2(I,Rm) and apply the Hilbert space L2(I,Rm) with the
usual scalar product and norm. Consider the operator

T̊ x = Ex′ + Fx, x ∈ dom T̊ := C∞(I,Rm). (24)

The definition domain is dense in X, i.e., T̊ is densely defined. Except for
the dull case E = 0, the operator T̊ is unbounded in this setting. To simplify
matters, we show this fact supposing the interval I = [0, 1]. Since E is not the
zero matrix, there is a c ∈ Rm such that Ec 6= 0 and |c| = 1. The functions
defined by xk(t) :=

√
2k + 1 tkc, t ∈ [0, 1], belong to the definition domain of

T̊ , and we have ‖xk‖L2 = 1 for all k ∈ N. Derive

‖T̊ xk‖L2 = ‖Ex′k + Fxk‖L2 ≥ ‖Ex′k‖L2 − ‖Fxk‖L2 = k

√
2k + 1√
2k − 1

|Ec| − |Fc|.

If k increases, then ‖T̊ xk‖L2 grows unboundedly, which shows that, also in this
setting, the operator T̊ is unbounded.

After the idea of the previous subsection we introduce the function space

H1
D(I,Rm) := {w ∈ L2(I,Rm) : Dw ∈ H1(I,Rn)}

and the operator T by

T := A(Dx)′ + Fx, x ∈ domT = H1
D(I,Rm), (25)

whereby we apply a factorization E = AD such that the decomposition (21) is
valid, i.e., kerA⊕ imD = Rn. Eventually, the operator T will be proved to be
the closure of T̊ . Again, the special choice of the factorization does not matter,
neither for the function space H1

D(I,Rn) nor for the operator T , see Lemma 6.9.
We follow the lines of [35] applying Hilbert space basics (see the Appendix).

Lemma 2.8 The operator T̊ given by (24) possesses an adjoint and a biadjoint.
The adjoint and biadjoint operators T̊ ∗ and T̊ ∗∗ of T̊ are given on the domains

dom T̊ ∗ ={w ∈ L2(I,Rm) : A∗w ∈ H1(I,Rn), A∗w(ta) = 0, A∗w(te) = 0},
dom T̊ ∗∗ ={w ∈ L2(I,Rm) : Dw ∈ H1(I,Rn)},

respectively. These domains do not depend on the chosen factorization E = AD
with (21).

Proof: For arbitrary x ∈ C∞(I,Rm) and suitable functions y by partial inte-
gration we obtain

(T̊ x, y) =

∫ te

ta

〈Ex′(t) + Fx(t), y(t)〉dt =

∫ te

ta

〈A(Dx)′(t) + Fx(t), y(t)〉dt

=

∫ te

ta

〈x(t),−D∗(A∗y)′(t) + F ∗y(t)〉dt

+ 〈Dx(te), A
∗y(te)〉 − 〈Dx(ta), A∗y(ta)〉.

14



Therefore, the adjoint operator is explicitly given on the set

{w ∈ L2(I,Rm) : A∗w ∈ H1(I,Rn), A∗w(ta) = 0, A∗w(te) = 0} =: dom T̊ ∗

by means of
T̊ ∗y = −D∗(A∗y)′ + F ∗y, y ∈ dom T̊ ∗.

In fact, we have (T̊ x, y) = (x, T̊ ∗y) for all x ∈ dom T̊ and y ∈ dom T̊ ∗. Since
dom T̊ ∗ is dense in L2(I,Rm), the adjoint of the operator T̊ ∗ exists. Compute

(T̊ ∗y, x) =

∫ te

ta

〈−D∗(A∗y)′(t) + F ∗y(t), x(t)〉dt

=

∫ te

ta

〈y(t), A(Dx)′(t) + Fx(t)〉dt

=: (y, T̊ ∗∗x)

for all y ∈ dom T̊ ∗ and all x ∈ {w ∈ L2(I,Rm) : Dw ∈ H1(I,Rn)} =: dom T̊ ∗∗

which proves the first part of the assertion.
It remains to verify the invariance with respect to the factorization E = AD.
Consider a further factorization E = ĀD̄, with Ā ∈ L(Rn̄,Rm), D̄ ∈ L(Rm,Rn̄)
and ker Ā⊕ im D̄ = Rn̄, n̄ ≤ m. Because of kerD = ker D̄ it holds that D+D =
D̄+D̄. Therefore, Dw ∈ H1(I,Rn) implies D̄w = D̄D̄+D̄w = D̄D+Dw ∈
H1(I,Rn̄), and hence dom T̊ ∗∗ does not depend on the factorization.
Analogously, due to imA = im Ā, AA+ = ĀĀ+, we derive from A∗w ∈
H1(I,Rn) that Ā∗w = Ā∗Ā∗+Ā∗w = Ā∗A∗+A∗w ∈ H1(I,Rn̄).
Additionally, for τ = ta, te, we compute Ā∗w(τ) = Ā∗A∗+A∗w(τ) and A∗w(τ) =
A∗Ā∗+Ā∗w(τ). This proves dom T̊ ∗ to be independent of the special factoriza-
tion. �

The next assertion is the counterpart of Proposition 2.6.

Proposition 2.9 Let the pair {E,F} of matrices E,F ∈ L(Rm) be given and
E 6= 0. Then the following assertions are valid for the differential-algebraic
operator T̊ ∈ L(X), defined by (24) with X = L2(I,Rm):

(1) The operator T̊ is unbounded but closable. The closure T of T̊ can be ex-
pressed by (25), where E = AD is any factorization satisfying the decom-
position (21).

(2) ker T̂ is closed in X.

(3) The closure T maps the Hilbert space H1
D(I,Rm) continuously into the

Hilbert space X.

(4) If {E,F} is a regular pair with Kronecker index µ = 1, then the closure T
is a Fredholm operator. It holds that imT = X and ind fred(T ) = α(T ) =
m− l, whereby l is the structural size described in (9).

(5) If {E,F} is a regular pair with Kronecker index µ > 1, then T is densely
solvable and the nullspace of T is finite-dimensional. The range imT is a
nonclosed proper subset in X such that T is neither fredholm nor normally
solvable.
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(6) If {E,F} is a regular pair with Kronecker index µ = 0, that is, E is non-
singular, then T̊ is already closed, T = T̊ , imT = X, dim kerT = m, and
T is a Fredholm operator with ind fred(T ) = m.

Proof: Owing to the existence of the biadjoint T̊ ∗∗ one has T = T̊ ∗∗, and the
assertion (1) is a consequence of Lemma 2.8. Assertion (2) reflects a general
property of closed operators. Assertion (3) is due to the inequality

‖Tx‖2L2 = ‖A(Dx)′ + Fx‖2L2 ≤ c (‖(Dx)′‖2L2 + ‖x‖2L2) = c‖x‖2H1
D
,

which is valid for all x ∈ H1
D(I,Rm). The statements (4)-(6) can be proved

along the lines of Proposition 2.6 by replacing the function spaces C and C1 by
L2 and H1, correspondingly. �

2.4 Peculiar approaches

2.4.1 Enforcing surjectivity by image space adaption

Suppose that the pair {E,F} is regular and the factorization E = AD satisfies
the condition (21). The operator

T ∈ L(C1
D(I,Rm), C(I,Rm)), Tx := A(Dx)′ + Fx, x ∈ C1

D(I,Rm),

is bounded. By Proposition 2.6, if ind {E,F} ≥ 2, the range imT is a proper,
nonclosed subset in C(I,Rm). The resulting composed operator (cf.(16))

T ∈ L(C1
D(I,Rm), C(I,Rm)× Rm−l),

is injective but inherits the nonclosed range. In the consequence, the equation

T x = (q, d) (26)

is essentially ill-posed in this setting. We refer once again to Examples 2.5 and
2.7 for the ill-posed feature of the solution which actually justifies that notion.

Applying the Weierstraß–Kronecker form or the projector based decoupling
procedure described in [50, Chapter 1] one can specify in full detail how the range
of the operator T looks like. Being aware of the precise description of imT we
can apply the new function space Ynew := imT as well as a suitable norm so that
Ynew becomes a Banach space and T ∈ L(C1

D(I,Rm), Ynew) remains bounded.
Then, in this peculiar setting, the operator T is fredholm and the associated
composed operator T becomes a homeomorphism as a continuous bijection in
Banach spaces. This way, in the new setting, the equation (26) becomes well-
posed. This idea seems fine; however, it rather obscures the actual solution
behavior and it is essentially factitious as our example demonstrates.

Example 2.10 (Continuation 2 of Example 2.5) The operator (see also Ex-
ample 2.7)

Tx :=


x′1 − αx1 − x2

x′3 + x2

x′4 + x3

x′5 + x4

x5

 , x ∈ C1
D(I,R5),
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is bounded, where C1
D(I,R5) = {x ∈ C(I,R5) : x1, x3, x4, x5 ∈ C1(I,R)}. Its

image

imT = {q ∈ C(I,R5) : q5, q4 − q′5, q3 − (q4 − q′5)′ ∈ C1(I,R)}

is a proper nonclosed subset in C(I,R5). The resulting composed operator T
has a discontinuous inverse. Set Ynew = imT and define for each q ∈ Ynew the
norm

‖q‖Ynew := ‖q‖∞ + ‖q′5‖∞ + ‖(q4 − q′5)′‖∞ + ‖(q3 − (q4 − q′5)′)′‖∞,

which yields a Banach space. In the new setting T ∈ L(C1
D(I,R5), Ynew), the

operator T is surjective by construction and again bounded. Namely, it holds
that

‖Tx‖Ynew = ‖Tx‖∞ + ‖x′5‖∞ + ‖x4‖∞ + ‖x3‖∞
≤ cnew‖x‖C1D , x ∈ C1

D(I,R5).

The associated composed operator T ∈ L(C1
D(I,R5), Ynew×R) becomes actually

a homeomorphism. In the new setting, the continuity of T −1 is enforced by the
stronger norm. Now, the sequence qk given by (18) does no longer converge to
zero, instead, one has

‖qk‖Ynew > ‖γ
(3)
k ‖∞ = εk2.

We emphasize that this problem manipulation does not at all change the actual
bad solution behavior documented by Figures 1 and 2. �

The resulting this way operator T ∈ L(C1
D(I,Rm), Ynew) is surjective and has a

finite-dimensional nullspace (cf.Proposition 2.3), and hence, it is fredholm, with
ind fred(T ) = α(T ) = m− l .
The last result has quite limited importance: The information needed for this
kind of manipulation is indispensable in general. Both, the set Ynew and the
norm ‖ · ‖Ynew strongly depend on the given matrix pair {E,F}; in higher index
cases they are strongly individual ones for each pair.

As mentioned before, most authors favor C1-solutions of DAEs. One can
manipulate correspondingly the operator

T ∈ L(C1(I,Rm), C(I,Rm)), Tx := Ex′ + Fx, x ∈ X = C1(I,Rm),

being of interest when insisting on C1-solutions. At this place we point out
that all statements in [10, 11, 14] concerning the Fredholm index (there called
Noetherian index) of differential-algebraic operators hold good for such a context
only.

Example 2.11 (Continuation 3 of Example 2.5) For the operator (see also
Examples 2.7, 2.10)

Tx :=


x′1 − αx1 − x2

x′3 + x2

x′4 + x3

x′5 + x4

x5

 , x ∈ C1(I,R5),
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one immediately derives

Ynew = imT =

{q ∈ C(I,R5) : q5, q4 − q′5, q3 − (q4 − q′5)′, q2 − q2 − (q3 − (q4 − q′5)′)′ ∈ C1(I,R)},

and

‖q‖Ynew :=‖q‖∞ + ‖q′5‖∞ + ‖(q4 − q′5)′‖∞
+ ‖(q3 − (q4 − q′5)′)′‖∞ + ‖(q2 − (q3 − (q4 − q′5)′)′)′‖∞.

�

We finish this subsubsection by revisiting once again the case of a regular
index-1 pair {E.F}. There are different Banach space settings and bounded op-
erators available. From Subsubsection 2.3.1 we know that then T ∈ L(C1(I,Rm), C(I,Rm))
fails to be normally solvable since imT is a nonclosed subset in C(I,Rm)).
The setting T ∈ L(C1(I,Rm), Ynew) yields a surjective operator, but needs spe-
cial structural information also in case of regular index-1 pairs {E.F}. Namely,
applying the corresponding Weierstraß-Kronecker form (9), with N = 0, we
derive

Ynew = imT = {q ∈ C(I,Rm) : [0 I]Lq ∈ C1(I,Rl)}.
and

‖q‖Ynew = ‖q‖∞ + ‖([0 I]Lq)′‖∞.
In comparison, in the setting T ∈ L(C1

D(I,Rm), C(I,Rm)), the operator T is
also surjective. It seems to be an advantage of the latter setting that it uses
original given information or easily available information concerning merely the
coefficient E.

2.4.2 Topological vector-space X = C∞(I,Rm)

The Weierstraß–Kronecker form (11),(12) tells us that, letting

X = Y = C∞(I,Rm), Tx = Ex′ + Fx, x ∈ domT = X,

the operator T induced by a regular matrix pair is surjective so that the equation
Tx = q is solvable in X for every q ∈ Y . Then the corresponding composed op-
erator T acts bijectively between X and Y ×Rm−l. This makes this topological
vector-space setting quite popular, also for DAEs with real-analytic coefficients
E and F .
The family of semi-norms

ηk(x) := ‖x(k)‖∞, x ∈ C∞(I,Rm), k = 0, 1, 2, . . . ,

generates (see [42, Section X.64]) a locally convex topology on C∞(I,Rm); and

convergence xj
j→∞−−−→ x∗ actually means that ‖x(k)

j − x
(k)
∗ ‖∞

j→∞−−−→ 0 is valid
for all k = 0, 1, 2, . . .. Unfortunately, this vector-space setting does not offer
valuable clues to the question whether the solution of the equation

T x = (q, d).

depends continuously on the data q and d. Our alarming Example 2.5 suits to
this setting, however, now the problem is circumvented since the sequence (18)
does no longer converge to zero here.
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2.4.3 A too lean Banach space X = C̆(I,Rm) ⊂ C∞(I,Rm)

A bounded linear operator acting bijectively in Banach spaces has also a bounded
inverse. To practice this well-known fact we refer briefly the function space

C̆(I,Rm) := {x ∈ C∞(I,Rm) : sup
j≥0
‖x(j)‖∞ <∞},

endowed with the norm

‖x‖ := sup
j≥0
‖x(j)‖∞, x ∈ C̆(I,Rm),

which is a Banach space. In the setting domT = X = Y = C̆(I,Rm), the
composed operator T associated with a regular matrix pair becomes a bounded

bijection between X and Y × Rm−l̆, with an appropriate l̆ ≥ l. This simulates
continuous invertibility, which seems to be in contradiction to Example 2.5.
However, the function space C̆(I,Rm) is much too lean in capacity. The basic
inclusion C∞(I,Rm) ⊆ domT is no longer satisfied. In Example 2.5, to fit into
this special setting, one has to assume |α| ≤ 1 and the considered there sequence
of excitations (18) is not at all admissible. By this, the danger is factitious out
of bounds. The same would happen when applying equivalent weighted norms.
Therefore, this special Banach space setting is much too restrictive, and hence
inappropriate already for constant coefficient DAEs.

3 Normally solvable differential-algebraic oper-
ators

As it is well-known, if a densely defined, closed operator acting in Hilbert spaces
has a closed image, then it is normally solvable, and there exist bounded inner
inverses. In particular, the Moore-Penrose inverse is then bounded, and it makes
good sense seeking least-squares solutions, see [57], also Appendix 6.1.2. For a
normally solvable operator, the problem of calculating a pseudosolution becomes
well-posed in Hadamard’s sense. For this reason, if K is an operator with closed
image, the equation Kx = q is also said to be well-posed in the sense of G.
Fichera.

We ask if the operator associated with the linear time-varying DAE

E(t)x′(t) + F (t)x(t) = q(t), t ∈ I = [ta, te], (27)

and the composed operator associated with the IVP

E(t)x′(t) + F (t)x(t) = q(t), t ∈ I, Cx(ta) = d, (28)

have closed images. The matrix coefficients E(t), F (t) ∈ L(Rm,Rk) depend
continuously on t on the compact interval I, and the nullspace of E is a C1-
subspace. As distinguished from the regular DAEs in Section 2, the DAE (27)
comprises k equations but m unknown functions.

Inspecting once again the settings discussed in Section 2, for the preimage
space X we favor the two function spaces C(I,Rm), L2(I,Rm) being fully inde-
pendent of DAE data, and, additionally, the two spaces C1

D(I,Rm), H1
D(I,Rm)
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that incorporate certain problem data via a factorization E = AD.
Supposing a nonvanishing coefficient E, the differential-algebraic operators be-
comes unbounded, but densely defined and closable in the first two cases. We
have to deal with their closures. The latter two function spaces already involve
problem data, in essence, these spaces are the definition domains of the closures
obtained in the first two cases, and endowed with the graph-norms. Then the
differential-algebraic operators are bounded.

We establish practically useful sufficient criteria for normal solvability in
terms of the original data, in Subsection 3.1 for closed operators and in Subsec-
tion 3.2 for bounded ones. Subsection 3.3 provides bounded generalized inverses
and least-squares solutions.

In Subsection 3.4 we provide a large class of nonlinear DAEs

f(x′(t), x(t), t) = 0,

with m unknowns and k equations, yielding normally solvable linearizations
in a natural Banach space setting. Again we establish the criteria for normal
solvability in terms of the original data, and this serves as basis for Newton-
Kantorovich iteration procedures etc.

3.1 Settings with closed differential-algebraic operators

We associate the linear DAE (27) with the operator

T̊ ∈ L(X,Y ), T̊ x := Ex′ + Fx, x ∈ dom T̊ = C1(I,Rm) ⊆ X. (29)

We apply the function spaces X = C(I,Rm), Y = C(I,Rk) when seeking clas-
sical DAE solutions which satisfy the DAE at all t ∈ I. Instead, the spaces
X = L2(I,Rm), Y = L2(I,Rk) are applied, when we are interested in general-
ized solutions satisfying the DAE for almost all t ∈ I.

We suppose that E does not vanish such that the DAE is nontrivial and T̊
is unbounded in both instances (cf. Subsubsections 2.3.2, 2.3.3).

Theorem 3.1 If E,F ∈ C(I,L(Rm,Rk)) and kerE is a C1-subspace, then the
following statements are valid:

(1) There exist factorizations E = AD such that A ∈ C(I,L(Rn,Rk)), D ∈
C1(I,L(Rm,Rn)), kerA and imD are C1-subspaces, and the transversality
condition

kerA(t)⊕ imD(t) = Rn, t ∈ I, (30)

is valid. The projector R(t) ∈ L(Rn) onto imD(t) along kerA(t) depends
continuously differentiably on t.
B := F −AD′ is continuous.

(2) For X = C(I,Rm), Y = C(I,Rk), and each arbitrary factorization from
(1), the operator

T ∈ L(X,Y ), Tx := A(Dx)′+Bx, x ∈ domT = C1
D(I,Rm) ⊆ X, (31)

represents the closure of the operator T̊ ∈ L(X,Y ) given by (29).
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(3) For X = L2(I,Rm), Y = L2(I,Rk), and each arbitrary factorization from
(1), the operator

T ∈ L(X,Y ), Tx := A(Dx)′ +Bx, x ∈ domT = H1
D(I,Rm) ⊆ X,

(32)
represents the closure of the operator T̊ ∈ L(X,Y ) given by (29).

To shorten the wording, a factorization according to (1) is said to be a proper
factorization.
Proof: (1) Since kerE is a C1-subspace, the orthoprojector function E+E onto
(kerE)⊥ is continuously differentiable. Put A := E and D := E+E. Then
E = EE+E = AD and R = E+E, which makes the statement evident.
(2) The transversality condition 30 generalizes condition (21). The proof follows
the arguments given in Subsubsection 2.3.2.
(3) We proceed as in Lemma 2.8 and [35] to verify the existence of the biadjoint
T̊ ∗∗. Then the closure equals the biadjoint, T = T̊ ∗∗.
We derive for each arbitrary x ∈ C1(I,Rm) and suitable functions y by partial
integration we obtain

(T̊ x, y) =

∫ te

ta

〈E(t)x′(t) + F (t)x(t), y(t)〉dt

=

∫ te

ta

〈A(t)(Dx)′(t) +B(t)x(t), y(t)〉dt

=

∫ te

ta

〈x(t),−D(t)∗(A∗y)′(t) +B(t)∗y(t)〉dt

+ 〈D(te)x(te), A(te)
∗y(te)〉 − 〈D(ta)x(ta), A(ta)∗y(ta)〉.

Therefore, the adjoint operator is given on the set

{w ∈ L2(I,Rm) : A∗w ∈ H1(I,Rn), A(ta)∗w(ta) = 0, A(te)
∗w(te) = 0} =: dom T̊ ∗

by means of
T̊ ∗y = −D∗(A∗y)′ +B∗y, y ∈ dom T̊ ∗.

In fact, we have (T̊ x, y) = (x, T̊ ∗y) for all x ∈ dom T̊ and y ∈ dom T̊ ∗. Since
dom T̊ ∗ is dense in L2(I,Rm), the adjoint of the operator T̊ ∗ also exists. Com-
pute further

(T̊ ∗y, x) =

∫ te

ta

〈−D∗(A∗y)′(t) + F ∗y(t), x(t)〉dt

=

∫ te

ta

〈y(t), A(Dx)′(t) + Fx(t)〉dt

=: (y, T̊ ∗∗x)

for all y ∈ dom T̊ ∗ and x ∈ {w ∈ L2(I,Rm) : Dw ∈ H1(I,Rn)} =: dom T̊ ∗∗. �

As densely defined closed operator, T has a closed nullspace, however, now
kerT is not necessarily finite-dimensional as it is the case for regular differential-
algebraic operators (e.g. Propositions 2.6, 2.9).

For time-invariant regular index-0 and index-1 pairs {E,F}, the operator
T is surjective, thus imT is closed. For regular higher index pairs {E,F} the
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closed-image property gets lost, see Propositions 2.6, 2.9. Next we characterize
a further large class of linear time-varying DAEs (27) yielding closed images of
the associated operators T , too.

Applying a proper factorization as described in Theorem 3.1, we introduce
the following denotations to be used all through Section 3.

G0 := AD = E, B = F −AD′,
P0 := G+

0 G0 = E+E, Q0 := I − P0,

W0 := I −G0G
+
0 , (33)

G1 := G0 +BQ0 = E + (F −AD′)Q0 = E + FQ0 + EQ′0 (34)

P1 := G+
1 G1, Q1 := I − P1,

W1 := I −G1G
+
1 . (35)

Since E(t) has constant rank on the interval I, rankE(t) =: r, the orthoprojec-
tor function W0 is continuous. The orthoprojector functions P0 and Q0 are even
continuously differentiable, since kerE is a C1-subspace. The matrix function
G1 is continuous. If G1(t) has constant rank, then W1 is also continuous. We
have further

imG0 = imA = imE,

W0F = W0B,

imG1 = imG0 ⊕ imW0BQ0 = imE ⊕ imW0FQ0.

The matrix functions G1 and W0FQ0 have constant rank at the same time.
This fact will frequently be exploited later on.
Let D− denote the pointwise reflexive generalized inverse such that

DD−D = D, D−DD− = D−, D−D = P0, DD
− = R.

D− is continuously differentiable (e.g. [50, Proposition A.17]). The factorization
according to Theorem 3.1(1) can be chosen so that the sum (30) is orthogonal
and it results that D− = D+.

The continuous projector-valued function W1 ∈ C(I,L(Rk)) is uniformly
bounded on the compact interval I. The assignment

y ∈ C(I,Rk)→W1(t)y(t) =: (W1y)(t), for all t ∈ I, (36)

defines a bounded projector acting on C(I,Rk), which we also denote by W1,
more precisely W1 ∈ Lb(C(I,Rk)), and we write

{y ∈ C(I,Rk) : W1y = 0} = kerW1 ⊆ C(I,Rk). (37)

Similarly, the assignment

y ∈ L2(I,Rk)→W1(t)y(t) =: (W1y)(t), for almost all t ∈ I, (38)

defines a bounded projector acting on L2(I,Rk), which we denote by W1, too,
more precisely W1 ∈ Lb(L2(I,Rk)), and we write

{y ∈ L2(I,Rk) : W1y = 0} = kerW1 ⊆ L2(I,Rk). (39)
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No confusion should arise from this within the respective context. We proceed
analogously with further continuous projector-valued functions, for instance P1.
Owing to the uniformly boundedness of the continuous projector-valued func-
tions, the resulting projectors acting on the function spaces are bounded, and
hence, their nullspaces and images are closed.

Theorem 3.2 Let E,F ∈ C(I,L(Rm,Rk)) and kerE be a C1-subspace. Let
the matrix function W0FQ0 = W0BQ0 have constant rank on I and let the
condition

W1FP0 = 0 (40)

be satisfied. Then the following statements are valid:

(1) The operator T ∈ Lc(C(I,Rm), C(I,Rk)) from Theorem 3.1(2) has a closed
image, namely imT = kerW1 ⊆ C(I,Rk).

(2) The operator T ∈ Lc(L2(I,Rm), L2(I,Rk)) from Theorem 3.1(3) has a
closed image, namely imT = kerW1 ⊆ L2(I,Rk).

Proof: Since E and W0FQ0 are continuous, constant-rank matrix functions, so
are G1 and W1, and the subspaces kerW1 ⊆ C(I,Rk) and kerW1 ⊆ L2(I,Rk)
are closed in fact.
We derive for each arbitrary x ∈ domT :

Tx = A(Dx)′ +Bx = G1(D−(Dx)′ +Q0x) +BP0x

= G1(D−(Dx)′ +Q0x) +G1G
+
1 BP0x+W1BP0x.

Condition (40) yields W1BP0x = W1FP0x = 0, which immediately implies
W1(Tx) = 0. It follows that imT ⊆ kerW1. Next we verify that, for each
arbitrary q ∈ kerW1, there exists at least one x ∈ domT satisfying Tx = q.
We fix a ta ∈ I. The IVP

u′ −R′u+DG+
1 BD

−u = DG+
1 q, u(ta) = 0

has a unique solution u ∈ C1(I,Rn) and u ∈ H1(I,Rn), accordingly. It holds
that u = Ru, thus Ru′ = −DG+

1 BD
−u+DG+

1 q.
Put x := D−u − Q0G

+
1 BD

−u + Q0G
+
1 q such that Dx = DD−u = u, thus

x ∈ domT , P0x = D−u, Q0x = −Q0G
+
1 BD

−u+Q0G
+
1 q, and further

Tx = A(Dx)′ +Bx = G1(D−(Dx)′ +Q0x) +BP0x

= G1(D−(Dx)′ +Q0x) +G1G
+
1 BP0x

= G1{D−u′ +Q0x+G+
1 BP0x}

= G1{D−(−DG+
1 BD

−u+DG+
1 q) +Q0x+Q0G

+
1 BP0x+ P0G

+
1 BP0x}

= G1{−P0G
+
1 BP0x+ P0G

+
1 q +Q0x+Q0G

+
1 BP0x+ P0G

+
1 BP0x}

= G1{P0G
+
1 q +Q0x+Q0G

+
1 BP0x} = G1{P0G

+
1 q +Q0G

+
1 q} = G1G

+
1 q = q.

In consequence, q belongs to imT , and hence imT = kerW1. �

Though the operator T has here a closed image, it is not necessarily fredholm.
The nullspace may fail to be finite-dimensional. Furthermore, if W1 6= 0, then
there is no finite codimension.
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The DAE described in Theorem 3.2 is tractable with index 0, if W0FQ0 = 0,
and tractable with index 1 otherwise, see [50].
For W0 = 0, m = k, the DAE is even regular with index 0. For W0 6= 0, W1 = 0,
and m = k, the DAE is regular with tractability index 1.

The matrix pair {E,F} in Example 2.4 obviously satisfies the condition
W0F = 0. The associated DAE is tractable with index 1. The same happens for
[77, Example, p.485]. In both instances, the differential-algebraic operators are
normally solvable in fact. A large class of differential-algebraic operators which
satisfy the conditions of Theorem 3.2 is associated with so-called strangeness-
free DAEs, as we show by the following example.

Example 3.3 (Strangeness-free DAEs) Many papers start supposing a so-
called strangeness-free DAE. We recall the respective description of this class,
see [46, Definition 2.4]: The DAE (27) is said to be strangeness-free, if there are
pointwise orthogonal matrix functions L ∈ C(I,L(Rk)) and K ∈ C1(I,L(Rm))
such that

LEK = Ẽ =

Ẽ11 0 0
0 0 0
0 0 0

 , LFK + LEK ′ = F̃ =

F̃11 F̃12 F̃13

F̃21 F̃22 0
0 0 0

 ,
with nonsingular blocks Ẽ11, F̃22, and all blocksizes are allowed to be zero.
For strangeness-free DAEs all conditions of Theorem 3.2 are satisfied so that
the associated operator T is normally solvable. Namely, we have im Ẽ = L imE,
kerE = Kker Ẽ. We set and compute

Q̃0 = W̃0 =

0 0 0
0 I 0
0 0 I

 , Ã = Ẽ, D̃ = P̃0, B̃ = F̃ ,

W̃0F̃ Q̃0 =

0 0 0

0 F̃22 0
0 0 0

 , G̃1 =

Ẽ11 F̃12 F̃13

0 F̃22 0
0 0 0

 , W̃1 =

0 0 0
0 0 0
0 0 I

 ,
thus W̃1F̃ = 0. Then we set P0 = KP̃0K

−1 and factorize E = AD, A = E,
D = P0. P0 is the orthoprojector function onto kerE, and the decomposition
kerE ⊕ imP0 = Rm is valid.
W0 = L−1W̃0L is the orthoprojector function with kerW0 = imE. Regarding
that W̃0LE = 0 we derive

W0FQ0 = L−1W̃0LFKQ̃0K
−1

= L−1W̃0(F̃ − LEK ′)Q̃0K
−1 = L−1W̃0F̃ Q̃0K

−1,

thus rankW0FQ0 = rank W̃0F̃ Q̃0 = rank F̃22 is constant. Compute further

G1 = E +BQ0 = E + (F − EP ′0)Q0,

LG1K = LEK + L(F − EP ′0)KK−1Q0K = Ẽ + LFKQ̃0 − LEP ′0KQ̃0

= Ẽ + (F̃ − LEK ′)Q̃0 − LEP ′0KQ̃0

= Ẽ + F̃ Q̃0 − LE(P0K
′ + P ′0K)Q̃0 = G̃1 − LE(P0K)′Q̃0.
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Next, W1 = L−1W̃1L is the orthoprojector function with kerW1 = imG1. Re-
garding that W̃1LE = 0 we finally derive

W1FP0 = L−1W̃1LFKP̃0K
−1

= L−1W̃1(F̃ − LEK ′)P̃0K
−1 = L−1W̃1F̃ P̃0K

−1 = 0.

We mention that such a strangeness-free DAE has tractability index 0, if F̃22

has size zero, and otherwise tractability index 1, see[50]. �

Next we deal with the linear IVP

E(t)x′(t) + F (t)x(t) = q(t), t ∈ I, Cx(ta) = d. (41)

As before, the coefficients E and F are continuous, kerE is a C1-subspace, and
E has constant rank r > 0. Let the matrix C ∈ L(Rm,Rr) have full row-rank
r, and

kerC = kerE(ta). (42)

We consider the previous differential-algebraic operator T̊ ∈ L(X,Y ) corre-
sponding to the DAE as well as its composed associate T̊ ∈ L(X,Y × Rr)
defined by

T̊ x : = (T̊ x, Cx(ta)), x ∈ dom T̊ = dom T̊ .

Since the composed operator is also unbounded but closable, we immediately
turn to its closure T ∈ Lc(X,Y × Rr),

T x := (Tx,Cx(ta)), x ∈ dom T = domT.

We continue using the previous notations, e.g. (34), (35). Additionally, we
introduce the matrix function U ∈ C1(I,L(Rr)) to be the unique solution of the
IVP

U ′ −R′U +DG+
1 BD

−U = 0, U(ta) = I. (43)

U is the fundamental solution matrix of ODE in (43) normalized at ta. It
satisfies the conditions

U(t)R(ta) = R(t)U(t)R(ta), U(t)−1R(t) = R(ta)U(t)−1R(t), t ∈ I.

Theorem 3.4 Let E and F be continuous, kerE be a C1-subspace, and let the
matrix function W0FQ0 have constant rank. Let the matrix C ∈ L(Rm,Rr)
have full row-rank r = rankE and satisfy the condition kerC = kerE(ta).
Additionally, let the inclusion

ker (E + FQ0 + EQ′0) ⊆ kerE (44)

be satisfied pointwise on I. Then the following statements are true for the two
choices concerning the function spaces

X = C(I,Rm), Y = C(I,Rk), X1 = C1(I,Rm), X1
D = C1

D(I,Rm), (45)

and

X = L2(I,Rm), Y = L2(I,Rk), X1 = H1(I,Rm), X1
D = H1

D(I,Rm), (46)

respectively, and for the closure T ∈ Lc(X,Y × Rr), dom T = X1
D, of the

operator T̊ ∈ L(X,Y × Rr) associated with the IVP (41):
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(1) The operator T is normally solvable and

im T = {(q, d) ∈ Y × Rr :

W1q = W1BD
−U(D(ta)C+d+

∫
ta

U(s)−1D(s)G1(s)+q(s)ds )}.

(2) ker T = {x ∈ X : P1x = 0} ⊂ {x ∈ X : Dx = 0} ⊂ X1
D.

(3) If E + FQ0 has full column-rank, then T is injective.

(4) If (q, d) ∈ im T , then there exists a unique x∗ ∈ X1
D satisfying T x∗ = (q, d)

and Q1x∗ = 0, as well as the inequality

‖x∗‖L2 < ‖x‖L2 (47)

for all other solutions x of the equation T x = (q, d),

Proof: (1) Since E and W0FQ0 are continuous constant-rank matrix functions,
so are G1 and W1. The inclusion (44) means actually kerG1 ⊆ kerG0.
For given x ∈ X1

D and d := Cx(ta), q := Tx we derive

q = Tx = A(Dx)′ +Bx = ADD−(Dx)′ +BQ0x+BP0x

= G1(D−(Dx)′ +Q0x) +G1G
+
1 BP0x+W1BP0x

= G1(D−(Dx)′ +Q0x+G+
1 BP0x) +W1BP0x,

thus

G1G
+
1 q = G1(D−(Dx)′ +Q0x+G+

1 BP0x) and W1q = W1BP0x. (48)

From the first part we obtain the relation

D−(Dx) +Q0x+G+
1 BP0x−G+

1 q = ξ, (49)

whereby ξ is an arbitrary function belonging to kerP1 ⊆ X. Owing to the
properties kerG1 ⊆ kerG0 and kerD = kerG0 it follows that Dξ = 0, ξ = Q0ξ,
ξ ∈ X1

D. Now (49) decomposes into the system

(Dx)′ −R′Dx+DG+
1 BP0x−DG+

1 q = Dξ = 0,

Q0x+Q0G
+
1 BP0x−Q0G

+
1 q = Q0ξ = ξ.

From d = Cx(ta) we obtain D(ta)x(ta) = D(ta)C+d. This yields the represen-
tation

x = D−Dx+Q0x

= (I −Q0G
+
1 B)D−U{D(ta)C+d+

∫
ta

U(s)−1D(s)G1(s)+q(s)ds}

+Q0G
+
1 q + ξ, (50)

further

Dx = U{D(ta)C+d+

∫
ta

U(s)−1D(s)G1(s)+q(s)ds}. (51)
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Now it is evident that q must satisfy the consistency condition

W1q = W1BD
−U{D(ta)C+d+

∫
ta

U(s)−1D(s)G1(s)+q(s)ds}. (52)

Conversely, the equation T x = (q, d) is solvable for each arbitrary d ∈ Rr,
G1G

+
1 q ∈ Y , and the corresponding W1q defined by (52). Namely, for such d

and q, we put

x̃ := (I −Q0G
+
1 B)D−U{D(ta)C+d+

∫
ta

U(s)−1D(s)G1(s)+q(s)ds}+Q0G
+
1 q

and obtain

Dx̃ = DD−U{D(ta)C+d+

∫
ta

U(s)−1D(s)G1(s)+q(s)ds}

= U{D(ta)C+d+

∫
ta

U(s)−1D(s)G1(s)+q(s)ds}.

It becomes clear that x̃ belongs to domT = X1
D and

Cx̃(ta) = CD(ta)−D(ta)x̃(ta) = CD(ta)−D(ta)C+d = CC+d = d.

Finally, one finds that T x̃ = q. This proves that

im T = {(q, d) ∈ Y × Rr :

W1q = W1BD
−U(D(ta)C+d+

∫
ta

U(s)−1(DG+
1 q)(s)ds)}.

in fact. This set is obviously closed.
(2) For d = 0 and q = 0, we obtain the general solution (cf.(50)) x = ξ,
such that kerP1 ⊇ ker T . Conversely, we compute for x ∈ kerP1, that is, for
x = (I − P1)x = Q0(I − P1)x:

Tx = A(Dx)′ +Bx = G1(D−(Dx)′ +Q0x) +BP0x = G1Q0x = G1x = 0.

(3) Regarding the relation rankG1 = rank (E+FQ0), this statement is a simple
consequence of (2).
(4) Since P1, Q1 are complementary orthoprojector functions we have

‖x‖2L2 = ‖P1x‖2L2 + ‖Q1x‖2L2 .

For all solutions x∗, the component P1x∗ is completely fixed by d and q. The
only free component is ξ∗ = Q1ξ∗. Letting

ξ∗ =−Q1(I −Q0G
+
1 B)D−U{D(ta)C+d+

∫
ta

U(s)−1D(s)G1(s)+q(s)ds}

−Q1Q0G
+
1 q,

one arrives at the only solution with Q1x∗ = 0. �
The DAEs captured by Theorem 3.4 comprise a number of equation k that

can be less, equal and larger than the number of unknown functions m. The
DAEs are tractable with index 0, if W0FQ0 = 0, and otherwise tractable with
index 1. The corollary below specifies the index-0 case.
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Corollary 3.5 Let E and F be continuous, kerE be a C1-subspace. Let the
matrix C ∈ L(Rm,Rr) have full row-rank r = rankE and satisfy kerC =
kerE(ta).
Additionally, let the condition

FQ0 + EQ′0 = 0 (53)

be fulfilled. Then all statements of Theorem 3.4 are valid with W0, P0, G
+
0

instead of W1, P1, G
+
1 .

Moreover, rankE = rank (E + FQ0).

Proof: Condition (53) is a special case of the inclusion (44), which leads to
W0FQ0 = 0, G1 = G0, E+FQ0 = E(I−P0Q

′
0), and hence W1 = W0, P1 = P0,

rank (E + FQ0) = rankE. �

Example 3.6 (Overdetermined index-0 DAE) The IVP for the overdeter-
mined DAE (27) with m = 2, k = 3, and the coefficients

E =

1 0
0 1
0 0

 , F =

0 0
1 0
0 1

 , C =

[
1 0
0 1

]
,

leads to the closure T = T̊ , with the trivial factorization E = AD, A = E,
D = I, n = 2. The operator T is injective. The corresponding DAE is tractable
with index 0. We have R = I, D− = I, B = F and

W0 =

0 0 0
0 0 0
0 0 1

 , Q0 = 0, P0 = I, G1 = G0, W1 = W0, G
+
0 =

[
1 0 0
0 1 0

]
,

and, trivially, W0FQ0 = 0 so that Corollary 3.5 applies. Derive further

(DG+
0 BD

−)(t) =

[
0 0
1 0

]
, U(t) =

[
1 0

−(t− ta) 1

]
.

The consistency condition for q and d (cf.(52)) reads here

q3 = −(t− ta)(d1 +

∫
ta

q1(s)ds ) + d2 +

∫
ta

((s− ta)q1(s) + q2(s))ds.

�

The following proposition generalizes the previous results. The structural con-
ditions (40) and (44) are special instances of the condition (54) below. This is
obvious for (40). Since (44) implies the inclusion kerG1 ⊆ kerG0 = kerD, we
have also P0(I −P1) = 0. Also condition (57) below is given in these particular
instances. The differential-algebraic operator in Example 3.8 below meets the
assumptions of the next proposition, but it satisfies neither condition (40) nor
condition (44).

Proposition 3.7 Let E and F be continuous, kerE be a C1-subspace, and let
the matrix function W0FQ0 have constant rank. Let the matrix C ∈ L(Rm,Rr)
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have full row-rank r = rankE, and satisfy the condition kerC = kerE(ta).
Additionally, let the condition

W1FP0(I − P1) = 0 (54)

be given. Then the following statements are true for the two choices concerning
the function spaces

X = C(I,Rm), Y = C(I,Rk), X1 = C1(I,Rm), X1
D = C1

D(I,Rm), (55)

and

X = L2(I,Rm), Y = L2(I,Rk), X1 = H1(I,Rm), X1
D = H1

D(I,Rm), (56)

respectively, and for the closure T ∈ Lc(X,Y × Rr), dom T = X1
D, of the

operator T̊ ∈ L(X,Y × Rr) associated with the IVP (41):

(1) The map H ∈ L(X) defined by

Hp = Q0p+ (I −Q0G
+
1 B)D−U

∫
ta

U(s)−1D(s)p(s)ds, p ∈ X,

is bounded and

imH = X̊1
D(I,Rm) := {x ∈ X1

D(I,Rm) : D(ta)x(ta) = 0}.

(2) ‖Hp‖X1
D
≤ C‖p‖X for all p ∈ X.

(3) If, additionally,

ξ ∈ kerP1 ⊆ X implies W1BP0Hξ = 0, (57)

then ker T = H(kerP1) and T has a closed image, namely

im T = {(q, d) ∈ Y × Rr : W1q = W1BD
−(DH(G+

1 q) + UD(ta)C+d)}.

(4) Supposed condition (57) is valid, for each arbitrary (q, d) ∈ im T , the solu-
tions x∗ ∈ dom T of the equation T x = (q, d) have the form

x∗ = (I −Q0G
+
1 B)D−UD(ta)C+d+H(G+

1 q + ξ),

with an arbitrary part ξ ∈ kerP1.

Proof: (1) The boundedness of H is evident. We investigate the image of the
map H. p ∈ X implies Hp ∈ X and DHp = DD−U

∫
ta
U(s)−1D(s)p(s)ds ∈

X1(I,Rn), and hence Hp ∈ X̊1
D(I,Rm).

Next we show that the equation Hp = x is solvable for each arbitrary x ∈
X̊1
D(I,Rm). Let x ∈ H̊1

D(I,Rm) be given. We set p̃ = D−Dp̃+Q0p̃,

Dp̃ : = (Dx)′ −R′Dx+DG+
1 BD

−Dx,

Q0p̃ : = Q0x+Q0G
+
1 BD

−U

∫
ta

U(s)−1D(s)p̃(s)ds.
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It follows that

Dx = U

∫
ta

U(s)−1D(s)p̃(s)ds,

Hp̃ = Q0p̃+ (I −Q0G
+
1 B)D−U

∫
ta

U(s)−1D(s)p̃(s)ds

= Q0x+D−U

∫
ta

U(s)−1D(s)p̃(s)ds,

= Q0x+D−Dx = x.

This proves that imH = X̊1
D(I,Rm).

(2) Regarding the relation

(DHp)′ = (RU)′
∫
ta

U(s)−1D(s)p(s)ds +RUU−1Dp, p ∈ X,

the inequality follows immediately. (4) We decompose Tx−q = 0 intoG1G
+
1 (Tx−

q) = 0 and W1(Tx− q) = 0, that is,

G1(D−(Dx)′ +Q0x+G+
1 BP0x−G+

1 q) = 0, W1BP0x−W1q = 0,

and, equivalently,

D−(Dx)′ +Q0x+G+
1 BP0x−G+

1 q = ξ ∈ kerP1, W1q = W1BP0x. (58)

For their part, the first equation decomposes into

DD−(Dx)′ +DG+
1 BP0x−DG+

1 q = Dξ,

Q0x+Q0G
+
1 BP0x−Q0G

+
1 q = Q0ξ.

We reformulate the last systems once more as

(Dx)′ −R′Dx+DG+
1 BD

−Dx = D(G+
1 q + ξ), (59)

Q0x+Q0G
+
1 BD

−Dx = Q0(G+
1 q + ξ).

The initial condition Cx(ta) = d means D(ta)x(ta) = D(ta)C+d. Together with
(59) this yields the representations

Dx = UD(ta)C+d+ U

∫
ta

U(s)−1D(s)(G1(s)+q(s) + ξ(s))ds,

as well as

x = D−Dx+Q0x = D−Dx−Q0G
+
1 BD

−Dx+Q0(G+
1 q + ξ)

= (I −Q0G
+
1 B)D−Dx+Q0(G+

1 q + ξ)

= H(G+
1 q + ξ) + (I −Q0G

+
1 B)D−UD(ta)C+d.

The second equation of (58) reformulates now as

W1q = W1BD
−Dx

= W1BD
−{UD(ta)C+d+ U

∫
ta

U(s)−1D(s)(G1(s)+q(s) + ξ(s))ds}

= W1BD
−{UD(ta)C+d+DH(G+

1 q + ξ)}
= W1BD

−{UD(ta)C+d+DH(G+
1 q) +DH(ξ)}.
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Regarding condition (57) we find the relation

W1q = W1BD
−{UD(ta)C+d+DH(G+

1 q)}. (60)

Therefore, if d ∈ Rr and q ∈ Y are given, and (60) is satisfied, then x̃ :=
H(G+

1 q + ξ) + (I −Q0G
+
1 B)D−UD(ta)C+d, with arbitrary ξ ∈ kerP1 satisfies

T x̃ = (q, d). This proves the statement.
(3) If x ∈ domT is given, q := Tx, d := Cx(ta), then condition (60) must be
valid. The resulting set im T is obviously closed in Y × Rr.
For q = 0, d = 0 we obtain the solution representation x = Hξ. Therefore, the
nullspace of T is formed by the functions x = Hξ with ξ ∈ kerP1. �

Condition (40) trivially implies both (54) and (57). In this case, im T has a
very simple structure, see Theorem 3.2.
Condition (44) also implies both (54) and (57). Because of Dξ = 0 we have
Hξ = Q0ξ = ξ, and hence ker T = kerP1.
In the following example, neither (40) nor (44) are satisfied, but (54) and (57)
are valid.

Example 3.8 (Supplementary DAE for Proposition (3.7)) The DAE with
constant coefficients

E =

1 0 0
0 0 1
0 0 0

 , F =

0 0 0
1 1 0
1 0 0

 ,
has (nonregular) tractability index 0, see [50]. We apply the factorization E =
AD, A = E, D = E+E such that D− = D+. We have then

P0 =

1 0 0
0 0 0
0 0 1

 , G1 =

1 0 0
0 1 1
0 0 0

 , G+
1 =

1 0 0
0 1

2 0
0 1

2 0

 , P1 =

1 0 0
0 1

2
1
2

0 1
2

1
2

 ,
further

W1 = W0 =

0 0 0
0 0 0
0 0 1

 , W1FP0 =

0 0 0
0 0 0
1 0 0

 6= 0, W1FP0(I − P1) = 0.

kerE does not include kerG1, and neither condition (40) nor (44) is satisfied,
but condition (54) is given. Taking into account that

DG+
1 FD

− =

0 0 0
0 0 0
1
2 0 0

 , U(t) =

 1 0 0
0 1 0

− 1
2 (t− ta) 0 1

 ,
we verify that W1FP0Hξ = 0 for all functions ξ ∈ kerP1, thus condition (57)
is valid in fact. �

3.2 Settings with bounded differential-algebraic operators

The available theory of bounded operators in Banach spaces and Hilbert spaces
is rich in content. Bounded operators are favorable in many situations; for
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instance, when aiming to investigate smooth nonlinear problems (cf. Section 4)
and when looking for least-squares solutions (cf. Theorem 6.5.

Fixing a proper factorization E = AD according to Theorem 3.1(3), we turn
from the standard form DAE (27) to the DAE with properly stated leading term

A(t)(Dx)′(t) +B(t)x(t) = q(t), t ∈ I = [ta, te], (61)

whereby A ∈ C(I,L(Rn,Rk)), D ∈ C1(I,L(Rm,Rn)), B ∈ C(I,L(Rm,Rk)),
and kerA, imD are C1-subspaces satisfying the transversality condition (30).
The function spaces C1

D(I,Rm) and H1
D(I,Rm) endowed with the norm ‖ · ‖C1D

and the inner product (·, ·)H1
D

, become a Banach space and a Hilbert space,
respectively, see Lemma 6.9.

The differential-algebraic operator T ∈ L(C1
D(I,Rm), C(I,Rm)) defined by

Tx = A(Dx)′ +Bx, x ∈ C1
D(I,Rm), (62)

is bounded. We continue using the denotations (33)-(35).

G0 = AD, P0 = G+
0 G0, Q0 = I − P0, W0 = I −G0G

+
0 ,

G1 = G0 +BQ0, W1 = I −G1G
+
1 .

The next theorem states sufficient conditions for T to be normally solvable
in terms of the original data.It can be seen as natural counterpart of Theorem
3.2 (1).

Theorem 3.9 Assume A ∈ C(I,L(Rn,Rk)), D ∈ C1(I,L(Rm,Rn)), kerA is a
C1-subspace, and B ∈ C(I,L(Rm,Rk)), and let the transversality condition (30)
be given.
Let the matrix function W0BQ0 have constant rank on the given interval I and
let the condition

W1BP0 = 0 (63)

be satisfied. Then the operator T defined by (62) is bounded and normally solv-
able, and

imT = kerW1 ⊆ C(I,Rk). (64)

Proof: The arguments used in the proof of Theorem 3.2(1) apply again. �

The particular case if G1 has pointwise full row-rank is quite important for
minimization with differential-algebraic constraints, see [56]. Then, it holds that
W1 = 0 and the corresponding differential-algebraic operator is surjective.
Strangeness-free DAEs yield a special class of bounded and normally solvable
operators T , see Example 3.3.

Analogously, the operator T ∈ L(H1
D(I,Rm), L2(I,Rm)) defined by

Tx = A(Dx)′ +Bx, x ∈ H1
D(I,Rm), (65)

is bounded. The first statement of the next theorem represents the counterpart
of Theorem 3.2 (2).

Theorem 3.10 Let the assumptions of Theorem 3.9 be satisfied.
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(1) Then the operator T defined by (65) is bounded and normally solvable, with

imT = kerW1 ⊆ L2(I,Rk). (66)

(2) For each q ∈ L2(I,Rk),

inf{‖Tx− q‖H1
D

: x ∈ H1
D} (67)

is attained, and the orthogonal generalized (Moore-Penrose) inverse T+ is
bounded.

Proof: The arguments used in the proof of Theorem 3.2(2) apply once more,
and verify part (1). Part (2) is then a consequence of Theorem 6.5. �

Naturally, also Theorem 3.4 and Proposition 3.7 can be adapted to settings
with bounded differential-algebraic operators.

3.3 Least-squares solutions of IVPs and bounded general-
ized inverses of the composed operator

Let X and Y be Hilbert spaces and K ∈ L(X,Y ) be a bounded or closed and
densely defined operator. Then the equation Kx = y possesses a least-squares
solution (LSS) x∗ ∈ domK exactly if y ∈ imK + (imK)⊥. Denote by LSSy ⊆
domK the set of all LSS corresponding to y. Since the nullspace of K is closed,
the set LSSy is either empty or linear affine and closed. Therefore, for each y ∈
imK+(imK)⊥, there exists a unique minimum-norm LSS or pseudosolution. So
far so good! However, when computing LSS in practice, one is confronted with
the question whether a small residuum ‖Kx̃−y‖ ensures that x̃ is actually closed
to a LSS or even to the pseudosolution. Unfortunately, for differential-algebraic
operators in standard settings, even if y is consistent and the pseudosolution x∗
exists, a minimizing sequence {xl} such that δl = ‖Kxl − y‖

n→∞−−−−→ 0 does not
necessarily converge; instead, ‖xl − x∗‖ may grow unboundedly, see Example
2.5 and its continuation by Example 2.7. This essentially ill-posed behavior is
caused by the nonclosedness of the image of the operator. The calculation of
a LSS and the pseudosolution is practically safe only for operators with closed
image, that means, for normally solvable operators, otherwise regularization
techniques should be applied, see Section 5.

We continue investigating the linear IVP (41), that is,

E(t)x′(t) + F (t)x(t) = q(t), t ∈ I, Cx(ta) = d.

The coefficients E and F are continuous, kerE is a C1-subspace, and E has
constant rank r > 0. The matrix C ∈ L(Rm,Rr) has full row-rank r, and
condition 42 is valid, that is,

kerC = kerE(ta).

We choose now the Hilbert spaces

X = L2(I,Rm), Y = L2(I,Rk) (68)
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as pre-image and image spaces. The differential-algebraic operator T̊ ∈ L(X,Y )
as well as its composed associate T̊ ∈ L(X,Y × Rr) defined by

T̊ x : = Ex′ + Fx, x ∈ dom T̊ = C1(I,Rm) ⊆ X,
T̊ x : = (T̊ x, Cx(ta)), x ∈ dom T̊ = T̊ .

are unbounded but closable, we immediately turn to their closures (cf. Subsec-
tion 3.1) given by T ∈ Lc(X,Y ) and T ∈ Lc(X,Y × Rr),

Tx : = A(Dx)′ +Bx, x ∈ domT = H1
D(I,Rm) ⊆ X,

T x : = (Tx,Cx(ta)), x ∈ dom T = domT.

whereby we apply a proper factorization E = AD being consistent with Theo-
rem 3.1. Owing to the property kerC = kerE(ta) = kerD(ta) the expression
Cx(ta) = CD(ta)−D(ta)x(ta) makes sense for each arbitrary x ∈ H1

D(I,Rm).
We continue using the notations introduced in Subsection 3.1.

Definition 3.11 For given q ∈ Y , d ∈ Rr, the function x∗ ∈ H1
D(I,Rm)

is called least-squares solution of the IVP (41), if it represents a LSS of the
operator equation T x = (q, d), that means

‖Tx∗ − q‖2L2 + |Cx∗(ta)− d|2 (69)

= inf{‖Tx− q‖2L2 + |Cx(ta)− d|2 : x ∈ H1
D(I,Rm)}.

A LSS x∗ is called pseudosolution of the IVP (41), if the inequality ‖x∗‖L2 ≤
‖x̃∗‖L2 is valid for all further LSS x̃∗.

Proposition 3.7 ensures the normal solvability of the operator T ∈ Lc(X,Y ×
Rr). In particular, since ker T and im T are closed, the orthogonal direct sum
decompositions

X = ker T ⊕ (ker T )⊥, Y × Rr = im T ⊕ (im T )⊥

are valid, and there exist symmetric bounded projectors P and R acting on X
and Y × Rr, respectively, such that

imP = (ker T )⊥, imR = im T .

For each arbitrary (q, d) ∈ Y ×Rr, Proposition 3.7(4) provides the solutions x∗
of the equation T x = R(q, d) =: (qR, dR) as

x∗ = (I −Q0G
+
1 B)D−UD(ta)C+dR +H(G+

1 qR + ξ), (70)

whereby the component ξ ∈ kerP1 can be chosen arbitrarily. Since the inequal-
ity

‖T x− (q, d)‖2 = ‖T x−R(q, d)‖2 + ‖(I −R)(q, d)‖2

≥ ‖(I −R)(q, d)‖2 = ‖T x∗ − (q, d)‖2

is valid for all x ∈ domT , each of those x∗ is a LSS of the given IVP (41).

By omitting the free component ξ ∈ kerP1, a special bounded generalized
inverse T − of T results, as the following theorem based on Proposition 3.7
shows.
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Theorem 3.12 Let E and F be continuous, kerE be a C1-subspace, and let
the matrix function W0FQ0 have constant rank. Let the matrix C ∈ L(Rm,Rr)
have full row-rank r = rankE, and satisfy the condition kerC = kerE(ta).
Additionally, assume that W1FP0(I − P1) = 0 and

W1BP0Hξ = 0 for ξ ∈ kerP1 ⊆ X.

(1) Then the map T − ∈ L(Y × Rr, X) defined by

T −(q, d) := (I −Q0G
+
1 B)D−UD(ta)C+dR +H(G+

1 qR),

for (q, d) ∈ Y × Rr, (qR, dR) := R(q, d).

is a bounded generalized inverse of the operator T such that T T − = R.

(2) If even W1FP0 = 0, then it results that im T = kerW1 × Rr,
R = diag ( I −W1, I ), and

T −(q, d) := (I −Q0G
+
1 B)D−UD(ta)C+d+H(G+

1 q),

for (q, d) ∈ Y × Rr.

Proof: (1) The map T − is bounded by construction.
For each arbitrary (q, d) ∈ Y ×Rr, the value x(q,d) := T −(q, d) fulfills the relation
T x(q,d) = R(q, d), and hence T T −(q, d) = R(q, d) as well as T −T T −(q, d) =
T −R(q, d) = T −(q, d).
For each arbitrary x ∈ domT and qx := Tx, dx := Cx(ta), it holds that
(qx, dx) = R(qx, dx), thus T x = (qx, dx) = T T −(qx, dx) = T T −T x.
(2) is a direct consequence of Theorem 3.2. �

The second statement applies in particular to the class of strangeness-free
DAEs, see Example 3.3.

One can compute the value T −(q, d) by solving first the standard IVP

u′ = R′u−DG+
1 BD

−u+DG+
1 qR, u(ta) = D(ta)C+dR, (71)

and letting
T −(q, d) = (I −Q0G

+
1 B)D−u+Q0G

+
1 qR. (72)

At this place, we mention that, for regular DAEs with tractability index 0 and
1, the operator T is invertible and R = I. Then, of course, T − and T −1

coincide. In the index-0 case, it results that x = u, and the IVP (71) reads
simply u′ = −E−1Fu+ E−1q, u(ta) = d.

In general, T −(q, d) is a special LSS, but it is not necessarily a pseudoso-
lution. For reaching a pseudosolution, an extra minimization has to be carried
out among the LSS. Nevertheless, the Theorem 3.4 allows a direct choice of the
pseudosolution. Namely, owing to the assumptions of Theorem 3.4 the map H
simplifies so that

Hξ = Q0ξ = ξ for ξ ∈ kerP1,

and we have further
ker T = kerP1, P = P1.
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Then the minimum norm LSS x∗∗ is attained by applying (cf. Theorem 3.4)

ξ∗ = −Q1(I −Q0G
+
1 B)D−U(D(ta)C+dR −Q1H(G+

1 qR)

with Q1 := I − P1, yielding

x∗∗ = P1(I −Q0G
+
1 B)D−UD(ta)C+dR + P1H(G+

1 qR).

Equivalently, we can compute the solution u of the IVP (71) and set

ξ∗ = −Q1(I −Q0G
+
1 B)D−u−Q1Q0G

+
1 qR.

Again, the resulting

x∗∗ = P1(I −Q0G
+
1 B)D−u− P1Q0G

+
1 qR

is the pseudosolution of the original IVP (41). Namely, Q1, P1 are complemen-
tary orthoprojectors and the part P1x∗ of each LSS x∗ (cf. (70)) is completely
independent of ξ. The choice ξ = ξ∗ leads to Q1x∗∗ = 0, thus

‖x∗∗‖2L2 = ‖Px∗∗‖2L2 ≤ (‖Px∗∗‖2L2 + ‖(I −P)x∗‖2L2) = ‖x∗‖2L2

is valid for all LSS x∗.
If, moreover, G1 = G0, then the DAE is tractable with index 0, and the pseu-
dosolution is simply

x∗∗ = D−u.

Example 3.13 (Pseudosolution) The DAE with the coefficients

E(t) =

[
−t t2

−1 t

]
, F (t) =

[
1 0
0 1

]
,

is tractable with index 0. The associated closed differential-algebraic operator
has the coefficients

A(t) =

[
t
1

]
, D(t) =

[
−1 t

]
, B(t) =

[
1 −t
0 0

]
, D(t)− =

1

1 + t2

[
−1
t

]
.

Put ta = 0 and C = [1 0]. The related initial condition reads

Cx(0) = x1(0) = d.

Compute G0 = AD = E, kerB = kerG0, thus BQ0 = 0, G1 = G0. The DAE
is tractable with index 0, and Corollary 3.5 applies.
Compute further

Q0(t) =
1

1 + t2

[
t2 t
t 1

]
,W0(t) =

1

1 + t2

[
1 −t
−t t2

]
, G1(t)+ =

1

(1 + t2)2

[
−t −1
t2 t

]
,

R = 1, P1 = P0 = W0, DG+
1 BD

− = − t
1+t2 .

The solution of the IVP U ′ +DG+
1 BD

−U = 0, U(0) = 1 is U(t) = (1 + t2)
1
2 .

(q, d) belongs to im T , exactly if the consistency condition

W0q =
1

(1 + t2)
1
2

[
−1
t

]
{−d+

∫
0

1

(1 + s2)
3
2

(sq1(s) + q2(s))ds}. (73)
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is valid.
For consistent (q, d) we derive the pseudosolution

x∗∗ = D−u =
1

(1 + t2)
1
2

[
−1
t

]
{−d+

∫
0

1

(1 + s2)
3
2

(sq1(s) + q2(s))ds}.

Regarding the consistency condition (73) we find the further expression

x∗∗(t) = W0(t)q(t) =
1

(1 + t2)

[
1
−t

]
(q1(t)− tq2(t)).

In contrast, in [46], this DAE has strangeness index 1, and hence, it is first
reduced to strangeness-free form via the derivative array approach (which needs
derivatives also of q) and not till then the least-squares calculus is applied.
Thereby, operator images are not at all considered. The function

x~(t) =
1

(1 + t2)

[
1
−t

]
(q1(t)− tq2(t)− x0 1 + tx0 2) + x0

is offered as the pseudosolution of the IVP

E(t)x′(t) + F (t)x(t) = q(t), x(0) = x0.

Observe that x~ formally coincides with x∗∗ for x0 = 0. �

3.4 Nonlinear differential-algebraic operators

There are reach resources in the functional-analytic literature concerning im-
plicit function theorems, the Kantorovich-type analysis for Newton-like iteration
methods, and related topics for operator equations and least-squares problems
in Banach spaces, e.g. [16, 58, 21, 59]. Usually those investigations rely on
Fréchet-differentiable operators. A Fréchet-derivative is linear and bounded by
definition (cf. Appendix 6.1.3.

The standard form DAE

f(x′(t), x(t), t) = 0 (74)

is described by the continuous function f : Rm × Df × If → Rk which has
continuous partial derivatives fx1 and fx. The set Df × If ⊆ Rm × R is open.
The nullspace ker fx1 is supposed to be a C1-subspace. We associate with the
DAE (74) the operator

F̊ : dom F̊ ⊆ X → Y,

dom F̊ := {x ∈ C1(I,Rm) : x(t) ∈ D, t ∈ I},
(F̊ x)(t) := f(x′(t), x(t), t), t ∈ I, x ∈ dom F̊ , (75)

whereby D ⊆ Df is an open, connected set and I = [ta, te] ⊂ If is a compact
interval.
We put Y = C(I,Rk) and look for an appropriate Banach space X to serve as
pre-image space. The operator equation F̊ x = 0 represents the DAE (74) in the
classical sense.
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As pointed out in Subsubsection 2.3.1, it is not reasonable to choose C1(I,Rm)
as the pre-image space. We momentarily attempt X = C(I,Rm). Then, for
each fixed x∗ ∈ dom F̊ and arbitrary x ∈ C1(I,Rm), the directional derivative

lim
α→0

1

α
(F̊ (x∗ + αx)− F̊ x∗) = E∗x

′ + F∗x =: F̊ ′(x∗)x,

is well-defined and linear, with

E∗(t) := fx1(x′∗(t), x∗(t), t), F∗(t) := fx(x′∗(t), x∗(t), t), t ∈ I.

The linear operator equation F̊ ′(x∗)x = q represents the linearized DAE

E∗x
′ + F∗x = q. (76)

In this setting, the operator F̊ ′(x∗) is closely defined, but, unfortunately, it is
unbounded. By means of the proper factorization (cf. Theorem 3.1) E∗ = A∗D∗,
A∗ := E∗, D∗ := E+

∗ E∗, we obtain the closure of F̊ ′(x∗),

F ′(x∗)x = A∗(D∗x)′ +B∗x, x ∈ domF ′(x∗),

domF ′(x∗) = {x ∈ C(I,Rm) : D∗x ∈ C1(I,Rm)},

with B∗ := F∗−A∗D′∗. The closure F ′(x∗) has a definition domain individually
for each x∗. This configuration does not meet the usual requirements of the
functional-analytic procedures.

The following structural restriction of the DAE makes the situation much
more comfortable: it ensures a common domain for the derivatives F ′(x∗) and
allows then to turn to bounded derivatives in a Banach space setting. Fortu-
nately, most applications meet this structural restriction.

Let the nullspace of the leading Jacobian fx1(x1, x, t) be independent of x1

and x, such that

ker fx1(x1, x, t) =: N0(t), (x1, x, t) ∈ Rm ×D × I. (77)

Let the matrix D(t) ∈ L(Rm) represent the orthoprojector along N0(t), t ∈ I.
The matrix function D is continuously differentiable since N0 is a C1-subspace.
The identity

f(x1, x, t) ≡ f(D(t)x1, x, t) (78)

follows from

f(x1, x, t)− f(D(t)x1, x, t) =

∫ 1

a

fx1(sx1 + (1−s)D(t)x1, x, t)(I−D(t))x1ds = 0.

It results that D∗ = E+
∗ E∗ = D uniformly for all x∗ ∈ dom F̊ . Moreover, we

have

(F̊ x)(t) = f(x′(t), x(t), t) = f(D(t)x′(t), x(t), t)

= f((Dx)′(t)−D′(t)x(t), x(t), t), t ∈ I, x ∈ dom F̊ ,
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which suggests to turn to the extension F of F̊ ,

(Fx)(t) := f((Dx)′(t)−D′(t)x(t), x(t), t), t ∈ I, x ∈ domF. (79)

domF := {x ∈ C1
D(I,Rm) : x(t) ∈ D, t ∈ I}.

(80)

Motivated also by the experience in the previous sections, we apply now the
enhanced setting

F : domF ⊆ C1
D(I,Rm)→ C(I,Rk) (81)

for the extended differential-algebraic operator F determined by (79). In this
enhanced setting, F is Fréchet differentiable,

F ′(x∗)x = A∗(Dx)′ +B∗x, x ∈ C1
D(I,Rm), x∗ ∈ domF,

A∗(t) := fx1((Dx∗)
′(t)−D′(t)x∗(t), x∗(t), t),

B∗(t) := fx((Dx∗)
′(t)−D′(t)x∗(t), x∗(t), t)−A∗(t)D′(t), t ∈ I.

The operator equation Fx = 0 represents the DAE (74) still in classical sense.
Together with the differential-algebraic operator F we investigate the composed
operator

F : domF ⊂ C1
D(I,Rm)→ C(I,Rk)× Rr,

Fx : = (Fx,Cx(ta)), x ∈ domF.

which represents the IVP. The m× r matrix C will be specified later on.

Next we define the matrix functions

G0(x1, x, t) := fx1(x1, x, t) = fx1(x1, x, t)D(t),

B0(x1, x, t) := fx(x1, x, t)− fx1(x1, x, t)D′(t),

G1(x1, x, t) := G0(x1, x, t) +B0(x1, x, t)Q0(t),

pointwise for x1 ∈ Rm, x ∈ D, t ∈ I, and introduce the projector-valued func-
tions

P0 := D, Q0 := I − P0, W0 := I −G0G
+
0 , W1 := I −G1G

+
1 .

For a given reference function x∗ ∈ domF we abbreviate

G∗ 0(t) := G0((Dx∗)
′(t)−D′(t)x∗(t), x∗(t), t) = A∗(t)D(t),

G∗ 1(t) := G1((Dx∗)
′(t)−D′(t)x∗(t), x∗(t), t), t ∈ I,

and so on.

Now we are prepared to characterize nonlinear differential-algebraic opera-
tors via their derivatives. For instance, the following statement is a nonlinear
counterpart of Theorem 3.9.

Theorem 3.14 Let the function f be continuous, with continuous partial deriva-
tives fx1 and fx. Let the nullspace of fx1 be a C1-subspace who varies with t only,
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and let the matrix function W0B0Q0 have constant rank.
If, additionally,

W1B0P0 = W1fxP0 = 0, (82)

then the derivative F ′(x∗) of the differential-algebraic operator F is normally
solvable for each arbitrary x∗ ∈ domF and

imF ′(x∗) = {x ∈ C(I,Rm : W∗ 1x = 0}. (83)

Proof: For each arbitrary reference function x∗ ∈ domF we obtain the lin-
earization

F ′(x∗)x = A∗(Dx)′ +B∗x, x ∈ C1
D(I,Rm), (84)

which satisfies all conditions of Theorem 3.9 (cf. also (33), (34), (35)). In detail,
condition (82) implies relation (63), that is, for t ∈ I,

W∗ 1(t)B∗(t)P0(t) = (W1B0)((Dx∗)
′(t)−D′(t)x∗(t), x∗(t), t)P0(t) = 0.

�

Example 3.15 (Strangeness-free reduced DAEs) A particular instance of
normally solvable nonlinear differential-algebraic operators is given by the so-
called strangeness-free reduced DAEs in [47],

x′1(t) + L(x1(t), x2(t), x3(t), t) = 0,

x2(t) +R(x1(t), x3(t), t) = 0,

which represent overdetermined DAEs with free component x3. One has simply

G0 =

[
I 0 0
0 0 0

]
, W0B0Q0 =

[
0 0 0
0 I ∗

]
, G1 =

[
I ∗ ∗
0 I ∗

]
, W1 = 0.

�

Theorem 3.16 Let the function f be continuous, with continuous partial deriva-
tives fx1 and fx. Let the nullspace of fx1 be a C1-subspace who varies with t only
and let the matrix function W0B0Q0 have constant rank.
Let the matrix C ∈ L(Rm,Rr) have full row-rank r := rankD(ta) and let
kerC = kerD(ta). If, additionally,

kerG1 ⊆ kerG0. (85)

then the derivative F ′(x∗) of the composed operator F is normally solvable for
each arbitrary x∗ ∈ domF and

imF ′(x∗) = {(q, d) ∈ C(I,Rk)× Rr : (86)

W∗ 1q = W∗ 1B∗D
+U∗ (D(ta)C+d+

∫
ta

U∗(s)
−1D(s)G+

∗ 1q(s)ds )},

whereby U∗ is the fundamental solution matrix uniquely determined by

U ′ − P ′0U +DG+
∗ 1B∗D

+U = 0, U(ta) = I.

Further, it holds that

kerF ′(x∗) = {x ∈ C1
D(I,Rm) : G∗ 1x = 0},
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and F ′(x∗) is injective, if the matrix function G1 shows full column-rank.
Moreover, if (q, d) ∈ imF ′(x∗), then there is a unique z∗ ∈ C1

D(I,Rm) such that

‖z∗‖L2 = min{‖z‖L2 : z ∈ C1
D(I,Rm),F ′(x∗)z = (q, d)}.

Proof: For each arbitrary reference function x∗ ∈ domF we obtain the lin-
earization

F ′(x∗)x = (F (x∗)x, Cx(ta)) = (A∗(Dx)′ +B∗x, Cx(ta)), x ∈ C1
D(I,Rm).

Theorem 3.4 can be adapted to a setting with bounded operators analogously as
Theorem 3.9 has been obtained from Theorem 3.2. Our linearization satisfies all
conditions of the adapted version of Theorem 3.2 which proves the statements
here. Note that here the special choice of D leads to R = P0 and D− = D+. �

Regular index-0 DAEs are characterized by an equal number of equations and
unknowns, m = k, and a nonsingular matrix function G0, so that W1 = W0 = 0.
Regular index-1 DAEs are given, if m = k, the matrix function G0 is singular,
but has constant rank, and the matrix function G1 is nonsingular (e.g.[29, 50]).
Obviously, Theorem 3.16 applies in both instances.
General underdetermined index-0 DAEs are characterized by m > k and a
matrix function G0 that has full row-rank k. General underdetermined index-1
DAEs are characterized by m > k, a matrix function G0 that has constant rank
smaller than k, and a matrix function G1 with full row-rank k, see [50]. This
leads also to W1 = 0, and Theorem 3.16 applies again.

We emphasize once again that our criteria of normal solvability are given
in terms of the original data. No transformation in a special reduced form is
required.

3.5 Notes and references

Remark 3.17 In optimal control one often prefers the spaces of essentially
bounded functions. Denote by L∞(I,Rm) and W 1,∞(I,Rm) the space of es-
sentially bounded functions and the space of essentially bounded functions with
essentially bounded first derivatives, respectively, further

W 1,∞
D (I,Rm) := {x ∈ L∞(I,Rm) : Dx ∈W 1,∞(I,Rn)}.

The differential-algebraic operator

T : domT := W 1,∞
D (I,Rm) ⊆ X → L∞(I,Rk)

can then be treated analogously to Section 3, with X = W 1,∞
D (I,Rm) as bounded

operator and with X = L∞(I,Rm) as closed operator, accordingly.

Remark 3.18 To our knowledge, [35] was the very first paper providing the
closure of an operator associated with a DAE, and formulating conditions en-
suring normal solvability. The function space applied in [35] is L2(I,Rm). In
contrast to the present paper, in [35] also the coefficients E and F are integrable
functions. In [77] a constant leading coefficient E is supposed for obtaining the
closure of the differential-algebraic operator acting in L2-spaces, and, in essence,
also F is constant when regarding normal solvability. In [77] different numbers
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of unknowns m and equations k are allowed, whereas m = k is supposed in [35].
Theorem 3.4 substantially generalizes [77, Theorem 3] which is proved there for
X = L2 by means of a quite involved regularization procedure.
In essence, the DAEs described in Proposition 3.7 are tractable with index 0 and
index 1. We conjecture that exactly the DAEs with tractability index 0 and 1
(cf. [50, Chapter 10]) yield normally solvable operators. Example 3.8 supports
this idea.

Remark 3.19 Least-squares solutions are in discussion since the beginning of
the DAE research. Already in the early contribution [9], linear DAEs are treated
as least-squares problems, with function spaces H1 and L2, and by a gradient
method. It is reported, that satisfactory numerical results are obtained only for
matrix pencils having a simple structure, that is, in the absence of higher order
nilpotent blocks. This fits naturally in our theory.
An updated analysis is reported in [13]. For a certain integer κ, the cost func-
tional

Jκ(x) :=

κ∑
j=0

‖(Tx− q)(j)‖2L2

is to be minimized subject to the fixed initial condition x(ta) = xa. Special
interest is spent to κ = 0. A simple gradient descent method and discretization
by polynomials are discussed.

Remark 3.20 For bounded operators Kb(X,Y ) acting in Hilbert spaces, possi-
bly with nonclosed image imK, there is a reach spectrum of iteration methods
relying on Gaussian symmetrization, i.e., on the normal equation (e.g.,[71, 21])

K∗Kx = K∗q, (87)

among others, Tikhonov’s method. To the author’s knowledge, those iteration
procedures are not developed for DAE problems as yet.

Remark 3.21 Generalized inverses of a differential-algebraic operator associ-
ated with strangeness-free DAEs are already constructed in [46, 68] by strongly
exploiting the special reduced form (cf. Example 3.3). Theorems 3.2 and 3.12,
in particular condition (40), apply to the class of strangeness-free DAEs. In
essence, regardless several inconsistencies in [46], the corresponding generalized
inverses T − reproduce those in [46] as special cases. The DAE[

1 0 0
0 0 0

]
x′(t) +

[
1− t

2
t
2 1

−1 1 0

]
x(t) = q(t),

which serves as test example for numerical experiments in [68], fulfills all con-
ditions of Theorem 3.2, with W1 = 0.
Section 3 provides generalized inverses for a larger class of DAEs than that
of strangeness-free ones. In contrast to [46], it is not required to preliminary
perform a reduction procedure via a derivative array system. Note that this ap-
proach requires higher derivatives. Example 3.3 demonstrates that the pseudoso-
lution obtained that way does not necessarily coincide with the pseudosolution
in our context.
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Remark 3.22 The structural condition (77) has been introduced in [29]. Non-
linear DAEs in standard form (74) who satisfy this condition are associated with
operator equations in Banach spaces already e.g. in [52, 53]. There, solvability
results for regular index-1 DAEs are obtained via the classical abstract implicit
function theorem, and numerical methods for IVPs and BVPs are treated as
discretizations of operator equations. It is shown how to accomplish well-posed
problems by appropriately choosing initial and boundary conditions. It is fur-
ther pointed out, that, in natural settings as described in Subsections 3.2 and
3.4, DAEs with higher index yield necessarily operators with nonclosed images,
and hence essentially ill-posed problems.

Remark 3.23 Relying on the structural condition (77) for the nonlinear DAE
(74), well-posed BVPs in regular index-1 DAEs are established and treated by
Newton-Kantorovich iterations in natural Banach spaces e.g. in [54, 63], see
also Section 4.

4 Regular differential-algebraic operators in their
natural Banach spaces

4.1 Notations and basic assumptions

In this chapter we treat nonlinear DAEs as operator equations for Fréchet dif-
ferentiable operators. Motivated by the expressions obtained for the closures of
the unbounded operators in Theorem 3.1 and by the arguments in Subsection
3.4 we immediately turn to DAEs with properly stated leading terms. More
precisely. we investigate the nonlinear DAE

f((Dx)′(t), x(t), t) = 0, (88)

who exhibits the involved derivative by means of an extra matrix valued func-
tion D.
The function f : Rn ×Df ×If −→ Rm, Df ×If ⊆ Rm ×R open, is continuous
and has continuous partial derivatives fy and fx with respect to the first two
variables y ∈ Rn, x ∈ Df . The partial Jacobian fy(y, x, t) is everywhere sin-
gular. The matrix function D : If → L(Rm,Rn) is continuously differentiable
and D(t) has constant rank r on the given interval If . Let the transversality

condition

ker fy(y, x, t)⊕ imD(t) = Rn, (y, x, t) ∈ Rn ×Df × If , (89)

be valid and ker fy be a C1-subspace. We say that the DAE (88) has a properly
stated leading term, also a properly involved derivative.

Let I ⊆ If be a compact interval, I =: [ta, te], and DF ⊆ Df be open. We
associate with the DAE (88) the nonlinear operator

F : domF ⊆ C1
D(I,Rm)→ C(I,Rm),

domF : = {x ∈ C1
D(I,Rm) : x(t) ∈ DF for all t ∈ I},

(Fx)(t) : = f((Dx)′(t), x(t), t), t ∈ I, x ∈ domF. (90)
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Since D is continuously differentiable, the inclusions

C∞(I,Rm) ⊆ Cν(I,Rm) ⊆ C1
D(I,Rm) (91)

are valid for all ν ∈ N . Endowed with the norm

‖x‖C1D := ‖x‖∞ + ‖(Dx)′‖∞ , x ∈ C1
D(I,Rm), (92)

the function space C1
D(I,Rm) is a Banach space (see Lemma 6.9) and the DAE

(88) is represented as the operator equation

Fx = 0. (93)

The operator F is said to be a differential-algebraic operator. The operator equa-
tion (93) reflects the classical view on a DAE: the solutions belong to C1

D(I,Rm)
and satisfy the DAE pointwise for all t ∈ I. The arguments in Subsection 2.3
enable us to speak of the natural Banach space setting.

For given x∗ ∈ domF we denote

A∗(t) : = fy((Dx∗)
′(t), x∗(t), t),

B∗(t) : = fx((Dx∗)
′(t), x∗(t), t), t ∈ I.

The directional derivative

F ′(x∗)x := lim
τ→0

1

τ
(F (x∗ + τx)− F (x∗)) = A∗(Dx)′ +B∗x

is well defined for each arbitrary x∗ ∈ domF and x ∈ C1
D(I,Rm) . The resulting

map
F ′(x∗) : C1

D(I,Rm)→ C(I,Rm) (94)

is linear and bounded. Moreover, F ′(x∗) varies continuously with respect to x∗.
This means that the operator F is Fréchet differentiable and the map F ′(x∗)
defined by

F ′(x∗)x = A∗(Dx)′ +B∗x, x ∈ C1
D(I,Rm),

is the Fréchet derivative of F at x∗. The linear operator equation

F ′(x∗)x = q

stands now for the linearization of the original DAE at x∗, that is, for the linear
DAE

A∗(Dx)′ +B∗x = q. (95)

We complete the DAE (88) by the boundary condition

b(x(ta), x(te)) = 0. (96)

The continuously differentiable function b : Rm × Rm → Rm−l will be specified
later. Often we apply the particular case of an initial condition

Cx(ta) = 0, (97)
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by letting b(x, x̄) := Cx. The composed operator

F : domF ⊆ C1
D(I,Rm)→ C(I,Rm)× Rm−l,

Fx : = (Fx, b(x(ta), x(te))), x ∈ domF, (98)

is Fréchet differentiable since F is so. The equation Fx = 0 represents the
BVP (88), (96), whereas the equation Fx = (q, d) is the operator form of the
perturbed BVP

f((D(t)x(t))′, x(t), t) = q(t), t ∈ I, b(x(ta), x(te)) = d. (99)

4.2 Regular linear differential-algebraic operators

First we study the linear bounded operator T ∈ L(C1
D(I,Rm), C(I,Rm)) given

by
Tx := A(Dx)′ +Bx, x ∈ C1

D(I,Rm), (100)

with coefficients

A ∈ C(I,L(Rn,Rm)), D ∈ C1(I,L(Rm,Rn)), B ∈ C(I,L(Rm,Rm)),

in some detail. Let kerA and imD be C1-subspaces and let the transversality
condition

kerA(t)⊕ imD(t) = Rn, t ∈ I, (101)

be satisfied. Denote by R(t) the projector matrix onto imD(t) along kerA(t),
t ∈ I. The resulting function R is continuously differentiable.
Let Q0, P0 ∈ C(I,L(Rm)) be projector-valued functions such that imQ0(t) =
kerD(t) for t ∈ I, and P0 = I−Q0

1. Moreover, denote byD− ∈ C(I,L(Rn,Rm))
the pointwise generalized inverse of D which is uniquely determined by

DD−D = D, D−DD− = D−, DD− = R, D−D = P0.

Definition 4.1 For given coefficients A,D and B, and any level κ ∈ N, the
sequence G0, . . . , Gκ is said to be an admissible matrix function sequence, if it
is built pointwise for all t ∈ I by the rule:
set G0 := AD, B0 := B, N0 := kerG0,
and for i ≥ 1:

Gi := Gi−1 +Bi−1Qi−1, (102)

Ni := kerGi,
_
Ni := (N0 + · · ·+Ni−1) ∩Ni,

find a complement Xi such that N0 + · · ·+Ni−1 =
_
Ni ⊕Xi,

choose a projector Qi such that imQi = Ni and Xi ⊆ kerQi,

set Pi := I −Qi, Πi := Πi−1Pi,

Bi := Bi−1Pi−1 −GiD−(DΠiD
−)′DΠi−1, (103)

and, if additionally,

(a) the matrix function Gi has constant rank ri, i = 0, . . . , κ,

1In contrast to Section 3, here we do not fix these projectors to be orthogonal.
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(b) the intersection
_
Ni has constant dimension ui := dim

_
Ni,

(c) the product function Πi is continuous and DΠiD
− is continuously differen-

tiable, i = 0, . . . , κ.

The projector functions Q0, . . . , Qκ associated with an admissible matrix func-
tion sequence are said to be admissible themselves.
An admissible matrix function sequence G0, . . ., Gκ is said to be regular admis-
sible, if

_
Ni = {0} for all i = 1, . . . , κ.

Then, also the projector functions Q0, . . . , Qκ are called regular admissible.
The numbers r0 = rankG0, . . . , rκ = rankGκ and u1, . . . , uκ are named
characteristic values of the DAE on G.

We refer to [50] for many useful properties of the admissible matrix function
sequences. By construction, it holds that

r0 ≤ r1 ≤ . . . ≤ rκ.

Now we are prepared to generalize the traditional notion of regular differential-
algebraic operators given in Subsection 2.1 for time-invariant coefficients ac-
cordingly.

Definition 4.2 The differential-algebraic operator (100) is said to be

(1) regular with tractability index 0, if r0 = m.

(2) regular with tractability index µ, if there is an admissible matrix function
sequence such that

r0 ≤ r1 ≤ . . . ≤ rµ−1 < rµ = m. (104)

(3) regular, if it is regular with any index.

The numbers (104) and µ are said to be the characteristic values and the tractabil-
ity index of the regular differential-algebraic operator T .

In case of a constant coefficients A,D,B, the matrix function sequence sim-
plifies to a sequence of matrices. In particular, the second term in the definition
of Bi disappears. It is aging ([30]) that the pair {AD,B} of m × m matri-
ces AD,B is regular with Kronecker index µ (cf. Subsection 2.1) exactly if an
admissible sequence of matrices starting with G0 = AD, B0 := B yields

r0 ≤ · · · ≤ rµ−1 < rµ = m. (105)

Thereby, neither the factorization nor the special choice of admissible projectors
do matter. The characteristic values describe the structure of the Weierstraß-
Kronecker form (9): we have l =

∑µ−1
j=0 (m − rj) and the nilpotent part N

contains altogether s = m − r0 Jordan blocks, among them ri − ri−1 Jordan
blocks of order i, i = 1, . . . , µ.

Also in the general regular time-varying case, the ingredients of an admis-
sible matrix function sequence allow a decoupling which is quite similar to the
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Weierstraß-Kronecker form (e.g.[50, Section 2.4], also Appendix 6.3). Thereby,
the matrix function

K := (I −Πµ−1)G−1
µ Bµ−1Πµ−1 +

µ−1∑
l=1

(I −Πl−1)(Pl −Ql)(DΠlD
−)′DΠµ−1,

plays its role. The decoupling of the two basic parts yielding the inherent
explicit ODE and the differentiation problems is complete as in the Weierstraß-
Kronecker form, exactly if K vanishes identically. Supposed the original data
A,D,B show some additional smoothness, the admissible projector functions
can be chosen in such a way that K disappears (e.g.[50, Section 2.4]). In this
case, we speak of completely decoupling projector functions Q0, . . . , Qµ−1.

Definition 4.3 The differential-algebraic operator (100) is said to be fine, if it
is regular and the coefficients A,D,B are as smooth as required for the existence
of completely decoupling projectors Q0, . . . , Qµ−1.

Example 4.4 (Continuation 4 of Example 2.5) The following matrix se-
quence is admissible for the pair {E,F} = {AD,B} from Example 2.5 which is
regular with index 4:

G0 =


1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

 , Q0 =


0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , B0 =


−α −1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 ,

G1 =


1 −1 0 0 0
0 1 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

 , Q1 =


0 0 −1 0 0
0 0 −1 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

 , Π0Q1 =


0 0 −1 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

 ,

G2 =


1 −1 α 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 0 1
0 0 0 0 0

 , Q2 =


0 0 0 1 + α 0
0 0 0 1 0
0 0 0 −1 0
0 0 0 1 0
0 0 0 0 0

 , Π1Q2 =


0 0 0 α 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0

 ,

G3 =


1 −1 α −α2 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
0 0 0 0 0

 , Q3 =


0 0 0 0 −1− α− α2

0 0 0 0 −1
0 0 0 0 1
0 0 0 0 −1
0 0 0 0 1

 , Π2Q3 =


0 0 0 0 −α2

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

 ,

G4 =


1 −1 α −α2 α3

0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
0 0 0 0 1

 , Π3 =


1 0 1 −α α2

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ,

47



and the characteristic values are r0 = r1 = r2 = r3 = 4, r4 = 5 and µ = 4.
Additionally, it follows that

Q3G
−1
4 B0Π3 = 0, Q2P3G

−1
4 B0Π3 = 0,

Q1P2P3G
−1
4 B0Π3 = 0, Q0P1P2P3G

−1
4 B0Π3 = 0,

and
Π3G

−1
4 B0Π3 = −αΠ3. (106)

The projectors Q0, Q1, Q2, Q3 provide a complete decoupling of the given DAE
A(Dx)′(t)+Bx(t) = q(t). The projectors Q0, Π0Q1, Π1Q2 and Π2Q3 represent
the variables x2, x3, x4 and x5, respectively. The projector Π3 and the coefficient
(106) determine the inherent regular ODE, namely (the zero rows are dropped)

(x1 + x3 − αx4 + α2x5)′ − α(x1 + x3 − αx4 + α2x5)

= q1 + q2 − αq3 + α2q4 − α3q5. (107)

It is noteworthy that no derivatives of the excitation q encroach in this part.
Here Π3 is the spectral projector of the pair {E,F}. The decoupling projector
of the basic parts is

G4Π3G
−1
4 =


1 1 −α α2 −α3

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


and the equation G4Π3G

−1
4 Tx = G4Π3G

−1
4 q results in the ODE (107). �

Parts of the following theorem can be seen as counterparts and generalizations
of Proposition 2.6.

Theorem 4.5 Let the linear differential-algebraic operator (100) be fine with
tractability index µ ≥ 1 and characteristic values r0 ≤ · · · ≤ rµ−1 < rµ = m.
Let the projector valued function Q0, . . . , Qµ−1 ∈ C(I,L(Rm)) be associated with
a complete decoupling. Then the following statements are true:

(1) The topological direct sum decomposition

C1
D(I,Rm)

= {x ∈ C1
D(I,Rm) : Πµ−1x = 0} ⊕ {x ∈ C1

D(I,Rm) : (I −Πµ−1)x = 0}
=: kerΠµ−1 ⊕ imΠµ−1

is valid.2

(2) The operator splits into the sum of two bounded operators

T = GµΠµ−1G
−1
µ T︸ ︷︷ ︸

Tdyn

+ (I −GµΠµ−1G
−1
µ )T︸ ︷︷ ︸

Talg

=: Tdyn + Talg,

in which the operator Tdyn is normally solvable, and

imTdyn = imGµΠµ−1G
−1
µ , kerTalg = imΠµ−1.

2kerΠµ−1 and imΠµ−1 are used twofold: in Rm and in C1
D, but no confusion should arise.
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(3) kerT = kerTdyn ∩ kerTalg = kerTdyn ∩ imΠµ−1 has the finite dimension

δ := rankΠµ−1 = m−
∑µ−1
i=0 (m− ri) = m− l.

(4) T is normally solvable exactly if Talg is so;

imT = imTdyn+̇ imTalg = imGµΠµ−1G
−1
µ +̇ imTalg. (108)

(5) If µ = 1, then Talg is normally solvable and T is surjective, thus fredholm.

(6) If µ > 1, then imTalg and imT are nonclosed proper subsets of C(I.Rm)),
and the equation Tx = q is essentially ill-posed.

Proof: (1) Since DΠµ−1(I −D+D) = 0 and DΠµ−1D
+ = DΠµ−1D

−DD+ is
continuously differentiable, this statement is a consequence of Lemma 6.10.
(2) The boundedness of both operators Tdyn and Talg is evident. Rearranging
several terms as described in [50, p.93-96] we express

Tdynx = GµΠµ−1G
−1
µ (A(Dx)′ +Bx)

= Gµ{D−DΠµ−1D
−(DΠµ−1x)′ +Πµ−1G

−1
µ BµD

−DΠµ−1x}, (109)

for x ∈ C1
D(I,Rm), and

Talgx = (I −GµΠµ−1G
−1
µ )(A(Dx)′ +Bx)

= Gµ{
µ−1∑
l=0

Qlx−
µ−2∑
l=0

(I −Πl)Ql+1D
−(DΠlQl+1x)′ +

µ−2∑
l=0

Ml+1DΠlQl+1x},

(110)

with coefficients, see [50, p.95], also Appendix 6.3.2,

Mj :=

j−1∑
k=0

(I −Πk){PkD−(DΠkD
−)′ −Qk+1D

−(DΠk+1D
−)′}DΠj−1QlD

−,

for l = 1, . . . , µ − 1. The additional coefficient K arising in [50, p.95] here
disappears owing to the complete decoupling, cf. Appendix 6.3.2.
Expression (110) shows that Talgx = 0 if x = Πµ−1x. Conversely, if x satisfies
the equation Talgx = 0, then

µ−1∑
l=0

Qlx−
µ−2∑
l=0

(I −Πl)Ql+1D
−(DΠlQl+1x)′ +

µ−2∑
l=0

Ml+1DΠlQl+1x = 0

follows. Multiplying by Πµ−2Qµ−1 yields Πµ−2Qµ−1x = 0, Qµ−1x = 0, and

µ−2∑
l=0

Qlx−
µ−3∑
l=0

(I −Πl)Ql+1D
−(DΠlQl+1x)′ +

µ−3∑
l=0

Ml+1DΠlQl+1x = 0.

Multiplying successively by Πµ−3Qµ−2,...Π0Q1, we obtain Qµ−2x = 0,...,Q1x =
0, respectively, and finally Q0x = 0. Therefore, each element x of the nullspace
of Talg has the form x = Πµ−1x, such that actually kerTalg = imΠµ−1.
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Next we turn to the operator Tdyn. For each arbitrary q ∈ imGµΠµ−1G
−1
µ , the

equation Tdynx = q = GµΠµ−1G
−1
µ q is equivalent with

D−DΠµ−1D
−(DΠµ−1x)′ +Πµ−1G

−1
µ BµD

−DΠµ−1x = Πµ−1G
−1
µ q,

and further with

DΠµ−1D
−(DΠµ−1x)′ +DΠµ−1G

−1
µ BµD

−DΠµ−1x = DΠµ−1G
−1
µ q,

The standard IVP

u′ − (DΠµ−1D
−)′u+DΠµ−1G

−1
µ BµD

−u = DΠµ−1G
−1
µ q, u(ta) = 0, (111)

possesses the unique solution u∗ ∈ C1(I,Rn), and the relation u∗ = DΠµ−1D
−u∗

is given. The function x∗ := D−u∗ = Πµ−1D
−u∗ belongs to C1

D(I,Rm) and
satisfies Tdynx∗ = GµΠµ−1G

−1
µ q = q. This verifies the property imTdyn =

imGµΠµ−1G
−1
µ . This subspace is closed in C(I,Rm) and Tdyn is normally solv-

able.
(3) By construction, Tx = 0 means Tdynx = 0 and Talgx = 0, and equivalently,

DΠµ−1D
−(DΠµ−1x)′ +DΠµ−1G

−1
µ BµD

−DΠµ−1x = 0, x = Πµ−1x.

Therefore, if x∗ ∈ kerT , then Dx∗ = DΠµ−1x∗ is a solution of the ODE from
(111) with q = 0.
Denote by U ∈ C1(I,L(Rδ)) the fundamental solution matrix normalized at ta
of the ODE from (111). We have then

(I −DΠµ−1D
−)UD(ta)Πµ−1(ta) = 0.

Each function x∗ := D−UD(ta)Πµ−1(ta)c, c ∈ Rm belongs to C1
D(I,Rm),

since Dx∗ = DD−UD(ta)Πµ−1(ta)c = DD−DΠµ−1D
−UD(ta)Πµ−1(ta)c =

UD(ta)Πµ−1(ta)c is continuously differentiable. Moreover, Dx∗ satisfies the
homogeneous ODE from (111), with q = 0, and it holds that x∗ = Πµ−1x∗, and
hence x∗ ∈ kerT . It follows that

kerT = {x = D−Uη : η ∈ imD(ta)Πµ−1(ta)},

and dim kerT = rankD(ta)Πµ−1(ta) = Πµ−1(ta) = δ.
(4) is a direct consequence of (2).
(5) If µ = 1 then (110) simplifies to

Talgx = G1{Q0x}.

For each q = (I − G1Π0G
−1
1 )q = G1Q0G

−1
1 q, the equation Talgx = q has the

solutions x = Q0G
−1
1 q + h, with a free component h = P0h. This proves that

imTalg = kerG1Π0G
−1
1 is closed and Talg is normally solvable. Moreover, T is

surjective, thus fredholm.
(6) Suppose µ ≥ 2. Applying once more the representation (110) we find for
given x ∈ C1

D(I,Rm) and q := Talgx the relation

q = Gµ{
µ−1∑
l=0

Qlx−
µ−2∑
l=0

(I −Πl)Ql+1D
−(DΠlQl+1x)′ +

µ−2∑
l=0

Ml+1DΠlQl+1x},
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which implies

DΠµ−2Qµ−1q = DΠµ−2Qµ−1Talgx = DΠµ−2Qµ−1x.

The component DΠµ−2Qµ−1x = DΠµ−2Qµ−1D
−Dx is continuously differen-

tiable, henceDΠµ−2Qµ−1q is also necessarily continuously differentiable. There-
fore, imTalg contains continuous functions having certain smoother components,
which means that imTalg is a nonclosed subset within the continuous function
space. �

Ill-posed problems are known to need so-called regularizations. Therefore,
also regular higher-index DAEs need those regularizations, which sounds in a
way confusing. Note once more that regularity in the traditional DAE theory
is tied to regular matrix pairs and their generalizations.

Corollary 4.6 Under the assumptions of Theorem 4.5, the solutions of the
equation

Tdynx = GµΠµ−1G
−1
µ q (112)

have the form x = v +D−u, whereby v is an arbitrary function from kerΠµ−1

and u is a solution of the ODE

u′ − (DΠµ−1D
−)′u+DΠµ−1G

−1
µ BµD

−u = DΠµ−1G
−1
µ q, (113)

with u(ta) = D(ta)Πµ−1(ta)c, c ∈ Rm.

In the DAE analysis, the ODE (113) plays a central role, it is said to be the
inherent explicit regular ODE (IERODE) of the DAE. The operator Tdyn rep-
resents the dynamical part of the DAE, which motivates the subscript dyn.
It may happen that the projector function Πµ−1 vanishes identically. Then Tdyn
is the zero operator and T = Talg is injective.

Example 4.7 (Tdyn=0) The operator

Tx =

[
1
0

]
(
[
1 0

]
x)′ +

[
0 1
1 0

]
x (114)

is fine with tractability index 2. It leads to Π1 = 0, thus T = Talg. We observe
that imTalg = {q ∈ C(I,R2) : q2 ∈ C1(I,R)} is a proper subset in C(I,R2).
Moreover, the inverse

T−1
algq =

[
q2

q1 − q′2

]
, q ∈ imT, (115)

is again a differential-algebraic operator. �

Theorem 4.5 is meaningful also for the composed operator

T ∈ L(C1
D(I,Rm), C(I,Rm)× Rδ),

T x = (Tx,Cx(ta)), x ∈ C1
D(I,Rm).

The operator equation T x = (q, d) reflects the IVP

A(Dx)′ +BX = q, Cx(ta) = d. (116)
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The composed operator T is bounded together with T . T is injective, supposed
T is regular and the matrix C ∈ L(Rm,Rδ) is such that

kerC = kerΠµ−1, δ = rankΠµ−1. (117)

If µ = 1, then T is even surjective. Then, as a bijective bounded operator
acting in Banach spaces, it has a bounded inverse, and hence the IVP (116) is
well-posed. In contrast, if µ ≥ 2, then the surjectivity gets lost and im T is a
nonclosed subset in C(I,Rm)×Rδ. Then the IVP (116) is no longer well-posed,
but essentially ill-posed.

Owing to Theorem 4.5, in all higher index cases, the composed operator T is
bounded and injective, but the inverse T −1 is unbounded. Nevertheless, there
are nontrivial bounded linear outer inverses as the next theorem states.

Theorem 4.8 Let the linear differential-algebraic operator T be fine with tractabil-
ity index µ ≥ 2. Let the projector valued functions Q0 · · ·Qµ−1 ∈ C(I,L(Rm))
be associated with a complete decoupling. Let the matrix C ∈ L(Rm,Rδ) satisfy
condition (117). Then the following statements are valid:

(1) For each y ∈ C(I,Rm) and d ∈ Rδ, the initial value problem

Tx = GµP1 · · ·Pµ−1G
−1
µ y, Cx(ta) = d, (118)

is uniquely solvable in C1
D(I,Rm) and the solution satisfies the inequality

‖x‖C1D ≤ c (|d|+ ‖GµP1 · · ·Pµ−1G
−1
µ y‖∞) ≤ c̃ (|d|+ ‖y‖∞). (119)

(2) The operator T − ∈ L(C(I,Rm)× Rδ, C1
D(I,Rm)) defined by

T −(y, z) := solution of (118) for (y, z) ∈ dom T − = C(I,Rm)× Rδ,
(120)

is a bounded outer inverse of the composed operator T . The topological
direct sum decomposition ker T −⊕ im T T − = C(I,Rm)×Rδ is valid with

ker T − = {(y, z) ∈ C(I,Rm)× Rδ : GµP1 · · ·Pµ−1G
−1
µ y = 0, z = 0},

im T T − = {(y, z) ∈ C(I,Rm)× Rδ : (I −GµP1 · · ·Pµ−1G
−1
µ )y = 0}.

Proof: (1) Because of Πµ−1P1 · · ·Pµ−1 = Πµ−1 and P1 · · ·Pµ−1 − Πµ−1 =
Q0P1 · · ·Pµ−1, the equation Tx = GµP1 · · ·Pµ−1G

−1
µ y decomposes into the sys-

tem
Tdynx = GµΠµ−1G

−1
µ y, Talgx = GµQ0P1 · · ·Pµ−1G

−1
µ y.

Equation Talgx = GµQ0P1 · · ·Pµ−1G
−1
µ y means in detail, see (110),

Gµ{
µ−1∑
l=0

Qlx−
µ−2∑
l=0

(I −Πl)Ql+1D
−(DΠlQl+1x)′ +

µ−2∑
l=0

Ml+1DΠlQl+1x}

= GµQ0P1 · · ·Pµ−1G
−1
µ y.

Multiplying successively by Πµ−2Qµ−1G
−1
µ , . . . ,Π0Q1G

−1
µ , we obtain the rela-

tions Πµ−2Qµ−1x = 0, . . . ,Π0Q1x = 0. It results that (I − Πµ−1)x = Q0x =
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Q0P1 · · ·Pµ−1G
−1
µ y.

Regarding condition (117) we obtain

D(ta)Πµ−1(ta) = D(ta)C+CΠµ−1(ta) = D(ta)C+C.

The IVP Tdynx = GµΠµ−1G
−1
µ y, D(ta)Πµ−1x(ta) = D(ta)C+z has the so-

lutions x = D−u + v, where v ∈ kerΠµ−1 is arbitrary, and u is the unique
solution of the ODE (113) (with y replacing q) satisfying the initial condition
u(ta) = D(ta)C+z, see Corollary 4.6.
Summarizing we know that v = Q0P1 · · ·Pµ−1G

−1
µ y and

Cx(ta) = CD(ta)−u(ta) = CD(ta)−D(ta)C+z = CC+z = z,

and hence,
x = D−u+Q0P1 · · ·Pµ−1G

−1
µ y ∈ C1

D(I,Rm)

is the unique solution of the IVP (118). Because of Dx = u, the inequality (119)
is evident.
(2) The inequality (119) actually means that T − is bounded. The relations
T T −(y, z) = (GµP1 · · ·Pµ−1G

−1
µ y, z) and T −T T − = T − follow immediately,

and hence T − is an outer inverse. Furthermore, GµP1 · · ·Pµ−1G
−1
µ y = 0, z = 0

yield T −(y, z) = 0, and vice versa. �

4.3 Regular nonlinear differential-algebraic operators

As we have seen in Subsection 4.1, the nonlinear differential-algebraic operator
(90) is Fréchet differentiable under natural assumptions.

Definition 4.9 The nonlinear differential-algebraic operator F defined by (90)
is said to be regular, if the derivative F ′(x∗) ∈ L(C1

D(I,Rm), C(I,Rm)) is a
fine regular differential-algebraic operator at least for each arbitrary reference
function x∗ ∈ domF ∩ Cm(I,Rm).

Owing to Corollary 6.16 the derivative F ′(x∗) of a regular operator must have
characteristics r0, . . . , rµ and tractability index µ being uniform for all reference
functions x∗. We assign these characteristic values and the tractability index
also to the nonlinear operator F .

Theorem 4.10 Let the nonlinear differential-algebraic operator F defined by
(90) be regular. Then F is fredholm, if and only if it has tractability index
µ ∈ {0, 1}. When indicated, the Fredholm index equals ind fred = rankD = r0.

Proof: If F is regular with index 0 and 1, the linearization F ′(x∗) is fine not
only for x∗ ∈ domF ∩ Cm(I,Rm) but for all x∗ ∈ domF . Then the statement
concerning µ = 1 follows from Theorem 4.5. In the less interesting case µ = 0
the matrix function D remains nonsingular, which makes the statement evident.
If F is regular with tractability index µ > 1, applying Theorem 4.5 once again,
we know that F fails to be fredholm. �

In higher-index cases, the linearization F ′(x∗) has a nonclosed image imF ′(x∗)
in C(I,Rm) and, what makes matters worse, the nonclosed proper subset imF ′(x∗)
may actually depend on the reference function x∗. We demonstrate this fact by
the next example.
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Example 4.11 (Image depends on the reference function) The operator
F defined by m = 4, n = 1,

f(y, x, t) =


1
0
0
0

 y +


x4 − γ(t)
x1 + x2x3

x2

x3

 , y ∈ R, x ∈ R4, t ∈ I, D =
[
1 0 0 0

]
,

with γ ∈ C(I,R), domF = C1
D(I,R4) = {x ∈ C(I,R4) : x1 ∈ C1(I,R)}, is

associated with the simple DAE taken from [67, p. 41]

x′1(t) + x4(t)− γ(t) = 0,

x1(t) + x2(t)x3(t) = 0.

x2(t) = 0,

x3(t) = 0.

For any reference function x∗ ∈ domF the linearization reads

F ′(x∗)x =


1
0
0
0

 (
[
1 0 0 0

]
x)′ +


0 0 0 1
1 x∗ 3 x∗ 2 0
0 1 0 0
0 0 1 0

x, x ∈ C1
D(I,R4),

the linear operator F ′(x∗) is regular with tractability index 2, and its image is

imF ′(x∗) = {q ∈ C(I,R4) : q2 − x∗ 3q3 − x∗ 2q4 ∈ C1(I,R)}.

For instance, if we choose the reference functions

x∗ =


0
0
0
γ

 and x∗∗ =


0
0
ε
γ

 ,
then we are confronted with the different sets

imF ′(x∗) = {q ∈ C(I,R4) : q2 ∈ C1(I,R)},
imF ′(x∗∗) = {q ∈ C(I,R4) : q2 − εq3 ∈ C1(I,R)}.

�

4.3.1 Local solvability by outer inverses

We apply a generalized implicit function theorem from [16] which does not base
upon a bounded inverse of the derivative. Instead, a suitably chosen approximate
outer inverse is used (see Appendix 6.1.2, Theorem 6.8).

If F is regular with tractability index µ ∈ {0, 1}, then the linear IVP

F ′(x∗)x = y, Cx(ta) = 0, (121)

with C ∈ L(Rm,Rm−l), l = m− r0, and kerC = kerD(ta), is uniquely solvable
for each arbitrary y ∈ C(I,Rm). The operator

T−∗ ∈ L(C(I,Rm), C1
D(I,Rm)),

T−∗ y := solution of the IVP (121), y ∈ C(I,Rm),
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is actually an injective bounded outer inverse of F ′(x∗). Namely, it holds that
kerT−∗ = {0} and

F ′(x∗)T
−
∗ y = y, T−∗ F

′(x∗)T
−
∗ y = T−∗ y, y ∈ C(I,Rm).

Theorem 4.12 let F be the differential-algebraic operator described in Subsec-
tion 4.1, x∗ ∈ domF , and F (x∗) = 0. Let F be regular with tractability index
µ ∈ {0, 1}.
Then, whenever z∗ ∈ C1

D(I,Rm) satisfies ‖z∗‖C1D = 1 and F (x∗)z∗ = 0, there

exists a solution x(s) = x∗+ sz∗+ o(s) to Fx = 0, with s > 0 sufficiently small.

Proof: Since the outer inverse T−∗ is injective, the equation Fx = 0 is equivalent
with T−∗ Fx = 0; and hence the statement follows from [16, Theorem 3]. �

Regarding that here kerF ′(x∗) has dimension m−l = r0 we obtain to Fx = 0
a local solution set of dimension r0.

The situation in higher-index cases is more involved. If F is regular with
tractability index µ ≥ 2 and x∗ ∈ domF is sufficiently smooth, then there are
completely decoupling projector functions Q∗ 0, . . . Q∗µ−1 associated with the
linearization F ′(x∗). The linear IVPs

F ′(x∗)x = G∗µP∗ 1 · · ·P∗µ−1G
−1
∗µ︸ ︷︷ ︸

=:P∗

y, C∗x(ta) = 0, (122)

with C∗ ∈ L(Rm,Rm−l), kerC∗ = kerΠ∗µ−1(ta), l =
∑µ−1
j=0 (m − rj), are

uniquely solvable for each arbitrary y ∈ C(I,Rm). The operator

T−∗ ∈ L(C(I,Rm), C1
D(I,Rm)),

T−∗ y := solution of the IVP (122), y ∈ C(I,Rm),

is actually a bounded outer inverse of F ′(x∗). It holds that

F ′(x∗)T
−
∗ y = y, T−∗ F

′(x∗)T
−
∗ y = T−∗ y, y ∈ C(I,Rm).

Now, in the higher-index case, T−∗ is no longer injective, but

kerT−∗ = {y ∈ C(I,Rm) : P∗ y = 0}.

If x∗ ∈ domF lacks in smoothness, x∗ /∈ Cm(I,Rm), then F ′(x∗) is at least ap-
proximately outer invertible (cf.Appendix6.1.2) as the following lemma. shows.

Lemma 4.13 Let F be the differential-algebraic operator described in Subsec-
tion 4.1, Let F be regular with tractability index µ ≥ 2, x∗ ∈ domF . Then
the derivative F ′(x∗) is approximately outer invertible with a constant bound
function Γ (ρ) = M and approximate outer inverses T'ρ such that (cf.(123))

kerT'ρ = kerPρ.

Proof: Because of the continuity of F ′(·), to ε > 0 there exists a δ(ε) > 0 such
that

‖x− x∗‖C1D ≤ δ(ε) ⇒ ‖F ′(x)− F ′(x∗)‖ ≤ ε.
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Let δ0 > 0 be sufficiently small. We consider an arbitrary element xρ ∈
B(x∗, δ0) ∩ Cm(I,Rm) and turn to the linearization F ′(xρ) who is fine. There
are completely decoupling projector functions Qρ 0, . . . Qρ µ−1 associated with
the linearization F ′(xρ). The linear IVPs

F ′(xρ)x = Gρ µPρ 1 · · ·Pρ µ−1G
−1
ρ µ︸ ︷︷ ︸

=:Pρ

y, Cρx(ta) = 0, (123)

with Cρ ∈ L(Rm,Rm−l), kerCρ = kerΠρ µ−1(ta), l =
∑µ−1
j=0 (m − rj), are

uniquely solvable for each arbitrary y ∈ C(I,Rm). The operator

T−ρ ∈ L(C(I,Rm), C1
D(I,Rm)),

T−ρ y := solution of the IVP (123), y ∈ C(I,Rm),

is a bounded outer inverse of F ′(xρ). It holds that

F ′(xρ)T
−
ρ y = Pρy, T−ρ F

′(xρ)T
−
ρ y = T−ρ y, y ∈ C(I,Rm).

Owing to the construction of the matrix function sequences and the represen-
tation of the coefficients of the linearizations (cf.[50], also Appendix 6.1), there
is a uniform upper bound ‖T−ρ ‖ ≤M for all those reference functions xρ.
Next, for each ρ ∈ (0, 1) we ensure δ(ρ/M) ≤ δ0, and fix an element xρ ∈
B(x∗, δ(ρ/M)) ∩ Cm(I,Rm). We have then

‖(T−ρ F ′(x∗)T−ρ − T−ρ )y‖C1D = ‖(T−ρ (F ′(x∗)− F ′(xρ))T−ρ y‖C1D ≤ ρ‖T
−
ρ y‖.

This means that T'ρ := T−ρ represents the required approximate outer inverse
of F ′(x∗), with the bound function Γ(ρ) = M . �

Theorem 4.14 Let F be the differential-algebraic operator described in Sub-
section 4.1, Let F be regular with tractability index µ ≥ 2, x∗ ∈ domF , and
F (x∗) = 0.
Then, whenever z∗ ∈ C1

D(I,Rm)) satisfies ‖z∗‖C1D = 1 and F ′(x∗)z∗ = 0, there

exists a solution x(s) = x∗ + sz∗ + o(s) to the equation T−ρ Fx = 0, with s > 0
sufficiently small, with an appropriate choice of ρ = ρ(s) ↓ 0 as s ↓ 0, that
means

F (x(s)) ∈ kerPρ(s), s > 0 sufficiently small.

If, moreover, x∗ is sufficiently smooth so that the derivative F ′(x∗) is fine, then
x(s) solves the equation T−∗ Fx = 0. It holds that

F (x(s)) ∈ kerP∗, s > 0 sufficiently small.

Proof: The statement follows from [16, Theorem 3], cf. Theorem 6.8. �
Regarding that kerF ′(xρ) has dimension m − l one obtains a solution set of
dimension m− l to equation T−∗ Fx = 0.

4.3.2 Well-posed IVPs and BVPs with regular index-1 operators

Any regular differential-algebraic operator F with tractability index µ ∈ {0, 1} is
fredholm, its Fréchet derivative F ′(x) is surjective and kerF ′(x) has dimension
m − l = r0 = rankD, thus the Fredholm index is ind fred F

′(x) = r0. As
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indicated by the Fredholm index, aiming at a well-posed equation Fx = 0, one
has to complete the equation Fx = 0 by exactly r0 appropriate boundary and
initial conditions. If one adds more or less boundary conditions, the composed
equation fails to be well-posed.

We concentrate on the index-1 case. Index-0 operators can be treated anal-
ogously, however, then we have r0 = m, which makes this case less interesting
and close to the well-known ODE theory.

The operator equation (see 98)

Fx = (Fx, b(x(ta), x(te))) = (q, d) (124)

describes the BVP

f((Dx)′(t), x(t), t) = q(t), t ∈ I = [ta, te], b(x(ta), x(te)) = d. (125)

Let F be regular with tractability index 1, x∗ ∈ domF . Owing to Theorem 4.5
and Corollary 4.6, if ei ∈ Rm denotes the ith unit vector, there exists exactly
one ξi ∈ C1

D(I,Rm) such that

F ′(x∗)ξi = 0, D(ta)ξi(ta) = D(ta)ei, i = 1, . . . ,m.

Introduce the matrix-valued function

X∗ := [ξ1, . . . , ξm] (126)

such that
A∗(DX∗)

′ +B∗X∗ = 0, D(ta)(X∗(ta)− I) = 0.

This yields the representation

kerF ′(x∗) = {x = X∗c : c ∈ Rm}.

Notice that X∗ is the so-called maximal fundamental solution matrix normalized
at ta, e.g.,[50]. The matrix function X∗ has constant rank r0, and it holds that
kerX∗ = kerD.
The following theorem provides conditions for the map F to be a local diffeo-
morphism (cf.Theorem 6.7)

Theorem 4.15 Let F be the composed operator (98) described in Subsection
4.1, with differential-algebraic operator F being regular with tractability index
1. Suppose further x∗ ∈ domF , F(x∗) = 0, and let the matrix

S∗ := b′a(x∗(ta), x∗(te))X∗(ta) + b′e(x∗(ta), x∗(te))X∗(te) ∈ L(Rm,Rr0)

satisfy the conditions

imS∗ = Rr0 , kerS∗ = kerD(ta). (127)

Then, the equation Fx = 0 is well-posed around x∗; to each (q, d) ∈ C(I,Rm)×
Rr0 being sufficiently small, the perturbed equation Fx = (q, d) possesses exactly
one solution x(q, d) in the neighborhood of x∗, and the inequality

‖x(q, d)− x∗‖C1D ≤ κ(‖q‖∞ + |d|)

is valid with a constant κ.
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Proof: We introduce the differentiable map H(x, q, d) := Fx − (q, d),
H′x(x, q, d) = F ′(x), H(x∗, 0, 0) = 0. If F ′(x∗) is a bijection, then the state-
ment results from the standard implicit function theorem in Banach spaces. It
remains to show the injectivity and surjectivity of the linearization F ′(x∗).
If F ′(x∗)z = 0 then F ′(x∗)z = 0, thus z = X∗c, with a certain c ∈ Rm. On the
other hand, then we have b′a(x∗(ta), x∗(te))z(ta) + b′e(x∗(ta), x∗(te))z(te) = 0,
therefore S∗c = 0. Condition (127) implies c ∈ kerD(ta), and hence z = 0.
We already know that F is surjective. It remains to prove that the BVP

F ′(x∗)z = 0, b′a(x∗(ta), x∗(te))z(ta) + b′e(x∗(ta), x∗(te))z(te) = d,

is solvable for each arbitrary d ∈ Rr0 . The function zd := X∗S
+
∗ d satisfies the

the first equation and the boundary condition reads b′a(x∗(ta), x∗(te))zd(ta) +
b′e(x∗(ta), x∗(te))zd(te) = S∗S

+
∗ = d. �

Often one deals with the simpler IVPs.

Corollary 4.16 Let F be the composed operator (98) described in Subsection
4.1, with differential-algebraic operator F being regular with tractability index
1. Let the boundary condition simplify to the initial condition

b(x(ta), x(te)) := Cx(ta)− h = 0, (128)

whereby C ∈ L(Rm,Rr0), h ∈ Rr0 .
Let x∗ ∈ domF , F(x∗) = 0, and

kerC ∩ {w ∈ Rm : B∗(ta)w ∈ A∗(ta)} = {0}. (129)

Then the IVP Fx = 0 is well-posed around x∗.

Proof: Π∗ can(ta) ∈ L(Rm) represents the projector given by

imΠ∗ can(ta) = {w ∈ Rm : B∗(ta)w ∈ A∗(ta)},
kerΠ∗ can(ta) = kerD(ta).

Π∗ can(ta) has rank r0. Regarding that X∗(ta) = Π∗ can(ta) we arrive at S∗ =
CΠ∗ can(ta). It remains to check condition (127).
S∗z = 0 meansΠ∗ can(ta)z ∈ kerC. Because of (129) it follows thatΠ∗ can(ta)z =
0, thus D(ta)z = D(ta)Π∗ can(ta)z = 0. Conversely, z ∈ kerD(ta) implies
S∗z = CΠ∗ can(ta)z = CΠ∗ can(ta)D(ta)+D(ta)z = 0. This proves the relation
kerS∗ = kerD(ta). Finally, for reasons of dimensions, it holds that imS∗ = Rr0 .
�

The decomposition

{w ∈ Rm : B∗(ta)w ∈ A∗(ta)} ⊕ kerD(ta) = Rm, (130)

which is associated with the projector Π∗ can(ta), makes evident that, choosing
the matrix C so that

kerC = kerD(ta). (131)

condition (129) is always valid. Otherwise, additional structural restrictions are
required. The choice (131) is natural in the sense that it directly applies to the
inherent dynamical part. However, in practice, it can be required to fix other
components for different reasons.
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Example 4.17 (Additional structural restriction) The differential-algebraic
operator F associated with the semi-explicit system of m1 +m2 = m equations

x′1(t)− g1(x1(t), x2(t), t) = 0,

g2(x1(t), x2(t), t) = 0,

is regular with tractability index 1, if the partial Jacobian g2,x2
is everywhere

nonsingular. Then r0 = m1 results. Assume, for simplicity, m1 = m2 and set

C =
[
0 I

]
.

Condition (129) means now that

kerC ∩ {z ∈ Rm :g∗ 2,x1
(ta)z1 + g∗ 2,xi(ta)z2 = 0}

= {z ∈ Rm : z2 = 0, g∗ 2,x1
(ta)z1 = 0} = {0}

is valid, with g∗ 2,xi(ta) := g2,xi(x∗ 1(ta), x∗ 2(ta), ta). Evidently, here condition
(129) requires that also the matrix g∗ 2,x1(ta) must be nonsingular. �

4.3.3 Regular index-2 operators and enhanced setting

Let the linear differential-algebraic operator T ∈ Lb(C1
D(I,Rm), C(I,Rm)),

Tx = A(Dx)′ +Bx, x ∈ C1
D(I,Rm), (132)

be regular with tractability index 2. Then, by Theorem 4.5, the image imT
is a nonclosed proper subset in C(I,Rm). We are interested in revealing the
detailled structur of this subset, and, eventually, in modifying the image space
to enforce surjectivity and the Fredholm property as in Subsection 2.4.1.
Choose Q0 = D+D, and let Q1 denote the projector function onto N1 = kerG1

along S1 = {z ∈ Rm : Bz ∈ imG1}. This provides a fine decoupling, and,
in particular, Q1 = Q1G

−1
2 BP0 (e.g.,[50, Subsection 2.4.3]). Compute for each

arbitrary x ∈ C1
D(I,Rm)

DΠ0Q1G
−1
2 Tx = DΠ0Q1G

−1
2 {G1(D−(Dx)′ +Q0x) +BP0x}

= DΠ0Q1G
−1
2 BP0x = DΠ0Q1x = DΠ0Q1D

−︸ ︷︷ ︸
∈C1

Dx ∈ C1(I,Rn),

such that imT ⊆ Cind 2(I,Rm),

Cind 2(I,Rm) := {q ∈ C(I,Rm) : DΠ0Q1G
−1
2 q ∈ C1(I,Rn)}. (133)

By applying the decoupling procedure to equation Tx = q one shows solvability
for each arbitrary q ∈ Cind 2(I,Rm), and hence

imT = Cind 2(I,Rm). (134)

We equip the linear space Cind 2(I,Rm) with the norm

‖q‖ind 2 := ‖q‖∞ + ‖(DΠ0Q1G
−1
2 q)′‖∞, x ∈ Cind 2(I,Rm), (135)

which yields a Banach space. We derive further that

‖Tx‖ind 2 = ‖Tx‖∞ + ‖(DΠ0Q1G
−1
2 Tx)′‖∞

≤ κ‖x‖C1D + ‖(DΠ0Q1D
−Dx)′‖∞ ≤ κnew‖x‖C1D
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for each arbitrary x ∈ C1
D(I,Rm). This means that our differential-algebraic

operator is bounded and surjective, thus normally solvable in the new setting
T ∈ L(C1

D(I,Rm), Cind 2(I,Rm)). By Theorem 4.5, kerT has dimension m− l =
r0 − (m − r1) such that T is a Fredholm operator in the adapted setting, and
ind fred(T ) = m− l.

The composed operator T ∈ L(C1
D(I,Rm), Cind 2(I,Rm)×Rm−l) associated

to a respective IVP,

T x = (Tx,Cx(ta)), x ∈ C1
D(I,Rm),

with C ∈ L(Rm,Rm−l), kerC = N0(ta) ⊕ N1(ta), acts bijectively in Banach
spaces. Therefore, the IVP T x = (q, d) is well-posed in the adapted setting. So
far so good.

We turn to the nonlinear differential-algebraic operator F and ask whether
we can modify Theorem 4.15 and Corollary 4.16 accordingly.

Suppose x∗ ∈ domF , Fx∗ = 0 and apply the matrix function sequence
and the associated projector functions to the linearization F (x∗). Below, the
subscript ∗ indicates the resulting dependence of x∗.
We modify first the matrix function X∗. Choose a matrix C∗ ∈ L(Rm,Rm−l),
l = m−r0 +m−r1, so that the condition kerC∗ = N0(ta)⊕N∗ 1(ta) is satisfied.
Then there exists exactly one ξi ∈ C1

D(I,Rm) such that

F ′(x∗)ξi = 0, C∗ξi(ta) = C∗ei, i = 1, . . . ,m.

The matrix-valued function

X∗ := [ξ1, . . . , ξm] (136)

satisfies the IVP

A∗(DX∗)
′ +B∗X∗ = 0, C∗(X∗(ta)− I) = 0,

and the representation

kerF ′(x∗) = {x = X∗c : c ∈ Rm}.

Proposition 4.18 Let F be the composed operator (98) described in Subsection
4.1, with differential-algebraic operator F being regular with tractability index
2, l = m− r0 +m− r1.
Let x∗ ∈ domF , F(x∗) = 0. Let there exist an open neighborhood Ux∗ of x∗
such that

Fx ∈ imF ′(x∗), x ∈ Ux∗ , (137)

and let the matrix

S∗ := b′a(x∗(ta), x∗(te))X∗(ta) + b′e(x∗(ta), x∗(te))X∗(te) ∈ L(Rm,Rm−l)

satisfy the conditions

imS∗ = Rm−l, kerS∗ = N0(ta)⊕N∗ 1(ta). (138)

Then, the equation Fx = 0 is well-posed around x∗ in the adapted setting; to
each (q, d) ∈ Cind 2

∗ (I,Rm)×Rm−l being sufficiently small, the perturbed equation
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Fx = (q, d) possesses exactly one solution x(q, d) in the neighborhood of x∗, and
the inequality

‖x(q, d)− x∗‖C1D ≤ κ(‖q‖∞ + ‖(DΠ0Q∗ 1G
−1
∗ 2q)

′‖∞ + |d|)

is valid with a constant κ.

Proof: Regarding the advanced setting the statement proves in the same way
as Theorem 4.15. �

Corollary 4.19 Let F be the composed operator (98) described in Proposition
4.18. Let the projector functions Q∗ 0, Q∗ 1 provide a complete decoupling of the
linearization F ′(x∗), Π∗ can := P∗ 0P∗ 1. Let the boundary condition simplify to
the initial condition

b(x(ta), x(te)) := Cx(ta)− h = 0, (139)

whereby C ∈ L(Rm,Rm−l), h ∈ Rm−l and

kerC ∩ imΠ∗ can(ta) = {0}. (140)

Then the IVP Fx = 0 is well-posed around x∗ in the adapted setting.

Proof: Π∗ can(ta) has rank m−l. Regarding that X∗(ta) = Π∗ can(ta) we arrive
at S∗ = CΠ∗ can(ta). It remains to check condition (138).
S∗z = 0 meansΠ∗ can(ta)z ∈ kerC. Because of (136) it follows thatΠ∗ can(ta)z =
0, thus z ∈ kerΠ∗ can(ta) = N0(ta) ⊕ N∗ 1(ta). Conversely, z ∈ (N0(ta) ⊕
N∗ 1(ta)) implies S∗z = CΠ∗ can(ta)z = 0. This proves the relation kerS∗ =
N0(ta)⊕N∗ 1(ta). For reasons of dimensions, it holds that imS∗ = Rm−l. �

In the light of the fact that imF ′(x̃∗) may vary with the reference function
x̃∗, see Example 4.11, Condition (137) limits the class of relevant DAEs. The
following structural restriction ensures (137). Let x∗ be the reference solution
and let the relation

f(y, x, t)− f(0, P0(t)x, t) ∈ imG∗ 1(t), y ∈ Rn, x ∈ DF , t ∈ I, (141)

be valid. Then it follows for x ∈ domF that

D(t)Π0(t)Q∗ 1(t)G∗ 2(t)−1f((Dx)′(t), x(t), t)

= D(t)Π0(t)Q∗ 1(t)G∗ 2(t)−1f(0, P0(t)x(t), t)), t ∈ I.

Assuming that, additionally, f has also a continuous partial derivative ft, and
regarding that P0x = D−Dx is continuously differentiable, we conclude

DΠ0Q∗ 1G
−1
∗ 2Fx = DΠ0Q∗ 1G

−1
∗ 2f(0, (P0x)(·), ·) ∈ C1(I,Rn),

Fx ∈ imF ′(x∗).

Condition (141) does not apply to Example 4.11. Fortunately, it applies to the
widely used Hessenberg size-2 systems as we demonstrate by the next example.
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Example 4.20 (Hessenberg size-2 DAE) Given is the special system of m =
m1 +m2 equations

x′1(t) + g1(x1(t), x2(t), t) = 0,

g1(x1(t), t) = 0,

yielding

D =
[
I 0

]
∈ L(Rm,Rm1), f(y, x, t) =

[
I
0

]
y +

[
g1(x1, x2, t)
g2(x1, t)

]
,

P0 =

[
I 0
0 0

]
, G1 =

[
I g1 x2

0 0

]
,

and hence

f(y, x, t)− f(0, P0x, t) =

[
y + g1(x1, x2, t)− g1(x1, 0, t)

0

]
.

imG1 is independent of its arguments and condition (141) is fulfilled. �

4.3.4 Newton-Kantorovich-like iterations

Supposed that the composed operator F associated with the BVP (99) is a
local diffeomorphism at x∗ ∈ domF and F(x∗) = 0, the well-known Newton-
Kantorovich iteration

xk+1 = xk −F ′(xk)−1F(xk), k ≥ 0, (142)

can be applied to approximate x∗. If the initial guess x0 is sufficiently close to
x∗, then these iterations are well-defined and xk tends to x∗. Practically, one
solves the linear equations

F ′(xk)z = −F(xk), k ≥ 0, (143)

and, having the solution zk+1 of the linear problem (143), one puts

xk+1 = xk + zk+1. (144)

The linear problem (143) represents the linear BVP

fy(ξk(t))(Dz)′(t) + fx(ξk(t))z(t) = −f(ξk(t)), t ∈ I,
ba(xk(ta), xk(te))z(ta) + be(xk(ta), xk(te))z(te) = −b(xk(ta), xk(te)),

with (ξk(t)) := ((Dxk)′(t), xk(t), t) and the first partial derivatives ba, be of the
function b with respect to its first and second arguments.
Mostly, a damping parameter is incorporated, and instead of (144) one applies

xk+1 = xk + αk+1zk+1, with αk+1 ∈ (0, 1]. (145)

Usually the damping parameter is choosen so that the residuum F(xk+1) be-
comes smaller in some sense, that is

‖F(xk+1)‖res < ‖F(xk)‖res,
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with a suitable measure of the residuum, for instance,

‖F(x)‖res := ‖F(x)‖ = ‖F (x)‖∞ + |b(x(ta), x(te))|
and ‖F(x)‖2res := ‖F (x)‖2L2 + |b(x(ta), x(te))|2.

Sufficient conditions for the composed operator F to be a local diffeomorphism
are described in Subsubsection 4.3.2 for the index-1 case and in Subsubsection
4.3.3 for a class of index-2 problems.

Next we take a look at the differentiable functional

J(x) :=
1

2
‖F (x)‖2L2 +

1

2
|b(x(ta), x(te))|2, x ∈ domF . (146)

Of course, the problem to solve the equation F(x) = 0 can be regarded as the
problem to minimize this functional.
For x ∈ domF and z ∈ C1

D(I,Rm), the directional derivative reads

J ′(x)z = (F ′(x)z, F (x))L2

+ 〈 ba(x(ta), x(te))z(ta) + be(x(ta), x(te))z(te), b(x(ta), x(te)) 〉.

If x0 ∈ domF is fixed, F(x0) 6= 0, and if there exists a solution zN of the linear
equation,

F ′(x0)z = −F(x0), k ≥ 0, (147)

then it results that

J ′(x0)zN = −‖F (x0)‖2L2 − |b(x0(ta), x0(te))|2 < 0

thus J(x0 + αzN ) < J(x0) for all sufficiently small α > 0. Therefore, the so-
called Newton direction zN serves as descent direction. Constructing a descent
method by applying Newton directions is essentially the same as the damped
Newton-Kantorovich iteration. This works supposed the conditions described
in Subsubsections 4.3.2 and 4.3.3 are given, that is, for index-1 and a restricted
class of index-2 problems.

For equations F(x) = 0 involving higher index differential-algebraic oper-
ators F , there are two principal difficulties concerning Newton descent and
Newton-Kantorovich iteration as well:
1. The linear equation (143) resp. (147) is essentially ill-posed and might not be
solvable. Changing to least-squares solutions does not make great sense, since
the linearizations F ′(x) are not normally solvable.
2. For an essentially ill-posed problem a small residuum F(xk) does not at all
mean that xk is close to a solution, see Example 2.5.

Among the methods for ill-posed problems one finds generalizations of Newton-
like methods using outer inverses, see [59]. Instead of the unbounded inverse
F(xk)−1 in (142) one uses a bounded outer inverse. Theorem 4.8 provides such
an outer inverse.

Let A(x) ∈ Lb(X,Y ) be an approximation of F ′(x) ∈ Lb(X,Y ), with X =
C1
D(I,Rm), Y = C(I,Rm). Further, let x0 ∈ domF and Γ ∈ Lb(Y,X) be an

outer inverse of A(x0). Then, supposed that xk is sufficiently close to x0 (cf.
Lemma 6.6), by

A(xk)− := (I + Γ (A(xk)−A(x0))−1Γ
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we obtain a bounded outer inverse of A(xk) such that

kerA(xk)− = kerΓ, imA(xk)− = imΓ.

We refer to [59, Theorem 3.1] for conditions ensuring the sequence

xk+1 = xk −A(xk)−F(xk), k ≥ 0, (148)

with initial guess x0, to be well-defined and to converge to a solution of the
equation

ΓF(x) = 0. (149)

Then the equation (149) possesses a unique solution in {x0 + imΓ} ∩B(x0, τ),
τ sufficiently small.

4.4 Different views on constant-rank conditions

Regularity of differential-algebraic operators in Definitions 4.2 and 4.9 is sup-
ported by several constant-rank conditions. These definitions are compati-
ble with the regularity notion for DAEs within the projector based analysis
(e.g.,[50], also Appendix 6.3). In the DAE literature several different opinions
concerning regularity of time-varying and nonlinear DAEs can be found, which
all reflect and generalize regularity of matrix pencils, see [50] for a comprehen-
sive discussion.
Much work concerning DAEs (e.g.,[9, 6]) is focused on problems

E(t)x′(t) + F (t)x(t) = q(t), t ∈ I, (150)

being smoothly transformable into the so-called standard canonical form (SCF)[
I 0
0 N(t)

]
x′(t) +

[
W (t) 0

0 I

]
x(t) = g(t), t ∈ I,

which generalizes the Weierstraß–Kronecker form of matrix pencils, (cf.,(9)).
The matrix function N is strictly lower or upper diagonal, but there is no re-
striction concerning the rank of N(t). In the easier cases, if N is absent or
vanishes identically, the matrix E(t) has constant rank, and this is, in essence,
in agreement with our notion of regular index-0 and index-1 problems. However,
concerning nontrivial N , there is an ongoing controversy.
Supposing sufficiently smooth or even real analytic N and g, DAEs being trans-
formable into SCF are solvable in C1, and the flow does not show critical be-
havior.

In contrast, the regularity concept within the framework of the tractability
index consequently indicates all corresponding rank changes as critical points.
This way it detects serious singularities of the flow such as bifurcations, which
are ruled out by the SCF approach a priori, but also so-called harmless critical
points, which do not affect the flow in smooth environments,see [50, 20].
The next example explains the difficulty arising from harmless critical points in
a rigorous functional-analytic setting.

64



Example 4.21 (DAE in SCF with harmless critical point) The DAE
0 1 α 0
0 0 0 β
0 0 0 1
0 0 0 0


︸ ︷︷ ︸

=E

x′(t) + x(t) = q(t), t ∈ I := [−1, 1],

is already in SCF and quasi-regular in the sense of [50]. Let the coefficient
functions α ∈ C1(I,R) and β ∈ C(I,R) be given so that

t ∈ I− := [−1, 0]⇒ α(t) + β(t) = 0, t ∈ I+ := (0, 1]⇒ α(t) + β(t) > 0.

The DAE is associated with the differential-algebraic operator T̊ x = Ex′ + x,
x ∈ C1(I,R4), and the closure of T̊ ∈ L(C(I,R4), C(I,R4)) is given as

Tx =


1 0
0 β
0 1
0 0


︸ ︷︷ ︸

=A

(

[
0 1 α 0
0 0 0 1

]
︸ ︷︷ ︸

=D

x)′+


1 0 −α′ 0
0 1 0 0
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

=B

x, x ∈ domT = C1
D(I,R4).

Compute

Q0 =


1 0 0 0
0 0 −α 0
0 0 1 0
0 0 0 0

 , G1 =


1 1 α− α′ 0
0 0 −α β
0 0 1 1
0 0 0 0

 .
We have here r0 = rankG0 = rankE = 2. The matrix G1(t) changes the rank
at tc = 0, we have r0 = 2 on I− and r0 = 3 on I+. The operator T fails to be
regular on I since tc is a critical point, more precisely, a harmless critical point.
On the other hand, considering the restrictions T |I− and T |I+ corresponding to
the restrictions of the functions x onto the subintervals I−, I+, we may check
that both operators are regular, however with different characteristics. Namely,
T |I− has tractability index µ = 2 and characteristics r0 = 2, r1 = 2, r2 = 4,
whereas T |I+ has tractability index µ = 3 and characteristics r0 = 2, r1 =
3, r2 = 3, r3 = 4. We observe qualitatively different operator images:

imT |I− = {q ∈ C(I−,R4) : q2, q4 ∈ C1(I−,R)},
imT |I+ = {q ∈ C(I+,R4) : q2 − (α+ β)q′4, q4 ∈ C1(I+,R)}.

In essence, on I+, one needs the additional derivative q′′4 . This play its role in
rigorous input-output relations. It does not matter if one is only interested in
the flow for smooth data. �

In the framework of the projector based analysis (cf.[50]), the harmless critical
points are compensated within so-called quasi-regular DAEs. However, neither
for the concept of quasi-regular DAEs nor for the concepts associated with
the SCF and derivative arrays a functional-analytic interpretation seems to be
available.
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4.5 Notes and references

Remark 4.22 A DAE in so-called standard form,

f(x′(t), x(t), t) = 0

can be brought to the form (88) by introducing the additional function χ = x′

and regarding the extended system

x′(t)− χ(t) = 0,

f(χ(t), x(t), t) = 0.

However, we do not extra recommend this way, which would constrain us to C1-
solutions (cf. the discussion in Subsection 2.3), and already for regular linear
constant coefficient DAEs the index would be increased by 1. Fortunately, there
are more appropriate reformulations for large classes of DAEs (e.g.[50]), and,
what is more important, the most frequently applied classes of DAEs such as the
semi-explicit ones are originally in the form (88).
Furthermore, as applied e.g. in [29, 52, 53], if ker fx1(x1, x, t) is a C1-subspace
who is independent of x1 and x, then there is a continuously differentiable pro-
jector valued function D : If → L(Rm) such that

f(x1, x, t) ≡ f(D(t)x1, x, t), and

f(x′(t), x(t), t) = f((Dx)′(t)−D′(t)x(t), x(t), t)

=: f((Dx)′(t), x(t), t), for x ∈ C1(I,Rm).

Moreover, DAEs
f((d(x(t), t))′, x(t), t) = 0 (151)

with properly involved nonlinear derivative term and border projector function
R ∈ C1(I,L(Rn)) (cf. [50, 55]) can be treated as DAEs of the form (88) via the
enlarged system

f((Ry)′(t), x(t), t) = 0,

y(t)− d(x(t), t) = 0.

This is of particular interest for quasi-linear DAEs

A(x(t), t)(d(x(t), t))′ + b(x(t), t) = 0

which arise e.g., in circuit simulation. We refer to [55] for detailed relations
between (151) and its enlarged form.

Remark 4.23 Regularity of nonlinear differential-algebraic operators in the
sense of Definition 4.9 is consistent with the definition of regular DAEs in [50]
via Corollary 6.16, and hence, justified this way, see Appendix 6.3. In essence,
F is a regular differential-algebraic operator, if the set DF ×I totally belongs to
a regularity region of the associated DAE.

Remark 4.24 It was pointed out e.g. in [52, 40] that operator equations rep-
resenting higher-index DAEs are essentially ill-posed in their natural settings.
[50, Section 3.9] addresses DAEs as operator equations and presents some parts
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of Section 4 concerning IVPs. It is pointed out that DAE solutions depend
smoothly on a well-defined part of their initial value.
Let the differential-algebraic operator F be regular with index 1, x∗ ∈ domF ,
F (x∗) = 0, C ∈ L(Rm,Rr0), imC = Rr0 , kerC = kerD(ta). Then the IVP

F (x) = 0, Cx(ta) = Cx∗(ta) + z (152)

is uniquely solvable for all sufficiently small z ∈ Rr0 (cf. Theorem 4.15). The
solution is continuously differentiable with respect to z and the sensitivity matrix
X(t; z) := x′z(t; z) satisfies the variational system

fy(η(t; z))(DX)′(t; z) + fx(η(t; z))X(t; z) = 0, t ∈ I, CX(ta; z) = Ir0 ,

with (η(t; z)) := ((Dx)′(t; z), x(t; z), t), that is,

F ′(x(z))X(z) = 0, CX(ta; z) = Ir0 .

We emphasize that the initial condition, that is, the requirement for C, is in
accordance with the Fredholm index of F . This statement would not longer hold
for C = I.
For regular higher-index DAEs the situation is much more subtle. Since F ′(x∗)
is no longer surjective and fredholm, for applying the implicit function theorem
in the enhanced setting, we are obliged to assume the inclusion F (x) ∈ imF ′(x∗)
for all x in a neighborhood of the reference solution x∗. Furthermore, less initial
conditions are allowed and the correct formulation of C depends on the reference
solution.
For index-2 problems then the above statement concerning the IVP (152) and
the variational system is valid with a full row-rank matrix C such that

kerC = N0(ta) +N∗ 1(ta).

The index ∗ indicates the dependence on the reference solution x∗. This is not
too bad for µ = 2, but worse for higher index, cf. Remark 4.26.

Remark 4.25 Analogous results concerning linear differential-algebraic opera-
tors as described in Subsection 4.2 can also be accomplished for different settings
(cf. Remark 3.17), e.g.,

T ∈Lb(H1
D(I,Rm), L2(I,Rm)),

T ∈Lc(C(I,Rm), C(I,Rm)),

T ∈Lc(L2(I,Rm), L2(I,Rm)),

T ∈Lb(W 1,∞
D (I,Rm), L∞(I,Rm)),

Hilbert spaces are favorable when looking for least-squares solutions, Moore-
Penrose inverses and pseudo-solutions. In any case, if T is regular with a higher
index µ ≥ 2, then the equation Tx = q is essentially ill-posed. In particular,
then the Moore-Penrose inverse is unbounded, and a small residuum does not at
all indicate a good approximation of a least-squares solution, see Example 2.5.
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Remark 4.26 The well-posed BVPs and IVPs in Subsubsections 4.3.2 and
4.3.3 are associated with composed maps F being local C1- diffeomorphisms at
the solution x∗. Thereby, Y = C(I,Rm) × Rr0 serves as image space in the
index-1 case.
If the index is µ = 2, we are already confronted with the more difficult adapted
setting

Y∗new = Cindexµ∗ (I,Rm)× Rm−l, l =

µ−1∑
i=0

(m− ri).

Also in higher index cases µ > 2 one can precisely describe the operator im-
age imF ′(x∗) and introduce an appropriate norm ‖ · ‖∗ indexµ for obtaining the
adapted Banach space Y∗new (cf. Subsection 2.4, also [50, Section 2.6.4]). As-
suming again condition (137), that is,

Fx ∈ imF ′(x∗), x ∈ U(x∗), (153)

the composed operator F is a local C1- diffeomorphisms at the solution x∗ and
the equation Fx = 0 is well-posed in this adapted setting. This sounds fine,
however, there are two principal concerns with this:
1. Though for µ = 2 the adapted space Y∗new is transparent and can be seen
as reasonable compromise, in higher index cases the topology defined by the new
norm ‖ · ‖∗ indexµ is far from meeting practical needs, since it is too strong by
all means as Examples 2.5, 2.10 demonstrate.
2. Condition (153) is valid for a quite large class of index-2 DAEs including
Hessenberg size-2 systems, which is very useful in optimal control. However, this
condition is not given in many index-2 DAEs arising in circuit simulation, see
[67] and Example 4.11. Moreover, for µ > 2, no practical conditions ensuring
(153) are in sight such as (141) ensuring (153) for µ = 2.

Remark 4.27 Let the coefficients of the differential-algebraic operator T ∈
L(C1

D(I,Rm), C(I,Rm)) are sufficiently smooth and T be regular with tractabil-
ity index µ. Then the composed operator T associated with the IVP Tx = q,
Cx(ta) = d, with imC = Rm−l, kerC = N0(ta) + · · · + Nµ−1(ta), is injective
and the inclusion Cµ−1(I,Rm) ⊂ imT is valid.
Set Ynew := imT and introduce on Ynew an appropriate norm ‖ · ‖index µ to
attain a Banach space (cf. [50, Section 3.9], also Subsection 2.4). Then the
inequality

‖T −1(q, d)‖∞ ≤ ‖T −1(q, d)‖C1D ≤ κ( |d|+ ‖q‖index µ) ≤ κ̃( |d|+
µ−1∑
i=0

‖q(i)‖∞),

is true for all d ∈ Rm−l and q ∈ Cµ−1(I,Rm). This implies that a DAE asso-
ciated with a regular differential-algebraic operator T has perturbation index µ
(cf. [32]).

Let the nonlinear differential-algebraic operator F be regular with tractability
index µ, x∗ ∈ domF , Fx∗ = 0, and let the function f defining F as well as
x∗ be sufficiently smooth so that the linearization F ′(x∗) has sufficiently smooth
coefficients for the inclusion Cµ−1(I,Rm) ⊂ imF ′(x∗) to hold. If, additionally,
the condition (153) is satisfied, then the IVP Fx = (q, Cx∗(ta)), with suitable
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matrix C, is uniquely solvable for all sufficiently small q ∈ Cµ−1(I,Rm), and
the inequality

‖x(q)− x∗‖∞ ≤ ‖x(q)− x∗‖C1D ≤ κ‖q‖∗ indexµ ≤ κ̃
µ−1∑
i=0

‖q(i)‖∞

follows, and hence, the DAE has perturbation index µ.
Since the unpleasing condition (153) is applied, this fails to confirm the conjec-
ture in [50, p. 290] in its general form. It remains open whether this general
conjecture can be verified.

Remark 4.28 Well-posed BVPs for regular index-1 DAEs and their discretiza-
tions are treated as operator equation e.g., in [51, 52, 18, 19, 54, 53].
The statements of Theorem 4.15 and Proposition 4.18 related to IVPs for quasi-
linear index-1 and index-2 DAEs of the form (151) are proved in [55].

Remark 4.29 Least-squares collocation methods are known to belong to so-
called regularizing algorithms for ill-posed problems (e.g. [31]). A first attempt
to treat boundary value problems

E(t)x′(t) + F (t)x(t) = q(t), t ∈ [ta, te], Cax(ta) + Cex(te) = d,

for higher-index time-varying linear DAEs by a least-squares collocation method
is already reported in [33]. Recent experiments give rise to expect some further
progress on that score.
Let π ⊂ [ta, te] denote a finite set of points. A function xπ : [ta, te] → Rm is
called least-squares collocation solution of the BVP, if

E(t)x′π(t) + F (t)xπ(t) = q(t), t ∈ π, Caxπ(ta) + Cexπ(te) = d, (154)

and xπ minimizes some scalar product norm among all solutions of (154). Re-
producing kernels ([2]) serve as essential tool for constructing and analyzing
least-square collocation methods. The operator T associated with the BVP is
given on the Sobolev space Hk(I,Rm), k ≥ 2. In order to reduce the compu-
tational expense, [33] concentrates on k = 2. H2(I,Rm) is endowed with the
scalar product

(x, y)H2 := 〈x(ta), x(ta)〉+ 〈x(te), x(te)〉+ (x′′, y′′)L2 .

The so-called normal spline method in [28] repeats this approach for integro-
differential equations,

E(t)x′(t) + F (t)x(t)−
∫ te

ta

K(t, s)x(s)ds = q(t), t ∈ I, Cax(ta) + Cex(te) = d.

As basic Sobolev space in [28] serves Hk(I,Rm) equipped with the scalar product

(x, y)Hk :=

k−1∑
j=0

〈x(j)(ta), x(j)(ta)〉+ (x(k), y(k))L2 .

69



Remark 4.30 Convergence conditions for the Newton-Kantorovich iteration
applied to well-posed BVPs for regular index-1 DAEs are derived in [54, 63].
Moreover, also for the class of regular index-2 DAEs described in Subsubsection
4.3.3, well-posedness is ensured by adapting the image-space and convergence
conditions are provided. Practical computational experiments are reported in
[63].
Further, [14, Subsubsection 2.2.10] is also devoted to Newton-Kantorovich iter-
ations via adapting the image spaces. However, it has been overlooked there that
the images of the linearizations as well as the new advanced norms depend on
the reference functions, see Remark 4.26.

Remark 4.31 The bounded outer inverse Γ in Theorem 4.8 was constructed
first in [66, Chapter 4] for the index-3 case, aiming for a solvability result of
the corresponding equation Γ (Fx− (q, d)) = 0 by applying [59, Theorem 3].
What concerns the computational treatment of DAEs by Newton-like iteration
methods using outer inverses, as yet, there seems to be no practical experience
and no efforts are reported.

Remark 4.32 By means of differentiating certain derivative-free equations of
the DAE

A(Dx)′ +Bx = q, (155)

with m unknowns and k ≥ m equations, and adding the differentiated part to the
given one, one can reduce the tractability index (see [50, Section 10.2] for the
definition of the tractability index of nonregular DAEs). This allows to modify
the essentially ill-posed problem Tx = q to an enlarged system T̄ x = q̄ having a
normally solvable differential-algebraic operator T̄ and dom T̄ = domT .
More precisely, if the DAE (155) has index µ ≥ 2 and Gµ has full column-rank,
then the enlarged DAE[

A
Wµ−1BD

−

]
(Dx)′ +

[
B

(Wµ−1BD
−)′D =

] [
q

(Wµ−1q)
′

]
, (156)

with the same m unknowns, but k + m equations, has tractability index µ − 1
owing to [50, Proposition 10.8].
In particular, starting from a regular DAE with tractability index µ ≥ 2, one
can successively reduce the index and eventually arrives at an overdetermined
DAE with tractability index 1. The latter is associated with a normally solvable
differential-algebraic operator. Possibly, this explains the advantage of overde-
termined discretizations as used e.g., in [25]) for regular index-3 DAEs in Hes-
senberg form.

Remark 4.33 The present paper intends to provide a basic functional analysis
for linear DAEs with continuous coefficients and nonlinear DAEs given by con-
tinuously differentiable data.
Appropriate modification of the linear theory for linear DAEs with integrable
coefficients can be accomplished. A first approach can be found in [35], see also
[50, Section 12.3]. By now, there is a lack of a comprehensive theory in this
respect.
Furthermore, in [61, 62, 60, 73], quasi-linear DAEs

A(t)(Px)′(t) +B(t)x(t) + g(x(t), t) = 0, a.e. in [ta, te],
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with a measurable and bounded function g, are treated as inclusions

A(t)(Px)′(t) +B(t)x(t) ∈ G(x(t), t), a.e. in [ta, te],

with Filippov functions G. Regularity with index 1 (transferability in [61, 62])
is adapted to the inclusion. Then, solvability in Fillippov’s sense is proved.
Linear DAEs with piecewise-smooth distributional coefficients are considered in
[70] in order to manage DAEs whose coefficient matrices have jumps in view of
system theoretical aspects. This approach is limited to linear DAE.

5 Regularization of ill-posed DAEs

Regularization in the context of ill-posed problems is essentially the approxi-
mation by means of a certain family of well-posed problems. For instance, the
well-known Tikhonov regularization utilizes the functional

Jα(x) := ‖Kx− q‖2Y + α‖x‖2X (157)

for the ill-posed equation Kx = q stated in Hilbert spaces X and Y . The
functional Jα is to be minimized for special sequences of values of α > 0, e.g.,
[21, 71, 23].
The traditional nomenclature used in the theory of matrix pencils and subse-
quently in the DAE theory occupies the notion regular for special pencils and
DAEs. However, those regular pencils and DAEs may induce ill-posed operator
equations. This entails that also regular DAEs may need a further regularization
in the sense of ill-posed problems. We describe in Subsection 5.2 the respective
efforts.

Most common in DAE analysis and applications are index reduction pro-
cedures and transformations into special form so that the latter allows a safer
numerical treatment. Actually, this way, an ill-posed problem is modified into
a well-posed one, too. This justifies also to speak of a regularization. For in-
stance, Remark 4.32 describes a modification of an essentially ill-posed DAE to
a normally solvable overdetermined DAE.
Usually one forms a derivative array, also known as prolongated system, so that
all eventually required derivatives are carried out analytically and then one looks
for an explicit ODE and derivative-free equations. This sounds simpler as it is!
Of course, there are various ways to do this. We refer to [64, 14, 47, 8] for dif-
ferent overviews. As yet, to the author’s knowledge, a systematical comparison
of all these reduction procedures is missing. Below we describe the version of
Chistyakov ([10, 11] since it is basically a functional-analytic approach.

To the author’s knowledge, in all those index reduction procedures the
derivative array must be provided analytically. No errors are allowed in the
prolongated system, since an appropriate sensitivity analysis is not available.

5.1 Chistyakov’s approach

An operator version of the reduction concept is developed in [10, 11, 14]. By
means of prolongated systems, special left regularizers are arranged. Thereby
several rank conditions play their role.
Without any doubt, this is closely related to other reduction concepts aiming at
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regular (explicit or implicit) ODEs or index-1 DAEs such as those in [4, 64, 47].
However, the present treatise is not the right place to analyze the interrelations
between the various reduction concepts which are developed to a large extent
in parallel and without having notice of each other.

Given is the operator

T ∈ L(X,Y ), Tx := Ex′ + Fx, x ∈ X, (158)

with matrix coefficients E(t), F (t) ∈ L(Rm) sufficiently smooth on a neighbor-
hood I0 of the interval I := [ta, te]. E(t) is everywhere singular, which excludes
regular ODEs. Denote

ρ := max{rankE(t) : t ∈ I} < m.

The role of the pre-image space X is assigned either to the function space
C∞(I,Rm) or to C1(I,Rm), whereas the role of the image space Y is assigned
to C∞(I,Rm) and a factitious function space Cs∗(I,Rm), respectively. The latter
one will be specified below, which requires full information about T (C1(I,Rm)).
It is investigated in [10, 11, 14] whether the nullspace of the operator T has finite
dimension and whether T represents a Fredholm operator (called Noetherian
there). The operator T is associated with the DAE

E(t)x′(t) + F (t)x(t) = q(t), t ∈ I, (159)

as well as with the IVP

E(t)x′(t) + F (t)x(t) = q(t), t ∈ I, x(ta) = xa ∈ Rm. (160)

We emphasize that E(t) may change its rank here, cf. Subsection 4.4.
The DAE (159) as well as the coefficient pair {E,F} are said to be trans-

formable into standard canonical form (SCF), if there exist a coordinate change
L ∈ C1(I,L(Rm)) and a nonsingular scaling K ∈ C(I,L(Rm)) converting the
DAE coefficients to (e.g.,[4, Subsection 2.4.2])

LEK =

[
I

N

]
}m− l =: δ
}l , LFK + LEK ′ =

[
W

I

]
}δ
}l .

Thereby, N is strictly upper (or lower) triangular. It may happen that l = m,
δ = 0, and then the so-called dynamic part is absent such that LEK = N ,
LFK + LEK ′ = I.

Evidently, if the coefficient pair {E,F} is transformable into SCF, then the
nullspace kerT has finite dimension, namely dim kerT = δ. The opposite is true
in a limited version ([14, p.68]):

Proposition 5.1 Suppose that E,F ∈ Cm(I0,L(Rm)) and dim kerT <∞.
Then there is a subinterval [t̄a, t̄e] ⊆ I on which the DAE is transformable into
SCF.

The central ideas in [10, 11, 14] are regularizers and solution representations
of Cauchy type. We quote the respective notions and results from [14] and
illustrate it by an example.
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Definition 5.2 The differential operator

Lz :=

s∑
j=0

Ljz
(j), z ∈ Cs(I,Rm), (161)

with coefficient functions Lj ∈ C(I,L(Rm)), j = 0, . . . s, is called a left regular-
izer (LR) of the operator T , if

(L ◦ T )x = L(Tx) = x′ + F̃ x, for all x ∈ Cs+1(I,Rm), (162)

with a continuous matrix function F̃ .
The minimal such index s is refered to as left index (in [10]: unsolvability index)
of the operator T on the interval I.

Example 5.3 (Left regularizer) Consider the differential-algebraic operator
Tx := Ex′ + Fx with constant coefficients

E =

0 1 0
0 0 0
0 0 1

 , F =

1 0 0
0 1 0
0 1 0

 .
The matrix pair {E,F} is regular with Kronecker index 2. At the beginning we
show that there is no left regularizer with s = 1. In contrary, if Lz := L1z

′+L0z
is a left regularizer, then it holds that L1E = 0 and L0E + L1F = I, which
implies L0E

2 + L1(FE − E) = E. The latter relation reads in detail

L0

0 0 0
0 0 0
0 0 1

+ L1

0 0 0
0 0 0
0 0 −1

 =

0 1 0
0 0 0
0 0 1

 ,
but this can never be valid.
Next we put s = 2 and Lz := L2z

′′ + L1z
′ + L0z. We have

L(Tx) = L2Ex
′′′ + (L1E + L2F )x′′ + (L0E + L1F )x′ + L0Fx.

For arbitrary a, b, c ∈ R, the matrices

L2 =

0 −1 0
0 0 0
0 0 0

 , L1 =

1 0 0
0 c 0
0 0 0

 , L0 =

 0 a 0
1− c b 0

0 0 1

 (163)

yield

L2E = 0, L1E + L2F = 0, L0E + L1F = I, L0F =

 0 a 0
1− c b 0

0 1 0

 ,
and hence, L is a left regularizer and the DAE has left index 2. more precisely,
we are confronted with a family of left regularizers. Each of these left regularizers
replaces the original DAE Tx = q by the explicit ODE (L ◦T )x = x′+L0Fx =
Lq, in more detail, the DAE

x′2 + x1 = q1

x2 = q2

x′3 + x2 = q3
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is replaced by the explicit ODE

x′1 + ax2 = aq2 + q′1 − q′′2
x′2 + (1− c)x1 + bx2 = (1− c)q1 + bq2 + cq′2

x′3 + x2 = q3.

The matrix L0F has the eigenvalues 0 and b
2 ±

√
b2

4 + a(1− c). Therefore,

for different values a, b, c, one obtains explicit ODEs which might feature quite
different solution quality. This complicates the recognition of the original DAE
solution in practice. �

Definition 5.4 One says that the DAE (159) possesses a general solution of
Cauchy type on I, if the DAE (159) is solvable for each q ∈ Cρ+1(I,Rm) and if
there are a smooth matrix function Xδ with constant rank δ and a vector valued
function ϕ such that any function x given by

x(t, c) = Xδ(t)c+ ϕ(t), t ∈ I, c ∈ Rm, (164)

represents a solution of the DAE, and, moreover, on any subinterval [t̄a, t̄e] ⊆ I,
there are no solutions other than restrictions of (164) onto [t̄a, t̄e].

Proposition 5.5 Let the operator T with coefficients E,F ∈ C2m(I0,L(Rm))
have a left regularizer with coefficients from C2s(I,L(Rm)), whereby s is the left
index of the operator T .
Then, for q ∈ Cs(I,Rm), the equation Tx = q has the general solution

x(t, c) = Xδ(t)c+

∫ t

ta

K(t, s)q(s)ds +

s−1∑
j=0

Cj(t)q
j(t), t ∈ I, c ∈ Rm, (165)

which is a Cauchy type solution.
Moreover, supposed xa is consistent, the IVP (160) is uniquely solvable, and the
solution satisfies the inequalities

‖x‖∞ ≤ κ1‖xa‖+ κ2‖q‖Cs−1 ,

‖x‖L2 ≤ κ3‖xa‖+ κ4‖q‖W s−1
2

.

Theorem 5.6 If the coefficients E, F of the operator T are real analytic, then
the following statements are equivalent:

(1) The operator T has on the interval I a left regularizer.

(2) The DAE (159) has a general solution of Cauchy type on the interval I.

(3) The DAE (159) can be transformed on the interval I into canonical form
by real analytic transforms L and K.

By means of successive elimination and differentiation steps, left regularizers
L can be stepwise constructed such that ([14, Section 2.1.5]

L = E−1
[s] Ωs · · ·Ω1,
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where E[s] is a nonsingular matrix function, s is the left index, and each factor
Ωi represents a special first order differential-algebraic operator.
Denote by Cs∗(I,Rm) the completion of Cs(I,Rm) with respect to the norm

‖q‖∗ := ‖q‖∞ + ‖Ω1q‖∞ + · · ·+ ‖Ωs · · ·Ω1q‖∞, q ∈ Cs(I,Rm),

We emphasize that the resulting Banach space strongly depends on the special
problem, thus it is rather factitious, see Subsections 2.3 and 2.4.

Example 5.7 (Continuation of Example 5.3) Consider once more the ma-
trix pair

E =

0 1 0
0 0 0
0 0 1

 , F =

1 0 0
0 1 0
0 1 0

 .
First we compute

K1 =

1 0 0
0 0 1
0 1 0

 , K1E =

0 1 0
0 0 1
0 0 0

 , Ω1 :=

1 0 0
0 1 0
0 0 d

dt

K1,

Ω1z =

0 0 0
0 0 0
0 1 0

 z′ +
1 0 0

0 0 1
0 0 0

 z,
and further

Ω1(Tx) :=

0 1 0
0 0 1
0 1 0

x′ +
1 0 0

0 1 0
0 0 0

x =: E[1]x
′ + F[1]x.

The equation Ω1(Tx) = Ω1q reads in detail

x′2 + x1 = q1,

x′3 + x2 = q3,

x′2 = q′2,

which confirms a first index reduction; the pair {E[1], F[1]} is regular with Kro-
necker index 1. Next we perform

K2 =

0 1 0
1 0 −1
0 0 1

 , K2E[1] =

0 0 1
0 0 0
0 1 0

 , Ω2 :=

1 0 0
0 d

dt 0
0 0 1

K2,

Ω2z =

0 0 0
1 0 −1
0 0 0

 z′ +
0 1 0

0 0 0
0 0 1

 z,
Ω2Ω1z =

0 0 0
0 0 −1
0 0 0

 z′′ +
0 0 0

1 0 0
0 1 0

 z′ +
0 0 1

0 0 0
0 0 0

 z,
and further

Ω2Ω1(Tx) :=

0 0 1
1 0 0
0 1 0

x′ +
0 1 0

0 0 0
0 0 0

x =: E[2]x
′ + F[2]x.
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The equation Ω2Ω1(Tx) = Ω2Ω1q reads in detail

x′3 + x2 = q3,

x′1 = q′1 − q′′2 ,
x′2 = q′2,

which confirms another index reduction. Obviously, L := E−1
[2] Ω2Ω1 is a left

regularizer of the operator T . It coincides with the left regularizer given by
(163) for a = b = 0, c = 1.
The norm

‖q‖∗ := ‖q‖∞ + ‖Ω1q‖∞ + ‖Ω2Ω1q‖∞ = ‖q‖∞ + ‖

q1

q3

q′2

 ‖∞ + ‖

 q3

q′1 − q′′2
q′2

 ‖∞
defined on C2(I,R3) is equivalent to the norm

‖q‖∗∗ := ‖q‖∞ + ‖q′2‖∞ + ‖q′1 − q′′2‖∞,

and the function space

C2
∗(I,R3) = {q ∈ C(I,R3) : q1 − q′2, q2 ∈ C1(I,R1)} = T (C1(I,R3))

results as completion of C2(I,R3) by this norm. �

If the operator T has a real-analytic coefficient pair {E,F} then, for X =
C∞(I,Rm), it holds that imT ⊆ C∞(I,Rm). In contrast, if X = C1(I,Rm)
then imT ⊆ C(I,Rm). Concerning both these settings, similar argument apply
as in the case of constant coefficients in Section 2.

Theorem 5.8 Let the coefficients E, F of the operator T are real-analytic and
let the associated operator T ∈ L(X,Y ) have a left regularizer. Suppose either
X = Y = C∞(I,Rm) or X = C1(I,Rm), Y = Cs∗(I,Rm).

(1) Then the operator T is fredholm with α(T ) = δ, β(T ) = 0, ind fred(T ) = δ.

(2) The composed operator T ∈ L(X,Y ×Rm) associated with the IVP (160) is
fredholm with α(T ) = 0, β(T ) = m− δ, ind fred(T ) = −(m− δ).

Once again, as already exposed in Subsections 2.2 and 2.4, in higher index cases,
surjectivity is exacted by a special and too factitious setting.

As demonstrated in Example 5.7, the construction of left regularizers can be
done stepwise by index reduction. One can also earlier terminate the procedure
when either a regular index-1 DAE or a regular implicit ODE is achieved. This
leads to the notion of left semi-regularizers ([14, p.105] which incorporates this
idea.

Definition 5.9 The differential operator

Lz :=

s∑
j=0

Ljz
(j), z ∈ Cs(I,Rm), (166)
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with coefficient functions Lj ∈ C(I,L(Rm)), j = 0, . . . s, is called a left semi-
regularizer (LSR) of the operator T , if

(L ◦ T )x = Ẽx′ + F̃ x, for all x ∈ Cs+1(I,Rm), (167)

and Ẽ, F̃ are continuous matrix functions such that

deg det(λẼ(t) + F̃ (t)) = rank Ẽ(t) = δ = const, t ∈ I. (168)

The condition (168) is valid, exactly if the pair {Ẽ(t), F̃ (t)} is regular with
Kronecker index 0 or 1, uniformly for all t ∈ I. A DAE having coefficients
which satisfy (168) is well-known to be a DAE with index 0 or 1. From this
viewpoint the next assertion ([14, p.105]) is self-explanatory.

Theorem 5.10 If E,F ∈ C2s+3(I0,L(Rm)), then the operator T has a left
regularizer if and only if it has a left semi-regularizer.

5.2 Singular perturbation and Tikhonov regularization

Aiming for a regularization of regular higher-index DAEs, several parametriza-
tions are investigated mainly in the early literature concerning DAEs, which
was strongly affected by the singular perturbation theory.

The so-called pencil regularization ([3, 15, 5, 7]) which approximates the
standard form DAE

Ex′ + Fx = q (169)

by the regular implicit ODE

(E + αF )x′ + Fx = q,

with a small parameter α > 0, is the earliest general such approach. Thereby,
one has to assume regular local matrix pairs {E(t), F (t)}. This property is not
given in general, but it is given e.g., for DAEs in Hessenberg form. A review of
convergence results is presented in [37]. [12] provides some additional discussion.
Roughly speaking, if it works, then the pencil regularization leads to singular
singularly perturbed equations.
Alternative approaches aiming at a regular index-1 DAE are studied e.g., in
[40, 41, 34, 44, 36, 37, 38, 39]. For instance, the parametrizations

(E + αFP )(Px)′ + (F − EP ′)x = q (170)

and
(E + αWFP )(Px)′ + (F − EP ′)x = q, (171)

with P and W being projector functions along kerE and imE, respectively, are
used to approximate the equation

E(Px)′ + (F − EP ′)x = q. (172)

The DAE (172) has a properly stated leading term; this version corresponds to
the closure of the operator representing the DAE (169), cf. Section 2. The latter
two parametrizations have appropriate physical interpretations for DAEs de-
scribing electrical networks ([44, 38]).They lead to singularly perturbed index-1
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DAEs, and they are less severe than the ODEs resulting from pencil regulariza-
tion.
For special autonomous nonlinear DAEs

f(x′, x) = 0, (173)

with constant ker fx′ , such as Hessenberg form DAEs, in [37, 39] the parametriza-
tions

f(x′, x+ αx′) = 0 and f(x′, x+ αPx′) = 0 (174)

are compared. Owing to the identity f(x′, x) ≡ f(Px′, x)), the second version is
more favorable. Deep results concerning convergence as α→ 0 and asymptotic
expansions are obtained for regular index-2 and index-3 DAEs (169) and also
for special classes of nonlinear DAEs in Hessenberg form, e.g., in ([37, 38, 39]).
In appropriate Hilbert space settings, these parametrizations yield regulariza-
tions in the sense of Tikhonov (see [69, 23]). We quote a typical result for regular
index-2 DAEs. Consider the operator T ∈ L(H1

P (I,Rm), L2(I,Rm)) defined by

Tx := E(Px)′ + (F − EP ′)x, x ∈ H1
P (I,Rm),

the composed operator T ∈ L(H1
P (I,Rm), L2(I,Rm)× Rm),

T x := (Tx, Cx(ta)), x ∈ H1
P (I,Rm),

and further the operators

Tαx := (E + αFP )(Px)′ + (F − EP ′)x, x ∈ H1
P (I,Rm),

Tαx :=

 Tαx
Cx(ta)

(Π0Q1)(ta)x(ta)

 , x ∈ H1
P (I,Rm),

with C ∈ L(Rm). We refer to Section 4)for the meaning of Π0Q1, Π1. Denote
M := imC and L := im (Π0Q1)(ta).

Proposition 5.11 Let T be regular with tractability index 2 and kerC = kerΠ1(ta).
Then the following statements hold:

(1) The operator T is injective.

(2) The operator Tα is regular with tractability index 1 for each sufficiently
small α > 0.

(3) The operator Tα ∈ L(H1
P (I,Rm), L2(I,Rm)×M × L) is a bijection for all

sufficiently small α > 0.

(4) For (q, d) ∈ im T and

x∗ := T −1(q, d) xα := T −1
α (q, d, (Π1Q1G

−1
2 q)(ta)),

α→ 0 implies ‖xα − x∗‖H1
P
→ 0 and ‖Pxα − Px∗‖H1 = O(α).

(4) If (q, d) ∈ L2(I,Rm)×M , q /∈ imT , then

‖xα‖H1
P
→∞, as α→ 0.
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Under additional smoothness one obtains ‖xα − x∗‖H1
P

= O(α
1
2 ) and even

‖xα − x∗‖H1
P

= O(α).
The convergence behavior is similar to Tikhonov regularization for integral

equations of the first kind ([31]). Motivated by this experience, in [22] nonlinear
semi-explicit DAEs are treated by Tikhonov regularization in several settings.

In spite of all these contributions, as yet, there are no sufficiently matured
procedures to solve BVPs and IVPs in higher-index DAEs relying on Tikhonov
regularization.

6 Appendices

6.1 Functional-analytic basics and notations

We are mainly interested in bounded operators acting in real Banach spaces and
in closed operators acting in real Hilbert spaces. We refer to [26, 17, 75, 76, 42]
for details regarding the material below.

6.1.1 Linear Operators in normed spaces

Let X and Y be normed linear spaces over R. L(X,Y ) denotes the set of all
linear operators K mapping an individual definition domain domK ⊆ X into
Y . We also shorten L(X) := L(X,X). For each operator K ∈ L(X,Y ) we
introduce its range (also image) and nullspace (also kernel) as

imK := {y ∈ Y : ∃x ∈ X, y = Kx}, kerK := {x ∈ X : Kx = 0}.

The operator K is said to be densely defined if domK is dense in X and densely
solvable if imK is dense in Y .
The graph of K is determined by

graphK := {(x,Kx) : x ∈ domK} ⊆ X × Y.

The sets Lb(X,Y ) and Lc(X,Y ) consist of all linear bounded and closed oper-
ators, respectively, such that the inclusions

Lb(X,Y ) ⊆ Lc(X,Y ) ⊆ L(X,Y )

are given.
The operator K ∈ L(X,Y ) is said to be closed, if for each sequence xn → x∗ ∈
X, xn ∈ domK for all n ∈ N, and Kxn → y∗ ∈ Y it results that x∗ ∈ domK
and Kx∗ = y∗.
The operator K ∈ L(X,Y ) is closed, exactly if graph K is a closed subspace in
X × Y . The graph-theorem says that a closed linear operator K who maps all
of a Banach space X (i.e. domK = X) into a Banach space Y is bounded. In
contrast, often one is confronted with the fact that domK is merely a proper
subset of X.
The operator K ∈ L(X,Y ) is called closable, if it admits a closed extension.
The minimal closed extension is said to be the closure of K.
We equip the linear space domK =: XK with the so-called graph-norm

‖x‖K := ‖x‖+ ‖Kx‖, ‖x‖ ≤ ‖x‖K for all x ∈ domK.
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Because of the evident inequality ‖Kx‖ ≤ ‖x‖K given for all x ∈ XK , the
operator K is bounded in this new setting (we keep the notation K), therefore

K ∈ Lc(X,Y ) implies K ∈ Lb(XK , Y ).

If X and Y are Banach spaces then also XK is a Banach space.

The operator K ∈ Lc(X,Y ), where X and Y are normed spaces, is said
to be a Fredholm operator, if it has a closed range imK and the dimensions
dim kerK =: α(K) and codim imK =: β(K) are finite. Then, the difference

α(K)− β(K) =: ind fred(K)

is called Fredholm index. The operator K ∈ Lc(X,Y ) is said to be semifredholm,
if it has a closed range imK and either dim kerK =: α(K) or codim imK =:
β(K) is finite.
Often, Fredholm operators are ab initio supposed to act in Banach spaces and to
be bounded, and then the closed-range property is not explicitly listet. Owing
to Kato’s theorem (e.g.[42, page 310]), if then imK possesses a finite codimen-
sion it is necessarily closed. Although similar arguments apply also to closed
operators acting in Banach spaces, we impose an explicit listing of the closed-
range property.
Sometimes one uses the name Noetherian index instead of Fredholm index, e.g.,
[10, 14].

A closed, densely defined operator K acting from the Banach space X into
the Banach space Y is said to be normally solvable if imK is closed in Y (e.g.
[43, p. 234]). Normally solvable operators comprise useful properties similar to
Fredholm operators (cf. Theorem 6.2), and sometimes then the problem Kx = q
is said to be well-posed in the sense of Fichera. Well-posedness in Fichera’ sense
does not necessarily suppose neither injectivity nor surjectivity.

If K is a bounded bijection acting on Banach spaces, then K is a Fredholm
operator with ind fred(K) = α(K) = 0 and the equation Kx = q is well-posed
in the sense of Hadamard.

We denote byX∗ := Lb(X,R) the dual of the real normed spaceX. Equipped
with its natural norm, X∗ becomes a Banach space.
We set 〈η, x〉 := η(x) for every x ∈ X and η ∈ X∗. The resulting bilinear form
〈·, ·〉 indicates the duality pairing between X∗ and X, also called scalar product
between X∗ and X.

For each densely defined operator K ∈ L(X,Y ) there is the dual operator
K∗ ∈ L(Y ∗, X∗) given by

〈K∗g, x〉 = 〈g,Kx〉 for all x ∈ domK, g ∈ domK∗,

domK∗ = {g ∈ Y ∗ : ∃ηg ∈ X∗ such that 〈g,Kx〉 = 〈ηg, x〉 ∀x ∈ domK},
K∗g = ηg for g ∈ domK∗.

The dual operator of a bounded operator is also bounded and it holds that
‖K∗‖ = ‖K‖.
We advert to the fact that the dual operator K∗ is also called transposed and
adjoint operator in the literature.
To each element x of the normed space X there exists an element z of the
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bidual space X∗∗ := (X∗)∗ such that 〈z, g〉 = 〈g, x〉 for all g ∈ X∗ and further
‖x‖ = ‖z‖. This allows to assume the inclusion X ⊆ X∗∗. If X = X∗∗, then X
is called a reflexive Banach space.

Proposition 6.1 Let X and Y be Banach spaces, and K ∈ L(X,Y ) be densely
defined. Then the following holds:

(1) The dual operator K∗ is closed, K∗ ∈ Lc(Y ∗, X∗).

(2) If X and Y are reflexive, then the dual operator K∗ is likewise densely
defined.

(3) If X and Y are reflexive and the operator K is closable, then K∗∗ represents
the closure of K.

Proofs can be found, e.g., in [43, Chapter III].
We quote the closed image theorem, e.g., [17, p. 348],[74, p. 205]:

Theorem 6.2 Let X and Y be Banach spaces, K ∈ Lc(X,Y ) be densely de-
fined. Then imK is closed in Y if and only if imK∗ is closed in Y ∗.
In addition, under this hypothesis,

(imK)⊥ = {y ∈ Y : 〈y, g〉 = 0 ∀g ∈ kerK∗} = kerK∗,

imK∗ = {η ∈ X∗ : 〈x, η〉 = 0 ∀x ∈ kerK} = (kerK)⊥,

α(K) = β(K∗),

α(K∗) = β(K).

A Hilbert space X is comfortable owing to the scalar product (·, ·) which
is defined on X × X. As before, the symbol 〈·, ·〉 indicates the scalar product
between X∗ and X. If J ∈ Lb(X,X∗) denotes the so-called duality map, then
it holds that

〈J x, ξ〉 = (x, ξ) for all x, ξ ∈ X, and ‖J x‖ = ‖x‖ for all x ∈ X.

This feature allows to identify the Hilbert space and its dual, that is X = X∗.
This implies reflexivity.

If X and Y are Hilbert spaces and the operator K ∈ L(X,Y ) is densely
defined, then K has the adjoint operator K∗ ∈ L(Y,X) given by

(K∗y, x) = (y,Kx) for all x ∈ domK, y ∈ domK∗,

domK∗ = {y ∈ Y : ∃ηy ∈ X such that (y,Kx) = (ηy, x) ∀x ∈ domK},
K∗y = ηy for y ∈ domK∗.

The adjoint operator is likewise densely defined, and it is closely related to the
dual operator. If JX and JY are the duality maps associated to X and Y ,
respectively, and if K∗ ∈ L(Y ∗, X∗) is the dual operator of the densely defined
operator K ∈ L(X,Y ), then the adjoint operator is given by J−1

X K∗JY . We
apply the same symbol for the dual and the adjoint operators. No confusion
will arise.
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Moreover, for a linear densely defined operator K acting in Hilbert spaces
X and Y , the biadjoint K∗∗ := (K∗)∗ ∈ L(X,Y ) exists and is given by

(K∗∗x, y) = (x,K∗y) for all y ∈ domK∗, x ∈ domK∗∗,

domK∗∗ = {x ∈ X : ∃ηx ∈ X such that (x,K∗y) = (ηx, y) ∀y ∈ domK∗},
K∗y = ηy for y ∈ domK∗.

Owing to Proposition 6.1, the biadjoint K∗∗ of a closable, densely defined op-
erator K ∈ L(X,Y ) acting in Hilbert spaces represents the closure of K.

6.1.2 Inner inverses, outer inverses, generalized inverses, and least-
squares solutions

In this part we adapt the terminology applied in [57, 16, 59] and collect few of
the results reported therein.

Let X and Y be Banach spaces, K ∈ L(X,Y ), and K− ∈ L(Y,X). If
KK−K = K holds on domK, then the map K− is said to be an inner inverse
of K. If K−KK− = K− holds on domK−, then the map K− is said to be an
outer inverse of K. If K− is both an inner and an outer inverse of K, then it
is called an algebraic generalized inverse of K.

If K− is either an inner or an outer inverse of K, then both KK− and K−K
are linear idempotents, that is, algebraic projectors.

From the viewpoint of analysis, however, these algebraic constructions are of
little use unless the resulting operators are continuous; hence our special interest
is directed to results on bounded projectors and inverses.

The linear mapping K is called approximately outer invertible, if, for each
ρ ∈ (0, 1), there exists an operator K'ρ ∈ Lb(Y,X) and a bound Γ(ρ) such that

‖(K'ρ KK'ρ −K'ρ )y‖ ≤ ρ‖K'ρ y‖ and ‖K'ρ y‖ ≤ Γ (ρ)‖y‖, for all y ∈ Y.

Then each K'ρ is called approximate outer inverse of K, with bound function
Γ (ρ).

In case of infinite-dimensional spaces, the symbols +̇ and⊕ indicate algebraic
direct sums and topological direct sums (with closed subspaces), respectively.
In finite-dimensional spaces all subspaces are closed; then we only apply the
symbol ⊕ for the direct sums.

Topological direct sum decompositions of a Banach space are intimately
connected with bounded projectors. The range of each bounded projector on a
Banach space is a closed subspaces. A closed subspace of a Banach space has a
topological complement if and only if it is the range of some bounded projector.
A Hilbert space is more comfortable: any closed subspace M has a topological
complement, and M⊥ is one such complement; the orthogonal projector P onto
a closed subspace is linear, idempotent and it holds that P ∗ = P and ‖P‖ = 1.

For a densely defined operator (or even bounded operator) K ∈ Lc(X,Y )
in Hilbert spaces, one can define the so-called orthogonal generalized inverse,
denoted by K+ ∈ L(Y,X), which is the operator version of the Moore-Penrose
inverse given for matrices.
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Let X and Y be Hilbert spaces, K ∈ Lc(X,Y ), domK = Y . Then kerK
is closed. Let P ∈ Lb(X) and R ∈ Lb(Y ) denote the orthoprojectors onto
(kerK)⊥ and imK, respectively. It follows that K = KP = RK. One defines

K+y := (K|(domK)∩(kerK)⊥)−1Ry for all y ∈ imK + (imK)⊥ =: domK+.

This definition implies the relations

KK+K = K on domK,

K+KK+ = K+ on domK+,

KK+ = R|domK+ ,

K+K = P|domK ,

which show that K+ is at the same time a particular algebraic generalized
inverse.
The orthogonal generalized inverse K+ of the densely defined closed operator K
is also closed. KK+ and K+K are then densely defined and symmetric, but not
necessarily closed. K+K becomes closed exactly if K is bounded, and KK+ is
closed exactly if K+ is bounded. Furthermore, K+ is bounded exactly if imK
is closed in Y .

Let X be a vector space and Y be a Hilbert space, K ∈ L(X,Y ), y∗ ∈ Y .
The element x∗ ∈ X is said to be a least-squares solution (LSS) of the equation
Kx = y∗ if

‖Kx∗ − y∗‖ = inf{‖Kx− y∗‖ : x ∈ domK}.

An LSS is also named a quasisolution, e.g.[71].
Let R ∈ Lb(Y ) again denote the orthoprojector onto imK. Then, the equa-
tion Kx = y∗ has a LSS exactly if Ry∗ ∈ imK, i.e., y∗ ∈ imK + (imK)⊥. If
X is normed, then one can look for a LSS with minimal norm. If X is also an
Hilbert space, then the LSS with minimal norm is called pseudosolution, e.g.[71].

There is a close relation between LSS and the orthogonal generalized inverse
(cf. [57, Theorem 5.1]):

Theorem 6.3 Let X and Y be Hilbert spaces, K ∈ Lc(X,Y ) be densely defined,
y∗ ∈ Y . Then the following is true:

(1) x∗ is a LSS exactly if it satisfies the equation K∗(Kx− y∗) = 0.

(2) For y∗ ∈ domK+, K+y∗ is the unique solution of minimal norm of the
equation Kx = Ry∗.

(3) For y∗ ∈ domK+, K+y∗ is the unique LSS of minimal norm of the equation
Kx = y∗.

(4) For y∗ ∈ domK+, K+y∗ is the unique solution of minimal norm of the
equation K∗(Kx− y∗) = 0.

(5) If, additionally, K is bounded, then x∗ is a LSS exactly if the normal equa-
tion K∗Kx∗ = K∗y∗ is satisfied.

We quote [57, Theorem 7.1] and parts of [57, Theorem 7.2]:
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Theorem 6.4 Let the operator K ∈ L(X,Y ) acting in Banach spaces be bounded
or closed with dense domain. Then, K has a bounded inner inverse exactly if
kerK and imK are closed and have topological complements in X and Y re-
spectively.

Theorem 6.5 For the operator K ∈ Lb(X,Y ) acting in Hilbert spaces the fol-
lowing statements are equivalent:

(1) K has a bounded inner inverse.

(2) imK is closed.

(3) K is normally solvable.

(4) inf{‖Kx− y‖ : x ∈ X} is attained for each y ∈ Y .

(5) The orthogonal generalized (Moore-Penrose) inverse K+ of K is bounded.

(5) For some γ > 0, it holds that ‖Kx‖ ≥ ‖x‖ for all x ∈ M , where X =
kerK ⊕M .

Finally we quote the perturbation result [59, Lemma 2.2]:

Lemma 6.6 Let X and Y be Banach spaces, K ∈ Lb(X,Y ), and let K− ∈
Lb(Y,X) be a bounded outer inverse of K. Let B ∈ Lb(X,Y ) be such that

‖K−(B −K)‖ < 1.

Then B− := (I + K−(B − K))−1K− is a bounded outer inverse of B with
kerB− = kerK− and imB− = imK−. Moreover

‖B− −K−‖ ≤ K−(B −K)K−

1− ‖K−(B −K)‖
.

6.1.3 Nonlinear Fréchet-differentiable operators

Let X and Y be Banach spaces, U ⊆ X be an open subset. We consider the
map K : domK := U → Y . We say that K is Fréchet-differentiable at u ∈ U ,
if there exists an operator A ∈ Lb(X,Y ) such that, if we set

R(h) = K(u+ h)−K(u)−A(h),

there results R(h) = o(‖h‖, that is ‖R(h)‖
‖h‖ → 0 as h → 0. Such an A will be

called Fréchet-differential of K at u and denoted by A = dK(u).
Let K be differentiable at all u ∈ U . Then the map K ′ : U → Lb(X,Y ),
K ′(u) := dK(u), u ∈ U , is called the Fréchet-derivative of K. K ′(u) is also
called the linearization of K at u.
If the derivative K ′ is continuous as a map from U to Lb(X,Y ), then we will
say that K is a C1- operator, see e.g.,[1, Section 1.1].

Let X and Y be Banach spaces. The C1-operator K acting between X
and Y , with definition domain domK open in X, is called a Fredholm operator
exactly if for each x ∈ domK the linearization K ′(x) ∈ Lb(X,Y ) is a Fredholm
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operator, see e.g., [76, Page 317].
If domK = X then ind fred(K

′(x)) is independent of x, and then one sets

ind fred(K) := ind fred(K
′(x)),

see [76, Section 5.15].

We quote the local inverse mapping theorem from [76, p. 259].

Theorem 6.7 Let X,Y be Banach spaces, r ∈ N, and U(x0) ⊆ X be an open
neighborhood of x0 ∈ X. Let K : U(x0) ⊆ X → Y be a Cr map. Then K is a
local Cr-diffeomorphism at x0 if and only if K′(x0) : X → Y is bijective.

Often, classical well-posedness in Hadamard’s sense of the nonlinear operator
equation Kx = p, with K acting in Banach spaces X,Y , is unrealistic. Instead
of this global requirement, one applies its local version which actually means
that K is a local C1- diffeomorphism at the wanted solution:
Let X,Y be Banach spaces. The nonlinear equation Kx = 0, with a Fréchet-
differentiable operator K : domK ⊆ X → Y , is said to be well-posed around
x∗ ∈ domK, with Kx∗ = 0, if the Fréchet derivative K ′(x∗) ∈ L(X,Y ) is
a homeomorphism. Then, owing to the classical implicit function theorem in
Banach spaces (e.g., [1]), for each sufficiently small q ∈ Y , in the neighborhood
of x∗ exists exactly one solution x(q) to the equation Kx = q, and the inequality

‖x(q)− x∗‖ ≤ κ‖q‖

is given with a constant κ.

Regular higher-index differential-algebraic operators (in their natural Ba-
nach spaces) are Fréchet-differentiable, however, imK ′(x∗) is a nonclosed sub-
set in Y , such that K fails to be fredholm and, to make matters worse, K ′(x)
is no longer normally solvable. One can treat equation Kx = 0 as ill-posed
problem applying the respective methods (e.g.,[69, 16, 71, 59, 57, 31, 21, 58]).
The following implicit function theorem is a consequence of [16, Theorem 3].

Theorem 6.8 Let X and Y be Banach spaces, Let the function K : X → Y
be strongly Fréchet-differentiable at x∗ ∈ X, with K(x∗) = 0. Let the Fréchet
derivative K ′(x∗) ∈ Lb(X,Y ) be outer invertible, with approximate outer in-
verses K'ρ and bound function Γ (ρ) = h0ρ

−γ , where γ < 1. Then, when-
ever z∗ ∈ X satisfies K ′(x∗)z∗ = 0, and ‖z∗‖ = 1, there exists a solution
x = x∗ + tz∗ + o(t) to K(x) ∈ kerK'ρ .

6.2 Matrix functions, varying subspaces and special func-
tion spaces

We identify matricesM ∈ Rn×m and their associated operatorsM ∈ L(Rm, Rn).
By C(Ω,Rs) and Ck(Ω,Rs) we denote the linear spaces of continuous and k-times
continuously differentiable functions defined on Ω ⊆ Rn with values in Rs, k ∈ N
and k =∞.
We apply the usual notations L2(I,Rn) and H1(I,Rn), with a compact interval
I, for the respective Lebesgue and Sobolev spaces.
By | · | we denote absolute values as well as norms of vectors and matrices. In
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contrast, ‖ · ‖ is a function or operator norm. At episodes when several norms
are to be distinguished, we use specific indices.

Let s, n ≥ 1, k ≥ 0 be integers, Ω ⊆ Rs be an connected set, and let
S(z) ⊆ Rn be a subspace for all z ∈ Ω. We say that S(·) is a Ck-subspace
in Rn, if there exists a projector-valued function P ∈ Ck(Ω, L(Rs,Rs)) such
that imP (z) = S(z) for all z ∈ Ω. Equivalently, S(·) is a Ck-subspace, if the
orthoprojector function onto S(·) belongs to the class Ck.
A Ck-subspace has constant dimension on Ω. It has further local Ck-bases. For
s = 1, there is even a global Ck-basis, see [50, Appendix A].

Lemma 6.9 Given are two matrix functions M ∈ C1(I,L(Rm,Rs)) and M̃ ∈
C1(I,L(Rm,Rs̃)), both with constant rank on the interval I. Additionally, let
the constant-rank condition

ker M̃(t) = kerM(t), for all t ∈ I.

be satisfied. Then the following becomes valid:

(1) ker M̃(·) = kerM(·) is a C1-subspace varying in Rm.

(2) The function spaces

C1
M (I,Rm) := {x ∈ C(I,Rm) : Mx ∈ C1(I,Rs)},

H1
M (I,Rm) := {x ∈ L2(I,Rm) : Mx ∈ H1(I,Rs)},

coincide with

C1
M̃

(I,Rm) := {x ∈ C(I,Rm) : M̃x ∈ C1(I,Rs̃)},

H1
M̃

(I,Rm) := {x ∈ L2(I,Rm) : M̃x ∈ H1(I,Rs)},

respectively.

(3) Assume the interval I to be compact. Equipped with the norm

‖x‖C1M := ‖x‖∞ + ‖(Mx)′‖∞, x ∈ C1
M (I,Rm),

the function space C1
M (I,Rm) becomes a Banach space. The norms ‖ ·‖C1M

and ‖ · ‖C1
M̃

are equivalent.

(4) Assume the interval I to be compact. Equipped with the scalar product

(x, ξ)H1
M

:= (x, ξ)L2 + ((Mx)′, (Mξ)′)L2 , x ∈ H1
M (I,Rm), (175)

the function space H1
M (I,Rm) becomes a Hilbert space. The associated

norms ‖ · ‖H1
M

and ‖ · ‖H1
M̃

are equivalent.

Proof: Statement (1) is a consequence of [50, Lemma A.15].
(2) Owing to the constant-rank properties the Moore-Penrose inverses M+ and
M̃+ are also continuously differentiable. It holds that M̃+M̃ = M+M .
For each x ∈ C1

M (I,Rm), we have x ∈ C(I,Rm) and M̃x = M̃M̃+M̃x =
M̃M+Mx ∈ C1(I,Rs̃), such that x ∈ C1

M̃
(I,Rm), and hence C1

M (I,Rm) =
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C1
M̃

(I,Rm).

Similarly, for each x ∈ H1
M (I,Rm), we have x ∈ L2(I,Rm) and M̃x = M̃M̃+M̃x =

M̃M+Mx ∈ H1(I,Rs̃), such that x ∈ H1
M̃

(I,Rm), and hence H1
M (I,Rm) =

H1
M̃

(I,Rm).
(3) The given expression defines a norm in fact. The norm equivalence results
from the inequality

‖x‖C1M := ‖x‖∞ + ‖(Mx)′‖∞ = ‖x‖∞ + ‖(MM̃+M̃x)′‖∞
= ‖x‖∞ + ‖(MM̃+)′M̃x+MM̃+(M̃x)′‖∞
≤ κ(‖x‖∞ + ‖(M̃x)′‖∞) = κ‖x‖C1

M̃
.

For proving the completeness, we consider the sequence {xl} being a Cauchy
sequence in C1

M . Then, {xl} and {Mxl} are Cauchy sequences in C, therefore
there is a x∗ ∈ C such that ‖xl − x∗‖∞ → 0 and ‖Mxl −Mx∗‖∞ → 0. Fur-
thermore, {Mxl} is a Cauchy sequence in C1, and there is a y∗ ∈ C1 so that
‖Mxl − y∗‖C1 → 0. This implies Mx∗ = y∗ ∈ C1, thus x∗ ∈ C1

M as well as
‖xl − x∗‖C1M → 0.

(4) Formula (175) defines a scalar product and induce a norm on H1
M . Further

we can proceed analogously to (3). �

Lemma 6.10 Let V ∈ C(I,L(Rm)) be a projector-valued function on the com-
pact interval I.

(1) Then, for X = C(I,Rm) and X = L2(I,Rm), the relation

(Vx)(t) := V (t)x(t), t ∈ I, resp. a.e. in I, (176)

defines a projector V ∈ Lb(X) such that the topological direct sum decom-
position

kerV ⊕ imV = X (177)

is valid.

(2) If the additional matrix-valued function D ∈ C1(I,L(Rm,Rn)) is given, and

DV (I −D+D) = 0, DV D+ ∈ C1(I,L(Rn), (178)

then statement (1) is also valid for X = C1
D(I,Rm) and X = H1

D(I,Rm).

Proof: (1) V is idempotent since V (t)2 = V (t) for all t. Since V (t) and I−V (t)
are uniformly bounded on I, the projectors V, I−V ∈ L(X) are bounded. Then,
their nullspaces are closed, hence (177) is valid.
(2) For x ∈ C1

D it holds thatDVx = DVD+Dx ∈ C1 and (DVx)′ = (DVD+)′Dx+
DVD+(Dx)′. We have Vx ∈ C1

D in fact, and ‖Vx‖C1D ≤ γ‖x‖C1D .
As bounded operators, V, I − V have closed nullspaces. Analogous arguments
apply for X = H1

D(I,Rm). �
We emphasize that imV and kerV are infinite-dimensional subspaces of the

function space X, though imV (t), kerV (t) ⊆ Rm are finite-dimensional.
Often, if no confusion looms, we apply the same letter V also instead of V.
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6.3 Basics concerning regular DAEs

We collect basic facts on the DAE

f((Dx)′(t), x(t), t) = 0, (179)

which exhibits the involved derivative by means of an extra matrix valued func-
tion D. The function f : Rn × Df × If −→ Rm, Df × If ⊆ Rm × R open,
is continuous and has continuous partial derivatives fy and fx with respect to
the first two variables y ∈ Rn, x ∈ Df . The partial Jacobian fy(y, x, t) is ev-
erywhere singular. The matrix function D : If → L(Rm,Rn) is continuously
differentiable and D(t) has constant rank r on the given interval If . Then,
imD is a C1-subspace in Rn. We refer to [50] for proofs, motivation, and more
details.

6.3.1 Regular DAEs, regularity regions

Definition 6.11 The DAE (179) has a properly involved derivative, also called
properly stated leading term, if ker fy is another C1-subspace varying in Rn, and
the transversality condition

ker fy(y, x, t)⊕ imD(t) = Rn, (y, x, t) ∈ Rn ×Df × If , (180)

is valid.

Below, we always assume the DAE (179) to have a properly stated leading
term. To simplify matters we further assume the nullspace ker fy(y, x, t) to be
independent of y. Then, the transversality condition (180) pointwise induces a
projector matrix R(x, t) ∈ L(Rn), the so-called border projector, such that

imR(x, t) = imD(t), kerR(x, t) = ker fy(y, x, t), (y, x, t) ∈ Rn ×Df × If .
(181)

Since both subspaces imD and ker fy are C1-subspaces, the border projector
function R : Df × If → L(Rn) is continuously differentiable, see [50, Lemma
A.20].
Note that, if the subspace ker fy(y, x, t) actually depends on y. then we can mod-

ify the DAE by letting f̃(y, x, t) := f(D(t)D(t)+y, x, t) such that ker f̃y(y, x, t) =
(imD(t))⊥ solely depends on t.

Next we depict the notion of regularity regions of a DAE (179). For this
aims we introduce admissible matrix function sequences and associated projector
functions (cf. [50]). Denote

A(x1, x, t) : = fy(D(t)x1 +D′(t)x, x, t) ∈ L(Rn,Rm),

B(x1, x, t) : = fx(D(t)x1 +D′(t)x, x, t) ∈ L(Rm),

G0(x1, x, t) : = A(x1, x, t)D(t) ∈ L(Rm),

B0(x1, x, t) : = B(x1, x, t) ∈ L(Rm) for x1 ∈ Rm, x ∈ Df , t ∈ If .

The transversality condition (180) implies kerG0(x1, x, t) = kerD(t). We in-
troduce projector valued functions Q0, P0, Π0 ∈ C(If ,L(Rm)) such that for all
t ∈ If

imQ0(t) = N0(t) := kerD(t), Π0(t) := P0(t) := I −Q0(t). (182)
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Since D has constant rank, the orthoprojector function onto N0 is as smooth as
D. Therefore, as Q0 we can choose the orthoprojector function onto N0 which
is even continuously differentiable. Next we determine the generalized inverse
D(x, t)− of D(t) pointwise for all arguments by

D(x, t)−D(t)D(x, t)− = D(x, t)−,

D(t)D(x, t)−D(t) = D(t),

D(x, t)−D(t) = P0(t),

D(t)D(x, t)− = R(x, t).

The resulting function D− is continuous, if P0 is continuously differentiable then
so is also D−.

Definition 6.12 Let the DAE (179) have a properly involved derivative. G ⊆
Df × If be open connected.
For the given level κ ∈ N, we call the sequence G0, . . . , Gκ an admissible matrix
function sequence associated with the DAE (179) on the set G, if it is built
pointwise for all (x, t) ∈ G and all arising xj ∈ Rm by the rule:
set G0 := AD, B0 := B, N0 := kerG0,
for i ≥ 1:

Gi := Gi−1 +Bi−1Qi−1, (183)

Ni := kerGi,
_
Ni := (N0 + · · ·+Ni−1) ∩Ni,

find a complement Xi such that N0 + · · ·+Ni−1 =
_
Ni ⊕Xi,

choose a projector Qi such that imQi = Ni and Xi ⊆ kerQi,

set Pi := I −Qi, Πi := Πi−1Pi,

Bi := Bi−1Pi−1 −GiD−(DΠiD
−)′DΠi−1, (184)

and, additionally,

(a) the matrix function Gi has constant rank ri on Rmi × G, i = 0, . . . , κ,

(b) the intersection
_
Ni has constant dimension ui := dim

_
Ni there,

(c) the product function Πi is continuous and DΠiD
− is continuously differen-

tiable on Rmi × G, i = 0, . . . , κ.

The projector functions Q0, . . . , Qκ linked with an admissible matrix function
sequence are said to be admissible themselves.
An admissible matrix function sequence G0, . . ., Gκ is said to be regular admis-
sible, if

_
Ni = {0} for all i = 1, . . . , κ.

Then, also the projector functions Q0, . . . , Qκ are called regular admissible.
The numbers r0 = rankG0, . . . , rκ = rankGκ and u1, . . . , uκ are named
characteristic values of the DAE on G.

To shorten the wording we often speak simply of admissible projector functions
having in mind the admissible matrix function sequence built with these admis-
sible projector functions. Admissible projector functions are always cross-linked
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with their matrix function sequence. Changing a projector function yields a new
matrix function sequence.

We refer to [50] for many useful properties of the admissible matrix function
sequences. A special instance of a sequence is given in Example 4.4. It always
holds that

r0 ≤ · · · ≤ rκ−1 ≤ rκ.

The notion of characteristic values makes sense, since these values are indepen-
dent of the special choice of admissible projector functions and invariant under
regular transformations.

In case of a linear constant coefficient DAE, the construct simplifies to a
sequence of matrices. In particular, the second term in the definition of Bi
disappears. It is aging ([30]) that a pair {E,F} of m × m matrices E,F is
regular with Kronecker index µ exactly if an admissible sequence of matrices
starting with G0 = AD = E, B0 := F yields

r0 ≤ · · · ≤ rµ−1 < rµ = m. (185)

Thereby, neither the factorization nor the special choice of admissible projectors
do matter. The characteristic values describe the structure of the Weierstraß-
Kronecker form (9): we have l =

∑µ−1
j=0 (m − rj) and the nilpotent part N

contains altogether s = m − r0 Jordan blocks, among them ri − ri−1 Jordan
blocks of order i, i = 1, . . . , µ.

For linear DAEs with time-varying coefficients, the term (·)′ in (184) means
the derivative in time, and all matrix functions are functions in time. In general,
the term (·)′ in (184) stands for the total derivative in jet variables and then the
matrix function Gi depends on the basic variables (x, t) ∈ G and, additionally,
on the jet variables x1, . . . , xi+1 ∈ Rm. Owing to the total derivative (DΠiD

−)′

the new variable xi+2 ∈ Rm comes in at this level, see [50, Section 3.2].
Owing to the constant-rank conditions, the terms DΠiD

− are basically contin-
uous. It may happen that, for making these terms continuously differentiable,
the data function f must satisfy additional smoothness requirements. A precise
description of those smoothness is much too involved and a all overall sufficient
condition, say f ∈ Cm, is much too superficial. To indicate that there might be
additional smoothness demands we restrict us to the wording f be sufficiently
smooth.

The next definition ties regularity up to the inequalities (185) and so gen-
eralizes regularity of matrix pencils for time-varying linear DAEs as well as for
nonlinear DAEs. We emphasize that regularity is supported by several constant-
rank conditions.

Definition 6.13 Let the DAE (179) have a properly involved derivative. Let
G ⊆ Df × If be an open, connected subset. The DAE (179) is said to be

(1) regular on G with tractability index 0, if r0 = m,

(2) regular on G with tractability index µ, if an admissible matrix function se-
quence exists such that (185) is valid on G.

(3) regular on G, if it is, on G, regular with any index (i.e., case (1) or (2)
apply).
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The open connected subset G is called a regularity region or regularity domain.
A point (x̄, t̄) ∈ Df×If is a regular point, if there is a regularity region G 3 (x̄, t̄).
If D ⊆ Df is an open subset and I ⊆ If is a compact subinterval, then the DAE
(179) is said to be regular on D × I, if there is a regularity region G such that
D × I ⊂ G.

Example 6.14 (Regularity regions) We write the DAE

x′1(t) + x1(t) = 0,

x2(t)x′2(t)− x3(t) = 0,

x1(t)2 + x2(t)2 − 1− γ(t) = 0,

in the form (179), with n = 2, m = k = 3,

f(y, x, t) =

 y1 + x1

x2y2 − x3

x2
1 + x2

2 − γ(t)− 1

 , fy(y, x, t) =

1 0
0 x2

0 0

 ,
D(t) =

[
1 0 0
0 1 0

]
,

for y ∈ R2, x ∈ Df = R3, t ∈ If = R.
The derivative is properly involved on the open subsets R2 × G+ and R2 × G−,
G+ := {x ∈ R3 : x2 > 0} × If , G− := {x ∈ R3 : x2 < 0} × If . We have there

G0 = AD =

1 0 0
0 x2 0
0 0 0

 , B0 =

 1 0 0
0 x1

2 −1
2x1 2x2 0.

 .
Letting

Q0 =

0 0 0
0 0 0
0 0 1

 , yields G1 =

1 0 0
0 2x2 −1
0 0 0

 .
G1 is singular but has constant rank. Since N0 ∩N1 = {0} we find a projector
function Q1 such that N0 ⊆ kerQ1. We choose

Q1 =

0 0 0
0 1 0
0 1

x2
0

 , P1 =

1 0 0
0 0 0
0 − 1

x2
1

 , Π1 =

1 0 0
0 0 0
0 0 0

 , DΠ1D
− =

[
1 0
0 0

]
,

and obtain B1 = B0P0Q1, and then

G2 =

1 0 0
0 2x2 + x1

2 −1
0 2x2 0

 .
The matrix G2 = G2(x1, x, t) is nonsingular for all arguments (x1, x, t) with
x2 6= 0. The admissible matrix function sequence terminates at this level. The
open connected subsets G+ and G− are regularity regions, here both with char-
acteristics r0 = 2, r1 = 2, r2 = 3, and tractability index µ = 2. �
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For regular DAEs, all intersections
_
Ni are trivial ones, thus ui = 0, i ≥ 1.

Namely, because of the inclusions

_
Ni ⊆ Ni ∩Ni+1 ⊆ Ni+1 ∩Ni+2 ⊆ · · · ⊆ Nµ−1 ∩Nµ,

for reaching a nonsingular Gµ, which means Nµ = {0}, it is necessary to have
_
Ni = {0}, i ≥ 1. This is a useful condition for checking regularity in practice.

Observe that each open connected subset of a regularity region is again a
regularity region. A regularity region consist of regular points having uniform
characteristics. The union of regularity regions is, if it is connected, a regularity
region, too. Further, the nonempty intersection of two regularity regions is also
a regularity region. Only regularity regions with uniform characteristics may
yield nonempty intersections. Maximal regularity regions are then bordered by
so-called critical points. Solutions may cross the borders of maximal regularity
regions and undergo there bifurcations et cetera, see examples in [50, 56, 49].
No doubt, much further research is needed to elucidate these phenomena.

6.3.2 The structure of linear DAEs

The general DAE (179) captures linear DAEs

A(t)(Dx)′(t) +B(t)x(t)− q(t) = 0 (186)

as f(y, x, t) := A(t)y + B(t)x − q(t), t ∈ If . Now, admissible matrix function
sequences depend only on time t; and hence, we speak on regularity intervals
instead of regions. A regularity interval is open by definition. We say that the
linear DAE with properly leading term is regular on the compact interval [ta, te],
if there is an accommodating regularity interval, or equivalently, if all points of
[ta, te] are regular.
If the linear DAE is regular on the interval I, then it is also regular on each
subinterval of I with the same characteristics. This sounds as a triviality;
however, there is a continuing profound debate about some related questions,
cf. Subsection 4.4.

If the linear DAE (186) is regular on the interval I, then (see [50, Section
2.4]) it can be decoupled by admissible projector functions into an inherent
regular ODE (IERODE)

u′ − (DΠµ−1D
−)′u+DΠµ−1G

−1
µ BµD

−u = DΠµ−1G
−1
µ q (187)

and a triangular subsystem of several equations including differentiations
0 N01 · · · N0,µ−1

0
. . .

...
. . . Nµ−2,µ−1

0




0
(Dv1)′

...
(Dvµ−1)′



+


I M01 · · · M0,µ−1

I
. . .

...
. . . Mµ−2,µ−1

I




v0

v1

...
vµ−1

+


H0

H1

...
Hµ−1

D−u =


L0

L1

...
Lµ−1

 q.
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The subspace imDΠµ−1 is an invariant subspace for the IERODE (187).
This structural decoupling is associated with the decomposition

x = D−u+ v0 + v1 + · · ·+ vµ−1.

The coefficients are continuous and explicitly given in terms of an admissible
matrix function sequence as

N01 := −Q0Q1D
−

N0j := −Q0P1 · · ·Pj−1QjD
−, j = 2, . . . , µ− 1,

Ni,i+1 := −Πi−1QiQi+1D
−,

Nij := −Πi−1QiPi+1 · · ·Pj−1QjD
−, j = i+ 2, . . . , µ− 1, i = 1, . . . , µ− 2,

M0j := Q0P1 · · ·Pµ−1MjDΠj−1Qj , j = 1, . . . , µ− 1,

Mij := Πi−1QiPi+1 · · ·Pµ−1MjDΠj−1Qj , j = i+ 1, . . . , µ− 1, i = 1, . . . , µ− 2,

L0 := Q0P1 · · ·Pµ−1G
−1
µ ,

Li := Πi−1QiPi+1 · · ·Pµ−1G
−1
µ , i = 1, . . . , µ− 2,

Lµ−1 := Πµ−2Qµ−1G
−1
µ ,

H0 := Q0P1 · · ·Pµ−1KΠµ−1,

Hi := Πi−1QiPi+1 · · ·Pµ−1KΠµ−1, i = 1, . . . , µ− 2,

Hµ−1 := Πµ−2Qµ−1KΠµ−1,

with

K := (I −Πµ−1)G−1
µ Bµ−1Πµ−1 +

µ−1∑
l=1

(I −Πl−1)(Pl −Ql)(DΠlD
−)′DΠµ−1,

Mj :=

j−1∑
k=0

(I −Πk){PkD−(DΠkD
−)′ −Qk+1D

−(DΠk+1D
−)′}DΠj−1QlD

−,

l = 1, . . . , µ− 1.

The IERODE is always uncoupled of the second subsystem, but the latter is tied
to the IERODE (187) if among the coefficients H0, . . . ,Hµ−1 is at least one who
does not vanish. One speaks about a fine decoupling, if H1 = · · · = Hµ−1 = 0,
and about a complete decoupling, ifH0 = 0, additionally. A complete decoupling
is given, exactly if the coefficient K vanishes identically.
If the DAE (186) is regular and the original data are sufficiently smooth, then
the DAE (186) is called fine. For fine DAEs, fine and complete decouplings
always exist and can be constructed, see [50, Subsection 2.4.3]. Example 4.4
shows an instance of completely decoupling projectors.

It is noteworthy that, if Q0, . . . , Qµ−1 generate a complete decoupling for a
constant coefficient DAE Ex′(t)+Fx(t) = 0, then Πµ−1 is the spectral projector
of the matrix pencil {E,F}. This way, the projector function Πµ−1 associated
with a complete decoupling of a fine time-varying DAE represents the general-
ization of the spectral projector.
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6.3.3 Linearizations

Given is now a reference function x∗ ∈ C1
D(I∗,Rm) on an individual interval

I∗ ⊆ If , whose values belong to Df . For each such reference function we may
consider the linearization of the (179) along x∗, that is, the linearized DAE

A∗(t)(Dx)′(t) +B∗(t)x(t) = q(t), t ∈ I∗, (188)

with coefficients

A∗(t) := fy((Dx∗)
′(t), x∗(t), t), B∗(t) := fx((Dx∗)

′(t), x∗(t), t), t ∈ I∗.

The linear DAE (188) inherits from the nonlinear DAE (179) the properly stated
leading term.

We denote by Cmref (G) the set of all Cm functions x∗, defined on individual
intervals Ix∗ , and with graph in G, that is, (x∗(t), t) ∈ G for t ∈ Ix∗ . Clearly,
then we have also x∗ ∈ C1

D(Ix∗ ,Rm). By the smoothness of the reference func-
tions x∗ and the function f we ensure that also the coefficients A∗ and B∗ are
sufficiently smooth for regularity.

Next we adapt the necessary and sufficient regularity condition from [50,
Theorem 3.33] to our somewhat simpler situation.

Theorem 6.15 Let the DAE (179) have a properly involved derivative and let
f be sufficiently smooth. Let G ⊆ Df × If be an open connected set. Then the
following statements are valid:

(1) The DAE (179) is regular on G if the linearized DAE (188) along each
arbitrary reference function x∗ ∈ Cmref (G) is regular, and vice versa.

(2) If the DAE (179) is regular on G with tractability index µ and characteristic
values r0 ≤ · · · ≤ rµ−1 < rµ = m, then all linearized DAEs (188) along
reference functions x∗ ∈ Cmref (G) are regular with uniform index µ and
characteristics r0 ≤ · · · ≤ rµ−1 < rµ = m.

(3) If all linearized DAEs (188) along reference functions x∗ ∈ Cmref (G) are reg-
ular, then they have uniform index and characteristics, and the nonlinear
DAE (179) is also regular on G, with the same index and characteristics.

Corollary 6.16 Let the DAE (179) have a properly involved derivative and let
f be sufficiently smooth. Let D ⊆ Df be an open connected set and I ⊂ If be a
compact interval. Then the following statements are valid:

(1) The DAE (179) is regular on D×I if the linearized DAE (188) along each
arbitrary reference function x∗ ∈ Cm(I,Rm) with values in D is regular,
and vice versa.

(2) If the DAE (179) is regular on D × I with tractability index µ and charac-
teristic values r0 ≤ · · · ≤ rµ−1 < rµ = m, then all linearized DAEs (188)
along reference functions x∗ ∈ Cm(I,Rm) with values in D are regular
with uniform index µ and characteristics r0 ≤ · · · ≤ rµ−1 < rµ = m.

(3) If all linearized DAEs (188) along reference functions x∗ ∈ Cm(I,Rm) with
values in D are regular, then they have uniform index and characteristics,
and the nonlinear DAE (179) is also regular on D×I, with the same index
and characteristics.
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Proof: Statement (1) is a consequence of the Statements (2) and (3).
Statement (2) follows from the construction of the admissible matrix function
sequences. Namely, for each x∗ ∈ Cm(I,Rm), with values in D, we have

G0(x′∗(t), x∗(t), t) =: G∗ 0(t),

Bi−1(x
(i+1)
∗ (t), · · · , x′∗(t), x∗(t), t) =: B∗ i−1(t),

Gi(x
(i+1)
∗ (t), · · · , x′∗(t), x∗(t), t) =: G∗ i(t), t ∈ I, i = 1, . . . , µ,

which represents an admissible matrix function sequence for the linearized along
x∗ DAE.
Statement (3) proves along the lines of [50, Theorem 3.33 ] by means of so-called
widely orthogonal projector functions. The prove given in [50] also works, if one
supposes solely compact individual intervals Ix∗ .
By Lemma 6.17 below, each reference function given on an individual compact
interval can be extended to belong to x∗ ∈ Cm(I,Rm), with values in D. �

Lemma 6.17 Let D ⊆ Rm be an open set and I ⊂ R be a compact interval.
Let I∗ ⊂ I be a compact subinterval and s ∈ N.
Then, for each function x∗ ∈ Cs(I∗,Rm), with values in D, there is an extension
f ∈ Cs(I,Rm), with values in D.

Proof: It suffices to verify the statement for the case I = [ta, te], I∗ = [ta, t0],
t0 < te. We put

f(t) : = x∗(t), t ∈ [ta, t0],

f(t) : = x0 + e−α(t−t0)p(t), p(t) := (t− t0)p1 + · · ·+ 1

s!
(t− t0)sps, t ∈ (t0, te].

Letting x0 := x∗(t0) we have a continuous function f . We derive for t > t0 and
j = 1, . . . , s:

f (j)(t) = e−α(t−t0)p(j)(t)−
j−1∑
i=1

αj−i
(
j

i

)
f (i)(t)− αj

(
j

0

)
(f(t)− x0).

Fixing successively the coefficients pj , for j = 1, . . . , s, by

pj = x
(j)
∗ (t0) +

j−1∑
i=1

αj−i
(
j

i

)
x

(i)
∗ (t0),

we ensure that f ∈ Cs(I,Rm). It remains to show that the values of f remain
in D. We compute for t > t0 and positive, sufficiently large alpha:

|f(t)− x0| = |e−α(t−t0)p(t)|

= |(t− t0)e−α(t−t0)p1 + · · ·+ 1

s!
(t− t0)se−α(t−t0)ps|

=
1

α
|α(t− t0)e−α(t−t0)p1 + · · ·+ 1

s!
αs(t− t0)se−α(t−t0) 1

αs−1
ps| ≤ c

1

α
.

The last inequality holds true, since the expressions αj(t − t0)je−α(t−t0) and
| 1
αj−1 pj | are bounded.

Together with x0 ∈ D there is a ball B(x0, ε) ⊂ D. Choosing a sufficient large
α we arrive at c 1

α < ε and we are done. �
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6.4 List of symbols and abbreviations

L(X,Y ) set of linear operators from X to Y
Lb(X,Y ) set of bounded linear operators from X to Y
Lc(X,Y ) set of closed linear operators from X to Y
X∗ dual space
K∗ dual and adjoint operator
K− outer, inner and generalized inverses
K+ orthogonal generalized (Moore-Penrose) inverse
domK definition domain of the map K
kerK nullspace (kernel) of the operator K
imK image (range) of the operator K
ind {E,F} Kronecker index of the matrix pair {E,F}
ind fred(K) Fredholm index of the operator K
〈·, ·〉 scalar product in Rm , dual pairing
(·, ·) scalar product in function spaces
| · | vector and matrix norms
‖ · ‖ norms on function spaces, operator norms
+̇ algebraic direct sum
⊕ topological direct sum
DAE differential-algebraic equation
ODE ordinary differential equation
IVP initial value problem
BVP boundary value problem
LSS least squares solution
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Differentialgleichungen mit höherem Index. Dissertation(B),Habilitation,
Humboldt-Universität zu Berlin, Institut für Mathematik, 1989.

[35] M. Hanke. Linear differential-algebraic equations in spaces of integrable
functions. J. Diff. Eqs., 79:14–30, 1989.

[36] M. Hanke. On the regularization of index 2 differential-algebraic equations.
Journal of Mathematical Analysis and Application, 151:236–253, 1990.

98



[37] M. Hanke. Regularization methods for higher index differential-algebraic
equations. In E. Griepentrog, M. Hanke, and März R, editors, Berlin Semi-
nar on Differential-Algebraic Equations, volume 92-1, pages 105–141. 1992.

[38] M. Hanke. Asymptotic expansions for regularization methods of linear fully
implicit differential-algebraic equations. Zeitschrift für Analysis und ihre
Anwendungen, 13:513–535, 1994.

[39] M. Hanke. Regularization of differential-algebraic equations revisited.
Math. Nachr., 174:159–183, 1995.

[40] M. Hanke, R. März, and A. Neubauer. On the regularization of linear
differential-algebraic equations. In H. W. Engl and C. W. Groetsch, ed-
itors, Inverse and ill-posed problems, volume 4 of Notes and Reports in
Mathematics in Science and Engineering, pages 523–540. Academic Press,
INC. Orlando, 1987.

[41] M. Hanke, R. März, and A. Neubauer. On the regularization of a certain
class of nontransferable differential-algebraic equations. J. of Differential
Equations, 73(1):119–132, 1988.

[42] H. Heuser. Funktionalanalysis. Mathematische Leitfäden. B.G.Teubner
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