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Abstract

This paper analyses an adaptive nonconforming finite element method for eigen-
value clusters of self-adjoint operators and proves optimal convergence rates (with
respect to the concept of nonlinear approximation classes) for the approximation of
the invariant subspace spanned by the eigenfunctions of the eigenvalue cluster. Ap-
plications include eigenvalues of the Laplacian and of the Stokes system.
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1 Introduction

Nonconforming finite element methods (FEMs) are of high interest in computational fluid
dynamics where they provide stable low-order discretisations with favourable local mass
conservation properties. Especially for eigenvalue problems, the nonconforming discretisa-
tion is even more attractive because it allows for a convenient computation of guaranteed
lower eigenvalue bounds [19]. In many practical situations the eigenvalues of interest form
an eigenvalue cluster where all eigenfunctions have to be discretised simultaneously in
adaptive algorithms. This paper applies and generalises the technique of the recent work
[33] to the nonconforming P1 discretisation of the Laplace and Stokes eigenvalue problems
and proves optimal convergence rates of the simultaneous adaptive FEM computation for
the eigenfunctions in the cluster. Optimal convergence rates for adaptive FEMs for eigen-
value problems were established in [26, 18] for simple eigenvalues and in [25] for multiple
eigenvalues for conforming finite elements and in [14] for the nonconforming discretisation
of the first eigenvalue of the Laplacian. The main difference to the analysis of those results
is the additional difficulty that the cluster width should not enter the error estimates as an
additive term. Consider a polyhedral Lipschitz domain Ω ⊆ Rd for d ≥ 2 and a simplicial
triangulation T`. Let W be the invariant subspace spanned by the eigenfunctions of an
eigenvalue cluster and let W` describe the linear hull of the corresponding nonconforming
P1(T`) eigenfunctions. The adaptive algorithm is driven by the explicit residual-based er-
ror estimator contributions of all discrete eigenfunctions in the cluster. The main results
of this paper state that the error quantities

sup
w∈W
‖w‖=1

inf
v`∈W`

|||w − v`|||NC
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(in the case of the Laplace eigenproblem −∆u = λu) and

sup
w∈W
‖w‖=1

inf
v`∈W`

(
|||w − v`|||2NC + ‖p(w)− p(v`)‖2

)1/2
(in the case of the Stokes eigenproblem −∆u+(Dp)> = λu; div u = 0) decay as (card(T`)−
card(T0))−σ, provided all eigenfunctions belong to the approximation class Aσ (resp.
AStokes
σ ). Here, ‖·‖ denotes the L2 norm and |||·|||NC denotes the nonconforming energy

norm (i.e., the L2 norm of the piecewise derivative). Although one can prove using the
techniques of [32] or the different approach of [4] that those error quantities also control
the square root of the eigenvalue error, this paper merely studies the approximation of
the space W . An important methodological tool is the higher-order L2 control for the
eigenfunction approximations which is proven by means of conforming companion opera-
tors. This kind of operators were introduced in [14, 41] in the two-dimensional case and
are generalised in this paper to higher space dimensions d ≥ 2. The resulting L2 error
estimates compare the L2 error directly with the energy error and therefore do not employ
any a priori results of the eigenfunction approximation.

The proofs for optimal convergence rates of adaptive FEMs were initiated by [22, 46]
and extended to nonconforming FEMs for the Poisson equation [3, 42] and the Stokes
equations [2, 21, 39]. These approaches were recently unified in the axiomatic approach of
[12]. The convergence of adaptive FEMs for eigenvalues was proven in [35, 36, 10]. The
optimality results [26, 34, 18] concern simple eigenvalues and conforming FEMs while [14]
establishes optimaliy for the nonconforming discretisation of the first Laplace eigenvalue.
The first optimality analysis for an adaptive algorithm for multiple eigenvalues [25] based on
conforming FEMs introduced a simultaneous bulk criterion for all discrete eigenfunctions
of the multiple eigenvalue. In [33] this marking strategy was proven to lead to optimal
convergence rates in the case of eigenvalue clusters. The results of this paper establish a
corresponding result for the nonconforming P1 FEM and the first optimality result for the
Stokes eigenproblem.

The remaining parts of this paper are organised as follows. Section 2 describes an
abstract framework for the discretisation of eigenvalue clusters. Section 3 introduces the
notation on triangulations and presents the conforming companion operators for the non-
conforming P1 FEM in any space dimension. Section 4 is devoted to the analysis of the
adaptive FEM for the eigenvalues of the Laplacian. Section 5 studies the adaptive FEM
approximation of the eigenvalues of the Stokes system.

Throughout the paper standard notation on Lebesgue and Sobolev spaces is employed.
The integral mean is denoted by

ffl
. The notation a . b abbreviates a ≤ Cb for a positive

generic constant C that may depend on the domain Ω and the initial triangulation T0 but
not on the mesh-size or the eigenvalue cluster of interest. The notation a ≈ b stands for
a . b . a.

2 Approximation of Eigenvalue Clusters

Let (V, a(·, ·)) be a separable Hilbert space over R with induced norm ‖·‖a and let b(·, ·) be a
scalar product on V with induced norm ‖·‖b such that the embedding (V, ‖·‖a) ↪→ (V, ‖·‖b)
is compact. This paper is concerned with eigenvalue problems of the form: Find eigenpairs
(λ, u) ∈ R× V with ‖u‖b = 1 such that

a(u, v) = λb(u, v) for all v ∈ V. (2.1)
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It is well known from the spectral theory of selfadjoint compact operators [40, 23] that the
eigenvalue problem (2.1) has countably many eigenvalues, which are real and positive with
+∞ as only possible accumulation point. Suppose that the eigenvalues are enumerated as

0 < λ1 ≤ λ2 ≤ λ3 ≤ . . .

and let (u1, u2, u3, . . . ) be some b-orthonormal system of corresponding eigenfunctions. For
any j ∈ N, the eigenspace corresponding to λj is defined as

E(λj) := {u ∈ V | (λj , u) satisfies (2.1)} = span{uk | k ∈ N and λk = λj}.

In the present case of an eigenvalue problem of (the inverse of) a compact operator, the
spaces E(λj) have finite dimension. The discretisation of (2.1) is based on a family (over
a countable index set I) of separable (not necessarily finite-dimensional) Hilbert spaces V`
with scalar products aNC(·, ·) and bNC(·, ·) on V +V` with induced norms ‖·‖a,NC and ‖·‖b,NC

such that aNC and bNC coincide with a and b when restricted to V

aNC|V×V = a and bNC|V×V = b.

The discrete eigenvalue problem seeks eigenpairs (λ`, u`) ∈ R× V` with ‖u`‖b,NC = 1 such
that

aNC(u`, v`) = λ`bNC(u`, v`) for all v` ∈ V`. (2.2)

The discrete eigenvalues can be enumerated

0 < λ`,1 ≤ λ`,2 ≤ λ`,3 . . .

with corresponding bNC-orthonormal eigenfunctions (u`,1, u`,2, u`,3 . . . ). For a cluster of
eigenvalues λn+1, . . . , λn+N of length N ∈ N, define the index set J := {n+ 1, . . . , n+N}
and the spaces

W := span{uj | j ∈ J} and W` := span{u`,j | j ∈ J}.

The eigenspaces E(λj) may differ for different j ∈ J .
Assume that the cluster is contained in a compact interval [A,B] in the sense that

{λj | j ∈ J} ∪ {λ`,j | ` ∈ I, j ∈ J} ⊆ [A,B].

This implies
sup
`∈I

max
(j,k)∈J2

max
{
λ−1
k λ`,j , λ

−1
`,j λk

}
≤ B/A. (2.3)

Although in the applications in this paper dim(V`) will be finite-dimensional, the analysis
in this section admits the case dim(V`) ∈ N∪ {∞}. Let JC := {1, . . . ,dim(V`)} \ J denote
the complement of J . Assume that the cluster is separated from the remaining part of the
spectrum in the sense that there exists a separation bound

MJ := sup
`∈I

sup
j∈JC

max
k∈J

λk
|λ`,j − λk|

<∞. (H1)

Given f ∈ V , let u ∈ V denote the unique solution to the linear problem

a(u, v) = b(f, v) for all v ∈ V.
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The quasi-Ritz projection R`u ∈ V` is defined as the unique solution to

aNC(R`u, v`) = bNC(f, v`) for all v` ∈ V`.

Let P` denote the bNC-orthogonal projection onto W` and define

Λ` := P` ◦R`. (2.4)

For any eigenfunction u ∈W , the function Λ`u ∈W` is regarded as its approximation. This
approximation does not depend on the basis of W`. Notice that Λ`u is neither computable
without knowledge of u nor necessarily an eigenfunction.

The following result is essentially contained in the textbook [48] and in [10] for a
conforming finite element discretisation of the Laplace eigenvalue problem. The proof
presented here extends the arguments of [48] to a more abstract situation.

Proposition 2.1. Any eigenpair (λ, u) ∈ R×W of (2.1) with ‖u‖b = 1 satisfies

‖R`u− Λ`u‖b,NC ≤MJ‖u−R`u‖b,NC and
‖u− P`u‖b,NC ≤ ‖u− Λ`u‖b,NC ≤ (1 +MJ)‖u−R`u‖b,NC.

Proof. Set v` := R`u − Λ`u and recall dim(V`) ∈ N ∪ {∞}. Since the eigenfunctions
(u`,j | j = 1, . . . ,dim(V`)) form a bNC-orthonormal system of V` and v` is bNC-orthogonal
on W`, there exist coefficients (αj | j ∈ JC) such that

v` =
∑
j∈JC

αju`,j and
∑
j∈JC

α2
j = ‖v`‖2b,NC.

The definition of R` and the symmetry show that

(λ`,j − λ)bNC(R`u, u`,j) = λbNC(u−R`u, u`,j).

This and the orthogonality of v` and Λ`u lead to

‖v`‖2b,NC = bNC(R`u,
∑
j∈JC

αju`,j) = bNC(u−R`u,
∑
j∈JC

αj
λ

λ`,j − λ
u`,j).

The Cauchy inequality, the estimate (H1) and the bNC-orthogonality of the discrete eigen-
functions therefore show

‖v`‖b,NC ≤MJ‖u−R`u‖b,NC.

The second claimed chain of inequalities follows from the projection property of P` and
the triangle inequality.

The following algebraic identity applies frequently in the analysis. It states the impor-
tant property that, although Λ`u is no eigenfunction in general, Λ`u satisfies an equation
that is similar to an eigenfunction property.

Lemma 2.2. Any eigenpair (λ, u) ∈ R× V of (2.1) satisfies

aNC(Λ`u, v`) = λbNC(P`u, v`) for all v` ∈ V`.

In other words, R` and P` commute, P` ◦R` = R` ◦ P`.

4



Nonconforming AFEM for Eigenvalue Clusters May 15, 2014

Proof. The proof is given in [33, Lemma 2.2] and repeated here for convenient reading.
The representation of Λ`u in terms of the bNC-orthonormal basis (u`,j)j∈J reads as

Λ`u =
∑
j∈J

αju`,j with αj = bNC(R`u, u`,j) for all j ∈ J.

The symmetry of aNC and bNC proves for any j ∈ J that

αj = bNC(R`u, u`,j) = λ−1
`,j aNC(R`u, u`,j) = λ−1

`,j λbNC(u, u`,j).

Therefore, the discrete eigenvalue problem reveals

aNC(Λ`u, v`) =
∑
j∈J

αjλ`,jbNC(u`,j , v`)

= λ
∑
j∈J

bNC(bNC(u, u`,j)u`,j , v`) = λbNC(P`u, v`).

The following result states a comparison of seminorms for the eigenfunctions. The
application in the subsequent sections will be the equivalence of error estimators.

Lemma 2.3. Suppose that

ε := max
j∈J
‖uj − Λ`uj‖b,NC ≤

√
1 + 1/(2N)− 1 for all ` ∈ I. (H2)

Then, both (P`uj)j∈J and (Λ`uj)j∈J form a basis of W`. For any w` ∈W` with ‖w`‖b,NC =
1, the coefficients of the representation w` =

∑
j∈J βjP`uj and w` =

∑
j∈J γjΛ`uj are

controlled as

max

∑
j∈J
|βj |2,

∑
j∈J
|γj |2

 ≤ 2 + 4N for N = card(J). (2.5)

For any ` ∈ I, any seminorm ρ` on V` satisfies

N−1
∑
j∈J

ρ`(λjP`uj)
2 ≤ (B/A)2

∑
j∈J

ρ`(λ`,ju`,j)
2

≤ (B/A)4(2N + 4N2)
∑
j∈J

ρ`(λjP`uj)
2

and

N−1
∑
j∈J

ρ`(Λ`uj)
2 ≤ (B/A)2

∑
j∈J

ρ`(u`,j)
2 ≤ (B/A)4(2N + 4N2)

∑
j∈J

ρ`(Λ`uj)
2.

Proof. The proof follows from Lemma 5.1 and Proposition 5.2 of [33].

3 The Nonconforming P1 Finite Element Space

This section introduces the necessary notation on regular simplicial triangulations and
recalls some elementary facts on the nonconforming P1 finite element space. It furthermore
generalises the companion operators from [14] to higher space dimensions.
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3.1 Notation on Regular Triangulations

Let T0 be a regular simplicial triangulation of Ω in the sense of [47], i.e., ∪T0 = Ω and
any two elements of T0 are either disjoint or share exactly one k-dimensional face for
k ≤ d (e.g., a vertex or an edge). Throughout this paper, any regular triangulation of Ω is
assumed to be admissible in the sense that it is regular and a refinement of T0 created by
the refinement rules of [47] with proper initialisation of the refinement edges [47]. The set
of all admissible refinements is denoted by T. Given a triangulation T` ∈ T, the piecewise
constant mesh-size function h` := hT` is defined by h`|T := hT := meas(T )1/d for any
simplex T ∈ T`.

The set of (d − 1)-dimensional hyper-faces (e.g., edges for d = 2 or faces for d = 3)
of T` is denoted by F` while the interior (d − 1)-dimensional hyper-faces are denoted by
F`(Ω). Let every F ∈ F` be equipped with a fixed normal vector νF . Given F ∈ F`(Ω),
F = ∂T+ ∩ ∂T− shared by two simplices (T+, T−) ∈ T2

` , and a piecewise smooth function
v, define the jump of v across F by

[v]F := v|T+ − v|T− .

For hyper-faces F ⊆ ∂Ω on the boundary, [v]F := v|F denotes the trace. For a simplex T ,
the set of (d− 1)-dimensional hyper-faces belonging to T is denoted by F(T ).

The set of piecewise polynomial functions of degree ≤ k with respect to T` is denoted by
Pk(T`). The L2 projection onto Pk(T`) is denoted by Πk

T`
≡ Πk

` . The k-th order oscillations
of a given function f ∈ L2(Ω) is defined as

osck(f,T`) := ‖h`(1−Πk
` )f‖L2(Ω).

The piecewise action of a differential operator is indicated by the subscript NC, i.e., the
piecewise versions ofD and div read asDNC ≡ DNC(`) and divNC ≡ divNC(`) e.g., (DNCv)|T =
D(v|T ) for any T ∈ T`. The dependence on T` in the notation is dropped whenever there
is no risk of confusion.

3.2 Nonconforming Finite Element Space and Companion Operator

The nonconforming P1 finite element space, sometimes referred to as Crouzeix-Raviart
finite element space [24], reads as

CR1
0(T`) :=

v` ∈ P1(T`)

∣∣∣∣∣∣
v` is continuous in the interior hyper-faces’
midpoints and vanishes in the midpoints
of hyper-faces on the boundary

 .

Let, throughout this subsection, V` := V (T`) := CR1
0(T`) and V := H1

0 (Ω). Given an
admissible refinement T`+m ∈ T(T`) of T`, define the operator ICR` : V + V`+m → V` byˆ

F
(v − ICR` v) ds = 0 for all F ∈ F` and all v ∈ V + V`+m.

Note that ICR` is indeed well-defined for functions in CR1
0(T`+m). A (piecewise) integration

by parts proves the projection property DNCI
CR
` = Π0

`D, i.e.,
ˆ
T
DNCI

CR
` v dx =

ˆ
T
Dv dx for all T ∈ T` and all v ∈ V + V`+m. (3.1)

The proof of the approximation and stability property

‖h−1
T (v − ICR` v)‖L2(T ) + ‖DNC(v − ICR` v)‖L2(T ) . ‖(1−Π0

` )DNCv‖L2(T ) (3.2)

6
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for any v ∈ V + V`+m and any T ∈ T` follows from the discrete Friedrichs inequality [9,
Thm. 10.6.12] and a scaling argument.

The remaining parts of this subsection present conforming companion operators. The
idea behind these operators is to design for a nonconforming finite element function v`
some conforming companion Jd+1v` ∈ V with certain conservation properties. For d = 2
these kind of operators have been constructed by [14] and independently by [41]. The
following result extends [14] to any dimension d ≥ 2.

Proposition 3.1 (companion operator in any space dimension). Given any v` ∈ V` there
exists some Jd+1v` ∈ Pd+1(T`) ∩ V such that v` − Jd+1v` is L2 orthogonal onto the space
P0(T`) of piecewise constants, it enjoys the integral mean property

Π0
` (DNC(v` − Jd+1v`)) = 0, (3.3)

and it satisfies the approximation and stability property

‖h−1
` (v` − Jd+1v`)‖L2(Ω) + ‖DNC(v` − Jd+1v`)‖L2(Ω)

. min
v∈V
‖DNC(v` − v)‖L2(Ω).

(3.4)

Proof. The design follows in three steps.
Step 1. The operator J1 : V` → P1(T`) ∩ V acts on any function v` ∈ V` by averaging

the function values at each interior vertex z, i.e.,

J1v`(z) = card(T`(z))
−1

∑
T∈T`(z)

v`|T (z) for all z ∈ N`(Ω)

where T`(z) := {T ∈ T` | z ∈ T} is the set of simplices that contain the vertex z. This
operator is also known as enriching operator in the context of fast solvers [8]. The proof
of the approximation property

‖h−1
` (v` − J1v`)‖L2(Ω) . min

v∈V
‖DNC(v` − v)‖L2(Ω) (3.5)

is included in [11, Thm. 5.1] for d = 2. A generalisation to higher dimensions is outlined in
the proof of [13, Thm. 4.9]. This and an inverse estimate [9] imply the stability property

‖DNC(v` − J1v`)‖L2(Ω) . min
v∈V
‖DNC(v` − v)‖L2(Ω). (3.6)

Step 2. Given any hyper-face F = conv{z1, . . . , zd} with nodal P1 conforming basis
functions ϕ1, . . . , ϕd ∈ P1(T`) ∩ V, the quadratic edge-bubble function

[F :=
(2d− 1)!

(d− 1)!

d∏
j=1

ϕj

is supported on the patch of F (that is the union of simplices which F belongs to) and
satisfies

ffl
F [F ds = 1. For any function v` ∈ V` the operator Jd : V` → Pd(T`) ∩ V acts as

Jdv` := J1v` +
∑

F∈F`(Ω)

( 
F

(v` − J1v`) ds

)
[F .

An immediate consequence of this choice reads as
 
F
Jdv` ds =

 
F
v` ds for all F ∈ F`.

7
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An integration by parts shows the integral mean property of the gradients Π0
`DJd = DNC,

i.e, ˆ
T
DJdv` dx =

ˆ
T
DNCv` dx for all T ∈ T`.

Let T ∈ T` with F ∈ F(T ). The scaling ‖[F ‖L2(Ω) . h
d/2
T and the Hölder and trace

inequalities [30] show

h−1
T

∥∥∥ ∑
F∈F(T )

( 
F

(v` − J1v`) ds

)
[F

∥∥∥
L2(T )

. h
(d−2)/2
T

∑
F∈F(T )

∣∣∣  
F

(v` − J1v`) ds
∣∣∣

. h
−1/2
T

∑
F∈F(T )

‖v` − J1v`‖L2(F )

. h−1
T ‖v` − J1v`‖L2(T ) + ‖DNC(v` − J1v`)‖L2(T ).

This, the triangle inequality and the properties (3.5)–(3.6) yield

‖h−1
` (v` − Jdv`)‖L2(Ω) . min

v∈V
‖DNC(v` − v)‖L2(Ω). (3.7)

The stability property of Jd follows with an inverse estimate [9]

‖DNC(v` − Jdv`)‖L2(Ω) . ‖h−1
` (v` − Jdv`)‖L2(Ω) . min

v∈V
‖DNC(v` − v)‖L2(Ω).

Step 3. On any simplex T = conv{z1, . . . , zd+1} with nodal basis functions ϕ1, . . . , ϕd+1,
the volume bubble function is defined by

[T :=
(2d+ 1)!

d!

d+1∏
j=1

ϕj ∈ H1
0 (int(T )) (3.8)

and satisfies
ffl
T [T dx = 1. Define

Jd+1v` := Jdv` +
∑
T∈T`

( 
T

(v` − Jdv`) dx
)
[T .

The difference v` − Jd+1v` is L2-orthogonal to all piecewise constant functions. Since [T
vanishes on all F ∈ F`, Jd+1 enjoys the integral mean property Π0

`DJd+1 = DNC. The
Hölder inequality and (3.7) imply∣∣∣∣ 

T
(v` − Jdv`) dx

∣∣∣∣ . h
−d/2
T ‖v` − Jdv`‖L2(T ) . h

−(d−2)/2
T min

v∈V
‖DNC(v` − v)‖L2(Ω).

The scaling ‖D[T ‖L2(Ω) ≈ h
(d−2)/2
T and the triangle inequality prove the stability property

‖DNC(v` − Jd+1v`)‖L2(Ω) . min
v∈V
‖DNC(v` − v)‖L2(Ω).

A piecewise Poincaré inequality proves the approximation property

‖h−1
` (v` − Jd+1v`)‖L2(Ω) . min

v∈V
‖DNC(v` − v)‖L2(Ω).

8



Nonconforming AFEM for Eigenvalue Clusters May 15, 2014

4 Eigenvalues of the Laplacian

This section studies the adaptive nonconforming FEM approximation of the Laplace eigen-
problem. Subsection 4.1 presents L2 and best-approximation estimates for the linear Pois-
son problem. Subsection 4.2 introduces the discretisation of the eigenvalue problem. A
‘theoretical’ (i.e., non-computable) error estimator and its discrete reliability are analysed
in Subsection 4.3. Subsections 4.4–4.5 present the practical AFEM and prove contraction
and optimal convergence rates.

4.1 Nonconforming FEM for the Poisson Model Problem

This subsection revisits the nonconforming P1 discretisation of the linear Poisson equation.
Let V := H1

0 (Ω) be equipped with the scalar products

a(v, w) := (Dv,Dw)L2(Ω) and b(v, w) := (v, w)L2(Ω)

and induced norms |||v||| := a(v, v)1/2 and ‖v‖ := b(v, v)1/2. Given f ∈ L2(Ω), the weak
formulation of the Poisson problem −∆u = f under homogeneous Dirichlet boundary
conditions reads as

a(u, v) = b(f, v) for all v ∈ V. (4.1)

The nonconforming finite element discretisation is based on the space V` := CR1
0(T`) and

the scalar product

aNC(v`, w`) := (DNCv`, DNCw`)L2(Ω) for all (v`, w`) ∈ V 2
`

with norm |||·|||NC := aNC(·, ·) and seeks u` ≡ R`u ∈ V` such that

aNC(u`, v`) = b(f, v`) for all v` ∈ V`. (4.2)

A posteriori and a priori error estimates as well as best-approximation properties for this
problem are well-studied in the literature [6, 27, 37, 17]. Error estimates in the L2 norm
require a modification of the usual duality argument for conforming finite element methods.
The following proposition establishes an L2 error estimate. The main ingredient is the use
of the companion operator Jd+1. For d = 2, this result was first obtained by [14] and
[15]. A similar approach has independently been developed by [41] for d = 2. The result
presented here compares the L2 error directly with the energy error and therefore uses no
a priori results of the eigenfunction approximation. This is important as the L2 control
will usually lead to higher-order terms which can be absorbed for ‖h0‖∞ � 1.

Let 0 < s ≤ 1 indicate the elliptic regularity index of the Poisson problem −∆u = f
with homogeneous Dirichlet boundary conditions in the sense that ‖u‖H1+s(Ω) ≤ C(s)‖f‖L2(Ω).

Proposition 4.1 (L2 error estimate for the linear problem). The exact solution u to (4.1)
and the discrete solution u` to (4.2) satisfy

‖u− u`‖ . ‖h0‖s∞|||u− u`|||NC.

Proof. Let e := u− u` and let z ∈ V denote the solution of

a(z, v) = b(e, v) for all v ∈ V.

Recall the companion operator Jd+1 from Proposition 3.1. Since Π0
` (u` − Jd+1u`) = 0, it

holds that
‖e‖2 = b(Jd+1u` − u`, e) + b(e, u− Jd+1u`)

= b(Jd+1u` − u`, (1−Π0
` )e) + a(z, u− Jd+1u`).

(4.3)

9
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Piecewise Poincaré inequalities and (3.4) lead to

b(Jd+1u` − u`, (1−Π0
` )e) . ‖h0‖2∞|||e|||2NC.

Since e is perpendicular to the conforming finite element functions in P1(T)∩ V and since
Π0
`DNC(u` − Jd+1u`) = 0, the Scott-Zhang quasi-interpolation zC ∈ P1(T) ∩ V of z [45]

satisfies
a(z, u− Jd+1u`) = aNC(e, z) + aNC(u` − Jd+1u`, z)

= aNC(e, z − zC) + aNC(u` − Jd+1u`, z − zC).

The Cauchy inequality and (3.4) imply

aNC(e, z − zC) + aNC(u` − Jd+1u`, z − zC) . |||e|||NC|||z − zC |||NC.

Standard a priori error estimates [9] and the elliptic regularity imply

|||z − zC ||| . ‖h0‖s∞‖z‖H1+s(Ω) . ‖h0‖s∞‖e‖.

The combination of the above estimates proves

‖e‖ . ‖h0‖s∞|||e|||NC.

The next result states a best-approximation property in any space dimension. It gen-
eralises some recent results of the medius analysis [7, 37, 17] to arbitrary space dimensions.
The result is stated with a refined oscillation term osc1(f,T`). This will be important for
the analysis of eigenvalue problems.

Proposition 4.2 (best-approximation property). The solution u ∈ V to (4.1) with right-
hand side f ∈ L2(Ω) and the discrete solution u` ∈ V` to (4.2) satisfy

|||u− u`|||NC . ‖(1−Π0
` )Du‖+ osc1(f,T`).

Proof. The projection property (3.1) of the nonconforming interpolation operator ICR` and
the Pythagoras theorem show that

|||u− u`|||2NC = |||u` − ICR` u|||2NC + |||u− ICR` u|||2NC.

Since |||u−ICR` u|||NC = ‖(1−Π0
` )Du‖, it remains to estimate the first term on the right-hand

side. Set ϕ` := u`− ICR` u. The properties of the companion operator from Proposition 3.1
show that

|||u` − ICR` u|||2NC = aNC(u` − u, ϕ`)
= b(f, ϕ` − Jd+1ϕ`) + ((1−Π0

` )Du,DNC(Jd+1 − 1)ϕ`)L2(Ω).

The approximation and stability properties (3.4) show that this is bounded by

(‖h`f‖+ ‖(1−Π0
` )Du‖)|||ϕ`|||NC.

The efficiency ‖h`f‖ . ‖(1−Π0
` )Du‖+osc1(f,T`) in the spirit of [49] follows from arguments

similar to those of [33, Prop. 3.1]. This concludes the proof.
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4.2 Discretisation of the Laplace Eigenvalue Problem

The Laplace eigenvalue problem seeks eigenpairs (λ, u) ∈ R× V with ‖u‖ = 1 such that

a(u, v) = λb(u, v) for all v ∈ V. (4.4)

The finite element discretisation based on a regular triangulation T` seeks discrete eigen-
pairs (λ`, u`) ∈ R× V` with ‖u`‖ = 1 and

aNC(u`, v`) = λ`b(u`, v`) for all v` ∈ V`. (4.5)

Adopt the notation of Section 2 with exact and discrete eigenvalues

0 < λ1 ≤ λ2 ≤ . . . and 0 < λ`,1 ≤ · · · ≤ λ`,dim(V`)

and their corresponding b-orthonormal systems of eigenfunctions

(u1, u2, u3, . . . ) and (u`,1, u`,2, . . . , u`,dim(V`)).

Recall the definitions of Section 2: The set J = {n+1, . . . , n+N} describes the eigenvalue
cluster of interest and W := span{uj | j ∈ J} and W` := span{u`,j | j ∈ J} are the
exact and discrete invariant subspaces (not necessarily eigenspaces) related to the cluster.
In the present situation, the quasi-Ritz projection R` maps the solution u ∈ V of the
linear problem (4.1) to the solution R`u of the discrete linear problem (4.2). With the L2

projection PT` := P` onto W` let ΛT` := Λ` := P` ◦R`.
The remaining parts of this subsection prove an L2 error estimate as well as a best-ap-

proximation result.

Proposition 4.3 (L2 error control). Provided ‖h0‖∞ � 1, any eigenpair (λ, u) ∈ R×W
with ‖u‖ = 1 satisfies for some constant CL2 and the separation constant MJ from (H1)
(Section 2) that

‖u− P`u‖ ≤ ‖u− Λ`u‖ . (1 +MJ)‖u−R`u‖ ≤ CL2(1 +MJ)‖h0‖s∞|||u− Λ`u|||NC.

Proof. Note that R`u solves (4.2) with right-hand side f := λu. The combination of
Proposition 2.1 with Proposition 4.1 and Proposition 4.2 yields

‖u− P`u‖ ≤ ‖u− Λ`u‖ . (1 +MJ)‖h0‖s∞(|||u− Λ`u|||NC + osc1(λu,T`)).

Provided ‖h0‖∞ � 1, the oscillation term can be absorbed.

Proposition 4.4 (best-approximation property). Provided ‖h0‖∞ � 1, any eigenpair
(λ, u) ∈ R×W of (4.4) with ‖u‖ = 1 satisfies

|||u− Λ`u|||NC . ‖(1−Π0
` )Du‖.

Proof. The triangle inequality proves for the quasi-Ritz projection R`u that

|||u− Λ`u|||NC ≤ |||u−R`u|||NC + |||R`u− Λ`u|||NC.

Set ϕ` := R`u−Λ`u. The definition of R` and the discrete problem (cf. Lemma 2.2) prove
that

|||R`u− Λ`u|||2NC = aNC(R`u− Λ`u, ϕ`) = λb(u− P`u, ϕ`).

11
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Hence, the Cauchy and discrete Friedrichs inequalities [9, Thm. 10.6.12] and the L2 control
from Proposition 4.3 prove that

|||R`u− Λ`u|||NC . λ(1 +MJ)‖h0‖s∞|||u− Λ`u|||NC.

The combination of the foregoing estimates with Proposition 4.2 results in

|||u− Λ`u|||NC . ‖(1−Π0
` )Du‖+ λ(1 +MJ)‖h0‖s∞|||u− Λ`u|||NC + osc1(λu,T`).

If ‖h0‖∞ � 1 is sufficiently small, the higher-order terms on the right-hand side can be
absorbed.

4.3 Theoretical Error Estimator and Discrete Reliability

The analysis relies on a theoretical, non-computable error estimator that does not depend
on the choice of the discrete eigenfunctions. This idea was first presented in [25]. Given
an eigenpair (λ, u), the error estimator includes the elementwise residuals in terms of P`u
and Λ`u. More precisely, define, for any T ∈ T`,

µ2
` (T, λ, u) := h2

T ‖λP`u‖2L2(T ) +
∑

F∈F(T )

h−1
T ‖[Λ`u]F ‖2L2(F )

and, for any subset K ⊆ T`,

µ2
` (K, λj , uj) :=

∑
T∈K

µ2
` (T, λj , uj) and µ2

` (K) :=
∑
j∈J

µ2
` (K, λj , uj).

The following shorthand notation for higher-order terms will be frequently used in
the remaining parts of this section. For (`,m) ∈ N2

0 define (with the constant CL2 from
Proposition 4.3)

r`,m := ‖h0‖s∞λ(1 +MJ)CL2

√
|||u− Λ`u|||2 + |||u− Λ`+mu|||2. (4.6)

The theoretical error estimator satisfies the following discrete reliability.

Proposition 4.5 (discrete reliability). There exists a constant Cdrel ≈ 1 solely dependent
on T0 with ‖h0‖∞ � 1 such that any eigenpair (λ, u) ∈ R ×W of (4.4) with ‖u‖ = 1
satisfies

2|||Λ`+mu− Λ`u|||2 ≤ C2
drel

(
µ2
` (T` \ T`+m, λ, u) + r2

`,m

)
.

Proof. Let v`+m denote the best-approximation (with respect to the norm |||·|||NC) of Λ`u
in V`+m. The Pythagoras theorem reads as

|||(Λ`+m − Λ`)u|||2NC = |||Λ`+mu− v`+m|||2NC + min
w`+m∈V`+m

|||w`+m − Λ`u|||2NC.

The second term has been estimated in [13, Thm. 3.1] by means of the jumps of Λ`u. For
the analysis of the first term, let ϕ`+m := Λ`+mu − v`+m. The projection property (3.1)
of the nonconforming interpolation and the discrete eigenvalue problems (cf. Lemma 2.2)
reveal that

|||Λ`+mu− v`+m|||2NC = aNC((Λ`+m − Λ`)u, ϕ`+m)

= λb((P`+m − P`)u, ϕ`+m) + λb(P`u, (1− ICR` )ϕ`+m).

The L2 error estimate from Proposition 4.3 and the approximation and stability property
(3.2) conclude the proof.
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The reliability of the error estimator is an immediate consequence.

Proposition 4.6 (reliability and efficiency). Provided ‖h0‖∞ � 1, any eigenpair (λ, u) ∈
R×W of (4.4) with ‖u‖ = 1 satisfies

|||u− Λ`u|||2NC ≤ C2
drelµ

2
` (T`, λ, u). (4.7)

For some constant Ceff ≈ 1, it holds that

µ`(T`, λ, u)2 ≤ C2
eff |||u− Λ`u|||2NC. (4.8)

Proof. The reliability

2|||u− Λ`u|||2NC ≤ C2
drel

(
µ2
` (T`, λ, u) + ‖h0‖2s∞λ2(1 +MJ)2|||u− Λ`u|||2NC

)
follows from the discrete reliability on a sequence of meshes T`+m with ‖h`+m‖∞ → 0 and
the a priori convergence result of Proposition 4.4. Provided the initial mesh is sufficiently
fine, the higher-order terms on the right-hand side can be absorbed. The efficiency

2µ2
` (T`, λ, u) ≤ C2

eff

(
1 + λ‖h0‖1+s

∞ (1 +MJ)CL2

)2 |||u− Λ`u|||2NC

follows from the triangle inequality and the L2 error control from Proposition 4.3 combined
with the standard arguments of [49]. The assumption ‖h0‖∞ � 1 implies

µ2
` (T`, λ, u) ≤ C2

eff |||u− Λ`u|||2NC.

4.4 Adaptive Algorithm and Contraction Property

This subsection presents the adaptive algorithm and proves the contraction property.
For any simplex T ∈ T`, the explicit residual-based error estimator consists of the sum

of the residuals of the computed discrete eigenfunctions (u`,j)j∈J ,

η2
` (T ) :=

∑
j∈J

h2
T ‖λ`,ju`,j‖2L2(T ) +

∑
F∈F(T )

h−1
T ‖[u`,j ]F ‖

2
L2(F )

 .

Let, for any subset K ⊆ T,
η2
` (K) :=

∑
T∈K

η2
` (T ).

For simple eigenvalues this type of error estimator was introduced by [28]. The adaptive
algorithm is driven by this computable error estimator and runs the following loop.

Algorithm 4.7 (nonconforming AFEM for the Laplace eigenproblem). .
Input: Initial triangulation T0, bulk parameter 0 < θ ≤ 1.
for ` = 0, 1, 2, . . .
Solve. Compute discrete eigenpairs (λ`,j , u`,j)j∈J of (4.5) with respect to T`.
Estimate. Compute local contributions of the error estimator

(
η2
` (T )

)
T∈T`

.
Mark. Choose a minimal subset M` ⊆ T` such that θη2

` (T`) ≤ η2
` (M`).

Refine. Generate T`+1 := refine(T`,M`) with the refinement rules of [47].
end for
Output: Triangulations (T`)` and discrete solutions

(
(λ`,j , u`,j)j∈J

)
`
.

13



Nonconforming AFEM for Eigenvalue Clusters May 15, 2014

The first important observation is that, by Lemma 2.3, the non-computable error esti-
mator µ`(M`) satisfies the bulk criterion

θ̃µ`(T`) ≤ µ`(M`)

for the modified bulk parameter

θ̃ :=
(
(B/A)4(2N2 + 4N3)

)−1
θ < 1. (4.9)

The following proposition states the error estimator reduction property.

Proposition 4.8 (error estimator reduction for µ`). Provided the assumptions (H1) and
(H2) (see Lemma 2.3) hold, there exist constants 0 < ρ1 < 1 and 0 < K <∞ such that T`
and its one-level refinement T`+1 generated by Algorithm 4.7 and any eigenfunction u ∈W
with ‖u‖ = 1 and eigenvalue λ satisfy (with r`,1 from (4.6)) that

µ2
`+1(T`+1, λ, u) ≤ ρ1µ

2
` (T`, λ, u) +K

(
|||Λ`+1u− Λ`u|||2NC + ‖h0‖2∞r2

`,1

)
.

Proof. The standard techniques of [22, 46] and the bulk criterion (4.9) lead to a constant
K̃ such that

µ2
`+1(T`+1, λ, u)

≤ ρ1µ
2
` (T`, λ, u) + K̃

(
|||Λ`+1u− Λ`u|||2NC + ‖h`+1λ(P`+1 − P`)u‖2

)
.

The triangle inequality for the term ‖h`+1λ(P`+1 − P`)u‖ and the L2 error control from
Proposition 4.3 prove the result.

The next technical result is needed for the reduction of the volume contribution of the
error estimator. Inequalities of this type were previously utilised in [42] for d = 2 for the
linear Poisson problem and in [13] for boundary value problems for d ≥ 2.

Lemma 4.9 (control of the volume contribution). Provided ‖h0‖∞ � 1, any triangulation
T` ∈ T and any admissible refinement T`+m of T` satisfy for any 0 < δ < ∞ and any
eigenpair (λ, u) ∈ R×W of (4.4) with ‖u‖ = 1 that

‖h`+mλP`+mu‖2L2(Ω) + (1 + δ−1)(1− 2−2/d)‖h`λP`u‖2L2(∪(T`\T`+m))

≤ 2(1 + δ)‖h0‖2∞r2
`,m + (1 + δ−1)‖h`λP`u‖2L2(Ω).

Proof. The triangle and Young inequalities prove for any 0 < δ <∞ that

‖h`+mλP`+mu‖2L2(Ω)

≤ (1 + δ)‖h`+mλ(P`+mu− P`u)‖2L2(Ω) + (1 + δ−1)‖h`+mλP`u‖2L2(Ω).

The relation hd`+m ≤ hd`/2 on T` \ T`+m proves

‖h`λP`u‖2L2(∪(T`\T`+m)) ≤ (1− 2−2/d)−1(‖h`λP`u‖2L2(Ω) − ‖h`+mλP`u‖
2
L2(Ω)).

The preceding two displayed formulas together with Proposition 4.3 prove the result.

In the case of nonconforming discretisations of eigenvalue problems, the Galerkin or-
thogonality is violated at two points. First, the nonlinearity leads to a perturbation of the
right-hand side. Furthermore, the nonconforming finite element functions are not admis-
sible test functions in the continuous problem and, thus, additional techniques enter the
analysis. The notion of “quasi-orthogonality” traces back to [20].
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Proposition 4.10 (quasi-orthogonality). Under the hypothesis ‖h0‖∞ � 1 there exists a
constant Cqo such that any eigenpair (λ, u) ∈ R ×W of (4.4) with ‖u‖ = 1, any T` ∈ T,
and any admissible refinement T`+m of T` satisfy

|2aNC(u− Λ`+mu,Λ`+mu− Λ`u)|
≤ Cqo

(
‖h`λP`u‖L2(∪T`\T`+m) + r`,m

)
|||u− Λ`+mu|||NC.

Proof. Some algebraic manipulations with the projection property (3.1) of the noncon-
forming interpolation and the discrete eigenvalue problems (cf. Lemma 2.2) reveal

aNC((1− Λ`+m)u, (Λ`+m − Λ`)u)

= aNC(Λ`+mu, I
CR
`+m(1− Λ`+m)u)− aNC(Λ`u, I

CR
` (1− Λ`+m)u)

= λb(P`+mu, I
CR
`+m(1− Λ`+m)u)− λb(P`u, ICR` (1− Λ`+m)u)

= λb(P`u, (I
CR
`+m − ICR` )(1− Λ`+m)u) + λb((P`+m − P`)u, ICR`+m(1− Λ`+m)u).

Since ICR`+mv|T = ICR` v|T for all T ∈ T` ∩ T`+m, the first term of the right-hand side can be
controlled with (3.2) as

λb(P`u, (I
CR
`+m − ICR` )(1− Λ`+m)u)

. ‖h`λP`u‖L2(∪T`\T`+m)‖DNC(1− Λ`+m)u‖L2(∪T`\T`+m).

For the second term, the discrete Friedrichs inequality [9, Thm. 10.6.12] and the stability
of ICR` reveal

λb((P`+m − P`)u, ICR`+m(1− Λ`+m)u) . λ‖(P`+m − P`)u‖|||u− Λ`+mu|||NC.

The triangle inequality and Proposition 4.3 control the term λ‖(P`+m−P`)u‖ by r`,m from
(4.6). This concludes the proof.

The following contraction property implies the convergence of the adaptive algorithm.

Proposition 4.11 (contraction property). Under the condition ‖h0‖∞ � 1, there exist
0 < ρ2 < 1 and 0 < β, γ < ∞ such that, for any eigenpair (λ, u) ∈ R ×W with ‖u‖ = 1,
the term ξ2

` := µ2
` (T`, λ, u) + β|||u− Λ`u|||2NC + γ‖h`P`u‖2 satisfies

ξ2
`+1 ≤ ρ2ξ

2
` for all ` ∈ N0.

Proof. Throughout the proof, the following shorthand notation applies

e` := |||u− Λ`u|||NC, e`+1 := |||u− Λ`+1u|||NC,

µ2
` := µ2

` (T`, λ, u), µ2
`+1 := µ2

`+1(T`+1, λ, u).

The error estimator reduction from Proposition 4.8 and elementary algebraic manipu-
lations plus the quasi-orthogonality (Proposition 4.10) lead to

µ2
`+1 +Ke2

`+1

≤ ρ1µ
2
` +K

(
e2
` + 2a(u− Λ`+1u, (Λ` − Λ`+1)u) + ‖h0‖2∞r2

`,1

)
≤ ρ1µ

2
` +K

(
e2
` + Cqo

(
‖h`λP`u‖L2(∪T`\T`+1) + r`,1

)
e`+1 + ‖h0‖2∞r2

`,1

)
.
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This and the Young inequality for any 0 < ε < 1 lead to

µ2
`+1 +K(1− Cqoε/2)e2

`+1

≤ ρ1µ
2
` +K

(
e2
` + Cqo/ε

(
‖h`λP`u‖2L2(∪T`\T`+m) + r2

`,1

)
+ ‖h0‖2∞r2

`,1

)
.

The reliability (4.7) proves for any 0 < ζ <∞ that this is bounded by

(ρ1 +KζC2
drel)µ

2
`

+K
(

(1− ζ)e2
` + Cqo/ε(‖h`λP`u‖2L2(∪T`\T`+m) + r2

`,1) + ‖h0‖2∞r2
`,1

)
.

Lemma 4.9 states for any 0 < δ <∞ and cd := (1− 2−2/d) that

‖h`λP`u‖2L2(∪(T`\T`+1)) ≤
2δ‖h0‖2∞r2

`,1

cd
+
‖h`λP`u‖2

cd
− ‖h`+1λP`+1u‖2

(1 + δ−1)cd
.

Altogether,

µ2
`+1 +K

(
(1− Cqoε/2)e2

`+1 +
Cqo‖h`+1λP`+1u‖2

ε(1 + δ−1)cd

)
≤ (ρ1 +KζC2

drel)µ
2
` +K

(
(1− ζ)e2

`

+
(
ε−1Cqo(1 + 2δ‖h0‖2∞/cd) + ‖h0‖2∞

)
r2
`,1 +

Cqo‖h`λP`u‖2

εcd

)
.

Define

t(h0, ε, δ) := C2
drel‖h0‖2s∞λ2(1 +MJ)2C2

L2K
(
ε−1Cqo(1 +

2δ‖h0‖2∞
cd

) + ‖h0‖2∞
)
.

Recall the definition (4.6) of r`,1. The reliability (4.7) implies

K
(
ε−1Cqo(1 + 2δ‖h0‖2∞/cd) + ‖h0‖2∞

)
r2
`,1 ≤ t(h0, ε, δ)(µ

2
` + µ2

`+1).

This and the fact that ‖h`λP`u‖2 ≤ µ2
` together with the foregoing estimates prove

(1− t(h0, ε, δ))µ
2
`+1 +K

(
(1− Cqoε/2)e2

`+1 +
Cqo‖h`+1λP`+1u‖2

ε(1 + δ−1)cd

)
≤ (ρ1 +KζC2

drel + t(h0, ε, δ) +Kε)µ2
`

+K

(
(1− ζ)e2

` +
(Cqo

εcd
− ε
)
‖h`λP`u‖2

)
.

Hence, for

β :=
K(1− Cqoε/2)

1− t(h0, ε, δ)
, γ :=

KCqo

ε(1 + δ−1)cd(1− t(h0, ε, δ))
,

and

ρ2 := max

{
ρ1 +KζC2

drel + t(h0, ε, δ) +Kε

1− t(h0, ε, δ)
,

1− ζ
1− Cqoε/2

, (1 + δ−1)(Cqo − ε2cd)/Cqo

}
,

it follows that

µ`+1 + βe2
`+1 + γ‖h`+1λP`+1u‖2 ≤ ρ2(µ` + βe2

` + γ‖h`λP`u‖2).

Choose δ := Cqo/(ε
2cd) and ε < 2ζC−1

qo . The choice of sufficiently small ζ, ε and ‖h0‖∞
yields ρ2 < 1.
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4.5 Optimal Convergence Rates

Let, for any m ∈ N, the set of triangulations in T whose cardinality differs from that of T0

by m or less be denoted by

T(m) := {T ∈ T | card(T)− card(T0) ≤ m}.

Define the seminorm
|u|Aσ := sup

m∈N
mσ inf

T∈T(m)
‖(1−Π0

T)Du‖

and the approximation class

Aσ :=
{
v ∈ V

∣∣ |v|Aσ <∞} .
Define the following alternative set, also referred to as approximation class

ANC,∆
σ :=

{
u ∈ V

∣∣ |u|
ANC,∆
σ

<∞
}

for
|u|

ANC,∆
σ

:= sup
m∈N

mσ inf
T∈T(m)

|||u− ΛTu|||NC

for the eigenfunction approximation ΛTu with respect to a triangulation T. Proposition 4.4
proves that these two approximation classes are equivalent in the sense that any eigenfunc-
tion u ∈W belongs to Aσ if and only if it belongs to ANC,∆

σ . The following theorem states
optimality of Algorithm 4.7. The proof follows in the remaining parts of this section.

Theorem 4.12 (optimal convergence rates). Provided the bulk parameter θ � 1 and the
initial mesh-size ‖h0‖∞ � 1 are sufficiently small, Algorithm 4.7 computes sequences of tri-
angulations (T`)` and discrete eigenpairs ((λ`,j , u`,j)j∈J)` with optimal rate of convergence
in the sense that, for some constant Copt,

sup
`∈N

(
card(T`)− card(T0)

)2σ∑
j∈J
|||uj − Λ`uj |||2NC ≤ Copt

∑
j∈J
|uj |2ANC,∆

σ
.

Proposition 4.4 implies the following immediate consequence.

Corollary 4.13. Provided the bulk parameter θ � 1 and the initial mesh-size ‖h0‖∞ � 1
are sufficiently small, Algorithm 4.7 computes triangulations (T`)` and discrete eigenpairs
((λ`,j , u`,j)j∈J)` with optimal rate of convergence in the sense that

sup
`∈N

(card(T`)− card(T0))σ sup
w∈W
‖w‖=1

inf
v`∈W`

|||w − v`|||NC .

∑
j∈J
|uj |2Aσ

1/2

.

The remaining part of this subsection is devoted to the proof of Theorem 4.12 which
follows the methodology of [46, 22] as in [33]. The optimality proof of this section is
concerned with the simultaneous error of all eigenfunction approximations. Consider

Ξ2
` := µ2

` (T`) + β
∑
j∈J
|||uj − Λ`uj |||2NC + γ

∑
j∈J
‖h`λjP`uj‖2 for all ` ∈ N0

for the parameters β and γ from Proposition 4.11. The proof excludes the pathological
case Ξ0 = 0. Choose 0 < τ ≤

∑
j∈J |uj |2ANC,∆

σ
/Ξ2

0, and set ε(`) :=
√
τ Ξ`. Let N(`) ∈ N be

minimal with the property ∑
j∈J
|uj |2ANC,∆

σ
≤ ε(`)2N(`)2σ.
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Let for a fixed ` ∈ N, T̃` ∈ T denote the optimal triangulation of cardinality

card(T̃`) ≤ card(T0) +N(`)

in the sense that the projection Λ̃ := Λ
T̃`

with respect to T̃` satisfies∑
j∈J
|||uj − Λ̃uj |||2NC ≤ N(`)−2σ

∑
j∈J
|uj |2ANC,∆

σ
≤ ε(`)2 (4.10)

and define T̂` := T` ⊗ T̃` as the overlay [22], that is the smallest common refinement of T`
and T̃`. The arguments of [22, 33] lead to

card(T` \ T̂`) ≤ N(`) ≤ 2

(∑
j∈J
|uj |2ANC,∆

σ

)1/(2σ)

ε(`)−1/σ. (4.11)

Let Λ̂ := Λ
T̂`

denote the projection with respect to T̂`.

Lemma 4.14. Provided ‖h0‖∞ � 1, it holds that∑
j∈J
|||uj − Λ̂uj |||2NC . ε(`)2.

Proof. Recall that by definition of the overlay [22] the triangulations T̂` and T̃` are nested.
Hence, the best-approximation result of Proposition 4.4 and (4.10) prove∑

j∈J
|||uj − Λ̂uj |||2NC .

∑
j∈J
|||uj − Λ̃uj |||2NC ≤ ε(`)2.

Lemma 4.15 (key argument). Provided ‖h0‖∞ � 1, there exists C2 ≈ 1 such that

µ2
` (T`) ≤ C2µ

2
` (T` \ T̂`).

Proof. The triangle inequality and the Young inequality imply for any j ∈ J , that

|||uj − Λ`uj |||2NC ≤ 2|||uj − Λ̂uj |||2NC + 2|||Λ̂uj − Λ`uj |||2NC.

Hence, the discrete reliability from Proposition 4.5 leads to

|||uj − Λ`uj |||2NC ≤(2 + C2
drelλ

2
j‖h0‖2s∞(1 +MJ)2C2

L2)|||uj − Λ̂uj |||2NC

+ C2
drelλ

2
j‖h0‖2s∞(1 +MJ)2C2

L2 |||uj − Λ`uj |||2NC

+ C2
drelµ

2
` (T` \ T̂`, λj , uj).

The term with |||uj−Λ`uj |||2NC can be absorbed for sufficiently small ‖h0‖∞ � 1. Therefore,
Lemma 4.14 implies for constants C3 ≈ 1 ≈ C4 and ‖h0‖∞ � 1 that∑

j∈J
|||uj − Λ`uj |||2NC ≤ C3ε(`)

2 + C4µ
2
` (T` \ T̂`).

Let Ceq denote the constant of C3Ξ2
` ≤ Ceqµ

2
` (T`) (which exists by reliability). The effi-

ciency (4.8), the definition of ε(`) and the preceding estimates prove

C−2
eff µ

2
` (T`) ≤ C3ε(`)

2 + C4µ
2
` (T` \ T̂`)

≤ τCeqµ
2
` (T`) + C4µ

2
` (T` \ T̂`).

For a sufficiently small choice of τ , the constant C2 := (C−2
eff − τCeq)−1C4 is positive.
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The finish of the optimality proof follows the arguments of [22, 46]. The proof is
identical to that of [33, Lemma 7.3] and therefore omitted.

Lemma 4.16 (finish of the optimality proof). The choice

0 < θ ≤ 1
/(
C2(B/A)4(2N2 + 4N3)

)
implies the existence of a constant C(σ) such that

(
card(T`)− card(T0)

)σ∑
j∈J
|||uj − Λ`uj |||2NC

1/2

≤ C(σ)

(∑
j∈J
|uj |2ANC,∆

σ

)1/2

.

5 Eigenvalues of the Stokes System

This section studies the adaptive nonconforming FEM approximation of the Stokes eigen-
problem. Subsection 5.1 presents new L2 and best-approximation estimates for the linear
Stokes equations. Subsection 5.2 introduces the discretisation of the eigenvalue problem.
A theoretical error estimator and its discrete reliability are analysed in Subsection 5.3.
Subsections 5.4–5.5 present the practical AFEM and prove contraction and optimal con-
vergence rates. Whenever there is no significant modification compared to the case of the
eigenvalues of the Laplacian, the arguments are merely sketched.

5.1 Nonconforming Discretisation of the Stokes Equations

One important advantage of the nonconforming P1 finite element method is that it provides
a stable low-order discretisation of the Stokes equations [24]. The strong form of the linear
Stokes equations for a given force f seeks the velocity field u and the pressure p such that

−∆u+ (Dp)> = f and div u = 0 in Ω, u|∂Ω = 0.

Conforming finite elements satisfying the constraint div u = 0 pointwise a.e. are rather
complicated, see [44, 38]. The nonconforming P1 finite element satisfies favourable local
mass-conservation property for the piecewise divergence.

Let V := [H1
0 (Ω)]d and M := L2

0(Ω) := {q ∈ L2(Ω) |
´

Ω q dx = 0} and define the
bilinear form

a(v, w) := (Dv,Dw)L2(Ω) for all (v, w) ∈ V 2

with induced norm |||·|||. Furthermore define

b(v, q) := −(div v, q)L2(Ω) for all (v, q) ∈ V ×M

and set c(·, ·) := (·, ·)L2(Ω) with ‖·‖ := ‖·‖L2(Ω).
Given f ∈ [L2(Ω)]d, the linear Stokes problem seeks (u, p) ∈ V ×M such that

a(u, v) + b(v, p) = c(f, v) for all v ∈ V,
b(u, q) = 0 for all q ∈M.

(5.1)

This mixed system can be reformulated as an elliptic problem. Let Z := {v ∈ V | div v = 0}
denote the space of divergence-free vector fields. Problem (5.1) is equivalent to

a(u, v) = c(f, v) for all v ∈ Z (5.2)
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and the pressure variable p plays the role of a Lagrange multiplier. The equivalence with
(5.1) follows from the Ladyzhenskaya lemma [9, 1] which states that the divergence operator
div : V →M has a continuous right-inverse. Note that (5.1) carries more information than
(5.2) in the sense that the pressure variable p extracts information from f ∈ [L2(Ω)]d even
if f is zero as an element of the dual space Z?.

The nonconforming P1 finite element discretisation of the linear Stokes equations is
based on the nonconforming finite element space V` :=

[
CR1

0(T`)
]d and M` := P0(T`) ∩

L2
0(Ω) and the bilinear forms

aNC(v`, w`) := (DNCv`, DNCw`)L2(Ω) for all (v`, w`) ∈ V 2
`

with induced norm |||·|||NC and

bNC(v`, q`) := −(divNC v`, q`)L2(Ω) for all (v`, q`) ∈ V` ×M`.

The nonconforming FEM seeks (u`, p`) ∈ V` ×M` such that

aNC(u`, v`) + bNC(v`, p`) = c(f, v`) for all v` ∈ V`,
bNC(u`, q`) = 0 for all q` ∈M`.

(5.3)

The well-posedness follows from the discrete inf-sup condition [5]

0 < β ≤ inf
q`∈M`\{0}

sup
v`∈V`\{0}

bNC(v`, q`)

|||v`|||NC ‖q`‖
. (5.4)

Obviously, the discrete solution u` of (5.3) is piecewise divergence-free, divNC u` = 0. The
equivalent formulation based on the space Z` := {v` ∈ V` | divNC v` = 0} reads as

aNC(u`, v`) = b(f, v`) for all v` ∈ Z`. (5.5)

Note that the nonconforming interpolation operator ICR` maps the space Z onto Z`.
This follows from the projection property (3.1). It is well-established in the literature [29]
and follows from the discrete inf-sup condition (5.4) of the system (5.3) that the error in
the pressure variable can be controlled as

‖p− p`‖ . ‖h`f‖+ |||u− u`|||NC. (5.6)

The main difference to the analysis of the Laplace operator is that the pressure variable
enters the analysis even if one considers the elliptic formulations (5.2) and (5.5). One
reason is that the companion operator Jd+1 from Proposition 3.1 does not map the space
Z` on Z only. Also the efficiency error estimate of the volume term ‖h`f‖ leads to a
pressure term on the right-hand side.

The following best-approximation result has been proved by [16] with techniques from
the medius analysis [37] for the case d = 2,

‖p− p`‖+ |||u− u`|||NC . ‖(1−Π0
` )p‖+ ‖(1−Π0

` )Du‖+ osc0(f,T`).

The following result gives a generalisation to d ≥ 2 space dimensions with a refined oscil-
lation term.

Proposition 5.1 (best-approximation result). Let f ∈ [L2(Ω)]d. Then, the solution
(u, p) ∈ V ×M of (5.1) and the discrete solution (u`, p`) ∈ V` ×M` of (5.3) satisfy

|||u− u`|||NC + ‖p− p`‖ . ‖(1−Π0
` )Du‖+ ‖(1−Π0

` )p‖+ osc1(f,T`).
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Proof. The projection property (3.1) of the nonconforming interpolation operator ICR` and
the Pythagoras theorem show that

|||u− u`|||2NC = |||u` − ICR` u|||2NC + |||u− ICR` u|||2NC.

Since |||u−ICR` u|||NC = ‖(1−Π0
` )Du‖, it remains to estimate the first term on the right-hand

side. Set ϕ` := u`− ICR` u. The properties of the companion operator from Proposition 3.1
and divNC u` = 0 = divNC ICR` u show that

|||u` − ICR` u|||2NC = aNC(u` − u, ϕ`)
= c(f, ϕ` − Jd+1ϕ`)− bNC(ϕ` − Jd+1ϕ`, (1−Π0

` )p)

+ ((1−Π0
` )Du,DNC(Jd+1 − 1)ϕ`)L2(Ω).

The approximation and stability properties (3.4) show that this is bounded by

(‖h`f‖+ ‖(1−Π0
` )p‖+ |||u` − ICR` u|||NC)|||ϕ`|||NC.

The efficiency ‖h`f‖ . ‖(1−Π0
` )Du‖+‖(1−Π0

` )p‖+osc1(f,T`) in the sense of [49] follows
from arguments similar to those of [33, Prop. 3.1]. This and (5.6) conclude the proof.

Remark 5.2. One may ask whether possibly an estimate of the type

|||u− u`|||NC . ‖(1−Π0
` )Du‖+ oscillations

may be valid. To see that the esimate is indeed untrue consider the case of a simply-
connected domain Ω for d = 2 and the constant right-hand side f = (1, 1). Clearly, f
is an irrotational vector field which implies that there is a function ψ ∈ H1(Ω) such that
f = Dψ. The integration by parts therefore shows that

c(f, v) = 0 for all v ∈ Z.

Hence, u = 0 and the right-hand side of the estimate equals zero, while the left-hand side
equals |||u`|||NC. The latter, however, is not zero because f does not represent the zero
functional in the dual space Z?` , although it is zero in Z?. This is due to the fact that the
integration by parts with functions v` ∈ Z` leads to additional jump terms.

The next result is an L2 error estimate for arbitrary regularity of the solution. Let
0 < s ≤ 1 indicate the elliptic regularity of the problem (5.1) in the sense that [31, 43]

‖u‖H1+s(Ω) + ‖p‖Hs(Ω) ≤ C(s)‖f‖L2(Ω). (5.7)

Proposition 5.3 (L2 error control for the linear Stokes problem). The exact solution
(u, p) ∈ V ×M of the linear problem (5.1) and its nonconforming finite element approxi-
mation (u`, p`) ∈ V` ×M` from (5.3) satisfy

‖u− u`‖ . ‖h`‖s∞(|||u− u`|||NC + ‖p− p`‖+ osc1,1(f,T`)).

Proof. Let (z, q) ∈ V × M denote the solution of problem (5.1) with right-hand side
e := u−u` and set v := u−Jd+1u` for the companion operator Jd+1 from Proposition 3.1.
Since Π0

` (u` − Jd+1u`) = 0, it holds that

‖e‖2 = c(Jd+1u` − u`, e) + c(e, v)

= (Jd+1u` − u`, (1−Π0
` )e)L2(Ω) + a(z, v) + b(v, q).

(5.8)
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Piecewise Poincaré inequalities and (3.4) lead to

(Jd+1u` − u`, (1−Π0
` )e)L2(Ω) . ‖h0‖2∞|||e|||2NC.

The definition of v and div u = 0 = divNC u` prove

a(z, v) + b(v, q) = aNC(e, z) + aNC((1− Jd+1)u`, z) + bNC(u` − Jd+1u`, q). (5.9)

The projection property (3.1) of ICR` and the continuous and discrete problems (5.1) and
(5.3) followed by the approximation and stability properties (3.2) of ICR` show for the first
term on the right-hand side of (5.9) that

aNC(e, z) = a(u, z)− aNC(u`, I
CR
` z) = (f, z − ICR` z)L2(Ω) . ‖h`f‖‖(1−Π0

` )Dz)‖.

Recall that divNC ICR` z = div z = 0. The projection property (3.3) and the stability (3.4)
of Jd+1 show for the second term on the right-hand side of (5.9) that

aNC((1− Jd+1)u`, z) = (DNC(1− Jd+1)u`, (1−Π0
` )Dz)L2(Ω)

≤ |||u− u`|||NC‖(1−Π0
` )Dz‖.

Since Π0
` div(u` − Jd+1u`) = 0, the third contribution of (5.9) satisfies

bNC((u` − Jd+1u`), q) = bNC(u` − Jd+1u`, (1−Π0
` )q)

≤ |||u` − Jd+1u`|||NC ‖(1−Π0
` )q‖.

The best-approximation property (3.4) of Jd+1 proves that |||u` − Jd+1u`|||NC . |||e|||NC.
Altogether,

‖e‖2 . ‖h0‖2∞|||e|||2NC + ‖h`f‖‖(1−Π0
` )Dz)‖

+ |||e|||NC

(
‖(1−Π0

` )q‖+ ‖(1−Π0
` )Dz‖

)
.

Standard a priori estimates [9] and the elliptic regularity (5.7) imply

‖(1−Π0
` )Dz)‖+ ‖(1−Π0

` )q‖ . ‖h0‖s∞‖e‖.

The combination of the above estimates proves

‖e‖ . ‖h0‖s∞(|||e|||NC + ‖h`f‖).

An efficiency estimate similar to that of [33, Prop. 3.1] proves

‖h`f‖ . ‖(1−Π0
` )Du‖+ ‖(1−Π0

` )p‖+ osc1,1(f,T`).

This concludes the proof.

Remark 5.4. The right-hand side in Proposition 5.3 is also an upper bound for p − p`
in the H−1 norm. Although the proof is not difficult, it is not given here because the H−1

error control is not required in the analysis of this paper.
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5.2 Discretisation of the Stokes Eigenvalue Problem

The Stokes eigenvalue problem seeks (λ, u, p) ∈ R× V ×M with ‖u‖ = 1 such that

a(u, v) + b(v, p) = λ c(u, v) for all v ∈ V,
b(u, q) = 0 for all q ∈M.

(5.10)

Although (λ, u, p) is rather a triple than a pair it is referred to as eigenpair and identified
with the pair (λ, (u, p)). As in the foregoing section, an equivalent formulation reads as

a(u, v) = λ c(u, v) for all v ∈ Z. (5.11)

The nonconforming FEM seeks (u`, p`) ∈ V` ×M` with ‖u`‖ = 1 such that

aNC(u`, v`) + bNC(v`, p`) = λ` c(u`, v`) for all v` ∈ V`,
bNC(u`, q`) = 0 for all q` ∈M`.

(5.12)

An equivalent formulation reads as

aNC(u`, v`) = λ` c(u`, v`) for all v` ∈ Z`. (5.13)

The elliptic formulation on the spaces Z and Z` shows that this problem fits in the frame-
work of Section 2 (where b from Section 2 is replaced by c) with exact and discrete eigen-
values

0 < λ1 ≤ λ2 ≤ . . . and 0 < λ`,1 ≤ · · · ≤ λ`,dim(Z`)

and their corresponding c-orthonormal systems of eigenfunctions

(u1, u2, u3, . . . ) ∈ ZN and (u`,1, u`,2, . . . , u`,dim(Z`)) ∈ Z
dim(Z`)
` .

The corresponding pressures are denoted by p1, p2, . . . and p`,1, . . . , p`,dim(Z`), respectively.
Recall the definitions of Section 2: The set J = {n+1, . . . , n+N} describes the eigenvalue
cluster of interest and W := span{uj | j ∈ J} ⊆ Z and W` := span{u`,j | j ∈ J} ⊆ Z`
are the exact and discrete invariant subspaces (not necessarily eigenspaces) related to the
cluster. In the present situation, the quasi-Ritz projection R` maps the solution u ∈ Z
of the linear problem (5.2) to the solution R`u ∈ Z` of the discrete linear problem (5.5)
with discrete pressure p(R`u) ∈ M` from (5.3). The L2 projection onto W` is denoted by
PT` := P`. Furthermore ΛT` := Λ` := P` ◦R`. In view of Lemma 2.2, the discrete pressure
p(Λ`u) ∈M` corresponding to Λ`u is defined via

aNC(Λ`u, v`) + bNC(v`, p(Λ`u)) = λc(P`u, v`) for all v` ∈ V`. (5.14)

It is not difficult to see that p(Λ`u) is well-defined: Lemma 2.2 shows that Λ`u solves the
discrete source problem (5.5) with right-hand side f = P`u. Hence, p(Λ`u) is the discrete
pressure (or Lagrange multiplier) of (5.3).

The following result gives an L2 error estimate for the eigenfunctions.

Proposition 5.5 (L2 error estimate). Provided ‖h0‖∞ � 1, there exists a constant CL2

such that any eigenpair (λ, u, p) ∈ R×W ×M of (5.10) with ‖u‖ = 1 satisfies

‖u− P`u‖ ≤ ‖u− Λ`u‖ ≤ CL2(1 +MJ)‖h0‖s∞(‖(1−Π0
` )Du‖+ ‖(1−Π0

` )p‖).

23



Nonconforming AFEM for Eigenvalue Clusters May 15, 2014

Proof. Proposition 2.1 and the L2 error estimate from Proposition 5.3 result in the following
inequality for the solution (R`u, p(R`u)) of (5.3) to the right-hand side f := λu,

‖u− P`u‖ ≤ ‖u− Λ`u‖
. (1 +MJ)‖h`‖s∞

(
|||u−R`u|||NC + ‖p− p(R`u)‖+ osc1,1(λu,T`)

)
.

The best-approximation result for the linear Stokes problem (Proposition 5.1) therefore
yields

‖u− Λ`u‖ . (1 +MJ)‖h`‖s∞
(
‖(1−Π0

` )Du‖+ ‖(1−Π0
` )p‖+ osc1(λu,T`)

)
.

If the initial mesh-size is sufficiently small, the discrete Friedrichs inequality [9, Thm. 10.6.12]
allows to absorb the oscillation terms on the right-hand side.

The L2 error control and the best-approximation of the quasi-Ritz projection from
Proposition 5.1 result in the following best-approximation property for the eigenfunction
approximation.

Proposition 5.6 (best-approximation property). Provided the initial mesh-size is suffi-
ciently fine ‖h0‖∞ � 1, any eigenpair (λ, u, p) ∈ R × W ×M of (5.12) with ‖u‖ = 1
satisfies

|||u− Λ`u|||NC + ‖p− p(Λ`u)‖ . ‖(1−Π0
` )Du‖+ ‖(1−Π0

` )p‖.

Proof. The L2 control of Proposition 5.5 and the best-approximation result for the linear
case of Proposition 5.1 enable the arguments from the proof of Proposition 4.4. The details
are omitted for brevity.

5.3 Theoretical Error Estimator and Discrete Reliability

The analysis relies on a theoretical, non-computable error estimator that does not depend
on the choice of the discrete eigenfunctions. Given an eigenpair (λ, u), the theoretical error
estimator includes the elementwise residuals in terms of P`u and Λ`u. More precisely,
define, for any T ∈ T`,

µ2
` (T, λ, u) := h2

T ‖λP`u‖2L2(T ) +
∑

F∈F(T )

h−1
T ‖[Λ`u]F ‖2L2(F )

and, for any subset K ⊆ T`,

µ2
` (K, λj , uj) :=

∑
T∈K

µ2
` (T, λj , uj) and µ2

` (K) :=
∑
j∈J

µ2
` (K, λj , uj).

The following shorthand notation for higher-order terms will be frequently used in the
remaining parts of this section. For (`,m) ∈ N2

0 define

r`,m := ‖h0‖s∞(1 +MJ)CL2

(
‖p− p(Λ`u)‖2 + ‖p− p(Λ`+mu)‖2

+ |||u− u`|||2NC + |||u− u`+m|||2NC

)1/2
.

(5.15)

The following result states the discrete reliability for the theoretical error estimator.
The discrete reliability for the linear Stokes problem was first established by [39, 21]. The
proof presented here is valid for the eigenvalue problem and any space dimension.
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Proposition 5.7 (discrete reliability). There exists a constant Cdrel ≈ 1 such that, for
any eigenpair (λ, u, p) ∈ R ×W ×M of (5.10) with ‖u‖ = 1, any admissible refinement
T`+m of T` ∈ T and the respective discrete eigenfunction approximations Λ`u ∈ V` and
Λ`+mu ∈ V`+m satisfy

‖p(Λ`+mu)− p(Λ`u)‖2

. |||(Λ`+m − Λ`)u|||2NC + ‖h`λP`u‖2L2(∪T`\T`+m) + r2
`,m,

(5.16)

and
2
(
|||(Λ`+m − Λ`)u|||2NC + ‖p(Λ`+mu)− p(Λ`u)‖2

)
≤ C2

drel

(
µ2
` (T` \ T`+m) + r2

`,m

)
.

(5.17)

Proof. The discrete inf-sup condition (5.4) shows that there exists some ϕ`+m ∈ V`+m with
|||ϕ`+m|||NC = 1 such that

‖p(Λ`+mu)− p(Λ`u)‖ . bNC(ϕ`+m, p(Λ`+mu)− p(Λ`u)).

The discrete eigenvalue problems on the levels `+m and ` (recall Lemma 2.2 and (5.14)),
some algebra and the integral mean property (3.1) of the nonconforming interpolation
operator ICR` show that

b(ϕ`+m, p(Λ`+mu)− p(Λ`u))

= c(λ(P`+m − P`)u, ϕ`+m) + c(λP`u, (1− ICR` )ϕ`+m)

− aNC((Λ`+m − Λ`)u, ϕ`+m).

Proposition 5.5 and the discrete Friedrichs inequality [9, Thm. 10.6.12] control the first
term on the right-hand side as

c(λ(P`+m − P`)u, ϕ`+m) . r`,m.

This, the approximation and stability properties (3.2) and the discrete Friedrichs inequality
[9, Thm. 10.6.12] for ϕ`+m prove (5.16).

Let v`+m denote the best-approximation with respect to the norm |||·|||NC of Λ`u in V`+m.
The Pythagoras theorem

|||(Λ`+m − Λ`)u|||2NC = |||Λ`+mu− v`+m|||2NC + |||v`+m − Λ`u|||2NC (5.18)

prove together with (5.16) that

‖p(Λ`+mu)− p(Λ`u)‖2 + |||(Λ`+m − Λ`)u|||2NC

. |||Λ`+mu− v`+m|||2NC + |||v`+m − Λ`u|||2NC

+ ‖h`λP`u‖∪(T`\T`+m) + r2
`,m.

(5.19)

Set φ`+m := Λ`+mu− v`+m. Elementary algebra and the projection property (3.1) show

|||Λ`+mu− v`+m|||2NC = aNC(Λ`+mu− v`+m, φ`+m)

= aNC(Λ`+mu, φ`+m)− aNC(Λ`u, I
CR
` φ`+m).

The discrete eigenvalue problem (5.12) and the identity (5.14) show that this equals

aNC(Λ`+mu, φ`+m)− aNC(Λ`u, I
CR
` φ`+m)

= c(λP`+mu, φ`+m)− c(λP`u, ICR` φ`+m)

− bNC(φ`+m, p(Λ`+mu)) + bNC(ICR` φ`+m, p(Λ`u)).
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Since the velocity approximations Λ`u ∈W` and Λ`+mu ∈W`+m are piecewise divergence-
free, the projection property of ICR` shows that

bNC(φ`+m, p(Λ`+m))− bNC(ICR` φ`+m, p(Λ`u))

= bNC(v`+m − Λ`u, p(Λ`u)− p(Λ`+mu)).

The combination of the foregoing three displayed formulae yields

|||Λ`+mu− v`+m|||2NC

= λc(P`+mu− P`u, φ`+m) + λc(P`u, φ`+m − ICR` φ`+m)

+ bNC(v`+m − Λ`u, p(Λ`+mu)− p(Λ`u)).

(5.20)

Proposition 5.5 and the discrete Friedrichs inequality [9, Thm. 10.6.12] control the first
contribution as

λc(P`+m − P`u, φ`+m) . r`,m|||φ`+m|||NC.

The approximation and stability properties (3.2) of ICR` and the fact that ICR` φ`+m|T =
φ`+m|T for all T ∈ T` \ T`+m prove for the second term of (5.20) that

c(λP`u, φ`+m − ICR` φ`+m) . ‖h`λP`u‖L2(∪T`\T`+m)|||φ`+m|||NC.

Therefore, the combination of (5.19)–(5.20) and the Young inequality prove for some con-
stant C ≈ 1 that

‖p(Λ`+mu)− p(Λ`u)‖2 + |||Λ`+mu− Λ`u|||2NC

≤ C
(
‖h`λP`u‖2L2(∪T`\T`+m) + r2

`,m + |||v`+m − Λ`u|||2NC

)
+

1

2
|||φ`+m|||2NC +

1

2
‖p(Λ`+mu)− p(Λ`u)‖2.

The Pythagoras theorem implies the stability |||φ`+m|||NC ≤ |||(Λ`+m − Λ`)u|||NC. Hence, the
terms on the right-hand side with the prefactor 1/2 can be absorbed. The estimate

|||v`+m − Λ`u|||2NC .
∑

T∈T`\T`+m

∑
F∈F(T )

h−1
T ‖[Λ`u]F ‖2L2(F )

is proven in [13, Thm. 3.1] and bounds the second contribution on the right-hand side of
(5.18).

As in Subsection 4.3, the following reliability and efficiency are an immediate conse-
quence of the discrete reliability.

Corollary 5.8 (reliability and efficiency). Provided ‖h0‖∞ � 1, any eigenpair (λ, u, p) ∈
R×W ×M of (5.10) with ‖u‖ = 1 satisfies

|||u− Λ`u|||2NC + ‖p− p(Λ`u)‖2 ≤ C2
drelµ

2
` (T`, λ, u) (5.21)

and, for some constant Ceff ≈ 1,

µ`(T`, λ, u)2 ≤ C2
eff(|||u− Λ`u|||2NC + ‖p− p(Λ`u)‖2). (5.22)

Proof. Let (T`+m | m ∈ N) be a sequence of nested refinements of T` with ‖h`+m‖∞ → 0
as m→∞. The a priori convergence results (for instance Proposition 5.6) and the discrete
reliability prove the reliability. The efficiency follows from the standard techniques of [49].
Higher-order terms are absorbed for ‖h0‖∞ � 1.
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5.4 Adaptive Algorithm and Contraction Property

This section presents the adaptive algorithm and the contraction property.
For any simplex T ∈ T`, the explicit residual-based error estimator consists of the sum

of the residuals of the computed discrete eigenfunctions (u`,j)j∈J ,

η2
` (T ) :=

∑
j∈J

h2
T ‖λ`,ju`,j‖2L2(T ) +

∑
F∈F(T )

h−1
T ‖[u`,j ]F ‖

2
L2(F )

 .

Let, for any subset K ⊆ T,
η2
` (K) :=

∑
T∈K

η2
` (T ).

For the linear Stokes problem this type of error estimator without pressure contribution
was introduced by [29].

The adaptive algorithm is driven by this computable error estimator and runs the
following loop.

Algorithm 5.9 (AFEM for the Stokes eigenvalue problem). .
Input: Initial triangulation T0, bulk parameter 0 < θ ≤ 1.
for ` = 0, 1, 2, . . .
Solve. Compute discrete eigenpairs (λ`,j , u`,j , p`,j)j∈J of (5.13) with respect to T`.
Estimate. Compute local contributions of the error estimator

(
η2
` (T )

)
T∈T`

.
Mark. Choose a minimal subset M` ⊆ T` such that θη2

` (T`) ≤ η2
` (M`).

Refine. Generate T`+1 := refine(T`,M`) with the refinement rules of [47].
end for
Output: Triangulations (T`)` and discrete solutions

(
(λ`,j , u`,j , p`,j)j∈J

)
`
.

The proof of the contraction property follows in a similar way as for the eigenvalues of
the Laplacian. The error estimator reduction is identical to that of Proposition 4.8.

Proposition 5.10 (quasi-orthogonality). Under the hypothesis ‖h0‖∞ � 1 there exists a
constant Cqo such that any eigenpair (λ, u, p) ∈ R ×W ×M of (5.10) with ‖u‖ = 1, any
T` ∈ T and any admissible refinement T`+m of T` satisfy

|2aNC(u− Λ`+mu,Λ`+mu− Λ`u)|
≤ Cqo(‖h`λP`u‖L2(∪T`\T`+m) + r`+m)|||u− Λ`+mu|||NC.

Proof. The nonconforming interpolation operator ICR` maps functions from Z as well as
functions from Z`+m to the space Z`, i.e., it preserves the (piecewise) divergence-free
property. Hence, the proof of Proposition 4.10 applies almost verbatim. The details are
omitted.

Note that the quasi-orthogonality is stated for the velocity approximations only. A
quasi-orthogonality of the pressure as in [39] is not needed in this analysis.

Proposition 5.11 (contraction property). Under the condition ‖h0‖∞ � 1, there exist
0 < ρ2 < 1 and 0 < β, γ <∞ such that, for any eigenpair (λ, u, P ) ∈ R×W ×M of (5.10)
with ‖u‖ = 1, the term ξ2

` := µ2
` (T`, λ, u) + β|||u− Λ`u|||2 + γ‖h`P`u‖2 satisfies

ξ2
`+1 ≤ ρ2ξ

2
` for all ` ∈ N0.

Proof. The proof essentially follows the steps from Proposition 4.11. The pressure variable
only arises in higher-order terms that are controlled by the error estimator. The details
are omitted for brevity.
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5.5 Optimal Convergence Rates

This subsection establishes optimal convergence rates of Algorithm 5.9. For the linear
Stokes problem, the optimal convergence of AFEMs has been proven in [2, 39, 21].

Define the seminorm

|(u, p)|AStokes
σ

:= sup
m∈N

mσ inf
T∈T(m)

(‖(1−Π0
T)Du‖+ ‖(1−Π0

T)p‖)

and the approximation class

AStokes
σ :=

{
(v, q) ∈ V ×M

∣∣ |(v, q)|AStokes
σ

<∞
}
.

The set AStokes
σ does not depend on the finite element method and instead concerns the

approximability of the derivative and the pressure variable by piecewise constant functions.
The following alternative set, also referred to as approximation class, is used for proving
optimal convergence rates

ANC,Stokes
σ :=

{
(u, p) ∈ V ×M

∣∣ |u|
ANC,Stokes
σ

<∞
}

for
|(u, p)|

ANC,Stokes
σ

:= sup
m∈N

mσ inf
T∈T(m)

(|||u− ΛTu|||NC + ‖p− p(ΛTu)‖).

Proposition 5.6 establishes the equivalence of those two approximation classes in the sense
that any eigenfunction (u, p) ∈ W ×M satisfies (u, p) ∈ AStokes

σ if and only if (u, p) ∈
ANC,Stokes
σ . The following theorem states optimality of Algorithm 5.9. The proof will be

outlined in the remaining parts of this section.

Theorem 5.12 (optimal convergence rates). Provided the bulk parameter θ � 1 and
the initial mesh-size ‖h0‖∞ � 1 are sufficiently small, Algorithm 5.9 computes sequences
of triangulations (T`)` and discrete eigenpairs ((λ`,j , u`,j , p`,j)j∈J)` with optimal rate of
convergence in the sense that, for some constant Copt, it holds that

sup
`∈N

(
card(T`)− card(T0)

)2σ∑
j∈J

(
|||uj − Λ`uj |||2NC + ‖pj − p(Λ`uj)‖2

)
≤ Copt

∑
j∈J
|(uj , pj)|2ANC,Stokes

σ
.

Let for any w ∈W with the representation w =
∑

j∈J αjuj the corresponding pressure
be defined as p(w) :=

∑
j∈J αjpj . For any v` ∈ W` with representation v` =

∑
j∈J βjΛ`uj

define p(v`) :=
∑

j∈J βjp(Λ`uj). Proposition 5.6 implies the following immediate conse-
quence.

Corollary 5.13. Provided the bulk parameter θ � 1 and the initial mesh-size ‖h0‖∞ � 1
are sufficiently small, Algorithm 5.9 computes triangulations (T`)` and discrete eigenpairs
((λ`,j , u`,j , p`,j)j∈J)` with optimal rate of convergence in the sense that

sup
`∈N

(card(T`)− card(T0))σ sup
w∈W
‖w‖=1

inf
v`∈W`

(
|||w − v`|||2NC + ‖p(w)− p(v`)‖2

)1/2

.

∑
j∈J
|(uj , pj)|2AStokes

σ

1/2

.
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The proof of optimal convergence rates is almost identical to that presented in Subsec-
tion 4.5. The only difference is that the pressure term appears in certain estimates. The
modifications are sketched in the remaining part of this subsection.

Consider

Ξ2
` := µ2

` (T`) + β
∑
j∈J
|||uj − Λ`uj |||2NC + γ

∑
j∈J
‖h`λjP`uj‖2 for all ` ∈ N0

for the parameters β and γ from Proposition 5.11. Choose

0 < τ ≤
∑
j∈J
|(uj , pj)|2ANC,Stokes

σ
/Ξ2

0

and set ε(`) :=
√
τ Ξ`. Let N(`) ∈ N be minimal with the property∑

j∈J
|(uj , pj)|2ANC,Stokes

σ
≤ ε(`)2N(`)2σ.

Let T̃` ∈ T denote the optimal triangulation of cardinality

card(T̃`) ≤ card(T0) +N(`)

in the sense that the projection Λ̃ := Λ
T̃`

with respect to T̃` satisfies∑
j∈J

(
|||uj − Λ̃uj |||2 + ‖pj − p(Λ̃uj)‖2

)
≤ N(`)−2σ

∑
j∈J
|uj |2ANC,Stokes

σ
≤ ε(`)2 (5.23)

and define T̂` := T` ⊗ T̃` as the overlay. The arguments of [22, 33] lead to

card(T` \ T̂`) ≤ N(`) ≤ 2

(∑
j∈J
|uj |2ANC,Stokes

σ

)1/(2σ)

ε(`)−1/σ.

Let Λ̂ := Λ
T̂`

denote the projection with respect to T̂.

Lemma 5.14. Provided ‖h0‖∞ � 1, it holds that∑
j∈J

(
|||uj − Λ̂uj |||2NC + ‖pj − p(Λ̂uj)‖2

)
. ε(`)2.

Proof. As in the proof of Lemma 4.14, recall that by definition of the overlay [22] the tri-
angulations T̂` and T̃` are nested. Hence, the best-approximation result of Proposition 5.6
and (5.23) prove ∑

j∈J

(
|||uj − Λ̂uj |||2NC + ‖pj − p(Λ̂uj)‖2

)
.
∑
j∈J

(
|||uj − Λ̃uj |||2NC + ‖pj − p(Λ̃uj)‖2

)
≤ ε(`)2.

Lemma 5.15 (key argument). Provided ‖h0‖∞ � 1, there exists C2 ≈ 1 such that

µ2
` (T`) ≤ C2µ

2
` (T` \ T̂`).
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Proof. The discrete reliability from Proposition 5.7, the efficiency from Corollary 5.8 and
the arguments of Lemma 4.15 lead to the desired estimate. The details are omitted for
brevity.

The finish of the optimality proof is identical to that of [33, Lemma 7.3] and therefore
omitted.

Lemma 5.16 (finish of the optimality proof). The choice

0 < θ ≤ 1
/(
C2(B/A)4(2N2 + 4N3)

)
implies the existence of some constant C(σ) such that

sup
`∈N

(
card(T`)− card(T0)

)σ∑
j∈J

(
|||uj − Λ`uj |||2NC + ‖pj − p(Λ`uj)‖2

)1/2

≤ C(σ)

(∑
j∈J
|(uj , pj)|2ANC,Stokes

σ

)1/2

.
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